VibeBuilders.ai Logo
VibeBuilders.ai

Things

Explore resources related to things to help implement AI solutions for your business.

Things I did to promote my product, and how they turned out
reddit
LLM Vibe Score0
Human Vibe Score1
laike9mThis week

Things I did to promote my product, and how they turned out

(I will share more updates in the future, you can find me on Twitter and/or Mastodon) Ask any ten indie developers about the toughest part of their job, and nine will likely say "marketing." I recently got a taste of this firsthand when I launched Xylect. Here's a rundown of my promotional attempts - hopefully, my experiences can help fellow developers out there. Podcast Community (✅ Success) I kicked things off by promoting Xylect in my podcast listener group. It wasn't a blockbuster, but I managed to sell a few copies and got some invaluable feedback from friends. Shoutout to those early supporters! Reddit r/macapps (✅ Success) Having had some luck promoting open-source projects on Reddit before, I decided to make r/macapps my first stop in the English-speaking world. I made an app to help you automate boring tasks with one click This post turned out to be a hit! I sold about ten copies and got a ton of useful feedback. Users pointed out compatibility issues with PopClip and suggested improvements for the website. One Italian user even requested localization, which I happily added. https://preview.redd.it/y4fuwh6hleqd1.png?width=959&format=png&auto=webp&s=7bb1b68cbf8a4f94998999e0832b9b7bd85bac67 https://preview.redd.it/8uu4cmyhleqd1.png?width=683&format=png&auto=webp&s=8f1744636aee8074b0e7491a334ef06076b143b0 I also got an intriguing email from a French user - more on that later. More Reddit Posts (❌ Failure) Riding high on my r/macapps success, I branched out to r/SideProject, r/Entrepreneur, and r/indiehackers. These subreddits frown upon direct self-promotion, so I took a softer approach with an article: The unexpected emotional cost of being an indiehacker While the article was heartfelt, it fell flat. Across all three posts, I got a grand total of three comments - two of which were complaints about the font size on mobile. Needless to say, I didn't sell a single copy. Hacker News (❌ Failure) As one of the tech world's major forums, I had to give Hacker News a shot. I wasn't too optimistic, given my past experiences there. Posting on HN feels like a mix of luck and dark magic. As expected, my post vanished without a trace - no comments, no sales. I might give it another go someday. If you're curious, you can check out my previous HN submissions. Tools Directory Websites (❌ Failure) These sites have a simple premise: you list your app, they display it. Seemed like an easy way to get some backlinks, right? Well, I learned the hard way that it's not that simple. I stumbled upon a Reddit post where someone claimed to have made a killing with their directory site in just a few days. The catch? Each listing cost $19. The site had a handful of apps listed, so I thought, "Why not? Early bird gets the worm." I paid up and listed Xylect. Spoiler alert: all I got was $19 poorer 🥲 Lesson learned: These directory sites won't magically sell your product. At best, they're just glorified backlinks. There might be some value in paid promotions on these platforms, but I can't speak to that from experience. V2EX (❌ Failure) After striking out in the English-speaking world, I turned my attention to the Chinese market, starting with V2EX (think of it as China's hybrid of HN and Reddit). This turned out to be my most unexpected flop. Here's the post: [\[Launch Discount\] Mac's most powerful AI search (Perplexity + Wikipedia + Google), boost your efficiency tenfold with one click. No API key required, no prompt needed, no token limit 🔥 - V2EX](https://www.v2ex.com/t/1064930?p=1#reply36) I'd seen decent engagement on other promo posts, so I had high hopes. I posted late at night (US time) and went to bed dreaming of waking up to a flood of comments. Reality check: The next morning, I had exactly one reply - from Kilerd, a loyal podcast listener showing some love. I was baffled. After re-reading my post, I realized I'd missed a crucial element: promo codes. A quick scan of popular posts confirmed my suspicion. Nearly every successful promo post was offering codes, and most comments were just base64-encoded email addresses. Talk about a facepalm moment. I scrambled to add a note about an upcoming free trial and invited users to drop their emails. This got the ball rolling with some code requests, but by then, the damage was done. The post fizzled out, and I didn't sell a single copy 🫠 A French Friend's Newsletter (✅ Success) At this point, my promotional efforts were looking pretty grim. My sales chart had a depressing stretch of flatline. But then, a glimmer of hope appeared in my inbox. Remember that French user I mentioned earlier? He ran a newsletter called vvmac and offered to feature Xylect if I added French support and sent him a free license. It was an offer I couldn't refuse. What followed was a crash course in French localization (thank you, Claude!) and the start of an incredible partnership. This guy was the most thorough beta tester I've ever encountered. We exchanged over sixty emails, covering everything from translations to UI tweaks to bug fixes. His response time was lightning-fast - I'd fix a bug, and five minutes later, he'd confirm it was sorted. The result? A much-improved Xylect and a glowing feature in his newsletter. https://preview.redd.it/ylcq2wxoleqd1.png?width=991&format=png&auto=webp&s=ee395110f50417d5c7f61318f27bf3dc30247809 I'm still in awe of his dedication. He single-handedly transformed Xylect from a buggy mess into a polished product. I'll be forever grateful for his help. The newsletter feature led to a few more sales, but honestly, that felt like a bonus at that point. Influencers (❌ Failure) I knew from the start that to really make waves, I'd need influencer backing. So, I added a note offering free licenses to content creators willing to collaborate. https://preview.redd.it/tyb2m1rqleqd1.png?width=799&format=png&auto=webp&s=56eabf126e772515322595613c546e6ba69fb431 I did get one taker: Hey, I'll be honest, I am not a huge content creator but I think I put a lot of effort in evaluating and figuring out which apps work... So I was wondering if I could get a license in case you are willing to share it. Thank you for considering. Have a great weekend. But I knew I needed to aim higher. With the new French localization, I thought I'd try my luck with some French-speaking Mac YouTubers. I crafted emails highlighting how Xylect could help their French audience with English content. https://preview.redd.it/07oqzemrleqd1.png?width=542&format=png&auto=webp&s=3d160c1d149f28e9029816a277c6ab2496fcd57e After days of silence, I got one reply. It was... not what I was hoping for: Hi, Thank you for your proposal. I can help you to promote your service on Tiktok, Instagram et YouTube, with unique short video. Price for this project is 3500€. Unless I've completely lost my marbles, there's no way I'm dropping 3500€ on promotion. Sure, given their follower count (YouTube: 348K, TikTok: 2.7M, Instagram: 400K), it's not an outrageous ask. For some products, it might even be worth it. But for Xylect? No way. I also reached out to a Chinese influencer on Xiaohongshu, but they weren't interested. Back to the drawing board. Conclusion If you've made it this far, you've probably realized this isn't exactly a success story. My search for effective promotional channels came up largely empty-handed. I'd naively thought that my success with open-source projects would translate seamlessly to the indie dev world. Boy, was I wrong. As I mentioned in my previous article, open-source projects create a dynamic where users feel indebted to developers for their free labor. But in the commercial world of indie development, that dynamic completely flips. While this experience was often frustrating, it was also enlightening - which was kind of the point. As my first foray into indie development, my main goal was to learn the ropes and understand the process. Making money would've been nice, sure, but it wasn't my primary focus. Thanks for sticking with me through this post. I will share more updates in the future, you can follow me on  Twitter and/or Mastodon.

I’m building a “DesignPickle” for all things Funnels. Would love your feedback...
reddit
LLM Vibe Score0
Human Vibe Score0.846
Gluteous_MaximusThis week

I’m building a “DesignPickle” for all things Funnels. Would love your feedback...

Hey Entrepreneurs, Early next year I’m rolling out a productized service business along the lines of Design Pickle, but instead of design assets, we create on-demand marketing assets: Things like landing pages, lead magnets, email campaigns, etc. This is NOT an agency with client engagements, etc.  It is an on-demand, menu-item style fulfillment platform where we do a few predefined things really, really well, and as much as possible try to reduce the complexity (and required customer inputs) so that creating your next killer Funnel is as easy as ordering dinner on Skip the Dishes. Below I’ve laid out our current thinking (we’re still distilling this into a deck), just so you have the full context.  And at the end, I pose 5 feedback questions. So if this “deck” seems interesting to you, then I’d love to get your feedback at the end 🙂 Thanks! And here goes... \--- The current elevator pitch:  We will research your business, your market and your competitors to develop a killer Lead Magnet, Landing Page, Ad Creatives and a 30-Day Email Drip campaign designed to turn your traffic into a rabid, lifelong buyer tribe (that you can email for years... like having your own, on-demand cash printer).  The overall thesis:  While AI is getting continually better at creating things like one-off graphics, article content, and so on - we do not think it can deeply understand market psychology, what keeps your customers up at night, or the underlying emotions that drive purchase decisions at the individual level, for your specific offer(s). Moreover, it’s also this psychological aspect of marketing where most businesses simply do not have the talent, resources or frankly the experience to create high-performing funnels themselves, regardless of how much "automation" they might have at their fingertips. And that’s because this is where you need to know who your customer really is, and what they’re actually buying (hint: not your features). Few marketers focus on these fundamentals, let alone understand the selling process. This is also why tools like ClickFunnels, HighLevel, LeadPages, etc. while very helpful, can only help with the logistics of selling. It’s still on each business to figure out how to actually tell their story, capture demand, and sell effectively. This is why a productized service that nails market research, competitor analysis & world-class copywriting that can actually turn cold traffic into lifelong customers is going to be a no-brainer for a business that’s currently struggling to actually get a steady flow of online sales. This is not something we see AI replacing effectively, any time soon. Current gaps & unknowns:  At a top level, I’m not overly worried about validation or viability; there are several existing competitors, and obviously the automation platforms have substantial customer bases (ClickFunnels etc). There will be a certain cohort that will want experts to do the actual thinking for them, storytelling, etc. Even if it’s a relatively small cohort, given the CLTV of a service like this, it still makes for a decent sized business. But where I’m less confident is in who our ideal customer actually is... Yes, basically every direct-response internet business needs an effective funnel that can sell. Whether you’re an Enterprise SaaS platform or a solopreneur launching your first $39 ebook, you will benefit from a killer funnel. As a “DesignPickle” type service though, here’s the challenges I see with each core customer category... B2B SaaS: While sales decisions are still emotional, it’s more about account-based considerations; people usually aren’t spending their own money, so it’s more about not looking stupid vs. gaining some benefit. Harder to systemize. Very high stakes. Consumer / SMB SaaS: While I think in general these are ideal customers, there will be resistance to leaning in hard on personality (and personal brand); founders usually want to sell at some point, so if they become the face of the platform, then boosting performance with a high-personality funnel might ironically make it a harder business to sell. SaaS founders are also generally very technical and stereotypically avoid marketing like the plague. Ecommerce: Most DTC brands think of funnels as an extension of their FB ad campaigns; few see their customers as a long-term audience that can become a significant asset. However, certain lifestyle / luxury brands might differ. Online Courses / Coaches: Of all the customer profiles, this group probably has the most appreciation for the effectiveness of marketing psychology, copywriting, etc. and would get the value prop quickly. The problem is that most won’t have the budget or traction to outsource asset creation. This is the “poorest” segment of the market. Service Businesses: Agencies, consultancies, and so on would greatly benefit from having a strong personal brand + storytelling premise (funnel). However, they’re also the worst offenders when it comes to never practicing what they preach / do for others. Client work soaks up all their resources. Local & Brick/Mortar: Generally speaking most local businesses are going to have smaller audiences (email lists under 2K subs), where funnel ops might have limited value long-term due to a lack of scale. And for larger B&M brands with franchises across various locations, you get into stakeholder friction; messaging usually gets watered down to basic corporate-speak as a result. Now, to be clear, I still see a ton of opportunity in each of those main customer categories as well, but I like to be clear-eyed about the overall resistance each niche will have - mainly because this helps to refine messaging to an ideal customer profile within them. In this case though, so far, nothing’s really jumping out at me as a clear “winner” at a category level. So far, what I’m thinking is our ICP might be situational / conditional. For example: A business has a funnel / is invested in the process, but it’s not working yet A business sees their competitor killing it with a funnel, and they’re ultra motivated to do it even better A business has one funnel that’s working awesome, and everything else they try sucks (so they can’t scale / expand) Etc. Basically, our most ideal customer might be ANY type of business who gets it, who’s tried to do this themselves, and now needs the pros to come in and fix things. \--- This is where your feedback would be incredibly valuable... First, if you’ve made it all the way down to this point - thanks for enduring my rambling mess above! But I did think the context might be helpful. Based on our overall biz plan & go-to-market considerations discussed above, if you run a business (or work with one) that might benefit from something like this, I’d love to ask a few questions... What is the nature of your business? (What do you sell)? What do you find hardest about selling to your online audience? Have you built a funnel in the past / are you running one currently? If not, what’s stopping you from building a high-performing funnel? If you had a “magic marketing lamp” where a genie could create ONE amazing marketing asset for you (eg. a killer landing page, video ad, launch strategy, etc), but you could only use it ONCE, what would you have the genie do for you? Please reply below as a comment, or DM me if you’d prefer to keep answers anonymous.  Thanks so much And again, apologies for the novel... Cheers

My AI tools system to get things done 5x faster, after trying 100+ AI tools
reddit
LLM Vibe Score0
Human Vibe Score1
looking-everywhereThis week

My AI tools system to get things done 5x faster, after trying 100+ AI tools

Sorry for the long post, but I just had to share this with you all. After starting my own business, I realized I needed to get more work done and take my productivity to the next level. A few days ago, I asked people in this community to recommend AI tools, and that kicked off my journey to include as many AI apps in my system as possible. In my quest, I've tried over 100 AI tools to find the best ones. It wasn't easy, but thanks to the awesome suggestions from this community, I finally nailed down a setup that works for me. I am in search of more fun tools, so please share if you have some suggestions. So here's the breakdown of my whole system, totaling $194 per month: Content Creation: Text ($20): I use ChatGPT for brainstorming, content creation, marketing, and even legal work. I've been going back to it more often after their O1-preview. Video ($20): Captions Ai is my go-to for video editing. I mainly use self-recorded videos and auto-edit them with this app. Graphics ($14): I mix Gamma and Canva. I've got Gamma's Plus subscription and Canva's Pro subscription. I start by prompting my requirements in Gamma and then edit them later in Canva. Plus, Canva's templates are super handy for other stuff. Productivity: FastTrackr AI ($20): This AI assistant helps me manage emails, reply to them, set up meetings, prepare for them, transcribe notes on my phone, and even do basic research when I'm on WhatsApp. I'm thinking of upgrading to their Pro plan to add other emails. ARC Browser + Perplexity ($0): I snagged a 6-month deal for Perplexity Pro, which will cost $20 later on, including $5 credit for API. Sana AI ($0): This one's amazing for meeting assistance. I love how it understands context and key action items. Not sure when they'll start charging, but I can't recommend it enough. Wispr Flow ($15): Lets me use my voice to command apps. It's amazing how accurately it picks up complex names. Might save some cash if I switch to the annual plan. Sales and Marketing: Lead Enrichment ($67): I'm using Clay and share it with a friend to cut costs. People say there are other options, but this one's the best despite the learning curve. Instantly AI($37): I've tried other tools for cold emails, but Instantly's warm-up feature is top-notch. For other tasks like social media automation and trigger-based automations, I use a mix of Make and Perplexity APIs ($11). Total Cost: $194 per month. I know hiring someone could help me get more done, but I'm thinking of bringing someone onboard with this system already in place. That way, a new hire could potentially lead to 2x or 3x the work output. Thanks for reading through this! Hope this helps anyone looking to boost their productivity with AI tools. Feel free to ask me anything or share your own experiences! Couldn't add links as this gets flagged by mods.

Technical founders - is "bulling" your way through learning right for a startup? [I will not promote]
reddit
LLM Vibe Score0
Human Vibe Score0
JustZed32This week

Technical founders - is "bulling" your way through learning right for a startup? [I will not promote]

Sup, This is a question for technical founders. \--a little backstory-- I am starting a company in AI field that creates something nobody has ever done before. 7 months in. \--- How most software companies are created - you have an improvement idea, then you have a thousand or so problems to solve to make that improvement happen, and for each one that you don't know, you go to Stackoverflow or ChatGPT to look for solutions for that problem. Which involves next-to-no upfront preparation because for vast majority of traditional software you can solve it on-the-go - "traditional" software is very easy compared to, say, mechanical, pharma or AI engineering. However, for more advanced disciplines - can you just "Google" it on-the-go? I'm a solo founder, and 8 months in, creating a foundational model, BECAUSE I did not know things upfront, I've wasted at least 3 months doing something which was mostly technically unviable in the first place. Out of 14000 lines of code that I've done (including tests), I had to scrap 10000 recently. Imagine the scale of it. Obviously I didn't even know how ML works when I've started. Major fuck-up. How do you operate in industries which you've done before? How do you determine that it's time to start creating you big technological leaps instead of continuing to learn? Cheers. Edit: No need to push me on business topics. I know how to create value very well. It's only a tech question, and I'm only asking because - well - to deliver my value, I need to do a lot of novel tech.

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

How I made a high tech salary in my first selling month
reddit
LLM Vibe Score0
Human Vibe Score1
Ok_Negotiation_2587This week

How I made a high tech salary in my first selling month

For over 7 years I worked as a full-stack developer, helping other companies bring their ideas to life. But one day, I thought “Why not try making my own dream come true?”. That’s when I decided to quit my job and start my own journey to becoming an entrepreneur. At first, it wasn’t easy. I didn’t make any money for months and had no idea where to start. I felt lost. Then, I decided to focus on something popular and trending. AI was everywhere, and ChatGPT was the most used AI platform. So I looked into it and I found the OpenAI community forum where people had been asking for features that weren’t being added. That gave me an idea. Why not build those features myself? I created a Chrome extension and I worked on some of the most requested features, like: Downloading the advanced voice mode and messages as MP3 Adding folders to organize chats Saving and reusing prompts Pinning important chats Exporting chats to TXT/JSON files Deleting or archiving multiple chats at once Making chat history searches faster and better It took me about a week to build the first version, and when I published it, the response was incredible. People loved it! Some even said things like, “You’re a lifesaver!” That’s when I realized I had something that could not only help people but also turn into a real business. I kept the first version free to see how people would respond. Many users have been downloading my extension, which prompted Chrome to review it to determine if it qualified for the featured badge. I received the badge, and it has significantly boosted traffic to my extension ever since. After all the positive feedback, I launched a paid version one month ago. A few minutes after publishing it, I made my first sale! That moment was so exciting, and it motivated me to keep going. I already have over 4,000 users and have made more than $4,500 in my first selling month. I’ve decided to release 1-2 new features every month to keep improving the extension based on what users ask for. I also created the same extension for Firefox and Edge users because many people have been asking for it! I also started a Reddit community, where I share updates, sales, discount codes, and ideas for new features. It’s been awesome to connect with users directly and get their feedback. Additionally, I’ve started working on another extension for Claude, which I’m hoping will be as successful as this one. My message to you is this: never give up on your dreams. It might feel impossible at first, but with patience, hard work, and some creativity, you can make it happen. I hope this inspires you to go after what you want. Good luck to all of us!

The Drawing of the Three - Once you look through the veil, nothing is the same again. (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score0.333
Tim-SylvesterThis week

The Drawing of the Three - Once you look through the veil, nothing is the same again. (I will not promote)

Originally published Nov 5, 2024 In my last post, I talked about assembling a series of filters to use to view the startup landscape, which led me to a few conclusions about what opportunities I should pursue. What did I see through those filters? What I saw through the moire pattern of those two lists overlaid by one another is what I think will be the third great monetization strategy for the internet, matching the pattern of: web1 => Ad monetization web2 => Subscription monetization web3 => For AI, neither of those work anymore, which demands something new. But what? Well that’s the important part, isn’t it? Should I just up and tell you? Yawn. The climax of a movie is at the climax, if they tell you the crux at the beginning, it’s a lot less fun (usually). The standard bearer for web1 and ads was Google (with countless followers), and essentially every website adopted that model for their first pass at content monetization. Google has been… let’s call it fairly successful… so it’s not a bad way to look at things. How many websites live and die by selling advertising? The standard bearers for web2 and subscriptions were Salesforce (for B2B SaaS) and Netflix (for B2C SaaS), with countless followers, to the extent that SaaS has been the dominant startup monetization thesis for the last 15+ years. It’s more old and tired by now than most American politicians, but how many websites live and die by people entering payment details for a monthly or annual subscription? Evidence proves those models for web1 and web2 worked well enough that countless businesses depend on them, and countless fortunes have been made and lost surfing the waves, or crashing against the shorelines, of ads and subs. But it’s also apparent (to me, at least) that now that AI is the dominant startup thesis, neither ads nor subs are going to prevail in an AI-centered world, and for one simple reason: Those monetization strategies are for humans, and AI bots are not humans. Changing Environments Require Changing Strategies Every so often, there’s a fundamental shift that demands everything in the ecosystem adapt to a new habitation strategy to survive. We’ve seen this repeatedly across Earth’s ecology (for instance, introducing free oxygen to the atmosphere, producing respiration while destroying all the life forms that existed before oxygen permeated the atmosphere), and across human society (for example, how nuclear bombs changed war, and how drones are changing it again, for less violent examples, consider the adoption of computers and the subsequent adoption of smartphones). Now the ecosystem of the internet has changed irrevocably, opening up countless new and interesting niches to occupy. Humans may see an ad and buy something stupid (or, occasionally, not-stupid), but an AI won’t unless its programmed to. And subscriptions are designed for humans to consume content at a human rate, not for an AI that can choke down an entire database of content (whatever it may be) at whatever speed the servers can manage. Changing conditions require changing strategies. It was clear to me that: The introduction of AI bots to the internet ecosystem was, is, and will be massively disruptive for a very long time The internet population of bots already exceeds humans and is growing faster than the human population The two dominant monetization strategies are not relevant to bots That disruption of expectations across the ecosystem demands a third strategy, a new strategy to handle a massive change in an existing system. And that strategy needs to accommodate, support, and monetize the new demands from the vast armies of new participants in the internet ecology. Therefore, a method that converts bots from an expense into a revenue source would become a dominant monetization strategy, and therefore whoever owns that strategy will be a dominant player in the internet ecosystem. Set the realization of semi-practical, semi-useful AI against a backdrop of technology cycles that have, in the distant past (in internet terms) produced ads and subs, and more recently produced enormous investment into fintech and crypto, I started to see a path that felt like it would grow over time to become a new monetization strategy that works in the AI ecosystem. Sun Tzu had a couple drinks, saw a couple things… There’s at least, and possibly only, two things I know about fighting: You cannot fight the tide, and it’s much harder to fight an uphill battle. If my whole thesis on this go-around was to go with the flow, and that trickle of insight was leading me from my overlook along a roaring flow of cash coursing through a valley filled with AI startups, where exactly would it lead me? Most rivers lead to the sea eventually, but they can take winding paths, and sometimes the quickest route from the mountain to the sea isn’t to follow the river, but to understand where the river leads and go there instead. Getting a view from on high can save you a lot of time on your journey. But before I get to where the path has led (or is leading) that will explain the objective I’ve identified, and the deliverables I have to produce to reach it, let’s talk about a few of the steps on the path I’ve been taking that highlight the process I followed. I figure if I explain the steps I’m taking, as I’m taking them, it may be easier for people who haven’t trod this route before to follow me and understand how to carve their own course towards their own objectives. And maybe the real treasure will be the friends we make along the way. (I will not promote)

Zero To One [Book Review]
reddit
LLM Vibe Score0
Human Vibe Score0.5
AlmostARockstarThis week

Zero To One [Book Review]

If you don't feel like reading - check out the video here ##Introduction The more I read into Peter Thiel's background, the more ridiculous it seems.. He’s been involved in controversies over: Racism, Sexism, and, [Radical Right wing libertarianism.] (https://www.bloomberg.com/news/articles/2016-07-21/the-strange-politics-of-peter-thiel-trump-s-most-unlikely-supporter) He’s built a tech company that helps the NSA spy on the world. He supported Donald Trumps presidential campaign. He’s funding research on immortality And to top it off, he helped bankrupt online media company and blog network Gawker by funding Hulk Hogan’s sex tape lawsuit - after a report of his rumoured Homosexuality rattled his chain… Zero to One clearly reflects his unique attitude and doesn't pull any punches with a genuinely interesting point of view, that has clearly worked in the past, to the tune of almost 3 billion USD. But at times, his infatuation with the All American attitude is a little much…and, quite frankly, he’s not the kind of guy I could sit and have a pint with…without grinding my teeth anyway. The content is adapted from Blake Masters' lecture notes from Thiel's 2012 Stanford Course. This definitely helped keep the book concise and fast paced, at least compared to other books I’ve reviewed. The type of content is also quite varied, with a good spread from completely abstract theories — like the Technology vs. Globalisation concept, where the book get's it's title — to practical examples such as the analysis of personalities in chapter 14, "The Founders Paradox" covering Elvis Presley, Sean Parker, Lady Gaga and Bill Gates to name a few. ###Pros Monopolies To most people a monopoly is a negative thing. But while perfect competition can drive down costs and benefit the consumer - competition is bad for business. In fact, in Thiel's opinion, every startup should aim to be a monopoly or, as he puts it: Monopoly is the condition of every successful business. I like his honesty about it. While I’m not sure about the morality of encouraging monopolies at a large scale, I can see the benefit of thinking that way when developing a startup. When you're small, you can’t afford to compete. The best way to avoid competition is to build something nobody can compete with. The concept is summed up nicely at the end of chapter 3: Tolstoy opens Anna Karenina by observing: ‘All happy families are alike; each unhappy family is unhappy in its own way.’ Business is the opposite. All happy companies are different: each one earns a monopoly by solving a unique problem. All failed companies are the same: they failed to escape competition. Pareto The Pareto Law, which you might remember as the 80/20 rule in Tim Ferris’ The Four Hour Work Week, is often used synonymously with the power law of distribution, and shows up everywhere. Thiel refers to it in his section on The Power Law of Venture Capital. If Tim Ferris recommends identifying and removing the 20% of things that take 80% of your effort - Thiel recommends finding the 20% of investments that make 80% of your return. Anything else is a waste. Soberingly, he also suggests that the Pareto Law means: ...you should not necessarily start your own company, even if you are extraordinarily talented. But to me this seems more like a venture capitalists problem, than an entrepreneurs problem - Personally, I believe there’s far more benefit in starting up your own company that purely profit. ###Cons Man and machine? Content-wise, there is very little to dislike in this book. As long as you accept that the book is written specifically for startups - where anything short of exponential growth is considered a failure - it’s exceptionally on point. However, there are a couple sections dotted throughout the book where opinion and wild speculation began to creep in. Chapter 12 is a good example of this entitled: Man and Machine. It’s a short chapter, 12 pages in total, and Thiel essentially preaches and speculates about the impact of better technology and strong AI. I like to dog ear pages with interesting or useful content so I can come back later, but this entire chapter remains untouched. America, fuck yeah! It would be really difficult for a personality as pungent as Theil's to go entirely unnoticed in a book like this, and indeed it breaks through every now and then. I only had a feint idea of Thiel's personality before I read the book, but having read up on his background, I’m actually surprised the book achieves such a neutral, if pragmatic, tone. Pretty early on in the book however, we are introduced to Thiel's concept of Economic Optimism and quite frankly the whole of chapter 6 should have been printed on star spangled, red white and blue pages. I’m not necessarily against the egotistic American spirit but when Thiel writes, in relation to European Pessimism: the US treasury prints ‘in god we trust’ on the dollar; the ECB might as well print ‘kick the can down the road’ on the euro I can smell the bacon double cheese burgers, with those tiny little American flags from here. Ooh Rah! ###TL;DR (a.k.a: Conclusion) Overall, however, I really did enjoy this book and I can see myself coming back to it. Peter Thiel IS controversial, but he has also been undeniably successful with a career punctuated by bold business decisions. The ideas in the book reflect this mind set well. Yes, he backed Trump, be he also (sadly) backed the winner.

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

Joined an AI Startup with Ex-ShipStation Team - Need Tips on Finding Early Users
reddit
LLM Vibe Score0
Human Vibe Score1
welcomereadThis week

Joined an AI Startup with Ex-ShipStation Team - Need Tips on Finding Early Users

Hey Reddit, My name’s Welcome (Yes, that’s really my name), and I’ve been in tech for most of my career, mostly at bigger companies with established brands and resources. But recently, I decided to join a small startup called BotDojo. It’s my first time being part of a small team, and it’s been a pretty eye-opening experience so far. But, like with anything new, I’ve hit a few bumps along the way, and I’m hoping you all might have some advice. A little backstory: BotDojo was started by some of the engineers who used to work together at ShipStation. After ShipStation sold, they spent some time experimenting with AI but kept running into the same problems—having to patch together tools, getting inconsistent results, handling data ingestion, and struggling to track performance. So, they decided to build a platform to help developers build, test, and deploy AI solutions. Since I came on board, my focus has been on finding early users, and it’s been a mixed bag of wins and frustrations. We’ve got a solid group of people using the free version (which is great), but only a few have upgraded to the paid plan so far (ranging from startups to large enterprises). The cool thing is that those who have become paying customers absolutely love the product. It’s just been hard getting more people to that point. We’ve tried a bunch of things: Attending industry events, doing cold email outreach, running social ads (the usual stuff). And while we’ve seen some interest, we’re running into a few challenges:   Learning curve: The software is really powerful, but it takes a week or two for users to really see what it can do. Without a dedicated sales team to walk them through it, it’s been tough getting people to stick around long enough to see the value. Standing out is hard: The AI space is super crowded right now. I think a lot of people see “AI tool” and assume it’s just like everything else out there (even though BotDojo has some awesome features that really set it apart).  Sign-ups, but limited engagement: We’re on a freemium model to make it easy for people to try it out, but that also means we get a lot of bots and people who sign up but don’t really dive in. So, I thought I’d reach out here and see if anyone has been through this early stage before. How did you manage to break through and find those first paying users who really saw the value in what you were building?  Are there any strategies, communities, or tactics that worked particularly well for you? And if you had to do it all over again, what would you focus on? I figure I’m not the only one trying to navigate these waters, so I’m hoping this can be a helpful thread for others too. Thanks so much for reading, and I’d be super grateful for any advice or insights you can share! 🙏

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

From “Green” to “Smart” – Tom Gorski’s Word of Advice
reddit
LLM Vibe Score0
Human Vibe Score1
DanielleHarrison1This week

From “Green” to “Smart” – Tom Gorski’s Word of Advice

Sharing this interview with entrepreneur Tom Gorski. I think it contains a few nice tips for beginner entrepreneurs. What is the problem with the term “Green?” what are the top 3 mistakes entrepreneurs make that can prevent them from enjoying the sweet taste of success? And what should young entrepreneurs always keep in mind? Continuing our expert interview series, we asked entrepreneur Tom Gorski to share some of his secrets to success with us. Gorski is the CEO and Co-Founder at SaaSGenius.com, and an Inbound Marketer & Growth Hacker at InboundWay.com. His career spans over 12 years of developing and implementing online marketing, SEO and conversion optimization campaigns. He defines his biggest accomplishment to date as “achieving 4500% growth for one of my clients over a three­year period.” logo-saasgenius Q: It’s no secret that the SaaS market is saturated, as new companies are having very hard time acquiring, retaining and monetizing users. In your view – what are the top 3 mistakes SaaS companies make? What are some key differentiators you recognize in a successful product? A: Mistake No. 1: Product-market fit is not good enough There are a number of reasons for this, including the fact that inertia, incumbency and bureaucracy are all working against you. For emerging companies, this means finding a way to be exponentially better with fewer resources. As a result, focus is key. Mistake No. 2: Not Specializing Your Sales Roles When you specialize your sales people, you allow them to focus, which creates greater output form your sales team. Mistake No. 3: You Need a Niche To be able to market and sell well, you need to have a niche. The world is noisy and messy, and you’ll struggle if you don’t have a sharp, direct message. When you try to speak to everyone, no one can hear you. Q: Which innovative trends do you recognize in the high tech world nowadays? A: “Green” was a mega trend of the last decade and while it will continue to be very important, there will be a shift towards “smart” solutions, which are intelligent, connected and have the ability to sense, report, and take the right action. Smart solutions will be everywhere around us from smart clothing, phones, to smart homes and smart cities. Q: What is the most significant advice you can give young entrepreneurs? A: Being very successful means learning from those who have already achieved success. Having a mentor is an amazing blessing to an entrepreneur, but not everyone can find one in person. My advice is to work smarter, not harder. This is the most non-intuitive observation I will probably make. If you want to compete in the arena, hard work isn’t enough. And judging yourself on how hard you work, rather than how smart you work can be fatal. Q: We are flooded with buzzwords lately – VR / AI / Bots… where do you think the software world is heading? A: AI and bots are a very hot topic in 2016 and it’s sometimes hard to distinguish the real potential behind the hype. My point of view is that, like with many things, there’s no revolution but evolution. It’s unrealistic to think that AI can become mainstream in SaaS products without proper AI infrastructure. SaaS delivery will significantly outpace traditional software product delivery, growing nearly five times faster than the traditional software market and will become a significant growth driver for all functional software markets. By 2019, the SaaS software model will account for $1 of every $4 spent on software. Q: Let us in on some of your secrets… where do you look for innovation? For inspiration and revolutionary ideas? A: Ideas for new startups often begin with a real problem that needs to be solved. And they don’t come while you’re sitting around sipping coffee and contemplating life. They tend to reveal themselves while you’re at work on something else. Start with brainstorming with problems that you are personally invested in. Building a business is hard and takes the kind of relentless dedication that comes from personal passion. Perhaps the greatest factor that determines whether or not an entrepreneur will be successful isn’t the business idea itself, but rather the entrepreneur’s willingness to try to turn the idea into reality. Great ideas are abundant, but it’s what we decide to do with them that counts. Original post: http://saasaddict.walkme.com/from-green-to-smart-tom-gorskis-words-of-advice/

I just had my best month after 18 months as a solopreneur
reddit
LLM Vibe Score0
Human Vibe Score0.778
stepitup9600This week

I just had my best month after 18 months as a solopreneur

Last month I reached important milestones both financially (60+ sales) and in terms of my personal brand (2.500+ new followers) But the most important part is that it has reinforced a belief in myself: it is possible, as long as I keep going, improving, learning and iterating. For the last year and a half, I've been grinding and launching project after project. But there was always something wrong: Product didn't solve a real problem Bad marketing (very often lol) Target market had low purchasing power Super-competitive niche (usually b2c) It's difficult to have failure after failure and keep going on. At times it would feel like everyone was making money, except for me. I was hacking on my projects every single day before and after my 9-5 and had mostly given up all my free time for this. But results were far from being what I wanted. So I would doubt myself all the time. One thing I had going for me is that I really enjoy building things - so that helped me a lot in staying consistent. I always knew this was a long-term thing and that I'd probably have to fail again and again before seeing some success. But even so, it was really hard to keep up the spirits at all time, especially after working so hard for so long. I wasn't going to give up but I also knew that continuing like this would lead nowhere. So I decided that for my next project I would do 2 things: 1) prioritize marketing and 2) build something strategic 1) Prioritize marketing I decided I was going to put in the same amount of effort into marketing as I put into building. Usually my time would be split 90% coding - 10% marketing. Now, for the first time ever it's probably 65% coding - 35% marketing. I organized myself and made an entire gameplan for it. This forced me to learn a lot about: Video editing Cold emails Copywriting Running ads Short-form content There are a lot of items I still need to execute on - but at least I have a good idea of how to approach most things. 2) Build something strategic I had to build something that I would be able to use even if nobody else did. For the last year and a half I had been building AI apps and my plan was to continue doing that. So I decided to leverage that and thought about how I could build something that would give me an unfair advantage + have a compounding effect over the long term: a) Unfair advantage Having AI demo apps that cover all type of AI functionalities would make my life easier & would allow me to ship new apps quickly, regardless of the required model/functionality So even if nobody bought this - I'd have built something really useful for myself & would have a slight edge over other people b) Compound over the long term Building "AnotherWrapper' (my new project) would have a good synergy with my future projects: It would allow me to build new projects faster While building new projects, I'd learn new things, which I would then be able to implement into AnotherWrapper and improve the product that way A win-win. Closing thoughts I did not expect things to go this well - it's been an amazing month and I'm truly grateful to everyone that has been supporting me. But at the end of the day, there is still a lot of work to be done. The initial 'hype' & effects from some viral tweets are starting to wear off. I still don't have a reliable distribution channel that guarantees me traffic. So I need to figure that out. I think the product has a lot of potential - it has been well received and has been a success so far, but my distribution is still lacking. The good thing is that I now have some extra cash to spend on things like ads, influencers, freelancers etc. So it opens some new doors that were previously closed! I also have some other projects down the pipeline which are coming soon. Will keep you guys updated!

New to Startups; Where do I start?
reddit
LLM Vibe Score0
Human Vibe Score1
SupermarketNew5003This week

New to Startups; Where do I start?

I have an idea for an specialized AI based software system in a particular market that I think, if done well, could be a very helpful and lucrative software/AI (both for its owners as well as its users). It hasn't been properly implemented into any form that I or my associates have been able to find and I believe that now is the perfect time to start its development. I'm an entrepreneur, have started several successful companies over the years and am well experienced in all things business. But, none of my companies have involved creating a brand new product or would fall into the "Startup" category. It's a whole new world to me. That being said, I'm not sure what the proper steps are to make this idea come to fruition and am hoping for a point in the right direction. How do people usually go from idea to launch? I imagine there are 2 distinct things I need right now, funding for the project and a partner to help create the software. Step 1 would be the partner. For this partner, I'm not sure where to start to find this person. I'd imagine I need someone that's experienced in machine learning, AI engineering, software development, programming, etc. Or a combination of people with those skills. Since none of my companies are startup or tech based, I don't have connections to anyone with those skills. If I go around looking for a partner with those skills, I'll surely need to explain my idea to them and will need to be able to protect my idea before hand. Do I copyright it? Make them sign an NDA? What's common business practice? Where do I go to look for a partner with those skills? For funding, I can fund the initial stages of the project for a handful of months. From there, I'd like to find some kind of investment. But that sounds like a bridge to cross when I get further down that road. Looking forward to starting down this road and hopefully making something that benefits and pushes forward this new world of AI!

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

Lessons from 139 YC AI startups (S23)
reddit
LLM Vibe Score0
Human Vibe Score0.333
minophenThis week

Lessons from 139 YC AI startups (S23)

YC's Demo Day was last week, and with it comes another deluge of AI companies. A record-breaking 139 startups were in some way related to AI or ML - up from 112 in the last batch. Here are 5 of my biggest takeaways: AI is (still) eating the world. It's remarkable how diverse the industries are - over two dozen verticals were represented, from materials science to social media to security. However, the top four categories were: AI Ops: Tooling and platforms to help companies deploy working AI models. We'll discuss more below, but AI Ops has become a huge category, primarily focused on LLMs and taming them for production use cases. Developer Tools: Apps, plugins, and SDKs making it easier to write code. There were plenty of examples of integrating third-party data, auto-generating code/tests, and working with agents/chatbots to build and debug code. Healthcare + Biotech: It seems like healthcare has a lot of room for automation, with companies working on note-taking, billing, training, and prescribing. And on the biotech side, there are some seriously cool companies building autonomous surgery robots and at-home cancer detection. Finance + Payments: Startups targeting banks, fintechs, and compliance departments. This was a wide range of companies, from automated collections to AI due diligence to "Copilot for bankers." Those four areas covered over half of the startups. The first two make sense: YC has always filtered for technical founders, and many are using AI to do what they know - improve the software developer workflow. But it's interesting to see healthcare and finance not far behind. Previously, I wrote: Large enterprises, healthcare, and government are not going to send sensitive data to OpenAI. This leaves a gap for startups to build on-premise, compliant \[LLMs\] for these verticals. And we're now seeing exactly that - LLMs focused on healthcare and finance and AI Ops companies targeting on-prem use cases. It also helps that one of the major selling points of generative AI right now is cost-cutting - an enticing use case for healthcare and finance. Copilots are king. In the last batch, a lot of startups positioned themselves as "ChatGPT for X," with a consumer focus. It seems the current trend, though, is "Copilot for X" - B2B AI assistants to help you do everything from KYC checks to corporate event planning to chip design to negotiate contracts. Nearly two dozen companies were working on some sort of artificial companion for businesses - and a couple for consumers. It's more evidence for the argument that AI will not outright replace workers - instead, existing workers will collaborate with AI to be more productive. And as AI becomes more mainstream, this trend of making specialized tools for specific industries or tasks will only grow. That being said - a Bing-style AI that lives in a sidebar and is only accessible via chat probably isn't the most useful form factor for AI. But until OpenAI, Microsoft, and Google change their approach (or until another company steps up), we'll probably see many more Copilots. AI Ops is becoming a key sector. "AI Ops" has been a term for only a few years. "LLM Ops" has existed for barely a year. And yet, so many companies are focused on training, fine-tuning, deploying, hosting, and post-processing LLMs it's quickly becoming a critical piece of the AI space. It's a vast industry that's sprung up seemingly overnight, and it was pretty interesting to see some of the problems being solved at the bleeding edge. For example: Adding context to language models with as few as ten samples. Pausing and moving training runs in real-time. Managing training data ownership and permissions. Faster vector databases. Fine-tuning models with synthetic data. But as much ~~hype~~ enthusiasm and opportunity as there might be, the size of the AI Ops space also shows how much work is needed to really productionalize LLMs and other models. There are still many open questions about reliability, privacy, observability, usability, and safety when it comes to using LLMs in the wild. Who owns the model? Does it matter? Nine months ago, anyone building an LLM company was doing one of three things: Training their own model from scratch. Fine-tuning a version of GPT-3. Building a wrapper around ChatGPT. Thanks to Meta, the open-source community, and the legions of competitors trying to catch up to OpenAI, there are now dozens of ways to integrate LLMs. However, I found it interesting how few B2B companies mentioned whether or not they trained their own model. If I had to guess, I'd say many are using ChatGPT or a fine-tuned version of Llama 2. But it raises an interesting question - if the AI provides value, does it matter if it's "just" ChatGPT behind the scenes? And once ChatGPT becomes fine-tuneable, when (if ever) will startups decide to ditch OpenAI and use their own model instead? "AI" isn't a silver bullet. At the end of the day, perhaps the biggest lesson is that "AI" isn't a magical cure-all - you still need to build a defensible company. At the beginning of the post-ChatGPT hype wave, it seemed like you just had to say "we're adding AI" to raise your next round or boost your stock price. But competition is extremely fierce. Even within this batch, there were multiple companies with nearly identical pitches, including: Solving customer support tickets. Negotiating sales contracts. Writing drafts of legal documents. Building no-code LLM workflows. On-prem LLM deployment. Automating trust and safety moderation. As it turns out, AI can be a competitive advantage, but it can't make up for a bad business. The most interesting (and likely valuable) companies are the ones that take boring industries and find non-obvious use cases for AI. In those cases, the key is having a team that can effectively distribute a product to users, with or without AI. Where we’re headed I'll be honest - 139 companies is a lot. In reviewing them all, there were points where it just felt completely overwhelming. But after taking a step back, seeing them all together paints an incredibly vivid picture of the current AI landscape: one that is diverse, rapidly evolving, and increasingly integrated into professional and personal tasks. These startups aren't just building AI for the sake of technology or academic research, but are trying to address real-world problems. Technology is always a double-edged sword - and some of the startups felt a little too dystopian for my taste - but I'm still hopeful about AI's ability to improve productivity and the human experience.

How I made a high tech salary in my first selling month
reddit
LLM Vibe Score0
Human Vibe Score1
Ok_Negotiation_2587This week

How I made a high tech salary in my first selling month

For over 7 years I worked as a full-stack developer, helping other companies bring their ideas to life. But one day, I thought “Why not try making my own dream come true?”. That’s when I decided to quit my job and start my own journey to becoming an entrepreneur. At first, it wasn’t easy. I didn’t make any money for months and had no idea where to start. I felt lost. Then, I decided to focus on something popular and trending. AI was everywhere, and ChatGPT was the most used AI platform. So I looked into it and I found the OpenAI community forum where people had been asking for features that weren’t being added. That gave me an idea. Why not build those features myself? I created a Chrome extension and I worked on some of the most requested features, like: Downloading the advanced voice mode and messages as MP3 Adding folders to organize chats Saving and reusing prompts Pinning important chats Exporting chats to TXT/JSON files Deleting or archiving multiple chats at once Making chat history searches faster and better It took me about a week to build the first version, and when I published it, the response was incredible. People loved it! Some even said things like, “You’re a lifesaver!” That’s when I realized I had something that could not only help people but also turn into a real business. I kept the first version free to see how people would respond. Many users have been downloading my extension, which prompted Chrome to review it to determine if it qualified for the featured badge. I received the badge, and it has significantly boosted traffic to my extension ever since. After all the positive feedback, I launched a paid version one month ago. A few minutes after publishing it, I made my first sale! That moment was so exciting, and it motivated me to keep going. I already have over 4,000 users and have made more than $4,500 in my first selling month. I’ve decided to release 1-2 new features every month to keep improving the extension based on what users ask for. I also created the same extension for Firefox and Edge users because many people have been asking for it! I also started a Reddit community, where I share updates, sales, discount codes, and ideas for new features. It’s been awesome to connect with users directly and get their feedback. Additionally, I’ve started working on another extension for Claude, which I’m hoping will be as successful as this one. My message to you is this: never give up on your dreams. It might feel impossible at first, but with patience, hard work, and some creativity, you can make it happen. I hope this inspires you to go after what you want. Good luck to all of us!

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

Selling equity - what’s next?
reddit
LLM Vibe Score0
Human Vibe Score0
found_it_online_01This week

Selling equity - what’s next?

Hey all, Seeking some guidance / advice as I plan my exit from a marketing agency I helped grow to $5M Long story short, I was hired part time to build their digital marketing department that sat at around 40k annual agency revenue. Since then I’ve become a minority equity partner, and at one point the agency was above $5M in gross agency revenue. The digital department that I run had up to 13 FTE employees at one point And digital revenue accounted for 60% of all agency revenue for the last 3-4 years. So, why am I leaving? Things are groovy, right? Well, we have dropped from $5M to now $3M this year and we’ll be lucky to hit that. As a minority equity party it’s been hard to watch leadership continue to disregard our agency as a digital agency. They don’t want to niche down, and they don’t want to identify as a digital agency, but instead by a full service “strategic agency”. Clients have felt our lack of expertise and direction, so they leave for someone who is an expert in xyz platform or industry. I no longer see their vision, and so I’m planning a sale of my equity and looking for new venture opportunities. While I am perfectly capable of running Google ads and Facebook ads campaigns, and as an accomplished SEO I know how to rank sites, and still find it fun. But I’m not interested in the labor arbitrage model of agency work anymore. I’d rather build a portfolio of in-house properties or digital assets where I have more control. Lately my obsession has been using AI and zapier to automate business processes, documentation, project management etc. Agency life has also exposed me to a lot of industries and business models, which I am always fascinated by. Eventually I will launch my own business, but I’m supporting my partner while they finish school. So I’m a single income household.. Therefore a W2 would be ideal but I’m open to contract work. So my question is- what positions or roles would I fill? I’ve done my share of research but this community has always given me new things to consider. Any feedback or questions are welcomed.

10y of product development, 2 bankruptcies, and 1 Exit — what next? [Extended Story]
reddit
LLM Vibe Score0
Human Vibe Score1
Slight-Explanation29This week

10y of product development, 2 bankruptcies, and 1 Exit — what next? [Extended Story]

10 years of obsessive pursuit from the bottom to impressive product-market fit and exit. Bootstrapping tech products as Software Developer and 3x Startup Founder (2 bankruptcies and 1 exit). Hi everyone, your motivation has inspired me to delve deeper into my story. So, as promised to some of you, I've expanded on it a bit more, along with my brief reflections. There are many founders, product creators, and proactive individuals, I’ve read many of your crazy stories and lessons so I decided to share mine and the lessons I learned from the bottom to impressive product-market fit and exit. I've spent almost the past 10 years building tech products as a Corporate Team Leader, Senior Software Developer, Online Course Creator, Programming Tutor, Head of Development/CTO, and 3x Startup Founder (2 bankruptcies, and 1 exit). And what next? good question... A brief summary of my journey: Chapter 1: Software Developer / Team Leader / Senior Software Developer I’ve always wanted to create products that win over users’ hearts, carry value, and influence users. Ever since my school days, I’ve loved the tech part of building digital products. At the beginning of school, I started hosting servers for games, blogs and internet forums, and other things that did not require much programming knowledge. My classmates and later even over 100 people played on servers that I hosted on my home PC. Later, as the only person in school, I passed the final exam in computer science. During my computer science studies, I started my first job as a software developer. It was crazy, I was spending 200–300 hours a month in the office attending also to daily classes. Yes, I didn’t have a life, but it truly was the fulfillment of my dreams. I was able to earn good money doing what I love, and I devoted fully myself to it. My key to effectively studying IT and growing my knowledge at rocket speed was learning day by day reading guides, building products to the portfolio, watching youtube channels and attending conferences, and even watching them online, even if I didn’t understand everything at the beginning. In one year we’ve been to every possible event within 400km. We were building healthcare products that were actually used in hospitals and medical facilities. It was a beautiful adventure and tons of knowledge I took from this place. That time I built my first product teams, hired many great people, and over the years became a senior developer and team leader. Even I convinced my study mates to apply to this company and we studied together and worked as well. Finally, there were 4 of us, when I left a friend of mine took over my position and still works there. If you’re reading this, I’m sending you a flood of love and appreciation. I joined as the 8th person, and after around 4 years, when I left hungry for change, there were already over 30 of us, now around 100. It was a good time, greetings to everyone. I finished my Master’s and Engineering degrees in Computer Science, and it was time for changes. Chapter 2: 1st time as a Co-founder — Marketplace In the meantime, there was also my first startup (a marketplace) with four of my friends. We all worked on the product, each of us spent thousands of hours, after hours, entire weekends… and I think finally over a year of work. As you might guess, we lacked the most important things: sales, marketing, and product-market fit. We thought users think like us. We all also worked commercially, so the work went very smoothly, but we didn’t know what we should do next with it… Finally, we didn’t have any customers, but you know what, I don’t regret it, a lot of learning things which I used many times later. The first attempts at validating the idea with the market and business activities. In the end, the product was Airbnb-sized. Landing pages, listings, user panels, customer panels, admin site, notifications, caches, queues, load balancing, and much more. We wanted to publish the fully ready product to the market. It was a marketplace, so if you can guess, we had to attract both sides to be valuable. “Marketplace” — You can imagine something like Uber, if you don’t have passengers it was difficult to convince taxi drivers, if you don’t have a large number of taxi drivers you cannot attract passengers. After a year of development, we were overloaded, and without business, marketing, sales knowledge, and budget. Chapter 3: Corp Team Lead / Programming Tutor / Programming Architecture Workshop Leader Working in a corporation, a totally different environment, an international fintech, another learning experience, large products, and workmates who were waiting for 5 pm to finish — it wasn’t for me. Very slow product development, huge hierarchy, being an ant at the bottom, and low impact on the final product. At that time I understood that being a software developer is not anything special and I compared my work to factory worker. Sorry for that. High rates have been pumped only by high demand. Friends of mine from another industry do more difficult things and have a bigger responsibility for lower rates. That’s how the market works. This lower responsibility time allowed for building the first online course after hours, my own course platform, individual teaching newbies programming, and my first huge success — my first B2C customers, and B2B clients for workshops. I pivoted to full focus on sales, marketing, funnels, advertisements, demand, understanding the market, etc. It was 10x easier than startups but allowed me to learn and validate my conceptions and ideas on an easier market and showed me that it’s much easier to locate their problem/need/want and create a service/product that responds to it than to convince people of your innovative ideas. It’s just supply and demand, such a simple and basic statement, in reality, is very deep and difficult to understand without personal experience. If you’re inexperienced and you think you understand, you don’t. To this day, I love to analyze this catchword in relation to various industries / services / products and rediscover it again and again... While writing this sentence, I’m wondering if I’m not obsessed. Chapter 4: Next try — 2nd time as a founder — Edtech Drawing upon my experiences in selling services, offering trainings, and teaching programming, I wanted to broaden my horizons, delve into various fields of knowledge, involve more teachers, and so on. We started with simple services in different fields of knowledge, mainly relying on teaching in the local area (without online lessons). As I had already gathered some knowledge and experience in marketing and sales, things were going well and were moving in the right direction. The number of teachers in various fields was growing, as was the number of students. I don’t remember the exact statistics anymore, but it was another significant achievement that brought me a lot of satisfaction and new experiences. As you know, I’m a technology lover and couldn’t bear to look at manual processes — I wanted to automate everything: lessons, payments, invoices, customer service, etc. That’s when I hired our first developers (if you’re reading this, I’m sending you a flood of love — we spent a lot of time together and I remember it as a very fruitful and great year) and we began the process of tool and automation development. After a year we had really extended tools for students, teachers, franchise owners, etc. We had really big goals, we wanted to climb higher and higher. Maybe I wouldn’t even fully call it Startup, as the client was paying for the lessons, not for the software. But it gave us positive income, bootstrap financing, and tool development for services provided. Scaling this model was not as costless as SaaS because customer satisfaction was mainly on the side of the teacher, not the quality of the product (software). Finally, we grew to nearly 10 people and dozens of teachers, with zero external funding, and almost $50k monthly revenue. We worked very hard, day and night, and by November 2019, we were packed with clients to the brim. And as you know, that’s when the pandemic hit. It turned everything upside down by 180 degrees. Probably no one was ready for it. With a drastic drop in revenues, society started to save. Tired from the previous months, we had to work even harder. We had to reduce the team, change the model, and save what we had built. We stopped the tool’s development and sales, and with the developers, we started supporting other product teams to not fire them in difficult times. The tool worked passively for the next two years, reducing incomes month by month. With a smaller team providing programming services, we had full stability and earned more than relying only on educational services. At the peak of the pandemic, I promised myself that it was the last digital product I built… Never say never… Chapter 5: Time for fintech — Senior Software Developer / Team Lead / Head of Development I worked for small startups and companies. Building products from scratch, having a significant impact on the product, and complete fulfillment. Thousands of hours and sacrifices. This article mainly talks about startups that I built, so I don’t want to list all the companies, products, and applications that I supported as a technology consultant. These were mainly start-ups with a couple of people up to around 100 people on board. Some of the products were just a rescue mission, others were building an entire tech team. I was fully involved in all of them with the hope that we would work together for a long time, but I wasn’t the only one who made mistakes when looking for a product-market fit. One thing I fully understood: You can’t spend 8–15 hours a day writing code, managing a tech team, and still be able to help build an audience. In marketing and sales, you need to be rested and very creative to bring results and achieve further results and goals. If you have too many responsibilities related to technology, it becomes ineffective. I noticed that when I have more free time, more time to think, and more time to bounce the ball against the wall, I come up with really working marketing/sales strategies and solutions. It’s impossible when you are focused on code all day. You must know that this chapter of my life was long and has continued until now. Chapter 6: 3rd time as a founder — sold Never say never… right?\\ It was a time when the crypto market was really high and it was really trending topic. You know that I love technology right? So I cannot miss the blockchain world. I had experience in blockchain topics by learning on my own and from startups where I worked before. I was involved in crypto communities and I noticed a “starving crowd”. People who did things manually and earned money(crypto) on it.I found potential for building a small product that solves a technological problem. I said a few years before that I don’t want to start from scratch. I decided to share my observations and possibilities with my good friend. He said, “If you gonna built it, I’m in”. I couldn’t stop thinking about it. I had thought and planned every aspect of marketing and sales. And you know what. On this huge mindmap “product” was only one block. 90% of the mindmap was focused on marketing and sales. Now, writing this article, I understood what path I went from my first startup to this one. In the first (described earlier) 90% was the product, but in the last one 90% was sales and marketing. Many years later, I did this approach automatically. What has changed in my head over the years and so many mistakes? At that time, the company for which I provided services was acquired. The next day I got a thank you for my hard work and all my accounts were blocked. Life… I was shocked. We were simply replaced by their trusted technology managers. They wanted to get full control. They acted a bit unkindly, but I knew that they had all my knowledge about the product in the documentation, because I’m used to drawing everything so that in the moment of my weakness (illness, whatever) the team could handle it. That’s what solid leaders do, right? After a time, I know that these are normal procedures in financial companies, the point is that under the influence of emotions, do not do anything inappropriate. I quickly forgot about it, that I was brutally fired. All that mattered was to bring my plan to life. And it has been started, 15–20 hours a day every day. You have to believe me, getting back into the game was incredibly satisfying for me. I didn’t even know that I would be so excited. Then we also noticed that someone was starting to think about the same product as me. So the race began a game against time and the market. I assume that if you have reached this point, you are interested in product-market fit, marketing, and sales, so let me explain my assumptions to you: Product: A very very small tool that allowed you to automate proper tracking and creation of on-chain transactions. Literally, the whole app for the user was located on only three subpages. Starving Crowd: We tapped into an underserved market. The crypto market primarily operates via communities on platforms like Discord, Reddit, Twitter, Telegram, and so on. Therefore, our main strategy was directly communicating with users and demonstrating our tool. This was essentially “free marketing” (excluding the time we invested), as we did not need to invest in ads, promotional materials, or convince people about the efficacy of our tool. The community could directly observe on-chain transactions executed by our algorithms, which were processed at an exceptionally fast rate. This was something they couldn’t accomplish manually, so whenever someone conducted transactions using our algorithm, it was immediately noticeable and stirred a curiosity within the community (how did they do that!). Tests: I conducted the initial tests of the application on myself — we had already invested significantly in developing the product, but I preferred risking my own resources over that of the users. I provided the tool access to my wallet, containing 0.3ETH, and went to sleep. Upon waking up, I discovered that the transactions were successful and my wallet had grown to 0.99ETH. My excitement knew no bounds, it felt like a windfall. But, of course, there was a fair chance I could have lost it too. It worked. As we progressed, some users achieved higher results, but it largely hinged on the parameters set by them. As you can surmise, the strategy was simple — buy low, sell high. There was considerable risk involved. Churn: For those versed in marketing, the significance of repeat visitors cannot be overstated. Access to our tool was granted only after email verification and a special technique that I’d prefer to keep confidential. And this was all provided for free. While we had zero followers on social media, we saw an explosion in our email subscriber base and amassed a substantial number of users and advocates. Revenue Generation: Our product quickly gained popularity as we were effectively helping users earn — an undeniable value proposition. Now, it was time to capitalize on our efforts. We introduced a subscription model charging $300 per week or $1,000 per month — seemingly high rates, but the demand was so intense that it wasn’t an issue. Being a subscriber meant you were prioritized in the queue, ensuring you were among the first to reap benefits — thus adding more “value”. Marketing: The quality of our product and its ability to continually engage users contributed to it achieving what can best be described as viral. It was both a source of pride and astonishment to witness users sharing charts and analyses derived from our tool in forum discussions. They weren’t actively promoting our product but rather using screenshots from our application to illustrate certain aspects of the crypto world. By that stage, we had already assembled a team to assist with marketing, and programming, and to provide round-the-clock helpdesk support. Unforgettable Time: Despite the hype, my focus remained steadfast on monitoring our servers, their capacity, and speed. Considering we had only been on the market for a few weeks, we were yet to implement alerts, server scaling, etc. Our active user base spanned from Japan to the West Coast of the United States. Primarily, our application was used daily during the evenings, but considering the variety of time zones, the only time I could afford to sleep was during the evening hours in Far Eastern Europe, where we had the least users. However, someone always needed to be on guard, and as such, my phone was constantly by my side. After all, we couldn’t afford to let our users down. We found ourselves working 20 hours a day, catering to thousands of users, enduring physical fatigue, engaging in talks with VCs, and participating in conferences. Sudden Downturn: Our pinnacle was abruptly interrupted by the war in Ukraine (next macroeconomic shot straight in the face, lucky guy), a precipitous drop in cryptocurrency value, and swiftly emerging competition. By this time, there were 5–8 comparable tools had infiltrated the market. It was a challenging period as we continually stumbled upon new rivals. They immediately embarked on swift fundraising endeavors — a strategy we overlooked, which in retrospect was a mistake. Although our product was superior, the competitors’ rapid advancement and our insufficient funds for expeditious scaling posed significant challenges. Nonetheless, we made a good decision. We sold the product (exit) to competitors. The revenue from “exit” compensated for all the losses, leaving us with enough rest. We were a small team without substantial budgets for rapid development, and the risk of forming new teams without money to survive for more than 1–2 months was irresponsible. You have to believe me that this decision consumed us sleepless nights. Finally, we sold it. They turned off our app but took algorithms and users. Whether you believe it or not, after several months of toiling day and night, experiencing burnout, growing weary of the topic, and gaining an extra 15 kg in weight, we finally found our freedom… The exit wasn’t incredibly profitable, but we knew they had outdone us. The exit covered all our expenses and granted us a well-deserved rest for the subsequent quarter. It was an insane ride. Despite the uncertainty, stress, struggles, and sleepless nights, the story and experience will remain etched in my memory for the rest of my life. Swift Takeaways: Comprehending User Needs: Do you fully understand the product-market fit? Is your offering just an accessory or does it truly satisfy the user’s needs? The Power of Viral Marketing: Take inspiration from giants like Snapchat, ChatGPT, and Clubhouse. While your product might not attain the same scale (but remember, never say never…), the closer your concept is to theirs, the easier your journey will be. If your user is motivated to text a friend saying, “Hey, check out how cool this is” (like sharing ChatGPT), then you’re on the best track. Really. Even if it doesn’t seem immediately evident, there could be a way to incorporate this into your product. Keep looking until you find it. Niche targeting — the more specific and tailored your product is to a certain audience, the easier your journey will be People love buying from people — establishing a personal brand and associating yourself with the product can make things easier. Value: Seek to understand why users engage with your product and keep returning. The more specific and critical the issue you’re aiming to solve, the easier your path will be. Consider your offerings in terms of products and services and focus on sales and marketing, regardless of personal sentiments. These are just a few points, I plan to elaborate on all of them in a separate article. Many products undergo years of development in search of market fit, refining the user experience, and more. And guess what? There’s absolutely nothing wrong with that. Each product and market follows its own rules. Many startups have extensive histories before they finally make their mark (for instance, OpenAI). This entire journey spanned maybe 6–8 months. I grasped and capitalized on the opportunity, but we understood from the start that establishing a startup carried a significant risk, and our crypto product was 10 times riskier. Was it worth it? Given my passion for product development — absolutely. Was it profitable? — No, considering the hours spent — we lose. Did it provide a stable, problem-free life — nope. Did this entire adventure offer a wealth of happiness, joy, and unforgettable experiences — definitely yes. One thing is certain — we’ve amassed substantial experience and it’s not over yet :) So, what lies ahead? Chapter 7: Reverting to the contractor, developing a product for a crypto StartupReturning to the past, we continue our journey… I had invested substantial time and passion into the tech rescue mission product. I came on board as the technical Team Leader of a startup that had garnered over $20M in seed round funding, affiliated with the realm of cryptocurrencies. The investors were individuals with extensive backgrounds in the crypto world. My role was primarily technical, and there was an abundance of work to tackle. I was fully immersed, and genuinely devoted to the role. I was striving for excellence, knowing that if we secured another round of financing, the startup would accelerate rapidly. As for the product and marketing, I was more of an observer. After all, there were marketing professionals with decades of experience on board. These were individuals recruited from large crypto-related firms. I had faith in them, kept an eye on their actions, and focused on my own responsibilities. However, the reality was far from satisfactory. On the last day, the principal investor for the Series A round withdrew. The board made the tough decision to shut down. It was a period of intense observation and gaining experience in product management. This was a very brief summary of the last 10 years. And what next? (Last) Chapter 8: To be announced — Product Owner / Product Consultant / Strategist / CTO After spending countless hours and days deliberating my next steps, one thing is clear: My aspiration is to continue traversing the path of software product development, with the hopeful anticipation that one day, I might ride the crest of the next big wave and ascend to the prestigious status of a unicorn company. I find myself drawn to the process of building products, exploring product-market fit, strategizing, engaging in software development, seeking out new opportunities, networking, attending conferences, and continuously challenging myself by understanding the market and its competitive landscape. Product Owner / Product Consultant / CTO / COO: I’m not entirely sure how to categorize this role, as I anticipate that it will largely depend on the product to which I will commit myself fully. My idea is to find one startup/company that wants to build a product / or already has a product, want to speed up, or simply doesn’t know what’s next. Alternatively, I could be a part of an established company with a rich business history, which intends to invest in digitization and technological advancements. The goal would be to enrich their customer experience by offering complementary digital products Rather than initiating a new venture from ground zero with the same team, I am receptive to new challenges. I am confident that my past experiences will prove highly beneficial for the founders of promising, burgeoning startups that already possess a product, or are in the initial phases of development. ‘Consultant’ — I reckon we interpret this term differently. My aim is to be completely absorbed in a single product, crafting funnels, niches, strategies, and all that is necessary to repeatedly achieve the ‘product-market fit’ and significant revenue. To me, ‘consultant’ resonates more akin to freelancing than being an employee. My current goal is to kickstart as a consultant and aide, dealing with facilitating startups in their journey from point A to B. Here are two theoretical scenarios to illustrate my approach: Scenario 1: (Starting from point A) You have a product but struggle with marketing, adoption, software, strategy, sales, fundraising, or something else. I conduct an analysis and develop a strategy to reach point B. I take on the “dirty work” and implement necessary changes, including potential pivots or shifts (going all-in) to guide the product to point B. The goal is to reach point B, which could involve achieving a higher valuation, expanding the user base, increasing sales, or generating monthly revenue, among other metrics. Scenario 2: (Starting from point A) You have a plan or idea but face challenges with marketing, adoption, strategy, software, sales, fundraising, or something else. I analyze the situation and devise a strategy to reach point B. I tackle the necessary tasks, build the team, and overcome obstacles to propel the product to point B. I have come across the view that finding the elusive product-market fit is the job of the founder, and it’s hard for me to disagree. However, I believe that my support and experiences can help save money, many failures, and most importantly, time. I have spent a great deal of time learning from my mistakes, enduring failure after failure, and even had no one to ask for support or opinion, which is why I offer my help. Saving even a couple of years, realistically speaking, seems like a value I’m eager to provide… I invite you to share your thoughts and insights on these scenarios :) Closing Remarks: I appreciate your time and effort in reaching this point. This has been my journey, and I wouldn’t change it for the world. I had an extraordinary adventure, and now I’m ready for the next exciting battle with the market and new software products. While my entire narrative is centered around startups, especially the ones I personally built, I’m planning to share more insights drawn from all of my experiences, not just those as a co-founder. If you’re currently developing your product or even just considering the idea, I urge you to reach out to me. Perhaps together, we can create something monumental :) Thank you for your time and insights. I eagerly look forward to engaging in discussions and hearing your viewpoints. Please remember to like and subscribe. Nothing motivates to write more than positive feedback :) Matt.

Voice AI Isn’t Just for Big Brands – Here’s How Startups Can Use It (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Altruistic_Bid_3044This week

Voice AI Isn’t Just for Big Brands – Here’s How Startups Can Use It (I will not promote)

When you think about Voice AI, it’s easy to picture massive companies like Amazon or Google pouring millions into complex systems. But it isn’t just for the big guys anymore. Startups can use it too, and it doesn’t have to cost a fortune. Why Startups Should Care About Voice AI Voice AI used to be expensive and complicated, but that’s changed a lot. Today, even small startups can use it to save time, cut costs, and make customers happier—all without needing a massive budget. If you think that repetitive tasks are eating up your team’s time, or if customers are getting frustrated by slow responses, Voice AI can help. And it’s not just for call centers or tech giants. Startups can benefit from it just as much, if not more. 3 Practical Ways Startups Can Use Voice AI Automated Scheduling and Appointment Setting Whether it’s booking meetings, setting reminders, or rescheduling, Voice AI can handle it all. This is especially useful for service-based startups, like healthcare clinics, legal firms, or consulting agencies. Answering Frequently Asked Questions (FAQs) Every startup gets repetitive questions—“What are your hours?” “What’s your refund policy?” Instead of answering the same things over and over, Voice AI can automate it. Order Tracking and Status Updates For e-commerce startups, Voice AI can provide real-time order updates without involving a human. Customers get quick answers, and your team can focus on more important tasks. Simple Workflow: How It Works Customer Initiates Call Customer calls the business for scheduling, FAQs, or order updates. Voice AI Answers AI responds with a natural, human-like voice. AI Handles the Request Schedules appointments, answers FAQs, or provides order updates. Integration and Confirmation Syncs with calendars or order management systems. Confirms booking or provides tracking info. Call Ends Customer gets what they need without waiting. Team stays focused on higher-priority tasks. If the fear is that Voice AI will sound robotic or annoy customers, it’s worth reconsidering. Today’s tech is way more natural and human-like than it used to be. You can use free trial of platforms like Retell AI or Play AI or Bland AI (I will not promote) Would it make sense for your startup to try Voice AI?

Online Reputation AI - Startup got stuck
reddit
LLM Vibe Score0
Human Vibe Score0.6
kyr0x0This week

Online Reputation AI - Startup got stuck

Hi, I‘m one of 3 co-founders of a startup that built an AI-driven SaaS and App product this year. We‘re coming from an SaaS background, two of us senior developers (in the 3% of highest earning freelancers in Germany) and expert in our fields. The third is a seasoned sales strategist. We have a minor 4th co-founder (legal advisor). The company is self-funded, no investors. Our tech is owned by us, built by us and the product was already operational after a few months. We basically solve three data science/NLP issues in a generalized way: understand customer feedback to improve your business. Analyzes online review with context and explains it with a drill down, aggregation, charts (AI insights, timeframe reports); evidence driven, agentic LLM and ETL processes drive this. respond to customer feedback, half-automated, human in the loop, but AI supported. In the tone of your brand, any language. And context-aware, with your customer support signature etc. competitor analysis. Because we do 1 for you, we can do 1. for all of your competitors and compare the results, yielding insights like „oh, this happens to everyone in November to December, so I should focus on something else“ — etc. Now, after a huge sales effort we got only one paying customer. This customer is petty happy with the product. They tell us that they use our product daily, it‘s better than all the other solutions out there (better than TrustYou, etc.) However, after cold calling/emailing hundreds of leads, we almost always hear that „what we have is good enough“. Or that they don‘t have budget. I‘m the introverted tech part of the startup. I‘m good with algorithms. Give me any tech issue and I will solve it for you quickly and efficiently. I make stuff work. But with my startups I never had commercial luck. People always tell me about my stellar potential, because I can build things almost nobody else can. I come from a poor families background, worked my way up the very hard way. I just love tech and programming. I wrote a book for O’Reilly once. I‘m not doing bad economically, but I‘m probably not the best sales person. After founding a few startups with amazing tech, people using the products and loving them, but no commercial success, I truly question myself and if I‘m just unlucky with the fact that I‘m located in Europe, targeting the wrong industries, or are just unlucky somehow? I won‘t blame my co-founders here. They definitely did the best they could. I‘m just a bit resignated. I recently thought about valuing my own lifetime more and only building software for myself anymore. Basically not focusing on what problems other people face and trying to solve them, but solely focusing on what I enjoy doing most — e.g. coding algorithms for a music visualizer. Because in the end, my time is my most valuable resource. If I waste any second on something that isn‘t contributing to „my life“ and how I define success, then it would be a rather stupid deed? I don‘t want to derail too much here. I‘m confused and seeking for advice. Burn me if you like, but please be aware that you are talking to a broadly educated nerd.

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

I will not promote — just need advice from fellow startup entrepreneurs
reddit
LLM Vibe Score0
Human Vibe Score1
Forward_Tackle_6487This week

I will not promote — just need advice from fellow startup entrepreneurs

Hey everyone, I’m now based in the San Francisco Bay Area. I’m starting a development agency to help early-stage startups and small businesses turn ideas into real products. Whether it’s building an MVP, scaling an existing app, or providing a dedicated offshore team — that’s the direction I’m heading. Quick background on me: I work with: • Frontend: React.js, Next.js, React Native • Backend: Node.js, Express, Supabase, Firebase • Databases: MongoDB, PostgreSQL • AI/API Integrations: OpenAI and others • DevOps/Automation: n8n, serverless tools, cloud platforms I’ve built and designed dozens of products, and now I have a small but strong team of 5 devs/designers in India. We can scale fast and deliver at Indian pricing — but that’s not my pitch here. I’m not here to promote. I’m genuinely looking for feedback and ideas from others doing similar things. If you’re running a dev agency, working with offshore teams, or supporting early-stage founders, I’d love to know: • What’s working for you in terms of client acquisition? • How are you building trust in the early stages? • Are there any strategies or lessons you wish you knew when starting? Also, if this aligns with something you’re building and you’re open to collaboration, I’m all ears. Let’s connect and share what’s working. Appreciate any thoughts, and happy to answer any questions too!

Looking for an accountability partner as a solo founder. [I will not promote]
reddit
LLM Vibe Score0
Human Vibe Score1
EquivalentDecent5582This week

Looking for an accountability partner as a solo founder. [I will not promote]

Hello! I am a technical founder focused on using AI solutions to drive automation. Recently had a co-founder split after working together for a couple month. We had a very good traction but I made a decision to leave because I believed we didn't have a solid foundational relationship that can be sustained for a long time. Had more of a co-worker style relationship. Took on the short-term pain to set myself up for a long term success. He was the one leading the sales and relation with the businesses, so we decided he will be leading the company moving forward and we split on very good terms. Back in the gulag now and starting from scratch. Took three days to reset and recover. When I tried to get back at things yesterday, my brain wasn't just having it. My stress activation got so high, i did like 4 wim hof breathing sessions and a 10 mile run to relieve the stress buildup. There is something about uncertainty and working without a lack of clear path that is super hard to process especially when you are solo. Currently I am working through my previous idea backlogs that I have built up and re-starting previous conversations. But my brain isn't giving me the dopamine hit from driving toward action as much as I used to. So any work that i do feels like a slogging through mud. I am looking to experiment with having an accountability partner, to make the initial ramp up easier. Thinking of doing the elon musk style "What have you done this week?" report that we can do to drive accountability and give that extra motivation. If you're navigating similar challenges as a solo founder and believe mutual accountability could accelerate our progress and growth, I'd love to connect. Let's help each other build momentum and stay motivated—drop a comment or DM if interested! I will not promote

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
GummyBear8659This week

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)

Hey everyone! Long-time lurker, first-time founder here. I’m reaching out to get feedback on a recent startup experience—what went wrong, what I could have done better, and how I should approach future opportunities. The Background There were three founders in this venture: • Founder A (CEO, 50%) – The product/growth guy who identified the problem space. • Founder B (Me, CTO, 37.5%) – A software engineer with a software dev shop and multiple clients. I wanted to diversify into building my own products but am not inherently a “product person.” • Founder C (COO, 12.5%) – Brought into the mix by Founder A, with the goal of leveraging his network for traction once the product was built. The idea was to create Product X, a solution targeting the SMB space while competitors were moving upmarket. It wasn’t revolutionary—more of a strategic market play. The Initial Plan & My Role • Founder A would define and prioritize product specs, guiding what needed to be built. • I (Founder B) didn’t have time to code myself, so I allocated engineers from my dev shop (which I personally paid for). My stake was adjusted from 32.5% to 37.5% to reflect this contribution. • Founder C was more of an observer early on, planning to help with traction once we had a product ready. We agreed on a 1-year cliff and a 4-year vesting schedule for equity. Where Things Started to Go Wrong • Lack of a Clear Product Roadmap – Founder A was very focused on getting something built fast, but we never signed off on a structured roadmap or milestones. I underestimated the complexity of what was actually needed for customer conversations. • Engineering Expectations vs. Reality – The team (one part-time lead + two full-time juniors from my dev shop) faced early feedback that development was too slow. In response, I ramped up the lead to full-time and added a part-time PM. But Founder A continued pushing for speed, despite real hurdles (OAuth integrations, etc.). • Shifting MVP Goalposts – Midway, Founder A concluded that an MVP wouldn’t cut it—we needed a more complete product to be competitive. This meant more engineering, more delays, and more of my own money spent on development. The Breaking Point Near the 1-year vesting mark, we had an opportunity: a paying client willing to fund an app. I didn’t have devs on the bench, so I asked Founder A to hold off our project briefly while I hired more engineers to avoid stalling either effort. This was the final straw. Founder A (with Founder C somewhat aligned) decided the arrangement wasn’t working—citing past disagreements and the “slowness” issue. The decision was made to end the partnership. Now, Founder A, as majority holder, is requesting a full handover of the code, Founder C is indifferent, and all engineering costs I covered are essentially lost. Key Takeaways (So Far) Crystal-Clear Agreements Upfront – A formalized product roadmap and timeline should’ve been locked in from day one. Business Needs > Engineering Standards – I wanted to build something solid and scalable, but in an early-stage startup, speed to market is king. This was before AI tools became mainstream, so our approach wasn’t as optimized. Don’t Overextend Without Protection – I personally financed all engineering, but without clear safeguards, that investment became a sunk cost. Expenses Must Be Distributed – I was solely covering engineering salaries, which created an imbalance in financial risk. Future partnerships should ensure costs are shared proportionally, rather than one person shouldering the burden. Where I Need Advice Looking back, I want to improve as an engineer, CEO, and co-founder. • What should I have done differently in structuring this partnership? • How do you balance engineering quality with the startup need for speed? • As a dev shop owner, how can I better navigate equity deals where I’m also bringing in engineering resources? I really appreciate everyone who went through this long post and provide any insights from founders, engineers, or anyone who has been in a similar situation. Thanks for reading! ===================================================================== For readers who might be thinking what set this type of expectation? Because I had a dev shop and I thought my co-founders will be understanding of my business circumstance and I was a bit trigger to build a product with a C-exec team, I gave the impression of "unlimited" engineering which I later realized down the line that it was not feasible for me. Something I learned that I have to be more careful with and set expectations accordingly from the very beginning. And from the feedback of the commenters here, I am much more aware what I should offer and how to set expectations, esp. in the early stages of execution. So thank you all! 🙏🏾 EDIT: I would like to thank everyone who contributed to this thread. You not only helped me but future founders who are considering to get into the startup scene!

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

How I made a high tech salary in my first selling month
reddit
LLM Vibe Score0
Human Vibe Score1
Ok_Negotiation_2587This week

How I made a high tech salary in my first selling month

For over 7 years I worked as a full-stack developer, helping other companies bring their ideas to life. But one day, I thought “Why not try making my own dream come true?”. That’s when I decided to quit my job and start my own journey to becoming an entrepreneur. At first, it wasn’t easy. I didn’t make any money for months and had no idea where to start. I felt lost. Then, I decided to focus on something popular and trending. AI was everywhere, and ChatGPT was the most used AI platform. So I looked into it and I found the OpenAI community forum where people had been asking for features that weren’t being added. That gave me an idea. Why not build those features myself? I created a Chrome extension and I worked on some of the most requested features, like: Downloading the advanced voice mode and messages as MP3 Adding folders to organize chats Saving and reusing prompts Pinning important chats Exporting chats to TXT/JSON files Deleting or archiving multiple chats at once Making chat history searches faster and better It took me about a week to build the first version, and when I published it, the response was incredible. People loved it! Some even said things like, “You’re a lifesaver!” That’s when I realized I had something that could not only help people but also turn into a real business. I kept the first version free to see how people would respond. Many users have been downloading my extension, which prompted Chrome to review it to determine if it qualified for the featured badge. I received the badge, and it has significantly boosted traffic to my extension ever since. After all the positive feedback, I launched a paid version one month ago. A few minutes after publishing it, I made my first sale! That moment was so exciting, and it motivated me to keep going. I already have over 4,000 users and have made more than $4,500 in my first selling month. I’ve decided to release 1-2 new features every month to keep improving the extension based on what users ask for. I also created the same extension for Firefox and Edge users because many people have been asking for it! I also started a Reddit community, where I share updates, sales, discount codes, and ideas for new features. It’s been awesome to connect with users directly and get their feedback. Additionally, I’ve started working on another extension for Claude, which I’m hoping will be as successful as this one. My message to you is this: never give up on your dreams. It might feel impossible at first, but with patience, hard work, and some creativity, you can make it happen. I hope this inspires you to go after what you want. Good luck to all of us!

From Running a $350M Startup to Failing Big and Rediscovering What Really Matters in Life ❤️
reddit
LLM Vibe Score0
Human Vibe Score1
Disastrous-Airport88This week

From Running a $350M Startup to Failing Big and Rediscovering What Really Matters in Life ❤️

This is my story. I’ve always been a hustler. I don’t remember a time I wasn’t working since I was 14. Barely slept 4 hours a night, always busy—solving problems, putting out fires. After college (LLB and MBA), I was lost. I tried regular jobs but couldn’t get excited, and when I’m not excited, I spiral. But I knew entrepreneurship; I just didn’t realize it was an option for adults. Then, in 2017 a friend asked me to help with their startup. “Cool,” I thought. Finally, a place where I could solve problems all day. It was a small e-commerce idea, tackling an interesting angle. I worked 17-hour days, delivering on a bike, talking to customers, vendors, and even random people on the street. Things moved fast. We applied to Y Combinator, got in, and raised $18M before Demo Day even started. We grew 100% month-over-month. Then came another $40M, and I moved to NYC. Before I knew it, we had 1,000 employees and raised $80M more. I was COO, managing 17 direct reports (VPs of Ops, Finance, HR, Data, and more) and 800 indirect employees. On the surface, I was on top of the world. But in reality, I was at rock bottom. I couldn’t sleep, drowning in anxiety, and eventually ended up on antidepressants. Then 2022 hit. We needed to raise $100M, but we couldn’t. In three brutal months, we laid off 900 people. It was the darkest period of my life. I felt like I’d failed everyone—myself, investors, my company, and my team. I took a year off. Packed up the car with my wife and drove across Europe, staying in remote places, just trying to calm my nervous system. I couldn’t speak to anyone, felt ashamed, and battled deep depression. It took over a year, therapy, plant medicine, intense morning routines, and a workout regimen to get back on my feet, physically and mentally. Now, I’m on the other side. In the past 6 months, I’ve been regaining my mojo, with a new respect for who I am and why I’m here. I made peace with what I went through over those 7 years—the lessons, the people, the experiences. I started reconnecting with my community, giving back. Every week, I have conversations with young founders, offering direction, or even jumping in to help with their operations. It’s been a huge gift. I also began exploring side projects. I never knew how to code, but I’ve always had ideas. Recent advances in AI gave me the push I needed. I built my first app, as my first attempt at my true passion—consumer products for kids. Today, I feel wholesome about my journey. I hope others can see that too. ❤️ EDIT: Wow, I didn’t expect this post to resonate with so many people. A lot of you have DM’d me, and I’ll try to respond. Just a heads-up, though—I’m juggling consulting and new projects, so I can’t jump on too many calls. Since I’m not promoting anything, I won’t be funneling folks to my page, so forgive me if I don’t get back to everyone. Anyway, it’s amazing to connect with so many of you. I’d love to write more, so let me know what topics you’d be interested in!

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
GummyBear8659This week

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)

Hey everyone! Long-time lurker, first-time founder here. I’m reaching out to get feedback on a recent startup experience—what went wrong, what I could have done better, and how I should approach future opportunities. The Background There were three founders in this venture: • Founder A (CEO, 50%) – The product/growth guy who identified the problem space. • Founder B (Me, CTO, 37.5%) – A software engineer with a software dev shop and multiple clients. I wanted to diversify into building my own products but am not inherently a “product person.” • Founder C (COO, 12.5%) – Brought into the mix by Founder A, with the goal of leveraging his network for traction once the product was built. The idea was to create Product X, a solution targeting the SMB space while competitors were moving upmarket. It wasn’t revolutionary—more of a strategic market play. The Initial Plan & My Role • Founder A would define and prioritize product specs, guiding what needed to be built. • I (Founder B) didn’t have time to code myself, so I allocated engineers from my dev shop (which I personally paid for). My stake was adjusted from 32.5% to 37.5% to reflect this contribution. • Founder C was more of an observer early on, planning to help with traction once we had a product ready. We agreed on a 1-year cliff and a 4-year vesting schedule for equity. Where Things Started to Go Wrong • Lack of a Clear Product Roadmap – Founder A was very focused on getting something built fast, but we never signed off on a structured roadmap or milestones. I underestimated the complexity of what was actually needed for customer conversations. • Engineering Expectations vs. Reality – The team (one part-time lead + two full-time juniors from my dev shop) faced early feedback that development was too slow. In response, I ramped up the lead to full-time and added a part-time PM. But Founder A continued pushing for speed, despite real hurdles (OAuth integrations, etc.). • Shifting MVP Goalposts – Midway, Founder A concluded that an MVP wouldn’t cut it—we needed a more complete product to be competitive. This meant more engineering, more delays, and more of my own money spent on development. The Breaking Point Near the 1-year vesting mark, we had an opportunity: a paying client willing to fund an app. I didn’t have devs on the bench, so I asked Founder A to hold off our project briefly while I hired more engineers to avoid stalling either effort. This was the final straw. Founder A (with Founder C somewhat aligned) decided the arrangement wasn’t working—citing past disagreements and the “slowness” issue. The decision was made to end the partnership. Now, Founder A, as majority holder, is requesting a full handover of the code, Founder C is indifferent, and all engineering costs I covered are essentially lost. Key Takeaways (So Far) Crystal-Clear Agreements Upfront – A formalized product roadmap and timeline should’ve been locked in from day one. Business Needs > Engineering Standards – I wanted to build something solid and scalable, but in an early-stage startup, speed to market is king. This was before AI tools became mainstream, so our approach wasn’t as optimized. Don’t Overextend Without Protection – I personally financed all engineering, but without clear safeguards, that investment became a sunk cost. Expenses Must Be Distributed – I was solely covering engineering salaries, which created an imbalance in financial risk. Future partnerships should ensure costs are shared proportionally, rather than one person shouldering the burden. Where I Need Advice Looking back, I want to improve as an engineer, CEO, and co-founder. • What should I have done differently in structuring this partnership? • How do you balance engineering quality with the startup need for speed? • As a dev shop owner, how can I better navigate equity deals where I’m also bringing in engineering resources? I really appreciate everyone who went through this long post and provide any insights from founders, engineers, or anyone who has been in a similar situation. Thanks for reading! ===================================================================== For readers who might be thinking what set this type of expectation? Because I had a dev shop and I thought my co-founders will be understanding of my business circumstance and I was a bit trigger to build a product with a C-exec team, I gave the impression of "unlimited" engineering which I later realized down the line that it was not feasible for me. Something I learned that I have to be more careful with and set expectations accordingly from the very beginning. And from the feedback of the commenters here, I am much more aware what I should offer and how to set expectations, esp. in the early stages of execution. So thank you all! 🙏🏾 EDIT: I would like to thank everyone who contributed to this thread. You not only helped me but future founders who are considering to get into the startup scene!

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.
reddit
LLM Vibe Score0
Human Vibe Score1
Organic_Crab7397This week

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.

Hello everyone. I haven't started selling yet and wanted to get some insight from the community I'm trying to serve (that makes the most sense to me). So over the past couple months I've gotten into AI & Automation. I got a HighLevel account and went to town learning new things. I learned how to make automations and workflows that make running a business easier (my dad has been letting me use his concrete business as a guinea pig). I also learned how to build and train AI Chat Assistants. I want to start a service based business that uses AI & workflows to automate some of the customer service tasks & lead generation for business. What I'm seeking advice about are as follows: NICHE SELECTION: Part of me thinks I shouldn't niche down in the beginning and just take whoever comes and niche down once I find an industry I'm comfortable with. Another side thinks I should choose one. What is your opinion on niche selection in the beginning? PRICING: I know that pricing largely depends on the value I bring to the client, but I've seen people doing the same or similar things as I want to do and charging vastly different prices. From $300- $2,000. While I think these solutions could absolutely help companies get and retain new business and reduce some of the workload of their staff -- I'm not comfortable charging a high price until I've got enough experience and data to justify that. &#x200B; THESE ARE THE SERVICES I'M THINKING OF OFFERING: Customer Service Chat Assistant. This will be on the website as a "Live Chat". It also connects to Facebook Messenger & Google Business Chat. I'd train the chat assistant on everything related to the company; pertinent info (NAP, company mission, industry background), contact info, services / products / pricing, FAQs, current specials &/or discount codes (this can be changed monthly), how to handle upset clients, etc. It can also connect to a calendar like Google or Calendly so customers can make an appointment or schedule a call directly from the conversation. Missed Call Follow Up. If you're familiar with the platform HighLevel it's commonly called "Missed Call Text Back". The idea is that when a call is missed a text message is automatically fired to the prospect's phone saying something along the lines of "Hey this is \\\\\\ from \\\\\\\_. How can I help you?" and the business owner is alerted to the missed call via text notification. People have said they see a lot of success for their clients with this alone due to the instant follow up. I see a lot of people charging $300 /m. for this. My issues with this are: 1). The text fires automatically when the call is missed, but if the business owner isn't available to actually follow up and keep texting after the customer texts back, they will look inconsistent and bothersome. 2). Without context a prospect may wonder why you didn't answer when they called, but texted them instead. So my answer to these problems are #3. SMS Answering Service. It is essentially taking 2 + 1 and combining them. The missed call text goes out to the prospect, but with context on why they're being texted (because no one is available to take the call at the moment) and IF the prospect responds, a Customer Service Chat Assistant will take over the conversation with the goal of answering their questions and either getting them on the phone with the company via a call back OR helping them schedule an appointment. This offers a more consistent solution than just a text to the business owner / team & the prospect is contacted and helped (hopefully) before they have a chance to start calling a competitor. Lead Nurture / Lead Qualifying Sales Funnel. This one is more than just AI & automation. It's a full funnel. It can be for either Facebook or Google. The process is AD -> Landing Page -> AI Text Message Convo -> Booking/Schedule Call/ Appointment. Typically the ad will offer a lead magnet which they will claim on the LP by giving their information. After the form is submitted, they get a text message and begin a conversation with the AI. It can be trained to just walk them through a booking process, nurture a sale by answering questions and handling objections or to qualify leads. Lead qualification via text works well if you want to weed out who is serious versus who is curious. To be clear; I'd be making the ad, landing page & training the AI -- all parts of the funnel. For whichever service a few things are universal: \- All conversations; no matter what platform they're had on, all go to one inbox which is pretty helpful to see them all in one place. \- When scheduling / booking these can also collect payment. \- Tags can be added to keep track of how they came into the business and where they are in a sales pipeline. There are a lot of fun things I can do with these automations and I'm excited about learning more everyday. I'd really like to know what you think these services could be worth to a business. If you do reply please tell me what type of business you're in so I have an idea of what industries I should be looking towards. Thank you for any response I get as I know this was a long read! SN: I currently do digital marketing & web design as a freelancer.

The Birth of My First (and Hilariously Flawed) Voice Agent: A Tale of No-Code Chaos
reddit
LLM Vibe Score0
Human Vibe Score0.778
No-Understanding5609This week

The Birth of My First (and Hilariously Flawed) Voice Agent: A Tale of No-Code Chaos

Okay Reddit, buckle up. I'm about to tell you the saga of how I birthed my very first voice agent, a chaotic and frankly, slightly embarrassing journey involving Retell.ai, Make.com, and Zapier. Looking back, it's equal parts hilarious and traumatizing. The Naive Dream: Back then (it feels like ages ago!), I was convinced I could easily whip up a voice agent that would take restaurant orders over the phone. Elegant, efficient, and completely automated! I envisioned a world where my clients' restaurant never missed a beat, all thanks to my coding prowess... or rather, my no-code prowess. How wrong I was. The Gauntlet Begins: Retell.ai's Murky Depths Retell.ai was the starting point, the "voice" of my operation. Getting the phone number hooked up felt like a small victory, quickly overshadowed by the realization that their documentation was... well, let's just say it wasn't written for complete novices. I spent what felt like an eternity staring at API keys, convinced I'd entered them correctly, only to be greeted by cryptic error messages. The sheer frustration I felt wrestling with that initial setup is something I'll never forget. Make.com: From Pretty Picture to Painful Puzzle Then came Make.com, the orchestra conductor of my workflow. It looked so beautiful, so user-friendly! Drag and drop, visual modules... what could go wrong? Oh, so much could go wrong. Trying to decipher the JSON data stream from Retell was like trying to understand a foreign language I only knew a few words of. Mapping that data to a Google Sheet? A complete and utter disaster. I remember spending hours just trying to get the correct fields to populate, each failed attempt fueling my growing despair. Zapier: Briefly Considered, Quickly Dismissed I flirted with the idea of using Zapier instead, seduced by its simplicity. But its limitations became glaringly obvious when I tried to build the complex, multi-step process I needed. Make.com was the only real option, which meant diving headfirst into a whole new world of modules, triggers, and data transformations. The Infernal Testing Loop: The absolute WORST part of the entire process was the testing. Picture this: Calling the agent, rambling through a mock order, waiting for the workflow to execute, only to discover (yet another) error. Then, tweaking the scenario, pushing "save," and repeating the entire agonizing process. Each test call felt like a mini-marathon, a grueling race against time and my own dwindling patience. The AI's... Quirks: And then there was the AI itself. It was... let's just say it had a personality of its own. Sometimes, it perfectly understood my order. Other times, it decided I wanted to order 500 pizzas with extra anchovies. Debugging the AI's interpretation felt like negotiating with a stubborn toddler. Lessons Hard-Learned (And Forever Etched in My Memory): Start absurdly small: I tried to build a fully functional system right away. A HUGE mistake. If I could go back, I would have focused on just extracting one piece of information (like, say, just the quantity) and gotten that rock solid before adding anything else. JSON is your friend (or should be): Back then, JSON felt like alien code. Now, I have a slightly better grasp on it. Trust me, learn JSON. It will save you so much pain. Test like your sanity depends on it: Because it does. After every. Single. Change. Test the entire flow. It's tedious, but it's the only way to catch errors before they snowball into a catastrophe. Don't suffer in silence: I tried to be a lone wolf, figuring everything out myself. Big mistake. Retell.ai's forums and Make.com's documentation are goldmines. Use them! Embrace the struggle: This is the most important lesson. Building a voice agent, especially your first one, is hard. It's frustrating. It will test your limits. But don't give up. The feeling of finally making it work (even partially) is worth it. The Bot That (Barely) Lived: In the end, I did create a voice agent that could take orders and log them into a spreadsheet. It wasn't pretty. It was buggy. It occasionally ordered things that didn't make any sense. But it was mine. And it was the first step on a long and winding road. Looking back, I laugh (and cringe) at my naivety. But I also appreciate the lessons I learned and the sheer grit it took to bring my little AI Frankenstein to life. Anyone else have a similar "first bot" story? Let's hear them! Misery (and laughter) loves company. #RetellAI #Makecom #Zapier #FirstBot #NoCodeFail #VoiceAgentStruggles #StoryTime

Month 2 of building my startup after being laid off - $200 in revenue and 4 (actual) paying customers
reddit
LLM Vibe Score0
Human Vibe Score1
WhosAfraidOf_138This week

Month 2 of building my startup after being laid off - $200 in revenue and 4 (actual) paying customers

In September 2024, I got laid off from my Silicon Valley job. It fucking sucked. I took a day to be sad, then got to work - I'm not one to wallow, I prefer action. Updated my resume, hit up my network, started interviewing. During this time, I had a realization - I'm tired of depending on a single income stream. I needed to diversify. Then it hit me: I literally work with RAG (retrieval augmented generation) in AI. Why not use this knowledge to help small businesses reduce their customer service load and boost sales? One month later, Answer HQ 0.5 (the MVP) was in the hands of our first users (shoutout to these alpha testers - their feedback shaped everything). By month 2, Answer HQ 1.0 launched with four paying customers, and growing. You're probably thinking - great, another chatbot. Yes, Answer HQ is a chatbot at its core. But here's the difference: it actually works. Our paying customers are seeing real results in reducing support load, plus it has something unique - it actively drives sales by turning customer questions into conversions. How? The AI doesn't just answer questions, it naturally recommends relevant products and content (blogs, social media, etc). Since I'm targeting small business owners (who usually aren't tech wizards) and early startups, Answer HQ had to be dead simple to set up. Here's my onboarding process - just 4 steps. I've checked out competitors like Intercom and Crisp, and I can say this: if my non-tech fiancée can set up an assistant on her blog in minutes, anyone can. Key learnings so far: Building in public is powerful. I shared my journey on Threads and X, and the support for a solo founder has been amazing. AI dev tools (Cursor, Claude Sonnet 3.5) have made MVP development incredibly accessible. You can get a working prototype frontend ready in days. I don't see how traditional no-code tools can survive in this age. But.. for a production-ready product? You still need dev skills and background. Example: I use Redis for super-fast loading of configs and themes. An AI won't suggest this optimization unless you know to ask for it. Another example: Cursor + Sonnet 3.5 struggles with code bases with many files and dependencies. It will change things you don't want it to change. Unless you can read code + understand it + know what needs to be changed and not changed, you'll easily run into upper limits of what prompting alone can do. I never mention "artificial intelligence" "AI" "machine learning" or any of these buzzwords once in my copy in my landing page, docs, product, etc. There is no point. Your customers do not care that something has AI in it. AI is not the product. Solving their pain points and problems is the product. AI is simply a tool of many tools like databases, APIs, caching, system design, etc. Early on, I personally onboarded every user through video calls. Time-consuming? Yes. But it helped me deeply understand their pain points and needs. I wasn't selling tech - I was showing them solutions to their problems. Tech stack: NextJS/React/Tailwind/shadcn frontend, Python FastAPI backend. Using Supabase Postgres, Upstash Redis, and Pinecone for different data needs. Hosted on Vercel and Render.com. Customer growth: Started with one alpha tester who saw such great results (especially in driving e-commerce sales) that he insisted on paying for a full year to keep me motivated. This led to two monthly customers, then a fourth annual customer after I raised prices. My advisor actually pushed me to raise prices again, saying I was undercharging for the value provided. I have settled on my final pricing now. I am learning so much. Traditionally, I have a software development and product management background. I am weak in sales and marketing. Building that app, designing the architecture, talking to customers, etc, these are all my strong suits. I enjoy doing it too. But now I need to improve on my ability to market the startup and really start learning things like SEO, content marketing, cold outreach, etc. I enjoying learning new skills. Happy to answer any questions about the journey so far!

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

What Does “Building a Community” Actually Mean for a Startup?
reddit
LLM Vibe Score0
Human Vibe Score1
ManagerCompetitive77This week

What Does “Building a Community” Actually Mean for a Startup?

I’ve talked to a lot of founders, and almost everyone gives the same advice: “Build your product and do sales at the same time. Also, build a community alongside it.” I get the first part. Shipping and selling together makes sense. But the “community building” part? That’s where things get blurry for me. Does community building mean posting regular updates on Twitter or LinkedIn? Does it mean making Instagram reels about the product? Or is it more about actually talking to potential customers one-on-one? When people say “build a community,” do they mean creating a place where users can interact with each other or just a way to keep them engaged with the product? The reason I’m asking is that I see different approaches everywhere. Some founders document their startup journey on social media, and that seems to attract an audience. Others focus on getting early users into a private group (Discord, Slack, or WhatsApp) and nurturing relationships there. And then there are those who take a totally different approach—like building in public, sharing code, or offering free tools to bring people in. For my startup, I’m trying to figure out what community building should look like in 2025. The startup landscape has changed drastically in the past year, especially with AI and automation becoming more mainstream. Founders no longer have time to manually interact with every user. So what’s the new way of doing this? What’s working for early-stage startups today? I’d love to hear thoughts from fellow founders. What does “community” actually mean in today’s world, and what’s the best way to build one?

 Struggling with Cold Start for Our AI PowerPoint Tool - Seeking Platform and Strategy Suggestions!
reddit
LLM Vibe Score0
Human Vibe Score1
yamaggieThis week

Struggling with Cold Start for Our AI PowerPoint Tool - Seeking Platform and Strategy Suggestions!

Hello everyone, I'm one of the co-founders of a new AI-generated PowerPoint company, and I handle the marketing side of things. Our product is currently in the cold start phase, and we’re facing some challenges in gaining traction. We've already tried some influencer marketing, but the results have been underwhelming. We're looking for advice on the best platforms and strategies to effectively launch our product and reach our target audience. Here’s a bit more about our product: AI-Powered: Our tool leverages AI to help users quickly create professional PowerPoint presentations by simply entering their desired topic. User-Friendly: The process is streamlined to save users time and effort, making it ideal for professionals, educators, and students. Given our current situation, we would greatly appreciate any suggestions on: Platforms: Which platforms have you found most effective for cold starts, especially for tech or AI products? Strategies: What marketing strategies or tactics have worked for you in the early stages? Any tips on refining our influencer marketing approach or alternative methods to consider? Partnerships: Are there any specific types of partnerships or collaborations that you’ve found beneficial for similar products? Thank you in advance for your insights and advice. We're eager to learn from this community and hopefully turn things around for our launch. Best, Maggie

Restarting My Agency / Compared To Full Time Corporate
reddit
LLM Vibe Score0
Human Vibe Score1
nomadpaddyThis week

Restarting My Agency / Compared To Full Time Corporate

I’m currently thinking about going back to consulting / agency work compared to my current tech job I have. Over a year ago I signed this tech client and they wanted more and more from me which ended up becoming a full time role. At the time, the challenge excited me as it was working on a very large project on a global scale, competing with some of the biggest brands in the world. I was making good money before working in my agency and consulting with lots of different brands on their paid media, websites and e-commerce. I have a healthy package where I’m at at the moment but want more. Working with different clients always created curiosity, no day was the same and that what I loved about it. So now I’m considering going to back to starting the business and working with clients again. My question is: What do businesses ACTUALLY want? Everyone wants great roas and an amazing site but what are core things people are looking for in a growth partner / agency? I’m thinking of relaunching with three pillars in mind: Digital (Paid Media, Lead Gen, Web Dev) AI implementation as a lot of businesses don’t know how to leverage AI completely for cost saving and efficiencies. Content (Video, SEO, Content Writing) for modern day ranking I’m currently rebuilding my pitch deck and thought I would ask the question here before I go back to my network and start opening up conversations again. Would love to hear people’s thoughts in addition to anyone that’s done the same?

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

Seeking co-founder to build LinkedIn’s biggest rival(curated version)
reddit
LLM Vibe Score0
Human Vibe Score1
ItzdreeThis week

Seeking co-founder to build LinkedIn’s biggest rival(curated version)

How do you connect with likeminded people? You see the polished wins everywhere, but what about the messy drafts , the awkward pitches and the moments you’re not sure you’ve got it right? Problem: The whole idea of founding and starting a business can be super intimidating for some people, specially those who don’t know any founders personally, those who don’t have a large network, those who don’t have rich parents with large networks, those not inserted in an entrepreneurial culture like in the US for example (which is my case). Sometimes all you need is the right support network, and too see others do what you want, to know that it’s possible! Everyone has an “ultimate guide” to make 7 figures or build a business on YouTube but NO ONE shoes you the HOW, just the results… I’ve tried joining founder communities, LinkedIn ,Reddit … you name it. Most of these founder communities are inaccessible for regular people and often ask for you to have an already existing business with a min ARR… or their simply geography based and if you’re not in a certain area you can’t really participate… As of LinkedIn… full of empty AI generated posts about how some random dude raised $10m in 7 days. Okay Jonathan, but what about the HOW?? How did you write your first pitch? How many rejection calls did you get? What is an MVP? There simply isn’t a platform out there to document your founding journey and find inspiration within a community of people who are doing the same as you. What better way to feel motivated then to see someone actually document their process? Solution: I’m working on building a social media platform for aspiring/founders to connect through the RAW, UNFILTERED process of turning ideas into reality in REAL time. It’s all gonna be around the “building in public “ concept and content creation. Picture an instagram/tiktok profile where instead of seeing someone’s dog you see them documenting their founding process—from the moment they had the idea, to the moment they launched, you’re going to see the successes, the fails, the rejected calls, all documented through actual content and not some AI generated LinkedIn post. Imagine if you wanted to learn about how Steve Jobs started Apple , you could simply go through his profile on this app—exactly. To make sure all interactions are meaningful people would have to apply. It’s a truly curated community, with REAL people, building REAL things in REAL time, and not just tell us the story of how they did it… Audience: I’m targeting people who have a burning desire of building a business and early stage founders starting their founder journeys, that don’t have a support network and simply don’t know where to start. People who are tired of watching 30 min “ultimate guides “ on how to make it on YouTube from “business gurus” selling courses. People who haven’t reached the min ARR required to join an “exclusive “ founder a community. People who can’t simply just move to the US to get into the “exclusive” YC combinator. People who want to connect with real people building real things and not anonymous people on Reddit, or LinkedIn influencers again trying to promote their services. I believe in the idea because I’m also part of my audience. Have always wanted to start my own thing just never knew how to and where to find a community of likeminded people . I don’t know any founders myself, I come from a non-entrepreneurial society and I’d pay good money to access a community of REAL passionate founders building REAL things, in REAL time. This would be my first ever business, and I want to share my journey building it and hopefully inspire others to just start so I’ve created a mailing list to keep anyone interested in the project updated on my fails , learnings and successes. I’m not worried about “making it” but just “starting” and hopefully reach the right audience and inspire anyone to start whatever they have marinating in their thoughts. If you’re a founder struggling with staying consistent or an aspiring founder with an insane desire of starting and don’t know how to start, I’d love to get your feedback on what’s stopping you, your challenges starting out and what you’d find useful in such platform. And finally would this be something that interests you?? PS: casually looking for a technical co-founder


Seeking Feedback & Support: Launching a Nut Mix Startup to Improve Gut Health
reddit
LLM Vibe Score0
Human Vibe Score1
No_Tax_1155This week

Seeking Feedback & Support: Launching a Nut Mix Startup to Improve Gut Health

This txt is AI summarized but I read it, he just restructured my thoughts accurately. Hey all, I’m Ilia, a Seattle-based entrepreneur working on a product that’s all about making healthy eating easier. I’m creating a premium nut mix with 16+ different nuts (70% organic) aimed at helping people improve their microbiome and overall health. The concept is simple: diverse ingredients lead to better gut health, reduced inflammation, and more energy. No more juggling 20 bags of different foods—my nut mix is a convenient, delicious solution. I’m in the early stages and raising about $7,000 to cover things like regulatory compliance, a commercial kitchen rental, quality ingredients, packaging, and a basic brand presence. I’ve poured my own savings into this and am now turning to the community for support, advice, and maybe even early funding. I made a short (12-min) video walking through the concept, the budget breakdown, and my long-term vision (expanding to seeds, fruit mixes, and maybe even a billion-dollar brand one day!). I’d love your honest feedback, connections, or suggestions. If you’re interested in supporting, even by sharing this post, I really appreciate it. Feel free to ask me anything—transparency is key for me, and I want to build something that genuinely helps people live healthier. https://www.gofundme.com/f/support-my-goal-to-make-healthy-eating-easy-and-convenient

How do you learn details / potential strategy about technically important new laws in the jurisdictions you operate in?
reddit
LLM Vibe Score0
Human Vibe Score1
friendofherschelThis week

How do you learn details / potential strategy about technically important new laws in the jurisdictions you operate in?

I am reading “The Entrepreneur’s Guide to Law and Strategy” and it’s really fantastic so far about giving a pretty great overview of these aspects of business. It was published by Wiley (a reputable textbook publisher) in 2018. In one chapter, the authors go into the EU’s “right to be forgotten” and it got me thinking about complying with laws like that. Unfortunately, the latest edition of the book is still nearly 7 years old and written pre-COVID, pre-genAI, pre-social network and privacy pushback, etc. I assume every time a new law comes out that can impact my business (say, a random privacy law in California) that businesses aren’t just telling their lawyers “use any amount of hours you need to in order to read the San Jose papers every day and then write me a one paragraph brief with an outline and potential changes needed to our business, also all the other papers across the world”. They’d spend a fortune. There has to be something I’m missing. Is there a law review for business that I should be following? I operate in the US only at this time. A more technical newspaper (I take WSJ, but it’s not technical enough for this sort of thing. It might give the “what”, but won’t give a small business owner “what to do with it”)? PS: I’m the type of person who read every word of my mortgage. I am aware the answer might be “don’t worry about it”. But I do worry about it, and am trying to fix that. For example, the insanely popular new lawsuits about website accessibility. I want to avoid things (essentially low hanging lawsuit fruit) like that before they happen to me.

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

I’ve Tested All the Image Generation Tools for My Small Business
reddit
LLM Vibe Score0
Human Vibe Score0.6
astronautlyraThis week

I’ve Tested All the Image Generation Tools for My Small Business

Personally I hate paying for subscriptions unless it was absolutely necessary. Given that I don't have the budget to hire a graphic designer I started playing with all the new Generative AI tools and these are the ones I've narrowed it down to that have made the most impact. I posted this breakdown on r/AIforBusinessFounders but will share it here as well. Hope this compilation helps a fellow entrepreneur. If you’ve been exploring AI tools for generating images, you’ve probably come across big names like DALL·E, Adobe Photoshop, and MidJourney (finally moved off the dreadful Discord prompting thankfully!)  While they each have their strengths, they also have their quirks. Here’s the breakdown: DALL·E by OpenAI Pros: It’s integrated directly into ChatGPT, so if you’re already on a paid plan, you’re good to go—no extra fees. It's also embedded in Canva which is convenient if you’re designing social media posts or quick mockups. Cons: The image quality isn’t amazing. It often looks a bit flat or off, but I think where I struggle is you only get one output per generation, so there’s not much variety. Adobe Photoshop Pros: If you’re already using Photoshop, this is a nice addition. It lets you partially generate images within your edits, which can be handy for things like background replacements. When it comes to generating full images though, I find this tool really struggles. Cons: The image quality still has room for improvement—hands and fingers, in particular, are a consistent issue. Plus, you need an Adobe Creative Cloud subscription to access it. MidJourney Pros: Hands down, this tool produces the best-quality images. You get multiple outputs per prompt, and what really sets it apart is the ability to refine your favorite image. You can subtly tweak or drastically change it, depending on your needs. It previously only operated on Discord but it now has migrated to it's own platform so that's been a huge pro for me. Cons: It’s not cheap—MidJourney requires its own paid membership and comes with limited tokens, so you’ll need to budget your usage. The biggest con for me in the past was that you had to prompt in a Discord channel but now that it has own platform, it's no longer an issue. After putting all three to the test, my personal favorite is MidJourney. If image quality and creative control are your priorities, it’s hard to beat. That said, DALL·E and Adobe are solid options if you’re already using their platforms and want to save money. Are there any hidden gems I might have missed? If so let me know, I'd love to give them a try.

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.
reddit
LLM Vibe Score0
Human Vibe Score1
Organic_Crab7397This week

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.

Hello everyone. I haven't started selling yet and wanted to get some insight from the community I'm trying to serve (that makes the most sense to me). So over the past couple months I've gotten into AI & Automation. I got a HighLevel account and went to town learning new things. I learned how to make automations and workflows that make running a business easier (my dad has been letting me use his concrete business as a guinea pig). I also learned how to build and train AI Chat Assistants. I want to start a service based business that uses AI & workflows to automate some of the customer service tasks & lead generation for business. What I'm seeking advice about are as follows: NICHE SELECTION: Part of me thinks I shouldn't niche down in the beginning and just take whoever comes and niche down once I find an industry I'm comfortable with. Another side thinks I should choose one. What is your opinion on niche selection in the beginning? PRICING: I know that pricing largely depends on the value I bring to the client, but I've seen people doing the same or similar things as I want to do and charging vastly different prices. From $300- $2,000. While I think these solutions could absolutely help companies get and retain new business and reduce some of the workload of their staff -- I'm not comfortable charging a high price until I've got enough experience and data to justify that. &#x200B; THESE ARE THE SERVICES I'M THINKING OF OFFERING: Customer Service Chat Assistant. This will be on the website as a "Live Chat". It also connects to Facebook Messenger & Google Business Chat. I'd train the chat assistant on everything related to the company; pertinent info (NAP, company mission, industry background), contact info, services / products / pricing, FAQs, current specials &/or discount codes (this can be changed monthly), how to handle upset clients, etc. It can also connect to a calendar like Google or Calendly so customers can make an appointment or schedule a call directly from the conversation. Missed Call Follow Up. If you're familiar with the platform HighLevel it's commonly called "Missed Call Text Back". The idea is that when a call is missed a text message is automatically fired to the prospect's phone saying something along the lines of "Hey this is \\\\\\ from \\\\\\\_. How can I help you?" and the business owner is alerted to the missed call via text notification. People have said they see a lot of success for their clients with this alone due to the instant follow up. I see a lot of people charging $300 /m. for this. My issues with this are: 1). The text fires automatically when the call is missed, but if the business owner isn't available to actually follow up and keep texting after the customer texts back, they will look inconsistent and bothersome. 2). Without context a prospect may wonder why you didn't answer when they called, but texted them instead. So my answer to these problems are #3. SMS Answering Service. It is essentially taking 2 + 1 and combining them. The missed call text goes out to the prospect, but with context on why they're being texted (because no one is available to take the call at the moment) and IF the prospect responds, a Customer Service Chat Assistant will take over the conversation with the goal of answering their questions and either getting them on the phone with the company via a call back OR helping them schedule an appointment. This offers a more consistent solution than just a text to the business owner / team & the prospect is contacted and helped (hopefully) before they have a chance to start calling a competitor. Lead Nurture / Lead Qualifying Sales Funnel. This one is more than just AI & automation. It's a full funnel. It can be for either Facebook or Google. The process is AD -> Landing Page -> AI Text Message Convo -> Booking/Schedule Call/ Appointment. Typically the ad will offer a lead magnet which they will claim on the LP by giving their information. After the form is submitted, they get a text message and begin a conversation with the AI. It can be trained to just walk them through a booking process, nurture a sale by answering questions and handling objections or to qualify leads. Lead qualification via text works well if you want to weed out who is serious versus who is curious. To be clear; I'd be making the ad, landing page & training the AI -- all parts of the funnel. For whichever service a few things are universal: \- All conversations; no matter what platform they're had on, all go to one inbox which is pretty helpful to see them all in one place. \- When scheduling / booking these can also collect payment. \- Tags can be added to keep track of how they came into the business and where they are in a sales pipeline. There are a lot of fun things I can do with these automations and I'm excited about learning more everyday. I'd really like to know what you think these services could be worth to a business. If you do reply please tell me what type of business you're in so I have an idea of what industries I should be looking towards. Thank you for any response I get as I know this was a long read! SN: I currently do digital marketing & web design as a freelancer.

ChatGPT for business automation (incredible new AI)
reddit
LLM Vibe Score0
Human Vibe Score1
MalachiianThis week

ChatGPT for business automation (incredible new AI)

Hey fellow small business owners! I'm curious to know how you would use ChatGPT or other AI automation tools to improve your business. For those who are not aware, recently a new chat AI was made available to the public by OpenAI, called ChatGPT. (same company that did Dall-E) In a tweet Elon Musk wrote that "ChatGPT is scary good. We are not far from dangerously strong AI." It allows anyone (regardless of tech skill) to simply type commands and it will spit out answers. It can also create actual working code. For example most tasks you do in a browser can be automated with a Python script, but it takes time and coding knowledge to create. With ChatGPT you can just tell it what you want and it will create the code! The impact for businesses is insane: 1) Your entire customer service can be easily replaced by chat bots and probably soon by AI that can speak over the phone (google showcased this in 2018, it already exists). 2) you can have the AI automate your sales process, creating a 1-on-1 conversations, at scale. It can probably also improve and optimize it's closing rate over time as it learns more about your customers. 3) It can be used to train your staff. It's really good for 1on1 instruction and teaching because it will go a the students pace and answer questions (compare that to the usual PowerPoint presentation people use) 4) Since it can create code to automate most tasks a human can do in a browser, you can create for example bots that take customer orders and automatically import them to whatever shipping system you use, send customers tracking info etc. (a lot of this stuff is done with software and APIs, but now anyone can create their own, custom solutions) I feel like we hit an inflection point in 2022 with AI and now we are beginning to see some really useful stuff coming out. Am I crazy or are we about to see a massive shift in how we do things?

What I learn from my $200 MRR App I built 4 months ago?
reddit
LLM Vibe Score0
Human Vibe Score0.857
ricky0603This week

What I learn from my $200 MRR App I built 4 months ago?

4 month ago, I am just a 10-years experienced product manager without any software development experience. I have an $3K/month job, but I am so tired, I don’t like my life, don’t like my boss, don’t like my daily work, that make me feeling I already died however I am still living. I yearn for freedom and want to live each day the way I want to. So I quit my job, and become a Indie developer to build my own business, my own app, even my own life. I am so grateful for this time and experience, now my app reach $200 MRR, still very little compared to my previous salary, but I never regret. I have learned lots of things from this time and experience, more than I had in last 10 years. Here is the time-line of my App: \- Sep 2023: Launch first version to iOS App store \- Oct 2023: Release in-app-purchase features and have first subscriber, the revenue in October is $154 \- Nov 2023: Change from subscription to pay per use, and I did lots of marketing jobs in November, however, the revenue reduced to only $40. \- Dec 2023: Change back to subscription, and stop some invalid marketing jobs, only keep the ones that actually work. I almost did nothing in December, and the revenue come to $243. During this process, I have learned lots of things, there are some of them that I think could help you as well. Web or App My App is an iOS app that only can running on Apple’s device such like iPhone/iPad or Mac with Apple silicon. Many people ask me why my product is an iOS app not a website, because they don’t have any Apple device. It's true that promoting an app is much harder than promoting a website. However I am now very glad I made an App and not a website! If I make a website, I don't think it's possible to make $100 in the first month. My App is about keyword research, to help people find some ideas from search keyword, because every keyword people searched in Google are representing a real need of them, also can be used in SEO field. However there are a lot of website tools about keyword research, some of them are famous like Ahrefs, SEMrush… I have no intention of competing with them. Actually I don’t have any chance. While in app store, there are little apps about keyword research, each of them have terrible data and user experience, that means if my app has better data and experience that could be my chance. In fact, the App store brings me 20 organic installs a day that Google would never have been able to bring me if I had a website, at least for the first few months. Furthermore, Apple nearly did everything for developer, I don’t need to care about user login, payment and so on, Apple did everything, I just need to call their API, that save lots of time, if I build a website, I need to implement login and payment by myself, that would add some extra work. Not to mention I'd need to buy servers and domains, that would cost me a lot of money. Although Apple will take 30% of the revenue, I can live with that in the early stages because the most important thing for me is to get the product to market as soon as possible. Actually thought Apple’s SMB program, the take rate is 15% now. So Web or App is not important in the early stage, time is important, if people need my product, it's easy to make a website one. More Users or More Valuable Users In November, I notice some users would like use my app, and they were meet paywall, but they never subscribe. I provided 7 day free trail, but it seem that they don’t like it. So I decide to change subscription to pay per use. Because as a user, I don’t like subscription as well, pay per use seem like more friendly. So I change from subscription to pay per use. People can afford $9.99 to subscribe monthly for unlimited use or pay $1.99 for each data they want(First purchase is $0.99 then $1.99). I was expecting more user to pay, but it was the complete opposite! Some users who would have paid a higher subscription fee are switching to a lower priced single payment. Users are encountering paywalls more often, and each time they need to make a decision about whether or not to pay, which increases the probability that they will abandon payment. This resulted in a 75% decrease in revenue in November. In fact, the mostly of my revenue comes from a handful of long-cycle subscribers, such as annual subscription. \\Few bring in most of the revenue,\\ that is the most important thing I learned. You don't need a lot of customers, you just need more valuable ones. That's why it's only right to design a mechanism to filter out high-value customers and focus on them, all the things you want do is just let more people into the filter, and from that point of view, subscription with free trial period is the best way, even if most people don't like it. The rule of 20/80 will always be there. The most important thing is always focus on the 20 percent things and people. Effort does not always guarantee rewards. Unless one engages in deep thinking, or most efforts are invalid. I have been working very hard to promote my product for a period of time. It’s about in November. I did a lot of job, such as write script to send message to my potential clients on Fiverr, post and write comments on others post on Reddit, find related questions and answer them on Quora, post and comments on Twitte, etc. During that period, I was exhausted every day, but the outcome did not meet my expectations. There is only little growth on App installation, even less revenue than before. That make me frustrated. I finally realized that If I need to put in a tremendous amount of effort just to make a little progress, there is must something wrong. So I stop 80% of promote work I have ever did, only keep app store search ad, which will bring a installation with less than $0.5 cost. Then I dive into long time and deeply thinking, I spent more time on reading books, investigate other product with great MRR, watch interviews with people who are already living the kind of life I aspire to live, for example, u/levelsio. These things have given me great inspiration, and my life has become easier. It seems that the life I anticipated when I resigned is getting closer. I also have a clearer understanding of my app. Meanwhile, MRR has been growing. This experience let me learn that effort does not always guarantee results. Many times, our efforts are just wishful thinking, they are invalid, do the right thing after deeply thinking is more important. What Next? My goal is reach $3K MRR, as same as my job payment, I will never stop to building things, and I will keep my currently lifestyle. I still don't know how to get more people to use my app, but levelsio's interviews give me some inspiration that I can verified something by manually instead of build a software. I plan to launch a trend analysis product based on the keyword data provided by my current app. I have always wanted to combine AI to build such a product, but I didn't know how to do it. Now I intend to manually complete it first and start software development once there are paying users. If you are interested to my App, you could try it.

ChatGPT for business automation (incredible new AI)
reddit
LLM Vibe Score0
Human Vibe Score1
MalachiianThis week

ChatGPT for business automation (incredible new AI)

Hey fellow small business owners! I'm curious to know how you would use ChatGPT or other AI automation tools to improve your business. For those who are not aware, recently a new chat AI was made available to the public by OpenAI, called ChatGPT. (same company that did Dall-E) In a tweet Elon Musk wrote that "ChatGPT is scary good. We are not far from dangerously strong AI." It allows anyone (regardless of tech skill) to simply type commands and it will spit out answers. It can also create actual working code. For example most tasks you do in a browser can be automated with a Python script, but it takes time and coding knowledge to create. With ChatGPT you can just tell it what you want and it will create the code! The impact for businesses is insane: 1) Your entire customer service can be easily replaced by chat bots and probably soon by AI that can speak over the phone (google showcased this in 2018, it already exists). 2) you can have the AI automate your sales process, creating a 1-on-1 conversations, at scale. It can probably also improve and optimize it's closing rate over time as it learns more about your customers. 3) It can be used to train your staff. It's really good for 1on1 instruction and teaching because it will go a the students pace and answer questions (compare that to the usual PowerPoint presentation people use) 4) Since it can create code to automate most tasks a human can do in a browser, you can create for example bots that take customer orders and automatically import them to whatever shipping system you use, send customers tracking info etc. (a lot of this stuff is done with software and APIs, but now anyone can create their own, custom solutions) I feel like we hit an inflection point in 2022 with AI and now we are beginning to see some really useful stuff coming out. Am I crazy or are we about to see a massive shift in how we do things?

My Manager Thinks ML Projects Takes 5 Minutes 🤦‍♀️
reddit
LLM Vibe Score0
Human Vibe Score1
SaraSavvy24This week

My Manager Thinks ML Projects Takes 5 Minutes 🤦‍♀️

Hey, everyone! I’ve got to vent a bit because work has been something else lately. I’m a BI analyst at a bank, and I’m pretty much the only one dealing with machine learning and AI stuff. The rest of my team handles SQL and reporting—no Python, no R, no ML knowledge AT ALL. You could say I’m the only one handling data science stuff So, after I did a Python project for retail, my boss suddenly decided I’m the go-to for all things ML. Since then, I’ve been getting all the ML projects dumped on me (yay?), but here’s the kicker: my manager, who knows nothing about ML, acts like he’s some kind of expert. He keeps making suggestions that make zero sense and setting unrealistic deadlines. I swear, it’s like he read one article and thinks he’s cracked the code. And the best part? Whenever I finish a project, he’s all “we completed this” and “we came up with these insights.” Ummm, excuse me? We? I must’ve missed all those late-night coding sessions you didn’t show up for. The higher-ups know it’s my work and give me credit, but my manager just can’t help himself. Last week, he set a ridiculous deadline of 10 days for a super complex ML project. TEN DAYS! Like, does he even know that data preprocessing alone can take weeks? I’m talking about cleaning up messy datasets, handling missing values, feature engineering, and then model tuning. And that’s before even thinking about building the model! The actual model development is like the tip of the iceberg. But I just nodded and smiled because I was too exhausted to argue. 🤷‍♀️ And then, this one time, they didn’t even invite me to a meeting where they were presenting my work! The assistant manager came to me last minute, like, “Hey, can you explain these evaluation metrics to me so I can present them to the heads?” I was like, excuse me, what? Why not just invite me to the meeting to present my own work? But nooo, they wanted to play charades on me So, I gave the most complicated explanation ever, threw in all the jargon just to mess with him. He came back 10 minutes later, all flustered, and was like, “Yeah, you should probably do the presentation.” I just smiled and said, “I know… data science isn’t for everyone.” Anyway, they called me in at the last minute, and of course, I nailed it because I know my stuff. But seriously, the nerve of not including me in the first place and expecting me to swoop in like some kind of superhero. I mean, at least give me a cape if I’m going to keep saving the day! 🤦‍♀️ Honestly, I don’t know how much longer I can keep this up. I love the work, but dealing with someone who thinks they’re an ML guru when they can barely spell Python is just draining. I have built like some sort of defense mechanism to hit them with all the jargon and watch their eyes glaze over How do you deal with a manager who takes credit for your work and sets impossible deadlines? Should I keep pushing back or just let it go and keep my head down? Any advice! TL;DR: My manager thinks ML projects are plug-and-play, takes credit for my work, and expects me to clean and process data, build models, and deliver results in 10 days. How do I deal with this without snapping? #WorkDrama

How I Started Learning Machine Learning
reddit
LLM Vibe Score0
Human Vibe Score1
TechPrimoThis week

How I Started Learning Machine Learning

Hello, everyone. As promised, I'll write a longer post about how I entered the world of ML, hoping it will help someone shape their path. I'll include links to all the useful materials I used alongside the story, which you can use for learning. I like to call myself an AI Research Scientist who enjoys exploring new AI trends, delving deeper into understanding their background, and applying them to real products. This way, I try to connect science and entrepreneurship because I believe everything that starts as scientific research ends up "on the shelves" as a product that solves a specific user problem. I began my journey in ML in 2016 when it wasn't such a popular field. Everyone had heard of it, but few were applying it. I have several years of development experience and want to try my hand at ML. The first problem I encountered was where to start - whether to learn mathematics, statistics, or something else. That's when I came across a name and a course that completely changed my career. Let's start You guessed it. It was Professor Andrew Ng and his globally popular Machine Learning course available on Coursera (I still have the certificate, hehe). This was also my first official online course ever. Since that course no longer exists as it's been replaced by a new one, I recommend you check out: Machine Learning (Stanford CS229) Machine Learning Specialization These two courses start from the basics of ML and all the necessary calculus you need to know. Many always ask questions like whether to learn linear algebra, statistics, or probability, but you don't need to know everything in depth. This knowledge helps if you're a scientist developing a new architecture, but as an engineer, not really. You need to know some basics to understand, such as how the backpropagation algorithm works. I know that Machine Learning (Stanford CS229) is a very long and arduous course, but it's the right start if you want to be really good at ML. In my time, I filled two thick notebooks by hand while taking the course mentioned above. TensorFlow and Keras After the course, I didn't know how to apply my knowledge because I hadn't learned specifically how to code things. Then, I was looking for ways to learn how to code it. That's when I came across a popular framework called Keras, now part of TensorFlow. I started with a new course and acquiring practical knowledge: Deep Learning Specialization Deep Learning by Ian Goodfellow Machine Learning Yearning by Andrew Ng These resources above were my next step. I must admit that I learned the most from that course and from the book Deep Learning by Ian Goodfellow because I like reading books (although this one is quite difficult to read). Learn by coding To avoid just learning, I went through various GitHub repositories that I manually retyped and learned that way. It may be an old-fashioned technique, but it helped me a lot. Now, most of those repositories don't exist, so I'll share some that I found to be good: Really good Jupyter notebooks that can teach you the basics of TensorFlow Another good repo for learning TF and Keras Master the challenge After mastering the basics in terms of programming in TF/Keras, I wanted to try solving some real problems. There's no better place for that challenge than Kaggle and the popular Titanic dataset. Here, you can really find a bunch of materials and simple examples of ML applications. Here are some of my favorites: Titanic - Machine Learning from Disaster Home Credit Default Risk House Prices - Advanced Regression Techniques Two Sigma: Using News to Predict Stock Movements I then decided to further develop my career in the direction of applying ML to the stock market, first using predictions on time series and then using natural language processing. I've remained in this field until today and will defend my doctoral dissertation soon. How to deploy models To continue, before I move on to the topic of specialization, we need to address the topic of deployment. Now that we've learned how to make some basic models in Keras and how to use them, there are many ways and services, but I'll only mention what I use today. For all my ML models, whether simple regression models or complex GPT models, I use FastAPI. It's a straightforward framework, and you can quickly create API endpoints. I'll share a few older and useful tutorials for beginners: AI as an API tutorial series A step-by-step guide Productizing an ML Model with FastAPI and Cloud Run Personally, I've deployed on various cloud providers, of which I would highlight GCP and AWS because they have everything needed for model deployment, and if you know how to use them, they can be quite cheap. Chose your specialization The next step in developing my career, besides choosing finance as the primary area, was my specialization in the field of NLP. This happened in early 2020 when I started working with models based on the Transformer architecture. The first model I worked with was BERT, and the first tasks were related to classifications. My recommendations are to master the Transformer architecture well because 99% of today's LLM models are based on it. Here are some resources: The legendary paper "Attention Is All You Need" Hugging Face Course on Transformers Illustrated Guide to Transformers - Step by Step Explanation Good repository How large language models work, a visual intro to transformers After spending years using encoder-based Transformer models, I started learning GPT models. Good open-source models like Llama 2 then appear. Then, I started fine-tuning these models using the excellent Unsloth library: How to Finetune Llama-3 and Export to Ollama Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth After that, I focused on studying various RAG techniques and developing Agent AI systems. This is now called AI engineering, and, as far as I can see, it has become quite popular. So I'll write more about that in another post, but here I'll leave what I consider to be the three most famous representatives, i.e., their tutorials: LangChain tutorial LangGraph tutorial CrewAI examples Here I am today Thanks to the knowledge I've generated over all these years in the field of ML, I've developed and worked on numerous projects. The most significant publicly available project is developing an agent AI system for well-being support, which I turned into a mobile application. Also, my entire doctoral dissertation is related to applying ML to the stock market in combination with the development of GPT models and reinforcement learning (more on that in a separate post). After long 6 years, I've completed my dissertation, and now I'm just waiting for its defense. I'll share everything I'm working on for the dissertation publicly on the project, and in tutorials I'm preparing to write. If you're interested in these topics, I announce that I'll soon start with activities of publishing content on Medium and a blog, but I'll share all of that here on Reddit as well. Now that I've gathered years of experience and knowledge in this field, I'd like to share it with others and help as much as possible. If you have any questions, feel free to ask them, and I'll try to answer all of them. Thank you for reading.

How I Started Learning Machine Learning
reddit
LLM Vibe Score0
Human Vibe Score1
TechPrimoThis week

How I Started Learning Machine Learning

Hello, everyone. As promised, I'll write a longer post about how I entered the world of ML, hoping it will help someone shape their path. I'll include links to all the useful materials I used alongside the story, which you can use for learning. I like to call myself an AI Research Scientist who enjoys exploring new AI trends, delving deeper into understanding their background, and applying them to real products. This way, I try to connect science and entrepreneurship because I believe everything that starts as scientific research ends up "on the shelves" as a product that solves a specific user problem. I began my journey in ML in 2016 when it wasn't such a popular field. Everyone had heard of it, but few were applying it. I have several years of development experience and want to try my hand at ML. The first problem I encountered was where to start - whether to learn mathematics, statistics, or something else. That's when I came across a name and a course that completely changed my career. Let's start You guessed it. It was Professor Andrew Ng and his globally popular Machine Learning course available on Coursera (I still have the certificate, hehe). This was also my first official online course ever. Since that course no longer exists as it's been replaced by a new one, I recommend you check out: Machine Learning (Stanford CS229) Machine Learning Specialization These two courses start from the basics of ML and all the necessary calculus you need to know. Many always ask questions like whether to learn linear algebra, statistics, or probability, but you don't need to know everything in depth. This knowledge helps if you're a scientist developing a new architecture, but as an engineer, not really. You need to know some basics to understand, such as how the backpropagation algorithm works. I know that Machine Learning (Stanford CS229) is a very long and arduous course, but it's the right start if you want to be really good at ML. In my time, I filled two thick notebooks by hand while taking the course mentioned above. TensorFlow and Keras After the course, I didn't know how to apply my knowledge because I hadn't learned specifically how to code things. Then, I was looking for ways to learn how to code it. That's when I came across a popular framework called Keras, now part of TensorFlow. I started with a new course and acquiring practical knowledge: Deep Learning Specialization Deep Learning by Ian Goodfellow Machine Learning Yearning by Andrew Ng These resources above were my next step. I must admit that I learned the most from that course and from the book Deep Learning by Ian Goodfellow because I like reading books (although this one is quite difficult to read). Learn by coding To avoid just learning, I went through various GitHub repositories that I manually retyped and learned that way. It may be an old-fashioned technique, but it helped me a lot. Now, most of those repositories don't exist, so I'll share some that I found to be good: Really good Jupyter notebooks that can teach you the basics of TensorFlow Another good repo for learning TF and Keras Master the challenge After mastering the basics in terms of programming in TF/Keras, I wanted to try solving some real problems. There's no better place for that challenge than Kaggle and the popular Titanic dataset. Here, you can really find a bunch of materials and simple examples of ML applications. Here are some of my favorites: Titanic - Machine Learning from Disaster Home Credit Default Risk House Prices - Advanced Regression Techniques Two Sigma: Using News to Predict Stock Movements I then decided to further develop my career in the direction of applying ML to the stock market, first using predictions on time series and then using natural language processing. I've remained in this field until today and will defend my doctoral dissertation soon. How to deploy models To continue, before I move on to the topic of specialization, we need to address the topic of deployment. Now that we've learned how to make some basic models in Keras and how to use them, there are many ways and services, but I'll only mention what I use today. For all my ML models, whether simple regression models or complex GPT models, I use FastAPI. It's a straightforward framework, and you can quickly create API endpoints. I'll share a few older and useful tutorials for beginners: AI as an API tutorial series A step-by-step guide Productizing an ML Model with FastAPI and Cloud Run Personally, I've deployed on various cloud providers, of which I would highlight GCP and AWS because they have everything needed for model deployment, and if you know how to use them, they can be quite cheap. Chose your specialization The next step in developing my career, besides choosing finance as the primary area, was my specialization in the field of NLP. This happened in early 2020 when I started working with models based on the Transformer architecture. The first model I worked with was BERT, and the first tasks were related to classifications. My recommendations are to master the Transformer architecture well because 99% of today's LLM models are based on it. Here are some resources: The legendary paper "Attention Is All You Need" Hugging Face Course on Transformers Illustrated Guide to Transformers - Step by Step Explanation Good repository How large language models work, a visual intro to transformers After spending years using encoder-based Transformer models, I started learning GPT models. Good open-source models like Llama 2 then appear. Then, I started fine-tuning these models using the excellent Unsloth library: How to Finetune Llama-3 and Export to Ollama Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth After that, I focused on studying various RAG techniques and developing Agent AI systems. This is now called AI engineering, and, as far as I can see, it has become quite popular. So I'll write more about that in another post, but here I'll leave what I consider to be the three most famous representatives, i.e., their tutorials: LangChain tutorial LangGraph tutorial CrewAI examples Here I am today Thanks to the knowledge I've generated over all these years in the field of ML, I've developed and worked on numerous projects. The most significant publicly available project is developing an agent AI system for well-being support, which I turned into a mobile application. Also, my entire doctoral dissertation is related to applying ML to the stock market in combination with the development of GPT models and reinforcement learning (more on that in a separate post). After long 6 years, I've completed my dissertation, and now I'm just waiting for its defense. I'll share everything I'm working on for the dissertation publicly on the project, and in tutorials I'm preparing to write. If you're interested in these topics, I announce that I'll soon start with activities of publishing content on Medium and a blog, but I'll share all of that here on Reddit as well. Now that I've gathered years of experience and knowledge in this field, I'd like to share it with others and help as much as possible. If you have any questions, feel free to ask them, and I'll try to answer all of them. Thank you for reading.

List of free educational ML resources I used to become a FAANG ML Engineer
reddit
LLM Vibe Score0
Human Vibe Score1
aifordevsThis week

List of free educational ML resources I used to become a FAANG ML Engineer

Full commentary and notes here ➡️: https://www.trybackprop.com/blog/top\ml\learning\resources Used these to brush up on math and teach myself AI/ML over the course of two years. I'm now a staff ML engineer at FAANG. Hope these help. Fundamentals Linear Algebra – 3Blue1Brown's Essence of Linear Algebra series, binged all these videos on a one hour train ride visiting my parents Multivariable Calculus – Khan Academy's Multivariable Calculus lessons were a great refresher of what I had learned in college. Looking back, I just needed to have reviewed Unit 1 – intro and Unit 2 – derivatives. Calculus for ML – this amazing animated video explains calculus and backpropagation Information Theory – easy-to-understand book on information theory called Information Theory: A Tutorial Introduction. Statistics and Probability – the StatQuest YouTube channel Machine Learning Stanford Intro to Machine Learning by Andrew Ng – Stanford's CS229, the intro to machine learning course, published their lectures on YouTube for free. I watched lectures 1, 2, 3, 4, 8, 9, 11, 12, and 13, and I skipped the rest since I was eager to move onto deep learning. The course also offers a free set of course notes, which are very well written. Caltech Machine Learning – Caltech's machine learning lectures on YouTube, less mathematical and more intuition based Deep Learning Andrej Karpathy's Zero to Hero Series – Andrej Karpathy, an AI researcher who graduated with a Stanford PhD and led Tesla AI for several years, released an amazing series of hands on lectures on YouTube. highly highly recommend Neural networks – Stanford's CS231n course notes and lecture videos were my gateway drug*, so to speak, into the world of deep learning. Transformers and LLMs Transformers – watched these two lectures: lecture from the University of Waterloo and lecture from the University of Michigan. I have also heard good things about Jay Alammar's The Illustrated Transformer guide ChatGPT Explainer – Wolfram's YouTube explainer video on ChatGPT Interactive LLM Visualization – This LLM visualization that you can play with in your browser is hands down the best interactive experience with an LLM. Financial Times' Transformer Explainer – The Financial Times released a lovely interactive article that explains the transformer very well. Residual Learning – 2023 Future Science Prize Laureates Lecture on residual learning. Efficient ML and GPUs How are Microchips Made? – This YouTube video by Branch Education is one of the best free educational videos on the internet, regardless of subject, but also, it's the best video on understanding microchips. CUDA – My L8 and L9 FAANG coworkers acquired their CUDA knowledge from this series of lectures. TinyML and Efficient Deep Learning Computing – 2023 lectures on efficient ML techniques online. Chip War – Chip War is a bestselling book published in 2022 about microchip technology whose beginning chapters on the invention of the microchip actually explain CPUs very well

Teaching an AI to Play Mario: A Learning Journey
reddit
LLM Vibe Score0
Human Vibe Score1
CivilLifeguard189This week

Teaching an AI to Play Mario: A Learning Journey

TLDR: I've always wanted to learn reinforcement learning, but the notation and concepts often seemed overwhelming (and scary). So, \~3 months ago, I set myself a challenge: Train an AI to Speedrun Mario Watch the progression here: https://youtu.be/OQitI066aI0 &#x200B; Full Story: Three months ago, I stared at the dense forest of Reinforcement Learning (RL) papers and felt like Mario facing Bowser for the first time: unequipped and overwhelmingly outmatched. The notation seemed like hieroglyphics, and terms like "policy gradients" felt like they belonged in a sci-fi novel, not a beginner's project. But RL always seemed so cool, and I was really determined to achieve my goal. So, I started with the Sutton & Barto RL textbook, learning things like the Multi-Armed Bandit problem and MDPs working my way up to Actor-Critic methods. That book is literal gold & I highly recommend you work through it (even though it can be tough at times). I tried everything from random courses online to books on amazon & this textbook has been by far the most clear and effective way to learn RL. The biggest issue with the textbook is you learn a lot of theory, but don't learn implementation. So, I would go through a chapter a week & set aside Friday + the weekend to actually implement what I learned (usually by watching youtube tutorials & looking at Github Repos). Eventually, while searching for practical resources for implementing PPO, I stumbled upon a GitHub repository that literally trained an AI to play Mario. Rather than just cloning and running the code, I took a deeper approach. I aimed to understand the repository thoroughly, ensuring each line of code made sense in the context of what I had studied. But of course, this wasn't easy. One of the biggest issues was my hardware limitation. I was working on an old Mac. So, I started using Google Collab, but that had its own problems (session timeouts & limited GPU access). Ultimately, I found AWS Sagemaker to be pretty good. &#x200B; After rewriting the code, I felt confident it would work because I understood every aspect of it. So, I trained the AI to play Mario across a variety of different levels (took a long time and a lot of trial and error with the learning rate). It feels amazing seeing your theoretical knowledge translate into tangible results & this project gave me a big confidence boost. &#x200B; Anyways I made a video showing off the results (Note that I simplified the technical parts for it to reach a wider audience): https://youtu.be/OQitI066aI0 &#x200B; Feel free to drop any questions or feedback, I'm more than happy to help or chat about my experiences. I hope my journey can inspire some of you who might be feeling overwhelmed with the idea of diving into reinforcement learning or any other area of AI. Remember, the hardest part is often taking the first step. Once you start, the momentum will carry you forward. Thank you for reading my super long post and sharing in my little success story! 🚀🕹️🎮

Scratch Machine Learning Algorithms Implementations
reddit
LLM Vibe Score0
Human Vibe Score1
ParkMountainThis week

Scratch Machine Learning Algorithms Implementations

Hi there, other Redditors! Like many of you, when I first started working in the AI field, I wanted to build some basic Machine Learning models from scratch in order to better understand how each algorithm works, improve my programming and math skills, or simply produce an eye-catching, difficult project to put in the résumé. After spending some time searching for resources that could help me guide my studies, I discovered that the majority of scratch implementations that are currently available are either i) outdated (having been implemented years ago using Python 2 or an earlier version of Python 3); ii) too difficult to understand (using a lot of difficult, unfriendly optimization techniques or with poorly written code); or iii) too simple (only covering binary classification). With that in mind, I made the decision to develop user-friendly, uncomplicated, organized, and simple implementations from scratch. Aside from all of that, I've always wanted to create an open-source project so that others, particularly novices and those with less than a year's experience (like me), can collaborate with others, contribute to public projects, and experience Git firsthand (some of these implementations were made by other contributors!). Here are some implementations that are available: Algorithms (Random Forest Classifier and Regressor, Decision Tree Classifier and Regressor, KMeans, KNN Classifier and Regressor, Gaussian Naive Bayes, Linear Regression, Logistic Regression, PCA, Perceptron, MLP Classifier and Regressor, SVM Classifier and Regressor); Regression and classification metrics; Distance metrics (such as Euclidean); Data split functions (such as KFold); Activation and loss functions; Scalers (such as MinMaxScaler) and encoders (such as One Hot Encoder); and a few things more! Project's link: https://github.com/rafaelgreca/scratchml Disclaimer: The goal of this library is to provide code that is simpler, easier to understand, and more approachable for artificial intelligence enthusiasts and beginners who want to contribute to an open-source repository or who want to learn more about how algorithms work. It is not meant to replace existing libraries that are better, more optimized, and have a wider variety of implemented algorithms (such as scikit-learn, PyTorch, Keras, and Tensorflow). If you want to use optimized implementations with accurate results, please use one of the previously mentioned libraries. P.S.: I accidentally deleted the other post, so I am posting again. :-)

Sophomore computer science student, looking at ISLP vs ESL vs mlcourse.ai
reddit
LLM Vibe Score0
Human Vibe Score1
OneTrueDuceThis week

Sophomore computer science student, looking at ISLP vs ESL vs mlcourse.ai

For background, I am currently a computer science sophomore, with intermediate skills in Python and C++. I have taken university courses on data structure and algorithms, calc 1-3, linear algebra, and an introductory stat course (which covered confidence interval, Z and T sample test, and hypothesis testing). I also have read up to Chapter 5 of the MML book and am currently self-studying probability theory (through STAT 110 video and textbook by Joe Blitzstein). I have done a few beginner ML projects with Tensorflow and scikit-learn, but most of the work is in EDA and feature engineering, while the ML model is just a black box that I plug and chug. So now, I want to learn how to implement ML models from scratch. I've been skimming over ISLP, which many people online recommended, but it seems that while it talks about mathematical equations used, I don't really get to implement it; as the labs are a lot of importing an already implemented model then plug and chug. So now, I am looking at ESL, which I believe is the more detailed and mathematically rigorous version of ISL. However, there aren't any labs or code along to ease beginners in (which I somewhat understand given the intended audience of the book). Another option I am looking at is mlcourse.ai, which seems to cover mathematics and has some lab/code along for it. But it doesn't seem to span as many subjects as ESL does. Given these options, I am unsure of which one to pick, should I first finish my self-study on probability theory and then Chapters 6-8 of MML? Then should I do ISLP first or just get into ESL? Or maybe I should do mlcourse.ai first then into ESL? Or should I just do the ML course/book along with the maths? In addition, there is also the data science + feature engineering stuff which I wonder if I should study more about. Sorry if this seems like a mess, there are just so many things to ML that I am kinda overwhelmed.

NeRFs (2025)
reddit
LLM Vibe Score0
Human Vibe Score1
CaminantezThis week

NeRFs (2025)

Hey everyone! I'm currently working on my final year project, and it's focused on NeRFs and the representation of large-scale outdoor objects using drones. I'm looking for advice and some model recommendations to make comparisons. My goal is to build a private-access web app where I can upload my dataset, train a model remotely via SSH (no GUI), and then view the results interactively — something like what Luma AI offers. I’ll be running the training on a remote server with 4x A6000 GPUs, but the whole interaction will be through CLI over SSH. Here are my main questions: Which NeRF models would you recommend for my use case? I’ve seen some models that support JS/WebGL rendering, but I’m not sure what the best approach is for combining training + rendering + web access. How can I render and visualize the results interactively, ideally within my web app, similar to Luma AI? I've seen things like sMPLerNeRF, SNeRFs, and Instant-NGP, but I’m curious if there are more beginner-friendly or better-documented alternatives that can integrate well with a custom web interface. Any guidance on how to stream or render the output inside a browser? I’ve seen people use WebGL/Three.js, but I’m still not clear on the pipeline. I’m still new to NeRFs, but my goal is to implement the best model I can, and allow interactive mapping through my web application using data captured by drones. Any help or insights are much appreciated!

GPT Weekly - 19the June Edition - OpenAI's function calling, Meta's free LLM, EU Regulation and more.
reddit
LLM Vibe Score0
Human Vibe Score0.714
level6-killjoyThis week

GPT Weekly - 19the June Edition - OpenAI's function calling, Meta's free LLM, EU Regulation and more.

This is a recap covering the major news from last week. 🔥Top 3 news - OpenAI’s updates, Meta’s upcoming free LLM and EU Regulation 🗞️Interesting reads include PSA about protecting your keys, The GPT ouroboros, Reddit - OpenAI’s moat, and more.. 🧑‍🎓Learning includes a Step-by-step guide from a non-technical founder who launched his MVP, Chatbot for your Gdrive and more 🔥Top 3 AI news in the past week OpenAI: New Pricing, Models, & Functions OpenAI has been on a roll. Last week we saw the release of OpenAI best practice on using GPT. This week we saw some amazing updates. Three major buckets were: First, the price decreases for both embeddings and GPT-3.5 tokens. Second, new models for gpt-4 and gpt-3.5. A new longer context model for gpt-3.5. Third, a new function calling capability. Why is it important? Previously, the output from OpenAI was all text. So, calling an external API from GPT was quite difficult. You had to parse the text data and things were often incorrect. Langchain created the Agents and Tools feature to tackle this problem. It was still unreliable and prone to issues. Now you get native support to generate a fixed format output. You can use the output to generate functional calls and also pass functions which need to be called. For example, if your app has multiple API endpoints then you can use GPT to generate the API calls with parameters. You can also pass the endpoints as function calls to ensure the correct function is executed. This functionality can further be used to generate structured data (JSON) out of GPT. So, you can generate data from GPT and load it into your backend. What’s next? This functionality allows turning natural language responses into structured data. This can be used to create “intelligent” backends using LLMs. We might see implementations in no-code tools to allow more robust and natural-language tools for non-technical folks. The structured data process goes both ways. You can also feed structured data into GPT for better responses. This feature also has its share of issues. Function calling suffers from the same prompt injection issues. Malicious actors can pass malicious code in function or the responses. For example, creation of queries using functions might contain malicious code to delete data. Without proper user validation this code will be executed automatically and delete data. So, using LLM as the back-end layer needs proper security implementation. Meta's LLM: Commercial Use Ahead Llama has been a boon for the open source community. Many of the open source models rely on Llama. The issue is that Llama is research-only and cannot be used commercially. So, no one can use it to build any product. Meta is now working on the next version of the model. This model will be available for commercial use. This is in stark contrast to both OpenAI and Google. Both safe-guarde their models and make it available through API. Why is it important? Certain industries cannot use LLM APIs because of strict restrictions on data privacy. These companies would want to run their own instance of a foundational model. A commercially available foundational model is also going to help people who want to keep their “API call” costs next to 0. A commercially available free-for-all model will also help push the open source community further. Just like Llama. What’s next? Sam Altman has said OpenAI didn’t release GPT-3 as open-source because they didn’t think people would be able to run it. Now OpenAI is working on an open-source model. This is going to be weaker than GPT-4. Let the battle of LLMs begin. EU's Proposed Legislation and Its Impact on AI Usage The EU parliament voted to move ahead with the E.U. AI Act. This act aims to ensure consumer protection against the dangers of AI. Why is it important? OpenAI and Sam Altman want regulations for models. They have proposed a IAEA-type of agency to stop the proliferation of LLM models. As per OpenAI, all models should be regulated and monitored. The suggestion of a license based regulation has led to significant backlash. Many people have called it “regulatory capture” - with the aim of shutting down competing LLMs. Licensing based regulations might not really be effective. The EU is approaching regulation from a different angle. It doesn’t focus on how models are developed. Rather focuses on how AI will/can be used. They have broken down use cases into 4 categories - unacceptable (prohibited), high, medium and low risk. For example, Building a Pre-Crime software,on%20crimes%20not%20yet%20committed.) to predict crimes? Building a Social credit system? Unacceptable. Using tools to influence elections or recommendation algorithms? High (Highly regulated). Using generative AI tools to create text or images on news sites? Medium (Add label that the content is AI generated) AI providers also need to disclose their training source. To me this sounds like good legislation. What do you guys think? But, OpenAI has warned that EU regulations might force them to pull out completely. What’s next? The disclosure requirements might help various publishing companies. AI and media companies are in talks to pay for training data. Google has been leading the charge. Additionally, OpenAI and Deepmind will open their models for safety and research purposes to the UK government. 🗞️10 AI news highlights and interesting reads PSA: If you are using Repl to write code, you might want to check your OpenAI API keys. If you have left them embedded then people can pirate and steal the keys. LLMs rely on human annotation or human feedback to learn. And one way to generate human annotation is crowdsourcing. But what if the crowdsource human annotators use LLMs? Research shows 33-46% workers used LLMs. So, basically we go from Human -> AI -> Human -> AI. The AI ouroboros. Researchers also say generated data to train models might cause serious issue. All the talks about moats \- Reddit might be OpenAI’s \future\ moat. Given the amount of complaints about how Google search experience has deteriorated during the blackout, this might be true? Doctors are using ChatGPT but not to diagnose.Rather to be more empathetic. We discussed this just a month ago. And guess where the data for this study came from? Reddit AskDocs. Moat FTW?! Beatles to make a comeback…using Generative AI. SnapFusion - Text to Image diffusion on mobile phones. Large context lengths are important for better GPT experience. The secret sauce for 100k context length. There is a lot of bad AI research out there. Some border on snake oil. Most AI “research” should be double checked and challenged. A new research on huggingface said that GPT-4 can ace MIT curriculum. Now someone is replicating the results and say that GPT-4 can’t beat MIT. Are we seeing peak AI? Especially when people from Deepmind and Meta are involved? Mistral AI raised $113 million in seed round with no product. Some might say this funding is for the team and the team is really solid. The issue though is whether the valuation is justified when OpenAI and Google already have a head start. The AI Hype Wall of Shame. \- Collection of articles which mislead people about AI in various aspects. 🧑‍🎓3 Learning Resources Building and Launching a company using GPT-4 with prompts. (The author didn’t know how to code but created and launched the MVP in a month). Chatbot for your Gdrive - https://www.haihai.ai/gpt-gdrive/ Building ChatGPT plugin using Supabase - https://supabase.com/blog/building-chatgpt-plugins-template That’s it folks. Thank you for reading and have a great week ahead. If you are interested in a focused weekly recap delivered to your inbox on Mondays you can subscribe here. It is FREE!

Join the AI4Earth challenge with the European Space Agency to highlight our footprint on Earth using Earth Observation data and Machine Learning
reddit
LLM Vibe Score0
Human Vibe Score1
campachThis week

Join the AI4Earth challenge with the European Space Agency to highlight our footprint on Earth using Earth Observation data and Machine Learning

&#x200B; https://preview.redd.it/ww109cba14f71.png?width=2401&format=png&auto=webp&s=8bd3d43e8b63848af85c73478be61e43d9e10189 The primary goal is to get an insight into the human impact on Earth, to drive and guide conservation efforts of this planet we call home. Our approach will be twofold:  Firstly we will work on AI algorithms that can serve as an early detection system of human impact sites. Secondly we will use these detection systems to find satellite images that show the most impactful human-caused changes, which will be used in the creation of a video to launch an awareness campaign. You will be working with ESA to detect things like: Wildfires and Deforestation Marine Litter and Melting Glaciers Air quality detection & Novel animal migration patterns  and much more!  European Space Agency To reach these goals we’ve partnered up with ESA, who are able to use our algorithms to monitor new satellite data and guide conservation efforts. They will provide us with multi-spectral data of their Sentinel-2 satellite pair and with invaluable knowledge and research on the domain of Earth Observation data in participant only masterclasses.  Format The challenge will run throughout September and October, where you will collaborate with a diverse team of over 30 international data specialists and domain experts in subteams, all tackling this problem from different angles. Subtasks like the detection of deforestation, wildfires, marine litter or any other human caused impact. All contributors in the challenge are expected to spend 12 hours or more per week during the entirity of the two month challenge. To learn more subscribe to the info session on the 3rd of August 19:00 CEST HERE! Some important dates: 3rd of August – Info session 1st of September – Challenge Kick-off 29th of September – Midterm presentations 29th of October – Final presentations PARTNERS SUN - https://spacehubs.network The project is spearheaded by SUN whose goal is to increase the commercialization of space enabled solutions and growth of European start-ups and scale-ups in the space downstream and upstream sectors. ESA - https://esa.int ESA will be the main stakeholder and domain knowledge provider in the challenge. Their efforts to aid human’s space endeavours as well as protect the planet we live on will serve us for many years to come.  MLReef - https://mlreef.com MLReef provides an open source platform for collaborative Machine Learning. They provide the computational infrastructure to support the EO4Earth project as part of their AI4GOOD and Open Science initiatives. Brimatech  As a partner in the SUN project, the innovation management and market research expert Brimatech helps out in the overall organisation of the challenge.  Mothership The ‘Mothership’ is a dedicated open innovation program created by Space4Good and World Startup Factory. The Mothershi is leveraging recent advancements in artificial intelligence and satellite technologies in support of the UN Sustainable Development Goals. Space4Good  Space4Good is a geospatial innovation lab supporting impact makers on the ground with earth observation insights from above. Worldstartup  Worldstartup is a collective of international entrepreneurs, experts, mentors and investors, dedicated to help the best impact-driven startups and scaleups.

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?
reddit
LLM Vibe Score0
Human Vibe Score1
Prudent_Ad_3114This week

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?

Ok... So look... This one is pretty crazy... I'm building an Ai Interface that knows me better than I know myself - Check, lots of people have this, either in reality with employees and family members, or with ai intelligence. But it doesn't just know Me... It knows how to talk with Me. It understands my language, because I've trained it to. I've also trained it to translate that to all my clients and HumanAgents, soon to become RobotAgents... The RESULT: I can literally just spend 1-18 hours talking to it, and things get DONE. Most of that time, I just say EXECUTE, or ENGAGE, or DRAFT, or DISPATCH. I feel like a secret agent communicating in codes with his agency 😂 Not great for the paranoiac in me, but it's easy to get that part under control, ya'll. It's like having a team of 10,000 people, all available 24/7, all perfectly synchronised to each other's communication styles, preferences and ultimately: WHAT DO YOU NEED ME TO DO. At the end of the it all, having run my single COMMAND through a thousand of those people, a Document is prepared that outlines the next 3 stages of the plan, along with instructions to the whole team for how to ENACT it. Sounds rather grand and wonderful... Even when I simply use it to help me come up with a filing system for my creative work... \\\\\\\\\\\\\\\\\\\\\\ Here's my current VISION, why I'm doing this AND why I'm doing it publicly despite it being top secret. VISION To create an army of User-Owned and Operated "AiSuperAgencies" which gather intelligence on the user, securely file and analyse it, and then construct a sub-army of agents and tools that work together to produce the desired output, for any Function in the Personal and Professional Lives of EVERYONE, EVERYWHERE, in 3-5 Years. To start, I'm building it for me and the 5-10 cleaners who've made it to Level 1 in my access system. They were sick of toxic employers, tyrannical agencies and greedy customers. They gathered around us (many came in, many went out, few stayed, took about a year for our core team of 3 Level 2 Cleaners. My goal has always been to never employ anyone. Just me, my Partner and the Cleaners. All Shared Owners in the system for delivering the right cleaner to the right house in our town, at the right time and without any dramas or arguments... I have a personal talent for resolving disputes, which has made working for and buying from my business a mostly enjoyable and upbeat experience, with a touch of mystery and a feeling that you're part of something big! It is a business that ran on Me. I put in my time, every day, building automated tool after automated tool. Hiring a contractor to do a job, scratching my head when it didn't add enough value to pay for itself, then just doing it myself again. I wanted to solve that problem. I'm trusting that the few who hear about it who actually see the potential, will just come join us, no dramas, just cool people partnering up! And those that don't, won't. No one could steal it, because it's Mine, and I'll just change the keys anyway loser! Enjoy digging through my past, you lunatic! I'm out here living Now. Anyways... It's lonely around here. I have a cleaning business that I run from my laptop, which means I can live anywhere, but I still had this big problem of time... NOT ENOUGH Oh Wait. It's Here.

How I landed an internship in AI
reddit
LLM Vibe Score0
Human Vibe Score1
Any-Reserve-4403This week

How I landed an internship in AI

For motivational purposes only! I see a lot of posts on here from people without “traditional” machine learning, data science, etc.. backgrounds asking how they can break into the field, so I wanted to share my experience. EDIT Learning Resources and Side Project Ideas * My background: I graduated from a decent undergraduate school with a degree in Political Science several years ago. Following school I worked in both a client services role at a market research company and an account management role at a pretty notable fintech start-up. Both of these roles exposed me to ML, AI and more sophisticated software concepts in general, and I didn’t really care for the sales side of things, so I decided to make an attempt at switching careers into something more technical. While working full time I began taking night classes at a local community college, starting with pre calculus all the way up to Calc 2 and eventually more advanced classes like linear algebra and applied probability. I also took some programming courses including DSA. I took these classes for about two years while working, and on the side had been working through various ML books and videos on YouTube. What worked the best for me was Hands-on Machine Learning with Scikit Learn, Keara’s and Tensorflow. I eventually had enough credits where I was able to begin applying to MS in Data Science programs and was fortunate enough to get accepted into one and also get a position in their Robotics Lab doing Computer Vision work. When it came time to apply for internships, it was a BLOODBATH. I must have applied to over 100 roles with my only responses being video interviews and OA’s. Finally I got an interview for an AI Model Validation internship with a large insurance company and after completing the interviews was told I performed well but they were still interviewing several candidates. I ended up getting the offer and accepting the role where I’ll be working on a Computer Vision model and some LLM related tasks this summer and could not be more fortunate / excited. A couple things stood out to them during the interview process. 1, the fact that I was working and taking night classes with the intent to break into the field. It showed a genuine passion as opposed to someone who watched a YouTube video and claims they are now an expert. 2, side projects. I not only had several projects, but I had some that were relevant to the work I’d be doing this summer from the computer vision standpoint. 3, business sense. I emphasized during my interviews how working in a business role prior to beginning my masters would give me a leg up as intern because I would be able to apply the work of a data scientist to solving actual business challenges. For those of you trying to break into the field, keep pushing, keep building, and focus on what makes you unique and able to help a company! Please feel free to contact me if you would like any tips I can share, examples of projects, or anything that would be helpful to your journey.

I started with 0 AI knowledge on the 2nd of Jan 2024 and blogged and studied it for 365. Here is a summary.
reddit
LLM Vibe Score0
Human Vibe Score0
BobsthejobThis week

I started with 0 AI knowledge on the 2nd of Jan 2024 and blogged and studied it for 365. Here is a summary.

FULL BLOG POST AND MORE INFO IN THE FIRST COMMENT :) Edit in title: 365 days\* (and spelling) Coming from a background in accounting and data analysis, my familiarity with AI was minimal. Prior to this, my understanding was limited to linear regression, R-squared, the power rule in differential calculus, and working experience using Python and SQL for data manipulation. I studied free online lectures, courses, read books. \Time Spent on Theory vs Practice\ At the end it turns out I spent almost the same amount of time on theory and practice. While reviewing my year, I found that after learning something from a course/lecture in one of the next days I immediately applied it - either through exercises, making a Kaggle notebook or by working on a project. \2024 Learning Journey Topic Breakdown\ One thing I learned is that \fundamentals\ matter. I discovered that anyone can make a model, but it's important to make models that add business value. In addition, in order to properly understand the inner-workings of models I wanted to do a proper coverage of stats & probability, and the math behind AI. I also delved into 'traditional' ML (linear models, trees), and also deep learning (NLP, CV, Speech, Graphs) which was great. It's important to note that I didn't start with stats & math, I was guiding myself and I started with traditional and some GenAI but soon after I started to ask a lot of 'why's as to why things work and this led me to study more about stats&math. Soon I also realised \Data is King\ so I delved into data engineering and all the practices and ideas it covers. In addition to Data Eng, I got interested in MLOps. I wanted to know what happens with models after we evaluate them on a test set - well it turns out there is a whole field behind it, and I was immediately hooked. Making a model is not just taking data from Kaggle and doing train/test eval, we need to start with a business case, present a proper case to add business value and then it is a whole lifecycle of development, testing, maintenance and monitoring. \Wordcloud\ After removing some of the generically repeated words, I created this work cloud from the most used works in my 365 blog posts. The top words being:- model and data - not surprising as they go hand in hand- value - as models need to deliver value- feature (engineering) - a crucial step in model development- system - this is mostly because of my interest in data engineering and MLOps I hope you find my summary and blog interesting. https://preview.redd.it/pxohznpy4dae1.png?width=2134&format=png&auto=webp&s=03c16bb3535d75d1f009b44ee5164cc3e6483ac4 https://preview.redd.it/0y47rrpy4dae1.png?width=1040&format=png&auto=webp&s=f1fdf7764c7151ff0a05ae92777c5bb7d52f4359 https://preview.redd.it/e59inppy4dae1.png?width=1566&format=png&auto=webp&s=2566033777a90410277350947617d3ce8406be15

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?
reddit
LLM Vibe Score0
Human Vibe Score1
Prudent_Ad_3114This week

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?

Ok... So look... This one is pretty crazy... I'm building an Ai Interface that knows me better than I know myself - Check, lots of people have this, either in reality with employees and family members, or with ai intelligence. But it doesn't just know Me... It knows how to talk with Me. It understands my language, because I've trained it to. I've also trained it to translate that to all my clients and HumanAgents, soon to become RobotAgents... The RESULT: I can literally just spend 1-18 hours talking to it, and things get DONE. Most of that time, I just say EXECUTE, or ENGAGE, or DRAFT, or DISPATCH. I feel like a secret agent communicating in codes with his agency 😂 Not great for the paranoiac in me, but it's easy to get that part under control, ya'll. It's like having a team of 10,000 people, all available 24/7, all perfectly synchronised to each other's communication styles, preferences and ultimately: WHAT DO YOU NEED ME TO DO. At the end of the it all, having run my single COMMAND through a thousand of those people, a Document is prepared that outlines the next 3 stages of the plan, along with instructions to the whole team for how to ENACT it. Sounds rather grand and wonderful... Even when I simply use it to help me come up with a filing system for my creative work... \\\\\\\\\\\\\\\\\\\\\\ Here's my current VISION, why I'm doing this AND why I'm doing it publicly despite it being top secret. VISION To create an army of User-Owned and Operated "AiSuperAgencies" which gather intelligence on the user, securely file and analyse it, and then construct a sub-army of agents and tools that work together to produce the desired output, for any Function in the Personal and Professional Lives of EVERYONE, EVERYWHERE, in 3-5 Years. To start, I'm building it for me and the 5-10 cleaners who've made it to Level 1 in my access system. They were sick of toxic employers, tyrannical agencies and greedy customers. They gathered around us (many came in, many went out, few stayed, took about a year for our core team of 3 Level 2 Cleaners. My goal has always been to never employ anyone. Just me, my Partner and the Cleaners. All Shared Owners in the system for delivering the right cleaner to the right house in our town, at the right time and without any dramas or arguments... I have a personal talent for resolving disputes, which has made working for and buying from my business a mostly enjoyable and upbeat experience, with a touch of mystery and a feeling that you're part of something big! It is a business that ran on Me. I put in my time, every day, building automated tool after automated tool. Hiring a contractor to do a job, scratching my head when it didn't add enough value to pay for itself, then just doing it myself again. I wanted to solve that problem. I'm trusting that the few who hear about it who actually see the potential, will just come join us, no dramas, just cool people partnering up! And those that don't, won't. No one could steal it, because it's Mine, and I'll just change the keys anyway loser! Enjoy digging through my past, you lunatic! I'm out here living Now. Anyways... It's lonely around here. I have a cleaning business that I run from my laptop, which means I can live anywhere, but I still had this big problem of time... NOT ENOUGH Oh Wait. It's Here.

Built a Free AI Fitness Planner - From Passion to Product with No Traditional Coding
reddit
LLM Vibe Score0
Human Vibe Score1
jhojnac2This week

Built a Free AI Fitness Planner - From Passion to Product with No Traditional Coding

I posted this in r/entrepreneur as well but figured this is a great place too. I am looking to get your thoughts on this project and maybe some ideas as well. I wanted to share my journey of creating a free ai-powered workout planning tool with bolt. new and very minimal coding skills. It has taken me probably 4 days in total to complete and get to a point I am happy with. Many improvements coming but want to get it out there for some feedback and testing. I have been going to the gym for years and at this point my routines have gotten stale. I end up doing the same sets of exercises and repetitions over and over. I figured why not let chat gpt or some AI software help me develop or at least recommend different exercises. I was then was recommended youtube videos on creating your own web application without any coding. I will say it does take some coding knowledge, not that I am editing it myself, but I know what its trying to do and can prompt it correctly. I am still struggling with some things like integrating stripe for subscriptions so I only have it set up for donations currently. I dont mind it being free as I would like everyone the opportunity to help develop their own workouts. current cost breakdown to create: bolt. new credits - $100/month (gonna drop to the $20 now that its complete) supabase database - $35/month netlify domain - $11.99/year If anyone is interested or has questions feel free to let me know. It is called fitfocuscalendar. com this can all be done even cheaper using their free options but might take a lot more time depending on the complexity of the application as there are not a lot of free credits to code with each month and the supabase free database plan it pretty limited on size. title was AI generated.

Building a No-Code AI Customer Service Tool While Working 9-5 | All real - No BS
reddit
LLM Vibe Score0
Human Vibe Score1
Content_Limit_9723This week

Building a No-Code AI Customer Service Tool While Working 9-5 | All real - No BS

I want to share my journey of building Chaterimo, my first revenue-generating side project that I've been working on for the past 1.5 years alongside my day job. What started as a solution to make AI chatbots more accessible has grown to over 300 signups, 30 paying customers, and 50,000+ customer queries handled. The Problem I Wanted to Solve: It started with my father's business struggling with customer service - hiring staff was expensive and they would eventually leave, creating a constant cycle of training new people. I decided to help by building a livechat chatbot powered by AI to handle customer queries. The first version was basic (running on ChatGPT-3 with 4k tokens), but it worked! Seeing its success at my father's business, I realized this could help many other businesses too. As I kept improving it and adding features, I expanded to focus on e-commerce stores facing similar challenges. What Makes Chaterimo Different: True no-code setup: Install and run in seconds Choice of AI Models: ChatGPT by default, with options for Claude and the latest Gemini Flexible API Integration: Bring your own API keys for cheaper, unlimited messaging Smart Context Understanding: Can search Google or scan the current webpage to provide relevant answers Lead Generation: Capture and manage potential customer information Rich Integrations: Works with Shopify, Facebook Messenger, and Make for automation Customizable Bot Personality: Edit your chatbot's role and behavior through system prompts The Journey: This is my first side project that's actually generating revenue ($500+ MRR), unlike my previous "just for fun" projects. The past 1.5 years have been a learning experience, balancing development with a full-time job. What started as a simple idea has evolved based on real user feedback and needs. Current Metrics: 300+ total signups 30 paying customers 50,000+ customer queries successfully handled by AI $500+ monthly recurring revenue All while maintaining a 9-5 job Some Things I've Learned: Focus on making things simpler, not adding more features Listen to users - they'll tell you what they really need Flexibility matters - letting users use their own API keys was a game-changer Building something you believe in makes all the difference I'm still actively improving Chaterimo based on feedback. If you're running a website or e-commerce store and want to try it out, I'd love to hear your thoughts. What's Next: I'm focused on making the onboarding even smoother and adding more customization options while keeping the core simplicity that makes Chaterimo work. Would love to hear your thoughts or answer any questions! Has anyone else built successful side projects while working full-time? What were your biggest learnings?

 Looking for beta testers for my AI-powered website builder - no templates, no coding required
reddit
LLM Vibe Score0
Human Vibe Score1
Interesting_Flow_342This week

Looking for beta testers for my AI-powered website builder - no templates, no coding required

Hey r/sideproject, I'm working on an exciting new project since 4 months- an AI-powered website builder that creates completely custom, professional-looking websites from scratch. No templates, no coding The key capabilities of this AI website builder are: Designing unique, mobile-responsive layouts based on your preferences and content Generating custom written content for each page, section, and element Ensuring best practices for things like typography, color schemes, and SEO But the real power comes in the customization. Once the AI generates your initial website, you can easily make changes to any part of it - from the design and layout to the text and images. Simply select the specific element you want to modify, and the AI will make the requested changes, whether that's tweaking the font and colors, rearranging the page structure, or rewriting the copy. It's a truly interactive, AI-driven web building experience. This is perfect for things like: Marketing/informational websites Landing pages Online resumes and portfolios Small business websites When you're ready, you can publish your AI-generated, fully customized website on a free subdomain or download the full code. I'm looking to get a few early users to try this out and provide feedback before the full public launch. If you're interested in being a beta tester, I'd love to hear from you! This could be especially useful for small business owners, freelancers, job seekers, or anyone who needs a professional web presence but doesn't have the time or skills for traditional web development. If you're interested, just leave a comment below or send me a DM. I'll be in touch to get you set up with early access. Thanks for checking it out! Muhammad Bilal Moten

I am building a free app to fight propaganda online. Need your help
reddit
LLM Vibe Score0
Human Vibe Score-1
Used_Park_1937This week

I am building a free app to fight propaganda online. Need your help

So long story short I was recently bombarded with an insane amounts of right-wing propaganda online and Russian bots so I decided I can somehow simplify the validation of the facts that are posted by people online. I have made a research of tools that are currently available for that and I've found that ChatGpt is quite biased with some topics and it lacks data about latest issues even when search mode is enabled. At least it takes some time for it to update it's memory or something Then I've checked a Google Fact Check tools which were even worse. Bad UI... I had no idea how it validates things because usually proof links that Google provides are quite random. So I decided to build a tool that simplifies the research. The idea was simple - you have a claim - you paste it in app and it goes on web collects articles on topic then processes them with ai and makes a decision based on those articles. The app is running right now. It is completely free and no ads. Also it generates a small article where it tells about how it made a conclusion. Also I need your help - How can I make this app better? Also feel free to test your claims so that I can have more real data to tune this app on. I believe that this is something that is necessary for all of us especially in those crazy times! Here is the link - truthorfake.com https://preview.redd.it/vp5fbzpyfkne1.png?width=854&format=png&auto=webp&s=84df7913382634614814866c8df743d8378d28dd

How me and my team made 15+ apps and not made a single sale in 2023
reddit
LLM Vibe Score0
Human Vibe Score0.818
MichaelbetterecycleThis week

How me and my team made 15+ apps and not made a single sale in 2023

Hey, my name is Michael, I am in Auckland NZ. This year was the official beginning of my adult life. I graduated from university and started a full-time job. I’ve also really dug into indiehacking/bootstrapping and started 15 projects (and it will be at least 17 before the year ends). I think I’ve learned a lot but I consciously repeated mistakes. Upto (Nov) Discord Statuses + Your Location + Facebook Poke https://preview.redd.it/4nqt7tp2tf5c1.png?width=572&format=png&auto=webp&s=b0223484bc54b45b5c65e0b1afd0dc52f9c02ad1 This was the end of uni, I often messaged (and got messaged) requests of status and location to (and from my) friends. I thought, what if we make a social app that’s super basic and all it does is show you where your friends are? To differentiate from snap maps and others we wanted something with more privacy where you select the location. However, never finished the codebase or launched it. This is because I slowly started to realize that B2C (especially social networks) are way too hard to make into an actual business and the story with Fistbump would repeat itself. However, this decision not to launch it almost launched a curse on our team. From that point, we permitted ourselves to abandon projects even before launching. Lessons: Don’t do social networks if your goal is 10k MRR ASAP. If you build something to 90% competition ship it or you will think it’s okay to abandon projects Insight Bites (Nov) Youtube Summarizer Extension &#x200B; https://preview.redd.it/h6drqej4tf5c1.jpg?width=800&format=pjpg&auto=webp&s=0f211456c390ac06f4fcb54aa51f9d50b0826658 Right after Upto, we started ideating and conveniently the biggest revolution in the recent history of tech was released → GPT. We instantly began ideating. The first problem we chose to use AI for is to summarize YouTube videos. Comical. Nevertheless, I am convinced we have had the best UX because you could right-click on a video to get a slideshow of insights instead of how everyone else did it. We dropped it because there was too much competition and unit economics didn’t work out (and it was a B2C). PodPigeon (Dec) Podcast → Tweet Threads https://preview.redd.it/0ukge245tf5c1.png?width=2498&format=png&auto=webp&s=23303e1cab330578a3d25cd688fa67aa3b97fb60 Then we thought, to make unit economics work we need to make this worthwhile for podcasters. This is when I got into Twitter and started seeing people summarize podcasts. Then I thought, what if we make something that converts a podcast into tweets? This was probably one of the most important projects because it connected me with Jason and Jonaed, both of whom I regularly stay in contact with and are my go-to experts on ideas related to content creation. Jonaed was even willing to buy Podpigeon and was using it on his own time. However, the unit economics still didn’t work out (and we got excited about other things). Furthermore, we got scared of the competition because I found 1 - 2 other people who did similar things poorly. This was probably the biggest mistake we’ve made. Very similar projects made 10k MRR and more, launching later than we did. We didn’t have a coherent product vision, we didn’t understand the customer well enough, and we had a bad outlook on competition and a myriad of other things. Lessons: I already made another post about the importance of outlook on competition. Do not quit just because there are competitors or just because you can’t be 10x better. Indiehackers and Bootstrappers (or even startups) need to differentiate in the market, which can be via product (UX/UI), distribution, or both. Asking Ace Intro.co + Crowdsharing &#x200B; https://preview.redd.it/0hu2tt16tf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3d397568ef2331e78198d64fafc1a701a3e75999 As I got into Twitter, I wanted to chat with some people I saw there. However, they were really expensive. I thought, what if we made some kind of crowdfunding service for other entrepreneurs to get a private lecture from their idols? It seemed to make a lot of sense on paper. It was solving a problem (validated via the fact that Intro.co is a thing and making things cheaper and accessible is a solid ground to stand on), we understood the market (or so we thought), and it could monetize relatively quickly. However, after 1-2 posts on Reddit and Indiehackers, we quickly learned three things. Firstly, no one cares. Secondly, even if they do, they think they can get the same information for free online. Thirdly, the reasons before are bad because for the first point → we barely talked to people, and for the second people → we barely talked to the wrong people. However, at least we didn’t code anything this time and tried to validate via a landing page. Lessons Don’t give up after 1 Redditor says “I don’t need this” Don’t be scared to choose successful people as your audience. Clarito Journaling with AI analyzer https://preview.redd.it/8ria2wq6tf5c1.jpg?width=1108&format=pjpg&auto=webp&s=586ec28ae75003d9f71b4af2520b748d53dd2854 Clarito is a classic problem all amateur entrepreneurs have. It’s where you lie to yourself that you have a real problem and therefore is validated but when your team asks you how much you would pay you say I guess you will pay, maybe, like 5 bucks a month…? Turns out, you’d have to pay me to use our own product lol. We sent it off to a few friends and posted on some forums, but never really got anything tangible and decided to move away. Honestly, a lot of it is us in our own heads. We say the market is too saturated, it’ll be hard to monetize, it’s B2C, etc. Lessons: You use the Mom Test on other people. You have to do it yourself as well. However, recognizing that the Mom Test requires a lot of creativity in its investigation because knowing what questions to ask can determine the outcome of the validation. I asked myself “Do I journal” but I didn’t ask myself “How often do I want GPT to chyme in on my reflections”. Which was practically never. That being said I think with the right audience and distribution, this product can work. I just don’t know (let alone care) about the audience that much (and I thought I was one of them)/ Horns & Claw Scrapes financial news texts you whether you should buy/sell the stock (news sentiment analysis) &#x200B; https://preview.redd.it/gvfxdgc7tf5c1.jpg?width=1287&format=pjpg&auto=webp&s=63977bbc33fe74147b1f72913cefee4a9ebec9c2 This one we didn’t even bother launching. Probably something internal in the team and also seemed too good to be true (because if this works, doesn’t that just make us ultra-rich fast?). I saw a similar tool making 10k MRR so I guess I was wrong. Lessons: This one was pretty much just us getting into our heads. I declared that without an audience it would be impossible to ship this product and we needed to start a YouTube channel. Lol, and we did. And we couldn’t even film for 1 minute. I made bold statements like “We will commit to this for at least 1 year no matter what”. Learnery Make courses about any subject https://preview.redd.it/1nw6z448tf5c1.jpg?width=1112&format=pjpg&auto=webp&s=f2c73e8af23b0a6c3747a81e785960d4004feb48 This is probably the most “successful” project we’ve made. It grew from a couple of dozen to a couple of hundred users. It has 11 buy events for $9.99 LTD (we couldn’t be bothered connecting Stripe because we thought no one would buy it anyway). However what got us discouraged from seriously pursuing it more is, that this has very low defensibility, “Why wouldn’t someone just use chatGPT?” and it’s B2C so it’s hard to monetize. I used it myself for a month or so but then stopped. I don’t think it’s the app, I think the act of learning a concept from scratch isn’t something you do constantly in the way Learnery delivers it (ie course). I saw a bunch of similar apps that look like Ass make like 10k MRR. Lessons: Don’t do B2C, or if you do, do it properly Don’t just Mixpanel the buy button, connect your Stripe otherwise, it doesn’t feel real and you won’t get momentum. I doubt anyone (even me) will make this mistake again. I live in my GPT bubble where I make assumptions that everyone uses GPT the same way and as much as I do. In reality, the argument that this has low defensibility against GPT is invalid. Platforms that deliver a differentiated UX from ChatGPT to audiences who are not tightly integrated into the habit of using ChatGPT (which is like - everyone except for SOME tech evangelists). CuriosityFM Make podcasts about any subject https://preview.redd.it/zmosrcp8tf5c1.jpg?width=638&format=pjpg&auto=webp&s=d04ddffabef9050050b0d87939273cc96a8637dc This was our attempt at making Learnery more unique and more differentiated from chatGPT. We never really launched it. The unit economics didn’t work out and it was actually pretty boring to listen to, I don’t think I even fully listened to one 15-minute episode. I think this wasn’t that bad, it taught us more about ElevenLabs and voice AI. It took us maybe only 2-3 days to build so I think building to learn a new groundbreaking technology is fine. SleepyTale Make children’s bedtime stories https://preview.redd.it/14ue9nm9tf5c1.jpg?width=807&format=pjpg&auto=webp&s=267e18ec6f9270e6d1d11564b38136fa524966a1 My 8-year-old sister gave me that idea. She was too scared of making tea and I was curious about how she’d react if she heard a bedtime story about that exact scenario with the moral that I wanted her to absorb (which is that you shouldn’t be scared to try new things ie stop asking me to make your tea and do it yourself, it’s not that hard. You could say I went full Goebbels on her). Zane messaged a bunch of parents on Facebook but no one really cared. We showed this to one Lady at the place we worked from at Uni and she was impressed and wanted to show it to her kids but we already turned off our ElevenLabs subscription. Lessons: However, the truth behind this is beyond just “you need to be able to distribute”. It’s that you have to care about the audience. I don’t particularly want to build products for kids and parents. I am far away from that audience because I am neither a kid anymore nor going to be a parent anytime soon, and my sister still asked me to make her tea so the story didn’t work. I think it’s important to ask yourself whether you care about the audience. The way you answer that even when you are in full bias mode is, do you engage with them? Are you interested in what’s happening in their communities? Are you friends with them? Etc. User Survey Analyzer Big User Survey → GPT → Insights Report Me and my coworker were chatting about AI when he asked me to help him analyze a massive survey for him. I thought that was some pretty decent validation. Someone in an actual company asking for help. Lessons Market research is important but moving fast is also important. Ie building momentum. Also don’t revolve around 1 user. This has been a problem in multiple projects. Finding as many users as possible in the beginning to talk to is key. Otherwise, you are just waiting for 1 person to get back to you. AutoI18N Automated Internationalization of the codebase for webapps This one I might still do. It’s hard to find a solid distribution strategy. However, the idea came from me having to do it at my day job. It seems a solid problem. I’d say it’s validated and has some good players already. The key will be differentiation via the simplicity of UX and distribution (which means a slightly different audience). In the backlog for now because I don’t care about the problem or the audience that much. Documate - Part 1 Converts complex PDFs into Excel https://preview.redd.it/8b45k9katf5c1.jpg?width=1344&format=pjpg&auto=webp&s=57324b8720eb22782e28794d2db674b073193995 My mom needed to convert a catalog of furniture into an inventory which took her 3 full days of data entry. I automated it for her and thought this could have a big impact but there was no distribution because there was no ICP. We tried to find the ideal customers by talking to a bunch of different demographics but I flew to Kazakhstan for a holiday and so this kind of fizzled out. I am not writing this blog post linearity, this is my 2nd hour and I am tired and don’t want to finish this later so I don’t even know what lessons I learned. Figmatic Marketplace of high-quality Figma mockups of real apps https://preview.redd.it/h13yv45btf5c1.jpg?width=873&format=pjpg&auto=webp&s=aaa2896aeac2f22e9b7d9eed98c28bb8a2d2cdf1 This was a collab between me and my friend Alex. It was the classic Clarito where we both thought we had this problem and would pay to fix it. In reality, this is a vitamin. Neither I, nor I doubt Alex have thought of this as soon as we bought the domain. We posted it on Gumroad, sent it to a bunch of forums, and called it a day. Same issue as almost all the other ones. No distribution strategy. However, apps like Mobin show us that this concept is indeed profitable but it takes time. It needs SEO. It needs a community. None of those things, me and Alex had or was interested in. However shortly after HTML → Figma came out and it’s the best plugin. Maybe that should’ve been the idea. Podcast → Course Turns Podcaster’s episodes into a course This one I got baited by Jason :P I described to him the idea of repurposing his content for a course. He told me this was epic and he would pay. Then after I sent him the demo, he never checked it out. Anyhow during the development, we realized that doesn’t actually work because A podcast doesn’t have the correct format for the course, the most you can extract are concepts and ideas, seldom explanations. Most creators want video-based courses to be hosted on Kajabi or Udemy Another lesson is that when you pitch something to a user, what you articulate is a platform or a process, they imagine an outcome. However, the end result of your platform can be a very different outcome to what they had in mind and there is even a chance that what they want is not possible. You need to understand really well what the outcome looks like before you design the process. This is a classic problem where we thought of the solution before the problem. Yes, the problem exists. Podcasters want to make courses. However, if you really understand what they want, you can see how repurposing a podcast isn’t the best way to get there. However I only really spoke to 1-2 podcasters about this so making conclusions is dangerous for this can just be another asking ace mistake with the Redditor. Documate Part 2 Same concept as before but now I want to run some ads. We’ll see what happens. https://preview.redd.it/xb3npj0ctf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3cd4884a29fd11d870d010a2677b585551c49193 In conclusion https://preview.redd.it/2zrldc9dtf5c1.jpg?width=1840&format=pjpg&auto=webp&s=2b3105073e752ad41c23f205dbd1ea046c1da7ff It doesn’t actually matter that much whether you choose to do a B2C, or a social network or focus on growing your audience. All of these can make you successful. What’s important is that you choose. If I had to summarize my 2023 in one word it’s indecision. Most of these projects succeeded for other people, nothing was as fundamentally wrong about them as I proclaimed. In reality that itself was an excuse. New ideas seduce, and it is a form of discipline to commit to a single project for a respectful amount of time. https://preview.redd.it/zy9a2vzdtf5c1.jpg?width=1456&format=pjpg&auto=webp&s=901c621227bba0feb4efdb39142f66ab2ebb86fe Distribution is not just posting on Indiehackers and Reddit. It’s an actual strategy and you should think of it as soon as you think of the idea, even before the Figma designs. I like how Denis Shatalin taught me. You have to build a pipeline. That means a reliable way to get leads, launch campaigns at them, close deals, learn from them, and optimize. Whenever I get an idea now I always try to ask myself “Where can I find 1000s leads in one day?” If there is no good answer, this is not a good project to do now. &#x200B; https://preview.redd.it/2boh3fpetf5c1.jpg?width=1456&format=pjpg&auto=webp&s=1c0d5d7b000716fcbbb00cbad495e8b61e25be66 Talk to users before doing anything. Jumping on designing and coding to make your idea a reality is a satisfying activity in the short term. Especially for me, I like to create for the sake of creation. However, it is so important to understand the market, understand the audience, understand the distribution. There are a lot of things to understand before coding. https://preview.redd.it/lv8tt96ftf5c1.jpg?width=1456&format=pjpg&auto=webp&s=6c8735aa6ad795f216ff9ddfa2341712e8277724 Get out of your own head. The real reason we dropped so many projects is that we got into our own heads. We let the negative thoughts creep in and kill all the optimism. I am really good at coming up with excuses to start a project. However, I am equally as good at coming up with reasons to kill a project. And so you have this yin and yang of starting and stopping. Building momentum and not burning out. I can say with certainty my team ran out of juice this year. We lost momentum so many times we got burnt out towards the end. Realizing that the project itself has momentum is important. User feedback and sales bring momentum. Building also creates momentum but unless it is matched with an equal force of impact, it can stomp the project down. That is why so many of our projects died quickly after we launched. The smarter approach is to do things that have a low investment of momentum (like talking to users) but result in high impact (sales or feedback). Yes, that means the project can get invalidated which makes it more short-lived than if we built it first, but it preserves team life energy. At the end of 2023 here is a single sentence I am making about how I think one becomes a successful indiehacker. One becomes a successful Indiehacker when one starts to solve pain-killer problems in the market they understand, for an audience they care about and consistently engage with for a long enough timeframe. Therefore an unsuccessful Indiehacker in a single sentence is An unsuccessful Indiehacker constantly enters new markets they don’t understand to build solutions for people whose problems they don’t care about, in a timeframe that is shorter than than the time they spent thinking about distribution. However, an important note to be made. Life is not just about indiehacking. It’s about learning and having fun. In the human world, the best journey isn’t the one that gets you the fastest to your goals but the one you enjoy the most. I enjoyed making those silly little projects and although I do not regret them, I will not repeat the same mistakes in 2024. But while it’s still 2023, I have 2 more projects I want to do :) EDIT: For Devs, frontend is always react with vite (ts) and backend is either node with express (ts) or python. For DB either Postgres or mongo (usually Prisma for ORM). For deployment all of it is on AWS (S3, EC2). In terms of libraries/APIs Whisper.cpp is best open source for transcription Obviously the gpt apis Eleven labs for voice related stuff And other random stuff here and there

I retired at 32 from my side project. Here's the path I took.
reddit
LLM Vibe Score0
Human Vibe Score1
inputoriginThis week

I retired at 32 from my side project. Here's the path I took.

EDIT 2: Thanks for the award kind stranger! I've stopped responding to reddit comments for this post. I'm adding an FAQ to the original post based on the most common high quality questions. If you have a question that you're dying to know the answer to and that only I can help you with (vs. Google, ChatGPT, etc.), DM me. EDIT: I love how controversial this post has become (50% upvote rate), and only in this subreddit (vs. other subreddits that I posted the same content in). I trust that the open-minded half of you will find something useful in this post and my other posts and comments. I retired at 32 years old, in large part thanks to a B2C SaaS app that I developed on my own. Now, I don't have to work in order to cover my living expenses, and wouldn't have to work for quite a while. In other words, I can finally sip mai tais at the beach. I've condensed how I got there into this post. First, a super simplified timeline of events, followed by some critical details. Timeline 2013 Graduated college in the US 2013 Started first corporate job 2013 Started side project (B2C app) that would eventually lead to my retirement 2020 Started charging for use of my B2C app (was free, became freemium) 2021 Quit my last corporate job 2022 Retired: time freedom attained Details First, some summary statistics of my path to retirement: 9 years: time between graduating college and my retirement. 8 years: total length of my career where I worked at some corporate day job. 7 years: time it took my B2C app to make its first revenue dollar 2 years: time between my first dollar of SaaS revenue and my retirement. "Something something overnight success a decade in the making". I got extremely lucky on my path to retirement, both in terms of the business environment I was in and who I am as a person. I'd also like to think that some of the conscious decisions I made along the way contributed to my early retirement. Lucky Breaks Was born in the US middle class. Had a natural affinity for computer programming and entrepreneurial mindset (initiative, resourcefulness, pragmatism, courage, growth mindset). Had opportunities to develop these mindsets throughout life. Got into a good college which gave me the credentials to get high paying corporate jobs. Was early to a platform that saw large adoption (see "barnacle on whale" strategy). Business niche is shareworthy: my SaaS received free media. Business niche is relatively stable, and small enough to not be competitive. "Skillful" Decisions I decided to spend the nights and weekends of my early career working on side projects in the hopes that one would hit. I also worked a day job to support myself and build my savings. My launch funnel over roughly 7 years of working on side projects: Countless side projects prototyped. 5 side projects publically launched. 2 side projects made > $0. 1 side project ended up becoming the SaaS that would help me retire. At my corporate day jobs, I optimized for learning and work-life balance. My learning usually stalled after a year or two at one company, so I’d quit and find another job. I invested (and continute to do so) in physical and mental wellbeing via regular workouts, meditation, journaling, traveling, and good food. My fulfilling non-work-life re-energized me for my work-life, and my work-life supported my non-work-life: a virtuous cycle. I automated the most time-consuming aspects of my business (outside of product development). Nowadays, I take long vacations and work at most 20 hours a week / a three-day work week . I decided to keep my business entirely owned and operated by me. It's the best fit for my work-style (high autonomy, deep focus, fast decision-making) and need to have full creative freedom and control. I dated and married a very supportive and inspiring partner. I try not to succumb to outrageous lifestyle creep, which keeps my living expenses low and drastically extends my burn-rate. Prescription To share some aphorisms I’ve leaned with the wantrepreneurs or those who want to follow a similar path: Maximize your at bats, because you only need one hit. Bias towards action. Launch quickly. Get your ideas out into the real world for feedback. Perfect is the enemy of good. If you keep swinging and improving, you'll hit the ball eventually. Keep the big picture in mind. You don't necessarily need a home-run to be happy: a base hit will often do the job. Think about what matters most to you in life: is it a lot of money or status? Or is it something more satisfying, and often just as if not more attainable, like freedom, loving relationships, or fulfillment? Is what you’re doing now a good way to get what you want? Or is there a better way? At more of a micro-level of "keep the big picture in mind", I often see talented wantrepreneurs get stuck in the weeds of lower-level optimizations, usually around technical design choices. They forget (or maybe subconsciously avoid) the higher-level and more important questions of customer development, user experience, and distribution. For example: “Are you solving a real problem?” or “Did you launch an MVP and what did your users think?” Adopt a growth mindset. Believe that you are capable of learning whatever you need to learn in order to do what you want to do. The pain of regret is worse than the pain of failure. I’ve noticed that fear of failure is the greatest thing holding people back from taking action towards their dreams. Unless failure means death in your case, a debilitating fear of failure is a surmountable mental block. You miss 100% of the shots you don't take. When all is said and done, we often regret the things we didn't do in life than the things we did. There’s more to life than just work. Blasphemous (at least among my social circle)! But the reality is that many of the dying regret having worked too much in their lives. As Miss Frizzle from The Magic Schoolbus says: "Take chances, make mistakes, get messy!" Original post

I made a bunch of side projects over the last 9 months, and even accrued 500+ accounts and some donations!
reddit
LLM Vibe Score0
Human Vibe Score1
firebird8541154This week

I made a bunch of side projects over the last 9 months, and even accrued 500+ accounts and some donations!

I just stumbled upon this subreddit and have a bunch of fun projects I'd like to present, any thoughts/feedback/criticism, etc. all welcome. So, first things first, a little about me, I work full time in an unrelated job, but have picked up full stack and mobile programming. I have two roommates who help a bit in their own way, one is a server expert and happened to have a server in our apartment basement, and the other is my brother and he picked up some frontend programming. We're all avid cyclists and decided to start building about 9 months ago. Our first idea was https://sherpa-map.com a SPA website allowing users to create cycling routes, send them to their Garmin devices, download them as GPX files, etc. This site uses the open-source software Graphhopper on the backend which I've augmented to send back surface type information. This site has a loooonnnggg list of features, from the simple, like a live weather radar, to the extreme like this functionality: &#x200B; AI surface classification This video demonstrates the ability to classify road surface types in real time using high-resolution satellite imagery of road portions with unknown surface types! I trained a Pytorch resnet 50 model with tuned hyperparameters and 10 epochs on 200,000 satellite images of roads with known surface types! (We host a OSM Postgres server with coordinates of roads and their associated surface types, I made a script to pull images of said roads for training). I built the model into a secondary backend written in flask and piped the images being used back through live web sockets to my node.js backend to the person who is logged in! &#x200B; Okay, on to the next side project, a cycling physics simulator! https://sherpa-map.com/cycling-route-calculator.html Cycling Physics Simulation This site lets users enter information about their bike setup, upload or use a preset route, and enter in their physical information to see how different changes in their setup might affect how fast they will be throughout a course! It can also pull complex weather information throughout the course and give a full suite of nutrition details! &#x200B; Okay, Next project! The Activity Racer! https://sherpa-map.com/activity-racer.html Activity Racer This site lets users upload their own or competitors' GPX activity files and line them up against each other at any point in an event, to see who was faster where! It's great if you've done the same even year after year with differing setups, allowing you to get insights as to which might have done better at what point. &#x200B; Okay, final project, this one's pretty half-baked as I'm still in the process of implementing so many other things, a podcast creation app! (I was bored and just started working on this a week or so ago, for no good reason). Currently, this one lives on https://sherpa-map.com/podcast.html This podcasting web app creates a peer to peer to peer... mesh network using webRTC so, small groups can communicate with the highest level of fidelity both in audio and video! Simply enter a room name and have other users enter the room name as well and they're connected! I've already used tensorflow.js AI to allow a blur background option, similar to MS Teams, whereby bodypix classifier AI picks out the person and I use a blur on a JS canvas behind them. I also went a little bit off the deep end and managed to implement the RNNoise background noise suppressor on the frontend, it's written in C, but I was able to use Windows Subsystem for Linux + emscrption to compile it in just the right way, with exposed malloc and free and a JS wrapper to use on the frontend in WASM. I actually use WASM (typically Rust) in many fun ways throughout all of these projects. I'm also in the middle of recreating the first site in React-Native + Maplibre for IOS and Android as individual APPs. In addition, I'm also working on the integration of my main site into a different project for a different group. So, I have a fun collection of side projects with slightly different GUIs, across different platforms with no coherent landing page as of yet but I've been having a blaaaast putting them together. As a final note, I even have a bit of an easter egg in the automated email system I use for account verifications and password resets do\not\reply@sherpa-map.com I hooked it up to ChatGPT API and told it it is a disgruntled worker whose sole task in life is to watch a do\not\reply email box and respond sarcastic/snarky to anyone who dares send a message to it, if AI comes for humanity, I bet I'll be on a list for this one lol.

Day 1 of my BIP for my AdonisJS Boilerplate (turbosaas) [Built in public]
reddit
LLM Vibe Score0
Human Vibe Score0.5
Ok_Bread_6005This week

Day 1 of my BIP for my AdonisJS Boilerplate (turbosaas) [Built in public]

Hello everyone, here is day 1 (not really, I started a bit earlier) of my project: A boilerplate using AdonisJS, Inertia What technologies are used/present? AdonisJS Inertia Stripe OpenAI TailwindCSS Vite (React) Why? Firstly, I want to save time when launching my projects, and I think you do too, so I've included as many relevant features as possible. I'm tired of seeing attitudes like 'develop your SaaS in 1 hour and produce terrible code!' The purpose of this codebase is to provide the highest quality code possible and to maintain that standard throughout the development process. You might spend an extra 20 minutes doing things right, but you'll save 2 hours on refactoring. And no, you won't have to pay for updates. (WTF by the way?) Why these technologies? I've seen a lot of NextJS for boilerplates, and I've also used NextJS before, but I quickly abandoned it. It quickly becomes a mess You lose track of what is what, and start doing anything Every update breaks your application Whereas with AdonisJS, life is beautiful. There are plenty of community packages already available, and everything you need is here. What am I offering? Authentication: Social authentication, OTP, Magic Links, and credentials, along with complete account management features like password recovery. Payment & Mailing Integration: Seamless integration from start to finish, with multiple options to choose from. Detailed Documentation: Thorough explanations of every aspect, covering even the smallest, potentially confusing details in the code. Maintainable & Scalable Code: Organized by features, allowing you to easily drag and drop features to extend functionality. Developer Tools: Handy commands for generating new features and automatically adding necessary imports; a complete config to enable/disable a feature in less than 10 seconds... Pre-made Pages: Ready-to-use pages such as an admin dashboard for tasks like automatically updating products on Stripe. Extensive Component Library: A variety of components to streamline development. I've designed this boilerplate to be as developer-friendly and robust as possible, aiming to support maintainability and scalability from the get-go. Summary of today and previous days Day 2 Stripe is a nightmare to set up if you've never done it before, it quickly becomes tedious. But I've finally finished setting everything up: one-time payments, subscriptions, and subscription updates. It was complicated. Today I finally implemented the 'forgot password' option, and I've completed all the authentication by adding magic links (working with OTP). I also set up automatic deployment with GitHub Actions, and everything works well. The build runs with the action to ensure everything goes smoothly, then using SSH, I pull the project, build it, and launch it. Tomorrow: What I want to do tomorrow Tomorrow, I want to create the blog, because yes, I want to include a blog as well, and especially complete it as soon as possible so it can be available on turbosaas(dot)dev, and write my build in public. It will probably use markdown. Thank you for reading this short build in public, you can also check out how it's going on turbosaas(dot)dev.

Finally launched my own app in the app store!
reddit
LLM Vibe Score0
Human Vibe Score0.429
ranftThis week

Finally launched my own app in the app store!

After reading on the sidelines here for about a year I just launched Kalo. My app is the 100th million ai powered calorie-counting app, hahaha. I know I know. Here it comes: Kalo Screenshots Despite being in a crowded space, Kalo has some caveats I am a bit proud of: \- I am a daily user of my app. Everything that bugs me will be gone ASAP. \- I have already lost 10kg with Kalo. I can't do any sports due to an energy-debilitating sickness (hello my me/cfs friends 👋), so this is huge. \- I HATE nudging. Hence, Kalo has no streaks, no notifications to rip off your valuable time. It’s just a tool to track calories and learn to get a feel for it. \- Ease of daily use and doing anything so it doesn't feel like a grind is Kalo's mission. I already implemented a lot of ways to quickly access tracking and leaving the app. \- Next feature will be tracking your own progress with some proper research based analytics is the one next step, that Im working on. \- Data: Minimal footprint as possible. Anything is currently saved only on the device, especially all health data. Check Kalo out here: https://apps.apple.com/de/app/kalo/id6739449751?l=en-GB Tech used to make it possible: There are some terrific security functions in here, and a robust paywall integration, both of which I could never have done without the MVP help of \- Claude and GPT \- Claude's Project function was basically my base project folder here. Claude is perfect when it comes to traditional features. Anything more recent than iOS14 can become a very difficult endeavour \- GPT 4o was great for error logging overview and general sorting measures. Claude's message restriction could be fended of many times here. \- GPT 1o became available more recently and its coding is a lot more robust than 4o. This helped me to not clog Claude with tedious bug fixing. Also it helped when Claude ran away in terrible directions Pre knowledge: I was a digital product designer way back, so I know a thing or two about making things easier to use, especially when it comes to the ease of daily use. Marketing: Will be my biggest focus now. I am quite shit at it, which means It can only get better. It's gonna be some rough weather to get eyes on my app. If anyone thinks they can help or knows how to, any tips are appreciated. Thats it for now. I'll try and keep you updated. I am happy. Let's see if this app will make me happy on a nicer bed, or a jet ski. Again, happy to get your impression of Kalo: https://apps.apple.com/de/app/kalo/id6739449751?l=en-GB

My Side Projects: From CEO to 4th Developer (Thanks, AI 🤖)
reddit
LLM Vibe Score0
Human Vibe Score1
tilopediaThis week

My Side Projects: From CEO to 4th Developer (Thanks, AI 🤖)

Hey Reddit 👋, I wanted to share a bit about some side projects I’ve been working on lately. Quick background for context: I’m the CEO of a mid-to-large-scale eCommerce company pulling in €10M+ annually in net turnover. We even built our own internal tracking software that’s now a SaaS (in early review stages on Shopify), competing with platforms like Lifetimely and TrueROAS. But! That’s not really the point of this post — there’s another journey I’ve been on that I’m super excited to share (and maybe get your feedback on!). AI Transformed My Role (and My Ideas List) I’m not a developer by trade — never properly learned how to code, and to be honest, I don’t intend to. But, I’ve always been the kind of guy who jots down ideas in a notes app and dreams about execution. My dev team calls me their “4th developer” (they’re a team of three) because I have solid theoretical knowledge and can kinda read code. And then AI happened. 🛠️ It basically turned my random ideas app into an MVP generation machine. I thought it’d be fun to share one of the apps I’m especially proud of. I am also planning to build this in public and therefore I am planning to post my progress on X and every project will have /stats page where live stats of the app will be available. Tackling My Task Management Problem 🚀 I’ve sucked at task management for YEARS, I still do! I’ve tried literally everything — Sheets, Todoist, Asana, ClickUp, Notion — you name it. I’d start… and then quit after a few weeks - always. What I struggle with the most is delegating tasks. As a CEO, I delegate a ton, and it’s super hard to track everything I’ve handed off to the team. Take this example: A few days ago, I emailed an employee about checking potential collaboration opportunities with a courier company. Just one of 10s of tasks like this I delegate daily. Suddenly, I thought: “Wouldn’t it be AMAZING if just typing out this email automatically created a task for me to track?” 💡 So… I jumped in. With the power of AI and a few intense days of work, I built a task manager that does just that. But of course, I couldn’t stop there. Research & Leveling It Up 📈 I looked at similar tools like TickTick and Todoist, scraped their G2 reviews (totally legally, promise! 😅), and ran them through AI for a deep SWOT analysis. I wanted to understand what their users liked/didn’t like and what gaps my app could fill. Some of the features people said they were missing didn’t align with the vision for my app (keeping it simple and personal), but I found some gold nuggets: Integration with calendars (Google) Reminders Customizable UX (themes) So, I started implementing what made sense and am keeping others on the roadmap for the future. And I’ve even built for that to, it still doesn’t have a name, however the point is you select on how many reviews of a specific app you want to make a SWOT analysis on and it will do it for you. Example for Todoist in comments. But more on that, some other time, maybe other post ... Key Features So Far: Here’s what’s live right now: ✅ Email to Task: Add an email as to, cc, or bcc — and it automatically creates a task with context, due dates, labels, etc. ✅ WhatsApp Reminders: Get nudged to handle your tasks via WhatsApp. ✅ WhatsApp to Task: Send a message like /task buy groceries — bam, it’s added with full context etc.. ✅ Chrome Extension (work-in-progress): Highlight text on any page, right-click, and send it straight to your task list. Next Steps: Build WITH the Community 👥 Right now, the app is 100% free while still in the early stages. But hey, API calls and server costs aren’t cheap, so pricing is something I’ll figure out with you as we grow. For now, my goal is to hit 100 users and iterate from there. My first pricing idea is, without monthly subscription, I don’t want to charge someone for something he didn’t use. So I am planning on charging "per task", what do you think? Here’s what I have planned: 📍 End of Year Goal: 100 users (starting from… 1 🥲). 💸 Revenue Roadmap: When we establish pricing, we’ll talk about that. 🛠️ Milestones: Post on Product Hunt when we hit 100 users. Clean up my self-written spaghetti code (hire a pro dev for review 🙃). Hire a part-time dev once we hit MRR that can cover its costs. You can check how are we doing on thisisatask.me/stats Other Side Projects I’m Working On: Because… what’s life without taking on too much, right? 😂 Full list of things I’m building: Internal HRM: Not public, tried and tested in-house. Android TV App: Syncs with HRM to post announcements to office TVs (streamlined and simple). Stats Tracker App: Connects to our internal software and gives me real-time company insights. Review Analyzer: Scrapes SaaS reviews (e.g., G2) and runs deep analysis via AI. This was originally for my Shopify SaaS but is quickly turning into something standalone. Coming soon! Mobile app game: secret for now. Let’s Build This Together! Would love it if you guys checked out https://thisisatask.me and gave it a spin! Still super early, super raw, but I’m pumped to hear your thoughts. Also, what’s a must-have task manager feature for you? Anything that frustrates you with current tools? I want to keep evolving this in public, so your feedback is gold. 🌟 Let me know, Reddit! Are you with me? 🙌

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I very rarely have stuff to post on Reddit, but I share how my project is going on, just random stuff, and memes on X. In case few might want to keep up 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2B products beats building B2C products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

I grew my mobile app to 1.4 million downloads
reddit
LLM Vibe Score0
Human Vibe Score1
TechPrimoThis week

I grew my mobile app to 1.4 million downloads

I started developing the app in early 2017, well before the AI era, when mobile apps were at their peak popularity. My idea was to create an app for emotional and psychological support in the form of helpful articles and various quizzes, such as personality assessments and life satisfaction tests. I named the app "Emotional Intelligence" because this keyword showed good ASO potential for positioning at the top of mobile stores. This proved to be accurate, and the app quickly gained traction in terms of downloads. A major problem I faced then was monetization. Unfortunately, in my country, it wasn't possible to sell through Google Play then, so I could only display ads. I started with Google AdMob, earning $2000 monthly after just a few months. The app then got about 1500 organic downloads daily and quickly surpassed 500,000. Three years after launching the app, I decided it was time for branding to build recognition. By combining the words "sentiment" and "intelligence," I came up with "Sintelly." I then pushed the app toward a social network, which differed from the right move. Adding features like discussion forums for problems, likes, and comments would result in even more growth, but the opposite happened. The app started declining, and I began investing in advertising campaigns. I managed to maintain a balance between income and expenses but without any profit. Then COVID-19 hit, and everything went downhill. I had to give up development and find a job as a developer to ensure my livelihood. Two years passed since I gave up, and that's when ChatGPT started gaining popularity. This immediately showed me how to steer the app towards active support for well-being questions. As I'm not an expert in psychology, I found several external psychotherapists who helped me put together CBT therapy, which I then implemented through a chatbot. This is how the new Sintelly app was born, with its main feature being a chatbot system composed of 17 AI agents that adapt to the user and guide them through a five-phase CBT therapy (I'll write a post about the technology). In addition to the agents, I added various exercises and tests to provide better personalization for the user. Initially, I made all of this free, which was also a mistake. I followed the principle of first showing what the app can do and gathering enough new users before starting to charge. I started selling subscriptions at the beginning of July, and since then, the app has had stable growth. If you want a check app, here is the link. Lessons learned: If things are working, don't touch them Start selling immediately upon app release; there's no need to wait Regularly test prices and types of subscriptions Onboarding is the most essential part of the app because most users buy subscriptions during onboarding It's essential to listen to user feedback. From day one, have a website and work on content to generate organic visits and redirect users from the web to the mobile app Stats: Over 1.4 million downloads 4.4 rating Only 40,000 active users (I had a massive loss during the period when I gave up) 280 active subscribers $3000 monthly revenue Next steps: Work on improving the Agent AI approach Setting up email campaigns and transactional emails Introducing in-app and push notifications Introducing gamification Potential for B2B I hope you can extract useful information from my example and avoid repeating my mistakes. I'm interested in your thoughts and if you have any recommendations for the next steps. I'm always looking to learn and improve.

Running and selling multiple side projects alongside a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
leanpreneur1This week

Running and selling multiple side projects alongside a 9-5

My current side project started 56 days ago when I started writing 1,000 words per day. My core businesses are an agency and job board, and I just needed a creative outlet. The likes of Chris Guillebeau and Nathan Barry attribute their progression to writing so I thought I’d see if it might do the same for me. At first I was just vomiting words onto the screen, I made a blog and wrote mainly technical guides related to my skills. Over time I realised I was writing more and more about running a business as a solopreneur, or lean operator. There is tons of content out there giving you the Birds Eye of going from 0 to £10m. Inspiring stuff, but I think there is a void in real content, explaining the nuts and bolts of the how.  What is the day-to-day like for the solopreneurs who make a good living and have plenty of free time? That’s what I’m striving for anyway. I’m not talking about the 7-figure outliers. Or the ones teaching you to make content so you can have a business teaching others how to make content, and so on. I’m also sick of the ‘I made $X in 5 minutes and how you can too’  So, I started chatting to people in my network who run lean businesses and/or side hustles. I ask them a bit about their journey and ask them to teach something - how they operate, or a skill/process/system/tool that other people like you/me will find useful. One of my first chats was with Sam Dickie, who runs multiple side projects so thought I’d share here, see if others find it useful and get some feedback. I’ve removed all links as I’ve never posted on Reddit before so conscious of not being promotional, I’m posting this stuff to a tiny email list of friends with no upsells. Just finding my feet on whether others find it useful or not: — Sam is a serial entrepreneur who builds projects in his spare time whilst working a 9-5. He’s scaled and sold multiple ventures and currently runs one of the best newsletters out there for builders and entrepreneurs. Building audience through newsletters has always been a cornerstone strategy for him, so, along with sharing his advice on solopreneurism, he’s also generously shared his lean newsletter writing process. About Sam Sam is a Senior Product Manager who has spent the last 15 years working in the tech sector after starting his career as a town planner. In addition to his job he spends some of his spare time building side projects. These have included a 3D printing startup, a tech directory, a newsletter, a beta product directory, and consultancy. Sam is the epitome of making a success out of following your interest and curiosity. It’s clear he enjoys his business ventures and builds in a risk-free way.   It’s often touted by business gurus to avoid building around your interests, but Sam bucks the trend successfully. I think he’s someone who has already found his 1,000 true fans.  Descending rabbit holes, Sam’s journey of invention and curation 3D printing Sam’s first foray into launching a startup was with Fiilo, a 3D printing business. This was at the height of the 3D printing craze and he self-admits that he used the launch as an excuse to buy a 3D printer. He ended up with two and launching a product called GrowGo. GrowGo is a sustainable 3D-printed product that turns any bottle into somewhere that you can grow plants and herbs. He eventually sold this business and the printers, making around £10k. Along the way, he was exposed to various business tasks, including building a website in Weebly, the biggest nocode website builder of the time, and built an API that enabled print on demand for his product. NoCode.Tech The experiences of building as someone non-technical led to numerous friends asking how he built all of this tech. Back then, nocode wasn’t popular, and it had almost zero search volume, so Sam created a basic directory. A quick landing page on Weebly with a basic value prop, a short explanation and a list of the tools he had used before. It hit the top spot on Product Hunt, and he landed 2,000 subscribers in the first 48 hours. But, he hadn’t built it at this point, so he set about getting to work. He built the directory and list to 30,000 subs and monetised the site through advertising. At its peak with Sam, it was receiving about £2,000 per month in ad revenue. He was still working his 9-5 at this point, so thought it might be a good time to exit. The site was still growing, but it was becoming anxiety inducing whilst he was still working full-time. So, he ended up selling the site and making friend’s with the buyer. Fast forwarding a bit, Nocode.tech was eventually acquired by Stackr, a nocode app. Sam was working for their competitor at the time and ended up being offered a job by his friend who acquired the site. All of this from a side project in his area of passion. Creator Club After selling the directory, Sam lost his outlet for sharing his tools and learnings.  Being fascinated with curation and loving sifting through for nuggets, he invested more time into his personal website and launched Creator Club newsletter. Sam writes monthly and currently has over 8,000 subs. It’s one of the few newsletters that I let bypass my email filters and land in my main inbox. Life as a Part-Time Multipreneur Side Hustler If it’s not obvious already Sam is a curiosity led business creator. He’s found that the products without a revenue focus or intention have ironically outperformed those created for the sole purpose of creating money. He enjoys working on his side hustles. He could have run the Nocode.Tech for 10 more years and wouldn’t have tired of it as it’s a byproduct of his interest. For this reason, he has also created the Beta Directory, simply because he loves unearthing early-stage products. He admits he gets the fear when he thinks about quitting his 9-5, although he suspects if he devoted the same energy to one of his projects it could replace his income (no doubts from me here). This same fear means that he can run his ventures with less fear. This way, he can experiment with freedom and isn’t risking the ranch with a young family to consider. For example, recently he stopped paid sponsors on his newsletter as it was more stress than the value of the income to him. Sam divides his time on evenings and weekends (unequally) between the following: Creator Club Validation Co Beta directory Consultancy The pure side hustle status magnifies the need to run lean, let’s jump into his process…. Sam’s lean newsletter curation and creation process Starting out publishing his personal newsletter Going against his expertise, Sam originally over-engineered his process.  He curated with Feedly and tried to automate the full writing process with Zapier. The trouble is that there are too many points of failure which can lead the whole  chain to break down, and you spend more time fixing the system. For a 200 subscriber newsletter, he needed to pare things back. His set-up now Sam scaled back and now simple builds automations when he needs them. He keeps the process simple, right down to the design and any welcome automations. Keeping things real We touched on the trend that keeping things raw is better. Content has come full circle with the advent of AI. Everything looks too perfect and consequently, people’s tastes are changing. Sam mentioned watermarks that show content isn’t AI written, and we referenced content such as Greg Isenberg’s sketches, and Chris Donnelly’s image posts. \\Step by Step Process:\\ Using Stoop Inbox to manage sources Curation with Pocket Managing content with Airtable and Zapier Using Bearly to summarise Substack for writing Monitoring content sources Sam uses Stoop Inbox, an RSS curation tool, to manage his content sources. It gives him a dedicated email address for newsletters and he follows an Inbox Zero methodology. He checks in daily in Stoop, and on X, Reddit and IndieHackers. With X, he just uses the standard interface but has been careful to curate his feed, sometimes adding in extra notifications to hear from interesting people. Highlighting content When curating links, Sam uses Arc browser and the Pocket extension to save links. It’s super simple and lightweight. He creates tags which trigger an automation that curates the link to Airtable. If you watch the video, here’s a shoutout to Alice, the AI interface I use which has recently featured on Product Hunt. It’s a fantastic tool with bags of potential to enhance a solopreneur’s life. Ranking and sorting content He sends the links indexed using Pocket to a basic Airtable base via Zapier. From there, he grades the content and sets aside some time to read it in more depth. Pocket pulls through the title, metadata, and URL link. Review Sam does this manually but has used a tool as a shortcut for digesting long form content — Bearly.ai. Bearly.ai was created by Trung Phan and linking back to raw content, Trung is 1/3 of the hosts on the Not Investment Advice podcast. Its irreverent style and thumbnail are an example of a successful podcast that doesn’t over polish. Writing it all up Being a huge Notion fan (check out the free templates on his site), Sam originally used Notion for writing and linked it into Revue. When Elon sunsetted Revue, he switched to Substack. He loves the Substack interface so drafts in Substack based on a duplication of last month’s edition. Before publishing, Sam runs through a 10-point Notion checklist, which he shared with me. Parting Advice Keep your tool stack as lean as possible. Avoid tool switching to the shiny new object. Getting launched quickly is key. Don’t think that you have to be everywhere for distribution, Sam sticks with what he knows on X and LinkedIn. Overall, he advises just keeping things simple and therefore minimising risk. Resources He says they’re cliche, but I don’t agree; they’re timeless. Paul Graham of Y Combinator is someone Sam recommends following. He doesn’t write much, which is great as Sam gets anxiety when someone good often writes and he can’t keep up with the writing. His content is well thought out and distills complex concepts in entrepreneurship and startups. In addition, Sam loves Naval Ravikant’s approach. He mentions checking out the Almanac of Naval Ravikant for collected wisdom. Follow Sam’s Journey Again, not going to link here but you can find Sam’s stuff easily enough if you want to. His personal website is beautiful and contains loads of free downloads. He has also curated personal websites he admires if you need some inspiration. Sam is a super nice guy so reach out to him, I did before I started my personal blog recently, and he gave me some great advice. Also, worth keeping an eye on Validation Co, where he aims to help early-stage makers and creators validate their ideas. He’s building super slow — trying to enjoy the process without unachievable deadlines. Maintaining his stamina and passion. Amazing, I hope he writes more about that soon! -- That’s my second shot at an interview, hope you enjoyed it and found something useful in it. I’m talking to a marketplace founder who spends 2–3 hours per month his project, a multiple job board owner with a 9-5 and a leading book designer next. As this is my side project, should I keep going?

How I Built a $6k/mo Business with Cold Email
reddit
LLM Vibe Score0
Human Vibe Score1
Afraid-Astronomer130This week

How I Built a $6k/mo Business with Cold Email

I scaled my SaaS to a $6k/mo business in under 6 months completely using cold email. However, the biggest takeaway for me is not a business that’s potentially worth 6-figure. It’s having a glance at the power of cold emails in the age of AI. It’s a rapidly evolving yet highly-effective channel, but no one talks about how to do it properly. Below is the what I needed 3 years ago, when I was stuck with 40 free users on my first app. An app I spent 2 years building into the void. Entrepreneurship is lonely. Especially when you are just starting out. Launching a startup feel like shouting into the dark. You pour your heart out. You think you have the next big idea, but no one cares. You write tweets, write blogs, build features, add tests. You talk to some lukewarm leads on Twitter. You do your big launch on Product Hunt. You might even get your first few sales. But after that, crickets... Then, you try every distribution channel out there. SEO Influencers Facebook ads Affiliates Newsletters Social media PPC Tiktok Press releases The reality is, none of them are that effective for early-stage startups. Because, let's face it, when you're just getting started, you have no clue what your customers truly desire. Without understanding their needs, you cannot create a product that resonates with them. It's as simple as that. So what’s the best distribution channel when you are doing a cold start? Cold emails. I know what you're thinking, but give me 10 seconds to change your mind: When I first heard about cold emailing I was like: “Hell no! I’m a developer, ain’t no way I’m talking to strangers.” That all changed on Jan 1st 2024, when I actually started sending cold emails to grow. Over the period of 6 months, I got over 1,700 users to sign up for my SaaS and grew it to a $6k/mo rapidly growing business. All from cold emails. Mastering Cold Emails = Your Superpower I might not recommend cold emails 3 years ago, but in 2024, I'd go all in with it. It used to be an expensive marketing channel bootstrapped startups can’t afford. You need to hire many assistants, build a list, research the leads, find emails, manage the mailboxes, email the leads, reply to emails, do meetings. follow up, get rejected... You had to hire at least 5 people just to get the ball rolling. The problem? Managing people sucks, and it doesn’t scale. That all changed with AI. Today, GPT-4 outperforms most human assistants. You can build an army of intelligent agents to help you complete tasks that’d previously be impossible without human input. Things that’d take a team of 10 assistants a week can now be done in 30 minutes with AI, at far superior quality with less headaches. You can throw 5000 names with website url at this pipeline and you’ll automatically have 5000 personalized emails ready to fire in 30 minutes. How amazing is that? Beyond being extremely accessible to developers who are already proficient in AI, cold email's got 3 superpowers that no other distribution channels can offer. Superpower 1/3 : You start a conversation with every single user. Every. Single. User. Let that sink in. This is incredibly powerful in the early stages, as it helps you establish rapport, bounce ideas off one another, offer 1:1 support, understand their needs, build personal relationships, and ultimately convert users into long-term fans of your product. From talking to 1000 users at the early stage, I had 20 users asking me to get on a call every week. If they are ready to buy, I do a sales call. If they are not sure, I do a user research call. At one point I even had to limit the number of calls I took to avoid burnout. The depth of the understanding of my customers’ needs is unparalleled. Using this insight, I refined the product to precisely cater to their requirements. Superpower 2/3 : You choose exactly who you talk to Unlike other distribution channels where you at best pick what someone's searching for, with cold emails, you have 100% control over who you talk to. Their company Job title Seniority level Number of employees Technology stack Growth rate Funding stage Product offerings Competitive landscape Social activity (Marital status - well, technically you can, but maybe not this one…) You can dial in this targeting to match your ICP exactly. The result is super low CAC and ultra high conversion rate. For example, My competitors are paying $10 per click for the keyword "HARO agency". I pay $0.19 per email sent, and $1.92 per signup At around $500 LTV, you can see how the first means a non-viable business. And the second means a cash-generating engine. Superpower 3/3 : Complete stealth mode Unlike other channels where competitors can easily reverse engineer or even abuse your marketing strategies, cold email operates in complete stealth mode. Every aspect is concealed from end to end: Your target audience Lead generation methods Number of leads targeted Email content Sales funnel This secrecy explains why there isn't much discussion about it online. Everyone is too focused on keeping their strategies close and reaping the rewards. That's precisely why I've chosen to share my insights on leveraging cold email to grow a successful SaaS business. More founders need to harness this channel to its fullest potential. In addition, I've more or less reached every user within my Total Addressable Market (TAM). So, if any competitor is reading this, don't bother trying to replicate it. The majority of potential users for this AI product are already onboard. To recap, the three superpowers of cold emails: You start a conversation with every single user → Accelerate to PMF You choose exactly who you talk to → Super-low CAC Complete stealth mode → Doesn’t attract competition By combining the three superpowers I helped my SaaS reach product-marketing-fit quickly and scale it to $6k per month while staying fully bootstrapped. I don't believe this was a coincidence. It's a replicable strategy for any startup. The blueprint is actually straightforward: Engage with a handful of customers Validate the idea Engage with numerous customers Scale to $5k/mo and beyond More early-stage founders should leverage cold emails for validation, and as their first distribution channel. And what would it do for you? Update: lots of DM asking about more specifics so I wrote about it here. https://coldstartblueprint.com/p/ai-agent-email-list-building

Just reached 300 users in 3 months!!!
reddit
LLM Vibe Score0
Human Vibe Score1
w-elm_This week

Just reached 300 users in 3 months!!!

Just reached 300 users after 3 months live!!! My co-founder has been posting a bit here and always got some strong support and he suggested I share my side of things so here it is: How it started I co-founded AirMedia almost a year ago and we both didn’t know much about design/marketing/coding (just studied programming during my 6-month exchange period. The quickest way to get started seemed to get a no-code product that we could put in front of users and get feedback. My co-founder then started learning about bubble and we put together a basic platform to show users. I was working on a custom-code database in the meantime and decided after month 2 that we wanted to get something better I.e. AI would be interacting with the UI and had to do everything custom-code for it. We’re now month 3 and started from scratch again. While I was working on the code, we started talking to some potential users and selling lifetime deals to validate the idea (this is where I would start if I had to do it over again). Well I progressively found out it was more complicated than expected and we only released our first beta product last August (6 months later) Some challenges pre-launch: Getting the Meta/LinkedIn permissions for scheduling took around 1 month As the whole process took more time than expected, the waitlist of 300 that we managed to put together only converted by 10% (into free users). Please don’t make our mistakes and always keep your waitlist updated on what’s going on. Some challenges post-launch: Getting the right feedback and how to prioritise Getting users Monetising (yes - we’re bootstrapped) To get the best feedback we implemented some tracking (according to GDPR of course) on the platform and implemented Microsoft Clarity. The latter is a game-changer, if you have a SaaS and don’t use it you’re missing out. I wasn’t really into getting users as my co-founder handled that but it’s mainly manual and personalised LinkedIn outreach at the beginning and Reddit sharing about the progress, answering questions and getting some feedback at the same time. To monetise we realised we’re too common and there are 100+ other nice schedulers around so we’re now focusing on cracking the content creation side of AI (to be released next week 👀) as there’s much less competitors and it seems like that’s our users want. In the meantime of growing the company, we had to find a way to pay the bills as it’s two of us living together. So my co-founder started using the bubble skills gained and doing some freelance. He did around 7 platforms the last 6 months and we’re now just launching a bubble agency as a part of the main company to get your idea of a SaaS done in 30 days. That’s QuickMVP. It seemed like the right move to help other people (I met many non-technical founder looking for someone to bring their idea to life that didn’t cost $10k and was reliable) and include the AirMedia subscription in the package so let’s see how this next step plays out. Thanks for reading until here :)

Looking for a technical co-founder to build LinkedIn’s rival
reddit
LLM Vibe Score0
Human Vibe Score1
ItzdreeThis week

Looking for a technical co-founder to build LinkedIn’s rival

How do you connect with likeminded people? You see the polished wins everywhere, but what about the messy drafts , the awkward pitches and the moments you’re not sure you’ve got it right? Problem: The whole idea of founding and starting a business can be super intimidating for some people, specially those who don’t know any founders personally, those who don’t have a large network, those who don’t have rich parents with large networks, those not inserted in an entrepreneurial culture like in the US for example (which is my case). Sometimes all you need is the right support network, and too see others do what you want, to know that it’s possible! Everyone has an “ultimate guide” to make 7 figures or build a business on YouTube but NO ONE shoes you the HOW, just the results… I’ve tried joining founder communities, LinkedIn ,Reddit … you name it. Most of these founder communities are inaccessible for regular people and often ask for you to have an already existing business with a min ARR… or their simply geography based and if you’re not in a certain area you can’t really participate… As of LinkedIn… full of empty AI generated posts about how some random dude raised $10m in 7 days. Okay Jonathan, but what about the HOW?? How did you write your first pitch? How many rejection calls did you get? What is an MVP? There simply isn’t a platform out there to document your founding journey and find inspiration within a community of people who are doing the same as you. What better way to feel motivated then to see someone actually document their process? Solution: I’m working on building a social media platform for aspiring/founders to connect through the RAW, UNFILTERED process of turning ideas into reality in REAL time. It’s all gonna be around the “building in public “ concept and content creation. Picture an instagram/tiktok profile where instead of seeing someone’s dog you see them documenting their founding process—from the moment they had the idea, to the moment they launched, you’re going to see the successes, the fails, the rejected calls, all documented through actual content and not some AI generated LinkedIn post. Imagine if you wanted to learn about how Steve Jobs started Apple , you could simply go through his profile on this app—exactly. To make sure all interactions are meaningful people would have to apply. It’s a truly curated community, with REAL people, building REAL things in REAL time, and not just tell us the story of how they did it… Audience: I’m targeting people who have a burning desire of building a business and early stage founders starting their founder journeys, that don’t have a support network and simply don’t know where to start. People who are tired of watching 30 min “ultimate guides “ on how to make it on YouTube from “business gurus” selling courses. People who haven’t reached the min ARR required to join an “exclusive “ founder a community. People who can’t simply just move to the US to get into the “exclusive” YC combinator. People who want to connect with real people building real things and not anonymous people on Reddit, or LinkedIn influencers again trying to promote their services. I believe in the idea because I’m also part of my audience. Have always wanted to start my own thing just never knew how to and where to find a community of likeminded people . I don’t know any founders myself, I come from a non-entrepreneurial society and I’d pay good money to access a community of REAL passionate founders building REAL things, in REAL time. This would be my first ever business, and I want to share my journey building it and hopefully inspire others to just start so I’ve created a mailing list to keep anyone interested in the project updated on my fails , learnings and successes. I’m not worried about “making it” but just “starting” and hopefully reach the right audience and inspire anyone to start whatever they have marinating in their thoughts. If you’re a founder struggling with staying consistent or an aspiring founder with an insane desire of starting and don’t know how to start, I’d love to get your feedback on what’s stopping you, your challenges starting out and what you’d find useful in such platform. And finally would this be something that interests you?? Feel free to subscribe to get new updates 🫶🏼 : https://mailchi.mp/037c56b89994/d-founder PS: casually looking for a technical co-founder

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I very rarely have stuff to post on Reddit, but I share how my project is going on, just random stuff, and memes on X. In case few might want to keep up 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2B products beats building B2C products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

How me and my team made 15+ apps and not made a single sale in 2023
reddit
LLM Vibe Score0
Human Vibe Score0.818
MichaelbetterecycleThis week

How me and my team made 15+ apps and not made a single sale in 2023

Hey, my name is Michael, I am in Auckland NZ. This year was the official beginning of my adult life. I graduated from university and started a full-time job. I’ve also really dug into indiehacking/bootstrapping and started 15 projects (and it will be at least 17 before the year ends). I think I’ve learned a lot but I consciously repeated mistakes. Upto (Nov) Discord Statuses + Your Location + Facebook Poke https://preview.redd.it/4nqt7tp2tf5c1.png?width=572&format=png&auto=webp&s=b0223484bc54b45b5c65e0b1afd0dc52f9c02ad1 This was the end of uni, I often messaged (and got messaged) requests of status and location to (and from my) friends. I thought, what if we make a social app that’s super basic and all it does is show you where your friends are? To differentiate from snap maps and others we wanted something with more privacy where you select the location. However, never finished the codebase or launched it. This is because I slowly started to realize that B2C (especially social networks) are way too hard to make into an actual business and the story with Fistbump would repeat itself. However, this decision not to launch it almost launched a curse on our team. From that point, we permitted ourselves to abandon projects even before launching. Lessons: Don’t do social networks if your goal is 10k MRR ASAP. If you build something to 90% competition ship it or you will think it’s okay to abandon projects Insight Bites (Nov) Youtube Summarizer Extension &#x200B; https://preview.redd.it/h6drqej4tf5c1.jpg?width=800&format=pjpg&auto=webp&s=0f211456c390ac06f4fcb54aa51f9d50b0826658 Right after Upto, we started ideating and conveniently the biggest revolution in the recent history of tech was released → GPT. We instantly began ideating. The first problem we chose to use AI for is to summarize YouTube videos. Comical. Nevertheless, I am convinced we have had the best UX because you could right-click on a video to get a slideshow of insights instead of how everyone else did it. We dropped it because there was too much competition and unit economics didn’t work out (and it was a B2C). PodPigeon (Dec) Podcast → Tweet Threads https://preview.redd.it/0ukge245tf5c1.png?width=2498&format=png&auto=webp&s=23303e1cab330578a3d25cd688fa67aa3b97fb60 Then we thought, to make unit economics work we need to make this worthwhile for podcasters. This is when I got into Twitter and started seeing people summarize podcasts. Then I thought, what if we make something that converts a podcast into tweets? This was probably one of the most important projects because it connected me with Jason and Jonaed, both of whom I regularly stay in contact with and are my go-to experts on ideas related to content creation. Jonaed was even willing to buy Podpigeon and was using it on his own time. However, the unit economics still didn’t work out (and we got excited about other things). Furthermore, we got scared of the competition because I found 1 - 2 other people who did similar things poorly. This was probably the biggest mistake we’ve made. Very similar projects made 10k MRR and more, launching later than we did. We didn’t have a coherent product vision, we didn’t understand the customer well enough, and we had a bad outlook on competition and a myriad of other things. Lessons: I already made another post about the importance of outlook on competition. Do not quit just because there are competitors or just because you can’t be 10x better. Indiehackers and Bootstrappers (or even startups) need to differentiate in the market, which can be via product (UX/UI), distribution, or both. Asking Ace Intro.co + Crowdsharing &#x200B; https://preview.redd.it/0hu2tt16tf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3d397568ef2331e78198d64fafc1a701a3e75999 As I got into Twitter, I wanted to chat with some people I saw there. However, they were really expensive. I thought, what if we made some kind of crowdfunding service for other entrepreneurs to get a private lecture from their idols? It seemed to make a lot of sense on paper. It was solving a problem (validated via the fact that Intro.co is a thing and making things cheaper and accessible is a solid ground to stand on), we understood the market (or so we thought), and it could monetize relatively quickly. However, after 1-2 posts on Reddit and Indiehackers, we quickly learned three things. Firstly, no one cares. Secondly, even if they do, they think they can get the same information for free online. Thirdly, the reasons before are bad because for the first point → we barely talked to people, and for the second people → we barely talked to the wrong people. However, at least we didn’t code anything this time and tried to validate via a landing page. Lessons Don’t give up after 1 Redditor says “I don’t need this” Don’t be scared to choose successful people as your audience. Clarito Journaling with AI analyzer https://preview.redd.it/8ria2wq6tf5c1.jpg?width=1108&format=pjpg&auto=webp&s=586ec28ae75003d9f71b4af2520b748d53dd2854 Clarito is a classic problem all amateur entrepreneurs have. It’s where you lie to yourself that you have a real problem and therefore is validated but when your team asks you how much you would pay you say I guess you will pay, maybe, like 5 bucks a month…? Turns out, you’d have to pay me to use our own product lol. We sent it off to a few friends and posted on some forums, but never really got anything tangible and decided to move away. Honestly, a lot of it is us in our own heads. We say the market is too saturated, it’ll be hard to monetize, it’s B2C, etc. Lessons: You use the Mom Test on other people. You have to do it yourself as well. However, recognizing that the Mom Test requires a lot of creativity in its investigation because knowing what questions to ask can determine the outcome of the validation. I asked myself “Do I journal” but I didn’t ask myself “How often do I want GPT to chyme in on my reflections”. Which was practically never. That being said I think with the right audience and distribution, this product can work. I just don’t know (let alone care) about the audience that much (and I thought I was one of them)/ Horns & Claw Scrapes financial news texts you whether you should buy/sell the stock (news sentiment analysis) &#x200B; https://preview.redd.it/gvfxdgc7tf5c1.jpg?width=1287&format=pjpg&auto=webp&s=63977bbc33fe74147b1f72913cefee4a9ebec9c2 This one we didn’t even bother launching. Probably something internal in the team and also seemed too good to be true (because if this works, doesn’t that just make us ultra-rich fast?). I saw a similar tool making 10k MRR so I guess I was wrong. Lessons: This one was pretty much just us getting into our heads. I declared that without an audience it would be impossible to ship this product and we needed to start a YouTube channel. Lol, and we did. And we couldn’t even film for 1 minute. I made bold statements like “We will commit to this for at least 1 year no matter what”. Learnery Make courses about any subject https://preview.redd.it/1nw6z448tf5c1.jpg?width=1112&format=pjpg&auto=webp&s=f2c73e8af23b0a6c3747a81e785960d4004feb48 This is probably the most “successful” project we’ve made. It grew from a couple of dozen to a couple of hundred users. It has 11 buy events for $9.99 LTD (we couldn’t be bothered connecting Stripe because we thought no one would buy it anyway). However what got us discouraged from seriously pursuing it more is, that this has very low defensibility, “Why wouldn’t someone just use chatGPT?” and it’s B2C so it’s hard to monetize. I used it myself for a month or so but then stopped. I don’t think it’s the app, I think the act of learning a concept from scratch isn’t something you do constantly in the way Learnery delivers it (ie course). I saw a bunch of similar apps that look like Ass make like 10k MRR. Lessons: Don’t do B2C, or if you do, do it properly Don’t just Mixpanel the buy button, connect your Stripe otherwise, it doesn’t feel real and you won’t get momentum. I doubt anyone (even me) will make this mistake again. I live in my GPT bubble where I make assumptions that everyone uses GPT the same way and as much as I do. In reality, the argument that this has low defensibility against GPT is invalid. Platforms that deliver a differentiated UX from ChatGPT to audiences who are not tightly integrated into the habit of using ChatGPT (which is like - everyone except for SOME tech evangelists). CuriosityFM Make podcasts about any subject https://preview.redd.it/zmosrcp8tf5c1.jpg?width=638&format=pjpg&auto=webp&s=d04ddffabef9050050b0d87939273cc96a8637dc This was our attempt at making Learnery more unique and more differentiated from chatGPT. We never really launched it. The unit economics didn’t work out and it was actually pretty boring to listen to, I don’t think I even fully listened to one 15-minute episode. I think this wasn’t that bad, it taught us more about ElevenLabs and voice AI. It took us maybe only 2-3 days to build so I think building to learn a new groundbreaking technology is fine. SleepyTale Make children’s bedtime stories https://preview.redd.it/14ue9nm9tf5c1.jpg?width=807&format=pjpg&auto=webp&s=267e18ec6f9270e6d1d11564b38136fa524966a1 My 8-year-old sister gave me that idea. She was too scared of making tea and I was curious about how she’d react if she heard a bedtime story about that exact scenario with the moral that I wanted her to absorb (which is that you shouldn’t be scared to try new things ie stop asking me to make your tea and do it yourself, it’s not that hard. You could say I went full Goebbels on her). Zane messaged a bunch of parents on Facebook but no one really cared. We showed this to one Lady at the place we worked from at Uni and she was impressed and wanted to show it to her kids but we already turned off our ElevenLabs subscription. Lessons: However, the truth behind this is beyond just “you need to be able to distribute”. It’s that you have to care about the audience. I don’t particularly want to build products for kids and parents. I am far away from that audience because I am neither a kid anymore nor going to be a parent anytime soon, and my sister still asked me to make her tea so the story didn’t work. I think it’s important to ask yourself whether you care about the audience. The way you answer that even when you are in full bias mode is, do you engage with them? Are you interested in what’s happening in their communities? Are you friends with them? Etc. User Survey Analyzer Big User Survey → GPT → Insights Report Me and my coworker were chatting about AI when he asked me to help him analyze a massive survey for him. I thought that was some pretty decent validation. Someone in an actual company asking for help. Lessons Market research is important but moving fast is also important. Ie building momentum. Also don’t revolve around 1 user. This has been a problem in multiple projects. Finding as many users as possible in the beginning to talk to is key. Otherwise, you are just waiting for 1 person to get back to you. AutoI18N Automated Internationalization of the codebase for webapps This one I might still do. It’s hard to find a solid distribution strategy. However, the idea came from me having to do it at my day job. It seems a solid problem. I’d say it’s validated and has some good players already. The key will be differentiation via the simplicity of UX and distribution (which means a slightly different audience). In the backlog for now because I don’t care about the problem or the audience that much. Documate - Part 1 Converts complex PDFs into Excel https://preview.redd.it/8b45k9katf5c1.jpg?width=1344&format=pjpg&auto=webp&s=57324b8720eb22782e28794d2db674b073193995 My mom needed to convert a catalog of furniture into an inventory which took her 3 full days of data entry. I automated it for her and thought this could have a big impact but there was no distribution because there was no ICP. We tried to find the ideal customers by talking to a bunch of different demographics but I flew to Kazakhstan for a holiday and so this kind of fizzled out. I am not writing this blog post linearity, this is my 2nd hour and I am tired and don’t want to finish this later so I don’t even know what lessons I learned. Figmatic Marketplace of high-quality Figma mockups of real apps https://preview.redd.it/h13yv45btf5c1.jpg?width=873&format=pjpg&auto=webp&s=aaa2896aeac2f22e9b7d9eed98c28bb8a2d2cdf1 This was a collab between me and my friend Alex. It was the classic Clarito where we both thought we had this problem and would pay to fix it. In reality, this is a vitamin. Neither I, nor I doubt Alex have thought of this as soon as we bought the domain. We posted it on Gumroad, sent it to a bunch of forums, and called it a day. Same issue as almost all the other ones. No distribution strategy. However, apps like Mobin show us that this concept is indeed profitable but it takes time. It needs SEO. It needs a community. None of those things, me and Alex had or was interested in. However shortly after HTML → Figma came out and it’s the best plugin. Maybe that should’ve been the idea. Podcast → Course Turns Podcaster’s episodes into a course This one I got baited by Jason :P I described to him the idea of repurposing his content for a course. He told me this was epic and he would pay. Then after I sent him the demo, he never checked it out. Anyhow during the development, we realized that doesn’t actually work because A podcast doesn’t have the correct format for the course, the most you can extract are concepts and ideas, seldom explanations. Most creators want video-based courses to be hosted on Kajabi or Udemy Another lesson is that when you pitch something to a user, what you articulate is a platform or a process, they imagine an outcome. However, the end result of your platform can be a very different outcome to what they had in mind and there is even a chance that what they want is not possible. You need to understand really well what the outcome looks like before you design the process. This is a classic problem where we thought of the solution before the problem. Yes, the problem exists. Podcasters want to make courses. However, if you really understand what they want, you can see how repurposing a podcast isn’t the best way to get there. However I only really spoke to 1-2 podcasters about this so making conclusions is dangerous for this can just be another asking ace mistake with the Redditor. Documate Part 2 Same concept as before but now I want to run some ads. We’ll see what happens. https://preview.redd.it/xb3npj0ctf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3cd4884a29fd11d870d010a2677b585551c49193 In conclusion https://preview.redd.it/2zrldc9dtf5c1.jpg?width=1840&format=pjpg&auto=webp&s=2b3105073e752ad41c23f205dbd1ea046c1da7ff It doesn’t actually matter that much whether you choose to do a B2C, or a social network or focus on growing your audience. All of these can make you successful. What’s important is that you choose. If I had to summarize my 2023 in one word it’s indecision. Most of these projects succeeded for other people, nothing was as fundamentally wrong about them as I proclaimed. In reality that itself was an excuse. New ideas seduce, and it is a form of discipline to commit to a single project for a respectful amount of time. https://preview.redd.it/zy9a2vzdtf5c1.jpg?width=1456&format=pjpg&auto=webp&s=901c621227bba0feb4efdb39142f66ab2ebb86fe Distribution is not just posting on Indiehackers and Reddit. It’s an actual strategy and you should think of it as soon as you think of the idea, even before the Figma designs. I like how Denis Shatalin taught me. You have to build a pipeline. That means a reliable way to get leads, launch campaigns at them, close deals, learn from them, and optimize. Whenever I get an idea now I always try to ask myself “Where can I find 1000s leads in one day?” If there is no good answer, this is not a good project to do now. &#x200B; https://preview.redd.it/2boh3fpetf5c1.jpg?width=1456&format=pjpg&auto=webp&s=1c0d5d7b000716fcbbb00cbad495e8b61e25be66 Talk to users before doing anything. Jumping on designing and coding to make your idea a reality is a satisfying activity in the short term. Especially for me, I like to create for the sake of creation. However, it is so important to understand the market, understand the audience, understand the distribution. There are a lot of things to understand before coding. https://preview.redd.it/lv8tt96ftf5c1.jpg?width=1456&format=pjpg&auto=webp&s=6c8735aa6ad795f216ff9ddfa2341712e8277724 Get out of your own head. The real reason we dropped so many projects is that we got into our own heads. We let the negative thoughts creep in and kill all the optimism. I am really good at coming up with excuses to start a project. However, I am equally as good at coming up with reasons to kill a project. And so you have this yin and yang of starting and stopping. Building momentum and not burning out. I can say with certainty my team ran out of juice this year. We lost momentum so many times we got burnt out towards the end. Realizing that the project itself has momentum is important. User feedback and sales bring momentum. Building also creates momentum but unless it is matched with an equal force of impact, it can stomp the project down. That is why so many of our projects died quickly after we launched. The smarter approach is to do things that have a low investment of momentum (like talking to users) but result in high impact (sales or feedback). Yes, that means the project can get invalidated which makes it more short-lived than if we built it first, but it preserves team life energy. At the end of 2023 here is a single sentence I am making about how I think one becomes a successful indiehacker. One becomes a successful Indiehacker when one starts to solve pain-killer problems in the market they understand, for an audience they care about and consistently engage with for a long enough timeframe. Therefore an unsuccessful Indiehacker in a single sentence is An unsuccessful Indiehacker constantly enters new markets they don’t understand to build solutions for people whose problems they don’t care about, in a timeframe that is shorter than than the time they spent thinking about distribution. However, an important note to be made. Life is not just about indiehacking. It’s about learning and having fun. In the human world, the best journey isn’t the one that gets you the fastest to your goals but the one you enjoy the most. I enjoyed making those silly little projects and although I do not regret them, I will not repeat the same mistakes in 2024. But while it’s still 2023, I have 2 more projects I want to do :) EDIT: For Devs, frontend is always react with vite (ts) and backend is either node with express (ts) or python. For DB either Postgres or mongo (usually Prisma for ORM). For deployment all of it is on AWS (S3, EC2). In terms of libraries/APIs Whisper.cpp is best open source for transcription Obviously the gpt apis Eleven labs for voice related stuff And other random stuff here and there

I built an app to find who’s interested in your app by monitoring social media
reddit
LLM Vibe Score0
Human Vibe Score0.857
lmcaraigThis week

I built an app to find who’s interested in your app by monitoring social media

Hi everyone! I hope you’re all doing great folks! I’d love to know your thoughts about what I’ve been working on recently! 🙏 If you’re busy or wanna see the app scroll to the bottom to see the video demo, otherwise, continue reading. Very brief presentation of myself first: I’m Marvin, and I live in Florence, Italy, 👋 This year I decided to go all-in on solopreneurship, I’ve been in tech as Software Engineer first, and then in Engineering Leadership for 10+ years, I’ve always worked in startups, except for last year, when I was the Director of Engineering at the Linux Foundation. Follow me on X or subscribe to my newsletter if you’re curious about this journey. The vision Most founders start building digital startups because they love crafting and being impactful by helping other people or companies. First-time founders then face reality when they realize that nailing distribution is key. All other founders already learned this, most likely the hard way. The outcome is the same: a great product will unlikely succeed without great distribution. Letting people know about your product should be easier and not an unfair advantage. The following meme is so true, but also quite sad. I wanna help this to change by easing the marketing and distribution part. https://preview.redd.it/g52pz46upqtd1.png?width=679&format=png&auto=webp&s=cf8398a3592f25c05c396bb2ff5d028331a36315 The story behind Distribution is a huge space: lead generation, demand generation, content marketing, social media marketing, cold outreach, etc. I cannot solve everything altogether. A few months ago I was checking the traffic to a job board I own (NextCommit). That's when I noticed that the “baseline” traffic increased by almost 10x. 🤯 I started investigating why. I realized that the monthly traffic from Reddit increased from 10-ish to 350+. Yeah, the job board doesn’t get much traffic in total, but this was an interesting finding. After digging more, it seems that all that increase came from a single Reddit comment: https://www.reddit.com/r/remotework/comments/1crwcei/comment/l5fb1yy/ This is the moment when I realized two things: It’s cool that someone quoted it! Engaging with people on Reddit, even just through comments, can be VERY powerful. And this was just one single comment! https://preview.redd.it/nhxcv4h2qqtd1.png?width=1192&format=png&auto=webp&s=d31905f56ae59426108ddbb61f2d6b668eedf27a Some weeks later I started noticing a few apps like ReplyGuy. These were automatically engaging with Reddit posts identified through keywords. I decided to sign up for the free plan of ReplyGuy to know more, but many things didn’t convince me: One of the keywords I used for my job board was “remote” and that caused a lot of false positives, The generated replies were good as a kickstart, but most of the time they needed to be tuned to sound more like me. The latter is expected. In the end, the platform doesn’t know me, doesn’t know my opinions, doesn’t know my story, etc.. The only valuable feature left for me was identifying the posts, but that also didn’t work well for me due to false positives. I ended up using it after only 15 minutes. I’m not saying they did a poor job, but it was not working well for me. In the end, the product got quite some traction, so it helped confirm there’s interest in that kind of tool. What bothered me was the combination of auto-replies that felt non-authentic. It’s not that I’m against bots, automation is becoming more common, and people are getting used to it. But in this context, I believe bots should act as an extension of ourselves, enhancing our interactions rather than just generating generic responses (like tools such as HeyGen, Synthesia, PhotoAI). I’m not there yet with my app, but a lot can be done. I'd love to reach the point where a user feels confident to automate the replies because they sound as written by themselves. I then decided to start from the same space, helping engage with Reddit posts, for these reasons: I experienced myself that it can be impactful, It aligns with my vision to ease distribution, Some competitors validated that there’s interest in this specific feature and I could use it as a starting point, I’m confident I can provide a better experience even with what I already have. The current state The product currently enables you to: Create multiple projects and assign keywords, Find the posts that are relevant for engagement using a fuzzy match of keywords and post-filtered using AI to avoid false positives, Provide an analysis of each post to assess the best way to engage, Generate a helpful reply that you’d need to review and post. So currently the product is more on the demand gen side, but this is just the beginning. I’m speaking with people from Marketing, Sales, RevOps, and Growth agencies to better understand their lives, struggles, and pain points. This will help me ensure that I build a product that enables them to help users find the products they need. I’m currently looking for up to 10 people to join the closed beta for free. If you’re interested in joining or to get notified once generally available you can do it here! https://tally.so/r/3XYbj4 After the closed beta, I will start onboarding people in batches. This will let me gather feedback, iterate, and provide a great experience to everyone aligned with my vision. I’m not going to add auto-reply unless the conditions I explained above are met or someone convinces me there’s a good reason for doing so. Each batch will probably get bigger with an increasing price until I’m confident about making it generally available. The next steps The next steps will depend on the feedback I get from the customers and the learnings from the discovery calls I’m having. I will talk about future developments in another update, but I have some ideas already. Check out the demo video below, and I'd love to hear your thoughts! ❤️ Oh and BTW, the app is called HaveYouHeard! https://reddit.com/link/1fzsnrd/video/34lat9snpqtd1/player This is the link to Loom in case the upload doesn't work: https://www.loom.com/share/460c4033b1f94e3bb5e1d081a05eedfd

How I Automated Amazon Affiliate Marketing: A Developer's Journey
reddit
LLM Vibe Score0
Human Vibe Score1
siom_cThis week

How I Automated Amazon Affiliate Marketing: A Developer's Journey

From Manual Labor to 1000x Efficiency As a developer who ventured into affiliate marketing, I discovered a significant gap between technical possibilities and current practices. This revelation led me to create AutoPin, a tool that's now helping hundreds of affiliate marketers reclaim their time. The Problem: A Time-Consuming Reality Every affiliate marketer knows this scenario: you spend hours copying and pasting links, checking prices, and updating product information. I found myself dedicating 4-6 hours daily to these repetitive tasks. As a programmer, this felt fundamentally wrong. The typical affiliate marketing workflow looked like this: Find promising products Generate affiliate links one by one Monitor price changes manually Check product availability regularly Update content when things change Repeat this process daily This manual process had several critical issues: Time Waste: 20-30 hours weekly on repetitive tasks Missed Opportunities: Unable to scale beyond 100 products Human Error: Inevitable mistakes in manual updates Delayed Updates: Lost commissions due to outdated information The Solution: Building AutoPin After three months of development and six months of testing, I created a system that could: Generate hundreds of affiliate links in minutes Monitor price changes automatically Update product availability in real-time Export data in multiple formats Scale infinitely without additional effort Real Results, Real Impact The impact was immediate and significant: 📊 Efficiency Metrics: Link generation: From 2 minutes per link to 0.1 seconds Monitoring capacity: From 50 to 5000+ products Update frequency: From daily to real-time Error rate: Reduced by 99.9% 💡 User Success Stories: "Increased my product portfolio by 10x without adding work hours" "Revenue grew 300% in the first month" "Finally able to focus on content creation instead of link management" Technical Insights The system architecture focuses on three core components: Data Extraction Engine Efficient web scraping Rate limiting and proxy management Data validation and cleaning Real-time Monitoring System Websocket connections for instant updates Queue management for large-scale monitoring Smart scheduling based on price volatility Export Framework Multiple format support (CSV, HTML, Markdown) Custom templating engine Batch processing capabilities The Future of Affiliate Marketing Automation We're currently developing AI capabilities to: Generate product descriptions automatically Optimize link placement for conversion Predict price trends and best promotion times Create content variations for different platforms Key Learnings Automation is Essential The future of affiliate marketing lies in automation. Manual processes simply can't compete with automated systems in terms of efficiency and accuracy. Focus on Value Creation When marketers spend less time on repetitive tasks, they can focus on strategy and content quality. Scale Matters With automation, the difference between managing 10 products and 1000 products becomes minimal. Getting Started If you're an affiliate marketer spending hours on manual tasks, it's time to automate. Here's what you can do: Analyze your current workflow Identify repetitive tasks Start with basic automation Scale gradually Monitor and optimize Conclusion The transformation from manual to automated affiliate marketing isn't just about saving time—it's about unlocking potential. When you remove the tedious aspects of affiliate marketing, you create space for creativity, strategy, and growth. Want to experience the difference? Visit AutoPin at autopin.pro and join the automation revolution. Remember: The best time to automate was yesterday. The second best time is now. About the Author: A developer turned affiliate marketer who believes in the power of automation to transform digital marketing. #AffiliateMarketing #Automation #Programming #DigitalMarketing #SaaS #ProductivityTools

How to get your first 10 customers with cold email
reddit
LLM Vibe Score0
Human Vibe Score0.905
LieIgnorant6304This week

How to get your first 10 customers with cold email

Cold email is an insane channel for growth, especially for bootstrapped startups as it's very low cost but completely scalable. Yet there's a huge difference between blind cold emailing and crafting personalized outreach for select individuals. The latter is a legit channel which makes many businesses scale in short amounts of time (i.e. see Alex Hormozi’s ‘$100 Million Dollar Offer’). My goal here is to help other founders do what I did but quicker. So you can learn faster. And then teach me something new too. These are the step-by-step lessons I've learnt as a bootstrapped founder, showing you how to use cold email to get your first customers: Find your leads Write engaging email copy Personalize your outreach Send emails Scale up Find your leads This is a key step. Once you figure out exactly who you want to target and where to find them, you'll be printing money. There's a few different ways to go about finding valuable leads. The secret? Keep testing different approaches until you strike gold. First, dedicate some time every day to find and organise leads. Then, keep an eye on your numbers and bounce rates. If something's not working, switch it up. Stick with what's bringing in results and ditch what's not. It's all about staying flexible and learning as you go. Apollo.io is a great starting point as an effective lead source. Their tool allows you to specify filters including job titles, location, company size, industry, keywords, technologies, and revenue. Get specific with your searches to find your ideal customers. Once you have some results you can save and export them, you'll get a list of contact information including name, email, company, LinkedIn, ready to be verified and used. LinkedIn Sales Navigator is another good source. You can either do manual searches or use a scraper to automate the process. The scrapers I'd recommend checking out are FindyMail and Evaboot. As with Apollo, it's best to get very specific with your targeting so you know the prospect will be interested in your offer. BuiltWith is more expensive but ideal if you're targeting competitors. With BuiltWith you can build lists based on what technologies companies are using. For example if you're selling a Shopify app, you'd want to know websites or stores using Shopify, and reach out to them. The best lead sources will always be those that haven't been contacted a lot in the past. If you are able to find places where your target audience uniquely hangs out, and you can get their company website domains, they have the potential to be scrapped, and you have a way to personalize like "I spotted your comment on XYZ website". Once you've got your leads, keep them organized. Set up folders for different niches, countries, company sizes, so you can review what works and what doesn't. One more thing – before you start firing off emails, make sure those addresses are verified. Always use an email verifier to clean up your list and avoid bounces that may affect your sending reputation, and land you in the spam folder. I use Neverbounce for this but there are other tools available. Write engaging email copy Writing a good copy that gets replies is difficult, it changes depending on your offer/audience and nobody knows what's going to work. The best approach is to keep testing different targeting and messaging until you find what works. However, there are some key rules to stick to that I've outlined. For the subject line, keep it short and personalized. Try to write something that sparks interest, and mention the recipients name: Thought you’d like this {{first name}} {{firstName}} - quick question For the email body it's best to use a framework of personalization, offer, then call to action. Personalization is an entire subject in its own right, which I've covered below. In short, a personalized email opener is the best way to grab their attention, and let them know the email is relevant to them and to keep reading. Take it from Alex Hormozi and his $100M Offers playbook – your offer is very important to get right. Make sure your offer hits the mark for your target audience, and get as specific as possible. For example: I built a SaaS shopify app for small ecommerce businesses selling apparel that doubles your revenue in 60-days or your money back. We developed a cold email personalization tool for lead generation agencies that saves hundreds of hours, and can 3x your reply rate. Lastly, the CTA. The goal here isn't to get sign-ups directly from your first email. It's better to ask a brief question about whether the prospect would be interested in learning more. Something very low friction, that warrants a response. Some examples might include: Would you be interested in learning more about this? Can we connect a bit more on this? Mind if I send over a loom I recorded for you? Never send any links in the first email. You've reached out to this person because you have good reason to believe they'd find real value in your offer, and you want to verify if that's the case. After you get one reply, this is a great positive signal and from there you can send a link, book a call, provide a free resource, whatever makes sense based on their response. Personalize your outreach Personalization is one of the most important parts of the process to get right. Your recipient probably receives a multitude of emails every day, how can you make yours stand out, letting them know you've done your research, and that your email is relevant to them? Personalizing each email ensures you get more positive replies, and avoid spam filters, as your email is unique and hasn't been copied and pasted a million times over. The goal is to spark the recipient's interest, and let them know that you're contacting them for good reason. You might mention a recent achievement, blog post or product release that led you to reach out to the prospect specifically. For example: Your post on "Doing Nothing" gave me a good chuckle. Savvy marketing on Cadbury's part. Saw that you've been at Google for just under a year now as a new VP of sales. Spotted that you've got over 7 years of experience in the digital marketing space. Ideally you'll mention something specifically about the prospect or their company that relates to your offer. The downside to personalization is that it's hard to get right, and very time consuming at scale, but totally worth it. Full disclosure, me and my partner Igor just launched our new startup ColdClicks which uses AI to generate hyper-personalized email openers at scale. We built the tool as we were sending hundreds of emails a day, and personalizing every individual email took hours out of our day. ColdClicks automates this process, saving you time and getting you 2-3x more replies. Send emails At this stage you've decided on who you're targeting, you've mined some leads, and written copy. Now it's time to get sending. You can do this manually by copy and pasting each message, but one of the reasons cold email is so powerful is that it's scalable. When you build a process that gets customers, you'll want to send as many emails as you can to your target market. To get started quickly, you can use a mail-merge gmail tool, the best I've used is Maileteor. With Maileteor you upload your lead data to Google sheets, set-up an email template and Mailmetor will send out emails every day automatically. In your template you can define variables including name, company, and personalization to ensure your email is unique for each recipient. Alternatively, you may opt for a more comprehensive tool such as Instantly. Instantly includes unlimited email sending and accounts. There's more initial setup involved as you'll need to set-up Google workspace, buy sending domains, and warm up your email accounts, but when you become familiar with the process you can build a powerful lead generation / customer acquisition machine. Some key points to note, it's very important to warm up any new email accounts you set up. Warmup is the process of gradually establishing a positive reputation with email service providers like Gmail or Yahoo. Make sure to set up DKIM and DMARC on those new email accounts too, to maximise your chances of landing in the inbox. Scale up Once you've found a process that works, good things happen, and it becomes a numbers game. As you get replies and start to see new users signing up, you'll want to scale the process and send more emails. It's straightforward to add new sending accounts in a sending tool like Instantly, and you'll want to broaden your targeting when mining to test new markets. Unfortunately, sending more emails usually comes with a drop in reply rate as you have less time to personalize your messaging for each recipient. This is where ColdClicks shines. The tool allows you to upload thousands of leads and generate perfectly relevant email personalizations for every lead in your list, then export to your favorite sending tool. The examples I listed above in the personalization section were all generated by ColdClicks. Wrapping it up Cold email is an amazing way to validate your product and get new customers. The channel gets a bad rap, but there's a huge difference between blind cold emailing and crafting personalized outreach for individuals who will find value in your product. It's perfect for bootstrapped founders due to its affordability and scalability, and it's the driver of growth for many SaaS businesses. Time to get your first 10 customers! As you start sending, make it a habit to regularly check for new leads. Always experiment with market/messaging, track every campaign so you can learn what's working and iterate, and when you do get positive responses, reply as soon as you can!

Built an AI to stop me from procrastinating on Reddit, it actually spies on my browser tabs & it's kinda freaking me out (but it works)
reddit
LLM Vibe Score0
Human Vibe Score-0.2
sameed_aThis week

Built an AI to stop me from procrastinating on Reddit, it actually spies on my browser tabs & it's kinda freaking me out (but it works)

hey guys, So, I have a problem. A major procrastination problem. You know the type? I start all good, like, "ok, I'm gonna spend the next 2 hrs REALLY researching this specific Reddit thread about optimizing workflow automation for small businesses." (That's literally what I'm supposed to be doing rn, lol) And then... BAM. Suddenly I'm 15 posts deep into r/aww looking at baby sloths, or somehow I've ended up on Wikipedia reading about competitive hot dog eating. It's like my brain has a mind of its own, seriously. I've tried everything. Cold Turkey, Freedom, all those blocker apps. And honestly? They kinda suck. They're so... blunt. Like, "NO REDDIT FOR U!!" But I need Reddit for my actual research! It is my research, ffs. The problem is those apps just see a URL and block it. They don't understand context. They're just digital bouncers, and terrible ones. Total roadblocks, and a complete pain. That's why I got desperate. I even spent, like, 3 solid hrs one night just chatting with an AI cuz I was too embarrassed to admit to my friends how bad I was at staying on track. Pathetic, I know. But that's when it hit me. I needed something that understood what I was supposed to be doing, and then actively, intelligently, stopped me when I got sidetracked. Something that, like, gets that this is what I meant to use, so it blocks other posts or subs. So, I built it. It's a Chrome extension, and it's basically like having a tiny, hyper-observant AI therapist/drill sergeant living in my browser. Here's the freaky part: it actually watches what I'm doing. Like, it learns my specific task. If I tell it I'm researching on Reddit, it lets me use Reddit, but only for that specific research. If I try to sneak off to r/funny or check my notifs, it knows. It's not just blocking URLs; it's analyzing the content of the pages I'm on and comparing it to what I'm supposed to be doing. It even has these lil "achievement" things, which sound cheesy, but seeing "Focused for 90 mins straight!" pop up is weirdly motivating. And it has this brutal feature that shows u, in plain numbers, how much time you've wasted. Ouch. It's been working, which is amazing, and scary at the same time! Like, the scary part is, it feels weird sharing my own edge over procrastination. I mean, if u use my lil tool too! It also kinda gives off that creepy, AI overlord watching my thoughts vibe? Why I'm even posting this: I'm looking for a few (maybe 5?) people who are as desperate as I was. People who've tried every productivity hack, app, and technique, and are still staring at the ceiling at 3 am, filled with regret. If this sounds familiar, DM "DM me". Tell me your worst procrastination story. The winner (loser?) gets a copy. I need honest, brutally honest, feedback. Does this actually work for anyone else, or am I just fooling myself? Edit: shared the extension with some of you, and for others you can give it a spin here i made it live to the chrome store: https://getfocusai.com/

How me and my team made 15+ apps and not made a single sale in 2023
reddit
LLM Vibe Score0
Human Vibe Score0.818
MichaelbetterecycleThis week

How me and my team made 15+ apps and not made a single sale in 2023

Hey, my name is Michael, I am in Auckland NZ. This year was the official beginning of my adult life. I graduated from university and started a full-time job. I’ve also really dug into indiehacking/bootstrapping and started 15 projects (and it will be at least 17 before the year ends). I think I’ve learned a lot but I consciously repeated mistakes. Upto (Nov) Discord Statuses + Your Location + Facebook Poke https://preview.redd.it/4nqt7tp2tf5c1.png?width=572&format=png&auto=webp&s=b0223484bc54b45b5c65e0b1afd0dc52f9c02ad1 This was the end of uni, I often messaged (and got messaged) requests of status and location to (and from my) friends. I thought, what if we make a social app that’s super basic and all it does is show you where your friends are? To differentiate from snap maps and others we wanted something with more privacy where you select the location. However, never finished the codebase or launched it. This is because I slowly started to realize that B2C (especially social networks) are way too hard to make into an actual business and the story with Fistbump would repeat itself. However, this decision not to launch it almost launched a curse on our team. From that point, we permitted ourselves to abandon projects even before launching. Lessons: Don’t do social networks if your goal is 10k MRR ASAP. If you build something to 90% competition ship it or you will think it’s okay to abandon projects Insight Bites (Nov) Youtube Summarizer Extension &#x200B; https://preview.redd.it/h6drqej4tf5c1.jpg?width=800&format=pjpg&auto=webp&s=0f211456c390ac06f4fcb54aa51f9d50b0826658 Right after Upto, we started ideating and conveniently the biggest revolution in the recent history of tech was released → GPT. We instantly began ideating. The first problem we chose to use AI for is to summarize YouTube videos. Comical. Nevertheless, I am convinced we have had the best UX because you could right-click on a video to get a slideshow of insights instead of how everyone else did it. We dropped it because there was too much competition and unit economics didn’t work out (and it was a B2C). PodPigeon (Dec) Podcast → Tweet Threads https://preview.redd.it/0ukge245tf5c1.png?width=2498&format=png&auto=webp&s=23303e1cab330578a3d25cd688fa67aa3b97fb60 Then we thought, to make unit economics work we need to make this worthwhile for podcasters. This is when I got into Twitter and started seeing people summarize podcasts. Then I thought, what if we make something that converts a podcast into tweets? This was probably one of the most important projects because it connected me with Jason and Jonaed, both of whom I regularly stay in contact with and are my go-to experts on ideas related to content creation. Jonaed was even willing to buy Podpigeon and was using it on his own time. However, the unit economics still didn’t work out (and we got excited about other things). Furthermore, we got scared of the competition because I found 1 - 2 other people who did similar things poorly. This was probably the biggest mistake we’ve made. Very similar projects made 10k MRR and more, launching later than we did. We didn’t have a coherent product vision, we didn’t understand the customer well enough, and we had a bad outlook on competition and a myriad of other things. Lessons: I already made another post about the importance of outlook on competition. Do not quit just because there are competitors or just because you can’t be 10x better. Indiehackers and Bootstrappers (or even startups) need to differentiate in the market, which can be via product (UX/UI), distribution, or both. Asking Ace Intro.co + Crowdsharing &#x200B; https://preview.redd.it/0hu2tt16tf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3d397568ef2331e78198d64fafc1a701a3e75999 As I got into Twitter, I wanted to chat with some people I saw there. However, they were really expensive. I thought, what if we made some kind of crowdfunding service for other entrepreneurs to get a private lecture from their idols? It seemed to make a lot of sense on paper. It was solving a problem (validated via the fact that Intro.co is a thing and making things cheaper and accessible is a solid ground to stand on), we understood the market (or so we thought), and it could monetize relatively quickly. However, after 1-2 posts on Reddit and Indiehackers, we quickly learned three things. Firstly, no one cares. Secondly, even if they do, they think they can get the same information for free online. Thirdly, the reasons before are bad because for the first point → we barely talked to people, and for the second people → we barely talked to the wrong people. However, at least we didn’t code anything this time and tried to validate via a landing page. Lessons Don’t give up after 1 Redditor says “I don’t need this” Don’t be scared to choose successful people as your audience. Clarito Journaling with AI analyzer https://preview.redd.it/8ria2wq6tf5c1.jpg?width=1108&format=pjpg&auto=webp&s=586ec28ae75003d9f71b4af2520b748d53dd2854 Clarito is a classic problem all amateur entrepreneurs have. It’s where you lie to yourself that you have a real problem and therefore is validated but when your team asks you how much you would pay you say I guess you will pay, maybe, like 5 bucks a month…? Turns out, you’d have to pay me to use our own product lol. We sent it off to a few friends and posted on some forums, but never really got anything tangible and decided to move away. Honestly, a lot of it is us in our own heads. We say the market is too saturated, it’ll be hard to monetize, it’s B2C, etc. Lessons: You use the Mom Test on other people. You have to do it yourself as well. However, recognizing that the Mom Test requires a lot of creativity in its investigation because knowing what questions to ask can determine the outcome of the validation. I asked myself “Do I journal” but I didn’t ask myself “How often do I want GPT to chyme in on my reflections”. Which was practically never. That being said I think with the right audience and distribution, this product can work. I just don’t know (let alone care) about the audience that much (and I thought I was one of them)/ Horns & Claw Scrapes financial news texts you whether you should buy/sell the stock (news sentiment analysis) &#x200B; https://preview.redd.it/gvfxdgc7tf5c1.jpg?width=1287&format=pjpg&auto=webp&s=63977bbc33fe74147b1f72913cefee4a9ebec9c2 This one we didn’t even bother launching. Probably something internal in the team and also seemed too good to be true (because if this works, doesn’t that just make us ultra-rich fast?). I saw a similar tool making 10k MRR so I guess I was wrong. Lessons: This one was pretty much just us getting into our heads. I declared that without an audience it would be impossible to ship this product and we needed to start a YouTube channel. Lol, and we did. And we couldn’t even film for 1 minute. I made bold statements like “We will commit to this for at least 1 year no matter what”. Learnery Make courses about any subject https://preview.redd.it/1nw6z448tf5c1.jpg?width=1112&format=pjpg&auto=webp&s=f2c73e8af23b0a6c3747a81e785960d4004feb48 This is probably the most “successful” project we’ve made. It grew from a couple of dozen to a couple of hundred users. It has 11 buy events for $9.99 LTD (we couldn’t be bothered connecting Stripe because we thought no one would buy it anyway). However what got us discouraged from seriously pursuing it more is, that this has very low defensibility, “Why wouldn’t someone just use chatGPT?” and it’s B2C so it’s hard to monetize. I used it myself for a month or so but then stopped. I don’t think it’s the app, I think the act of learning a concept from scratch isn’t something you do constantly in the way Learnery delivers it (ie course). I saw a bunch of similar apps that look like Ass make like 10k MRR. Lessons: Don’t do B2C, or if you do, do it properly Don’t just Mixpanel the buy button, connect your Stripe otherwise, it doesn’t feel real and you won’t get momentum. I doubt anyone (even me) will make this mistake again. I live in my GPT bubble where I make assumptions that everyone uses GPT the same way and as much as I do. In reality, the argument that this has low defensibility against GPT is invalid. Platforms that deliver a differentiated UX from ChatGPT to audiences who are not tightly integrated into the habit of using ChatGPT (which is like - everyone except for SOME tech evangelists). CuriosityFM Make podcasts about any subject https://preview.redd.it/zmosrcp8tf5c1.jpg?width=638&format=pjpg&auto=webp&s=d04ddffabef9050050b0d87939273cc96a8637dc This was our attempt at making Learnery more unique and more differentiated from chatGPT. We never really launched it. The unit economics didn’t work out and it was actually pretty boring to listen to, I don’t think I even fully listened to one 15-minute episode. I think this wasn’t that bad, it taught us more about ElevenLabs and voice AI. It took us maybe only 2-3 days to build so I think building to learn a new groundbreaking technology is fine. SleepyTale Make children’s bedtime stories https://preview.redd.it/14ue9nm9tf5c1.jpg?width=807&format=pjpg&auto=webp&s=267e18ec6f9270e6d1d11564b38136fa524966a1 My 8-year-old sister gave me that idea. She was too scared of making tea and I was curious about how she’d react if she heard a bedtime story about that exact scenario with the moral that I wanted her to absorb (which is that you shouldn’t be scared to try new things ie stop asking me to make your tea and do it yourself, it’s not that hard. You could say I went full Goebbels on her). Zane messaged a bunch of parents on Facebook but no one really cared. We showed this to one Lady at the place we worked from at Uni and she was impressed and wanted to show it to her kids but we already turned off our ElevenLabs subscription. Lessons: However, the truth behind this is beyond just “you need to be able to distribute”. It’s that you have to care about the audience. I don’t particularly want to build products for kids and parents. I am far away from that audience because I am neither a kid anymore nor going to be a parent anytime soon, and my sister still asked me to make her tea so the story didn’t work. I think it’s important to ask yourself whether you care about the audience. The way you answer that even when you are in full bias mode is, do you engage with them? Are you interested in what’s happening in their communities? Are you friends with them? Etc. User Survey Analyzer Big User Survey → GPT → Insights Report Me and my coworker were chatting about AI when he asked me to help him analyze a massive survey for him. I thought that was some pretty decent validation. Someone in an actual company asking for help. Lessons Market research is important but moving fast is also important. Ie building momentum. Also don’t revolve around 1 user. This has been a problem in multiple projects. Finding as many users as possible in the beginning to talk to is key. Otherwise, you are just waiting for 1 person to get back to you. AutoI18N Automated Internationalization of the codebase for webapps This one I might still do. It’s hard to find a solid distribution strategy. However, the idea came from me having to do it at my day job. It seems a solid problem. I’d say it’s validated and has some good players already. The key will be differentiation via the simplicity of UX and distribution (which means a slightly different audience). In the backlog for now because I don’t care about the problem or the audience that much. Documate - Part 1 Converts complex PDFs into Excel https://preview.redd.it/8b45k9katf5c1.jpg?width=1344&format=pjpg&auto=webp&s=57324b8720eb22782e28794d2db674b073193995 My mom needed to convert a catalog of furniture into an inventory which took her 3 full days of data entry. I automated it for her and thought this could have a big impact but there was no distribution because there was no ICP. We tried to find the ideal customers by talking to a bunch of different demographics but I flew to Kazakhstan for a holiday and so this kind of fizzled out. I am not writing this blog post linearity, this is my 2nd hour and I am tired and don’t want to finish this later so I don’t even know what lessons I learned. Figmatic Marketplace of high-quality Figma mockups of real apps https://preview.redd.it/h13yv45btf5c1.jpg?width=873&format=pjpg&auto=webp&s=aaa2896aeac2f22e9b7d9eed98c28bb8a2d2cdf1 This was a collab between me and my friend Alex. It was the classic Clarito where we both thought we had this problem and would pay to fix it. In reality, this is a vitamin. Neither I, nor I doubt Alex have thought of this as soon as we bought the domain. We posted it on Gumroad, sent it to a bunch of forums, and called it a day. Same issue as almost all the other ones. No distribution strategy. However, apps like Mobin show us that this concept is indeed profitable but it takes time. It needs SEO. It needs a community. None of those things, me and Alex had or was interested in. However shortly after HTML → Figma came out and it’s the best plugin. Maybe that should’ve been the idea. Podcast → Course Turns Podcaster’s episodes into a course This one I got baited by Jason :P I described to him the idea of repurposing his content for a course. He told me this was epic and he would pay. Then after I sent him the demo, he never checked it out. Anyhow during the development, we realized that doesn’t actually work because A podcast doesn’t have the correct format for the course, the most you can extract are concepts and ideas, seldom explanations. Most creators want video-based courses to be hosted on Kajabi or Udemy Another lesson is that when you pitch something to a user, what you articulate is a platform or a process, they imagine an outcome. However, the end result of your platform can be a very different outcome to what they had in mind and there is even a chance that what they want is not possible. You need to understand really well what the outcome looks like before you design the process. This is a classic problem where we thought of the solution before the problem. Yes, the problem exists. Podcasters want to make courses. However, if you really understand what they want, you can see how repurposing a podcast isn’t the best way to get there. However I only really spoke to 1-2 podcasters about this so making conclusions is dangerous for this can just be another asking ace mistake with the Redditor. Documate Part 2 Same concept as before but now I want to run some ads. We’ll see what happens. https://preview.redd.it/xb3npj0ctf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3cd4884a29fd11d870d010a2677b585551c49193 In conclusion https://preview.redd.it/2zrldc9dtf5c1.jpg?width=1840&format=pjpg&auto=webp&s=2b3105073e752ad41c23f205dbd1ea046c1da7ff It doesn’t actually matter that much whether you choose to do a B2C, or a social network or focus on growing your audience. All of these can make you successful. What’s important is that you choose. If I had to summarize my 2023 in one word it’s indecision. Most of these projects succeeded for other people, nothing was as fundamentally wrong about them as I proclaimed. In reality that itself was an excuse. New ideas seduce, and it is a form of discipline to commit to a single project for a respectful amount of time. https://preview.redd.it/zy9a2vzdtf5c1.jpg?width=1456&format=pjpg&auto=webp&s=901c621227bba0feb4efdb39142f66ab2ebb86fe Distribution is not just posting on Indiehackers and Reddit. It’s an actual strategy and you should think of it as soon as you think of the idea, even before the Figma designs. I like how Denis Shatalin taught me. You have to build a pipeline. That means a reliable way to get leads, launch campaigns at them, close deals, learn from them, and optimize. Whenever I get an idea now I always try to ask myself “Where can I find 1000s leads in one day?” If there is no good answer, this is not a good project to do now. &#x200B; https://preview.redd.it/2boh3fpetf5c1.jpg?width=1456&format=pjpg&auto=webp&s=1c0d5d7b000716fcbbb00cbad495e8b61e25be66 Talk to users before doing anything. Jumping on designing and coding to make your idea a reality is a satisfying activity in the short term. Especially for me, I like to create for the sake of creation. However, it is so important to understand the market, understand the audience, understand the distribution. There are a lot of things to understand before coding. https://preview.redd.it/lv8tt96ftf5c1.jpg?width=1456&format=pjpg&auto=webp&s=6c8735aa6ad795f216ff9ddfa2341712e8277724 Get out of your own head. The real reason we dropped so many projects is that we got into our own heads. We let the negative thoughts creep in and kill all the optimism. I am really good at coming up with excuses to start a project. However, I am equally as good at coming up with reasons to kill a project. And so you have this yin and yang of starting and stopping. Building momentum and not burning out. I can say with certainty my team ran out of juice this year. We lost momentum so many times we got burnt out towards the end. Realizing that the project itself has momentum is important. User feedback and sales bring momentum. Building also creates momentum but unless it is matched with an equal force of impact, it can stomp the project down. That is why so many of our projects died quickly after we launched. The smarter approach is to do things that have a low investment of momentum (like talking to users) but result in high impact (sales or feedback). Yes, that means the project can get invalidated which makes it more short-lived than if we built it first, but it preserves team life energy. At the end of 2023 here is a single sentence I am making about how I think one becomes a successful indiehacker. One becomes a successful Indiehacker when one starts to solve pain-killer problems in the market they understand, for an audience they care about and consistently engage with for a long enough timeframe. Therefore an unsuccessful Indiehacker in a single sentence is An unsuccessful Indiehacker constantly enters new markets they don’t understand to build solutions for people whose problems they don’t care about, in a timeframe that is shorter than than the time they spent thinking about distribution. However, an important note to be made. Life is not just about indiehacking. It’s about learning and having fun. In the human world, the best journey isn’t the one that gets you the fastest to your goals but the one you enjoy the most. I enjoyed making those silly little projects and although I do not regret them, I will not repeat the same mistakes in 2024. But while it’s still 2023, I have 2 more projects I want to do :) EDIT: For Devs, frontend is always react with vite (ts) and backend is either node with express (ts) or python. For DB either Postgres or mongo (usually Prisma for ORM). For deployment all of it is on AWS (S3, EC2). In terms of libraries/APIs Whisper.cpp is best open source for transcription Obviously the gpt apis Eleven labs for voice related stuff And other random stuff here and there

I retired at 32 from my side project. Here's the path I took.
reddit
LLM Vibe Score0
Human Vibe Score1
inputoriginThis week

I retired at 32 from my side project. Here's the path I took.

EDIT 2: Thanks for the award kind stranger! I've stopped responding to reddit comments for this post. I'm adding an FAQ to the original post based on the most common high quality questions. If you have a question that you're dying to know the answer to and that only I can help you with (vs. Google, ChatGPT, etc.), DM me. EDIT: I love how controversial this post has become (50% upvote rate), and only in this subreddit (vs. other subreddits that I posted the same content in). I trust that the open-minded half of you will find something useful in this post and my other posts and comments. I retired at 32 years old, in large part thanks to a B2C SaaS app that I developed on my own. Now, I don't have to work in order to cover my living expenses, and wouldn't have to work for quite a while. In other words, I can finally sip mai tais at the beach. I've condensed how I got there into this post. First, a super simplified timeline of events, followed by some critical details. Timeline 2013 Graduated college in the US 2013 Started first corporate job 2013 Started side project (B2C app) that would eventually lead to my retirement 2020 Started charging for use of my B2C app (was free, became freemium) 2021 Quit my last corporate job 2022 Retired: time freedom attained Details First, some summary statistics of my path to retirement: 9 years: time between graduating college and my retirement. 8 years: total length of my career where I worked at some corporate day job. 7 years: time it took my B2C app to make its first revenue dollar 2 years: time between my first dollar of SaaS revenue and my retirement. "Something something overnight success a decade in the making". I got extremely lucky on my path to retirement, both in terms of the business environment I was in and who I am as a person. I'd also like to think that some of the conscious decisions I made along the way contributed to my early retirement. Lucky Breaks Was born in the US middle class. Had a natural affinity for computer programming and entrepreneurial mindset (initiative, resourcefulness, pragmatism, courage, growth mindset). Had opportunities to develop these mindsets throughout life. Got into a good college which gave me the credentials to get high paying corporate jobs. Was early to a platform that saw large adoption (see "barnacle on whale" strategy). Business niche is shareworthy: my SaaS received free media. Business niche is relatively stable, and small enough to not be competitive. "Skillful" Decisions I decided to spend the nights and weekends of my early career working on side projects in the hopes that one would hit. I also worked a day job to support myself and build my savings. My launch funnel over roughly 7 years of working on side projects: Countless side projects prototyped. 5 side projects publically launched. 2 side projects made > $0. 1 side project ended up becoming the SaaS that would help me retire. At my corporate day jobs, I optimized for learning and work-life balance. My learning usually stalled after a year or two at one company, so I’d quit and find another job. I invested (and continute to do so) in physical and mental wellbeing via regular workouts, meditation, journaling, traveling, and good food. My fulfilling non-work-life re-energized me for my work-life, and my work-life supported my non-work-life: a virtuous cycle. I automated the most time-consuming aspects of my business (outside of product development). Nowadays, I take long vacations and work at most 20 hours a week / a three-day work week . I decided to keep my business entirely owned and operated by me. It's the best fit for my work-style (high autonomy, deep focus, fast decision-making) and need to have full creative freedom and control. I dated and married a very supportive and inspiring partner. I try not to succumb to outrageous lifestyle creep, which keeps my living expenses low and drastically extends my burn-rate. Prescription To share some aphorisms I’ve leaned with the wantrepreneurs or those who want to follow a similar path: Maximize your at bats, because you only need one hit. Bias towards action. Launch quickly. Get your ideas out into the real world for feedback. Perfect is the enemy of good. If you keep swinging and improving, you'll hit the ball eventually. Keep the big picture in mind. You don't necessarily need a home-run to be happy: a base hit will often do the job. Think about what matters most to you in life: is it a lot of money or status? Or is it something more satisfying, and often just as if not more attainable, like freedom, loving relationships, or fulfillment? Is what you’re doing now a good way to get what you want? Or is there a better way? At more of a micro-level of "keep the big picture in mind", I often see talented wantrepreneurs get stuck in the weeds of lower-level optimizations, usually around technical design choices. They forget (or maybe subconsciously avoid) the higher-level and more important questions of customer development, user experience, and distribution. For example: “Are you solving a real problem?” or “Did you launch an MVP and what did your users think?” Adopt a growth mindset. Believe that you are capable of learning whatever you need to learn in order to do what you want to do. The pain of regret is worse than the pain of failure. I’ve noticed that fear of failure is the greatest thing holding people back from taking action towards their dreams. Unless failure means death in your case, a debilitating fear of failure is a surmountable mental block. You miss 100% of the shots you don't take. When all is said and done, we often regret the things we didn't do in life than the things we did. There’s more to life than just work. Blasphemous (at least among my social circle)! But the reality is that many of the dying regret having worked too much in their lives. As Miss Frizzle from The Magic Schoolbus says: "Take chances, make mistakes, get messy!" Original post

Looking for Innovators to Join my Stealth-Mode AI and Automation Startup
reddit
LLM Vibe Score0
Human Vibe Score1
Content-Shopping8791This week

Looking for Innovators to Join my Stealth-Mode AI and Automation Startup

Hi everyone, I’m currently working on building a stealth-mode startup that focuses on AI, automation, management consulting, and streamlining business processes. Right now, it’s just me working on this, and I’m looking for passionate, creative people to join me and help shape the future of the company. A bit about me: I’m from the UK and have a Business Management degree and an IT diploma, so I’ve got a good mix of business and tech knowledge to push this forward. I’m currently using tools like UiPath, Python, Make.com, Automation Anywhere, and others to create innovative solutions, but I’m not tied to these. I’m open to using any tools or technologies that fit the business and help us succeed. This is unpaid for now, but once we hit revenue targets, the plan is to transition into paid positions. If you’re excited about startups, innovation, and building something meaningful, this might be for you. I’m building AI-powered tools that solve real business problems, workflows to automate processes, and management consulting services to help businesses streamline and work smarter. It’s about combining tech innovation with business strategy to deliver something that really works. I’d love to work with people who have skills in things like Python, TensorFlow, UiPath, Automation Anywhere, web development (frontend, backend, or full-stack), or just a talent for improving workflows. If you’re great at problem-solving, strategy, or even just brainstorming new ideas, there’s a place for you. What’s in it for you? First off, you’ll get real-world experience in AI, automation, and consulting. You’ll also get the chance to help shape the company as part of the founding team and grow with it. Once the startup hits revenue goals, paid roles will follow. It’s flexible too, work remotely and set your own schedule. If this sounds interesting to you, just comment or send me a DM with a bit about your experience, any projects you’ve worked on, and how you think you could contribute to the startup. I’ll be running interviews soon to chat with people and see how we can work together. If you’re excited about joining a startup from the ground up, let’s connect. I’d love to hear from you.

What I learn from my $200 MRR App I built 4 months ago
reddit
LLM Vibe Score0
Human Vibe Score0.857
ricky0603This week

What I learn from my $200 MRR App I built 4 months ago

4 month ago, I am just a 10-years experienced product manager without any software development experience. I have an $3K/month job, but I am so tired, I don’t like my life, don’t like my boss, don’t like my daily work, that make me feeling I already died however I am still living. I yearn for freedom and want to live each day the way I want to. So I quit my job, and become a Indie developer to build my own business, my own app, even my own life. I am so grateful for this time and experience, now my app reach $200 MRR, still very little compared to my previous salary, but I never regret. I have learned lots of things from this time and experience, more than I had in last 10 years. Here is the time-line of my App: &#x200B; Sep 2023: Launch first version to iOS App store Oct 2023: Release in-app-purchase features and have first subscriber, the revenue in October is $154 Nov 2023: Change from subscription to pay per use, and I did lots of marketing jobs in November, however, the revenue reduced to only $40. Dec 2023: Change back to subscription, and stop some invalid marketing jobs, only keep the ones that actually work. I almost did nothing in December, and the revenue come to $243. During this process, I have learned lots of things, there are some of them that I think could help you as well. Web or App My App is an iOS app that only can running on Apple’s device such like iPhone/iPad or Mac with Apple silicon. Many people ask me why my product is an iOS app not a website, because they don’t have any Apple device. It's true that promoting an app is much harder than promoting a website. However I am now very glad I made an App and not a website! If I make a website, I don't think it's possible to make $100 in the first month. My App is about keyword research, to help people find some ideas from search keyword, because every keyword people searched in Google are representing a real need of them, also can be used in SEO field. However there are a lot of website tools about keyword research, some of them are famous like Ahrefs, SEMrush… I have no intention of competing with them. Actually I don’t have any chance. While in app store, there are little apps about keyword research, each of them have terrible data and user experience, that means if my app has better data and experience that could be my chance. In fact, the App store brings me 20 organic installs a day that Google would never have been able to bring me if I had a website, at least for the first few months. Furthermore, Apple nearly did everything for developer, I don’t need to care about user login, payment and so on, Apple did everything, I just need to call their API, that save lots of time, if I build a website, I need to implement login and payment by myself, that would add some extra work. Not to mention I'd need to buy servers and domains, that would cost me a lot of money. Although Apple will take 30% of the revenue, I can live with that in the early stages because the most important thing for me is to get the product to market as soon as possible. Actually thought Apple’s SMB program, the take rate is 15% now. So Web or App is not important in the early stage, time is important, if people need my product, it's easy to make a website one. More Users or More Valuable Users In November, I notice some users would like use my app, and they were meet paywall, but they never subscribe. I provided 7 day free trail, but it seem that they don’t like it. So I decide to change subscription to pay per use. Because as a user, I don’t like subscription as well, pay per use seem like more friendly. So I change from subscription to pay per use. People can afford $9.99 to subscribe monthly for unlimited use or pay $1.99 for each data they want(First purchase is $0.99 then $1.99). I was expecting more user to pay, but it was the complete opposite! Some users who would have paid a higher subscription fee are switching to a lower priced single payment. Users are encountering paywalls more often, and each time they need to make a decision about whether or not to pay, which increases the probability that they will abandon payment. This resulted in a 75% decrease in revenue in November. In fact, the mostly of my revenue comes from a handful of long-cycle subscribers, such as annual subscription. Few bring in most of the revenue, that is the most important thing I learned. You don't need a lot of customers, you just need more valuable ones. That's why it's only right to design a mechanism to filter out high-value customers and focus on them, all the things you want do is just let more people into the filter, and from that point of view, subscription with free trial period is the best way, even if most people don't like it. The rule of 20/80 will always be there. The most important thing is always focus on the 20 percent things and people. Effort does not always guarantee rewards. Unless one engages in deep thinking, or most efforts are invalid. I have been working very hard to promote my product for a period of time. It’s about in November. I did a lot of job, such as write script to send message to my potential clients on Fiverr, post and write comments on others post on Reddit, find related questions and answer them on Quora, post and comments on Twitte, etc. During that period, I was exhausted every day, but the outcome did not meet my expectations. There is only little growth on App installation, even less revenue than before. That make me frustrated. I finally realized that If I need to put in a tremendous amount of effort just to make a little progress, there is must something wrong. So I stop 80% of promote work I have ever did, only keep app store search ad, which will bring a installation with less than $0.5 cost. Then I dive into long time and deeply thinking, I spent more time on reading books, investigate other product with great MRR, watch interviews with people who are already living the kind of life I aspire to live, for example, u/levelsio. These things have given me great inspiration, and my life has become easier. It seems that the life I anticipated when I resigned is getting closer. I also have a clearer understanding of my app. Meanwhile, MRR has been growing. This experience let me learn that effort does not always guarantee results. Many times, our efforts are just wishful thinking, they are invalid, do the right thing after deeply thinking is more important. What Next? My goal is reach $3K MRR, as same as my job payment, I will never stop to building things, and I will keep my currently lifestyle. I still don't know how to get more people to use my app, but levelsio's interviews give me some inspiration that I can verified something by manually instead of build a software. I plan to launch a trend analysis product based on the keyword data provided by my current app. I have always wanted to combine AI to build such a product, but I didn't know how to do it. Now I intend to manually complete it first and start software development once there are paying users. If you are interested to my App, you could try it. Gotrends

[P] Building an Reinforcement Learning Agent to play The Legend of Zelda
reddit
LLM Vibe Score0
Human Vibe Score1
DarkAutumnThis week

[P] Building an Reinforcement Learning Agent to play The Legend of Zelda

A year go I started trying to use PPO to play the original Legend of Zelda, and I was able to train a model to beat the first boss after a few months of work. I wanted to share the project just for show and tell. I'd love to hear feedback and suggestions as this is just a hobby project. I don't do this for a living. The code for that lives in the original-design branch of my Triforce repo. I'm currently tinkering with new designs so the main branch is much less stable. Here's a video of the agent beating the first dungeon, which was trained with 5,000,000+ steps. At 38 seconds, you can see it learned that it's invulnerable at the screen edge, and it exploits that to avoid damage from a projectile. At 53 seconds it steps up to avoid damage from an unblockable projectile, even though it takes a -0.06 penalty for moving the wrong way (taking damage would be a larger penalty.) At 55 seconds it walks towards the rock projectile to block it. And so on, lots of little things the model does is easy to miss if you don't know the game inside and out. As a TLDR, here's an early version of my new (single) model. This doesn't make it quite as far, but if you watch closely it's combat is already far better, and is only trained on 320,000 steps (~6% of the steps the first model was trained on). This is pretty far along from my very first model. Original Design I got the original project working using stable-baselines's PPO and default neural network (Shared NatureCNN, I believe). SB was great to get started but ultimately stifling. In the new version of the project I've implemented PPO from scratch with torch with my own simple neural network similar to stable-baseline's default. I'm playing with all kinds of changes and designs now that I have more flexibility and control. Here is my rough original design: Overall Strategy My first pass through this project was basically "imagine playing Zelda with your older sibling telling you where to go and what to do". I give the model an objective vector which points to where I want it to go on the screen (as a bird flies, the agent still had to learn path finding to avoid damage and navigate around the map). This includes either point at the nearest enemy I want it to kill or a NSEW vector if it's supposed to move to the next room. Due a few limitations with stable-baselines (especially around action masking), I ended up training unique models for traversing the overworld vs the dungeon (since they have entirely different tilesets). I also trained a different model for when we have sword beams vs not. In the video above you can see what model is being used onscreen. In my current project I've removed this objective vector as it felt too much like cheating. Instead I give it a one-hot encoded objective (move north to the next room, pickup items, kill enemies, etc). So far it's working quite well without that crutch. The new project also does a much better job of combat even without multiple models to handle beams vs not. Observation/Action Space Image - The standard neural network had a really tough time being fed the entire screen. No amount of training seemed to help. I solved this by creating a viewport around Link that keeps him centered. This REALLY helped the model learn. I also had absolutely zero success with stacking frames to give Link a way to see enemy/projectile movement. The model simply never trained with stable-baselines when I implemented frame stacking and I never figured out why. I just added it to my current neural network and it seems to be working... Though my early experiments show that giving it 3 frames (skipping two in between, so frames curr, curr-3, curr-6) doesn't really give us that much better performance. It might if I took away some of the vectors. We'll see. Vectors - Since the model cannot see beyond its little viewport, I gave the model a vector to the closest item, enemy, and projectile onscreen. This made it so the model can shoot enemies across the room outside of its viewport. My new model gives it multiple enemies/items/projectiles and I plan to try to use an attention mechanism as part of the network to see if I can just feed it all of that data. Information - It also gets a couple of one-off datapoints like whether it currently has sword beams. The new model also gives it a "source" room (to help better understand dungeons where we have to backtrack), and a one-hot encoded objective. Action Space My original project just has a few actions, 4 for moving in the cardinal directions and 4 for attacking in each direction (I also added bombs but never spent any time training it). I had an idea to use masking to help speed up training. I.E. if link bumps into a wall, don't let him move in that direction again until he moves elsewhere, as the model would often spend an entire memory buffer running headlong straight into a wall before an update...better to do it once and get a huge negative penalty which is essentially the same result but faster. Unfortunately SB made it really annoying architecturally to pass that info down to the policy layer. I could have hacked it together, but eventually I just reimplemented PPO and my own neural network so I could properly mask actions in the new version. For example, when we start training a fresh model, it cannot attack when there aren't enemies on screen and I can disallow it from leaving certain areas. The new model actually understands splitting swinging the sword short range vs firing sword beams as two different actions, though I haven't yet had a chance to fully train with the split yet. Frameskip/Cooldowns - In the game I don't use a fixed frame skip for actions. Instead I use the internal ram state of game to know when Link is animation locked or not and only allow the agent to take actions when it's actually possible to give meaningful input to the game. This greatly sped up training. We also force movement to be between tiles on the game map. This means that when the agent decides to move it loses control for longer than a player would...a player can make more split second decisions. This made it easier to implement movement rewards though and might be something to clean up in the future. Other interesting details Pathfinding - To facilitate rewards, the original version of this project used A* to pathfind from link to what he should be doing. Here's a video of it in action. This information wasn't giving to the model directly but instead the agent would only be given the rewards if it exactly followed that path or the transposed version of it. It would also pathfind around enemies and not walk through them. This was a nightmare though. The corner cases were significant, and pushing Link towards enemies but not into them was really tricky. The new verison just uses a wavefront algorithm. I calculate a wave from the tiles we want to get to outwards, then make sure we are following the gradient. Also calculating the A* around enemies every frame (even with caching) was super slow. Wavefront was faster, especially because I give the new model no special rewards for walking around enemies...faster to compute and it has to learn from taking damage or not. Either way, the both the old and new models successfully learned how to pathfind around danger and obstacles, with or without the cheaty objective vector. Rewards - I programmed very dense rewards in both the old and new model. At basically every step, the model is getting rewarded or punished for something. I actually have some ideas I can't wait to try out to make the rewards more sparse. Or maybe we start with dense rewards for the first training, then fine-tune the model with sparser rewards. We'll see. Predicting the Future - Speaking of rewards. One interesting wrinkle is that the agent can do a lot of things that will eventually deal damage but not on that frame. For example, when Link sets a bomb it takes several seconds before it explodes, killing things. This can be a massive reward or penalty since he spent an extremely valuable resource, but may have done massive damage. PPO and other RL propagates rewards backwards, of course, but that spike in reward could land on a weird frame where we took damage or moved in the wrong direction. I probably could have just not solved that problem and let it shake out over time, but instead I used the fact that we are in an emulator to just see what the outcome of every decision is. When planting a bomb, shooting sword beams, etc, we let the game run forward until impact, then rewind time and reward the agent appropriately, continuing on from when we first paused. This greatly speeds up training, even if it's expensive to do this savestate, play forward, restore state. Neural Networks - When I first started this project (knowing very little about ML and RL), I thought most of my time would be tuning the shape of the neural network that we are using. In reality, the default provided by stable-baselines and my eventual reimplemnentation has been enough to make massive progress. Now that I have a solid codebase though, I really want to revisit this. I'd like to see if trying CoordConvs and similar networks might make the viewport unncessary. Less interesting details/thoughts Hyperparameters - Setting the entropy coefficinet way lower helped a TON in training stable models. My new PPO implementation is way less stable than stable-baselines (ha, imagine that), but still converges most of the time. Infinite Rewards - As with all reinforcement learning, if you give some way for the model to get infinite rewards, it will do just that and nothing else. I spent days, or maybe weeks tweaking reward functions to just get it to train and not find a spot on the wall it could hump for infinite rewards. Even just neutral rewards, like +0.5 moving forward and -0.5 for moving backwards, would often result in a model that just stepped left, then right infinitely. There has to be a real reward or punishment (non-neutral) for forward progress. Debugging Rewards - In fact, building a rewards debugger was the only way I made progress in this project. If you are tackling something this big, do that very early. Stable-Retro is pretty great - Couldn't be happier with the clean design for implementing emulation for AI. Torch is Awesome - My early versions heavily used numpy and relied on stable-baselines, with its multiproc parallelization support. It worked great. Moving the project over to torch was night and day though. It gave me so much more flexibility, instant multithreading for matrix operations. I have a pretty beefy computer and I'm almost at the same steps per second as 20 proc stable-retro/numpy. Future Ideas This has already gone on too long. I have some ideas for future projects, but maybe I'll just make them another post when I actually do them. Special Thanks A special thanks to Brad Flaugher for help with the early version of this, Fiskbit from the Zelda1 speedrunning community for help pulling apart the raw assembly to build this thing, and MatPoliquin for maintaining Stable-Retro. Happy to answer any questions, really I just love nerding out about this stuff.

[D] Why I'm Lukewarm on Graph Neural Networks
reddit
LLM Vibe Score0
Human Vibe Score0.6
VodkaHazeThis week

[D] Why I'm Lukewarm on Graph Neural Networks

TL;DR: GNNs can provide wins over simpler embedding methods, but we're at a point where other research directions matter more I also posted it on my blog here, has footnotes, a nicer layout with inlined images, etc. I'm only lukewarm on Graph Neural Networks (GNNs). There, I said it. It might sound crazy GNNs are one of the hottest fields in machine learning right now. [There][1] were at least [four][2] [review][3] [papers][4] just in the last few months. I think some progress can come of this research, but we're also focusing on some incorrect places. But first, let's take a step back and go over the basics. Models are about compression We say graphs are a "non-euclidean" data type, but that's not really true. A regular graph is just another way to think about a particular flavor of square matrix called the [adjacency matrix][5], like this. It's weird, we look at run-of-the-mill matrix full of real numbers and decide to call it "non-euclidean". This is for practical reasons. Most graphs are fairly sparse, so the matrix is full of zeros. At this point, where the non-zero numbers are matters most, which makes the problem closer to (computationally hard) discrete math rather than (easy) continuous, gradient-friendly math. If you had the full matrix, life would be easy If we step out of the pesky realm of physics for a minute, and assume carrying the full adjacency matrix around isn't a problem, we solve a bunch of problems. First, network node embeddings aren't a thing anymore. A node is a just row in the matrix, so it's already a vector of numbers. Second, all network prediction problems are solved. A powerful enough and well-tuned model will simply extract all information between the network and whichever target variable we're attaching to nodes. NLP is also just fancy matrix compression Let's take a tangent away from graphs to NLP. Most NLP we do can be [thought of in terms of graphs][6] as we'll see, so it's not a big digression. First, note that Ye Olde word embedding models like [Word2Vec][7] and [GloVe][8] are [just matrix factorization][9]. The GloVe algorithm works on a variation of the old [bag of words][10] matrix. It goes through the sentences and creates a (implicit) [co-occurence][11] graph where nodes are words and the edges are weighed by how often the words appear together in a sentence. Glove then does matrix factorization on the matrix representation of that co-occurence graph, Word2Vec is mathematically equivalent. You can read more on this in my [post on embeddings][12] and the one (with code) on [word embeddings][13]. Even language models are also just matrix compression Language models are all the rage. They dominate most of the [state of the art][14] in NLP. Let's take BERT as our main example. BERT predicts a word given the context of the rest of the sentence. This grows the matrix we're factoring from flat co-occurences on pairs of words to co-occurences conditional on the sentence's context, like this We're growing the "ideal matrix" we're factoring combinatorially. As noted by [Hanh & Futrell][15]: [...] human language—and language modelling—has infinite statistical complexity but that it can be approximated well at lower levels. This observation has two implications: 1) We can obtain good results with comparatively small models; and 2) there is a lot of potential for scaling up our models. Language models tackle such a large problem space that they probably approximate a compression of the entire language in the [Kolmogorov Complexity][16] sense. It's also possible that huge language models just [memorize a lot of it][17] rather than compress the information, for what it's worth. Can we upsample any graph like language models do? We're already doing it. Let's call a first-order embedding of a graph a method that works by directly factoring the graph's adjacency matrix or [Laplacian matrix][18]. If you embed a graph using [Laplacian Eigenmaps][19] or by taking the [principal components][20] of the Laplacian, that's first order. Similarly, GloVe is a first-order method on the graph of word co-occurences. One of my favorites first order methods for graphs is [ProNE][21], which works as well as most methods while being two orders of magnitude faster. A higher-order method embeds the original matrix plus connections of neighbours-of-neighbours (2nd degree) and deeper k-step connections. [GraRep][22], shows you can always generate higher-order representations from first order methods by augmenting the graph matrix. Higher order method are the "upsampling" we do on graphs. GNNs that sample on large neighborhoods and random-walk based methods like node2vec are doing higher-order embeddings. Where are the performance gain? Most GNN papers in the last 5 years present empirical numbers that are useless for practitioners to decide on what to use. As noted in the [OpenGraphsBenchmark][4] (OGB) paper, GNN papers do their empirical section on a handful of tiny graphs (Cora, CiteSeer, PubMed) with 2000-20,000 nodes. These datasets can't seriously differentiate between methods. Recent efforts are directly fixing this, but the reasons why researchers focused on tiny, useless datasets for so long are worth discussing. Performance matters by task One fact that surprises a lot of people is that even though language models have the best performance in a lot of NLP tasks, if all you're doing is cram sentence embeddings into a downstream model, there [isn't much gained][23] from language models embeddings over simple methods like summing the individual Word2Vec word embeddings (This makes sense, because the full context of the sentence is captured in the sentence co-occurence matrix that is generating the Word2Vec embeddings). Similarly, [I find][24] that for many graphs simple first-order methods perform just as well on graph clustering and node label prediction tasks than higher-order embedding methods. In fact higher-order methods are massively computationally wasteful for these usecases. Recommended first order embedding methods are ProNE and my [GGVec with order=1][25]. Higher order methods normally perform better on the link prediction tasks. I'm not the only one to find this. In the BioNEV paper, they find: "A large GraRep order value for link prediction tasks (e.g. 3, 4);a small value for node classification tasks (e.g.1, 2)" (p.9). Interestingly, the gap in link prediction performance is inexistant for artificially created graphs. This suggests higher order methods do learn some of the structure intrinsic to [real world graphs][26]. For visualization, first order methods are better. Visualizations of higher order methods tend to have artifacts of their sampling. For instance, Node2Vec visualizations tend to have elongated/filament-like structures which come from the embeddings coming from long single strand random walks. See the following visualizations by [Owen Cornec][27] created by first embedding the graph to 32-300 dimensions using a node embedding algorithm, then mapping this to 2d or 3d with the excellent UMAP algorithm, like this Lastly, sometimes simple methods soundly beat higher order methods (there's an instance of it in the OGB paper). The problem here is that we don't know when any method is better than another and we definitely don't know the reason. There's definitely a reason different graph types respond better/worse to being represented by various methods. This is currently an open question. A big part of why is that the research space is inundated under useless new algorithms because... Academic incentives work against progress Here's the cynic's view of how machine learning papers are made: Take an existing algorithm Add some new layer/hyperparameter, make a cute mathematical story for why it matters Gridsearch your hyperparameters until you beat baselines from the original paper you aped Absolutely don't gridsearch stuff you're comparing against in your results section Make a cute ACRONYM for your new method, put impossible to use python 2 code on github (Or no code at all!) and bask in the citations I'm [not][28] the [only one][29] with these views on the state reproducible research. At least it's gotten slightly better in the last 2 years. Sidebar: I hate Node2Vec A side project of mine is a [node embedding library][25] and the most popular method in it is by far Node2Vec. Don't use Node2Vec. [Node2Vec][30] with p=1; q=1 is the [Deepwalk][31] algorithm. Deepwalk is an actual innovation. The Node2Vec authors closely followed the steps 1-5 including bonus points on step 5 by getting word2vec name recognition. This is not academic fraud -- the hyperparameters [do help a tiny bit][32] if you gridsearch really hard. But it's the presentable-to-your-parents sister of where you make the ML community worse off to progress your academic career. And certainly Node2Vec doesn't deserve 7500 citations. Progress is all about practical issues We've known how to train neural networks for well over 40 years. Yet they only exploded in popularity with [AlexNet][33] in 2012. This is because implementations and hardware came to a point where deep learning was practical. Similarly, we've known about factoring word co-occurence matrices into Word embeddings for at least 20 years. But word embeddings only exploded in 2013 with Word2Vec. The breakthrough here was that the minibatch-based methods let you train a Wikipedia-scale embedding model on commodity hardware. It's hard for methods in a field to make progress if training on a small amount of data takes days or weeks. You're disincentivized to explore new methods. If you want progress, your stuff has to run in reasonable time on commodity hardware. Even Google's original search algorithm [initially ran on commodity hardware][34]. Efficiency is paramount to progress The reason deep learning research took off the way it did is because of improvements in [efficiency][35] as well as much better libraries and hardware support. Academic code is terrible Any amount of time you spend gridsearching Node2Vec on p and q is all put to better use gridsearching Deepwalk itself (on number of walks, length of walks, or word2vec hyperparameters). The problem is that people don't gridsearch over deepwalk because implementations are all terrible. I wrote the [Nodevectors library][36] to have a fast deepwalk implementation because it took 32 hours to embed a graph with a measly 150,000 nodes using the reference Node2Vec implementation (the same takes 3min with Nodevectors). It's no wonder people don't gridsearch on Deepwalk a gridsearch would take weeks with the terrible reference implementations. To give an example, in the original paper of [GraphSAGE][37] they their algorithm to DeepWalk with walk lengths of 5, which is horrid if you've ever hyperparameter tuned a deepwalk algorithm. From their paper: We did observe DeepWalk’s performance could improve with further training, and in some cases it could become competitive with the unsupervised GraphSAGE approaches (but not the supervised approaches) if we let it run for >1000× longer than the other approaches (in terms of wall clock time for prediction on the test set) I don't even think the GraphSAGE authors had bad intent -- deepwalk implementations are simply so awful that they're turned away from using it properly. It's like trying to do deep learning with 2002 deep learning libraries and hardware. Your architectures don't really matter One of the more important papers this year was [OpenAI's "Scaling laws"][38] paper, where the raw number of parameters in your model is the most predictive feature of overall performance. This was noted even in the original BERT paper and drives 2020's increase in absolutely massive language models. This is really just [Sutton' Bitter Lesson][39] in action: General methods that leverage computation are ultimately the most effective, and by a large margin Transformers might be [replacing convolution][40], too. As [Yannic Kilcher said][41], transformers are ruining everything. [They work on graphs][6], in fact it's one of the [recent approaches][42], and seems to be one of the more succesful [when benchmarked][1] Researchers seem to be putting so much effort into architecture, but it doesn't matter much in the end because you can approximate anything by stacking more layers. Efficiency wins are great -- but neural net architectures are just one way to achieve that, and by tremendously over-researching this area we're leaving a lot of huge gains elsewhere on the table. Current Graph Data Structure Implementations suck NetworkX is a bad library. I mean, it's good if you're working on tiny graphs for babies, but for anything serious it chokes and forces you to rewrite everything in... what library, really? At this point most people working on large graphs end up hand-rolling some data structure. This is tough because your computer's memory is a 1-dimensional array of 1's and 0's and a graph has no obvious 1-d mapping. This is even harder when we take updating the graph (adding/removing some nodes/edges) into account. Here's a few options: Disconnected networks of pointers NetworkX is the best example. Here, every node is an object with a list of pointers to other nodes (the node's edges). This layout is like a linked list. Linked lists are the [root of all performance evil][43]. Linked lists go completely against how modern computers are designed. Fetching things from memory is slow, and operating on memory is fast (by two orders of magnitude). Whenever you do anything in this layout, you make a roundtrip to RAM. It's slow by design, you can write this in Ruby or C or assembly and it'll be slow regardless, because memory fetches are slow in hardware. The main advantage of this layout is that adding a new node is O(1). So if you're maintaining a massive graph where adding and removing nodes happens as often as reading from the graph, it makes sense. Another advantage of this layout is that it "scales". Because everything is decoupled from each other you can put this data structure on a cluster. However, you're really creating a complex solution for a problem you created for yourself. Sparse Adjacency Matrix This layout great for read-only graphs. I use it as the backend in my [nodevectors][25] library, and many other library writers use the [Scipy CSR Matrix][44], you can see graph algorithms implemented on it [here][45]. The most popular layout for this use is the [CSR Format][46] where you have 3 arrays holding the graph. One for edge destinations, one for edge weights and an "index pointer" which says which edges come from which node. Because the CSR layout is simply 3 arrays, it scales on a single computer: a CSR matrix can be laid out on a disk instead of in-memory. You simply [memory map][47] the 3 arrays and use them on-disk from there. With modern NVMe drives random seeks aren't slow anymore, much faster than distributed network calls like you do when scaling the linked list-based graph. I haven't seen anyone actually implement this yet, but it's in the roadmap for my implementation at least. The problem with this representation is that adding a node or edge means rebuilding the whole data structure. Edgelist representations This representation is three arrays: one for the edge sources, one for the edge destinations, and one for edge weights. [DGL][48] uses this representation internally. This is a simple and compact layout which can be good for analysis. The problem compared to CSR Graphs is some seek operations are slower. Say you want all the edges for node #4243. You can't jump there without maintaining an index pointer array. So either you maintain sorted order and binary search your way there (O(log2n)) or unsorted order and linear search (O(n)). This data structure can also work on memory mapped disk array, and node append is fast on unsorted versions (it's slow in the sorted version). Global methods are a dead end Methods that work on the entire graph at once can't leverage computation, because they run out of RAM at a certain scale. So any method that want a chance of being the new standard need to be able to update piecemeal on parts of the graph. Sampling-based methods Sampling Efficiency will matter more in the future Edgewise local methods. The only algorithms I know of that do this are GloVe and GGVec, which they pass through an edge list and update embedding weights on each step. The problem with this approach is that it's hard to use them for higher-order methods. The advantage is that they easily scale even on one computer. Also, incrementally adding a new node is as simple as taking the existing embeddings, adding a new one, and doing another epoch over the data Random Walk sampling. This is used by deepwalk and its descendants, usually for node embeddings rather than GNN methods. This can be computationally expensive and make it hard to add new nodes. But this does scale, for instance [Instagram][49] use it to feed their recommendation system models Neighbourhood sampling. This is currently the most common one in GNNs, and can be low or higher order depending on the neighborhood size. It also scales well, though implementing efficiently can be challenging. It's currently used by [Pinterest][50]'s recommendation algorithms. Conclusion Here are a few interesting questions: What is the relation between graph types and methods? Consolidated benchmarking like OGB We're throwing random models at random benchmarks without understanding why or when they do better More fundamental research. Heree's one I'm curious about: can other representation types like [Poincarre Embeddings][51] effectively encode directed relationships? On the other hand, we should stop focusing on adding spicy new layers to test on the same tiny datasets. No one cares. [1]: https://arxiv.org/pdf/2003.00982.pdf [2]: https://arxiv.org/pdf/2002.11867.pdf [3]: https://arxiv.org/pdf/1812.08434.pdf [4]: https://arxiv.org/pdf/2005.00687.pdf [5]: https://en.wikipedia.org/wiki/Adjacency_matrix [6]: https://thegradient.pub/transformers-are-graph-neural-networks/ [7]: https://en.wikipedia.org/wiki/Word2vec [8]: https://nlp.stanford.edu/pubs/glove.pdf [9]: https://papers.nips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf [10]: https://en.wikipedia.org/wiki/Bag-of-words_model [11]: https://en.wikipedia.org/wiki/Co-occurrence [12]: https://www.singlelunch.com/2020/02/16/embeddings-from-the-ground-up/ [13]: https://www.singlelunch.com/2019/01/27/word-embeddings-from-the-ground-up/ [14]: https://nlpprogress.com/ [15]: http://socsci.uci.edu/~rfutrell/papers/hahn2019estimating.pdf [16]: https://en.wikipedia.org/wiki/Kolmogorov_complexity [17]: https://bair.berkeley.edu/blog/2020/12/20/lmmem/ [18]: https://en.wikipedia.org/wiki/Laplacian_matrix [19]: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1F03130B02DC485C78BF364266B6F0CA?doi=10.1.1.19.8100&rep=rep1&type=pdf [20]: https://en.wikipedia.org/wiki/Principalcomponentanalysis [21]: https://www.ijcai.org/Proceedings/2019/0594.pdf [22]: https://dl.acm.org/doi/10.1145/2806416.2806512 [23]: https://openreview.net/pdf?id=SyK00v5xx [24]: https://github.com/VHRanger/nodevectors/blob/master/examples/link%20prediction.ipynb [25]: https://github.com/VHRanger/nodevectors [26]: https://arxiv.org/pdf/1310.2636.pdf [27]: http://byowen.com/ [28]: https://arxiv.org/pdf/1807.03341.pdf [29]: https://www.youtube.com/watch?v=Kee4ch3miVA [30]: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf [31]: https://arxiv.org/pdf/1403.6652.pdf [32]: https://arxiv.org/pdf/1911.11726.pdf [33]: https://en.wikipedia.org/wiki/AlexNet [34]: https://en.wikipedia.org/wiki/Googledatacenters#Original_hardware [35]: https://openai.com/blog/ai-and-efficiency/ [36]: https://www.singlelunch.com/2019/08/01/700x-faster-node2vec-models-fastest-random-walks-on-a-graph/ [37]: https://arxiv.org/pdf/1706.02216.pdf [38]: https://arxiv.org/pdf/2001.08361.pdf [39]: http://incompleteideas.net/IncIdeas/BitterLesson.html [40]: https://arxiv.org/abs/2010.11929 [41]: https://www.youtube.com/watch?v=TrdevFK_am4 [42]: https://arxiv.org/pdf/1710.10903.pdf [43]: https://www.youtube.com/watch?v=fHNmRkzxHWs [44]: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html [45]: https://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html [46]: https://en.wikipedia.org/wiki/Sparsematrix#Compressedsparserow(CSR,CRSorYaleformat) [47]: https://en.wikipedia.org/wiki/Mmap [48]: https://github.com/dmlc/dgl [49]: https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/ [50]: https://medium.com/pinterest-engineering/pinsage-a-new-graph-convolutional-neural-network-for-web-scale-recommender-systems-88795a107f48 [51]: https://arxiv.org/pdf/1705.08039.pdf

[P] [R] sANNd: A New Neural Network Framework Using Trainable Iterators
reddit
LLM Vibe Score0
Human Vibe Score1
JackRipperVAThis week

[P] [R] sANNd: A New Neural Network Framework Using Trainable Iterators

sANNd sANNd is a lightweight, modular neural network library designed as a sandbox for experimenting with new ideas in artificial intelligence. The Mould Class: A Pythonic Building Block The Mould class is a core component of sANNd. It provides a Pythonic way to apply functions to data that’s bundled inside objects: Encapsulated Variables: Each Mould object holds a set of variables (for example, weights or parameters) inside it. This means related data is kept together in one place (the object), making the code organized and intuitive. Static Functions: A Mould class defines its operation as a static method – essentially a function that isn’t tied to a specific instance. This static function takes in inputs (and possibly other Mould objects’ variables) and produces an output. In simple terms, the Mould’s static method describes how to transform input data using the Mould’s internal variables. Pythonic Usage: Using static methods in this way is a clean, Pythonic design. You call the Mould’s function through the class, but it applies to the data in the object. This approach lets you clearly separate what the operation is (the logic in the static function) from which data it uses (the variables inside the Mould instance). Example: Imagine a Mould class called LinearMould that has a static function to compute a linear transformation (like y = W*x + b). An instance of LinearMould would hold specific W and b values, and you’d use the static method to apply that linear formula to an input. This gives you the convenience of object-oriented design (encapsulating W and b) with the clarity of a standalone function defining the math. Chaining Moulds for Complex Computations Moulds become even more powerful when you chain them together. You can connect multiple Moulds so that the output of one becomes the input of the next: Sequential Operations: Just like stacking layers in a neural network, you can place Moulds in sequence. For example, you might take the output from LinearMouldA and feed it into LinearMouldB. In code, this might look as simple as using the output of one call as the argument to the next. The design of sANNd makes this straightforward – the static function of each Mould knows how to handle the data coming in. Building Pipelines: By chaining Moulds, you create a pipeline of transformations. Each Mould handles one step of computation, and together they produce a final result. This could represent a multi-layer neural network, a data processing pipeline, or any custom sequence of operations you need. There’s no strict limit to how you can chain them; you have the freedom to combine Moulds in any order that makes sense for your experiment. Clarity and Modularity: Because each Mould is a self-contained piece (with its variables and function), chaining them doesn’t turn your code into a black box. You can inspect or modify any part of the chain easily. This modular design means you can insert, remove, or replace Moulds to see how it affects the overall computation, which is great for experimentation. Implicit Backward Path (Automatic Backpropagation) One major benefit of using chained Moulds is that they implicitly define the backward path for training with gradient descent (backpropagation): Automatic Gradient Flow: When you connect Moulds in a sequence for a forward pass (input → Mould A → Mould B → output), you’ve essentially defined a computation graph. sANNd uses this graph to handle the reverse computation automatically. In other words, if you calculate an error or loss based on the final output, sANNd can propagate that error backwards through each Mould in the chain. No Manual Backprop: You do not need to manually code how gradients flow through each Mould. The way you set up the Moulds’ static functions already determines how outputs depend on inputs and internal variables. sANNd leverages that to perform backpropagation. This is similar in spirit to how libraries like PyTorch/TF do “autograd,” but here it’s a natural result of the Mould chain architecture. Gradient Descent Ready: Because the backward path is established by the forward connections, you can apply gradient descent optimizations out of the box. For instance, you can adjust the weights inside each Mould based on the computed gradients to minimize your loss. The design ensures that each Mould’s contribution to the final error is tracked, so all parts of your model learn appropriately during training. In short, defining your model with Moulds means you get training capability for free. You focus on describing the forward computations, and sANNd handles the math behind learning from errors. Comparing sANNd to Traditional Frameworks sANNd’s approach is quite different from traditional Python-based neural network frameworks. Here’s how it stacks up against frameworks like TensorFlow, PyTorch, or Keras in terms of approach, flexibility, and intended use: Design Approach: Traditional frameworks use predefined layer classes and often build a computation graph behind the scenes. For example, Keras might have a Dense layer class, and TensorFlow might construct a static graph (in TF1) or use eager execution (in TF2). sANNd takes a simpler approach – it uses plain Python classes and static functions (Moulds) to define computations. There’s no need to learn a new graph syntax or decorators; if you know Python functions and classes, you can read and write sANNd models. This makes the internal workings more transparent and easier to follow. Flexibility: While frameworks like PyTorch and TensorFlow are very powerful, they can introduce a lot of boilerplate and assume you’re building typical architectures. sANNd is extremely modular and flexible. You aren’t limited to the layers someone else defined – you can create any operation you want as a Mould. Want to experiment with a novel activation function or a custom recurrent connection? Just define it in a Mould. There’s less magic and abstraction obscuring your code, so unconventional model structures are easier to implement. (Of course, major frameworks can also be extended, but sANNd makes this feel more natural by staying within standard Python paradigms.) Intended Use: sANNd is intended for experimentation and research. It’s like a toolkit for tinkering. You get fine-grained control over every part of the network, which is ideal for trying out bold new ideas that don’t fit the mold of common deep learning models. In contrast, TensorFlow/PyTorch shine in production environments and large-scale training – they are optimized (GPU support, highly efficient tensor operations) and come with many utilities for things like data loading, distributed training, etc. sANNd doesn’t aim to replace them for those heavy-lifting tasks. Instead, it’s meant for when you need a lighter, more interpretable setup to prototype concepts. You might use sANNd to prove out a concept or test a hypothesis in AI research, and later switch to a bigger framework if you need to scale it up. Simplicity vs. Complexity: By design, sANNd keeps things simple. The trade-off is that it might not have the raw performance optimizations of the large frameworks. However, this simplicity is a feature – it means the code is easier to understand and modify. For many research scenarios, being able to quickly tweak an idea is more important than squeezing out maximum speed. Traditional frameworks, with their complexity, can sometimes be harder to adapt for radically different ideas (you might find yourself fighting the framework). With sANNd, the framework gets out of your way as much as possible. Modular and Experimental by Nature One of the driving philosophies of sANNd is to be modular and experimental, to further ML research: Modularity: sANNd is built from small, composable pieces. The Mould class is one such piece, and you can imagine building additional components in a similar spirit. This modular design means you can re-use components, mix and match them, or replace one implementation with another without affecting the rest of your system. It’s like having a box of building blocks for neural networks – you can assemble them in standard ways or in completely novel configurations. Experimentation Friendly: Because it avoids heavy abstraction, sANNd lets you directly see and control what’s happening at each step. This is great for research, where you might need to observe intermediate results, inject custom behavior, or adjust the learning process on the fly. sANNd’s straightforward structure (Python objects and functions) makes such interventions possible. You’re not constrained to a fixed training loop or forced to use certain layer types. True Intelligence Research: Achieving “True Intelligence” (often related to artificial general intelligence or other forms of broader AI) may require going beyond the usual neural network designs. sANNd aims to be a playground for these ideas. Its flexibility allows researchers to integrate unconventional elements — be it new memory structures, dynamic connection patterns, or hybrid models that combine symbolic and neural approaches. You can use sANNd to prototype these offbeat ideas quickly. In essence, it’s easier to test “what if we try this?” scenarios with sANNd than with more rigid frameworks. In summary, sANNd’s unique Mould class and design philosophy offer a fresh take on building neural networks. It emphasizes clarity, composability, and flexibility, allowing you to focus on creativity and understanding. Whether you’re stacking simple Moulds into a deep model, or inventing a completely new form of network, sANNd provides a friendly foundation. It’s not here to dethrone TensorFlow or PyTorch in industry applications – instead, it’s here to give researchers and enthusiasts a more malleable tool for exploring the frontiers of AI. Enjoy using sANNd as your neural network sandbox, and happy experimenting!

[D] Advanced courses update
reddit
LLM Vibe Score0
Human Vibe Score1
actbshThis week

[D] Advanced courses update

EDIT Jan 2021 : I am still updating the list as of Jan, 2021 and will most probably continue to do so for foreseeable future. So, please feel free to message me any courses you find interesting that fit here. - - We have a PhD level or Advanced courses thread in the sidebar but it's three year old now. There were two other 7-8 month old threads (1, 2) but they don't have many quality responses either. So, can we have a new one here? To reiterate - CS231n, CS229, ones from Udemy etc are not advanced. Advanced ML/DL/RL, attempts at building theory of DL, optimization theory, advanced applications etc are some examples of what I believe should belong here, much like the original sidebar post. You can also suggest (new) categories for the courses you share. :) - - Here are some courses we've found so far. ML >> Learning Discrete Latent Structure - sta4273/csc2547 Spring'18 Learning to Search - csc2547 Fall'19 Scalable and Flexible Models of Uncertainty - csc2541 Fundamentals of Machine Learning Over Networks - ep3260 Machine Learning on Graphs - cs224w, videos Mining Massive Data Sets - cs246 Interactive Learning - cse599 Machine Learning for Sequential Decision Making Under Uncertainty - ee290s/cs194 Probabilistic Graphical Methods - 10-708 Introduction to Causal Inference ML >> Theory Statistical Machine Learning - 10-702/36-702 with videos, 2016 videos Statistical Learning Theory - cs229T/stats231 Stanford Autumn'18-19 Statistical Learning Theory - cs281b /stat241b UC Berkeley, Spring'14 Statistical Learning Theory - csc2532 Uni of Toronto, Spring'20 ML >> Bayesian Bayesian Data Analysis Bayesian Methods Research Group, Moscow, Bayesian Methods in ML - spring2020, fall2020 Deep Learning and Bayesian Methods - summer school, videos available for 2019 version ML >> Systems and Operations Stanford MLSys Seminar Series Visual Computing Systems- cs348v - Another systems course that discusses hardware from a persepective of visual computing but is relevant to ML as well Advanced Machine Learning Systems - cs6787 - lecture 9 and onwards discuss hardware side of things Machine Learning Systems Design - cs329S Topics in Deployable ML - 6.S979 Machine Learning in Production / AI Engineering (17-445/17-645/17-745/11-695) AutoML - Automated Machine Learning DL >> Deep Unsupervised Learning - cs294 Deep Multi-task and Meta learning - cs330 Topics in Deep Learning - stat991 UPenn/Wharton most chapters start with introductory topics and dig into advanced ones towards the end. Deep Generative Models - cs236 Deep Geometric Learning of Big Data and Applications Deep Implicit Layers - NeurIPS 2020 tutorial DL >> Theory Topics course on Mathematics of Deep Learning - CSCI-GA 3033 Topics Course on Deep Learning - stat212b Analyses of Deep Learning - stats385, videos from 2017 version Mathematics of Deep Learning Geometry of Deep Learning RL >> Meta-Learning - ICML 2019 Tutorial , Metalearning: Applications to Data Mining - google books link Deep Multi-Task and Meta Learning - cs330, videos Deep Reinforcement Learning - cs285 Advanced robotics - cs287 Reinforcement Learning - cs234, videos for 2019 run Reinforcement Learning Summer School 2019: Bandits, RL & Deep RL Optimization >> Convex Optimization I - ee364a, has quite recent videos too. Convex Optimization II - ee364b, 2008 videos Convex Optimization and Approximation - ee227c Convex Optimization - ee227bt Variational Methods for Computer Vision Advanced Optimization and Randomized Algorithms - 10-801, videos Optimization Methods for Machine Learning and Engineering - Karlsruhe Institute of Technology Applications >> Computer Vision Computational Video Manipulation - cs448v Advanced Topics in ML: Modeling and Segmentation of Multivariate Mixed Data TUM AI Guest lecture series - many influential researchers in DL, vision, graphics talk about latest advances and their latest works. Advanced Deep Learning for Computer Vision - TUM ADL4CV Detection, Segmentation and Tracking - TUM CV3DST Guest lectures at TUM Dynamic Vision and Learning group Vision Seminar at MIT Autonomous Vision Group, Talk@Tübingen Seminar Applications >> Natural Language Processing Natural Language Processing with Deep Learning - cs224n ( not sure if it belongs here, people working in NLP can help me out) Neural networks for NLP - cs11-747 Natural Language Understanding - cs224u, video Applications >> 3D Graphics Non-Euclidean Methods in Machine Learning - cs468, 2020 Machine Learning for 3D Data - cs468, spring 2017 Data-Driven Shape Analysis - cs468, 2014 Geometric Deep Learning - Not a course but the website links a few tutorials on Geometric DL Deep Learning for Computer Graphics - SIGGRAPH 2019 Machine Learning for Machine Vision as Inverse Graphics - csc2547 Winter'20 Machine Learning Meets Geometry, winter 2020; Machine Learning for 3D Data, winter 2018 Edit: Upon suggestion, categorized the courses. There might be some misclassifications as I'm not trained on this task ;). Added some good ones from older (linked above) discussions.

[P] The Big Sleep: Text-to-image generation using BigGAN and OpenAI's CLIP via a Google Colab notebook from Twitter user Adverb
reddit
LLM Vibe Score0
Human Vibe Score0.333
WiskkeyThis week

[P] The Big Sleep: Text-to-image generation using BigGAN and OpenAI's CLIP via a Google Colab notebook from Twitter user Adverb

From https://twitter.com/advadnoun/status/1351038053033406468: The Big Sleep Here's the notebook for generating images by using CLIP to guide BigGAN. It's very much unstable and a prototype, but it's also a fair place to start. I'll likely update it as time goes on. colab.research.google.com/drive/1NCceX2mbiKOSlAd\o7IU7nA9UskKN5WR?usp=sharing I am not the developer of The Big Sleep. This is the developer's Twitter account; this is the developer's Reddit account. Steps to follow to generate the first image in a given Google Colab session: Optionally, if this is your first time using Google Colab, view this Colab introduction and/or this Colab FAQ. Click this link. Sign into your Google account if you're not already signed in. Click the "S" button in the upper right to do this. Note: Being signed into a Google account has privacy ramifications, such as your Google search history being recorded in your Google account. In the Table of Contents, click "Parameters". Find the line that reads "tx = clip.tokenize('''a cityscape in the style of Van Gogh''')" and change the text inside of the single quote marks to your desired text; example: "tx = clip.tokenize('''a photo of New York City''')". The developer recommends that you keep the three single quote marks on both ends of your desired text so that mult-line text can be used An alternative is to remove two of the single quotes on each end of your desired text; example: "tx = clip.tokenize('a photo of New York City')". In the Table of Contents, click "Restart the kernel...". Position the pointer over the first cell in the notebook, which starts with text "import subprocess". Click the play button (the triangle) to run the cell. Wait until the cell completes execution. Click menu item "Runtime->Restart and run all". In the Table of Contents, click "Diagnostics". The output appears near the end of the Train cell that immediately precedes the Diagnostics cell, so scroll up a bit. Every few minutes (or perhaps 10 minutes if Google assigned you relatively slow hardware for this session), a new image will appear in the Train cell that is a refinement of the previous image. This process can go on for as long as you want until Google ends your Google Colab session, which is a total of up to 12 hours for the free version of Google Colab. Steps to follow if you want to start a different run using the same Google Colab session: Click menu item "Runtime->Interrupt execution". Save any images that you want to keep by right-clicking on them and using the appropriate context menu command. Optionally, change the desired text. Different runs using the same desired text almost always results in different outputs. Click menu item "Runtime->Restart and run all". Steps to follow when you're done with your Google Colab session: Click menu item "Runtime->Manage sessions". Click "Terminate" to end the session. Optionally, log out of your Google account due to the privacy ramifications of being logged into a Google account. The first output image in the Train cell (using the notebook's default of seeing every 100th image generated) usually is a very poor match to the desired text, but the second output image often is a decent match to the desired text. To change the default of seeing every 100th image generated, change the number 100 in line "if itt % 100 == 0:" in the Train cell to the desired number. For free-tier Google Colab users, I recommend changing 100 to a small integer such as 5. Tips for the text descriptions that you supply: In Section 3.1.4 of OpenAI's CLIP paper (pdf), the authors recommend using a text description of the form "A photo of a {label}." or "A photo of a {label}, a type of {type}." for images that are photographs. A Reddit user gives these tips. The Big Sleep should generate these 1,000 types of things better on average than other types of things. Here is an article containing a high-level description of how The Big Sleep works. The Big Sleep uses a modified version of BigGAN as its image generator component. The Big Sleep uses the ViT-B/32 CLIP model to rate how well a given image matches your desired text. The best CLIP model according to the CLIP paper authors is the (as of this writing) unreleased ViT-L/14-336px model; see Table 10 on page 40 of the CLIP paper (pdf) for a comparison. There are many other sites/programs/projects that use CLIP to steer image/video creation to match a text description. Some relevant subreddits: r/bigsleep (subreddit for images/videos generated from text-to-image machine learning algorithms). r/deepdream (subreddit for images/videos generated from machine learning algorithms). r/mediasynthesis (subreddit for media generation/manipulation techniques that use artificial intelligence; this subreddit shouldn't be used to post images/videos unless new techniques are demonstrated, or the images/videos are of high quality relative to other posts). Example using text 'a black cat sleeping on top of a red clock': https://preview.redd.it/7xq58v7022c61.png?width=512&format=png&auto=webp&s=a229ae9add555cd1caba31c42b60d907ffe67773 Example using text 'the word ''hot'' covered in ice': https://preview.redd.it/6kxdp8u3k2c61.png?width=512&format=png&auto=webp&s=5bd078b0111575f5d88a1dc53b0aeb933f3b0da6 Example using text 'a monkey holding a green lightsaber': https://preview.redd.it/rdsybsoaz2c61.png?width=512&format=png&auto=webp&s=2769d4c6c883c1c35ae0b1c629bebe9bc1d41393 Example using text 'The White House in Washington D.C. at night with green and red spotlights shining on it': https://preview.redd.it/w4mg90xsf5c61.png?width=512&format=png&auto=webp&s=5f18318de2f77bcd8a86e71e87048fadd30383d1 Example using text '''A photo of the Golden Gate Bridge at night, illuminated by spotlights in a tribute to Prince''': https://preview.redd.it/cn4ecuafhic61.png?width=512&format=png&auto=webp&s=397c838fdc49f13c5f17110b92c78b95bf0dcac0 Example using text '''a Rembrandt-style painting titled "Robert Plant decides whether to take the stairway to heaven or the ladder to heaven"''': https://preview.redd.it/h7rb3y6j5jc61.png?width=512&format=png&auto=webp&s=537bfe8210af185647b00e7585c948aa2c4e0ffb Example using text '''A photo of the Empire State Building being shot at with the laser cannons of a TIE fighter.''': https://preview.redd.it/cwi7i639c5d61.png?width=512&format=png&auto=webp&s=0510c8b93adb40eee4d3f41607f1c215d41e55ff Example using text '''A cartoon of a new mascot for the Reddit subreddit DeepDream that has a mouse-like face and wears a cape''': https://preview.redd.it/wtxbduevcbd61.png?width=512&format=png&auto=webp&s=c5d266258922bc62f25c80a08cd9cabc07d9cb1c Example using text '''Bugs Bunny meets the Eye of Sauron, drawn in the Looney Tunes cartoon style''': https://preview.redd.it/gmljaeekuid61.png?width=512&format=png&auto=webp&s=9ea578de165e12afc3a62bf6886bc1ae9dc19bec Example using text '''Photo of a blue and red neon-colored frog at night.''': https://preview.redd.it/nzlypte6wzd61.png?width=512&format=png&auto=webp&s=7e10b06f22cfc57c64b6d05738c7486b895083df Example using text '''Hell begins to freeze over''': https://preview.redd.it/vn99we9ngmf61.png?width=512&format=png&auto=webp&s=2408efd607f0ab40a08db6ee67448791aa813993 Example using text '''A scene with vibrant colors''': https://preview.redd.it/4z133mvrgmf61.png?width=512&format=png&auto=webp&s=b78e7a8e3f736769655056093a9904ff09a355a1 Example using text '''The Great Pyramids were turned into prisms by a wizard''': https://preview.redd.it/zxt6op7vgmf61.png?width=512&format=png&auto=webp&s=53e578cfde14b28afe27957e95e610b89afadd44

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[D] I don't really trust papers out of "Top Labs" anymore
reddit
LLM Vibe Score0
Human Vibe Score0.333
MrAcuriteThis week

[D] I don't really trust papers out of "Top Labs" anymore

I mean, I trust that the numbers they got are accurate and that they really did the work and got the results. I believe those. It's just that, take the recent "An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems" paper. It's 18 pages of talking through this pretty convoluted evolutionary and multitask learning algorithm, it's pretty interesting, solves a bunch of problems. But two notes. One, the big number they cite as the success metric is 99.43 on CIFAR-10, against a SotA of 99.40, so woop-de-fucking-doo in the grand scheme of things. Two, there's a chart towards the end of the paper that details how many TPU core-hours were used for just the training regimens that results in the final results. The sum total is 17,810 core-hours. Let's assume that for someone who doesn't work at Google, you'd have to use on-demand pricing of $3.22/hr. This means that these trained models cost $57,348. Strictly speaking, throwing enough compute at a general enough genetic algorithm will eventually produce arbitrarily good performance, so while you can absolutely read this paper and collect interesting ideas about how to use genetic algorithms to accomplish multitask learning by having each new task leverage learned weights from previous tasks by defining modifications to a subset of components of a pre-existing model, there's a meta-textual level on which this paper is just "Jeff Dean spent enough money to feed a family of four for half a decade to get a 0.03% improvement on CIFAR-10." OpenAI is far and away the worst offender here, but it seems like everyone's doing it. You throw a fuckton of compute and a light ganache of new ideas at an existing problem with existing data and existing benchmarks, and then if your numbers are infinitesimally higher than their numbers, you get to put a lil' sticker on your CV. Why should I trust that your ideas are even any good? I can't check them, I can't apply them to my own projects. Is this really what we're comfortable with as a community? A handful of corporations and the occasional university waving their dicks at everyone because they've got the compute to burn and we don't? There's a level at which I think there should be a new journal, exclusively for papers in which you can replicate their experimental results in under eight hours on a single consumer GPU.

[D] What is your honest experience with reinforcement learning?
reddit
LLM Vibe Score0
Human Vibe Score1
Starks-TechnologyThis week

[D] What is your honest experience with reinforcement learning?

In my personal experience, SOTA RL algorithms simply don't work. I've tried working with reinforcement learning for over 5 years. I remember when Alpha Go defeated the world famous Go player, Lee Sedol, and everybody thought RL would take the ML community by storm. Yet, outside of toy problems, I've personally never found a practical use-case of RL. What is your experience with it? Aside from Ad recommendation systems and RLHF, are there legitimate use-cases of RL? Or, was it all hype? Edit: I know a lot about AI. I built NexusTrade, an AI-Powered automated investing tool that lets non-technical users create, update, and deploy their trading strategies. I’m not an idiot nor a noob; RL is just ridiculously hard. Edit 2: Since my comments are being downvoted, here is a link to my article that better describes my position. It's not that I don't understand RL. I released my open-source code and wrote a paper on it. It's the fact that it's EXTREMELY difficult to understand. Other deep learning algorithms like CNNs (including ResNets), RNNs (including GRUs and LSTMs), Transformers, and GANs are not hard to understand. These algorithms work and have practical use-cases outside of the lab. Traditional SOTA RL algorithms like PPO, DDPG, and TD3 are just very hard. You need to do a bunch of research to even implement a toy problem. In contrast, the decision transformer is something anybody can implement, and it seems to match or surpass the SOTA. You don't need two networks battling each other. You don't have to go through hell to debug your network. It just naturally learns the best set of actions in an auto-regressive manner. I also didn't mean to come off as arrogant or imply that RL is not worth learning. I just haven't seen any real-world, practical use-cases of it. I simply wanted to start a discussion, not claim that I know everything. Edit 3: There's a shockingly number of people calling me an idiot for not fully understanding RL. You guys are wayyy too comfortable calling people you disagree with names. News-flash, not everybody has a PhD in ML. My undergraduate degree is in biology. I self-taught myself the high-level maths to understand ML. I'm very passionate about the field; I just have VERY disappointing experiences with RL. Funny enough, there are very few people refuting my actual points. To summarize: Lack of real-world applications Extremely complex and inaccessible to 99% of the population Much harder than traditional DL algorithms like CNNs, RNNs, and GANs Sample inefficiency and instability Difficult to debug Better alternatives, such as the Decision Transformer Are these not legitimate criticisms? Is the purpose of this sub not to have discussions related to Machine Learning? To the few commenters that aren't calling me an idiot...thank you! Remember, it costs you nothing to be nice! Edit 4: Lots of people seem to agree that RL is over-hyped. Unfortunately those comments are downvoted. To clear up some things: We've invested HEAVILY into reinforcement learning. All we got from this investment is a robot that can be super-human at (some) video games. AlphaFold did not use any reinforcement learning. SpaceX doesn't either. I concede that it can be useful for robotics, but still argue that it's use-cases outside the lab are extremely limited. If you're stumbling on this thread and curious about an RL alternative, check out the Decision Transformer. It can be used in any situation that a traditional RL algorithm can be used. Final Edit: To those who contributed more recently, thank you for the thoughtful discussion! From what I learned, model-based models like Dreamer and IRIS MIGHT have a future. But everybody who has actually used model-free models like DDPG unanimously agree that they suck and don’t work.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call
reddit
LLM Vibe Score0
Human Vibe Score1
noiseinvacuumThis week

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call

During the recent earnings call, Mark Zuckerberg answered a question from Eric Sheridan of Goldman Sachs on Meta's AI strategy, opportunities to integrate into products, and why they open source models and how it would benefit their business. I found the reasoning to be very sound and promising for the OSS and AI community. The biggest risk from AI, in my opinion, is not the doomsday scenarios that intuitively come to mind but rather that the most powerful AI systems will only be accessible to the most powerful and resourceful corporations. Quote copied from Ben Thompson's write up on Meta's earning in his Stratechery blog post which goes beyond AI. It's behind a paywall but I highly recommend it personally. Some noteworthy quotes that signal the thought process at Meta FAIR and more broadly We’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon We would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that. ...lead us to do more work in terms of open sourcing, some of the lower level models and tools Open sourcing low level tools make the way we run all this infrastructure more efficient over time. On PyTorch: It’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. I would expect us to be pushing and helping to build out an open ecosystem. For all the negative that comes out of the popular discourse on Meta, I think their work to open source key tech tools over the last 10 years has been exceptional, here's hoping it continues into this decade of AI and pushes other tech giants to also realize the benefits of Open Source. Full Transcript: Right now most of the companies that are training large language models have business models that lead them to a closed approach to development. I think there’s an important opportunity to help create an open ecosystem. If we can help be a part of this, then much of the industry will standardize on using these open tools and help improve them further. So this will make it easier for other companies to integrate with our products and platforms as we enable more integrations, and that will help our products stay at the leading edge as well. Our approach to AI and our infrastructure has always been fairly open. We open source many of our state of the art models so people can experiment and build with them. This quarter we released our LLaMa LLM to researchers. It has 65 billion parameters but outperforms larger models and has proven quite popular. We’ve also open-sourced three other groundbreaking visual models along with their training data and model weights — Segment Anything, DinoV2, and our Animated Drawings tool — and we’ve gotten positive feedback on all of those as well. I think that there’s an important distinction between the products we offer and a lot of the technical infrastructure, especially the software that we write to support that. And historically, whether it’s the Open Compute project that we’ve done or just open sourcing a lot of the infrastructure that we’ve built, we’ve historically open sourced a lot of that infrastructure, even though we haven’t open sourced the code for our core products or anything like that. And the reason why I think why we do this is that unlike some of the other companies in the space, we’re not selling a cloud computing service where we try to keep the different software infrastructure that we’re building proprietary. For us, it’s way better if the industry standardizes on the basic tools that we’re using and therefore we can benefit from the improvements that others make and others’ use of those tools can, in some cases like Open Compute, drive down the costs of those things which make our business more efficient too. So I think to some degree we’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon, and that creates different incentives for us. So overall, I think that that’s going to lead us to do more work in terms of open sourcing, some of the lower level models and tools. But of course, a lot of the product work itself is going to be specific and integrated with the things that we do. So it’s not that everything we do is going to be open. Obviously, a bunch of this needs to be developed in a way that creates unique value for our products, but I think in terms of the basic models, I would expect us to be pushing and helping to build out an open ecosystem here, which I think is something that’s going to be important. On the AI tools, and we have a bunch of history here, right? So if you if you look at what we’ve done with PyTorch, for example, which has generally become the standard in the industry as a tool that a lot of folks who are building AI models and different things in that space use, it’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. So the tool chain is the same. So when they create some innovation, we can easily integrate it into the things that we’re doing. When we improve something, it improves other products too. Because it’s integrated with our technology stack, when there are opportunities to make integrations with products, it’s much easier to make sure that developers and other folks are compatible with the things that we need in the way that our systems work. So there are a lot of advantages, but I view this more as a kind of back end infrastructure advantage with potential integrations on the product side, but one that should hopefully enable us to stay at the leading edge and integrate more broadly with the community and also make the way we run all this infrastructure more efficient over time. There are a number of models. I just gave PyTorch as an example. Open Compute is another model that has worked really well for us in this way, both to incorporate both innovation and scale efficiency into our own infrastructure. So I think that there’s, our incentives I think are basically aligned towards moving in this direction. Now that said, there’s a lot to figure out, right? So when you asked if there are going to be other opportunities, I hope so. I can’t speak to what all those things might be now. This is all quite early in getting developed. The better we do at the foundational work, the more opportunities I think that will come and present themselves. So I think that that’s all stuff that we need to figure out. But at least at the base level, I think we’re generally incentivized to move in this direction. And we also need to figure out how to go in that direction over time. I mean, I mentioned LLaMA before and I also want to be clear that while I’m talking about helping contribute to an open ecosystem, LLaMA is a model that we only really made available to researchers and there’s a lot of really good stuff that’s happening there. But a lot of the work that we’re doing, I think, we would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that.

[D] Playing big league at home on a budget?
reddit
LLM Vibe Score0
Human Vibe Score0.778
ballerburg9005This week

[D] Playing big league at home on a budget?

I am a hobbyist and my Nvidia 660 is 10 years old and only has 2GB. Obviously that isn't going to cut it nowadays anymore. I am thinking about options here. I don't have thousands and thousands of dollars. And I highly doubt that spending close to a thousand dollars on a brand new card is still viable in 2020-2022. I wanted to use Wavenet today and then found out about Melnet. I mean, maybe I could run Wavenet but nobody in their right mind wants to after hearing Melnet results. On Github this one guy complained he couldn't get his implementation to work due to OOM with 2x 2080 RTX, which he bought solely for this purpose. Then on the other repo the guy casually mentioned that tier XY doesn't fit with some 10 year old lowfi dataset, even with batch size 1, on a 16GB Tesla P100. The wisdom for OOM has always been "decrease batch size". But as far as I can tell, for most of any of the interesting stuff in the last 8 years or so you simply can't decrease batch size. Either because batch sizes are already so tiny, or because the code is written in a way that would require you to somehow turn it inside out, probably involving extreme knowledge of higher mathematics. I am a hobbyist, not a researcher. I am happy if I crudely can grasp what is going on. Most of anything in the field suffers from exactly the same issue: It simply won't run without utterly absurd amounts of VRAM. So what about buying shitty cheapo AMD GPUs with lots of VRAM? This seems to be the sensible choice if you want to be able to run anything noteworthy at all that comes up in the next 2 years and maybe beyond. People say, don't but AMD its slow and it sucks, but those are apparently the same people that buy a 16GB Titan GPU for $1500 three times on Ebay without hesitation, when there are also 16GB AMD GPUs for $300. How much slower are AMD GPUs really? Let's say they are 5 times cheaper so they could be just 5 times slower. So I have to train my model over night instead of seeing the result in the afternoon. That would be totally awesome!; given that the alternative is to buy a $300 Nvidia GPU, which has maybe 4 or 6GB and simply can't run the code without running out of memory. And say $300 is not enough, let's buy a $700 RTX 3080. It still only has 10GB of VRAM not even 16GB. Then its just as useless! What's the point of buying a fast GPU if it can't even run the code? I don't know how much slower AMD GPUs really are. Maybe they are not 5x but 50x slower. Then of course training a model that was developed on some 64GB Tesla might take month and years. But maybe speed is not the issue, only memory. I have seen some stuff even being optimized for CPU, apparently because there weren't any big enough GPUs around. I don't really know how viable that can be (it seems rarely if ever it is), I have no experience. And what about renting AWS? Let's say, I am a beginner and I want to toy around for a week and probably max out 4 Teslas like 80% of the time without really getting anywhere. How expensive is that? $25, $50, $100, $500? (Found the answer: fucking $2000 https://aws.amazon.com/ec2/instance-types/p3/ ) Ok, so AWS is bullshit, here its 6x cheaper: https://vast.ai/console/create/ . They don't really have 4x 16GB V100 though, just one V100. $0.5 per hour 24 7 = $84 per month (there are more hidden cost like bandwidth, it doesn't seem to be huge but I never used this so don't take it at face value). On AWS the same is over $3 per hour. So a day is $12, this could be viable! (look at calculation below). There really isn't much info on the net about hardware requirements and performance for machine learning stuff. What bothers me the most is that people seem to be very ignorant of the VRAM issue. Either because they aren't looking ahead of what might come in 1-2 years. Or because they are simply so rich they have no issue spending thousands and thousands of dollars every year instead of just 500 every couple of years. Or maybe they are both. So, yeah, what are your thoughts? Here is what I found out just today: Until 2 years ago, tensorflow and pytorch wouldn't work with AMD cards, but this has changed. https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html For older cards though, ROCm only works with certain CPUs: it needs PCIe 3.0 with atomics (see: https://github.com/RadeonOpenCompute/ROCm ). So you can't simply buy any 16GB card for $300 on Ebay like I suggested, even if it supports ROCm, because it will only work for "newer" PCs. The newer GFX9 AMD cards (like Radeon VII and Vega) don't suffer from this problem and work with PCIe 2.0 again... Although I have seen 16GB Vega cards for like $350 on Ebay, I think that is a pretty rare catch. However looking 1-2 years in the future, this is great because Radeon VII prices will be hugely inflated by Nvidia 3000 series hype (maybe down to $180 even) and maybe the next gen cards from AMD even have 24 or 32GB for $500-$1000 and can still run on old machines. According to this https://arxiv.org/pdf/1909.06842.pdf Radeon VII 16GB performs only half as good as Tesla V100 16GB, whereas V100 should be roughly along the lines of 11GB RTX 2080 Ti. So you could say that you get half the RAM, double the speed, double the price. I am not sure though if that holds. I think they were putting 16GB in those cards trying to push it for ML with ROCm, clearly addressing the problem of the time, but no one really jumped on the train and now Resnet shrinks RAM but needs more processing power. So they released 8GB cards again with slightly better performance, and I guess we are lucky if the next generation even has 16GB because games probably don't need it at all. Still though with Revnets and everything said in the comments, I think on a budget you are better on the safe side buying the card with the most amount of VRAM, rather than the most performance. Tomorrow some paper might come out that uses another method, then you can't trick-shrink your network anymore and then everyone needs to buy big ass cards again like it used to be and can do nothing but throw their fancy faster cards in the dumpster. Also the huge bulk of ML currently focuses on image processing, while sound has only been gaining real momentum recently and this will be followed by video processing and eventually human-alike thought processes that sit atop of all that and have not even been tackled yet. Its a rapidly evolving field, hard to predict what will come and stay. Running out of VRAM means total hardware failure, running slower just means waiting longer. If you just buy the newest card every year, its probably save to buy the fast card because things won't change that fast after all. If you buy a new card every 4 years or longer then just try to get as much VRAM as possible. Check this out: https://www.techspot.com/news/86811-gigabyte-accidentally-reveals-rtx-3070-16gb-rtx-3080.html There will be a 3070 16GB version! Let's compare renting one V100 at $12/day vs. buying a 3070 Ti 16GB: The 2080 Ti was 1.42x the price of the regular 2080 and released the next summer. So let's assume the same will be true to the 3070 Ti so it will cost $700. That is $30/month & $1.88/day for two years - $15/month & $0.94/day in four years (by which time you can probably rent some 32GB Tesla card for the same price and nothing recent runs on less anymore). If you max out your setup 24/7 all year, then power cost obviously becomes a huge factor to that figure. In my country running at 500W cost $4.21/day, or $1.60 / 9hrs overnight. If you live elsewhere it might be as much as a quarter of that price. Of course your PC may run 10h a day anyway, so its maybe just 300W plus, and an older graphics card is inefficient for games it eats more Watts to do the same things so you save some there as well. There is a lot to take into account if comparing. Anyway, factoring in power cost, to break even with buying the card vs. renting within two years, you would have to use it for at least 4 days a month, or almost 2 weeks every 3 month. If you use it less than that, you maybe have a nice new graphics card and less hassle with pushing stuff back and forth onto servers all the time. But it would have been more economic to rent. So renting isn't that bad after all. Overall if you are thinking about having this as your hobby, you could say that it will cost you at least $30 per month, if not $50 or more (when keeping up to date with cards every 2 instead of 4 years + using it more cost more power). I think that is quite hefty. Personally I am not even invested enough into this even if it wasn't over my finances. I want a new card of course and also play some new games, but I don't really need to. There are a lot of other (more) important things I am interested in, that are totally free.

[D] "Grokking" Deep Learning architectures and using them in practice
reddit
LLM Vibe Score0
Human Vibe Score1
LightGreenSquashThis week

[D] "Grokking" Deep Learning architectures and using them in practice

Hi all, I'm on the first years of my PhD in Computer Vision and obviously the vast majority of research in it is nowadays using Deep Learning techniques. I like to think that I'm far from an absolute beginner in the sense that: I've trained neural networks and more "traditional" ML models in a couple of courses, as well as for my MSc thesis, albeit almost out-of-the-box stuff. I have a decent understanding of Linear Algebra, Calculus and Probability Theory (undergrad courses from CS degree). I say "decent" because I'm of the firm opinion that the more math one knows the more impressive the things they can do in AI, so I really don't consider myself a math whiz, but judging from the math knowledge an average "How to get started with Deep Learning" blog post assumes, I'd say I'm well ahead. I'm also devoting some time every day to a more rigorous study of these areas, eventually hoping to expand to other related ones. I can get through Deep Learning papers and usually* obtain at least a basic understanding of what they're about, as well as why it works, at least according to the authors and their experiments. I do still have some trouble with more state-of-the-art works, especially ones that also use things from NLP. However, I don't really feel confident that I can actually produce useful research that investigates and/or uses this sort of methods to do something new. During undergrad, in order to actually understand most -if not all- concepts taught to me in programming and math I'd actually do things with them: solve problems, prove statements, or just code with the goal of creating some system or seeing how an idea actually works (e.g. polymorphism). I realize, however, that this has not been the case with Deep Learning, at least for me: I've never tried to actually code a CNN or ResNet, much less a word2vec model, a Transformer, or any sort of generative model. Sure, I've read about how the first layers of a CNN learn edges etc. but I've never actually "seen it with my own eyes". Transformers in particular seem to really trouble me. Although I sort-of understand the idea behind attention etc., I struggle to see what sort of features they end up using (in contrast to CNNs, where the idea of learning convolutional filters is much more intuitive to me). Which brings me to the question of what's an efficient way to go from understanding a paper to actually feeling like you really, truly, "grok" the material and could build on it, or use it in some scenario? Do you think implementing research papers from scratch or almost from scratch can be useful? Or is it way too time consuming for someone already busy with a PhD? Is it even feasible or are most papers -sadly- unreproducible if you don't use authors' code? How do you manage to stay on track with such a rapidly evolving field, on any level beyond a completely surface understanding? How do you find a good balance between learning to use tools/frameworks, reading papers and gaining the deeper sort of understanding I mention?

[D] What are some good advanced platforms?
reddit
LLM Vibe Score0
Human Vibe Score1
SemperZeroThis week

[D] What are some good advanced platforms?

Hey. I'm 27 and I think I got most of the basics for ML. I'm very good at math, I understand statistics and probability quite deep, worked on research projects by myself, for which I had to build models on my own. Not really complex, but still requiring creativity and a good understanding of basic concepts. I will soon start a data science job at a FAANG company and I want to further improve my skills and use their resources to the fullest, but I'm not really sure where to go from here in terms of learning. Could you help me with some more advanced materials/forums for ML research/place with good papers/place with good articles? I'd also like to study the very best and see the way they code and explain advanced concepts (like Andrej Karpathy) where can I find them?? is there a Twitch for challenger level AI researchers streaming live processes? Or videos showing the entire project flow (how they do data visualizations, mining, choosing models, tuning, etc) like top digital artists show the highlights or the entire speed-up of their painting processes? Here's a list all of my projects to get a general idea of my level and where I'm at: calculating the distance between hundreds of 42.000 feature objects (containing categorical, strings, numbers, hashes, booleans as variables) and then clustering. with some vector processing and a neural network implemented from scratch in C some models like ARIMA (together with linear regression) combining a FFT with a neural network for a 42d wave classification T-SNE to split dataset into 2d grids -> Kullback–Leibler on grids for distance -> DBSCAN/KMEANS for clustering genetic algorithms for hyperparameter optimizations and reinforcement learning (neuro evolution) DBSCAN -> Levenberg-Marquardt for polynomial coefficients-> neural network predicting the coefficients based on different parameters playing with instance segmentation and some algorithms to synchronize a color and a depth camera simulations/statistics/probabilities for video games a lot of visualizations and data mining for patterns As you can see there is no LLM/ Generative AI/ Computer Vision stuff, which I would like to get into. I'm also not 100% sure what else would be nice to learn in general. I know most of the basic procedures for training, balancing datasets, avoid overfit, computing error plots, comparing models, etc and I'm familiar with most of math (not insanely advanced) used in ML. I didn't read many papers, but holy ... most of them are so unreadable and filled with pompous nonsense that 99% of the effort is de-obfuscating the bs and reading for so long just to figure out how the input is encoded, what's the output, and what's the model. Where can I find good, readable, structured papers which are actually on point? I'm from Eastern Europe and most of my learning has been done by my self after high school, the education quality is close to zero in the universities here and I never had any mentors at the jobs I worked. There's no research in this country, and getting to work on these projects was insanely hard, some of them being done in my free time or for free just to get experience... Fortunately after a lot of hard work I got into FAANG, and I hope things will be better here. Most of what I've learned has been from very fragmented places on the internet, and now I'm looking for centralized places and communities of top quality content. TL;DR: sorry for the long rambling. had to order my thoughts and figure what i actually want: Looking for top tier AI researchers showcasing their work processes, places with clear papers/articles, tips for someone who's no longer a very beginner, and other communities like this.

[D] What is your honest experience with reinforcement learning?
reddit
LLM Vibe Score0
Human Vibe Score1
Starks-TechnologyThis week

[D] What is your honest experience with reinforcement learning?

In my personal experience, SOTA RL algorithms simply don't work. I've tried working with reinforcement learning for over 5 years. I remember when Alpha Go defeated the world famous Go player, Lee Sedol, and everybody thought RL would take the ML community by storm. Yet, outside of toy problems, I've personally never found a practical use-case of RL. What is your experience with it? Aside from Ad recommendation systems and RLHF, are there legitimate use-cases of RL? Or, was it all hype? Edit: I know a lot about AI. I built NexusTrade, an AI-Powered automated investing tool that lets non-technical users create, update, and deploy their trading strategies. I’m not an idiot nor a noob; RL is just ridiculously hard. Edit 2: Since my comments are being downvoted, here is a link to my article that better describes my position. It's not that I don't understand RL. I released my open-source code and wrote a paper on it. It's the fact that it's EXTREMELY difficult to understand. Other deep learning algorithms like CNNs (including ResNets), RNNs (including GRUs and LSTMs), Transformers, and GANs are not hard to understand. These algorithms work and have practical use-cases outside of the lab. Traditional SOTA RL algorithms like PPO, DDPG, and TD3 are just very hard. You need to do a bunch of research to even implement a toy problem. In contrast, the decision transformer is something anybody can implement, and it seems to match or surpass the SOTA. You don't need two networks battling each other. You don't have to go through hell to debug your network. It just naturally learns the best set of actions in an auto-regressive manner. I also didn't mean to come off as arrogant or imply that RL is not worth learning. I just haven't seen any real-world, practical use-cases of it. I simply wanted to start a discussion, not claim that I know everything. Edit 3: There's a shockingly number of people calling me an idiot for not fully understanding RL. You guys are wayyy too comfortable calling people you disagree with names. News-flash, not everybody has a PhD in ML. My undergraduate degree is in biology. I self-taught myself the high-level maths to understand ML. I'm very passionate about the field; I just have VERY disappointing experiences with RL. Funny enough, there are very few people refuting my actual points. To summarize: Lack of real-world applications Extremely complex and inaccessible to 99% of the population Much harder than traditional DL algorithms like CNNs, RNNs, and GANs Sample inefficiency and instability Difficult to debug Better alternatives, such as the Decision Transformer Are these not legitimate criticisms? Is the purpose of this sub not to have discussions related to Machine Learning? To the few commenters that aren't calling me an idiot...thank you! Remember, it costs you nothing to be nice! Edit 4: Lots of people seem to agree that RL is over-hyped. Unfortunately those comments are downvoted. To clear up some things: We've invested HEAVILY into reinforcement learning. All we got from this investment is a robot that can be super-human at (some) video games. AlphaFold did not use any reinforcement learning. SpaceX doesn't either. I concede that it can be useful for robotics, but still argue that it's use-cases outside the lab are extremely limited. If you're stumbling on this thread and curious about an RL alternative, check out the Decision Transformer. It can be used in any situation that a traditional RL algorithm can be used. Final Edit: To those who contributed more recently, thank you for the thoughtful discussion! From what I learned, model-based models like Dreamer and IRIS MIGHT have a future. But everybody who has actually used model-free models like DDPG unanimously agree that they suck and don’t work.

[D] Why can't you guys comment your fucking code?
reddit
LLM Vibe Score0
Human Vibe Score0
didntfinishhighschooThis week

[D] Why can't you guys comment your fucking code?

Seriously. I spent the last few years doing web app development. Dug into DL a couple months ago. Supposedly, compared to the post-post-post-docs doing AI stuff, JavaScript developers should be inbred peasants. But every project these peasants release, even a fucking library that colorizes CLI output, has a catchy name, extensive docs, shitloads of comments, fuckton of tests, semantic versioning, changelog, and, oh my god, better variable names than ctxh or langhs or fuckyoufortryingto_understand. The concepts and ideas behind DL, GANs, LSTMs, CNNs, whatever – it's clear, it's simple, it's intuitive. The slog is to go through the jargon (that keeps changing beneath your feet - what's the point of using fancy words if you can't keep them consistent?), the unnecessary equations, trying to squeeze meaning from bullshit language used in papers, figuring out the super important steps, preprocessing, hyperparameters optimization that the authors, oops, failed to mention. Sorry for singling out, but look at this - what the fuck? If a developer anywhere else at Facebook would get this code for a review they would throw up. Do you intentionally try to obfuscate your papers? Is pseudo-code a fucking premium? Can you at least try to give some intuition before showering the reader with equations? How the fuck do you dare to release a paper without source code? Why the fuck do you never ever add comments to you code? When naming things, are you charged by the character? Do you get a bonus for acronyms? Do you realize that OpenAI having needed to release a "baseline" TRPO implementation is a fucking disgrace to your profession? Jesus christ, who decided to name a tensor concatenation function cat?

[D] The current and future state of AI/ML is shockingly demoralizing with little hope of redemption
reddit
LLM Vibe Score0
Human Vibe Score1
Flaky_Suit_8665This week

[D] The current and future state of AI/ML is shockingly demoralizing with little hope of redemption

I recently encountered the PaLM (Scaling Language Modeling with Pathways) paper from Google Research and it opened up a can of worms of ideas I’ve felt I’ve intuitively had for a while, but have been unable to express – and I know I can’t be the only one. Sometimes I wonder what the original pioneers of AI – Turing, Neumann, McCarthy, etc. – would think if they could see the state of AI that we’ve gotten ourselves into. 67 authors, 83 pages, 540B parameters in a model, the internals of which no one can say they comprehend with a straight face, 6144 TPUs in a commercial lab that no one has access to, on a rig that no one can afford, trained on a volume of data that a human couldn’t process in a lifetime, 1 page on ethics with the same ideas that have been rehashed over and over elsewhere with no attempt at a solution – bias, racism, malicious use, etc. – for purposes that who asked for? When I started my career as an AI/ML research engineer 2016, I was most interested in two types of tasks – 1.) those that most humans could do but that would universally be considered tedious and non-scalable. I’m talking image classification, sentiment analysis, even document summarization, etc. 2.) tasks that humans lack the capacity to perform as well as computers for various reasons – forecasting, risk analysis, game playing, and so forth. I still love my career, and I try to only work on projects in these areas, but it’s getting harder and harder. This is because, somewhere along the way, it became popular and unquestionably acceptable to push AI into domains that were originally uniquely human, those areas that sit at the top of Maslows’s hierarchy of needs in terms of self-actualization – art, music, writing, singing, programming, and so forth. These areas of endeavor have negative logarithmic ability curves – the vast majority of people cannot do them well at all, about 10% can do them decently, and 1% or less can do them extraordinarily. The little discussed problem with AI-generation is that, without extreme deterrence, we will sacrifice human achievement at the top percentile in the name of lowering the bar for a larger volume of people, until the AI ability range is the norm. This is because relative to humans, AI is cheap, fast, and infinite, to the extent that investments in human achievement will be watered down at the societal, educational, and individual level with each passing year. And unlike AI gameplay which superseded humans decades ago, we won’t be able to just disqualify the machines and continue to play as if they didn’t exist. Almost everywhere I go, even this forum, I encounter almost universal deference given to current SOTA AI generation systems like GPT-3, CODEX, DALL-E, etc., with almost no one extending their implications to its logical conclusion, which is long-term convergence to the mean, to mediocrity, in the fields they claim to address or even enhance. If you’re an artist or writer and you’re using DALL-E or GPT-3 to “enhance” your work, or if you’re a programmer saying, “GitHub Co-Pilot makes me a better programmer?”, then how could you possibly know? You’ve disrupted and bypassed your own creative process, which is thoughts -> (optionally words) -> actions -> feedback -> repeat, and instead seeded your canvas with ideas from a machine, the provenance of which you can’t understand, nor can the machine reliably explain. And the more you do this, the more you make your creative processes dependent on said machine, until you must question whether or not you could work at the same level without it. When I was a college student, I often dabbled with weed, LSD, and mushrooms, and for a while, I thought the ideas I was having while under the influence were revolutionary and groundbreaking – that is until took it upon myself to actually start writing down those ideas and then reviewing them while sober, when I realized they weren’t that special at all. What I eventually determined is that, under the influence, it was impossible for me to accurately evaluate the drug-induced ideas I was having because the influencing agent the generates the ideas themselves was disrupting the same frame of reference that is responsible evaluating said ideas. This is the same principle of – if you took a pill and it made you stupider, would even know it? I believe that, especially over the long-term timeframe that crosses generations, there’s significant risk that current AI-generation developments produces a similar effect on humanity, and we mostly won’t even realize it has happened, much like a frog in boiling water. If you have children like I do, how can you be aware of the the current SOTA in these areas, project that 20 to 30 years, and then and tell them with a straight face that it is worth them pursuing their talent in art, writing, or music? How can you be honest and still say that widespread implementation of auto-correction hasn’t made you and others worse and worse at spelling over the years (a task that even I believe most would agree is tedious and worth automating). Furthermore, I’ve yet to set anyone discuss the train – generate – train - generate feedback loop that long-term application of AI-generation systems imply. The first generations of these models were trained on wide swaths of web data generated by humans, but if these systems are permitted to continually spit out content without restriction or verification, especially to the extent that it reduces or eliminates development and investment in human talent over the long term, then what happens to the 4th or 5th generation of models? Eventually we encounter this situation where the AI is being trained almost exclusively on AI-generated content, and therefore with each generation, it settles more and more into the mean and mediocrity with no way out using current methods. By the time that happens, what will we have lost in terms of the creative capacity of people, and will we be able to get it back? By relentlessly pursuing this direction so enthusiastically, I’m convinced that we as AI/ML developers, companies, and nations are past the point of no return, and it mostly comes down the investments in time and money that we’ve made, as well as a prisoner’s dilemma with our competitors. As a society though, this direction we’ve chosen for short-term gains will almost certainly make humanity worse off, mostly for those who are powerless to do anything about it – our children, our grandchildren, and generations to come. If you’re an AI researcher or a data scientist like myself, how do you turn things back for yourself when you’ve spent years on years building your career in this direction? You’re likely making near or north of $200k annually TC and have a family to support, and so it’s too late, no matter how you feel about the direction the field has gone. If you’re a company, how do you standby and let your competitors aggressively push their AutoML solutions into more and more markets without putting out your own? Moreover, if you’re a manager or thought leader in this field like Jeff Dean how do you justify to your own boss and your shareholders your team’s billions of dollars in AI investment while simultaneously balancing ethical concerns? You can’t – the only answer is bigger and bigger models, more and more applications, more and more data, and more and more automation, and then automating that even further. If you’re a country like the US, how do responsibly develop AI while your competitors like China single-mindedly push full steam ahead without an iota of ethical concern to replace you in numerous areas in global power dynamics? Once again, failing to compete would be pre-emptively admitting defeat. Even assuming that none of what I’ve described here happens to such an extent, how are so few people not taking this seriously and discounting this possibility? If everything I’m saying is fear-mongering and non-sense, then I’d be interested in hearing what you think human-AI co-existence looks like in 20 to 30 years and why it isn’t as demoralizing as I’ve made it out to be. &#x200B; EDIT: Day after posting this -- this post took off way more than I expected. Even if I received 20 - 25 comments, I would have considered that a success, but this went much further. Thank you to each one of you that has read this post, even more so if you left a comment, and triply so for those who gave awards! I've read almost every comment that has come in (even the troll ones), and am truly grateful for each one, including those in sharp disagreement. I've learned much more from this discussion with the sub than I could have imagined on this topic, from so many perspectives. While I will try to reply as many comments as I can, the sheer comment volume combined with limited free time between work and family unfortunately means that there are many that I likely won't be able to get to. That will invariably include some that I would love respond to under the assumption of infinite time, but I will do my best, even if the latency stretches into days. Thank you all once again!

[D]Stuck in AI Hell: What to do in post LLM world
reddit
LLM Vibe Score0
Human Vibe Score1
Educational_News_371This week

[D]Stuck in AI Hell: What to do in post LLM world

Hey Reddit, I’ve been in an AI/ML role for a few years now, and I’m starting to feel disconnected from the work. When I started, deep learning models were getting good, and I quickly fell in love with designing architectures, training models, and fine-tuning them for specific use cases. Seeing a loss curve finally converge, experimenting with layers, and debugging training runs—it all felt like a craft, a blend of science and creativity. I enjoyed implementing research papers to see how things worked under the hood. Backprop, gradients, optimization—it was a mental workout I loved. But these days, it feels like everything has shifted. LLMs dominate the scene, and instead of building and training models, the focus is on using pre-trained APIs, crafting prompt chains, and setting up integrations. Sure, there’s engineering involved, but it feels less like creating and more like assembling. I miss the hands-on nature of experimenting with architectures and solving math-heavy problems. It’s not just the creativity I miss. The economics of this new era also feel strange to me. Back when I started, compute was a luxury. We had limited GPUs, and a lot of the work was about being resourceful—quantizing models, distilling them, removing layers, and squeezing every bit of performance out of constrained setups. Now, it feels like no one cares about cost. We’re paying by tokens. Tokens! Who would’ve thought we’d get to a point where we’re not designing efficient models but feeding pre-trained giants like they’re vending machines? I get it—abstraction has always been part of the field. TensorFlow and PyTorch abstracted tensor operations, Python abstracts C. But deep learning still left room for creation. We weren’t just abstracting away math; we were solving it. We could experiment, fail, and tweak. Working with LLMs doesn’t feel the same. It’s like fitting pieces into a pre-defined puzzle instead of building the puzzle itself. I understand that LLMs are here to stay. They’re incredible tools, and I respect their potential to revolutionize industries. Building real-world products with them is still challenging, requiring a deep understanding of engineering, prompt design, and integrating them effectively into workflows. By no means is it an “easy” task. But the work doesn’t give me the same thrill. It’s not about solving math or optimization problems—it’s about gluing together APIs, tweaking outputs, and wrestling with opaque systems. It’s like we’ve traded craftsmanship for convenience. Which brings me to my questions: Is there still room for those of us who enjoy the deep work of model design and training? Or is this the inevitable evolution of the field, where everything converges on pre-trained systems? What use cases still need traditional ML expertise? Are there industries or problems that will always require specialized models instead of general-purpose LLMs? Am I missing the bigger picture here? LLMs feel like the “kernel” of a new computing paradigm, and we don’t fully understand their second- and third-order effects. Could this shift lead to new, exciting opportunities I’m just not seeing yet? How do you stay inspired when the focus shifts? I still love AI, but I miss the feeling of building something from scratch. Is this just a matter of adapting my mindset, or should I seek out niches where traditional ML still thrives? I’m not asking this to rant (though clearly, I needed to get some of this off my chest). I want to figure out where to go next from here. If you’ve been in AI/ML long enough to see major shifts—like the move from feature engineering to deep learning—how did you navigate them? What advice would you give someone in my position? And yeah, before anyone roasts me for using an LLM to structure this post (guilty!), I just wanted to get my thoughts out in a coherent way. Guess that’s a sign of where we’re headed, huh? Thanks for reading, and I’d love to hear your thoughts! TL;DR: I entered AI during the deep learning boom, fell in love with designing and training models, and thrived on creativity, math, and optimization. Now it feels like the field is all about tweaking prompts and orchestrating APIs for pre-trained LLMs. I miss the thrill of crafting something unique. Is there still room for people who enjoy traditional ML, or is this just the inevitable evolution of the field? How do you stay inspired amidst such shifts? Update: Wow, this blew up. Thanks everyone for your comments and suggestions. I really like some of those. This thing was on my mind for a long time, glad that I put it here. Thanks again!

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[P] A Call to AI Devs and Entrepreneurs
reddit
LLM Vibe Score0
Human Vibe Score0
Moist_Stuff4509This week

[P] A Call to AI Devs and Entrepreneurs

Hey, I am thinking about potentially creating a global yet small community of AI devs and entrepreneurs. I know that a lot of communities already exist, but this one would be specific for AI entrepreneurs and devs to build together. I don’t want it to be big, since I want it to be active. That is the way to keep it interesting and avoid the noise. We could use slack for example, to make it a bit more work related than just for soft engagements. We could tag everyone with the skills that they have and interest, to make it easy for people to connect and start building stuff. Tags could be tech, growth, product, fundraising, business, etc. The goal would be to actually launch new products in the AI space. I am a serial entrepreneur myself with an exit with one of the biggest providers in our vertical a few years ago. I am finishing a PhD in AI and have been working in the AI field in the industry for many years now. I think this is a unique moment in time. The market will change substantially as AI brings new capabilities to the game, but my perspective is that the business models for AI are yet to be built. The bottom line is that as with any platform shift, we will see the creation of the Googles of the future during this time. I think that we have much more probability of success if we work together to try to conquer the market step by step. My feeling is that the grind will be much harder on this wave than any other for a variety of reasons, from the macroeconomic environment to the very fast pace of how things are moving. I know that communities exist already, I am in a program with an accelerator myself, but I would scope this new community in a different way. It would be the place to meet and to build together. Everyone sharing the same pains, being in the scout for the new tech that just launched, helping to push out new deals, connect with VCs, all those things. Let me know if this would interest you.

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

[N] TheSequence Scope: When it comes to machine learning, size matters: Microsoft's DeepSpeed framework, which can train a model with up to a trillion parameters
reddit
LLM Vibe Score0
Human Vibe Score1
KseniaseThis week

[N] TheSequence Scope: When it comes to machine learning, size matters: Microsoft's DeepSpeed framework, which can train a model with up to a trillion parameters

Hi there! Offering to your attention the latest edition of a weekly ML-newsletter that focusing on three things: impactful ML research papers, cool ML tech solutions, and ML use cases supported by investors. Please, see it below. Reddit is a new thing for me, and I've been struggling a bit with it, so please don't judge me too harsh for this promotion. This weekly digest is free and I hope you'd find the format convenient for you. Your feedback is very appreciated, and please feel free to sign up if you like it. 📝 Editorial  The recent emergence of pre-trained language models and transformer architectures pushed the creation of larger and larger machine learning models. Google’s BERT presented attention mechanism and transformer architecture possibilities as the “next big thing” in ML, and the numbers seem surreal. OpenAI’s GPT-2 set a record by processing 1.5 billion parameters, followed by Microsoft’s Turing-NLG, which processed 17 billion parameters just to see the new GPT-3 processing an astonishing 175 billion parameters. To not feel complacent, just this week Microsoft announced a new release of its DeepSpeed framework (which powers Turing-NLG), which can train a model with up to a trillion parameters. That sounds insane but it really isn’t.   What we are seeing is a consequence of several factors. First, computation power and parallelization techniques have evolved to a point where it is relatively easy to train machine learning models in large clusters of machines. Second and most importantly, in the current state of machine learning, larger models have regularly outperformed smaller and more specialized models. Knowledge reusability methods like transfer learning are still in very nascent stages. As a result, it’s really hard to build small models that can operate in uncertain environments. Furthermore, as models like GPT-3 and Turing-NLG have shown, there is some unexplainable magic that happens after models go past a certain size. Many of the immediate machine learning problems might be solved by scaling the current generation of neural network architectures. Plain and simple, when it comes to machine learning, size matters.   We would love to hear your opinions about the debate between broader-larger vs. smaller and more specialized models.   Leave a comment Now, to the most important developments in the AI industry this week 🔎 ML Research GPT-3 Falls Short in Machine Comprehension Proposed by researchers from a few major American universities, a 57-task test to measure models’ ability to reason poses challenges even for sophisticated models like GPT-3 ->read more in the original paper Better Text Summarization OpenAI published a paper showing a reinforcement learning with human feedback technique that can surpass supervised models ->read more on OpenAI blog Reinforcement Learning with Offline Datasets Researchers from the Berkeley AI Research (BAIR) Lab published a paper unveiling a method that uses offline datasets to improve reinforcement learning models->read more on BAIR blog 🤖 Cool AI Tech Releases New Version of DeepSpeed Microsoft open-sourced a new version of DeepSpeed, an open-source library for parallelizable training that can scale up to models with 1 trillion parameters->read more on Microsoft Research blog 💸 Money in AI AI-powered customer experience management platform Sprinklr has raised $200 million (kudos to our subscribers from Sprinklr 👏). Sprinklr's “AI listening processing” solution allows companies to get structured and meaningful sentiments and insights from unstructured customer data that comes from public conversations on different websites and social platforms. Xometry, an on-demand industrial parts marketplace, raises $75 million in Series E funding. The company provides a digital way of creating the right combination of buyers and manufacturers. Another example of AI implementation into matching two sides for a deal. Real estate tech company Orchard raises $69 million in its recent funding round. Orchard aims to digitize the whole real estate market, by developing a solution that combines machine learning and rapid human assistance to smooth the search, match the right deal, and simplify buying and selling relationships. Cybersecurity startup Pcysys raised $25 million in its funding round. Pcysys’ platform, which doesn’t require installation or network reconfiguration, uses algorithms to scan and “ethically” attack enterprise networks. Robotics farming company Iron Ox raised $20 million in a funding round. The system of farming robots is still semi-autonomous, the company’s goal is to become fully autonomous.  Insurtech company Descartes Underwriting raised $18.5 million. The company applies AI and machine learning technologies to climate risk predicting and insurance underwriting. Legaltech startup ThoughtRiver raised $10 million in its Series A round. Its AI solution applied to contract pre-screening aims to boost operational efficiency. Medtech startup Skin Analytics raised $5.1 million in Series A funding. Skin Analytics has developed a clinically validated AI system that can identify not only the important skin cancers but also precancerous lesions that can be treated, as well as a range of lesions that are benign. Amazon, along with several government organizations and three other industry partners, helped fund the National Science Foundation, a high-priority AI research initiative. The amount of funding is not disclosed. The content of TheSequence is written by Jesus Rodriguez, one of the most-read contributors to KDNuggets and TDS. You can check his Medium here.

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

[D] Elon Musk has a complex relationship with the A.I. community
reddit
LLM Vibe Score0
Human Vibe Score0
milaworldThis week

[D] Elon Musk has a complex relationship with the A.I. community

Update: Yann LeCun stepped in, and I think they made peace, after agreeing on the awesomeness of PyTorch 😂 An article about Elon Musk and the machine learning research community leading to some interesting discussions between the head of Facebook AI research (apparently it is not Yann Lecun anymore, but some other dude), and Elon himself. Quotes from the article: Multiple AI researchers from different companies told CNBC that they see Musk’s AI comments as inappropriate and urged the public not to take his views on AI too seriously. The smartest computers can still only excel at a “narrow” selection of tasks and there’s a long way to go before human-level AI is achieved. “A large proportion of the community think he’s a negative distraction,” said an AI executive with close ties to the community who wished to remain anonymous because their company may work for one of Musk’s businesses. “He is sensationalist, he veers wildly between openly worrying about the downside risk of the technology and then hyping the AGI (artificial general intelligence) agenda. Whilst his very real accomplishments are acknowledged, his loose remarks lead to the general public having an unrealistic understanding of the state of AI maturity.” An AI scientist who specializes in speech recognition and wished to remain anonymous to avoid public backlash said Musk is “not always looked upon favorably” by the AI research community. “I instinctively fall on dislike, because he makes up such nonsense,” said another AI researcher at a U.K university who asked to be kept anonymous. “But then he delivers such extraordinary things. It always leaves me wondering, does he know what he’s doing? Is all the visionary stuff just a trick to get an innovative thing to market?” CNBC reached out to Musk and his representatives for this article but is yet to receive a response. (Well, they got one now! 👇) “I believe a lot of people in the AI community would be ok saying it publicly. Elon Musk has no idea what he is talking about when he talks about AI. There is no such thing as AGI and we are nowhere near matching human intelligence. #noAGI” (Jérôme Pesenti, VP of AI at Facebook) “Facebook sucks” (Elon Musk) Article: https://www.cnbc.com/2020/05/13/elon-musk-has-a-complex-relationship-with-the-ai-community.html

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call
reddit
LLM Vibe Score0
Human Vibe Score1
noiseinvacuumThis week

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call

During the recent earnings call, Mark Zuckerberg answered a question from Eric Sheridan of Goldman Sachs on Meta's AI strategy, opportunities to integrate into products, and why they open source models and how it would benefit their business. I found the reasoning to be very sound and promising for the OSS and AI community. The biggest risk from AI, in my opinion, is not the doomsday scenarios that intuitively come to mind but rather that the most powerful AI systems will only be accessible to the most powerful and resourceful corporations. Quote copied from Ben Thompson's write up on Meta's earning in his Stratechery blog post which goes beyond AI. It's behind a paywall but I highly recommend it personally. Some noteworthy quotes that signal the thought process at Meta FAIR and more broadly We’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon We would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that. ...lead us to do more work in terms of open sourcing, some of the lower level models and tools Open sourcing low level tools make the way we run all this infrastructure more efficient over time. On PyTorch: It’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. I would expect us to be pushing and helping to build out an open ecosystem. For all the negative that comes out of the popular discourse on Meta, I think their work to open source key tech tools over the last 10 years has been exceptional, here's hoping it continues into this decade of AI and pushes other tech giants to also realize the benefits of Open Source. Full Transcript: Right now most of the companies that are training large language models have business models that lead them to a closed approach to development. I think there’s an important opportunity to help create an open ecosystem. If we can help be a part of this, then much of the industry will standardize on using these open tools and help improve them further. So this will make it easier for other companies to integrate with our products and platforms as we enable more integrations, and that will help our products stay at the leading edge as well. Our approach to AI and our infrastructure has always been fairly open. We open source many of our state of the art models so people can experiment and build with them. This quarter we released our LLaMa LLM to researchers. It has 65 billion parameters but outperforms larger models and has proven quite popular. We’ve also open-sourced three other groundbreaking visual models along with their training data and model weights — Segment Anything, DinoV2, and our Animated Drawings tool — and we’ve gotten positive feedback on all of those as well. I think that there’s an important distinction between the products we offer and a lot of the technical infrastructure, especially the software that we write to support that. And historically, whether it’s the Open Compute project that we’ve done or just open sourcing a lot of the infrastructure that we’ve built, we’ve historically open sourced a lot of that infrastructure, even though we haven’t open sourced the code for our core products or anything like that. And the reason why I think why we do this is that unlike some of the other companies in the space, we’re not selling a cloud computing service where we try to keep the different software infrastructure that we’re building proprietary. For us, it’s way better if the industry standardizes on the basic tools that we’re using and therefore we can benefit from the improvements that others make and others’ use of those tools can, in some cases like Open Compute, drive down the costs of those things which make our business more efficient too. So I think to some degree we’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon, and that creates different incentives for us. So overall, I think that that’s going to lead us to do more work in terms of open sourcing, some of the lower level models and tools. But of course, a lot of the product work itself is going to be specific and integrated with the things that we do. So it’s not that everything we do is going to be open. Obviously, a bunch of this needs to be developed in a way that creates unique value for our products, but I think in terms of the basic models, I would expect us to be pushing and helping to build out an open ecosystem here, which I think is something that’s going to be important. On the AI tools, and we have a bunch of history here, right? So if you if you look at what we’ve done with PyTorch, for example, which has generally become the standard in the industry as a tool that a lot of folks who are building AI models and different things in that space use, it’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. So the tool chain is the same. So when they create some innovation, we can easily integrate it into the things that we’re doing. When we improve something, it improves other products too. Because it’s integrated with our technology stack, when there are opportunities to make integrations with products, it’s much easier to make sure that developers and other folks are compatible with the things that we need in the way that our systems work. So there are a lot of advantages, but I view this more as a kind of back end infrastructure advantage with potential integrations on the product side, but one that should hopefully enable us to stay at the leading edge and integrate more broadly with the community and also make the way we run all this infrastructure more efficient over time. There are a number of models. I just gave PyTorch as an example. Open Compute is another model that has worked really well for us in this way, both to incorporate both innovation and scale efficiency into our own infrastructure. So I think that there’s, our incentives I think are basically aligned towards moving in this direction. Now that said, there’s a lot to figure out, right? So when you asked if there are going to be other opportunities, I hope so. I can’t speak to what all those things might be now. This is all quite early in getting developed. The better we do at the foundational work, the more opportunities I think that will come and present themselves. So I think that that’s all stuff that we need to figure out. But at least at the base level, I think we’re generally incentivized to move in this direction. And we also need to figure out how to go in that direction over time. I mean, I mentioned LLaMA before and I also want to be clear that while I’m talking about helping contribute to an open ecosystem, LLaMA is a model that we only really made available to researchers and there’s a lot of really good stuff that’s happening there. But a lot of the work that we’re doing, I think, we would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that.

[D] LLMs causing more harm than good for the field?
reddit
LLM Vibe Score0
Human Vibe Score1
Stevens97This week

[D] LLMs causing more harm than good for the field?

This post might be a bit ranty, but i feel more and more share this sentiment with me as of late. If you bother to read this whole post feel free to share how you feel about this. When OpenAI put the knowledge of AI in the everyday household, I was at first optimistic about it. In smaller countries outside the US, companies were very hesitant before about AI, they thought it felt far away and something only big FANG companies were able to do. Now? Its much better. Everyone is interested in it and wants to know how they can use AI in their business. Which is great! Pre-ChatGPT-times, when people asked me what i worked with and i responded "Machine Learning/AI" they had no clue and pretty much no further interest (Unless they were a tech-person) Post-ChatGPT-times, when I get asked the same questions I get "Oh, you do that thing with the chatbots?" Its a step in the right direction, I guess. I don't really have that much interest in LLMs and have the privilege to work exclusively on vision related tasks unlike some other people who have had to pivot to working full time with LLMs. However, right now I think its almost doing more harm to the field than good. Let me share some of my observations, but before that I want to highlight I'm in no way trying to gatekeep the field of AI in any way. I've gotten job offers to be "ChatGPT expert", What does that even mean? I strongly believe that jobs like these don't really fill a real function and is more of a "hypetrain"-job than a job that fills any function at all. Over the past years I've been going to some conferences around Europe, one being last week, which has usually been great with good technological depth and a place for Data-scientists/ML Engineers to network, share ideas and collaborate. However, now the talks, the depth, the networking has all changed drastically. No longer is it new and exiting ways companies are using AI to do cool things and push the envelope, its all GANs and LLMs with surface level knowledge. The few "old-school" type talks being sent off to a 2nd track in a small room The panel discussions are filled with philosophists with no fundamental knowledge of AI talking about if LLMs will become sentient or not. The spaces for data-scientists/ML engineers are quickly dissapearing outside the academic conferences, being pushed out by the current hypetrain. The hypetrain evangelists also promise miracles and gold with LLMs and GANs, miracles that they will never live up to. When the investors realize that the LLMs cant live up to these miracles they will instantly get more hesitant with funding for future projects within AI, sending us back into an AI-winter once again. EDIT: P.S. I've also seen more people on this reddit appearing claiming to be "Generative AI experts". But when delving deeper it turns out they are just "good prompters" and have no real knowledge, expertice or interest in the actual field of AI or Generative AI.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[D] What is your honest experience with reinforcement learning?
reddit
LLM Vibe Score0
Human Vibe Score1
Starks-TechnologyThis week

[D] What is your honest experience with reinforcement learning?

In my personal experience, SOTA RL algorithms simply don't work. I've tried working with reinforcement learning for over 5 years. I remember when Alpha Go defeated the world famous Go player, Lee Sedol, and everybody thought RL would take the ML community by storm. Yet, outside of toy problems, I've personally never found a practical use-case of RL. What is your experience with it? Aside from Ad recommendation systems and RLHF, are there legitimate use-cases of RL? Or, was it all hype? Edit: I know a lot about AI. I built NexusTrade, an AI-Powered automated investing tool that lets non-technical users create, update, and deploy their trading strategies. I’m not an idiot nor a noob; RL is just ridiculously hard. Edit 2: Since my comments are being downvoted, here is a link to my article that better describes my position. It's not that I don't understand RL. I released my open-source code and wrote a paper on it. It's the fact that it's EXTREMELY difficult to understand. Other deep learning algorithms like CNNs (including ResNets), RNNs (including GRUs and LSTMs), Transformers, and GANs are not hard to understand. These algorithms work and have practical use-cases outside of the lab. Traditional SOTA RL algorithms like PPO, DDPG, and TD3 are just very hard. You need to do a bunch of research to even implement a toy problem. In contrast, the decision transformer is something anybody can implement, and it seems to match or surpass the SOTA. You don't need two networks battling each other. You don't have to go through hell to debug your network. It just naturally learns the best set of actions in an auto-regressive manner. I also didn't mean to come off as arrogant or imply that RL is not worth learning. I just haven't seen any real-world, practical use-cases of it. I simply wanted to start a discussion, not claim that I know everything. Edit 3: There's a shockingly number of people calling me an idiot for not fully understanding RL. You guys are wayyy too comfortable calling people you disagree with names. News-flash, not everybody has a PhD in ML. My undergraduate degree is in biology. I self-taught myself the high-level maths to understand ML. I'm very passionate about the field; I just have VERY disappointing experiences with RL. Funny enough, there are very few people refuting my actual points. To summarize: Lack of real-world applications Extremely complex and inaccessible to 99% of the population Much harder than traditional DL algorithms like CNNs, RNNs, and GANs Sample inefficiency and instability Difficult to debug Better alternatives, such as the Decision Transformer Are these not legitimate criticisms? Is the purpose of this sub not to have discussions related to Machine Learning? To the few commenters that aren't calling me an idiot...thank you! Remember, it costs you nothing to be nice! Edit 4: Lots of people seem to agree that RL is over-hyped. Unfortunately those comments are downvoted. To clear up some things: We've invested HEAVILY into reinforcement learning. All we got from this investment is a robot that can be super-human at (some) video games. AlphaFold did not use any reinforcement learning. SpaceX doesn't either. I concede that it can be useful for robotics, but still argue that it's use-cases outside the lab are extremely limited. If you're stumbling on this thread and curious about an RL alternative, check out the Decision Transformer. It can be used in any situation that a traditional RL algorithm can be used. Final Edit: To those who contributed more recently, thank you for the thoughtful discussion! From what I learned, model-based models like Dreamer and IRIS MIGHT have a future. But everybody who has actually used model-free models like DDPG unanimously agree that they suck and don’t work.

[D] Is this close enough to be usable? Need your inputs: Automated RAG testing tool. AI Data Pipelines for Real-World Production (Part 3)
reddit
LLM Vibe Score0
Human Vibe Score1
Snoo-bedoooThis week

[D] Is this close enough to be usable? Need your inputs: Automated RAG testing tool. AI Data Pipelines for Real-World Production (Part 3)

Hey there, Redditors! I'm back with the latest installment on creating dependable AI data pipelines for real-world production. If you've been following along, you know I'm on a mission to move beyond the "thin OpenAI wrapper" trend and tackle the challenges of building robust data pipelines. With 18 months of hands-on experience and many user interviews, I realized that with the probabilistic nature of systems, we need better\_testing.gpt: As you build you should test The world of AI is a fast-moving one, and we've realized that just working on systems is not an optimal design choice. By the time your product ships, it might already be using outdated technology. So, what's the lesson here? Embrace change, test along, but be prepared to switch pace. No Best Practices Yet for RAGs In this rapidly evolving landscape, there are no established best practices. You'll need to make educated bets on tools and processes, knowing that things will change. With the RAG testing tool, I tried allowing for testing many potential parameter combinations automatically Testing Frameworks If your generative AI product doesn't have users giving feedback, then you are building in isolation. I used Deepeval to generate test sets, and they will soon support synthetic test set generation Infographics only go so far AI researchers and data scientists, while brilliant, end up in a loop of pursuing Twitter promotional content. New ways are promoted via new content pieces, but ideally, we need something above simple tracing but less than full-fledged analytics. To do this, I stored test outputs in Postgres and created a Superset instance to visualize the results Bridging the Gap between VectorDBs There's a noticeable number of Vector DBs. To ensure smooth product development, we need to be able to switch to best best-performing one, especially since user interviews signal that they might start deteriorating after loading 50 million rows &#x200B; Github repo is here Next steps: I have questions for you: What variables do you change when building RAGs? What is the set of strategies I should add to the solution? (parent-son etc.) How can I improve it in general? Is anyone interested in a leaderboard for best parameter configs? Check out the blog post: Link to part 3 Remember to give this post an upvote if you found it insightful! And also star our Github repo

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.
reddit
LLM Vibe Score0
Human Vibe Score1
SpicyCopyThis week

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.

Hey guys, I'm working in a growth marketing agency. Marketing tools are 30% of what we do, so we use them a lot and experiment with the new ones as much as possible. There are thousands of tools and it's easy to get lost, so I wanted to share the tools we use most on a daily basis. And divide the list into 14 categories. I thought this could be handy for Entrepreneurs subreddit. Why adopt tools? I see marketing tools as tireless colleagues. If you can't hire an employee, choosing the right tool can solve your problems, because they Are super cheap. Work 7/24 for you. Don’t make mistakes. Don’t need management. (or needless management) Help you to automate the majority of your lead gen process. Onwards to the list. (With the pricings post ended up quite long, you can find a link in the end if you want to check the prices) Email marketing tools #1 ActiveCampaign is armed with the most complicated email automation features and has the most intuitive user experience. It feels like you already know how to use it. \#2 Autopilot is visual marketing automation and customer journey tool that helps you acquire, nurture based on behaviors, interest etc. #3 Mailjet: This is the tool we use to send out bulky email campaigns such as newsletters. It doesn't have sexy features like others but does its job for a cheap price. Email address finders #4 Skrapp finds email of your contacts by name and company. It also works with LinkedIn Sales Navigator and can extract thousands of emails in bulk + have a browser add-on. #5 Hunter: Similar to Skrapp but doesn't work with LinkedIn Sales Navigator directly. In addition, there are email templates and you can set up email campaigns. Prospecting and outreach tools #6 Prospect combines the personal emails, follow-up calls, other social touches and helps you create multichannel campaigns.  #7 Reply is a more intuitive version of Prospect. It is easy to learn and use; their UX makes you feel good and sufficient.  CRM tools #8 Salesflare helps you to stop managing your data and start managing your customers. Not yet popular as Hubspot and etc but the best solution for smaller B2B businesses. (we're fans) \#9 Hubspot: The most popular CRM for good reason and has a broader product range you can adopt in your next steps. Try this if you have a bulky list of customers because it is free. #10 Pardot: Pardot is by Salesforce, it's armed with features that can close the gap between marketing and sales. Sales Tools #11 Salesforce is the best sales automation and lead management software. It helps you to create complicated segmentations and run, track, analyze campaigns from the same dashboard. #12 LinkedIn Sales Navigator gives you full access to LinkedIn's user database. You can even find a kidnapped CEO if you know how to use it with other marketing automation tools like Skrapp. #13 Pipedrive is a simple tool and excels in one thing. It tracks your leads and tells you when to take the next action. It makes sales easier. #14 Qwilr creates great-looking docs, at speed. You can design perfect proposals, quotes, client updates, and more in a flash. We use it a lot to close deals, it's effective. #15 Crystalknows is an add-on that tells you anyone’s personality on LinkedIn and gives you a detailed approach specific to that person. It's eerily accurate. #16 Leadfeeder shows you the companies that visited your website. Tells how they found you and what they’re interested in. It has a free version. Communication Tools #17 Intercom is a sweet and smart host that welcomes your visitors when you’re not home. It’s one of the best chatbot tools in the market. #18 Drift is famous for its conversational marketing features and more sales-focused than Intercom. #19 Manychat is a chatbot that helps you create high converting Facebook campaigns. #20 Plann3r helps you create your personalized meeting page. You can schedule meetings witch clients, candidates, and prospects. #21 Loom is a video messaging tool, it helps you to be more expressive and create closer relationships. #22 Callpage collects your visitors’ phone number and connects you with them in seconds. No matter where you are. Landing page tools #23 Instapage is the best overall landing page builder. It has a broad range of features and even squirrel can build a compelling landing page with templates. No coding needed. #24 Unbounce can do everything that Instapage does and lets you build a great landing page without a developer. But it's less intuitive. Lead generation / marketing automation tools #25 Phantombuster is by far the most used lead generation software in our tool kit. It extracts data, emails, sends requests, customized messages, and does many things on autopilot in any platform. You can check this, this and this if you want to see it in action. #26 Duxsoup is a Google Chrome add-on and can also automate some of LinkedIn lead generation efforts like Phantombuster. But not works in the cloud. #27 Zapier is a glue that holds all the lead generation tools together. With Zapier, You can connect different marketing tools and no coding required. Conversion rate optimization tools #28 Hotjar tracks what people are doing on your website by recording sessions and capturing mouse movements. Then it gives you a heatmap. #29 UsabilityHub shows your page to a digital crowd and measures the first impressions and helps you to validate your ideas. #30 Optinmonster is a top tier conversion optimization tool. It helps you to capture leads and enables you to increase conversions rates with many features. #31 Notifia is one mega tool of widgets that arms your website with the wildest social proof and lead capturing tactics. #32 Sumo is a much simpler version of Notifia. But Sumo has everything to help you capture leads and build your email lists. Web scrapers #33 Data Miner is a Google Chrome browser extension that helps you scrape data from web pages and into a CSV file or Excel spreadsheet. #34 Webscraper does the same thing as Data Miner; however, it is capable of handling more complex tasks. SEO and Content #35 Grammarly: Your English could be your first language and your grammar could be better than Shakespeare. Grammarly still can make your writing better. #36 Hemingwayapp is a copywriting optimization tool that gives you feedback about your copy and improves your readability score, makes your writing bolder and punchier. Free. #37 Ahrefs is an all-rounder search engine optimization tool that helps you with off-page, on-page or technical SEO. #38 SurferSEO makes things easier for your on-page SEO efforts. It’s a tool that analyzes top Google results for specific keywords and gives you a content brief based on that data. Video editing and design tools #39 Canva is a graphic design platform that makes everything easy. It has thousands of templates for anything from Facebook ads, stylish presentations to business cards.  #40 Kapwing is our go-to platform for quick video edits. It works on the browser and can help you to create stylish videos, add subtitles, resize videos, create memes, or remove backgrounds. #41 Animoto can turn your photos and video clip into beautiful video slideshows. It comes handy when you want to create an advertising material but don’t have a budget. Advertising tools #42 AdEspresso lets you create and test multiple ads with few clicks. You can optimize your FB, IG, and Google ads from this tool and measure your ads with in-depth analytics. #43 AdRoll is an AI-driven platform that connects and coordinates marketing efforts across ads, email, and online stores. Other tools #44 Replug helps you to shorten, track, optimize your links with call-to-actions, branded links, and retargeting pixels #45 Draw.io = Mindmaps, schemes, and charts. With Draw.io, you can put your brain in a digital paper in an organized way. #46 Built With is a tool that finds out what websites are built with. So you can see what tools they're using and so on. #47 Typeform can turn data collection into an experience with Typeform. This tool helps you to engage your audience with conversational forms or surveys and help you to collect more data. #48 Livestorm helped us a lot, especially in COVID-19 tiles. It’s a webinar software that works on your browser, mobile, and desktop. #49 Teachable \- If you have an online course idea but hesitating because of the production process, Teachable can help you. It's easy to configure and customizable for your needs. #50 Viral Loops provides a revolutionary referral marketing solution for modern marketers. You can create and run referral campaigns in a few clicks with templates. Remember, most of these tools have a free trial or free version. Going over them one by one can teach you a lot and help you grow your business with less work power in the early stages of your business. I hope you enjoyed the read and can find some tools to make things easier! Let me know about your favorite tools in the comments, so I can try them out. \------ If you want to check the prices and see a broader explanation about the tools, you can go here.

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

Tech founders -- you're being lied to
reddit
LLM Vibe Score0
Human Vibe Score1
SaskjimboThis week

Tech founders -- you're being lied to

I've been meaning to post this for a while. I saw a video recently that put me over the edge. You guys need to know what's up. Venture capitalists, angels, and accelerators all want you to build fast and fail faster. They want to you get your mvp buult in as little as a couple weeks. I'm a software dev and I own SaaS company. I'm here to tell you that you're being lied to. It's 2023. Unless some customer is about to drown because of their problem, they are not going to respect, or consider your trashy looking mvp. People these days expect a certain level of polish and professionalism when it comes to software before they give it more than 3s of their time. If your software took 80 hours to build, good chance that even customers from your target market will disregard it unless you're solving some insanely painful problem. And if you're using you're mvp for market research, people aren't going to talk to you if they believe that they spent more time getting dressed that morning than you put into your product. Build things that you can be proud of. Time boxing your first dev cycle into a few days or even weeks limits the scope of what you can build. I've spent more time than this figuring out a single api. Its this time boxing that leads 1000s of people to build the same shit. It's low quality work and exists in a super saturated market. And given the small scope of the product, the amount you'll be able to charge means the LTV of a customer will be lower than you CAC. Meaning your company will always lose money. The negative reception from your pre alpha product will have you think that people don't like you or your work. It's simply not the case. Few on this planet could produce something captivating in 100 hours. VCs tell you to ship your garbage MVP asap because of the following reason. They view every product that ships as a lotto ticket. If they like the look of it, they'll buy a ticket. And the more products there are and the shittier they are, it means a) they have more ticket numbers to select from and b) the cost of the ticket is a lot cheaper than it would otherwise be if the product was nice. VCs are not your friends and often, don't know how to build or market products. They are in it for the money and any advice they give to you or the community will be self serving. The indie community needs to wake up and realize that quality software built by a small team that people will pay for in this saturated market often takes months if not years to build. The idea of building a product and putting it in front of customers in 2 weeks is dumb. I've used some of these products and they are so limited in scope, broken and poorly designed that I don't give them anymore than a minute or two of my time. Note: validate your ideas before writing code. I'm not advocating spending a year writing software for an unproven market or problem. Yes, there are exceptions and stories of people shipping in no time and getting traction, but these are not the norm. Lastly, this philosophy is why you have and will continue to see a million products centered around AI. For those of you who aren't devs, Open AI made chatgpt accessible to developers and it's like 3 lines of code to ask it a question, get a response and save that response within your program. It's super low effort to integrate and that's why everyone will be building the same types of products with it. Tl;dr: Investors and gurus have agendas. Be logical about the level of effort required to build a software company and put forth only work that you're proud of. Being able to code doesn't give you a magical ability to create massive value with only a few weeks of work. You have to grind like pretty much every other successful business owner. I'll likely be banned for this, but fuck it. Ive got a sub where I'll share more insight and ban bullshit and idiotic posts with zero warning. It's not for everyone and I'll usually let you know pretty quick if our relationship isn't going to work. 6000 people and growing. r/cutthebull I'll write a post on that sub in the next few mins on how to guarentee accountability from top level management at your company.

I built a no-code solution for UI-driven AI applications, But I'm lost on the business side - How to market and transform it into a viable business?
reddit
LLM Vibe Score0
Human Vibe Score1
vnjxkThis week

I built a no-code solution for UI-driven AI applications, But I'm lost on the business side - How to market and transform it into a viable business?

Hey everyone! sorry for the "no-code solution for UI-driven AI applications" (counted 3 buzzwords), couldn't find a way to describe it so I asked claude I'm in a bit of a pickle and could use some wisdom from this awesome community. A few months back, I developed a tool that I'm pretty excited about, but I hit a wall and shelved it. Now I'm feeling the itch to dive back in, but I'm struggling with the business side of things. Here's the gist: It's a drag-and-drop UI builder You can define buttons to execute logic and AI behind the scenes (using no-code) It uses the UI built for both input and output The good news: The site is functional and looks pretty slick (except the produced UI from the builder). Most features are implemented, though I still need to polish up the UI blocks and add more workflow nodes. The not-so-good news: I have zero users and no clear monetization strategy. The tool is so versatile that I'm having trouble figuring out how to even approach marketing it effectively. So, I turn to you guys in hopes of finding a direction: Any ideas on potential monetization strategies for a tool like this? How would you approach marketing such a multi-purpose product? Has anyone been in a similar situation? How did you move forward? generally I'd love to hear your thoughts, experiences, or even wild ideas! Thanks in advance for any insights you can share. The site is withui.com you can test it out

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

If only someone told me this before my first startup
reddit
LLM Vibe Score0
Human Vibe Score0.625
johnrushxThis week

If only someone told me this before my first startup

If only someone told me this before my first startup: Validate idea first. I wasted a decade building stuff nobody needed. Incubators and VCs served to me as a validation, but I was so wrong. Kill my EGO. It’s not about me, but the user. I must want what the user wants, not what I want. My taste isn't important. The user has expectations, and I must fulfill them. Don’t chaise investors. Chase users, and then investors will be chasing me. I've never had more incoming interest from VC than now when I'm the least interested in them. Never hire managers. Only hire doers until PMF. So many people know how to manage people and so few can actually get sh\*t done barehand. Landing page is the least important thing in a startup. Pick a simple template, edit texts with a no-code website builder in less than an hour and that's it! At the early stage, I win traffic outside of my website, people are already interested, so don't make them search for the signup button among the texts! Focus on conversion optimization only when the traffic is consistent. Keep it to one page. Nobody gonna browse this website. Hire only fullstack devs. There is nothing less productive in this world than a team of developers for an early-stage product. One full stack dev building the whole product. That’s it. Chase global market from day 1. If the product and marketing are good, it will work on the global market too, if it’s bad, it won’t work on the local market too. So better go global from day 1, so that if it works, the upside is 100x bigger. I launched all startups for the Norwegian market, hoping we will scale to international at some point. I wish I launched to international from day 1 as I do now. The size of the market is 10000x bigger. I can validate and grow products in days, not in years as it used to be. Do SEO from day 2. As early as I can. I ignored this for 14 years. It’s my biggest regret. It takes just 5 minutes to get it done on my landing page. I go to Google Keyword Planner, enter a few keywords around my product, sort them by traffic, filter out high competition kws, pick the top 10, and place them natively on my home page and meta tags. Add one blog article every week. Either manually or by paying for an AI blogging tool. Sell features, before building them. Ask existing users if they want this feature. I run DMs with 10-20 users every day, where I chat about all my ideas and features I wanna add. I clearly see what resonates with me most and only go build those. If I don't have followers, try HN, Reddit, or just search on X for posts and ask it in the replies. People are helpful, they will reply if the question is easy to understand. Hire only people I would wanna hug. My cofounder, an old Danish man said this to me in 2015. And it was a big shift. I realized that if I don’t wanna hug the person, it means I dislike them on a chemical/animal level. Even if I can’t say why, but that’s the fact. Sooner or later, we would have a conflict and eventually break up. It takes up to 10 years to build a startup, make sure I do it with people I have this connection with. Invest all money into my startups and friends. Not crypt0, not stockmarket, not properties. I did some math, if I kept investing all my money into all my friends’ startups, that would be about 70 investments. 3 of them turned into unicorns eventually. Even 1 would have made the bank. Since 2022, I have invested all my money into my products, friends, and network. If I don't have friends who do startups, invest it in myself. Post on Twitter daily. I started posting here in March last year. It’s my primary source of new connections and growth. I could have started it earlier, I don't know why I didn't. Don’t work/partner with corporates. Corporations always seem like an amazing opportunity. They’re big and rich, they promise huge stuff, millions of users, etc. But every single time none of this happens. Because I talk to a regular employees there. They waste my time, destroy focus, shift priorities, and eventually bring in no users/money. Don’t get ever distracted by hype e.g. crypt0. I lost 1.5 years of my life this way. I met the worst people along the way. Fricks, scammers, thieves. Some of my close friends turned into thieves along the way, just because it was so common in that space. I wish this didn’t happen to me. I wish I was stronger and stayed on my mission. Don’t build consumer apps. Only b2b. Consumer apps are so hard, like a lottery. It’s just 0.00001% who make it big. The rest don’t. Even if I got many users, then there is a monetization challenge. I’ve spent 4 years in consumer apps and regret it. Don’t hold on bad project for too long, max 1 year. Some projects just don’t work. In most cases, it’s either the idea that’s so wrong that I can’t even pivot it or it’s a team that is good one by one but can’t make it as a team. Don’t drag this out for years. Tech conferences are a waste of time. They cost money, take energy, and time and I never really meet anyone there. Most people there are the “good” employees of corporations who were sent there as a perk for being loyal to the corporation. Very few fellow makers. Scrum is a Scam. For small teams and bootstrapped teams. If I had a team that had to be nagged every morning with questions as if they were children in kindergarten, then things would eventually fail. The only good stuff I managed to do happened with people who were grownups and could manage their stuff on their own. We would just do everything over chat as a sync on goals and plans. Outsource nothing at all until PMF. In a startup, almost everything needs to be done in a slightly different way, more creative, and more integrated into the vision. When outsourcing, the external members get no love and no case for the product. It’s just yet another assignment in their boring job. Instead of coming up with great ideas for my project they will be just focusing on ramping up their skills to get a promotion or a better job offer. Bootstrap. I spent way too much time raising money. I raised more than 10 times, preseed, seeded, and series A. But each time it was a 3-9 month project, meetings every week, and lots of destruction. I could afford to bootstrap, but I still went the VC-funded way, I don’t know why. To be honest, I didn’t know bootstrapping was a thing I could do or anyone does. It may take a decade. When I was 20, I was convinced it takes a few years to build and succeed with a startup. So I kept pushing my plans forward, to do it once I exited. Family, kids. I wish I married earlier. I wish I had kids earlier. No Free Tier. I'd launch a tool with a free tier, and it'd get sign-ups, but very few would convert. I'd treat free sign-ups as KPIs and run on it for years. I'd brag about signups and visitors. I'd even raise VC money with these stats. But eventually, I would fail to reach PMF. Because my main feedback would come from free users and the product turned into a perfect free product. Once I switched to "paid only" until I validated the product, things went really well. Free and paid users often need different products. Don't fall into this trap as I did. Being To Cheap. I always started by checking all competitors and setting the lowest price. I thought this would be one of the key advantages of my product. But no, I was wrong. The audience on $5 and $50 are totally different. $5: pain in the \*ss, never happy, never recommend me to a friend, leave in 4 months. $50: polite, give genuine feedback, happy, share with friends, become my big fan if I solve their request. I will fail. When I started my first startup. I thought if I did everything right, it would work out. But it turned out that almost every startup fails. I wish I knew that and I tried to fail faster, to get to the second iteration, then to the third, and keep going on, until I either find out nothing works or make it work. Use boilerplates. I wasted years of dev time and millions of VC money to pay for basic things. To build yet another sidebar, yet another dashboard, and payment integration... I had too much pride, I couldn't see myself taking someone else code as a basis for my product. I wanted it to be 100% mine, original, from scratch. Because my product seems special to me. Spend more time with Family & Friends. I missed the weddings of all my best friends and family. I was so busy. I thought if I didn't do it on time, the world would end. Looking back today, it was so wrong. I meet my friends and can't share those memories with them, which makes me very sad. I realized now, that spending 10% of my time with family and friends would practically make no negative impact on my startups. Build Products For Audiences I Love. I never thought of this. I'd often build products either for corporates, consumers, or for developers. It turns out I have no love for all 3. But I deeply love indie founders. Because they are risk-takers and partly kids in their hearts. Once I switched the focus to indie makers on my products, my level of joy increased by 100x for me. Ignore Badges and Awards I was chasing those awards just like everyone else. Going to ceremonies, signing up for events and stuff. I've won tons of awards, but none of those were eventually useful to my business. I better focused on my business and users. Write Every Single Day. When I was a kid, I loved writing stories. In school, they would give an assignment, and I'd often write a long story for it, however, the teacher would put an F on it. The reason was simple, I had an issue with the direction of the letters and the sequence of letters in the words. I still have it, it's just the Grammarly app helping me to correct these issues. So the teacher would fail my stories because almost every sentence had a spelling mistake that I couldn't even see. It made me think I'm made at writing. So I stopped, for 15 years. But I kept telling stories all these years. Recently I realized that in any group, the setup ends up turning into me telling stories to everyone. So I tried it all again, here on X 10 months ago. I love it, the process, the feedback from people. I write every day. I wish I had done it all these years. The End. \ this is an updated version of my post on the same topic from 2 months ago. I've edited some of the points and added 9 new ones.* \\ This is not advice, it's my self-reflection that might help you avoid same mistakes if you think those were mistakes

Built a Free AI Fitness Planner - From Passion to Product with No Traditional Coding
reddit
LLM Vibe Score0
Human Vibe Score1
jhojnac2This week

Built a Free AI Fitness Planner - From Passion to Product with No Traditional Coding

I wanted to share my journey of creating a free ai-powered workout planning tool with bolt. new and very minimal coding skills. It has taken me probably 4 days in total to complete and get to a point I am happy with. Many improvements coming but want to get it out there for some feedback and testing. I have been going to the gym for years and at this point my routines have gotten stale. I end up doing the same sets of exercises and repetitions over and over. I figured why not let chat gpt or some AI software help me develop or at least recommend different exercises. I was then was recommended youtube videos on creating your own web application without any coding. I will say it does take some coding knowledge, not that I am editing it myself, but I know what its trying to do and can prompt it correctly. I am still struggling with some things like integrating stripe for subscriptions so I only have it set up for donations currently. I dont mind it being free as I would like everyone the opportunity to help develop their own workouts. current cost breakdown to create: bolt. new credits - $100/month (gonna drop to the $20 now that its complete) supabase database - $35/month netlify domain - $11.99/year If anyone is interested or has questions feel free to let me know. It is called fitfocuscalendar. com Edit: title and 1st sentence came from AI everything else was typed by me.

I Quit My Tech Job 6 Months Ago. Built 10+ Products. Made $0. Here's Everything I Learned.
reddit
LLM Vibe Score0
Human Vibe Score1
WaynedevvvThis week

I Quit My Tech Job 6 Months Ago. Built 10+ Products. Made $0. Here's Everything I Learned.

I quit my tech job 6 months ago to go full indie. Had enough savings and didn't want to miss the AI wave. Since then, I've built 10+ products - B2C, B2B, mobile apps, directories, marketplaces, you name it. But I keep repeating the same cycle: have an idea, dream big, build for weeks, "launch" (and by launch, I mean just deploy and go live with zero promotion), then get bored and lose motivation to market it. Then I start looking for new ideas to build. Is it just me, or does anyone else face something similar? Maybe coding is my comfort zone and marketing isn't, that's why... I knew entrepreneurship was hard, but it's MUCH harder than I thought. After these failures, here's everything I've learned: Lessons Learned The Hard Way Don't build something you don't have passion for. Pushing a product is hard and takes tremendous effort. If you don't have passion for it, you won't push through the initial "no interest" zone. Think carefully: would you be proud of what you build after building it? If yes, proceed. If not, don't waste time. Build your audience/network first. This isn't new advice, but it's 100% key for entrepreneurs to succeed. I'm still figuring this out, but one thing is clear: "Value" is the key. Stop posting random stuff and instead give value. People don't care about you and your life, but they do care about what you can offer them. Don't rush. Entrepreneurship isn't a sprint; it's a marathon. Don't rush to build stuff. Take a step back to think, plan, and learn. Coding for 16 hours a day won't do you any good - you'll end up building something people don't want. What I'm Doing Differently Next Time After all these failures, I finally took time with myself to think about how I can approach things differently. Here's my new plan: I will not start a new project if I know I'll ditch it after building it. I will follow best practices: validate the idea, research competitors, look for beta users, and ship fast. I will start building my audience and personal brand through documenting the journey. I've already decided what I'm building next, and yes, this time I'm going all in. I'll apply everything I've learned so far, and hopefully, this time will be different. Will update you all soon. Keep shipping, folks! Hopefully we'll see your "I reached 10k MRR for my SaaS" post soon.

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience
reddit
LLM Vibe Score0
Human Vibe Score1
hopefully_usefulThis week

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience

I met my co-founder in late 2022 after an introduction from a mutual friend to talk about how to find contract Product Management roles. I was sporadically contracting at start-up at the time and he had just come out of another start-up that was wiped out by the pandemic. We hit it off, talking about ideas, sharing what other indie-hackers were doing, and given GPT-3’s prominence at the time, we started throwing around ideas about things we could build with it, if nothing else, just to learn. I should caveat, neither of us were AI experts when starting out, everything we learned has been through Twitter and blogs, my background is as an accountant, and his a consultant. Here’s how it went since then: &#x200B; Nov 2022 (+$50) \- We built a simple tool in around a week using GPT-3 fine-tuning and a no-code tool (Bubble) that helped UK university students write their personal statements for their applications \- We set some Google Ads going and managed to make a few sales (\~$50) in the first week \- OpenAI were still approving applications at the time and said this went against their “ethics” so we had to take it down &#x200B; Dec 2022 (+$200) \- We couldn’t stop coming up with ideas related to AI fine-tuning, but realised it was almost impossible to decide which to pursue \- We needed a deadline to force us so we signed up for the Ben’s Bites hackathon in late December \- In a week, we built and launched a no-code fine-tuning platform, allowing people to create fine-tuned models by dragging and dropping an Excel file onto it \- We launched it on Product Hunt, having no idea how to price it, and somehow managed to get \~2,000 visitors on the site and make 2 sales at $99 &#x200B; Jan 2023 (+$3,000) \- We doubled down on the fine-tuning idea and managed to get up to \~$300 MRR, plus a bunch of one-time sales and a few paid calls to help people get the most out of their models \- We quickly realised that people didn’t want to curate models themselves, they just wanted to dump data and get magic out \- That was when we saw people building “Talk with x book/podcast” on Twitter as side projects and realised that was the missing piece, we needed to turn it into a tool \- We started working on the new product in late January &#x200B; Feb 2023 (+$9,000) \- We started pre-selling access to an MVP for the new product, which allowed people to “chat with their data/content”, we got $5,000 in pre-sales, more than we made from the previous product in total \- By mid-February, after 3 weeks of building we were able to launch and immediately managed to get traction, getting to $1k MRR in < 1 week, building on the hype of ChatGPT and AI (we were very lucky here) &#x200B; Mar - Jul 2023 (+$98,000) \- We worked all the waking hours to keep up with customer demand, bugs, OpenAI issues \- We built integrations for a bunch of services like Slack, Teams, Wordpress etc, added tons of new functionality and continue talking to customers every day \- We managed to grow to $17k MRR (just about enough to cover our living expenses and costs in London) through building in public on Twitter, newsletters and AI directories (and a million other little things) \- We sold our fine-tuning platform for \~$20k and our university project for \~$3k on Acquire &#x200B; Aug 2023 (+$100,000) \- We did some custom development work based on our own product for a customer that proved pretty lucrative &#x200B; Sep - Oct 2023 (+$62,000) \- After 8 months of building constantly, we started digging more seriously into our usage and saw subscriptions plateauing \- We talked to and analysed all our paying users to identify the main use cases and found 75% were for SaaS customer support \- We took the leap to completely rebuild a version of our product around this use case, our biggest to date (especially given most features with no-code took us <1 day) &#x200B; Nov - Dec 2023 (+$53,000) \- We picked up some small custom development work that utilised our own tech \- We’re sitting at around $22k MRR now with a few bigger clients signed up and coming soon \- After 2 months of building and talking to users, we managed to finish our “v2” of our product, focussed squarely on SaaS customer support and launched it today. &#x200B; We have no idea what the response will be to this new version, but we’re pretty happy with it, but couldn’t have planned anything that happened to us in 2023 so who knows what will come of 2024, we just know that we are going to be learning a ton more. &#x200B; Overall, it is probably the most I have had to think in my life - other jobs you can zone out from time to time or rely on someone else if you aren’t feeling it - not when you are doing this, case and point, I am writing this with a banging head-cold right now, but wanted to get this done. A few more things we have learned along the way - context switching is unreal, as is keeping up with, learning and reacting to AI. There isn’t a moment of the day I am not thinking about what we do next. But while in some way we now have hundreds of bosses (our customers) I still haven’t felt this free and can’t imagine ever going back to work for someone else. Next year we’re really hoping to figure out some repeatable distribution channels and personally, I want to get a lot better at creating content/writing, this is a first step! Hope this helps someone else reading this to just try starting something and see what happens.

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security

Uzair Javaid, a Ph.D. with a passion for data privacy, co-founded Betterdata to tackle one of AI's most pressing challenges: protecting privacy while enabling innovation. Recently, Betterdata secured a lucrative contract with the US Department of Homeland Security, 1 of only 4 companies worldwide to do so and the only one in Asia. Here's how he did it: The Story So what's your story? I grew up in Peshawar, Pakistan, excelling in coding despite studying electrical engineering. Inspired by my professors, I set my sights on studying abroad and eventually earned a Ph.D. scholarship at NUS Singapore, specializing in data security and privacy. During my research, I ethically hacked Ethereum and published 15 papers—three times the requirement. While wrapping up my Ph.D., I explored startup ideas and joined Entrepreneur First, where I met Kevin Yee. With his expertise in generative models and mine in privacy, we founded Betterdata. Now, nearly three years in, we’ve secured a major contract with the U.S. Department of Homeland Security—one of only four companies globally and the only one from Asia. The Startup In a nutshell, what does your startup do? Betterdata is a startup that uses AI and synthetic data generation to address two major challenges: data privacy and the scarcity of high-quality data for training AI models. By leveraging generative models and privacy-enhancing technologies, Betterdata enables businesses, such as banks, to use customer data without breaching privacy regulations. The platform trains AI on real data, learns its patterns, and generates synthetic data that mimics the real thing without containing any personal or sensitive information. This allows companies to innovate and develop AI solutions safely and ethically, all while tackling the growing need for diverse, high-quality data in AI development. How did you conduct ideation and validation for your startup? The initial idea for Betterdata came from personal experience. During my Ph.D., I ethically hacked Ethereum’s blockchain, exposing flaws in encryption-based data sharing. This led me to explore AI-driven deep synthesis technology—similar to deepfakes but for structured data privacy. With GDPR impacting 28M+ businesses, I saw a massive opportunity to help enterprises securely share data while staying compliant. To validate the idea, I spoke to 50 potential customers—a number that strikes the right balance. Some say 100, but that’s impractical for early-stage founders. At 50, patterns emerge: if 3 out of 10 mention the same problem, and this repeats across 50, you have 10–15 strong signals, making it a solid foundation for an MVP. Instead of outbound sales, which I dislike, we used three key methods: Account-Based Marketing (ABM)—targeting technically savvy users with solutions for niche problems, like scaling synthetic data for banks. Targeted Content Marketing—regular customer conversations shaped our thought leadership and outreach. Raising Awareness Through Partnerships—collaborating with NUS, Singapore’s PDPC, and Plug and Play to build credibility and educate the market. These strategies attracted serious customers willing to pay, guiding Betterdata’s product development and market fit. How did you approach the initial building and ongoing product development? In the early stages, we built synthetic data generation algorithms and a basic UI for proof-of-concept, using open-source datasets to engage with banks. We quickly learned that banks wouldn't share actual customer data due to privacy concerns, so we had to conduct on-site installations and gather feedback to refine our MVP. Through continuous consultation with customers, we discovered real enterprise data posed challenges, such as missing values, which led us to adapt our prototype accordingly. This iterative approach of listening to customer feedback and observing their usage allowed us to improve our product, enhance UX, and address unmet needs while building trust and loyalty. Working closely with our customers also gives us a data advantage. Our solution’s effectiveness depends on customer data, which we can't fully access, but bridging this knowledge gap gives us a competitive edge. The more customers we test on, the more our algorithms adapt to diverse use cases, making it harder for competitors to replicate our insights. My approach to iteration is simple: focus solely on customer feedback and ignore external noise like trends or advice. The key question for the team is: which customer is asking for this feature or solution? As long as there's a clear answer, we move forward. External influences, such as AI hype, often bring more confusion than clarity. True long-term success comes from solving real customer problems, not chasing trends. Customers may not always know exactly what they want, but they understand their problems. Our job is to identify these problems and solve them in innovative ways. While customers may suggest specific features, we stay focused on solving the core issue rather than just fulfilling their exact requests. The idea aligns with the quote often attributed to Henry Ford: "If I asked people what they wanted, they would have said faster horses." The key is understanding their problems, not just taking requests at face value. How do you assess product-market fit? To assess product-market fit, we track two key metrics: Customers' Willingness to Pay: We measure both the quantity and quality of meetings with potential customers. A high number of meetings with key decision-makers signals genuine interest. At Betterdata, we focused on getting meetings with people in banks and large enterprises to gauge our product's resonance with the target market. How Much Customers Are Willing to Pay: We monitor the price customers are willing to pay, especially in the early stages. For us, large enterprises, like banks, were willing to pay a premium for our synthetic data platform due to the growing need for privacy tech. This feedback guided our product refinement and scaling strategy. By focusing on these metrics, we refined our product and positioned it for scaling. What is your business model? We employ a structured, phase-driven approach for out business model, as a B2B startup. I initially struggled with focusing on the core value proposition in sales, often becoming overly educational. Eventually, we developed a product roadmap with models that allowed us to match customer needs to specific offerings and justify our pricing. Our pricing structure includes project-based pilots and annual contracts for successful deployments. At Betterdata, our customer engagement unfolds across three phases: Phase 1: Trial and Benchmarking \- We start with outreach and use open-source datasets to showcase results, offering customers a trial period to evaluate the solution. Phase 2: Pilot or PoC \- After positive trial results, we conduct a PoC or pilot using the customer’s private data, with the understanding that successful pilots lead to an annual contract. Phase 3: Multi-Year Contracts \- Following a successful pilot, we transition to long-term commercial contracts, focusing on multi-year agreements to ensure stability and ongoing partnerships. How do you do marketing for your brand? We take a non-conventional approach to marketing, focusing on answering one key question: Which customers are willing to pay, and how much? This drives our messaging to show how our solution meets their needs. Our strategy centers around two main components: Building a network of lead magnets \- These are influential figures like senior advisors, thought leaders, and strategic partners. Engaging with institutions like IMDA, SUTD, and investors like Plug and Play helps us gain access to the right people and foster warm introductions, which shorten our sales cycle and ensure we’re reaching the right audience. Thought leadership \- We build our brand through customer traction, technology evidence, and regulatory guidelines. This helps us establish credibility in the market and position ourselves as trusted leaders in our field. This holistic approach has enabled us to navigate diverse market conditions in Asia and grow our B2B relationships. By focusing on these areas, we drive business growth and establish strong trust with stakeholders. What's your advice for fundraising? Here are my key takeaways for other founders when it comes to fundraising: Fundraise When You Don’t Need To We closed our seed round in April 2023, a time when we weren't actively raising. Founders should always be in fundraising mode, even when they're not immediately in need of capital. Don’t wait until you have only a few months of runway left. Keep the pipeline open and build relationships. When the timing is right, execution becomes much easier. For us, our investment came through a combination of referrals and inbound interest. Even our lead investor initially rejected us, but after re-engaging, things eventually fell into place. It’s crucial to stay humble, treat everyone with respect, and maintain those relationships for when the time is right. Be Mindful of How You Present Information When fundraising, how you present information matters a lot. We created a comprehensive, easily digestible investment memo, hosted on Notion, which included everything an investor might need—problem, solution, market, team, risks, opportunities, and data. The goal was for investors to be able to get the full picture within 30 minutes without chasing down extra details. We also focused on making our financial model clear and meaningful, even though a 5-year forecast might be overkill at the seed stage. The key was clarity and conciseness, and making it as easy as possible for investors to understand the opportunity. I learned that brevity and simplicity are often the best ways to make a memorable impact. For the pitch itself, keep it simple and focus on 4 things: problem, solution, team, and market. If you can summarize each of these clearly and concisely, you’ll have a compelling pitch. Later on, you can expand into market segments, traction, and other metrics, but for seed-stage, focus on those four areas, and make sure you’re strong in at least three of them. If you do, you'll have a compelling case. How do you run things day-to-day? i.e what's your operational workflow and team structure? Here's an overview of our team structure and process: Internally: Our team is divided into two main areas: backend (internal team) and frontend (market-facing team). There's no formal hierarchy within the backend team. We all operate as equals, defining our goals based on what needs to be developed, assigning tasks, and meeting weekly to share updates and review progress. The focus is on full ownership of tasks and accountability for getting things done. I also contribute to product development, identifying challenges and clearing obstacles to help the team move forward. Backend Team: We approach tasks based on the scope defined by customers, with no blame or hierarchy. It's like a sports team—sometimes someone excels, and other times they struggle, but we support each other and move forward together. Everyone has the creative freedom to work in the way that suits them best, but we establish regular meetings and check-ins to ensure alignment and progress. Frontend Team: For the market-facing side, we implement a hierarchy because the market expects this structure. If I present myself as "CEO," it signals authority and credibility. This distinction affects how we communicate with the market and how we build our brand. The frontend team is split into four main areas: Business Product (Software Engineering) Machine Learning Engineering R&D The C-suite sits at the top, followed by team leads, and then the executors. We distill market expectations into actionable tasks, ensuring that everyone is clear on their role and responsibilities. Process: We start by receiving market expectations and defining tasks based on them. Tasks are assigned to relevant teams, and execution happens with no communication barriers between team members. This ensures seamless collaboration and focused execution. The main goal is always effectiveness—getting things done efficiently while maintaining flexibility in how individuals approach their work. In both teams, there's an emphasis on accountability, collaboration, and clear communication, but the structure varies according to the nature of the work and external expectations.

The delicate balance of building an online community business
reddit
LLM Vibe Score0
Human Vibe Score0.895
matthewbarbyThis week

The delicate balance of building an online community business

Hey /r/Entrepreneur 👋 Just under two years ago I launched an online community business called Traffic Think Tank with two other co-founders, Nick Eubanks and Ian Howells. As a Traffic Think Tank customer you (currently) pay $119 a month to get access to our online community, which is run through Slack. The community is focused on helping you learn various aspects of marketing, with a particular focus on search engine optimization (SEO). Alongside access to the Slack community, we publish new educational video content from outside experts every week that all customers have access to. At the time of writing, Traffic Think Tank has around 650 members spanning across 17 of the 24 different global time zones. I was on a business trip over in Sydney recently, and during my time there I met up with some of our Australia-based community members. During dinner I was asked by several of them how the idea for Traffic Think Tank came about and what steps we took to validate that the idea was worth pursuing.  This is what I told them… How it all began It all started with a personal need. Nick, an already successful entrepreneur and owner of a marketing agency, had tested out an early version Traffic Think Tank in early 2017. He offered real-time consulting for around ten customers that he ran from Slack. He would publish some educational videos and offer his advice on projects that the members were running. The initial test went well, but it was tough to maintain on his own and he had to charge a fairly high price to make it worth his time. That’s when he spoke to me and Ian about turning this idea into something much bigger. Both Ian and I offered something slightly different to Nick. We’ve both spent time in senior positions at marketing agencies, but currently hold senior director positions in 2,000+ public employee companies (HubSpot and LendingTree). Alongside this, as a trio we could really ramp up the quality and quantity of content within the community, spread out the administrative workload and just generally have more resources to throw at getting this thing off the ground. Admittedly, Nick was much more optimistic about the potential of Traffic Think Tank – something I’m very thankful for now – whereas Ian and I were in the camp of “you’re out of your mind if you think hundreds of people are going to pay us to be a part of a Slack channel”. To validate the idea at scale, we decided that we’d get an initial MVP of the community up and running with a goal of reaching 100 paying customers in the first six months. If we achieved that, we’d validated that it was a viable business and we would continue to pursue it. If not, we’d kill it. We spent the next month building out the initial tech stack that enabled us to accept payments, do basic user management to the Slack channel, and get a one-page website up and running with information on what Traffic Think Tank was all about.  After this was ready, we doubled down on getting some initial content created for members – I mean, we couldn’t have people just land in an empty Slack channel, could we? We created around ten initial videos, 20 or so articles and then some long threads full of useful information within the Slack channel so that members would have some content to pour into right from the beginning.  Then, it was time to go live. The first 100 customers Fortunately, both Nick and I had built a somewhat substantial following in the SEO space over the previous 5-10 years, so we at least had a large email list to tap into (a total of around 40,000 people). We queued up some launch emails, set an initial price of $99 per month and pressed send. [\[LINK\] The launch email I sent to my subscribers announcing Traffic Think Tank](https://mailchi.mp/matthewbarby/future-of-marketing-1128181) What we didn’t expect was to sell all of the initial 100 membership spots in the first 72 hours. “Shit. What do we do now? Are we ready for this many people? Are we providing them with enough value? What if something breaks in our tech stack? What if they don’t like the content? What if everyone hates Slack?” All of these were thoughts running through my head. This brings me to the first great decision we made: we closed down new membership intake for 3 months so that we could focus completely on adding value to the first cohort of users. The right thing at the right time SEO is somewhat of a dark art to many people that are trying to learn about it for the first time. There’s hundreds of thousands (possibly millions) of articles and videos online that talk about how to do SEO.  Some of it’s good advice; a lot of it is very bad advice.  Add to this that the barrier to entry of claiming to be an “expert” in SEO is practically non-existent and you have a recipe for disaster. This is why, for a long time, individuals involved in SEO have flocked in their masses to online communities for information and to bounce ideas off of others in the space. Forums like SEObook, Black Hat World, WickedFire, Inbound.org, /r/BigSEO, and many more have, at one time, been called home by many SEOs.  In recent times, these communities have either been closed down or just simply haven’t adapted to the changing needs of the community – one of those needs being real-time feedback on real-world problems.  The other big need that we all spotted and personally had was the ability to openly share the things that are working – and the things that aren’t – in SEO within a private forum. Not everyone wanted to share their secret sauce with the world. One of the main reasons we chose Slack as the platform to run our community on was the fact that it solved these two core needs. It gave the ability to communicate in real-time across multiple devices, and all of the information shared within it was outside of the public domain. The other problem that plagued a lot of these early communities was spam. Most of them were web-based forums that were free to access. That meant they became a breeding ground for people trying to either sell their services or promote their own content – neither of which is conducive to building a thriving community. This was our main motivation for charging a monthly fee to access Traffic Think Tank. We spent a lot of time thinking through pricing. It needed to be enough money that people would be motivated to really make use of their membership and act in a way that’s beneficial to the community, but not too much money that it became cost prohibitive to the people that would benefit from it the most. Considering that most of our members would typically spend between $200-800 per month on SEO software, $99 initially felt like the perfect balance. Growing pains The first three months of running the community went by without any major hiccups. Members were incredibly patient with us, gave us great feedback and were incredibly helpful and accommodating to other members. Messages were being posted every day, with Nick, Ian and myself seeding most of the engagement at this stage.  With everything going smoothly, we decided that it was time to open the doors to another intake of new members. At this point we’d accumulated a backlog of people on our waiting list, so we knew that simply opening our doors would result in another large intake. Adding more members to a community has a direct impact on the value that each member receives. For Traffic Think Tank in particular, the value for members comes from three areas: The ability to have your questions answered by me, Nick and Ian, as well as other members of the community. The access to a large library of exclusive content. The ability to build connections with the wider community. In the early stages of membership growth, there was a big emphasis on the first of those three points. We didn’t have an enormous content library, nor did we have a particularly large community of members, so a lot of the value came from getting a lot of one-to-one time with the community founders. [\[IMAGE\] Screenshot of engagement within the Traffic Think Tank Slack community](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1322/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-in-Traffic-Think-Tank.png) The good thing about having 100 members was that it was just about feasible to give each and every member some one-to-one time within the month, which really helped us to deliver those moments of delight that the community needed early on. Two-and-a-half months after we launched Traffic Think Tank, we opened the doors to another 250 people, taking our total number of members to 350. This is where we experienced our first growing pains.  Our original members had become used to being able to drop us direct messages and expect an almost instant response, but this wasn’t feasible anymore. There were too many people, and we needed to create a shift in behavior. We needed more value to come from the community engaging with one another or we’d never be able to scale beyond this level. We started to really pay attention to engagement metrics; how many people were logging in every day, and of those, how many were actually posting messages within public channels.  We asked members that were logging in a lot but weren’t posting (the “lurkers”) why that was the case. We also asked the members that engaged in the community the most what motivated them to post regularly. We learned a lot from doing this. We found that the large majority of highly-engaged members had much more experience in SEO, whereas most of the “lurkers” were beginners. This meant that most of the information being shared in the community was very advanced, with a lot of feedback from the beginners in the group being that they “didn’t want to ask a stupid question”.  As managers of the community, we needed to facilitate conversations that catered to all of our members, not just those at a certain level of skill. To tackle this problem, we created a number of new channels that had a much deeper focus on beginner topics so novice members had a safe place to ask questions without judgment.  We also started running live video Q&As each month where we’d answer questions submitted by the community. This gave our members one-on-one time with me, Nick and Ian, but spread the value of these conversations across the whole community rather than them being hidden within private messages. As a result of these changes, we found that the more experienced members in the community were really enjoying sharing their knowledge with those with less experience. The number of replies within each question thread was really starting to increase, and the community started to shift away from just being a bunch of threads created by me, Nick and Ian to a thriving forum of diverse topics compiled by a diverse set of individuals. This is what we’d always wanted. A true community. It was starting to happen. [\[IMAGE\] Chart showing community engagement vs individual member value](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1602/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-Balance-Graph.jpg) At the same time, we started to realize that we’ll eventually reach a tipping point where there’ll be too much content for us to manage and our members to engage with. When we reach this point, the community will be tough to follow and the quality of any given post will go down. Not only that, but the community will become increasingly difficult to moderate. We’re not there yet, but we recognize that this will come, and we’ll have to adjust our model again. Advocating advocacy As we started to feel more comfortable about the value that members were receiving, we made the decision to indefinitely open for new members. At the same time, we increased the price of membership (from $99 a month to $119) in a bid to strike the right balance between profitability as a business and to slow down the rate at which we were reaching the tipping point of community size. We also made the decision to repay all of our early adopters by grandfathering them in to the original pricing – and committing to always do this in the future. Despite the price increase, we saw a continued flow of new members come into the community. The craziest part about this was that we were doing practically no marketing activities to encourage new members– this was all coming from word of mouth. Our members were getting enough value from the community that they were recommending it to their friends, colleagues and business partners.  The scale at which this was happening really took us by surprise and it told us one thing very clearly: delivering more value to members resulted in more value being delivered to the business. This is a wonderful dynamic to have because it perfectly aligns the incentives on both sides. We’d said from the start that we wouldn’t sacrifice value to members for more revenue – this is something that all three of us felt very strongly about. First and foremost, we wanted to create a community that delivered value to its members and was run in a way that aligned with our values as people. If we could find a way to stimulate brand advocacy, while also tightening the bonds between all of our individual community members, we’d be boosting both customer retention and customer acquisition in the same motion. This became our next big focus. [\[TWEET\] Adam, one of our members wore his Traffic Think Tank t-shirt in the Sahara desert](https://twitter.com/AdamGSteele/status/1130892481099382784) We started with some simple things: We shipped out Traffic Think Tank branded T-shirts to all new members. We’d call out each of the individuals that would submit questions to our live Q&A sessions and thank them live on air. We set up a new channel that was dedicated to sharing a quick introduction to who you are, what you do and where you’re based for all new members. We’d created a jobs channel and a marketplace for selling, buying and trading services with other members. Our monthly “blind dates” calls were started where you’d be randomly grouped with 3-4 other community members so that you could hop on a call to get to know each other better. The Traffic Think Tank In Real Life (IRL)* channel was born, which enabled members to facilitate in-person meetups with each other. In particular, we saw that as members started to meet in person or via calls the community itself was feeling more and more like a family. It became much closer knit and some members started to build up a really positive reputation for being particularly helpful to other members, or for having really strong knowledge in a specific area. [\[TWEET\] Dinner with some of the Traffic Think Tank members in Brighton, UK](https://twitter.com/matthewbarby/status/1117175584080134149) Nick, Ian and I would go out of our way to try and meet with members in real life wherever we could. I was taken aback by how appreciative people were for us doing this, and it also served as an invaluable way to gain honest feedback from members. There was another trend that we’d observed that we didn’t really expect to happen. More and more members were doing business with each another. We’ve had people find new jobs through the community, sell businesses to other members, launch joint ventures together and bring members in as consultants to their business. This has probably been the most rewarding thing to watch, and it was clear that the deeper relationships that our members were forming were resulting in an increased level of trust to work with each other. We wanted to harness this and take it to a new level. This brought us to arguably the best decision we’ve made so far running Traffic Think Tank… we were going to run a big live event for our members. I have no idea what I’m doing It’s the first week of January 2019 and we’re less than three weeks away from Traffic Think Tank LIVE, our first ever in-person event hosting 150 people, most of which are Traffic Think Tank members. It's like an ongoing nightmare I can’t wake up from. That was Nick’s response in our private admin channel to myself and Ian when I asked if they were finding the run-up to the event as stressful as I was. I think that all three of us were riding on such a high from how the community was growing that we felt like we could do anything. Running an event? How hard can it be? Well, turns out it’s really hard. We had seven different speakers flying over from around the world to speak at the event, there was a pre- and after event party, and we’d planned a charity dinner where we would take ten attendees (picked at random via a raffle) out for a fancy meal. Oh, and Nick, Ian and I were hosting a live Q&A session on stage. It wasn’t until precisely 48 hours before the event that we’d realized we didn’t have any microphones, nor had a large amount of the swag we’d ordered arrived. Plus, a giant storm had hit Philly causing a TON of flight cancellations. Perfect. Just perfect. This was honestly the tip of the iceberg. We hadn’t thought about who was going to run the registration desk, who would be taking photos during the event and who would actually field questions from the audience while all three of us sat on stage for our live Q&A panel. Turns out that the answer to all of those questions were my wife, Laura, and Nick’s wife, Kelley. Thankfully, they were on hand to save our asses. The weeks running up to the event were honestly some of the most stressful of my life. We sold around 50% of our ticket allocation within the final two weeks before the event. All of the event organizers told us this would happen, but did we believe them? Hell no!  Imagine having two weeks until the big day and as it stood half of the room would be completely empty. I was ready to fly most of my extended family over just to make it look remotely busy. [\[IMAGE\] One of our speakers, Ryan Stewart, presenting at Traffic Think Tank LIVE](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1920/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LIVE-Ryan-Presenting.jpg) Thankfully, if all came together. We managed to acquire some microphones, the swag arrived on the morning of the event, all of our speakers were able to make it on time and the weather just about held up so that our entire allocation of ticket holders was able to make it to the event. We pooled together and I’m proud to say that the event was a huge success. While we made a substantial financial loss on the event itself, January saw a huge spike in new members, which more than recouped our losses. Not only that, but we got to hang out with a load of our members all day while they said really nice things about the thing we’d built. It was both exhausting and incredibly rewarding. Bring on Traffic Think Tank LIVE 2020! (This time we’re hiring an event manager...)   The road ahead Fast forward to today (August 2019) and Traffic Think Tank has over 650 members. The biggest challenges that we’re tackling right now include making sure the most interesting conversations and best content surfaces to the top of the community, making Slack more searchable (this is ultimately one of its flaws as a platform) and giving members a quicker way to find the exclusive content that we create. You’ll notice there’s a pretty clear theme here. In the past 30 days, 4,566 messages were posted in public channels inside Traffic Think Tank. If you add on any messages posted inside private direct messages, this number rises to 21,612. That’s a lot of messages. To solve these challenges and enable further scale in the future, we’ve invested a bunch of cash and our time into building out a full learning management system (LMS) that all members will get access to alongside the Slack community. The LMS will be a web-based portal that houses all of the video content we produce. It will also  provide an account admin section where users can update or change their billing information (they have to email us to do this right now, which isn’t ideal), a list of membership perks and discounts with our partners, and a list of links to some of the best threads within Slack – when clicked, these will drop you directly into Slack. [\[IMAGE\] Designs for the new learning management system (LMS)](https://cdn.shortpixel.ai/client/qglossy,retimg,w_2378/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LMS.png) It’s not been easy, but we’re 95% of the way through this and I’m certain that it will have a hugely positive impact on the experience for our members. Alongside this we hired a community manager, Liz, who supports with any questions that our members have, coordinates with external experts to arrange webinars for the community, helps with new member onboarding, and has tightened up some of our processes around billing and general accounts admin. This was a great decision. Finally, we’ve started planning next year’s live event, which we plan to more than double in size to 350 attendees, and we decided to pick a slightly warmer location in Miami this time out. Stay tuned for me to have a complete meltdown 3 weeks from the event. Final thoughts When I look back on the journey we’ve had so far building Traffic Think Tank, there’s one very important piece to this puzzle that’s made all of this work that I’ve failed to mention so far: co-founder alignment. Building a community is a balancing act that relies heavily on those in charge being completely aligned. Nick, Ian and I completely trust each other and more importantly, are philosophically aligned on how we want to run and grow the community. If we didn’t have this, the friction between us could tear apart the entire community. Picking the right people to work with is important in any company, but when your business is literally about bringing people together, there’s no margin for error here.  While I’m sure there will be many more challenges ahead, knowing that we all trust each other to make decisions that fall in line with each of our core values makes these challenges dramatically easier to overcome. Finally, I’d like to thank all of our members for making the community what it is today – it’d be nothing without you and I promise that we’ll never take that for granted. &#x200B; I originally posted this on my blog here. Welcoming all of your thoughts, comments, questions and I'll do my best to answer them :)

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

Thoughts on FasterCapital VC?
reddit
LLM Vibe Score0
Human Vibe Score1
Momof3rascalsThis week

Thoughts on FasterCapital VC?

TLDR: I pitched to FasterCapital and got an "offer". Trying to figure out if this is a legitimate opportunity or a waste of my time. I'm not familiar with VCs and hadn't considered actually getting an investor on board with my plan. I sent my pitch deck to FasterCapital, honestly not expecting a response. It was my first pitch deck and a complete long shot. I ended up getting a response, they asked me for clarification on a few things. Than I get this email about what they are offering here's the main part We specialize in warm introductions to angel investors, VCs, and HNWIs, ensuring you connect with the right investors through personalized recommendations—not ineffective mass email campaigns. Cold outreach, such as LinkedIn messages, rarely succeeds, as investors receive hundreds of such requests and disregard them. To raise money, you need a strong partner like ourselves who has a wide network and direct connection with those angel investors built throughout 10 years. You can see some of the reviews of the startups we have helped attached and reviews on independent sites. Based on our experience and the matching that we have done already on our own AI system and for raising $55M-$65M in 5 years, a suitable package in your case is $50k - $64k and the chances of raising money is %87 - %93, but you were accepted in the exceptional rising star offer, where you pay half of that amount as an advance which is $25k-$32k and the other half ONLY when we raise you the first $1M. Other startups in our standard offers pays double that amount. First, I don't understand all of it, except for the "where you pay half of that amount as an advance which is $25k-$32k" I am no where near being able to come close to that, mostly because if I had that much, I wouldn't apply to a VC. I responded and politely told her that was not something our company could financially do right now. Than this email Thanks for your kind reply. We are flexible on paying this amount into monthly installments. We offer money back guarantee if we didn't raise the capital in 6 months from signing. This is how much we are confident with our approach of warm introductions. Raising the first amount of money and getting the first investor onboard is the most challenging part. You need time to build trust and network of investors. You need to have a good partner to help you. Please note that the down payment is for raising at least $55M over five years as we are interested in long-term partnership to raise multiple rounds because we make money through the commission. Companies take only commission or success fee are doing cold introductions and mass emails and this approach has low chances of success when it comes to raising capital. It is about the chances of success. You can talk to these companies and ask them about their success rate. Mass emails campaign has zero chances of success.  We have helped more than 742 startups raise more than $2.2B. Our network includes 155,000 angel investors and more than 50K funding institutions (VCs, HNI, family offices..etc). We have been in this business for more than 10 years. We have more than 92% success rate in our program so far. So if you are familiar with VC, Is this an actual opportunity. I have a tendency to jump or dive head first into things. As much as I want to get excited because this would be the jumpstart to most of my goals and ambitions. I'm not familiar with VCs. I have bootstrapped all my ventures so far.

In 2018, I started an AI chatbot company...today, we have over 4000 paying customers and ChatGPT is changing EVERYTHING
reddit
LLM Vibe Score0
Human Vibe Score1
Millionaire_This week

In 2018, I started an AI chatbot company...today, we have over 4000 paying customers and ChatGPT is changing EVERYTHING

Intro: 5 years ago, my co-founders and I ventured into the space of AI chatbots and started our first truly successful company. Never in a million years did I see myself in this business and we truly stumbled upon the opportunity by chance. Prior to that, we ran a successful lead generation business and questioned whether a simple ai chat product would increase our online conversions. Of the 3 co-founders, I was skeptical that it would, but the data was clear that we had something that really worked. We built a really simple MVP version of the product and gave it to some of our top lead buyers who saw even better conversion improvements on their own websites. In just a matter of weeks, a new business opportunity was born and a major pivot away from our lead generation business started. Our growth story: Startup growth is really interesting and in most cases, founders aren't really educated on what a typical growth curve looks like. While we hear about "hockey stick" growth curves, it's really atypical to actually see or experience this. From my experience, growth curves take place in a "stair curve". For example, you can scrap your way to a $100k run rate without much process or tracking. You can even get to $1 million ARR being super disorganized. As you start going beyond $1M ARR, things start to break and growth can flatten out while you put new processes and systems in place. Eventually you'll get to $2M or 3M with your new strategy and then things start breaking again. I've seen the process repeat itself and as you increase your ARR, the processes and systems become more difficult to work through...mainly because more people get involved and the product becomes more complex. When you do end up cracking the code in each step, the growth accelerates faster and faster before things start to break down and flatten out again. Without getting too much into the numbers, here were some of our initial levers for growth: Our first "stair" step was to leverage our existing customer base from our prior lead generation business. Having prior business relationships and a proven track record made it really simple to have conversations with people who already trusted us to try something new that we had to offer. Stair #2 was to build out a partner channel. Since our chat product involved a web developer or agency installing the chat on client sites, we partnered with these developers and agencies to leverage their already existing customer bases. We essentially piggy-backed off of their relationships and gave them a cut of the revenue. We built an internal partner tracking portal which took 6+ months, but it was well worth it. Stair #3 was our most expensive step, biggest headache, but added the most revenue. After COVID, we had and SDR/Account Executive sales team of roughly 30 people. It added revenue fast, but the payback periods were 12+ months so we had to cut back on this strategy after exhausting our universe of clients. Stair #4 involves a variety of paid advertisement strategies with product changes and the introduction of new onboarding features. We're in the middle of this stair and hope it's multiple years before things breakdown again. Don't give up I know it sounds really cliché, but the #1 indicator of success is doing the really boring stuff day in and day out and making incremental improvements. As the weeks, months, and years pass by, you will slowly gain domain expertise and start to see the gaps in the market that can set you apart from your competition. It's so hard for founders to stay focused and not get distracted so I would say it's equally as important to have co-founders who hold each other accountable on what your collective goals are. How GPT is changing everything I could write pages and pages about how GPT is going to change how the world operates, but I'll keep it specific to our business and chatbots. In 2021, we built an industry specific AI model that did a great job of classifying intents which allowed us to train future actions during a chat. It was a great advancement in our customer's industry at the time. With GPT integrated into our system, that training process that would take an employee hours to do, can be done in 5 minutes. The model is also cheaper than our own and more accurate. Because of these training improvements, we have been able to conduct research that is allowing us to leverage GPT models like no one else in the industry. This is both in the realm of chat and also training during onboarding. I really want to refrain from sharing our company, but if you are interested in seeing a model trained for your specific company or website, just PM me your link and I'll send you a free testing link with a model fully trained for your site to play around with. Where we are headed and the dangers of AI The level of advancement in AI is not terribly dangerous in its current state. I'm sure you've heard it before, but those who leverage the technology today will be the ones who get ahead. In the coming years, AI will inevitably replace a large percentage of human labor. This will be great for overall value creation and productivity for the world, but the argument that humans have always adapted and new jobs will be created is sadly not going to be as relevant in this case. As the possibility of AGI becomes a reality in the coming years or decades, productivity through AI will be off the charts. There is a major risk that human innovation and creative thinking will be completely stalled...human potential as we know it will be capped off and there will need to be major economic reform for displaced workers. This may not happen in the next 5 or 10 years, but you would be naïve not to believe the world we live in today will not be completely different in 20 to 30 years. Using AI to create deepfakes, fake voice agents, scam the unsuspecting, or exploit technical vulnerabilities are just a few other examples I could write about, but don't want to go into to much detail for obvious reasons. Concluding If you found the post interesting or you have any questions, please don't hesitate to ask. I'll do my best to answer whatever questions come from this! &#x200B; \*EDIT: Wasn't expecting this sort of response. I posted this right before I went to sleep so I'll get to responding soon.

Follow Along as I Flip this Website - Case Study
reddit
LLM Vibe Score0
Human Vibe Score1
jshogren10This week

Follow Along as I Flip this Website - Case Study

I am starting a new case study where I will be documenting my attempt to flip a website that I just purchased from Flippa. However, unlike most case studies where people hide certain parts and details from the public I will instead be sharing everything. That means you will know the exact URL of the site that I purchased and I will share everything with you all as I progress.I know that case studies are lot more interesting and you can learn better when you can see real examples of what I am talking about. Enough of the chatting, let's jump straight into this new case study and I will explain what this is all about. Before you get into the case study I want to give you the option of reading this one my website where all of the images can be seen within the post and it is easier to read. I also want to say that I have nothing to sell you or anything close to it. So if you want to read it there you can do so here ##Introductory Video I have put together a video that talks about many of the things that I cover in this article. So if you would rather watch a video you can watch that here - https://www.youtube.com/watch?v=EE3SxtNnqts However, I go into more detail in the actual article FYI. Also, I plan on using Youtube very frequently in this case study so be on the lookout for new videos.There is going to be a video that will accompany every single case study post because I like having it being presented in two different mediums. ##The Website I Just Bought Around a week ago I made a new website purchase from Flippa and you can view the website's Flippa listing here - https://flippa.com/6439965-hvactraining101-com Screenshot of the Homepage - http://imgur.com/T6Iv1QN I paid $1,250 for the site and you will soon see that I got a really good deal. As you might be able to tell from the URL, this site is focused around training and education for becoming a HVAC technician. This is a lucrative niche to be in and Adsense pays very well. I do not have control of the site yet due to the transfer process not being completed. However, I am hoping within a few days everything will be finalized and I will take full control of the site. In the meantime, I figured it would be a good time to put together the introduction post for this new case study! ##Why I Bought this Website Now that you have a general idea of the website that I purchased, I now want to explain the reasoning behind the purchase. There are 3 major reasons for this purchase and I will explain each one of them below. GREAT Price As I mentioned earlier, I bought this website for $1,250. However, that doesn't mean a whole lot unless you know how much the site is making each month. Screenshot of the earnings for the last 12 months - http://imgur.com/NptxCHy Average Monthly Profits: 3 Month = $126 6 Month = $128 12 Month = $229.50 Let's use the 6 month average of $128/month as our baseline average. Since it is making on average $128/month and it was sold for $1,250 then that means I bought this site at a multiple of 9.76x! Most sites in today's market go for 20x-30x multiples. As you can see, I got a great deal on this site. Although the great price was the biggest reason for me buying this site there are other factors that persuaded me as well. You need to remember that just because you can get a website for a good price it doesn't mean it is a good deal. There are other factors that you need to look at as well. Extremely Under Optimized This site is currently being monetized mainly by Adsense and a very small amount from Quinstreet. From my experience with testing and optimizing Adsense layouts for my site in my Website Investing case study I know the common ad layouts that work best for maximizing Adsense revenue. With that being said, I can quickly determine if a website is being under optimized in terms of the ad layout. One of the first things I did when analyzing this site was examine the ad layout it was using. Screenshot of the website with the ad layout the previous owner was using - http://imgur.com/wqleLVA There is only ONE ad per page being used, that's it. Google allows up to 6 total ads to be used per page and you can imagine how much money is being left on the table because of this. I am estimating that I can probably double the earnings for the site practically overnight once I add more ads to the site. Adding more ads in combination with my favorite Adsense plugin, AmpedSense, I will be able to easily boost the earnings for this site quickly. It is also worth mentioning how lucrative this niche is and how much advertisers are willing to spend on a per click basis. The average CPC for the top keywords this site is currently ranking for in Google - http://imgur.com/ifxiy8B Look at those average CPC numbers, they are insanely high! I could be making up to $25 per click for some of those keywords, which is so absurd to me. Combine these extremely high CPC with the fact that the site currently only has one ad per page and you can start to understand just how under optimized this site truly is. I also plan on utilizing other ad networks such as Quinstreet and Campus Explorer more as well. These two networks are targeted at the education niche which works very well with my site. I will be testing to see if these convert better than normal Adsense ads. Goldmine of Untapped Keywords One of the biggest opportunities I see for growing this site is to target local keywords related to HVAC training. As of right now, the site has only scratched the surface when it comes to trying to rank for state/city keywords. Currently there are only two pages on the entire website which go after local keywords, those two pages target Texas and Florida HVAC search terms. These two pages are two of the more popular pages in terms of total amount of traffic. See the screenshot of the Google Analytics - http://imgur.com/NB0xJ4G Two out of the top five most popular pages for the entire website are focused on local search terms. However, these are the ONLY two pages that target local search terms on the whole site! There are 48 other states, although there may not be search volume for all states, and countless cities that are not being targeted. Why do I think this is such a good opportunity? For a few reasons: Local keywords are a lot easier to rank for in Google than more general keywords This site has been able to rank for two states successfully already and it proves it is possible Traffic going to these local pages is WAY more targeted and will convert at a much higher rate, which means more commissions for me There are so many more states and cities that get a good amount of searches that I can target To give you an idea of the type of keywords these local pages rank for, you can see the top keywords that the Florida page is ranking for in Google: Top ranking keywords for the Florida page - http://imgur.com/j7uKzl2 As you can see these keywords don't get a ton of searches each month, but ranking 1st for a keyword getting 90 searches a month is better than being ranked 10th for a keyword getting 1,000 searches a month. I have started to do some keyword research for other states and I am liking what I am finding so far. Keywords that I have found which I will be targeting with future articles - http://imgur.com/8CCCCWU I will go into more detail about my keyword research in future articles, but I wanted to give you an idea of what my strategy will be! I also wanted to share why I am super excited about the future potential to grow this site by targeting local keywords. ##Risks Yes, there are many good things about this website, but there are always risks involved no matter what the investment is. The same thing goes for this site. Below are some of the risks that I currently see. HTML Site This website is a HTML site and I will need to transfer it to Wordpress ASAP. I have been doing some research on this process and it shouldn't be too hard to get this over to Wordpress. In doing so it will make adding content, managing the back end and just about everything else easier. Also, I am hoping that when I transfer it to Wordpress that it will become more optimized for Google which will increase keyword rankings. Declining Earnings Looking at the last 12 months of earnings you will notice a drop off from last year till now. Earnings from the last 12 months - http://imgur.com/WsotZsj In May of 2015 it looks like the site earned right around $500, which is much higher than the $128 that it is earning now. However, the last 7 or so months have been consistent which is a good sign. Even though the earnings are much lower now then they were a year ago it is good to know that this site has the potential to earn $500/month because it has done it before. Slightly Declining Traffic In the last 12 months the site's traffic has declined, however, it looks like it is picking back up. Traffic from the last 12 months - http://imgur.com/aiYZW9W The decline is nothing serious, but there is a drop on traffic. Let's take a look at the complete history of this site's traffic so we can get a better idea of what is going on here: Complete traffic history - http://imgur.com/tYmboVn The above screenshot is from 2012 all the way up to right now. In the grand scheme of things you can see that the traffic is still doing well and it looks like it is on the upswing now. Those three risks mentioned above are the three biggest risks with this site at this point. It is always good to note the risks and do everything you can to prevent them from causing a problem. ##My Growth Strategy Whenever I purchase a new site I always create an outline or plan on how I will grow the site. Right now, I have some basic ideas on how I will grow this site, but as I go on I will continue to change and optimize my strategies to be more effective. Below I have outlined my current plans to grow: Add more Adsense Ads The very first thing I will do once I get control of the site is add more ads per page. I am predicting that by just adding a few more ads per page I will be able to more than likely double the earnings. I will touch on exactly how I will be optimizing the ad layouts in future posts. Test other Ad Networks I will be doing a lot of testing and experimenting when it comes to the ad networks. I plan on trying out Adsense, Media.net, Quinstreet, Campus Explorer and finding the combination of those 4 which produces the most revenue. The Adsense and Media.net ads will perform well on the more general pages while Quinstreet and Campus Explorer ads will be geared towards the local search terms. There will probably be other ad networks I will try out but these are the four which I will be using right away. If you are aware of any other ad networks out there which are geared towards the education niche please let me know in the comments below! Target Local Keywords with new Content I have already touched on this, but I will starting to produce content targeting these local keywords ASAP. The sooner I add the content to the site the sooner it will start to rank and bring in traffic. I will not be writing my own content and instead I will be outsourcing all of it via Upwork. I will show you all how I go about outsourcing content production and you can see my process for doing that. ##Goals for this Website My goal for the website is to have it valued at $10,000+ within 12 months. Let's break down this larger goal into smaller chunks which will make achieving it easier and more attainable. Earnings - $500/month To get the site valued at $10,000 the site will need to be making $500/month using a 20x monthly multiple. Right now, the site is making around $130/month so it has a ways to before it reaches the $500 a month mark. However, after doing some Adsense optimization I think we could push the earnings to around $300/month without much work. From there, it will come down to trying to bring in more traffic! Traffic - 5,000 Visitors per Month Why 5,000 visitors? Because that is how much traffic it is going to take to get to the $500/month goal. Let me explain how I came to this conclusion: The average RPM for this site is currently $50, which means for every 1,000 page views the site earns $50. After I optimize the Adsense layout for the site and add more ads per page I think I will be able to double the RPM to $100. Using the RPM of $100 the site will need to have 5,000 monthly visitors to earn $500. So 5,000 monthly visitors is the traffic goal I have set and aiming for! The site is currently getting around 3,000 visitors per month so I will need to add an extra 2,000 visitors to get to this goal. ##Want to Follow this Case Study? I will be using Youtube a lot in this case study so make sure to follow my Youtube channel here - www.youtube.com/c/joshshogren Other than that, I think that is going to bring us to the end of the introductory post for this new case study. I hope that you enjoyed reading and that you are excited to follow along! If you have any suggestions to make this case study better PLEASE let me know in the comment below. I want to make this case study the best one I have done yet. Talk to you all in the comment section.

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience
reddit
LLM Vibe Score0
Human Vibe Score1
hopefully_usefulThis week

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience

I met my co-founder in late 2022 after an introduction from a mutual friend to talk about how to find contract Product Management roles. I was sporadically contracting at start-up at the time and he had just come out of another start-up that was wiped out by the pandemic. We hit it off, talking about ideas, sharing what other indie-hackers were doing, and given GPT-3’s prominence at the time, we started throwing around ideas about things we could build with it, if nothing else, just to learn. I should caveat, neither of us were AI experts when starting out, everything we learned has been through Twitter and blogs, my background is as an accountant, and his a consultant. Here’s how it went since then: &#x200B; Nov 2022 (+$50) \- We built a simple tool in around a week using GPT-3 fine-tuning and a no-code tool (Bubble) that helped UK university students write their personal statements for their applications \- We set some Google Ads going and managed to make a few sales (\~$50) in the first week \- OpenAI were still approving applications at the time and said this went against their “ethics” so we had to take it down &#x200B; Dec 2022 (+$200) \- We couldn’t stop coming up with ideas related to AI fine-tuning, but realised it was almost impossible to decide which to pursue \- We needed a deadline to force us so we signed up for the Ben’s Bites hackathon in late December \- In a week, we built and launched a no-code fine-tuning platform, allowing people to create fine-tuned models by dragging and dropping an Excel file onto it \- We launched it on Product Hunt, having no idea how to price it, and somehow managed to get \~2,000 visitors on the site and make 2 sales at $99 &#x200B; Jan 2023 (+$3,000) \- We doubled down on the fine-tuning idea and managed to get up to \~$300 MRR, plus a bunch of one-time sales and a few paid calls to help people get the most out of their models \- We quickly realised that people didn’t want to curate models themselves, they just wanted to dump data and get magic out \- That was when we saw people building “Talk with x book/podcast” on Twitter as side projects and realised that was the missing piece, we needed to turn it into a tool \- We started working on the new product in late January &#x200B; Feb 2023 (+$9,000) \- We started pre-selling access to an MVP for the new product, which allowed people to “chat with their data/content”, we got $5,000 in pre-sales, more than we made from the previous product in total \- By mid-February, after 3 weeks of building we were able to launch and immediately managed to get traction, getting to $1k MRR in < 1 week, building on the hype of ChatGPT and AI (we were very lucky here) &#x200B; Mar - Jul 2023 (+$98,000) \- We worked all the waking hours to keep up with customer demand, bugs, OpenAI issues \- We built integrations for a bunch of services like Slack, Teams, Wordpress etc, added tons of new functionality and continue talking to customers every day \- We managed to grow to $17k MRR (just about enough to cover our living expenses and costs in London) through building in public on Twitter, newsletters and AI directories (and a million other little things) \- We sold our fine-tuning platform for \~$20k and our university project for \~$3k on Acquire &#x200B; Aug 2023 (+$100,000) \- We did some custom development work based on our own product for a customer that proved pretty lucrative &#x200B; Sep - Oct 2023 (+$62,000) \- After 8 months of building constantly, we started digging more seriously into our usage and saw subscriptions plateauing \- We talked to and analysed all our paying users to identify the main use cases and found 75% were for SaaS customer support \- We took the leap to completely rebuild a version of our product around this use case, our biggest to date (especially given most features with no-code took us <1 day) &#x200B; Nov - Dec 2023 (+$53,000) \- We picked up some small custom development work that utilised our own tech \- We’re sitting at around $22k MRR now with a few bigger clients signed up and coming soon \- After 2 months of building and talking to users, we managed to finish our “v2” of our product, focussed squarely on SaaS customer support and launched it today. &#x200B; We have no idea what the response will be to this new version, but we’re pretty happy with it, but couldn’t have planned anything that happened to us in 2023 so who knows what will come of 2024, we just know that we are going to be learning a ton more. &#x200B; Overall, it is probably the most I have had to think in my life - other jobs you can zone out from time to time or rely on someone else if you aren’t feeling it - not when you are doing this, case and point, I am writing this with a banging head-cold right now, but wanted to get this done. A few more things we have learned along the way - context switching is unreal, as is keeping up with, learning and reacting to AI. There isn’t a moment of the day I am not thinking about what we do next. But while in some way we now have hundreds of bosses (our customers) I still haven’t felt this free and can’t imagine ever going back to work for someone else. Next year we’re really hoping to figure out some repeatable distribution channels and personally, I want to get a lot better at creating content/writing, this is a first step! Hope this helps someone else reading this to just try starting something and see what happens.

Started a content marketing agency 6 years ago - $0 to $5,974,324 (2023 update)
reddit
LLM Vibe Score0
Human Vibe Score1
mr_t_forhireThis week

Started a content marketing agency 6 years ago - $0 to $5,974,324 (2023 update)

Hey friends, My name is Tyler and for the past 6 years, I’ve been documenting my experience building a content marketing agency called Optimist. Year 1 - 0 to $500k ARR Year 2 - $500k to $1MM ARR Year 3 - $1MM ARR to $1.5MM(ish) ARR Year 4 - $3,333,686 Revenue Year 5 - $4,539,659 Revenue How Optimist Works First, an overview/recap of the Optimist business model: We operate as a “collective” of full time/professional freelancers Everyone aside from me is a contractor Entirely remote/distributed team Each freelancer earns $65-85/hour Clients pay us a flat monthly fee for full-service content marketing (research, strategy, writing, editing, design/photography, reporting and analytics, targeted linkbuilding, and more) We recently introduced hourly engagements for clients who fit our model but have some existing in-house support Packages range in price from $10-20k/mo We offer profit share to everyone on our core team as a way to give everyone ownership in the company In 2022, we posted $1,434,665 in revenue. It was our highest revenue year to date and brings our lifetime total to $5,974,324. Here’s our monthly revenue from January 2017 to December of 2022. But, like every year, it was a mix of ups and downs. Here’s my dispatch for 2023. — Running a business is like spilling a drink. It starts as a small and simple thing. But, if you don’t clean it up, the spill will spread and grow — taking up more space, seeping into every crack. There’s always something you could be doing. Marketing you could be working on. Pitches you could be making. Networking you could be doing. Client work you could help with. It can be all-consuming. And it will be — if you don’t clean up the spill. I realized this year that I had no containment for the spill that I created. Running an agency was spilling over into nearly every moment of my life. When I wasn’t working, I was thinking about work. When I wasn’t thinking about work, I was dreaming about it. Over the years, I’ve shared about a lot of my personal feelings and experience as an entrepreneur. And I also discussed my reckoning with the limitations of running the business we’ve built. My acceptance that it was an airplane but not a rocket. And my plan to try to compartmentalize the agency to make room in my life for other things — new business ideas, new revenue streams, and maybe some non-income-producing activity. 🤷 What I found in 2022 was that the business wasn’t quite ready for me to make that move. It was still sucking up too much of my time and attention. There were still too many gaps to fill and I was the one who was often filling them. So what do you do? Ultimately you have two choices on the table anytime you run a business and it’s not going the way you want it: Walk away Turn the ship — slowly For a huge number of reasons (personal, professional, financial, etc), walking away from Optimist was not really even an option or the right move for me. But it did feel like things needed to change. I needed to keep turning the ship to get it to the place where it fit into my life — instead of my life fitting around the business. This means 2022 was a year of transition for the agency. (Again?) Refocusing on Profit Some money is better than no money. Right? Oddly, this was one of the questions I found myself asking in 2022. Over the years, we’ve been fortunate to have many clients who have stuck with us a long time. In some cases, we’ve had clients work with us for 2, 3, or even 4 years. (That’s over half of our existence!) But, things have gotten more expensive — we’ve all felt it. We’ve had to increase pay to remain competitive for top talent. Software costs have gone up. It’s eaten into our margin. Because of our increasing costs and evolving scope, many of our best, most loyal clients were our least profitable. In fact, many were barely profitable — if at all. We’ve tried to combat that by increasing rates on new, incoming clients to reflect our new costs and try to make up for shrinking margin on long-term clients. But we didn’t have a good strategy in place for updating pricing for current clients. And it bit us in the ass. Subsidizing lower-profit, long-term clients with new, higher-margin clients ultimately didn’t work out. Our margins continued to dwindle and some months we were barely breaking even while posting six-figures of monthly revenue. 2022 was our highest revenue year but one of our least profitable. It only left one option. We had to raise rates on some of our long-term clients. But, of course, raising rates on a great, long-term client can be delicate. You’ve built a relationship with these people over the years and you’re setting yourself up for an ultimatum — are you more valuable to the client or is the client more valuable to you? Who will blink first? We offered all of these clients the opportunity to move to updated pricing. Unfortunately, some of them weren’t on board. Again, we had 2 options: Keep them at a low/no profit rate Let them churn It seems intuitive that having a low-profit client is better than having no client. But we’ve learned an important lesson many times over the years. Our business doesn’t scale infinitely and we can only handle so many clients at a time. That means that low-profit clients are actually costing us money in some cases. Say our average client generates $2,500 per month in profit — $30,000 per year. If one of our clients is only generating $500/mo in profit, working with them means missing out on bringing on a more profitable client (assuming our team is currently at capacity). Instead of $30,000/year, we’re only making $6,000. Keeping that client costs us $24,000. That’s called opportunity cost. So it’s clear: We had to let these clients churn. We decided to churn about 25% of our existing clients. On paper, the math made sense. And we had a pretty consistent flow of new opportunities coming our way. At the time, it felt like a no-brainer decision. And I felt confident that we could quickly replace these low-profit clients with higher-margin ones. I was wrong. Eating Shit Right after we initiated proactively churning some of our clients, other clients — ones we planned to keep — gave us notice that they were planning to end the engagement. Ouch. Fuck. We went from a 25% planned drop in revenue to a nearly 40% cliff staring us right in the face. Then things got even worse. Around Q3 of this year, talk of recession and layoffs really started to intensify. We work primarily with tech companies and startups. And these were the areas most heavily impacted by the economic news. Venture funding was drying up. Our leads started to slow down. This put us in a tough position. Looking back now, I think it’s clear that I made the wrong decision. We went about this process in the wrong way. The reality sinks in when you consider the imbalance between losing a client and gaining a client. It takes 30 days for someone to fire us. It’s a light switch. But it could take 1-3 months to qualify, close, and onboard a new client. We have lots of upfront work, research, and planning that goes into the process. We have to learn a new brand voice, tone, and style. It’s a marathon. So, for every client we “trade”, there’s a lapse in revenue and work. This means that, in retrospect, I would probably have made this transition using some kind of staggered schedule rather than a cut-and-dry approach. We could have gradually off-boarded clients when we had more definitive work to replace them. I was too confident. But that’s a lesson I had to learn the hard way. Rebuilding & Resetting Most of the voluntary and involuntary churn happened toward the end of 2022. So we’re still dealing with the fall out. Right now, it feels like a period of rebuilding. We didn’t quite lose 50% of our revenue, but we definitely saw a big hit heading into 2023. To be transparent: It sucks. It feels like a gigantic mistake that I made which set us back significantly from our previous high point. I acted rashly and it cost us a lot of money — at least on the surface. But I remind myself of the situation we were in previously. Nearly twice the revenue but struggling to maintain profitability. Would it have been better to try to slowly fix that situation and battle through months of loss or barely-break-even profits? Or was ripping off the bandaid the right move after all? I’m an optimist. (Heh, heh) Plus, I know that spiraling over past decisions won’t change them or help me move forward. So I’m choosing to look at this as an opportunity — to rebuild, reset, and refocus the company. I get to take all of the tough lessons I’ve learned over the last 6 years and apply them to build the company in a way that better aligns with our new and current goals. It’s not quite a fresh, clean start, but by parting ways with some of our oldest clients, we’ve eliminated some of the “debt” that’s accumulated over the years. We get a chance to fully realize the new positioning that we rolled out last year. Many of those long-term clients who churned had a scope of work or engagement structure that didn’t fit with our new positioning and focus. So, by losing them, we’re able to completely close up shop on the SOWs that no longer align with the future version of Optimist. Our smaller roster of clients is a better fit for that future. My job is to protect that positioning by ensuring that while we’re rebuilding our new roster of clients we don’t get desperate. We maintain the qualifications we set out for future clients and only take on work that fits. How’s that for seeing the upside? Some other upside from the situation is that we got an opportunity to ask for candid feedback from clients who were leaving. We asked for insight about their decision, what factors they considered, how they perceived us, and the value of our work. Some of the reasons clients left were obvious and possibly unavoidable. Things like budget cuts, insourcing, and uncertainty about the economy all played at least some part of these decisions. But, reading between the lines, where was one key insight that really struck me. It’s one of those, “oh, yeah — duh — I already knew that,” things that can be difficult to learn and easy to forget…. We’re in the Relationship Business (Plan Accordingly) For all of our focus on things like rankings, keywords, content, conversions, and a buffet of relevant metrics, it can be easy to lose the forest for the trees. Yes, the work itself matters. Yes, the outcomes — the metrics — matter. But sometimes the relationship matters more. When you’re running an agency, you can live or die by someone just liking you. Admittedly, this feels totally unfair. It opens up all kinds of dilemmas, frustration, opportunity for bias and prejudice, and other general messiness. But it’s the real world. If a client doesn’t enjoy working with us — even if for purely personal reasons — they could easily have the power to end of engagement, regardless of how well we did our actual job. We found some evidence of this in the offboarding conversations we had with clients. In some cases, we had clients who we had driven triple- and quadruple-digital growth. Our work was clearly moving the needle and generating positive ROI and we had the data to prove it. But they decided to “take things in another direction” regardless. And when we asked about why they made the decision, it was clear that it was more about the working relationship than anything we could have improved about the service itself. The inverse is also often true. Our best clients have lasting relationships with our team. The work is important — and they want results. But even if things aren’t quite going according to plan, they’re patient and quick to forgive. Those relationships feel solid — unshakeable. Many of these folks move onto new roles or new companies and quickly look for an opportunity to work with us again. On both sides, relationships are often more important than the work itself. We’ve already established that we’re not building a business that will scale in a massive way. Optimist will always be a small, boutique service firm. We don’t need 100 new leads per month We need a small, steady roster of clients who are a great fit for the work we do and the value we create. We want them to stick around. We want to be their long-term partner. I’m not built for churn-and-burn agency life. And neither is the business. When I look at things through this lens, I realize how much I can cut from our overall business strategy. We don’t need an ultra-sophisticated, multi-channel marketing strategy. We just need strong relationships — enough of them to make our business work. There are a few key things we can take away from this as a matter of business strategy: Put most of our effort into building and strengthening relationships with our existing clients Be intentional about establishing a strong relationship with new clients as part of onboarding Focus on relationships as the main driver of future business development Embracing Reality: Theory vs Practice Okay, so with the big learnings out the way, I want to pivot into another key lesson from 2022. It’s the importance of understanding theory vs practice — specifically when it comes to thinking about time, work, and life. It all started when I was considering how to best structure my days and weeks around running Optimist, my other ventures, and my life goals outside of work. Over the years, I’ve dabbled in many different ways to block time and find focus — to compartmentalize all of the things that are spinning and need my attention. As I mapped this out, I realized that I often tried to spread myself too thin throughout the week. Not just that I was trying to do too much but that I was spreading that work into too many small chunks rather than carving out time for focus. In theory, 5 hours is 5 hours. If you have 5 hours of work to get done, you just fit into your schedule whenever you have an open time slot. In reality, a single 5-hour block of work is 10x more productive and satisfying than 10, 30-minute blocks of work spread out across the week. In part, this is because of context switching. Turning your focus from one thing to another thing takes time. Achieving flow and focus takes time. And the more you jump from one project to another, the more time you “lose” to switching. This is insightful for me both in the context of work and planning my day, but also thinking about my life outside of Optimist. One of my personal goals is to put a finite limit on my work time and give myself more freedom. I can structure that in many different ways. Is it better to work 5 days a week but log off 1 hour early each day? Or should I try to fit more hours into each workday so I can take a full day off? Of course, it’s the latter. Both because of the cost of context switching and spreading work into more, smaller chunks — but also because of the remainder that I end up with when I’m done working. A single extra hour in my day probably means nothing. Maybe I can binge-watch one more episode of a new show or do a few extra chores around the house. But it doesn’t significantly improve my life or help me find greater balance. Most things I want to do outside of work can’t fit into a single extra hour. A full day off from work unlocks many more options. I can take the day to go hiking or biking. I can spend the day with my wife, planning or playing a game. Or I can push it up against the weekend and take a 3-day trip. It gives me more of the freedom and balance that I ultimately want. So this has become a guiding principle for how I structure my schedule. I want to: Minimize context switching Maximize focused time for work and for non-work The idea of embracing reality also bleeds into some of the shifts in business strategy that I mentioned above. In theory, any time spent on marketing will have a positive impact on the company. In reality, focusing more on relationships than blasting tweets into the ether is much more likely to drive the kind of growth and stability that we’re seeking. As I think about 2023, I think this is a recurring theme. It manifests in many ways. Companies are making budget cuts and tough decisions about focus and strategy. Most of us are looking for ways to rein in the excess and have greater impact with a bit less time and money. We can’t do everything. We can’t even do most things. So our #1 priority should be to understand the reality of our time and our effort to make the most of every moment (in both work and leisure). That means thinking deeply about our strengths and our limitations. Being practical, even if it feels like sacrifice. Update on Other Businesses Finally, I want to close up by sharing a bit about my ventures outside of Optimist. I shared last year how I planned to shift some of my (finite) time and attention to new ventures and opportunities. And, while I didn’t get to devote as much as I hoped to these new pursuits, they weren’t totally in vain. I made progress across the board on all of the items I laid out in my post. Here’s what happened: Juice: The first Optimist spin-out agency At the end of 2021, we launched our first new service business based on demand from Optimist clients. Focused entirely on building links for SEO, we called the agency Juice. Overall, we made strong progress toward turning this into a legitimate standalone business in 2022. Relying mostly on existing Optimist clients and a few word-of-mouth opportunities (no other marketing), we built a team and set up a decent workflow and operations. There’s still many kinks and challenges that we’re working through on this front. All told, Juice posted almost $100,000 in revenue in our first full year. Monetizing the community I started 2022 with a focus on figuring out how to monetize our free community, Top of the Funnel. Originally, my plan was to sell sponsorships as the main revenue driver. And that option is still on the table. But, this year, I pivoted to selling paid content and subscriptions. We launched a paid tier for content and SEO entrepreneurs where I share more of my lessons, workflows, and ideas for building and running a freelance or agency business. It’s gained some initial traction — we reached \~$1,000 MRR from paid subscriptions. In total, our community revenue for 2022 was about $2,500. In 2023, I’m hoping to turn this into a $30,000 - $50,000 revenue opportunity. Right now, we’re on track for \~$15,000. Agency partnerships and referrals In 2022, we also got more serious about referring leads to other agencies. Any opportunity that was not a fit for Optimist or we didn’t have capacity to take on, we’d try to connect with another partner. Transparently, we struggled to operationalize this as effectively as I would have liked. In part, this was driven by my lack of focus here. With the other challenges throughout the year, I wasn’t able to dedicate as much time as I’d like to setting goals and putting workflows into place. But it wasn’t a total bust. We referred out several dozen potential clients to partner agencies. Of those, a handful ended up converting into sales — and referral commission. In total, we generated about $10,000 in revenue from referrals. I still see this as a huge opportunity for us to unlock in 2023. Affiliate websites Lastly, I mentioned spending some time on my new and existing affiliate sites as another big business opportunity in 2022. This ultimately fell to the bottom of my list and didn’t get nearly the attention I wanted. But I did get a chance to spend a few weeks throughout the year building this income stream. For 2022, I generated just under $2,000 in revenue from affiliate content. My wife has graciously agreed to dedicate some of her time and talent to these projects. So, for 2023, I think this will become a bit of a family venture. I’m hoping to build a solid and consistent workflow, expand the team, and develop a more solid business strategy. Postscript — AI, SEO, OMG As I’m writing this, much of my world is in upheaval. If you’re not in this space (and/or have possibly been living under a rock), the release of ChatGPT in late 2022 has sparked an arms race between Google, Bing, OpenAI, and many other players. The short overview: AI is likely to fundamentally change the way internet search works. This has huge impact on almost all of the work that I do and the businesses that I run. Much of our focus is on SEO and understanding the current Google algorithm, how to generate traffic for clients, and how to drive traffic to our sites and projects. That may all change — very rapidly. This means we’re standing at a very interesting point in time. On the one hand, it’s scary as hell. There’s a non-zero chance that this will fundamentally shift — possibly upturn — our core business model at Optimist. It could dramatically change how we work and/or reduce demand for our core services. No bueno. But it’s also an opportunity (there’s the optimist in me, again). I certainly see a world where we can become leaders in this new frontier. We can pivot, adjust, and capitalize on a now-unknown version of SEO that’s focused on understanding and optimizing for AI-as-search. With that, we may also be able to help others — say, those in our community? — also navigate this tumultuous time. See? It’s an opportunity. I wish I had the answers right now. But, it’s still a time of uncertainty. I just know that there’s a lot of change happening and I want to be in front of it rather than trying to play catch up. Wish me luck. — Alright friends — that's my update for 2023! I’ve always appreciated sharing these updates with the Reddit community, getting feedback, being asked tough questions, and even battling it out with some of my haters (hey!! 👋) As usual, I’m going to pop in throughout the next few days to respond to comments or answer questions. Feel free to share thoughts, ideas, and brutal takedowns in the comments. If you're interested in following the Optimist journey and the other projects I'm working on in 2023, you can follow me on Twitter. Cheers, Tyler P.S. - If you're running or launching a freelance or agency business and looking for help figuring it out, please DM me. Our subscription community, Middle of the Funnel, was created to provide feedback, lessons, and resources for other entrepreneurs in this space.

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist
reddit
LLM Vibe Score0
Human Vibe Score1
deadcoder0904This week

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist

Silicon Valley wants you to believe that their unicorn startups succeeded doing things legally. But that couldn't be far from truth. For starters, Airbnb used multiple Gmail accounts to spam Craigslist. "They posted unrealistically (fake) cheap rentals of beautiful apartments in places where normal rent should be 10x more. Once people replied, they auto-responded that the unit has been rented, but they should be looking for another unit on AirBnB." The Game of Blackhat is a cat-and-mouse game. You need a lot of guardrails to protect yourself from people using your Social Site by spamming their products. Craigslist is a team of 30 people. There's stuff AI can automate now with such a small team but back then, it wasn't possible. Airbnb used Craigslist as its playground to spam Craigslist visitors to grow their supply-side. In a 2-sided marketplace, growing both supply and demand is very important. And both must grow at the same time for the marketplace to work. A Blackhat Marketer created a new test site to get vacation rental owners to sign-up so that he can test his Airbnb theory. He grabbed their real email-addresses (not Craigslist anonymous addresses) via Craigslist by specifically targeting those who were advertising their vacation rentals on Craigslist. He skipped over the other categories that were directly related to AirBnB's business model because they didn't fit with the test site he built. Once he got 1000+ sign-ups, he then took it upon himself to post it to the advertising section on Craigslist. The email said this: I am emailing you because you have one of the nicest listings on Craigslist in Idaho and I want to recommend you feature it (for free) on one of the largest Idaho housing sites on the web, Airbnb. The site already has 3,000,000 pages views a month. Check it out here to list now: airbnb(dot)com Sarah Surpisingly, all emails were by ladies. He did the same in Week 2 and Week 3 to test if it wasn't a one-time thing. Surely, it wasn't a fluke. After posting 4 ads on Craigslist in 3 weeks, he received 5 identical emails from 2 ladies who were raving fans of AirBnB and spent their days emailing Craigslist advertisers. This is one of the greatest blackhat strategies used in the real world to build a billion-dollar marketplace by growing the supply-side with pure blackhat. These strategies are not mentioned in Press Interviews, Media, or any Founder stories but this is probably the most important piece of the puzzle. Without it, Airbnb probably wouldn't have survived. "Some very famous investors have alluded to the fact that they look for a dangerous streak in the entrepreneurs they invest in…and while those investors will never come out and tell you what they mean, this kind of thing is probably what they mean." It definitely violates CAN-SPAM act. Some comments from Hacker News: "CAN-SPAM, sending from a fake address (illegal headers). CA has a specific law that pre-empts CAN-SPAM that definitely makes this illegal if sent from CA." But I guess it worked in Airbnb's favour lol as they were never caught or fined until after. "It's commercial email 100%. Probably a fake sender name (illegal), against gmail ToS, against CL ToS and no unsubscribe link and no one even subscribed in the first place. 100% against CAN-SPAM." Thanks for reading. If you'd like to learn more blackhat tactics like this, check this site which is a growth hacking newsletter with real-world blackhat examples. PS: Actual emails & screenshots from the Airbnb x Craigslist spam can be found here.

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

boring passive site... now 42k monthly visitors and $2540 MRR
reddit
LLM Vibe Score0
Human Vibe Score1
TasAdamsThis week

boring passive site... now 42k monthly visitors and $2540 MRR

people underestimate SEO... It is evergreen... passive... digital real estate. it can do magic... if you are consistent. Especially now with AI you can 2X your traffic growth and automate 85% of the work. For the past 6 months... we've been building an online directory. we just reached $2540 MRR... with SEO only... from a complete zero. I did share this on other subreddits. Maybe this gives ideas to someone. \+ This can be easily replicated if you have a website lol Current metrics: $2540 MRR - businesses pay us to list on the directory + display ads + pay to be featured. 43k monthly visitors - in the past couple of weeks our SEO growth is a hockey stick. DR (Domain Rating) 35 - it took us 2.5 months to get to that. 51 okay-ish quality referring domains (90% of them are do-follow) and 1.6k backlinks. There are probably 3 main pillars I try to focus on: keywords --> which then is the basis for ALL the content pieces we do blogs, landing pages, about us pages, competitor comparisons etc --> we use a DIY excel file to automate content production at scale. backlinks --> boost DR --> one of the main things to boost ranking on google. website health --> this is technical stuff like internal and external linking, schemas, canonical tags, alt texts, load speeds, compressed images, meta descriptions, titles etc --> do this once... and do it GOOD. $0.07 per SEO optimised blog at scale with AI Yep... we've literally built our own SEO blog tool... and it is a Spreadsheet with bunch of app scripts :D NOTE that we add a little bit of human touch to those blogs that are picked up by Google rank top in 25 How it works... is that we paste in bunch of links (other websites, blogs, news articles) and with a click of a button we can get up to 2000 SEO optimised content pieces... from an Excel file... $0.07 per blog. The spreadsheet is integrated with Chat gpt (obviously). We use GPT-4 for meta descriptions, titles, transforming the content from text to html code since it is more powerful, and GPT-4o for content itself because it is cheaper and faster for "general text". The spreadsheet repurposes content. The spreadsheet generates: Meta descriptions and titles FAQs sections - DON'T skip FAQ sections! They are a must for SEO. On Ahrefs... there is a section of questions people are searching about your keyword... that's your FAQs It can find contextual youtube videos (links to those videos) - to show google that our content is not "just text" thus higher quality. Screenshots and images of the original source (the website link we inputed) I then download a csv version of the excel and import it into our Webflow. The csv file column names match our webflow CMS field names. tbh... we didn't even know that it can be done with a spreadsheet. We "tried" building it because every other tool we were using is (1) expensive from $0.59 per SEO content piece (2) they didn't provide the scale we wanted (3) we wanted more control over the output. Focus on DR 35+ backlinks... easier We bought backlinks only once... rest of the backlinks was a manual work from us. Bunch of free listing databases (about 65% of our backlinks) You can comment on open forums with your link to get a backlink (be careful tho) Post a blog on Medium com --> DR 94 backlink (takes time to Index) If you pay for Notion you can get a DR 94 backlink from Notion If you use Beehiiv you can get a DR 86 backlink from Beehiiv Google product stacking (Google sites, Google notes etc) --> backlink from almighty Google itself A lot of work goes into backlinks because they are THAT important. I have tried bunch of "black hat" strategies as well... but note that all of these strategies won't work if you don't index the primary source from where your backlink is coming from. BIG search volume and low KD Key things I'm looking for in keywords: I use Ahrefs Keyword research tool... it is literally free BIG search volume - 2k+ is oaky-ish for a single keyword EASY to rank - KD (keyword difficulty) below 15 Look for long tail keywords (these are golden nuggets since they have a VERY clear search intent) - "how to edit..." "how to change..." "how to delete..." "how to paint..." I hope you got the idea. on Ahrefs you can use "\" to get BIG volume long tail keywords... like this "my keyword\". Ahrefs then populates the "\" with the tail. Check SERP (Search Engine Result Page) for your keywords - it shows current top 10 pages for those KWs. Check their content. Can you improve it? Have they missed anything? Keyword gap from your competitors - shows EASY keywords that your competitors have missed and also shows what keywords overlap with you. Also one cool thing... if you don't type any keywords on Ahrefs and press "Enter"... you can browse all the keywords out there... it is magical. Once we have the keywords, we run our spreadsheet. And that's pretty much it. I hope that you can get some ideas from this little silly project. Also... if you have any questions about this... I might share the SEO blog automation excel file/help if people are interested...

AI Will Make You Extremely Rich or Kill Your Business in 2024
reddit
LLM Vibe Score0
Human Vibe Score1
AntsyNursery58This week

AI Will Make You Extremely Rich or Kill Your Business in 2024

Preface: I'm a solo-founder in the AI space and previously worked as an ML scientist; the new advancements in AI that I'm seeing are going to impact everyone here. It doesn't matter if you're just starting out, or a bootstrapped brick and mortar founder, or even a VC backed hard tech founder. Last year was when the seeds were laid, and this is the year we'll see them bloom. There will be an onslaught of advancements that take place that are borderline inconceivable due to the nature of exponential progress. This will change every single vertical. I'm making this post because I think AI execution strategy will make or break businesses. Dramatically. Over $50B was put into AI startups in 2023 alone. This figure excludes the hundreds of billions poured into AI from enterprises. So, let's follow the money: &#x200B; 1) AI enterprise software. There's a lot to unpack here and this is what I’m currently working on. AI enterprise software will encompass everything from hyper personalized email outbound to AI cold calls to AI that A/B tests ads on synthetic data to vertical specific software. The impact of the former is relatively self explanatory, so I'll focus on the latter. To illustrate vertical specific AI software, I'll use a simple example in the legal space. Lawyers typically have to comb through thousands of pages of documents. Now, using an LLM + a VDB, an AI can instantly answer all of those questions while surfacing the source and highlighting the specific answer in the contract/document. There are dozens of AI startups for this use case alone. This saves lawyers an immense amount of time and allows them to move faster. Firms that adopt this have a fundamental advantage over law firms that don't adopt this. This was 2023 technology. I'm seeing vertical AI software getting built by my friends in areas from construction, to real estate, to even niche areas like chimney manufacturing. This will exist everywhere. Now, this can be extrapolated much further to be applicable to systems that can do reports and even browse the Internet. This brings me to my next point. &#x200B; 2) AI information aggregation and spread. My gut tells me that this will have a crescendo moment in the future with hardware advancements (Rabbit, Tab, etc.). You won't have to google things because it will be surfaced to you. It's predictive in nature. The people who can get information the fastest will grow their business the fastest. This part is semi-speculative, but due to the nature of LLMs being so expensive to train, I have a strong feeling that large institutions will have access to the \fastest\ and \best\ models that can do this quicker than you and I can. This is why it's important to stay on top. &#x200B; 3) AI content generation This is relevant to running advertisements and any digital marketing aspect of your business. If you can rapidly make content faster than your competitors to put in social media, you will outpace your competitors rapidly. I think most folks are familiar with MidJourney, Stable diffusion, etc. but don't know how to use it. You can generate consistent models for a clothing brand or generate images of a product that you would normally need to hire a professional photographer to take. There's also elevenlabs which is relatively easy to use and can be used to make an MP3 clip as a narration for an ad; this is something I've already done. I'm also still shocked by how many people are unfamiliar with tools like Pika which can do video generation. You could imagine companies having fleets of digital influencers that they control or conjuring up the perfect ad for a specific demographic using a combination of all of the aforementioned tools. &#x200B; In summary, if you feel like I'm being hyperbolic or propagating science fiction fantasies, you're likely already behind. I truly recommend that everyone stays up to date on these advancements as much as possible. If your competitor comes across an AI tool that can increase their ROAS by 5x they can crush you. If your competitor uses a tool that increases the rate at which they receive and aggregate information by 200% (modest estimate) they will crush you. If your competitors have a tool that can reduce their employee size, then they will use it. They'll fire their employees to cut costs and reinvest the money back into their business. It will compound to the point where you're outpaced, and this isn't a level of innovation we've seen since the birth of the industrial revolution. Your customers can get stolen overnight, or you can steal your competition’s customers overnight. TL;DR: This is an opportunity for entrepreneurs to scale faster than they could have possibly imagined, but this also comes with the potential for your company to be obliterated. We've never seen advancements that can have this drastic of an impact this quickly. Adoption will happen fast, and first movers will have a disproportionate and compounding advantage. Watch guides, meet with startups, follow the news, and get rich.

Beginner to the 1st sale: my journey building an AI for social media marketers
reddit
LLM Vibe Score0
Human Vibe Score1
Current-Payment-5403This week

Beginner to the 1st sale: my journey building an AI for social media marketers

Hey everyone! Here’s my journey building an AI for social media marketers all the way up until my first pre-launch sale, hope that could help some of you: My background: studied maths at uni before dropping out to have some startup experiences. Always been drawn to building new things so I reckoned I would have some proper SaaS experiences and see how VC-funded startups are doing it before launching my own.  I’ve always leaned towards taking more risks in my life so leaving my FT job to launch my company wasn’t a big deal for me (+ I’m 22 so still have time to fail over and over). When I left my job, I started reading a lot about UI/UX, no-code tools, marketing, sales and every tool a worthwhile entrepreneur needs to learn about. Given the complexity of the project I set out to achieve, I asked a more technical friend to join as a cofounder and that's when AirMedia was born. We now use bubble for landing page as I had to learn it and custom-code stack for our platform.  Here's our goal: streamlining social media marketing using AI. I see this technology has only being at the premises of what it will be able to achieve in the near-future. We want to make the experience dynamic i.e. all happens from a discussion and you see the posts being analysed from there as well as the creation process - all from within the chat. Fast forward a few weeks ago, we finished developing the first version of our tool that early users describe as a "neat piece of tech" - just this comment alone can keep me going for months :) Being bootstrapped until now, I decided to sell lifetime deals for the users in the waitlist that want to get the tool in priority as well as secure their spot for life. We've had the first sale the first day we made that public ! Now what you all are looking for: How ?  Here was my process starting to market the platform: I need a high-converting landing page so I reckoned which companies out there have the most data and knows what convert and what doesn’t: Unbounce. Took their landing page and adapted it to my value proposition and my ICP.  The ICP has been defined from day 1 and although I’m no one to provide any advice, I strongly believe the ICP has to be defined from day 1 (even before deciding the name of the company). It helps a lot when the customer is you and you’ve had this work experience that helps you identify the problems your users encounter. Started activating the network, posting on Instagram and LinkedIn about what we've built (I've worked in many SaaS start-ups in the past so I have to admit that's a bit of a cheat code). Cold outreach from Sales NAV to our ICP, been growing the waitlist in parallel of building the tool for months now so email marketings with drip sequences and sharing dev updates to build the trust along the way (after all we're making that tool for our users - they should be the first aware about what we're building). I also came across some Whatsapp groups with an awesome community that welcomed our platform with excitement.) The landing page funnel is the following: Landing page -> register waitlist -> upsell page -> confirmation. I've made several landing pages e.g. for marketing agencies, for real estate agents, for marketing director in several different industries. The goal now is just testing out the profiles and who does it resonate the most with. Another growth hack that got us 40+ people on the waitlist: I identified some Instagram posts from competitors where their CTA was "comment AI" and I'll send you our tool and they got over 2k people commenting. Needless to say, I messaged every single user to check out our tool and see if it could help them. (Now that i think about it, the 2% conversion rate there is not great - especially considering the manual labour and the time put behind it). We’ve now got over 400 people on the waitlist so I guess we’re doing something right but we’ll keep pushing as the goal is to sell these lifetime deals to have a strong community to get started. (Also prevents us from going to VCs and I can keep my time focussing exclusively on our users - I’m not into boardroom politics, just wanna build something useful for marketers). Now I’m still in the process of testing out different marketing strategies while developing and refining our platform to make it next level on launch day. Amongst those:  LinkedIn Sales Nav outreach (first sale came from there) Product Hunt Highly personalised cold emails (there I’m thinking of doing 20 emails a day with a personalised landing page to each of those highly relevant marketers). Never seen that and I think this could impress prospects but not sure it’s worth it time / conversion wise. Make content to could go viral (at least 75 videos) that I’m posting throughout several social media accounts such as airmedia\\, airmedia\reels, airmedia\ai (you get the hack) always redirecting to the main page both in the profile description and tagging the main account. I have no idea how this will work so will certainly update some of you that would like to know the results. Will do the same across Facebook, TikTok, Youtube Shorts etc… I’m just looking for a high potential of virality there. This strategy is mainly used to grow personal brands but never seen it applied to companies. Good old cold calling Reddit (wanna keep it transparent ;) ) I’m alone to execute all these strategies + working in parallel to refine the product upon user’s feedback I’m not sure I can do more than that for now. Let me know if you have any feedback/ideas/ tasks I could implement.  I could also make another post about the proper product building process as this post was about the marketing. No I certainly haven’t accomplished anything that puts me in a position to provide advices but I reckon I’m on my way to learn more and more. Would be glad if this post could help some of you.  And of course as one of these marketing channels is Reddit I’ll post the link below for the entrepreneurs that want to streamline their social media or support us. Hope I was able to provide enough value in this post for you to consider :) https://airmedia.uk/

I've been building stuff for years, I can build your idea
reddit
LLM Vibe Score0
Human Vibe Score1
Minute-Line2712This week

I've been building stuff for years, I can build your idea

If anyone is interested at all, I'm a college student whose been massively passionate for entrepreneur and business stuff for years and can build anything from a marketplace to a social network, a booking app, a live streaming app, AI app*, what not. I'm really flexible in general and I'm also very reasonable with pricing. I like this community so I'd like to work on something I enjoy... (indeed... get out of my tabs please). Im a little passionate in general let's say, and I build all the time for fun. But I need money. So I'm here. Viola! Since I'm a college student, and this is my first time ever offering my services as well, chances are I won't expect anything past $500. I might even do it for cheaper if it looks doable for me. If you're generous that's up to you (lol). I'm happy to share my work and live previews you can interact with before we start. And, I'm happy to build things before you pay, so you can see it literally working :) THE "NEGATIVE"/catch: There will be no code from scratch as we'd build using no-code (www.bubble.io) and implement code as needed. This means you will not have the source code ever (even if we wanted to) and if you ever want your own from scratch platform/app you will have to find someone/a team to do it from scratch, as there's no option to export source code out. If you plan to grow past 1 million users, you may consider migrating to something built from scratch at this point scaling wise (and you can't get your source code - so you'll have to pay an entire dev team separately. If you have an app, you'll need a website developed, and Android and iOS developers for the app). For an MVP however, I personally think it's a faster, easier and cheaper way to get things running without investing a lot. THE GOOD: No-code/low-code will be a thousand times more easy, cheap, and fast to maintain. And if you're a startup, chances are you WILL need to tweak things... possibly a lot (100s vs. 1,000s difference in my opinion..). We can still build almost anything and also turn it into a mobile app for iOS / Android, though I'm more comfortable with getting a web app up first and the main posting here. But it depends on the complexity so just ask. Maintenance is likely to end up FAR cheaper and you can even do it free yourself if you decided to learn (which you could totally do in some days, and master in some weeks/months fully). I can build and document everything to be as beginner friendly as possible for you to be able to maintain it yourself if you wanted to learn. Send me a message describing what you need if you're interested. I will give you an estimate on price, time, and can send you some live previews. If we agree, I will start to build before any down payments to a (reasonable) point!:)

My Side Projects: From CEO to 4th Developer (Thanks, AI 🤖)
reddit
LLM Vibe Score0
Human Vibe Score1
tilopediaThis week

My Side Projects: From CEO to 4th Developer (Thanks, AI 🤖)

Hey Reddit 👋, I wanted to share a bit about some side projects I’ve been working on lately. Quick background for context: I’m the CEO of a mid-to-large-scale eCommerce company pulling in €10M+ annually in net turnover. We even built our own internal tracking software that’s now a SaaS (in early review stages on Shopify), competing with platforms like Lifetimely and TrueROAS. But! That’s not really the point of this post — there’s another journey I’ve been on that I’m super excited to share (and maybe get your feedback on!). AI Transformed My Role (and My Ideas List) I’m not a developer by trade — never properly learned how to code, and to be honest, I don’t intend to. But, I’ve always been the kind of guy who jots down ideas in a notes app and dreams about execution. My dev team calls me their “4th developer” (they’re a team of three) because I have solid theoretical knowledge and can kinda read code. And then AI happened. 🛠️ It basically turned my random ideas app into an MVP generation machine. I thought it’d be fun to share one of the apps I’m especially proud of. I am also planning to build this in public and therefore I am planning to post my progress on X and every project will have /stats page where live stats of the app will be available. Tackling My Task Management Problem 🚀 I’ve sucked at task management for YEARS, I still do! I’ve tried literally everything — Sheets, Todoist, Asana, ClickUp, Notion — you name it. I’d start… and then quit after a few weeks - always. What I struggle with the most is delegating tasks. As a CEO, I delegate a ton, and it’s super hard to track everything I’ve handed off to the team. Take this example: A few days ago, I emailed an employee about checking potential collaboration opportunities with a courier company. Just one of 10s of tasks like this I delegate daily. Suddenly, I thought: “Wouldn’t it be AMAZING if just typing out this email automatically created a task for me to track?” 💡 So… I jumped in. With the power of AI and a few intense days of work, I built a task manager that does just that. But of course, I couldn’t stop there. Research & Leveling It Up 📈 I looked at similar tools like TickTick and Todoist, scraped their G2 reviews (totally legally, promise! 😅), and ran them through AI for a deep SWOT analysis. I wanted to understand what their users liked/didn’t like and what gaps my app could fill. Some of the features people said they were missing didn’t align with the vision for my app (keeping it simple and personal), but I found some gold nuggets: Integration with calendars (Google) Reminders Customizable UX (themes) So, I started implementing what made sense and am keeping others on the roadmap for the future. And I’ve even built for that to, it still doesn’t have a name, however the point is you select on how many reviews of a specific app you want to make a SWOT analysis on and it will do it for you. Example for Todoist in comments. But more on that, some other time, maybe other post ... Key Features So Far: Here’s what’s live right now: ✅ Email to Task: Add an email as to, cc, or bcc — and it automatically creates a task with context, due dates, labels, etc. ✅ WhatsApp Reminders: Get nudged to handle your tasks via WhatsApp. ✅ WhatsApp to Task: Send a message like /task buy groceries — bam, it’s added with full context etc.. ✅ Chrome Extension (work-in-progress): Highlight text on any page, right-click, and send it straight to your task list. Next Steps: Build WITH the Community 👥 Right now, the app is 100% free while still in the early stages. But hey, API calls and server costs aren’t cheap, so pricing is something I’ll figure out with you as we grow. For now, my goal is to hit 100 users and iterate from there. My first pricing idea is, without monthly subscription, I don’t want to charge someone for something he didn’t use. So I am planning on charging "per task", what do you think? Here’s what I have planned: 📍 End of Year Goal: 100 users (starting from… 1 🥲). 💸 Revenue Roadmap: When we establish pricing, we’ll talk about that. 🛠️ Milestones: Post on Product Hunt when we hit 100 users. Clean up my self-written spaghetti code (hire a pro dev for review 🙃). Hire a part-time dev once we hit MRR that can cover its costs. You can check how are we doing on thisisatask.me/stats Other Side Projects I’m Working On: Because… what’s life without taking on too much, right? 😂 Full list of things I’m building: Internal HRM: Not public, tried and tested in-house. Android TV App: Syncs with HRM to post announcements to office TVs (streamlined and simple). Stats Tracker App: Connects to our internal software and gives me real-time company insights. Review Analyzer: Scrapes SaaS reviews (e.g., G2) and runs deep analysis via AI. This was originally for my Shopify SaaS but is quickly turning into something standalone. Coming soon! Mobile app game: secret for now. Let’s Build This Together! Would love it if you guys checked out thisisatask.me and gave it a spin! Still super early, super raw, but I’m pumped to hear your thoughts. Also, what’s a must-have task manager feature for you? Anything that frustrates you with current tools? I want to keep evolving this in public, so your feedback is gold. 🌟 Let me know, Reddit! Are you with me? 🙌

5 Habits to go from Founder to CEO
reddit
LLM Vibe Score0
Human Vibe Score0.6
FalahilThis week

5 Habits to go from Founder to CEO

Over the years, I've gathered some knowledge about transitioning from a startup founder to a CEO. I started my company 7 years ago. We are now not super big (65 people), but we have learned a lot. We raised $19M in total and we are now profitable. The transition from Founder to CEO was crucial. Your startup begins to mature and scale and you need to scale with it. It's often a challenging phase, but I've managed to summarize it into five habbits. Say no to important things every day Being able to say "no" to important tasks every day is an essential practice for a growing leader. It's a reality that as the magnitude of your company or ideas expands, so does the influx of good ideas and opportunities. However, to transform from a mere hustler to a true leader, you have to become selective. This means learning to refuse good ideas, which is crucial if you want to consistently execute the outstanding ones. The concept that "Startups don't starve, they drown" resonates deeply because it underlines how challenging it can be to reject opportunities. A key strategy to develop this skill is time-constraining your to-do list. Here's how you can do it: Weekly: Formulate a weekly to-do list, including only those tasks that you're sure to complete within the week. Leave some buffer room for unexpected issues. If there's any doubt about whether you'll have time for a certain task, it should not feature on your weekly list. I use Todoist and Notion for task management. Daily: Apply the same rule while creating your daily to-do list. Only include tasks that you're confident about accomplishing that day. If a task seems too big to fit into one day, break it down into manageable chunks. Journaling Journaling is a powerful strategy that can help an individual transition from a reactive approach to a proactive one. As founders, we often find ourselves caught up in a cycle of endless tasks, akin to chopping trees in a dense forest. However, to ensure sustainable growth, it is crucial to develop an ability to "zoom out", or to view the bigger picture. I use The Morning Pages method, from Julia Cameron. It consists of writing each morning about anything that comes to mind. The act of writing effectively combines linear, focused thinking with the benefits of a thoughtful conversation. If you just want to journal, you can use Day One app (The free version will be enough). If you want to go a bit deeper, you can try a coaching app. I use Wave.ai and I also hired it for the managers in the company because it combines both journaling with habit building. &#x200B; Building Robust Systems and Processes (I know, it is boring and founders hate this) As a founder, you often need to wear multiple hats and juggle various roles. But as a CEO, it's vital to establish strong systems and processes that enable the business to function smoothly, even without your direct involvement. This includes: Implementing project management systems. Establishing clear lines of communication and accountability. Designing efficient workflows and procedures. To many founders, developing these systems might seem monotonous or even tedious. After all, the allure of envisioning the next big idea often proves more exciting. I experienced the same predicament. In response, I brought onboard a competent COO who excelled in systematizing processes. This strategy allowed me to kickstart initiatives and explore them in a flexible, less structured manner. Once an idea showed signs of gaining traction, my COO stepped in to streamline it, crafting a process that turned the fledgling idea into a consistent business operation. &#x200B; Meditating Meditation is about reprogramming unconscious mental processes by repeatedly performing fundamental tasks with a distinct intention. This practice can be even more crucial to leadership than acquiring a business school education. Because meditation provides the most direct route to understanding your mind's workings and thus, forms the most effective basis for transforming it. To transition from a founder to a CEO, a significant shift in your mindset is required. This shift involves moving from a hustle mentality to precision, from acting as a superhero solving problems to consciously stepping back, thereby providing room for your team members to discover their own superpowers. It's about shifting your success indicators - from individual achievements to the triumphs of your team. This transformation might not feel comfortable initially, and your instincts, shaped by your scrappy founder phase, might resist this change. However, with consistent practice, you can align your instincts with the stage of your company, promoting more effective leadership. This is where the value of meditation truly shines. It allows you to identify your distinct thought patterns in real time and, over time, modify them. I use Headspace a lot, and I also encourage the employees to use it. The company pays the subscription as a perk. &#x200B; Balancing the Macro and the Micro As the CEO, your primary focus should be on the big picture – your company's vision and strategy. However, you also need to keep an eye on the details, as these can make or break your execution. It's all about balance: Delegate the details but stay informed. Prioritize strategic planning but be ready to dive into the trenches when needed. Keep your eye on your long-term vision but adapt to short-term realities. The transition from founder to CEO isn't about giving up what made you successful initially but augmenting it with additional skills, perspectives, and practices. It's a personal and professional evolution that can lead to greater success for both you and your business. Every great CEO was once a founder. It's just about taking the next step. I’d love to hear your experiences or any tips you might have for this transition. In which step of your journey are you right now? Do you have employees already? What are your main challenges right now?

I got fired due to automation — lessons learned. Two-month overview.
reddit
LLM Vibe Score0
Human Vibe Score1
WebsterPepsterThis week

I got fired due to automation — lessons learned. Two-month overview.

UPD: Guys, I'm not promoting myself as some of the redditors decided. That's why to deal with contradictions I'll do next things: make additional post with short review and description of the general tools and processes you could apply. help only those who have already written me. So I won't answer on new offers or DMs. As mentioned, damn robots have taken my job. PRE-HISTORY During Covid times, I found myself without my offline job, and since I was interested in marketing and SMM, I began searching for a job there. Completed free Google and Udemy courses and finally landed my first SMM manager position with a business owner. He had several projects so, finally, I started managing three Twitter accounts, two Facebook accs, two IGs, and one TikTok. I handled posting, content editing and responding routine, while freelancers usually took care of video creation for IG and TT. THE STORY ITSELF Things took a turn for the worse in April when my employer introduced ChatGPT and Midjourney, tools I was already using. The owner insisted on integrating them into the workflow, and my wages took a 20% hit. I thought I could roll with it, but it was just the beginning. By midsummer, the owner implemented second-layer AI tools like Visla, Pictory, and Woxo for video (bye freelancers, lol), as well as TweetHunter, Jasper, and Perplexity for content. Midjourney and Firefly joined for image generation. All together, my paycheck was slashed by 50%. Finally, at the end of October, my boss told me he automated stuff with Zapier, cutting costs that way. Additionally, he adopted MarketOwl, autoposting tool for Twitter, and SocialBee for Facebook. He stated that he didn’t need me, as by now he could manage the social media accounts himself. I feel so pissed then and even thought that there's no point in searching for similar jobs. HOW I SPENT TWO MONTHS Well, for the first two weeks, I did nothing but being miserable, drinking and staring at the wall. My gf said it's unbearable and threatened to leave if I not pull myself together. It was not the final push, but definitely made me rethink things. So I decided to learn more about the capabilities of these automation covers and eventually became an AI adviser for small businesses. It's ironic that now I sometimes earn money advising on how to optimize marketing, possibly contributing to other people's job loss. FINAL THOUGHTS I am fully aware of the instability of such a job and have invested my last savings in taking an online marketing course at Columbia to gain more marketing experience and got something more stable afterwards. Message for mods: I'm not promoting myself or anything mentioned here; just sharing the experience that someone might find helpful.

Recently hit 6,600,000 monthly organic traffic for a B2C SaaS website. Here's the 40 tips that helped me make that happen.
reddit
LLM Vibe Score0
Human Vibe Score1
DrJigsawThis week

Recently hit 6,600,000 monthly organic traffic for a B2C SaaS website. Here's the 40 tips that helped me make that happen.

Hey guys! So as title says, we recently hit 6,600,000 monthly organic traffic / month for a B2C SaaS website (screenshot. Can't give name publicly, but can show testimonial to a mod). Here's 40 tips that "helped" me make this happen. If you get some value of the post, I write an SEO tip every other day on /r/seogrowth. There's around 10 more tips already up there other than the ones I mention here. If you want to give back for all my walls of text, I'd appreciate a sub <3 Also, there are a bunch of free stuff I mention in the article: content outline, writer guidelines, SEO checklist, and other stuff. Here's the Google Doc with all that! Tip #1. Take SEO With a Grain of Salt A lot of the SEO advice and best practices on the internet are based on 2 things: Personal experiences and case studies of companies that managed to make SEO work for them. Google or John Mueller (Google’s Senior Webmaster Trends Analyst). And, unfortunately, neither of these sources are always accurate. Personal SEO accounts are simply about what worked for specific companies. Sometimes, what worked for others, won’t work for you. For example, you might find a company that managed to rank with zero link-building because their website already had a very strong backlink profile. If you’re starting with a fresh website, chances are, you won’t be able to get the same results. At the same time, information from Google or John Mueller is also not 100% accurate. For example, they’ve said that guest posting is against Google’s guidelines and doesn’t work… But practically, guest posting is a very effective link-building strategy. So the takeaway is this: Take all information you read about SEO with a grain of salt. Analyze the information yourself, and make your conclusions. SEO Tip #2. SEO Takes Time You’ve already heard this one before, but considering how many people keep asking, thought I'd include this anyway. On average, it’s going to take you 6 months to 2 years to get SEO results, depending on the following factors: Your backlink profile. The more quality backlinks you have (or build), the faster you’ll rank. Age of your website. If your website is older (or you purchased an aged website), you can expect your content to rank faster. Amount of content published. The more quality content you publish on your website, the more “authoritative” it is in the eyes of Google, and thus more likely to rank faster. SEO work done on the website. If a lot of your pages are already ranking on Google (page 2-3), it’s easier to get them to page #1 than if you just published the content piece. Local VS global SEO. Ranking locally is (sometimes) easier and faster than ranking globally. That said, some marketing agencies can use “SEO takes time” as an excuse for not driving results. Well, fortunately, there is a way to track SEO results from month #2 - #3 of work. Simply check if your new content pieces/pages are getting more and more impressions on Google Search Console month-to-month. While your content won’t be driving traffic for a while after being published, they’ll still have a growing number of impressions from month #2 or #3 since publication. SEO Tip #3. SEO Might Not Be The Best Channel For You In theory, SEO sounds like the best marketing channel ever. You manage to rank on Google and your marketing seemingly goes on auto-pilot - you’re driving new leads every day from existing content without having to lift a finger… And yet, SEO is not for everyone. Avoid SEO as a marketing channel if: You’re just getting started with your business and need to start driving revenue tomorrow (and not in 1-2 years). If this is you, try Google ads, Facebook ads, or organic marketing. Your target audience is pretty small. If you’re selling enterprise B2B software and have around 2,000 prospects in total worldwide, then it’s simply easier to directly reach out to these prospects. Your product type is brand-new. If customers don’t know your product exists, they probably won’t be Googling it. SEO Tip #4. Traffic Can Be a Vanity Metric I've seen hundreds of websites that drive 6-7 digits of traffic but generate only 200-300 USD per month from those numbers. “What’s the deal?” You might be thinking. “How can you fail to monetize that much traffic?” Well, that brings us to today’s tip: traffic can be a vanity metric. See, not all traffic is created equal. Ranking for “hormone balance supplement” is a lot more valuable than ranking for “Madagascar character names.” The person Googling the first keyword is an adult ready to buy your product. Someone Googling the latter, on the other hand, is a child with zero purchasing power. So, when deciding on which keywords to pursue, always keep in mind the buyer intent behind and don’t go after rankings or traffic just because 6-digit traffic numbers look good. SEO Tip #5. Push Content Fast Whenever you publish a piece of content, you can expect it to rank within 6 months to a year (potentially less if you’re an authority in your niche). So, the faster you publish your content, the faster they’re going to age, and, as such, the faster they’ll rank on Google. On average, I recommend you publish a minimum of 10,000 words of content per month and 20,000 to 30,000 optimally. If you’re not doing link-building for your website, then I’d recommend pushing for even more content. Sometimes, content velocity can compensate for the lack of backlinks. SEO Tip #6. Use Backlink Data to Prioritize Content You might be tempted to go for that juicy, 6-digit traffic cornerstone keyword right from the get-go... But I'd recommend doing the opposite. More often than not, to rank for more competitive, cornerstone keywords, you’ll need to have a ton of supporting content, high-quality backlinks, website authority, and so on. Instead, it’s a lot more reasonable to first focus on the less competitive keywords and then, once you’ve covered those, move on to the rest. Now, as for how to check keyword competitiveness, here are 2 options: Use Mozbar to see the number of backlinks for top-ranking pages, as well as their Domain Authority (DA). If all the pages ranking on page #1 have <5 backlinks and DA of 20 - 40, it’s a good opportunity. Use SEMrush or Ahrefs to sort your keywords by difficulty, and focus on the less difficult keywords first. Now, that said, keep in mind that both of these metrics are third-party, and hence not always accurate. SEO Tip #7. Always Start With Competitive Analysis When doing keyword research, the easiest way to get started is via competitive analysis. Chances are, whatever niche you’re in, there’s a competitor that is doing great with SEO. So, instead of having to do all the work from scratch, run their website through SEMrush or Ahrefs and steal their keyword ideas. But don’t just stop there - once you’ve borrowed keyword ideas from all your competitors, run the seed keywords through a keyword research tool such as UberSuggest or SEMrush Keyword Magic Tool. This should give you dozens of new ideas that your competitors might’ve missed. Finally, don’t just stop at borrowing your competitor’s keyword ideas. You can also borrow some inspiration on: The types of graphics and images you can create to supplement your blog content. The tone and style you can use in your articles. The type of information you can include in specific content pieces. SEO Tip #8. Source a LOT of Writers Content writing is one of those professions that has a very low barrier to entry. Anyone can take a writing course, claim to be a writer, and create an UpWork account… This is why 99% of the writers you’ll have to apply for your gigs are going to be, well, horrible. As such, if you want to produce a lot of content on the reg, you’ll need to source a LOT of writers. Let’s do the math: If, by posting a job ad, you source 100 writers, you’ll see that only 5 of them are a good fit. Out of the 5 writers, 1 has a very high rate, so they drop out. Another doesn’t reply back to your communication, which leaves you with 3 writers. You get the 3 writers to do a trial task, and only one turns out to be a good fit for your team. Now, since the writer is freelance, the best they can do is 4 articles per month for a total of 5,000-words (which, for most niches, ain’t all that much). So, what we’re getting at here is, to hire quality writers, you should source a LOT of them. SEO Tip #9. Create a Process for Filtering Writers If you follow the previous tip, you'll end up with a huge database of hundreds of writers. This creates a whole new problem: You now have a database of 500+ writers waiting for you to sift through them and decide which ones are worth the hire. It would take you 2-3 days of intense work to go through all these writers and vet them yourself. Let’s be real - you don’t have time for that. Here’s what you can do instead: When sourcing writers, always get them to fill in a Google form (instead of DMing or emailing you). In this form, make sure to ask for 3 relevant written samples, a link to the writer’s portfolio page, and the writer’s rate per word. Create a SOP for evaluating writers. The criteria for evaluation should be: Level of English. Does the writer’s sample have any English mistakes? If so, they’re not a good fit. Quality of Samples. Are the samples long-form and engaging content or are they boring 500-word copy-pastes? Technical Knowledge. Has the writer written about a hard-to-explain topic before? Anyone can write about simple topics like traveling—you want to look for someone who knows how to research a new topic and explain it in a simple and easy-to-read way. If someone’s written about how to create a perfect cover letter, they can probably write about traveling, but the opposite isn’t true. Get your VA to evaluate the writer’s samples as per the criteria above and short-list writers that seem competent. If you sourced 500 writers, the end result of this process should be around 50 writers. You or your editor goes through the short-list of 50 writers and invites 5-10 for a (paid) trial task. The trial task is very important - you’ll sometimes find that the samples provided by the writer don’t match their writing level. SEO Tip #10. Use the Right Websites to Find Writers Not sure where to source your writers? Here are some ideas: ProBlogger \- Our #1 choice - a lot of quality writers frequent this website. LinkedIn \- You can headhunt content writers in specific locations. Upwork \- If you post a content gig, most writers are going to be awful. Instead, I recommend headhunting top writers instead. WeWorkRemotely \- Good if you’re looking to make a full-time remote hire. Facebook \- There are a ton of quality Facebook groups for writers. Some of our faves are Cult of Copy Job Board and Content Marketing Lounge. SEO Tip #11. Always Use Content Outlines When giving tasks to your writing team, you need to be very specific about the instructions you give them. Don’t just provide a keyword and tell them to “knock themselves out.” The writer isn’t a SEO expert; chances are, they’re going to mess it up big-time and talk about topics that aren’t related to the keyword you’re targeting. Instead, when giving tasks to writers, do it through content outlines. A content outline, in a nutshell, is a skeleton of the article they’re supposed to write. It includes information on: Target word count (aim for the same or 50% more the word count than that of the competition). Article title. Article structure (which sections should be mentioned and in what order). Related topics of keywords that need to be mentioned in the article. Content outline example in the URL in the post intro. SEO Tip #12. Focus on One Niche at a Time I used to work with this one client that had a SaaS consisting of a mixture of CRM, Accounting Software, and HRS. I had to pick whether we were going to focus on topics for one of these 3 niches or focus on all of them at the same time. I decided to do the former. Here’s why: When evaluating what to rank, Google considers the authority of your website. If you have 60 articles about accounting (most of which link to each other), you’re probably an authority in the niche and are more likely to get good rankings. If you have 20 sales, 20 HR, and 20 accounting articles, though, none of these categories are going to rank as well. It always makes more sense to first focus on a single niche (the one that generates the best ROI for your business), and then move on to the rest. This also makes it easier to hire writers - you hire writers specialized in accounting, instead of having to find writers who can pull off 3 unrelated topics. SEO Tip #13. Just Hire a VA Already It’s 2021 already guys—unless you have a virtual assistant, you’re missing out big-time. Since a lot of SEO tasks are very time-consuming, it really helps to have a VA around to take over. As long as you have solid SOPs in place, you can hire a virtual assistant, train them, and use them to free up your time. Some SEO tasks virtual assistants can help with are: Internal linking. Going through all your blog content and ensuring that they link to each other. Backlink prospecting. Going through hundreds of websites daily to find link opportunities. Uploading content on WordPress and ensuring that the content is optimized well for on-page SEO. SEO Tip #14. Use WordPress (And Make Your Life Easier) Not sure which CMS platform to use? 99% of the time, you’re better off with WordPress. It has a TON of plugins that will make your life easier. Want a drag & drop builder? Use Elementor. It’s cheap, efficient, extremely easy to learn, and comes jam-packed with different plugins and features. Wix, SiteGround, and similar drag & drops are pure meh. SEO Tip #15. Use These Nifty WordPress Plugins There are a lot of really cool WordPress plugins that can make your (SEO) life so much easier. Some of our favorites include: RankMath. A more slick alternative to YoastSEO. Useful for on-page SEO. Smush. App that helps you losslessly compress all images on your website, as well as enables lazy loading. WP Rocket. This plugin helps speed up your website pretty significantly. Elementor. Not a techie? This drag & drop plugin makes it significantly easier to manage your website. WP Forms. Very simple form builder. Akismet Spam Protection. Probably the most popular anti-spam WP plugin. Mammoth Docx. A plugin that uploads your content from a Google doc directly to WordPress. SEO Tip #16. No, Voice Search Is Still Not Relevant Voice search is not and will not be relevant (no matter what sensationalist articles might say). Sure, it does have its application (“Alexa, order me toilet paper please”), but it’s pretty niche and not relevant to most SEOs. After all, you wouldn’t use voice search for bigger purchases (“Alexa, order me a new laptop please”) or informational queries (“Alexa, teach me how to do accounting, thanks”). SEO Tip #17. SEO Is Obviously Not Dead I see these articles every year - “SEO is dead because I failed to make it work.” SEO is not dead and as long as there are people looking up for information/things online, it never will be. And no, SEO is not just for large corporations with huge budgets, either. Some niches are hypercompetitive and require a huge link-building budget (CBD, fitness, VPN, etc.), but they’re more of an exception instead of the rule. SEO Tip #18. Doing Local SEO? Focus on Service Pages If you’re doing local SEO, you’re better off focusing on local service pages than blog content. E.g. if you’re an accounting firm based in Boston, you can make a landing page about /accounting-firm-boston/, /tax-accounting-boston/, /cpa-boston/, and so on. Or alternatively, if you’re a personal injury law firm, you’d want to create pages like /car-accident-law-firm/, /truck-accident-law-firm/, /wrongful-death-law-firm/, and the like. Thing is, you don’t really need to rank on global search terms—you just won’t get leads from there. Even if you ranked on the term “financial accounting,” it wouldn’t really matter for your bottom line that much. SEO Tip #19. Engage With the SEO Community The SEO community is (for the most part) composed of extremely helpful and friendly people. There are a lot of online communities (including this sub) where you can ask for help, tips, case studies, and so on. Some of our faves are: This sub :) SEO Signals Lab (FB Group) Fat Graph Content Ops (FB Group) Proper SEO Group (FB Group) BigSEO Subreddit SEO Tip #20. Test Keywords Before Pursuing Them You can use Google ads to test how profitable any given keyword is before you start trying to rank for it. The process here is: Create a Google Ads account. Pick a keyword you want to test. Create a landing page that corresponds to the search intent behind the keyword. Allocate an appropriate budget. E.g. if you assume a conversion rate of 2%, you’d want to buy 100+ clicks. If the CPC is 2 USD, then the right budget would be 200 USD plus. Run the ads! If you don’t have the budget for this, you can still use the average CPC for the keyword to estimate how well it’s going to convert. If someone is willing to bid 10 USD to rank for a certain keyword, it means that the keyword is most probably generating pretty good revenue/conversions. SEO Tip #21. Test & Improve SEO Headlines Sometimes, you’ll see that you’re ranking in the top 3 positions for your search query, but you’re still not driving that much traffic. “What’s the deal?” you might be asking. Chances are, your headline is not clickable enough. Every 3-4 months, go through your Google Search Console and check for articles that are ranking well but not driving enough traffic. Then, create a Google sheet and include the following data: Targeted keyword Page link CTR (for the last 28 days) Date when you implemented the new title Old title New title New CTR (for the month after the CTR change was implemented) From then on, implement the new headline and track changes in the CTR. If you don’t reach your desired result, you can always test another headline. SEO Tip #22. Longer Content Isn’t Always Better Content You’ve probably heard that long-form content is where it’s at in 2021. Well, this isn’t always the case. Rather, this mostly depends on the keyword you’re targeting. If, for example, you’re targeting the keyword “how to tie a tie,” you don’t need a long-ass 5,000-word mega-guide. In such a case, the reader is looking for something that can be explained in 200-300 words and if your article fails to do this, the reader will bounce off and open a different page. On the other hand, if you’re targeting the keyword “how to write a CV,” you’ll need around 4,000 to 5,000 words to adequately explain the topic and, chances are, you won’t rank with less. SEO Tip #23. SEO is Not All About Written Content More often than not, when people talk about SEO they talk about written blog content creation. It’s very important not to forget, though, that blog content is not end-all-be-all for SEO. Certain keywords do significantly better with video content. For example, if the keyword is “how to do a deadlift,” video content is going to perform significantly better than blog content. Or, if the keyword is “CV template,” you’ll see that a big chunk of the rankings are images of the templates. So, the lesson here is, don’t laser-focus on written content—keep other content mediums in mind, too. SEO Tip #24. Write For Your Audience It’s very important that your content resonates well with your target audience. If, for example, you’re covering the keyword “skateboard tricks,” you can be very casual with your language. Heck, it’s even encouraged! Your readers are Googling the keyword in their free time and are most likely teens or in their early 20s. Meaning, you can use informal language, include pop culture references, and avoid complicated language. Now, on the other hand, if you’re writing about high-level investment advice, your audience probably consists of 40-something suit-and-ties. If you include Rick & Morty references in your article, you'll most likely lose credibility and the Googler, who will go to another website. Some of our best tips on writing for your audience include: Define your audience. Who’s the person you’re writing for? Are they reading the content at work or in their free time? Keep your reader’s level of knowledge in mind. If you’re covering an accounting 101 topic, you want to cover the topic’s basics, as the reader is probably a student. If you’re writing about high-level finance, though, you don’t have to teach the reader what a balance sheet is. More often than not, avoid complicated language. The best practice is to write on a 6th-grade level, as it’s understandable for anyone. Plus, no one wants to read Shakespeare when Googling info online (unless they’re looking for Shakespeare's work, of course). SEO Tip #25. Create Compelling Headlines Want to drive clicks to your articles? You’ll need compelling headlines. Compare the following headline: 101 Productivity Tips \[To Get Things Done in 2021\] With this one: Productivity Tips Guide Which one would you click? Data says it’s the first! To create clickable headlines, I recommend you include the following elements: Keyword. This one’s non-negotiable - you need to include the target keyword in the headline. Numbers. If Buzzfeed taught us anything, it’s that people like to click articles with numbers in their titles. Results. If I read your article, what’s going to be the end result? E.g. “X Resume tips (to land the job)”.* Year (If Relevant). Adding a year to your title shows that the article is recent (which is relevant for some specific topics). E.g. If the keyword is “Marketing Trends,” I want to know marketing trends in 2021, not in 2001. So, adding a year in the title makes the headline more clickable. SEO Tip #26. Make Your Content Visual How good your content looks matters, especially if you're in a competitive niche. Here are some tips on how to make your content as visual as possible: Aim for 2-4 sentences per paragraph. Avoid huge blocks of text. Apply a 60-65% content width to your blog pages. Pick a good-looking font. I’d recommend Montserrat, PT Sans, and Roboto. Alternatively, you can also check out your favorite blogs, see which fonts they’re using, and do the same. Use a reasonable font size. Most top blogs use font sizes ranging from 16 pt to 22 pt. Add images when possible. Avoid stock photos, though. No one wants to see random “office people smiling” scattered around your blog posts. Use content boxes to help convey information better. Content boxes example in the URL in the intro of the post. SEO Tip #27. Ditch the Skyscraper Technique Already Brian Dean’s skyscraper technique is awesome and all, but the following bit really got old: “Hey \[name\], I saw you wrote an article. I, too, wrote an article. Please link to you?” The theory here is, if your content is good, the person will be compelled to link to it. In practice, though, the person really, really doesn’t care. At the end of the day, there’s no real incentive for the person to link to your content. They have to take time out of their day to head over to their website, log in to WordPress, find the article you mentioned, and add a link... Just because some stranger on the internet asked them to. Here’s something that works much better: Instead of fake compliments, be very straightforward about what you can offer them in exchange for that link. Some things you can offer are: A free version of your SaaS. Free product delivered to their doorstep. Backlink exchange. A free backlink from your other website. Sharing their content to your social media following. Money. SEO Tip #28. Get the URL Slug Right for Seasonal Content If you want to rank on a seasonal keyword, there are 2 ways to do this. If you want your article to be evergreen (i.e. you update it every year with new information), then your URL should not contain the year. E.g. your URL would be /saas-trends/, and you simply update the article’s contents+headline each year to keep it timely. If you’re planning on publishing a new trends report annually, though, then you can add a year to the URL. E.g. /saas-trends-2020/ instead of /saas-trends/. SEO Tip #29. AI Content Tools Are a Mixed Bag Lots of people are talking about AI content tools these days. Usually, they’re either saying: “AI content tools are garbage and the output is horrible,” Or: “AI content tools are a game-changer!” So which one is it? The truth is somewhere in-between. In 2021, AI content writing tools are pretty bad. The output you’re going to get is far from something you can publish on your website. That said, some SEOs use such tools to get a very, very rough draft of the article written, and then they do intense surgery on it to make it usable. Should you use AI content writing tools? If you ask me, no - it’s easier to hire a proficient content writer than spend hours salvaging AI-written content. That said, I do believe that such tools are going to get much better years down the line. This one was, clearly, more of a personal opinion than a fact. I’d love to hear YOUR opinion on AI content tools! Are they a fad, or are they the future of content creation? Let me know in the comments. SEO Tip #30. Don’t Overdo it With SEO Tools There are a lot of SEO tools out there for pretty much any SEO function. Keyword research, link-building, on-page, outreach, technical SEO, you name it! If you were to buy most of these tools for your business, you’d easily spend 4-figures on SEO tools per month. Luckily, though, you don’t actually need most of them. At the end of the day, the only must-have SEO tools are: An SEO Suite (Paid). Basically SEMrush or Ahrefs. Both of these tools offer an insane number of features - backlink analysis, keyword research, and a ton of other stuff. Yes, 99 USD a month is expensive for a tool. But then again, if you value your time 20 USD/hour and this tool saves you 6 hours, it's obviously worth it, right? On-Page SEO Tool (Free). RankMath or Yoast. Basically, a tool that's going to help you optimize web pages or blog posts as per SEO best practices. Technical SEO Tool (Freemium). You can use ScreamingFrog to crawl your entire website and find technical SEO problems. There are probably other tools that also do this, but ScreamingFrog is the most popular option. The freemium version of the tool only crawls a limited number of pages (500 URLs, to be exact), so if your website is relatively big, you'll need to pay for the tool. Analytics (Free). Obviously, you'll need Google Analytics (to track website traffic) and Google Search Console (to track organic traffic, specifically) set up on your website. Optionally, you can also use Google Track Manager to better track how your website visitors interact with the site. MozBar (Free). Chrome toolbar that lets you simply track the number of backlinks on Google Search Queries, Domain Authority, and a bunch of other stuff. Website Speed Analysis (Free). You can use Google Page Speed Insights to track how fast your website loads, as well as how mobile-friendly it is. Outreach Tool (Paid). Tool for reaching out to prospects for link-building, guest posting, etc. There are about a dozen good options for this. Personally, I like to use Snov for this. Optimized GMB Profile (Free). Not a tool per se, but if you're a local business, you need to have a well-optimized Google My Business profile. Google Keyword Planner (Free). This gives you the most reliable search volume data of all the tools. So, when doing keyword research, grab the search volume from here. Tool for Storing Keyword Research (Free). You can use Google Sheets or AirTable to store your keyword research and, at the same time, use it as a content calendar. Hemingway App (Free). Helps keep your SEO content easy to read. Spots passive voice, complicated words, etc. Email Finder (Freemium). You can use a tool like Hunter to find the email address of basically anyone on the internet (for link-building or guest posting purposes). Most of the tools that don’t fit into these categories are 100% optional. SEO Tip #31. Hiring an SEO? Here’s How to Vet Them Unless you’re an SEO pro yourself, hiring one is going to be far from easy. There’s a reason there are so many “SEO experts” out there - for the layman, it’s very hard to differentiate between someone who knows their salt and a newbie who took an SEO course, like, last week. Here’s how you can vet both freelance and full-time SEOs: Ask for concrete traffic numbers. The SEO pro should give you the exact numbers on how they’ve grown a website in the past - “100% SEO growth in 1 year” doesn’t mean much if the growth is from 10 monthly traffic to 20. “1,000 to 30,000” traffic, on the other hand, is much better. Ask for client names. While some clients ask their SEOs to sign an NDA and not disclose their collaboration, most don’t. If an SEO can’t name a single client they’ve worked with in the past, that’s a red flag. Make sure they have the right experience. Global and local SEO have very different processes. Make sure that the SEO has experience with the type of SEO you need. Make sure you’re looking for the right candidate. SEO pros can be content writers, link-builders, web developers, or all of the above simultaneously. Make sure you understand which one you need before making the hire. If you’re looking for someone to oversee your content ops, you shouldn’t hire a technical SEO expert. Look for SEO pros in the right places. Conventional job boards are overrated. Post your job ads on SEO communities instead. E.g. this sub, bigseo, SEO Signals Facebook group, etc. SEO Tip #32. Blog Post Not Ranking? Follow This Checklist I wanted to format the post natively for Reddit, but it’s just SO much better on Notion. Tl;dr, the checklist covers every reason your post might not be ranking: Search intent mismatch. Inferior content. Lack of internal linking. Lack of backlinks. And the like. Checklist URL at the intro of the post. SEO Tip #33. Avoid BS Link-Building Tactics The only type of link-building that works is building proper, quality links from websites with a good backlink profile and decent organic traffic. Here’s what DOESN’T work: Blog comment links Forum spam links Drive-by Reddit comment/post links Web 2.0 links Fiverr “100 links for 10 bucks” bs If your “SEO agency” says they’re doing any of the above instead of actually trying to build you links from quality websites, you’re being scammed. SEO Tip #34. Know When to Use 301 and 302 Redirects When doing redirects, it’s very important to know the distinction between these two. 301 is a permanent page redirect and passes on link juice. If you’re killing off a page that has backlinks, it’s better to 301 it to your homepage so that you don’t lose the link juice. If you simply delete a page, it’s going to be a 404, and the backlink juice is lost forever. 302 is a temporary page redirect and doesn’t pass on link juice. If the redirect is temporary, you do a 302. E.g. you want to test how well a new page is going to perform w/ your audience. SEO Tip #35. Social Signals Matter (But Not How You Think) Social signals are NOT a ranking factor. And yet, they can help your content rank on Google’s front page. Wondering what the hell am I talking about? Here’s what’s up: As I said, social signals are not a ranking factor. It’s not something Google takes into consideration to decide whether your article should rank or not. That said, social signals CAN lead to your article ranking better. Let’s say your article goes viral and gets around 20k views within a week. A chunk of these viewers are going to forget your domain/link and they’re going to look up the topic on Google via your chosen keyword + your brand name. The amount of people looking for YOUR keyword and exclusively picking your result over others is going to make Google think that your content is satisfying search intent better than the rest, and thus, reward you with better ranking. SEO Tip #36. Run Remarketing Ads to Lift Organic Traffic Conversions Not satisfied with your conversion rates? You can use Facebook ads to help increase them. Facebook allows you to do something called “remarketing.” This means you can target anyone that visited a certain page (or multiple pages) on your website and serve them ads on Facebook. There are a TON of ways you can take advantage of this. For example, you can target anyone that landed on a high buyer intent page and serve them ads pitching your product or a special offer. Alternatively, you can target people who landed on an educational blog post and offer them something to drive them down the funnel. E.g. free e-book or white paper to teach them more about your product or service. SEO Tip #37. Doing Local SEO? Follow These Tips Local SEO is significantly different from global SEO. Here’s how the two differ (and what you need to do to drive local SEO results): You don’t need to publish content. For 95% of local businesses, you only want to rank for keywords related to your services/products, you don’t actually need to create educational content. You need to focus more on reviews and citation-building. One of Google Maps’ biggest ranking factors is the of reviews your business has. Encourage your customers to leave a review if they enjoyed your product/service through email or real-life communication. You need to create service pages for each location. As a local business, your #1 priority is to rank for keywords around your service. E.g. If you're a personal injury law firm, you want to optimize your homepage for “personal injury law firm” and then create separate pages for each service you provide, e.g. “car accident lawyer,” “motorcycle injury law firm,” etc. Focus on building citations. Being listed on business directories makes your business more trustworthy for Google. BrightLocal is a good service for this. You don’t need to focus as much on link-building. As local SEO is less competitive than global, you don’t have to focus nearly as much on building links. You can, in a lot of cases, rank with the right service pages and citations. SEO Tip #38. Stop Ignoring the Outreach Emails You’re Getting (And Use Them to Build Your Own Links) Got a ton of people emailing you asking for links? You might be tempted to just send them all straight to spam, and I don’t blame you. Outreach messages like “Hey Dr Jigsaw, your article is A+++ amazing! ...can I get a backlink?” can get hella annoying. That said, there IS a better way to deal with these emails: Reply and ask for a link back. Most of the time, people who send such outreach emails are also doing heavy guest posting. So, you can ask for a backlink from a 3rd-party website in exchange for you mentioning their link in your article. Win-win! SEO Tip #39. Doing Internal Linking for a Large Website? This’ll Help Internal linking can get super grueling once you have hundreds of articles on your website. Want to make the process easier? Do this: Pick an article you want to interlink on your website. For the sake of the example, let’s say it’s about “business process improvement.” Go on Google and look up variations of this keyword mentioned on your website. For example: Site:\[yourwebsite\] “improve business process” Site:\[yourwebsite\] “improve process” Site:\[yourwebsite\] “process improvement” The above queries will find you the EXACT articles where these keywords are mentioned. Then, all you have to do is go through them and include the links. SEO Tip #40. Got a Competitor Copying Your Content? File a DMCA Notice Fun fact - if your competitors are copying your website, you can file a DMCA notice with Google. That said, keep in mind that there are consequences for filing a fake notice.

Started a content marketing agency 8 years ago - $0 to $7,863,052 (2025 update)
reddit
LLM Vibe Score0
Human Vibe Score0.882
mr_t_forhireThis week

Started a content marketing agency 8 years ago - $0 to $7,863,052 (2025 update)

Hey friends, My name is Tyler and for the past 8 years, I’ve been documenting my experience building a content marketing agency called Optimist. Year 1 — 0 to $500k ARR Year 2 — $500k to $1MM ARR Year 3 — $1MM ARR to $1.5MM(ish) ARR Year 4 — $3,333,686 Revenue Year 5 — $4,539,659 Revenue Year 6 — $5,974,324 Revenue Year 7 - $6,815,503 Revenue (Edit: Seems like links are banned now. You can check my post history for all of my previous updates with lessons and learnings.) How Optimist Works First, an overview/recap of the Optimist business model: We operate as a “collective” of full time/professional freelancers Everyone aside from me is a contractor Entirely remote/distributed team We pay freelancers a flat fee for most work, working out to roughly $65-100/hour. Clients pay us a flat monthly fee for full-service content marketing (research, strategy, writing, editing, design/photography, reporting and analytics, targeted linkbuilding, and more)\ Packages range in price from \~$10-20k/mo \This is something we are revisiting now* The Financials In 2024, we posted $1,032,035.34 in revenue. This brings our lifetime revenue to $7,863,052. Here’s our monthly revenue from January 2017 to December of 2024. (Edit: Seems like I'm not allowed to link to the chart.) The good news: Revenue is up 23% YoY. EBITDA in Q4 trending up 1-2 points. We hosted our first retreat in 4 years, going to Ireland with about half the team. The bad news: Our revenue is still historically low. At $1MM for the year, we’re down about 33% from our previous years over $1.5MM. Revenue has been rocky. It doesn’t feel like we’ve really “recovered” from the bumps last year. The trend doesn’t really look great. Even though, anecdotally, it feels like we are moving in a good direction. EBITDA is still hovering at around 7%. Would love to get that closer to 20%. (For those who may ask: I’m calculating EBITDA after paying taxes and W2 portion of my income.) — Almost every year, my update starts the same way: This has been a year of growth and change. Both for my business—and me personally. 2024 was no different. I guess that tells you something about entrepreneurship. It’s a lot more like sailing a ship than driving a car. You’re constantly adapting, tides are shifting, and any blip of calm is usually just a moment before the next storm. As with past years, there’s a lot to unpack from the last 12 months. Here we go again. Everything is Burning In the last 2 years, everything has turned upside down in the world of content and SEO. Back in 2020, we made a big decision to re-position the agency. (See post history) We decided to narrow our focus to our most successful, profitable, and consistent segment of clients and re-work our entire operation to focus on serving them. We defined our ICP as: \~Series A ($10mm+ funding) with 6-12 months runway to scale organic as a channel Product-led company with “simple” sales cycle involving fewer stakeholders Demonstrable opportunity to use SEO to drive business growth Our services: Content focused on growing organic search (SEO) Full-service engagements that included research, planning, writing, design, reporting And our engagement structure: Engaged directly with an executive; ownership over strategy and day-to-day execution 1-2 points of contact or stakeholders Strategic partner that drives business growth (not a service vendor who makes content) Most importantly, we decided that we were no longer going to offer a broader range of content that we used to sell. That included everything from thought leadership content to case studies and ebooks. We doubled-down on “SEO content” for product-led SaaS companies. And this worked phenomenally for us. We started bringing on more clients than ever. We developed a lot of internal system and processes that helped us scale and take on more work than we’ve ever had and drive great outcomes for our ideal clients. But in 2023 and 2024, things started going awry. One big change, of course, was the rise of AI. Many companies and executives (and writers) feel that AI can write content just as well as an agency like ours. That made it a lot harder to sell a $10,000 per month engagement when they feel like the bulk of the work could be “done for free.” (Lots of thoughts on this if you want my opinions.) But it wasn’t just that. Google also started tinkering with their algorithm, introducing new features like AI Overviews, and generally changing the rules of the game. This created 3 big shifts in our world: The perceived value of content (especially “SEO content”) dropped dramatically in many people’s minds because of AI’s writing capabilities SEO became less predictable as a source of traffic and revenue It’s harder than ever for startups and smaller companies to rank for valuable keywords (let alone generate any meaningful traffic or revenue from them) The effect? The middle of the content market has hollowed out. People—like us—providing good, human-crafted content aimed on driving SEO growth saw a dramatic decline in demand. We felt it all year. Fewer and fewer leads. The leads we did see usually scoffed at our prices. They were indexing us against the cost of content mills and mass-produced AI articles. It was a time of soul-searching and looking for a way forward. I spent the first half of the year convinced that the only way to survive was to run toward the fire. We have to build our own AI workflows. We have to cut our rates internally. We have to get faster and cheaper to stay competitive with the agencies offering the same number of deliverables for a fraction of our rates. It’s the only way forward. But then I asked myself a question… Is this the game I actually want to play? As an entrepreneur, do I want to run a business where I’m competing mostly on price and efficiency rather than quality and value? Do I want to hop into a race toward cheaper and cheaper content? Do I want to help people chase a dwindling amount of organic traffic that’s shrinking in value? No. That’s not the game I want to play. That’s not a business I want to run. I don’t want to be in the content mill business. So I decided to turn the wheel—again. Repositioning Part II: Electric Boogaloo What do you do when the whole world shifts around you and the things that used to work aren’t working anymore? You pivot. You re-position the business and move in another direction. So that’s what we decided to do. Again. There was only one problem: I honestly wasn’t sure what opportunities existed in the content marketing industry outside of what we were already doing. We lived in a little echo chamber of startups and SEO. It felt like the whole market was on fire and I had fight through the smoke to find an escape hatch. So I started making calls. Good ol’ fashioned market research. I reached out to a few dozen marketing and content leaders at a bunch of different companies. I got on the phone and just asked lots of questions about their content programs, their goals, and their pain points. I wanted to understand what was happening in the market and how we could be valuable. And, luckily, this process really paid off. I learned a lot about the fragmentation happening across content and how views were shifting. I noticed key trends and how our old target market really wasn’t buying what we were selling. Startups and small companies are no longer willing to invest in an agency like ours. If they were doing content and SEO at all, they were focused entirely on using AI to scale output and minimize costs. VC money is still scarce and venture-backed companies are more focused on profitability than pure growth and raising another round. Larger companies (\~500+ employees) are doing more content than ever and drowning in content production. They want to focus on strategy but can barely tread water keeping up with content requests from sales, demand gen, the CEO, and everyone else. Many of the companies still investing in content are looking at channels and formats outside of SEO. Things like thought leadership, data reports, interview-driven content, and more. They see it as a way to stand out from the crowd of “bland SEO content.” Content needs are constantly in flux. They range from data reports and blog posts to product one-pagers. The idea of a fixed-scope retainer is a total mismatch for the needs of most companies. All of this led to the logical conclusion: We were talking to the wrong people about the wrong things\.\ Many companies came to one of two logical conclusions: SEO is a risky bet, so it’s gotta be a moonshot—super-low cost with a possibility for a big upside (i.e., use AI to crank out lots of content. If it works, great. If it doesn’t, then at least we aren’t out much money.) SEO is a risky bet, so we should diversify into other strategies and channels to drive growth (i.e., shift our budget from SEO and keyword-focused content to video, podcasts, thought leadership, social, etc) Unless we were going to lean into AI and dramatically cut our costs and rates, our old buyers weren’t interested. And the segment of the market that needs our help most are looking primarily for production support across a big range of content types. They’re not looking for a team to run a full-blown program focused entirely on SEO. So we had to go back to the drawing board. I’ve written before about our basic approach to repositioning the business. But, ultimately it comes down to identifying our unique strengths as a team and then connecting them to needs in the market. After reviewing the insights from my discussions and taking another hard look at our business and our strengths, I decided on a new direction: Move upmarket: Serve mid-size to enterprise businesses with \~500-5,000 employees instead of startups Focus on content that supports a broader range of business goals instead of solely on SEO and organic growth (e.g., sales, demand gen, brand, etc) Shift back to our broader playbook of content deliverables, including thought leadership, data studies, and more Focus on content execution and production to support an internally-directed content strategy across multiple functions In a way, it’s sort of a reverse-niche move. Rather than zooming in specifically on driving organic growth for startups, we want to be more of an end-to-end content production partner that solves issues of execution and operations for all kinds of content teams. It’s early days, but the response here has been promising. We’ve seen an uptick in leads through Q4. And more companies in our pipeline fit the new ICP. They’re bigger, often have more budget. (But they move more slowly). We should know by the end of the quarter if this maneuver is truly paying off. Hopefully, this will work out. Hopefully our research and strategy are right and we’ll find a soft landing serving a different type of client. If it doesn’t? Then it will be time to make some harder decisions. As I already mentioned, I’m not interested in the race to the bottom of AI content. And if that’s the only game left in town, then it might be time to think hard about a much bigger change. — To be done: Build new content playbooks for expanded deliverables Build new showcase page for expanded deliverables Retooling the Operation It’s easy to say we’re doing something new. It’s a lot harder to actually do it—and do it well. Beyond just changing our positioning, we have to do open-heart surgery on the entire content operation behind the scenes. We need to create new systems that work for a broader range of content types, formats, and goals. Here’s the first rub: All of our workflows are tooled specifically for SEO-focused content. Every template, worksheet, and process that we’ve built and scaled in the last 5 years assumes that the primary goal of every piece of content is SEO. Even something as simple as requiring a target keyword is a blocker in a world where we’re not entirely focused on SEO. This is relatively easy to fix, but it requires several key changes: Update content calendars to make keywords optional Update workflows to determine whether we need an optimization report for each deliverable Next, we need to break down the deliverables into parts rather than a single line item. In our old system, we would plan content as a single row in a Content Calendar spreadsheet. It was a really wide sheet with lots of fields where we’d define the dimensions of each individual article. This was very efficient and simple to follow. But every article had the same overall scope when it came to the workflow. In Asana (our project management tool), all of the steps in the creation were strung together in a single task. We would create a few basic templates for each client, and then each piece would flow through the same steps: Briefing Writing Editing Design etc. If we had anything that didn’t fit into the “standard” workflow, we’d just tag it in the calendar with an unofficial notation \[USING BRACKETS\]. It worked. But it wasn’t ideal. Now we need the steps to be more modular. Imagine, for example, a client asks us to create a mix of deliverables: 1 article with writing + design 1 content brief 1 long-form ebook with an interview + writing + design Each of these would require its own steps and its own workflow. We need to break down the work to accommodate for a wider variety of workflows and variables. This means we need to update the fields and structure of our calendar to accommodate for the new dimensions—while also keeping the planning process simple and manageable. This leads to the next challenge: The number of “products” that we’re offering could be almost infinite. Just looking at the example scope above, you can mix and match all of these different building blocks to create a huge variety of different types of work, each requiring its own workflow. This is part of the reason we pivoted away from this model to focus on a productized, SEO-focused content service back in 2020. Take something as simple as a case study. On the surface, it seems like one deliverable that can be easily scoped and priced, right? Well, unpack what goes into a case study: Is there already source material from the customer or do we need to conduct an interview? How long is it? Is it a short overview case study or a long-form narrative? Does it need images and graphics? How many? Each of these variables opens up 2-3 possibilities. And when you combine them, we end up with something like 10 possible permutations for this single type of deliverable. It gets a bit messy. But not only do we have to figure out how to scope and price all for all of these variables, we also have to figure out how to account for these variables in the execution. We have to specify—for every deliverable—what type it is, how long, which steps are involved and not involved, the timeline for delivery, and all of the other factors. We’re approaching infinite complexity, here. We have to figure out a system that allows for a high level of flexibility to serve the diverse needs of our clients but is also productized enough that we can build workflows, process, and templates to deliver the work. I’ve spent the last few months designing that system. Failed Attempt #1: Ultra-Productization In my first pass, I tried to make it as straight forward as possible. Just sit down, make a list of all of the possible deliverables we could provide and then assign them specific scopes and services. Want a case study? Okay that’ll include an interview, up to 2,000 words of content, and 5 custom graphics. It costs $X. But this solution quickly fell apart when we started testing it against real-world scenarios. What if the client provided the brief instead of us creating one? What if they didn’t want graphics? What if this particular case study really needs to be 3,000 words but all of the others should be 2,000? In order for this system to work, we’d need to individual scope and price all of these permutations of each productized service. Then we’d need to somehow keep track of all of these and make sure that we accurately scope, price, and deliver them across dozens of clients. It’s sort of like a restaurant handling food allergies by creating separate versions of every single dish to account for every individual type of allergy. Most restaurants have figured out that it makes way more sense to have a “standard” and an “allergy-free” version. Then you only need 2 options to cover 100% of the cases. Onto the next option. Failed Attempt #2: Deliverable-Agnostic Services Next, I sat down with my head of Ops, Katy, to try to map it out. We took a big step back and said: Why does the deliverable itself even matter? At the end of the day, what we’re selling is just a few types of work (research, writing, editing, design, etc) that can be packaged up in an infinite number of ways. Rather than try to define deliverables, shouldn’t we leave it open ended for maximum flexibility? From there, we decided to break down everything into ultra-modular building blocks. We started working on this super complex system of modular deliverables where we would have services like writing, design, editing, etc—plus a sliding scale for different scopes like the length of writing or the number of images. In theory, it would allow us to mix and match any combination of services to create custom deliverables for the client. In fact, we wanted the work to be deliverable-agnostic. That way we could mold it to fit any client’s needs and deliver any type of content, regardless of the format or goal. Want a 5,000-word case study with 15 custom graphics? That’ll be $X. Want a 2,000-word blog post with an interview and no visuals? $Y. Just want us to create 10 briefs, you handle the writing, and we do design? It’s $Z. Again, this feels like a reasonable solution. But it quickly spiraled out of amuck. (That’s an Office reference.) For this to work, we need to have incredibly precise scoping process for every single deliverable. Before we can begin work (or even quote a price), we need to know pretty much the exact word count of the final article, for example. In the real world? This almost never happens. The content is as long as the content needs to be. Clients rarely know if the blog post should be 2,000 words or 3,000 words. They just want good content. We have a general ballpark, but we can rarely dial it in within just 1,000 words until we’ve done enough research to create the brief. Plus, from a packaging and pricing perspective, it introduces all kind of weird scenarios where clients will owe exactly $10,321 for this ultra-specific combination of services. We were building an open system that could accommodate any and all types of potential deliverables. On the face that seems great because it makes us incredibly flexible. In reality, the ambiguity actually works against us. It makes it harder for us to communicate to clients clearly about what they’ll get, how much it will cost, and how long it will take. That, of course, also means that it hurts our client relationships. (This actually kind of goes back to my personal learnings, which I’ll mention in a bit. I tend to be a “let’s leave things vague so we don’t have to limit our options” kind of person. But I’m working on fixing this to be more precise, specific, and clear in everything that we do.) Dialing It In: Building a Closed System We were trying to build an open system. We need to build a closed system. We need to force clarity and get specific about what we do, what we don’t do, and how much it all costs. Then we need a system to expand on that closed system—add new types of deliverables, new content playbooks, and new workflows if and when the need arises. With that in mind, we can start by mapping out the key dimensions of any type of deliverable that we would ever want to deliver. These are the universal dimensions that determine the scope, workflow, and price of any deliverable—regardless of the specific type output. Dimensions are: Brief scope Writing + editing scope Design scope Interview scope Revision (rounds) Scope, essentially, just tells us how many words, graphics, interviews, etc are required for the content we’re creating. In our first crack at the system, we got super granular with these scopes. But to help force a more manageable system, we realized that we didn’t need tiny increments for most of this work. Instead, we just need boundaries—you pay $X for up to Y words. We still need some variability around the scope of these articles. Obviously, most clients won’t be willing to pay the same price for a 1,000-word article as a 10,000-word article. But we can be smarter about the realistic break points. We boiled it down to the most common ranges: (Up to) 250 words 1,000 words 3,000 words 6,000 words 10,000 words This gives us a much more manageable number of variables. But we still haven’t exactly closed the system. We need one final dimension: Deliverable type. This tells us what we’re actually building with these building blocks. This is how we’ll put a cap on the potentially infinite number of combinations we could offer. The deliverable type will define what the final product should look like (e.g., blog post, case study, ebook, etc). And it will also give us a way to put standards and expectations around different types of deliverables that we want to offer. Then we can expand on this list of deliverables to offer new services. In the mean time, only the deliverables that we have already defined are, “on the menu,” so to speak. If a client comes to us and asks for something like a podcast summary article (which we don’t currently offer), we’ll have to either say we can’t provide that work or create a new deliverable type and define the dimensions of that specific piece. But here’s the kicker: No matter the deliverable type, it has to still fit within the scopes we’ve already defined. And the pricing will be the same. This means that if you’re looking for our team to write up to 1,000 words of content, it costs the same amount—whether it’s a blog post, an ebook, a LinkedIn post, or anything else. Rather than trying to retool our entire system to offer this new podcast summary article deliverable, we’ll just create the new deliverable type, add it to the list of options, and it’s ready to sell with the pre-defined dimensions we’ve already identified. To do: Update onboarding workflow Update contracts and scope documents Dial in new briefing process Know Thyself For the last year, I’ve been going through personal therapy. (Huge shout out to my wife, Laura, for her support and encouragement throughout the process.) It’s taught me a lot about myself and my tendencies. It’s helped me find some of my weaknesses and think about how I can improve as a person, as a partner, and as an entrepreneur. And it’s forced me to face a lot of hard truths. For example, consider some of the critical decisions I’ve made for my business: Unconventional freelance “collective” model No formal management structure Open-ended retainers with near-infinite flexibility General contracts without defined scope “Take it or leave it” approach to sales and marketing Over the years, I’ve talked about almost everything on this list as a huge advantage. I saw these things as a reflection of how I wanted to do things differently and better than other companies. But now, I see them more as a reflection of my fears and insecurities. Why did I design my business like this? Why do I want so much “flexibility” and why do I want things left open-ended rather than clearly defined? One reason that could clearly explain it: I’m avoidant. If you’re not steeped in the world of therapy, this basically means that my fight or flight response gets turned all the way to “flight.” If I’m unhappy or uncomfortable, my gut reaction is usually to withdraw from the situation. I see commitment and specificity as a prelude to future conflict. And I avoid conflict whenever possible. So I built my business to minimize it. If I don’t have a specific schedule of work that I’m accountable for delivering, then we can fudge the numbers a bit and hope they even out in the end. If I don’t set a specific standard for the length of an article, then I don’t have to let the client know when their request exceeds that limit. Conflict….avoided? Now, that’s not to say that everything I’ve built was wrong or bad. There is a lot of value in having flexibility in your business. For example, I would say that our flexible retainers are, overall, an advantage. Clients have changing needs. Having flexibility to quickly adapt to those needs can be a huge value add. And not everything can be clearly defined upfront (at least not without a massive amount of time and work just to decide how long to write an article). Overly-rigid structures and processes can be just as problematic as loosey-goosey ones. But, on the whole, I realized that my avoidant tendencies and laissez faire approach to management have left a vacuum in many areas. The places where I avoided specificity were often the places where there was the most confusion, uncertainty, and frustration from the team and from clients. People simply didn’t know what to expect or what was expected of them. Ironically, this often creates the conflict I’m trying to avoid. For example, if I don’t give feedback to people on my team, then they feel uneasy about their work. Or they make assumptions about expectations that don’t match what I’m actually expecting. Then the client might get upset, I might get upset, and our team members may be upset. Conflict definitely not avoided. This happens on the client side, too. If we don’t define a specific timeline when something will be delivered, the client might expect it sooner than we can deliver—creating frustration when we don’t meet their expectation. This conflict actually would have been avoided if we set clearer expectations upfront. But we didn’t do that. I didn’t do that. So it’s time to step up and close the gaps. Stepping Up and Closing the Gaps If I’m going to address these gaps and create more clarity and stability, I have to step up. Both personally and professionally. I have to actually face the fear and uncertainty that drives me to be avoidant. And then apply that to my business in meaningful ways that aren’t cop-out ways of kinda-sorta providing structure without really doing it. I’ve gotta be all in. This means: Fill the gaps where I rely on other people to do things that aren’t really their job but I haven’t put someone in place to do it Set and maintain expectations about our internal work processes, policies, and standards Define clear boundaries on things like roles, timelines, budgets, and scopes Now, this isn’t going to happen overnight. And just because I say that I need to step up to close these gaps doesn’t mean that I need to be the one who’s responsible for them (at least not forever). It just means that, as the business leader, I need to make sure the gaps get filled—by me or by someone else who has been specifically charged with owning that part of the operation. So, this is probably my #1 focus over the coming quarter. And it starts by identifying the gaps that exist. Then, step into those gaps myself, pay someone else to fill that role, or figure out how to eliminate the gap another way. This means going all the way back to the most basic decisions in our business. One of the foundational things about Optimist is being a “different kind” of agency. I always wanted to build something that solved for the bureaucracy, hierarchy, and siloed structure of agencies. If a client has feedback, they should be able to talk directly to the person doing the work rather than going through 3 layers of account management and creative directors. So I tried to be clever. I tried to design all kinds of systems and processes that eliminated these middle rungs. (In retrospect, what I was actually doing was designing a system that played into my avoidant tendencies and made it easy to abdicate responsibility for lots of things.) Since we didn’t want to create hierarchy, we never implemented things like Junior and Senior roles. We never hired someone to manage or direct the individual creatives. We didn’t have Directors or VPs. (Hell, we barely had a project manager for the first several years of existence.) This aversion to hierarchy aligned with our values around elevating ownership and collective contribution. I still believe in the value a flat structure. But a flat structure doesn’t eliminate the complexity of a growing business. No one to review writers and give them 1:1 feedback? I guess I’ll just have to do that….when I have some spare time. No Content Director? Okay, well someone needs to manage our content playbooks and roll out new ones. Just add it to my task list. Our flat structure didn’t eliminate the need for these roles. It just eliminated the people to do them. All of those unfilled roles ultimately fell back on me or our ops person, Katy. Of course, this isn’t the first time we’ve recognized this. We’ve known there were growing holes in our business as it’s gotten bigger and more complex. Over the years, we’ve experimented with different ways to solve for it. The Old Solution: Distributed Ops One system we designed was a “distributed ops” framework. Basically, we had one person who was the head of ops (at the time, we considered anything that was non-client-facing to be “ops”). They’d plan and organize all of the various things that needed to happen around Optimist. Then they’d assign out the work to whoever was able to help. We had a whole system for tying this into the our profit share and even gave people “Partner” status based on their contributions to ops. It worked—kinda. One big downfall is that all of the tasks and projects were ad hoc. People would pick up jobs, but they didn’t have much context or expertise to apply. So the output often varied. Since we were trying to maintain a flat structure, there was minimal oversight or management of the work. In other words, we didn’t always get the best results. But, more importantly, we still didn’t close all of the gaps entirely. Because everything was an ad-hoc list of tasks and projects, we never really had the “big picture” view of everything that needed to be done across the business. This also meant we rarely had clarity on what was important, what was trivial, and what was critical. We need a better system. Stop Reinventing the Wheel (And Create a Damn Org Chart) It’s time to get serious about filling the gaps in our business. It can’t be a half-fix or an ad hoc set of projects and tasks. We need clarity on the roles that need to be filled and then fill them. The first step here is to create an org chart. A real one. Map out all of the jobs that need to be done for Optimist to be successful besides just writers and designers. Roles like: Content director Design director SEO manager Reporting Finance Account management Business development Sales Marketing Project management It feels a bit laughable listing all of these roles. Because most are either empty or have my name attached to them. And that’s the problem. I can’t do everything. And all of the empty roles are gaps in our structure—places where people aren’t getting the direction, feedback, or guidance they need to do their best work. Or where things just aren’t being done consistently. Content director, for example, should be responsible for steering the output of our content strategists, writers, and editors. They’re not micromanaging every deliverable. But they give feedback, set overall policy, and help our team identify opportunities to get better. Right now we don’t have anyone in that role. Which means it’s my job—when I have time. Looking at the org chart (a real org chart that I actually built to help with this), it’s plain as day how many roles look like this. Even if we aren’t going to implement a traditional agency structure and a strict hierarchy, we still need to address these gaps. And the only way for that to happen is face the reality and then create a plan to close the gaps. Now that we have a list of theoretical roles, we need to clearly define the responsibilities and boundaries of those roles to make sure they cover everything that actually needs to happen. Then we can begin the process of delegating, assigning, hiring, and otherwise addressing each one. So that’s what I need to do. To be done: Create job descriptions for all of the roles we need to fill Hire Biz Dev role Hire Account Lead role(s) Hire Head of Content Playing Offense As we move into Q1 of 2025 and I reflect on the tumultuous few years we’ve had, one thought keeps running through my head. We need to play offense. Most of the last 1-2 years was reacting to changes that were happening around us. Trying to make sense and chart a new path forward. Reeling. But what I really want—as a person and as an entrepreneur—is to be proactive. I want to think and plan ahead. Figure out where we want to go before we’re forced to change course by something that’s out of our control. So my overarching focus for Q1 is playing offense. Thinking longer term. Getting ahead of the daily deluge and creating space to be more proactive, innovative, and forward thinking. To do: Pilot new content formats Audit and update our own content strategy Improve feedback workflows Build out long-term roadmap for 1-2 years for Optimist Final Note on Follow-Through and Cadence In my reflection this year, one of the things I’ve realized is how helpful these posts are for me. I process by writing. So I actually end up making a lot of decisions and seeing things more clearly each time I sit down to reflect and write my yearly recap. It also gives me a space to hold myself accountable for the things I said I would do. So, I’m doing two things a bit differently from here on out. First: I’m identifying clear action items that I’m holding myself accountable for getting done in the next 3 months (listed in the above sections). In each future update, I’ll do an accounting of what I got done and what wasn’t finished (and why). Second: I’m going to start writing shorter quarterly updates. This will gives me more chances each year to reflect, process, and make decisions. Plus it gives me a shorter feedback loop for the action items that I identified above. (See—playing offense.) — Okay friends, enemies, and frenemies. This is my first update for 2025. Glad to share with y’all. And thanks to everyone who’s read, commented, reached out, and shared their own experiences over the years. We are all the accumulation of our connections and our experiences. As always, I will pop in to respond to comments and answer questions. Feel free to share your thoughts, questions, and general disdain down below. Cheers, Tyler

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade
reddit
LLM Vibe Score0
Human Vibe Score0.333
Alarming_Management3This week

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade

Hi there, I’ve been running a software development and design agency for the last 10 years, mainly focusing on building custom solutions for businesses and SaaS. For the last 2 years, I’ve consistently recommended that clients use AI technologies, especially for social media and content creation to generate traffic. Funny enough, I wasn’t practicing what I preached. Most of my client projects came from platforms like Upwork and word-of-mouth referrals from clients or people from networking events. Background I started my journey in 2014, switching from an employee to a freelancer. Within the first 10 months, my initial projects grew beyond what I could handle alone, prompting me to hire additional developers. This shift turned my role from a full-stack developer to a team lead and developer. Over the years, my focus has been a blend of tech and product. About five years ago, I realized the importance of design, leading me to adding designers to the agency to provide full-cycle service development—from product ideation and design to development, testing, launch, and support. I still continue to set up dedicated teams for some clients, maintaining a strong technical role as a tech lead, solution architect, and head product designer. To enhance my skills, I even completed UI/UX design courses to offer better product solutions. Despite these changes, building products has always been the easy part. The challenge was ensuring these client products didn’t end up in the graveyard due to poor product-market fit, often caused by inadequate marketing and sales strategies but more often just absence of them. (we are talking about startup and first time founders here 🙂 ) My Journey and Observations Advising Clients: I often found myself advising clients on increasing traffic for their SaaS products and crafting strategic marketing plans. Learning: I’ve gained most of my knowledge from consuming internet materials, courses, and blog posts and learning from successful client project launches. Realization: Despite giving this advice, I wasn’t applying these strategies to my own business, leading to low visits to my agency’s website. Initial Solution: Hiring a Marketer Hiring: I brought in a marketer with a solid background in content creating and interview video editing from an educational organization. Goal: The aim was to increase website visits through a comprehensive marketing strategy. Outcome: Although the content produced was high-quality and useful for pitching services, it didn’t lead to significant traffic increases. Issue: The marketer focused more on content creation rather than distribution channels, which limited effectiveness. Shift to AI-Driven Strategy Experiment: I decided to try using AI for content creation and distribution, which aligns with my agency’s specialization in design-driven development and AI integrations. Implementation plan: I will be generating all content with minimal edits using AI and implementing a strategic backlinking approach. Backlinking Strategy Initial Plan: I initially thought of hiring a specialist for backlinks. Realization: The costs and profiles of freelancers didn’t seem promising. Solution: I found AI-driven services for backlinks, which seem more efficient and cost-effective. Plan: My plan is to use these tools for programmatic SEO-driven AI-generated articles and third-party backlinking services over the next two to three months. Current Approach Management: This approach can be managed and executed by 1 person and monitored weekly, reducing human error and optimizing efficiency. I will start it myself and then replace myself with an editor with managing skills. Reflection: It’s a bit ironic and funny that it took me 10 years to start implementing these strategies in my own agency business, but I now feel more confident with AI and automation in place. Why Increase Website Visitors? You might ask, why do I want to increase the number of visitors to the site, and how can I ensure these visitors will be qualified? Hands-On Experience: To gain hands-on experience and perform this exercise effectively. Introduce Packaged Services: I want to introduce a set of low-cost packaged services tailored for non-technical people who want to build things for themselves - the DIY kits for non-technical folks. These services will provide a foundational template for them to build upon on top of existing established solutions such as Wix, Square Why am I Posting and Sharing Here? You might also wonder, why am I posting it here and sharing this? Well, I'm doing this more for myself. Most of my career, the things I’ve done have been behind the curtains. With this small project, I want to make it public to see the reaction of the community. Perhaps there will be good and smart suggestions offered, and maybe some insights or highlights of tools I wasn’t aware of or didn’t consider. I’ll keep sharing updates on this journey of website promotion, marketing, and SEO. My current goal is to reach 2,000 visits per month, which is a modest start. Looking forward to any thoughts or advice from this community! Disclaimer: This content was not generated by AI, but it was edited by it 😛

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

26 Ways to Make Money as a Startup Founder (for coders & noncoders)
reddit
LLM Vibe Score0
Human Vibe Score1
johnrushxThis week

26 Ways to Make Money as a Startup Founder (for coders & noncoders)

I've launched 24 projects (here is the proof johnrush.me). None of my projects is making millions a month, but many of them make over $1k a month, some do over $10k, and few do even more. I'd not recommend anyone to start by trying to build a unicorn. Better start simple. Aim for $2-4k a month first. Once you get there, either scale it or start a new project with large TAM. From my own experience, the 26 Ways to Make Money as a Startup Founder: One-Feature SaaS. Extract a feature from a popular tool and build a micro SaaS around it. Idea: A SaaS that only offers automated email follow-ups. Launchpads. Develop a launch platform for a specific industry. Idea: A launchpad for growth tools. SEO Tools. Create a tool that focuses on a single aspect of SEO. Idea: A tool that generates alt texts for images. Productized Services. Offer standardized services that are repeatable. Idea: design, coding or social media management. Marketplace Platforms. Create a platform that connects buyers and sellers, earning transaction fees. Idea: An online marketplace for domains. Membership Sites. A subscription-based site with exclusive content. Idea: A founder 0-to-1 site. White Labeling. A product that other businesses can rebrand as their own. Idea: A white-labeled website builder. Selling Data. Provide anonymized data insights to companies. Idea: Selling user behavior data. Affiliate Marketing. Promote products/services and earn commissions on sales. Idea: Recommending hosting services on a tech blog. Selling Leads. Generate and sell business leads. Idea: Selling leads who raised a fresh seed round. Niche Social Networks. Create a paid community around a specific interest. Idea: A network for SEO experts. Sell Domains. Buy and sell domain names for profit. Virtual Products. Sell digital products like templates or graphics. Idea: Website themes for nextjs or boilerplates. On-Demand Services. Build a platform for gigs like delivery or tutoring. Idea: An app for freelance tutors. Niche Job Boards. Start a job board focused on a specific industry. Idea: A job board for remote tech jobs. Crowdsourced Content. Create a user-generated content platform and monetize through ads. Idea: Site to share startup hacks. Buy and Flip Businesses. Purchase underperforming businesses, improve them, and sell for profit. Idea: Acquiring a low-traffic blog, optimizing it, and selling. AI-Powered agents. Develop AI tools that solve specific business problems. Idea: An AI tool that automates customer support. Microservices. Offer small, specialized tools, sdks or APIs. Idea: An api for currency conversion. Influencer Platforms. Create a platform connecting influencers with brands. Idea: Connect AI influencers with AI founders. Niche Directories. Build a paid directory for a specific industry. Idea: A directory of developers who can train models. E-Learning Platforms. Build a platform for educators to sell courses. Idea: A site where AI experts sell AI courses. Virtual assistants. Hire them and sell on subscription. No-Code Tools. Create tools that allow non-technical users to build things. Idea: A no-code website builder for bakeries. Labor arbitrage. Idea: Connect support agents from Portugal with US clients and charge commission.

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade
reddit
LLM Vibe Score0
Human Vibe Score0.333
Alarming_Management3This week

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade

Hi there, I’ve been running a software development and design agency for the last 10 years, mainly focusing on building custom solutions for businesses and SaaS. For the last 2 years, I’ve consistently recommended that clients use AI technologies, especially for social media and content creation to generate traffic. Funny enough, I wasn’t practicing what I preached. Most of my client projects came from platforms like Upwork and word-of-mouth referrals from clients or people from networking events. Background I started my journey in 2014, switching from an employee to a freelancer. Within the first 10 months, my initial projects grew beyond what I could handle alone, prompting me to hire additional developers. This shift turned my role from a full-stack developer to a team lead and developer. Over the years, my focus has been a blend of tech and product. About five years ago, I realized the importance of design, leading me to adding designers to the agency to provide full-cycle service development—from product ideation and design to development, testing, launch, and support. I still continue to set up dedicated teams for some clients, maintaining a strong technical role as a tech lead, solution architect, and head product designer. To enhance my skills, I even completed UI/UX design courses to offer better product solutions. Despite these changes, building products has always been the easy part. The challenge was ensuring these client products didn’t end up in the graveyard due to poor product-market fit, often caused by inadequate marketing and sales strategies but more often just absence of them. (we are talking about startup and first time founders here 🙂 ) My Journey and Observations Advising Clients: I often found myself advising clients on increasing traffic for their SaaS products and crafting strategic marketing plans. Learning: I’ve gained most of my knowledge from consuming internet materials, courses, and blog posts and learning from successful client project launches. Realization: Despite giving this advice, I wasn’t applying these strategies to my own business, leading to low visits to my agency’s website. Initial Solution: Hiring a Marketer Hiring: I brought in a marketer with a solid background in content creating and interview video editing from an educational organization. Goal: The aim was to increase website visits through a comprehensive marketing strategy. Outcome: Although the content produced was high-quality and useful for pitching services, it didn’t lead to significant traffic increases. Issue: The marketer focused more on content creation rather than distribution channels, which limited effectiveness. Shift to AI-Driven Strategy Experiment: I decided to try using AI for content creation and distribution, which aligns with my agency’s specialization in design-driven development and AI integrations. Implementation plan: I will be generating all content with minimal edits using AI and implementing a strategic backlinking approach. Backlinking Strategy Initial Plan: I initially thought of hiring a specialist for backlinks. Realization: The costs and profiles of freelancers didn’t seem promising. Solution: I found AI-driven services for backlinks, which seem more efficient and cost-effective. Plan: My plan is to use these tools for programmatic SEO-driven AI-generated articles and third-party backlinking services over the next two to three months. Current Approach Management: This approach can be managed and executed by 1 person and monitored weekly, reducing human error and optimizing efficiency. I will start it myself and then replace myself with an editor with managing skills. Reflection: It’s a bit ironic and funny that it took me 10 years to start implementing these strategies in my own agency business, but I now feel more confident with AI and automation in place. Why Increase Website Visitors? You might ask, why do I want to increase the number of visitors to the site, and how can I ensure these visitors will be qualified? Hands-On Experience: To gain hands-on experience and perform this exercise effectively. Introduce Packaged Services: I want to introduce a set of low-cost packaged services tailored for non-technical people who want to build things for themselves - the DIY kits for non-technical folks. These services will provide a foundational template for them to build upon on top of existing established solutions such as Wix, Square Why am I Posting and Sharing Here? You might also wonder, why am I posting it here and sharing this? Well, I'm doing this more for myself. Most of my career, the things I’ve done have been behind the curtains. With this small project, I want to make it public to see the reaction of the community. Perhaps there will be good and smart suggestions offered, and maybe some insights or highlights of tools I wasn’t aware of or didn’t consider. I’ll keep sharing updates on this journey of website promotion, marketing, and SEO. My current goal is to reach 2,000 visits per month, which is a modest start. Looking forward to any thoughts or advice from this community! Disclaimer: This content was not generated by AI, but it was edited by it 😛

Seeking co-founder to build LinkedIn’s biggest rival(curated version)
reddit
LLM Vibe Score0
Human Vibe Score1
ItzdreeThis week

Seeking co-founder to build LinkedIn’s biggest rival(curated version)

How do you connect with likeminded people? You see the polished wins everywhere, but what about the messy drafts , the awkward pitches and the moments you’re not sure you’ve got it right? Problem: The whole idea of founding and starting a business can be super intimidating for some people, specially those who don’t know any founders personally, those who don’t have a large network, those who don’t have rich parents with large networks, those not inserted in an entrepreneurial culture like in the US for example (which is my case). Sometimes all you need is the right support network, and too see others do what you want, to know that it’s possible! Everyone has an “ultimate guide” to make 7 figures or build a business on YouTube but NO ONE shoes you the HOW, just the results… I’ve tried joining founder communities, LinkedIn ,Reddit … you name it. Most of these founder communities are inaccessible for regular people and often ask for you to have an already existing business with a min ARR… or their simply geography based and if you’re not in a certain area you can’t really participate… As of LinkedIn… full of empty AI generated posts about how some random dude raised $10m in 7 days. Okay Jonathan, but what about the HOW?? How did you write your first pitch? How many rejection calls did you get? What is an MVP? There simply isn’t a platform out there to document your founding journey and find inspiration within a community of people who are doing the same as you. What better way to feel motivated then to see someone actually document their process? Solution: I’m working on building a social media platform for aspiring/founders to connect through the RAW, UNFILTERED process of turning ideas into reality in REAL time. It’s all gonna be around the “building in public “ concept and content creation. Picture an instagram/tiktok profile where instead of seeing someone’s dog you see them documenting their founding process—from the moment they had the idea, to the moment they launched, you’re going to see the successes, the fails, the rejected calls, all documented through actual content and not some AI generated LinkedIn post. Imagine if you wanted to learn about how Steve Jobs started Apple , you could simply go through his profile on this app—exactly. To make sure all interactions are meaningful people would have to apply. It’s a truly curated community, with REAL people, building REAL things in REAL time, and not just tell us the story of how they did it… Audience: I’m targeting people who have a burning desire of building a business and early stage founders starting their founder journeys, that don’t have a support network and simply don’t know where to start. People who are tired of watching 30 min “ultimate guides “ on how to make it on YouTube from “business gurus” selling courses. People who haven’t reached the min ARR required to join an “exclusive “ founder a community. People who can’t simply just move to the US to get into the “exclusive” YC combinator. People who want to connect with real people building real things and not anonymous people on Reddit, or LinkedIn influencers again trying to promote their services. I believe in the idea because I’m also part of my audience. Have always wanted to start my own thing just never knew how to and where to find a community of likeminded people . I don’t know any founders myself, I come from a non-entrepreneurial society and I’d pay good money to access a community of REAL passionate founders building REAL things, in REAL time. This would be my first ever business, and I want to share my journey building it and hopefully inspire others to just start so I’ve created a mailing list to keep anyone interested in the project updated on my fails , learnings and successes. I’m not worried about “making it” but just “starting” and hopefully reach the right audience and inspire anyone to start whatever they have marinating in their thoughts. If you’re a founder struggling with staying consistent or an aspiring founder with an insane desire of starting and don’t know how to start, I’d love to get your feedback on what’s stopping you, your challenges starting out and what you’d find useful in such platform. And finally would this be something that interests you?? PS: casually looking for a technical co-founder

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security

Uzair Javaid, a Ph.D. with a passion for data privacy, co-founded Betterdata to tackle one of AI's most pressing challenges: protecting privacy while enabling innovation. Recently, Betterdata secured a lucrative contract with the US Department of Homeland Security, 1 of only 4 companies worldwide to do so and the only one in Asia. Here's how he did it: The Story So what's your story? I grew up in Peshawar, Pakistan, excelling in coding despite studying electrical engineering. Inspired by my professors, I set my sights on studying abroad and eventually earned a Ph.D. scholarship at NUS Singapore, specializing in data security and privacy. During my research, I ethically hacked Ethereum and published 15 papers—three times the requirement. While wrapping up my Ph.D., I explored startup ideas and joined Entrepreneur First, where I met Kevin Yee. With his expertise in generative models and mine in privacy, we founded Betterdata. Now, nearly three years in, we’ve secured a major contract with the U.S. Department of Homeland Security—one of only four companies globally and the only one from Asia. The Startup In a nutshell, what does your startup do? Betterdata is a startup that uses AI and synthetic data generation to address two major challenges: data privacy and the scarcity of high-quality data for training AI models. By leveraging generative models and privacy-enhancing technologies, Betterdata enables businesses, such as banks, to use customer data without breaching privacy regulations. The platform trains AI on real data, learns its patterns, and generates synthetic data that mimics the real thing without containing any personal or sensitive information. This allows companies to innovate and develop AI solutions safely and ethically, all while tackling the growing need for diverse, high-quality data in AI development. How did you conduct ideation and validation for your startup? The initial idea for Betterdata came from personal experience. During my Ph.D., I ethically hacked Ethereum’s blockchain, exposing flaws in encryption-based data sharing. This led me to explore AI-driven deep synthesis technology—similar to deepfakes but for structured data privacy. With GDPR impacting 28M+ businesses, I saw a massive opportunity to help enterprises securely share data while staying compliant. To validate the idea, I spoke to 50 potential customers—a number that strikes the right balance. Some say 100, but that’s impractical for early-stage founders. At 50, patterns emerge: if 3 out of 10 mention the same problem, and this repeats across 50, you have 10–15 strong signals, making it a solid foundation for an MVP. Instead of outbound sales, which I dislike, we used three key methods: Account-Based Marketing (ABM)—targeting technically savvy users with solutions for niche problems, like scaling synthetic data for banks. Targeted Content Marketing—regular customer conversations shaped our thought leadership and outreach. Raising Awareness Through Partnerships—collaborating with NUS, Singapore’s PDPC, and Plug and Play to build credibility and educate the market. These strategies attracted serious customers willing to pay, guiding Betterdata’s product development and market fit. How did you approach the initial building and ongoing product development? In the early stages, we built synthetic data generation algorithms and a basic UI for proof-of-concept, using open-source datasets to engage with banks. We quickly learned that banks wouldn't share actual customer data due to privacy concerns, so we had to conduct on-site installations and gather feedback to refine our MVP. Through continuous consultation with customers, we discovered real enterprise data posed challenges, such as missing values, which led us to adapt our prototype accordingly. This iterative approach of listening to customer feedback and observing their usage allowed us to improve our product, enhance UX, and address unmet needs while building trust and loyalty. Working closely with our customers also gives us a data advantage. Our solution’s effectiveness depends on customer data, which we can't fully access, but bridging this knowledge gap gives us a competitive edge. The more customers we test on, the more our algorithms adapt to diverse use cases, making it harder for competitors to replicate our insights. My approach to iteration is simple: focus solely on customer feedback and ignore external noise like trends or advice. The key question for the team is: which customer is asking for this feature or solution? As long as there's a clear answer, we move forward. External influences, such as AI hype, often bring more confusion than clarity. True long-term success comes from solving real customer problems, not chasing trends. Customers may not always know exactly what they want, but they understand their problems. Our job is to identify these problems and solve them in innovative ways. While customers may suggest specific features, we stay focused on solving the core issue rather than just fulfilling their exact requests. The idea aligns with the quote often attributed to Henry Ford: "If I asked people what they wanted, they would have said faster horses." The key is understanding their problems, not just taking requests at face value. How do you assess product-market fit? To assess product-market fit, we track two key metrics: Customers' Willingness to Pay: We measure both the quantity and quality of meetings with potential customers. A high number of meetings with key decision-makers signals genuine interest. At Betterdata, we focused on getting meetings with people in banks and large enterprises to gauge our product's resonance with the target market. How Much Customers Are Willing to Pay: We monitor the price customers are willing to pay, especially in the early stages. For us, large enterprises, like banks, were willing to pay a premium for our synthetic data platform due to the growing need for privacy tech. This feedback guided our product refinement and scaling strategy. By focusing on these metrics, we refined our product and positioned it for scaling. What is your business model? We employ a structured, phase-driven approach for out business model, as a B2B startup. I initially struggled with focusing on the core value proposition in sales, often becoming overly educational. Eventually, we developed a product roadmap with models that allowed us to match customer needs to specific offerings and justify our pricing. Our pricing structure includes project-based pilots and annual contracts for successful deployments. At Betterdata, our customer engagement unfolds across three phases: Phase 1: Trial and Benchmarking \- We start with outreach and use open-source datasets to showcase results, offering customers a trial period to evaluate the solution. Phase 2: Pilot or PoC \- After positive trial results, we conduct a PoC or pilot using the customer’s private data, with the understanding that successful pilots lead to an annual contract. Phase 3: Multi-Year Contracts \- Following a successful pilot, we transition to long-term commercial contracts, focusing on multi-year agreements to ensure stability and ongoing partnerships. How do you do marketing for your brand? We take a non-conventional approach to marketing, focusing on answering one key question: Which customers are willing to pay, and how much? This drives our messaging to show how our solution meets their needs. Our strategy centers around two main components: Building a network of lead magnets \- These are influential figures like senior advisors, thought leaders, and strategic partners. Engaging with institutions like IMDA, SUTD, and investors like Plug and Play helps us gain access to the right people and foster warm introductions, which shorten our sales cycle and ensure we’re reaching the right audience. Thought leadership \- We build our brand through customer traction, technology evidence, and regulatory guidelines. This helps us establish credibility in the market and position ourselves as trusted leaders in our field. This holistic approach has enabled us to navigate diverse market conditions in Asia and grow our B2B relationships. By focusing on these areas, we drive business growth and establish strong trust with stakeholders. What's your advice for fundraising? Here are my key takeaways for other founders when it comes to fundraising: Fundraise When You Don’t Need To We closed our seed round in April 2023, a time when we weren't actively raising. Founders should always be in fundraising mode, even when they're not immediately in need of capital. Don’t wait until you have only a few months of runway left. Keep the pipeline open and build relationships. When the timing is right, execution becomes much easier. For us, our investment came through a combination of referrals and inbound interest. Even our lead investor initially rejected us, but after re-engaging, things eventually fell into place. It’s crucial to stay humble, treat everyone with respect, and maintain those relationships for when the time is right. Be Mindful of How You Present Information When fundraising, how you present information matters a lot. We created a comprehensive, easily digestible investment memo, hosted on Notion, which included everything an investor might need—problem, solution, market, team, risks, opportunities, and data. The goal was for investors to be able to get the full picture within 30 minutes without chasing down extra details. We also focused on making our financial model clear and meaningful, even though a 5-year forecast might be overkill at the seed stage. The key was clarity and conciseness, and making it as easy as possible for investors to understand the opportunity. I learned that brevity and simplicity are often the best ways to make a memorable impact. For the pitch itself, keep it simple and focus on 4 things: problem, solution, team, and market. If you can summarize each of these clearly and concisely, you’ll have a compelling pitch. Later on, you can expand into market segments, traction, and other metrics, but for seed-stage, focus on those four areas, and make sure you’re strong in at least three of them. If you do, you'll have a compelling case. How do you run things day-to-day? i.e what's your operational workflow and team structure? Here's an overview of our team structure and process: Internally: Our team is divided into two main areas: backend (internal team) and frontend (market-facing team). There's no formal hierarchy within the backend team. We all operate as equals, defining our goals based on what needs to be developed, assigning tasks, and meeting weekly to share updates and review progress. The focus is on full ownership of tasks and accountability for getting things done. I also contribute to product development, identifying challenges and clearing obstacles to help the team move forward. Backend Team: We approach tasks based on the scope defined by customers, with no blame or hierarchy. It's like a sports team—sometimes someone excels, and other times they struggle, but we support each other and move forward together. Everyone has the creative freedom to work in the way that suits them best, but we establish regular meetings and check-ins to ensure alignment and progress. Frontend Team: For the market-facing side, we implement a hierarchy because the market expects this structure. If I present myself as "CEO," it signals authority and credibility. This distinction affects how we communicate with the market and how we build our brand. The frontend team is split into four main areas: Business Product (Software Engineering) Machine Learning Engineering R&D The C-suite sits at the top, followed by team leads, and then the executors. We distill market expectations into actionable tasks, ensuring that everyone is clear on their role and responsibilities. Process: We start by receiving market expectations and defining tasks based on them. Tasks are assigned to relevant teams, and execution happens with no communication barriers between team members. This ensures seamless collaboration and focused execution. The main goal is always effectiveness—getting things done efficiently while maintaining flexibility in how individuals approach their work. In both teams, there's an emphasis on accountability, collaboration, and clear communication, but the structure varies according to the nature of the work and external expectations.

Where Do I Find Like-Minded, Unorthodox Co-founders? [Tech]
reddit
LLM Vibe Score0
Human Vibe Score0.6
madscholarThis week

Where Do I Find Like-Minded, Unorthodox Co-founders? [Tech]

After more than 20 years in the tech industry I'm pretty fed up. I've been at it non-stop, so the burnout was building up for a while. Eventually, it's gotten so bad that it was no longer a question whether I need to take a break; I knew that I had to, for the sake of myself and loved ones. A few months ago I quit my well-paying, mid-level mgmt job to have some much-needed respite. I can't say that I've fully recovered, but I'm doing a bit better, so I'm starting to think about what's next. That said, the thoughts of going back into the rat race fill me with dread and anxiety. I've had an interesting career - I spent most of it in startups doing various roles from an SWE to a VP Eng, including having my own startup adventures for a couple of years. The last 4.5 years of my career have been in one of the fastest growing tech companies - it was a great learning experience, but also incredibly stressful, toxic and demoralizing. It's clear to me that I'm not cut out for the corporate world -- the ethos contradicts with my personality and beliefs -- but it's not just. I've accumulated "emotional scars" from practically every place I worked at and it made me loathe the industry to the degree that if I ever have another startup, it'd have to be by my own -- unorthodox -- ideals, even if it means a premature death due to lack of funding. I was young, stupid and overly confident when I had my first startup. I tried to do it "by the book" and dance to the tune of investors. While my startup failed for other, unrelated reasons, it gave me an opportunity to peak behind the curtain, experience the power dynamics, and get a better understanding to how the game is played - VCs and other person of interest have popularized the misconception that if a company doesn't scale, it would stagnate and eventually regress and die. This is nonsense. This narrative was created because it would make the capitalist pigs obsolete - they need companies to go through the entire alphabet before forcing them to sell or IPO. The sad reality is that the most entrepreneurs still believe in this paradigm and fall into the VC's honeypot traps. It's true that many businesses cannot bootstrap or scale without VC money, but it's equally true that far too many companies pivot/scale prematurely (and enshitify their product in the process) due to external pressures fueled by pure greed. This has a top-bottom effect - enshitification doesn't only effect users, but it also heavily effects the processes and structrures of companies, which can explain why the average tenure in tech is only \~2 years. I think that we live in an age where self-starting startups are more feasible than ever. It's not just the rise of AI and automation, but also the plethora of tools, services, and open-source projects that are available to all for free. On the one hand, this is fantastic, but on the other, the low barrier-to-entry creates oversaturation of companies which makes research & discovery incredibly hard - it is overwhelming to keep up with the pace and distill the signal from the noise, and there's a LOT of noise - there's not enough metaphorical real-estate for the graveyard of startups that will be defunct in the very near future. I'd like to experiment with startups again, but I don't want to navigate through this complex mine field all by myself - I want to find a like-minded co-founder who shares the same ideals as I do. It goes without saying that being on the same page isn't enough - I also want someone who's experienced, intelligent, creative, productive, well-rounded, etc. At the moment, I don't have anyone in my professional network who has/wants what it takes. I can look into startup bootcamps/accelerators like YC et al., and sure enough, I'll find talented individuals, but it'd be a mismatch from the get-go. For shits and giggles, this is (very roughly) how I envision the ideal company: Excellent work life balance: the goal is not to make a quick exit, become filthy rich, and turn into a self-absorbed asshole bragging about how they got so succesful. The goal is to generate a steady revenue stream while not succumbing to social norms that encourage greed. The entire purpose is to reach humble financial indepedence while maintaining a stress-free (as one possibly can) work environment. QOL should always be considered before ARR. Bootstraping: no external money. Not now, not later. No quid pro quo. No shady professionals or advisors. Company makes it or dies trying. Finances: very conservative to begin with - the idea is to play it safe and build a long fucking runaway before hiring. Spend every penny mindfully and frugally. Growth shouldn't be too quick & reckless. The business will be extremely efficient in spending. The only exception to the rule is crucial infrastructure and wages to hire top talent and keep salaries competitive and fair. Hiring: fully remote. Global presence, where applicable. Headcount will be limited to the absolute bare minimum. The goal is to run with a skeleton crew of the best generalists out there - bright, self-sufficient, highly motivated, autodidact, and creative individuals. Hiring the right people is everything and should be the company's top priority. Compensation & Perks: transperent and fair, incentivizing exceptional performance with revenue sharing bonuses. The rest is your typical best-in-class perks: top tier health/dental/vision insurance, generous PTO with mandatory required minimum, parental leave, mental wellness, etc. Process: processes will be extremely efficient, automated to the max, documented, unbloated, and data-driven through and through. Internal knowledge & data metrics will be accessible and transparent to all. Employees get full autonomy of their respective areas and are fully in charge of how they spend their days as long as they have agreed-upon, coherent, measurable metrics of success. Meetings will be reduced to the absolute minimum and would have to be justified and actionable - the ideal is that most communications will be done in written form, while face-to-face will be reserved for presentations/socializing. I like the Kaizen philosophy to continuously improve and optimize processes. Product: As previously stated, "data-driven through and through". Mindful approach to understand cost/benefit. Deliberate and measured atomic improvements to avoid feature creep and slow down the inevitable entropy. Most importantly, client input should be treated with the utmost attention but should never be the main driver for the product roadmap. This is a very controversial take, but sometimes it's better to lose a paying customer than to cave to their distracting/unreasonable/time-consuming demands. People Culture: ironicaly, this would be what most companies claim to have, but for realsies. Collaborative, open, blameless environment. People are treated like actual grown ups with flat structure, full autonomy, and unwavering trust. Socializing and bonding is highly encourged, but never required. Creativity and ingenuity is highly valued - people are encouraged to work on side projects one day of the week. Values: I can write a lot about it, but it really boils down to being kind and humble. We all know what happened with "don't be evil". It's incredibly hard to retain values over time, esp. when there are opposing views within a company. I don't know how to solve it, but I believe that there should be some (tried and true) internal checks & balances from the get go to ensure things are on track. I never mentioned what this hypothetical startup does. Sure, there's another very relevant layer of domain experience fit, but this mindset allows one to be a bit more fluid because the goal is not to disrupt an industry or "make the world a better place"; it's to see work for what it truly is - a mean to an end. It's far more important for me to align with a co-founder on these topics than on an actual idea or technical details. Pivoting and rebranding are so common that many VCs outweigh the make up and chemistry of the founding team (and their ability to execute) over the feasibility of their ideas.  To wrap this long-winded post, I'm not naive or disillusioned - utopias aren't real and profitable companies who operate at a 70-80% rate of what I propose are the real unicorns, but despite them being a tiny minority, I think they are the real forward thinkers of the industry. I might be wrong, but I hope that I'm right and that more and more startups will opt towards long-term sustainability over the promise of short-term gains because the status quo really stinks for most people. What do you folks think? Does anyone relate? Where can I find others like me? P.S I thought about starting a blog writing about these topics in length (everything that is wrong with tech & what can be done to improve it), but I have the Impostor Syndrom and I'm too self-conscious about how I come off. If you somehow enjoyed reading through that and would love to hear more of my thoughts and experiences in greater detail, please let me know. P.P.S If you have a company that is close to what I'm describing and you're hiring, let me know!

Why the value of writing code and other digital services is going to zero
reddit
LLM Vibe Score0
Human Vibe Score1
BalloonWheelieThis week

Why the value of writing code and other digital services is going to zero

I must preface this with a trigger warning because I make some statements in this post that might be upsetting to some. This post discusses my experience building in the new era of entrepreneurship, which is one where the founder is the center of the universe, and the consultants, overpriced SaaS, and corporate swamp creatures are replaced by single-user custom software, bots, and self-hosted automations. If you work in the legacy economy, I really don't intend to stress you out or say things you are doing are quickly becoming irrelevant, but I must share the reality of how I am operating, because I would like to hear from others who are doing the same, or desire to do the same. I am currently operating with the belief that AI-powered tools are going to make 1-person million dollar businesses much more common. Building anything digital is becoming extremely easy, cheap, and quick to implement. The value of code and digital tools is approaching zero, or at most 5% of what it currently is. Right now, the most powerful AI tools are aimed at developers, so folks who have some technical and business ability basically have nothing holding them back aside from the speed of their brain right now. I happen to be a part of the cohort, and am building like there is no tomorrow, but I don't believe this cohort is actually all that big. The next hurdle to unlock the new era of entrepreneurship is empowering every entrepreneur to build at the same pace that is currently locked behind having technical ability. This cohort is huge (millions, if the number of people in this sub is any indication). This post is aimed at them (you?). If you are part of this cohort, what is holding you back from launching a new product for near-zero cost? What is too complicated, too expensive, too unknown for you to be able to build your new/current business at maximum speed? I look forward to seeing the replies, I hope some insights shared can help the community, and be a catalyst for more tools to enable non-technical founders to launch. I will now share some of how I am testing, launching, and selling as a one-man-show. This will be a little bit technical, but if the output of any layer of my stack is something you want, please comment because maybe someone will build a cheap way of accessing it without needing to manage the code yourself. \#1 BOTS I cannot overstate how much leverage bots have created for me. I run all of my bots locally and interface with with via Telegram. Bots do things like: \- watch social media pages, forums, subreddits, etc related to my customers and notify me of what is going on, and suggest SEO blog posts that could be published to capture traffic related to the topic. with a single message, my bot will generate a blog post, send it to me for review, apply edits i suggest, and then publish it live, all from within telegram \- pay attention to all my key metrics/analytics, and attempt to find insights/corrolations (ex. there is a lot of traffic on this page, blog post, video, etc. here's why, and how we can take advantage of it to drive business goals) \- repurposing content. i have dozens of social media profiles that are 100% run by bots, they are all related to my customer niches and will do things like post news, snippets from my blogs, interact with human creators in the niche, etc. this builds my audience automatically which I can then advertise to/try to convert into paying customers, since they are interested in the things my bot is posting and become followers, it's like automated qualified lead gen 24/7 across every social platform and every niche I care about. you may be thinking by now that this post is made by a bot, but you will have to trust me that this is 100% hand-written by my sleep-deprived brain. let's continue: \#2 replacing every SaaS with a shitty version of it designed for what i need out of it it's absurd that we pay ten's of dollars per seat per month for basic digital functions like chat (slack), CRM (active camppaign, sales force, hubspot, etc), email stuff (mailchip, etc), link sharing (linktree, etc), website builders (wix, squarespace, etc), etc. all of these SaaS tools are overpriced and overbuilt. I believe many of them are going to be caught in the innovators dilemma and will go to 0. I don't use any of these anymore, I build and self-host my own shitty version of each of them that does only what i need out of the tool. for example, my CRM doesn't have a fancy drag and drop email builder and 10000 3rd party plugins, because i dont need any of that shit I just need to segment and communicate with my customers. if i need more features, i can generate them on the fly. \#3 working alone I have worked with cofounders in the past, raised money from investors, hired consultants, burned money and time, suffered sleepless nights from stress caused by other people not delivering, trying to convince others they are wrong, or they are pushing the company off a cliff, waste waste waste. no more of that. In the new age of entrepreneurship, the BUILDER (you and I) are the ones creating the value, and AI empowers us to do it alone. this might seem daunting, but there is no business problem that can't be solved with a detailed discussion sesh with chatgpt, no facts that can't be found with perplexity, and no task that can't be automated with claude. there is no need for anymore swamp creatures. you are the start and the end point, you don't need to rely on anyone else for anything. this may sound ignorant, but this is the conclusion I have come to believe, and it continues to be proven every day my businesses progress with me being the only human involved. This is getting quite long so I'll cut it here. I look forward to hearing about how you are operating in this new era and hopefully getting inspired/learning some new ideas to add to my current stack.

I Watched My Startup Slowly Dying Over Two Years: Mistakes and Lessons Learned
reddit
LLM Vibe Score0
Human Vibe Score0.429
Personal-Expression3This week

I Watched My Startup Slowly Dying Over Two Years: Mistakes and Lessons Learned

If you are tired of reading successful stories, you may want to listen to my almost failure story. Last year in April, I went full-time on my startup. Nearly two years later, I’ve seen my product gradually dying. I want to share some of the key mistakes I made and the lessons I’ve taken from them so you don't have to go through them. Some mistakes were very obvious in hindsight; others, I’m still not sure if they were mistakes or just bad luck. I’d love to hear your thoughts and advice as well. Background I built an English-learning app, with both web and mobile versions. The idea came from recognizing how expensive it is to hire an English tutor in most countries, especially for practicing speaking skills. With the rise of AI, I saw an opportunity in the education space. My target market was Japan, though I later added support for multiple languages and picked up some users from Indonesia and some Latin American countries too. Most of my users came from influencer marketing on Twitter. The MVP for the web version launched in Japan and got great feedback. People were reposting it on Twitter, and growth was at its peak in the first few weeks. After verifying the requirement with the MVP, I decided to focus on the mobile app to boost user retention, but for various reasons, the mobile version didn’t launch until December 2023— 8 months after the web version. Most of this year has been spent iterating on the mobile app, but it didn’t make much of an impact in the end. Key Events and Lessons Learned Here are some takeaways: Find co-founders as committed as you are I started with two co-founders—both were tech people and working Part-Time. After the web version launched, one dropped out due to family issues. Unfortunately, we didn’t set clear rules for equity allocation, so even after leaving, they still retained part of the equity. The other co-founder also effectively dropped out this year, contributing only minor fixes here and there. So If you’re starting a company with co-founders, make sure they’re as committed as you are. Otherwise, you might be better off going solo. I ended up teaching myself programming with AI tools, starting with Flutter and eventually handling both front-end and back-end work using Windsurf. With dev tools getting more advanced, being a solo developer is becoming a more viable option. Also, have crystal-clear rules for equity—especially around what happens if someone leaves. Outsourcing Pitfalls Outsourcing development was one of my biggest mistakes. I initially hired a former colleague from India to build the app. He dragged the project on for two months with endless excuses, and the final output was unusable. Then I hired a company, but they didn’t have enough skilled Flutter developers. The company’s owner scrambled to find people, which led to rushed work and poor-quality code which took a lot of time revising myself. Outsourcing is a minefield. If you must do it, break the project into small tasks, set clear milestones, and review progress frequently. Catching issues early can save you time and money. Otherwise, you’re often better off learning the tools yourself—modern dev tools are surprisingly beginner-friendly. Trust, but Verify I have a bad habit of trusting people too easily. I don’t like spending time double-checking things, so I tend to assume people will do what they say they’ll do. This mindset is dangerous in a startup. For example, if I had set up milestones and regularly verified the progress of my first outsourced project, I would’ve realized something was wrong within two weeks instead of two months. That would’ve saved me a lot of time and frustration. Like what I mentioned above, set up systems to verify their work—milestones, deliverables, etc.—to minimize risk. Avoid red ocean if you are small My team was tiny (or non-existent, depending on how you see it), with no technical edge. Yet, I chose to enter Japan’s English-learning market, which is incredibly competitive. It’s a red ocean, dominated by big players who’ve been in the game for years. Initially, my product’s AI-powered speaking practice and automatic grammar correction stood out, but within months, competitors rolled out similar features. Looking back, I should’ve gone all-in on marketing during the initial hype and focused on rapidly launching the mobile app. But hindsight is 20/20. 'Understanding your user' helps but what if it's not what you want? I thought I was pretty good at collecting user feedback. I added feedback buttons everywhere in the app and made changes based on what users said. But most of these changes were incremental improvements—not the kind of big updates that spark excitement. Also, my primary users were from Japan and Indonesia, but I’m neither Japanese nor Indonesian. That made it hard to connect with users on social media in an authentic way. And in my opinion, AI translations can only go so far—they lack the human touch and cultural nuance that builds trust. But honestly I'm not sure if the thought is correct to assume that they will not get touched if they recognize you are a foreigner...... Many of my Japanese users were working professionals preparing for the TOEIC exam. I didn’t design any features specifically for that; instead, I aimed to build a general-purpose English-learning tool since I dream to expand it to other markets someday. While there’s nothing wrong with this idealistic approach, it didn’t give users enough reasons to pay for the app. Should You Go Full-Time? From what I read, a lot of successful indie developers started part-time, building traction before quitting their jobs. But for me, I jumped straight into full-time mode, which worked for my lifestyle but might’ve hurt my productivity. I value work-life balance and refused to sacrifice everything for the startup. The reason I chose to leave the corp is I want to escape the 996 toxic working environment in China's internet companies. So even during my most stressful periods, I made time to watch TV with my partner and take weekends off. Anyways, if you’re also building something or thinking about starting a business, I hope my story helps. If I have other thoughts later, I will add them too. Appreciate any advice.

101 best SEO tips to help you drive traffic in 2k21
reddit
LLM Vibe Score0
Human Vibe Score0.543
DrJigsawThis week

101 best SEO tips to help you drive traffic in 2k21

Hey guys! I don't have to tell you how SEO can be good for your business - you can drive leads to your SaaS on autopilot, drive traffic to your store/gym/bar/whatever, etc. The thing with SEO, though, is that most SEO tips on the internet are just not that good. Most of the said tips: Are way too simple & basic (“add meta descriptions to your images”*) Are not impactful. Sure, adding that meta tag to an image is important, but that’s not what’s going to drive traffic to your website Don’t talk much about SEO strategy (which is ultimately the most important thing for SEO). Sure, on-page SEO is great, but you sure as hell won't drive much traffic if you can't hire the right writers to scale your content. And to drive serious SEO traffic, you'll need a LOT more than that. Over the past few years, my and my co-founder have helped grow websites to over 200k+ monthly traffic (check out our older Reddit post if you want to learn more about us, our process, and what we do), and we compiled all our most important SEO tips and tricks, as well as case studies, research, and experiments from the web, into this article. Hope you like it ;) If you think we missed something super important, let us know and we'll add it to the list. And btw, we also published this article on our own blog with images, smart filters, and all that good stuff. If you want to check it out, click here. That said, grab some coffee (or beer) & let's dive in - this is going to be a long one. SEO Strategy Tips Tip #1. A Lot of SEO Tips On The Internet Are NOT Necessarily Factual A lot of the SEO content you’ll read on the internet will be based on personal experiences and hearsay. Unfortunately, Google is a bit vague about SEO advice, so you have to rely more on experiments conducted by SEO pros in the community. So, sometimes, a lot of this information is questionable, wrong, or simply based on inaccurate data.  What we’re getting at here is, whenever you hear some new SEO advice, take it with a grain of salt. Google it to double-check other sources, and really understand what this SEO advice is based on (instead of just taking it at face value). Tip #2. SEO Takes Time - Get Used to It Any way you spin it, SEO takes time.  It can take around 6 months to 2 years (depending on the competition in your niche) before you start seeing some serious results.  So, don’t get disappointed if you don’t see any results within 3 months of publishing content. Tip #3. SEO Isn’t The Best Channel for Everyone That said, if you need results for your business tomorrow, you might want to reconsider SEO altogether.  If you just started your business, for example, and are trying to get to break-even ASAP, SEO is a bad idea - you’ll quit before you even start seeing any results.  If that’s the case, focus on other marketing channels that can have faster results like content marketing, PPC, outreach, etc. Tip #4. Use PPC to Validate Keywords Not sure if SEO is right for your business? Do this: set up Google Search ads for the most high-intent keywords in your niche. See how well the traffic converts and then decide if it’s worthwhile to focus on SEO (and rank on these keywords organically). Tip #5. Use GSC to See If SEO Is Working While it takes a while to see SEO results, it IS possible to see if you’re going in the right direction. On a monthly basis, you can use Search Console to check if your articles are indexed by Google and if their average position is improving over time. Tip #6. Publish a TON of Content The more content you publish on your blog, the better. We recommend a minimum of 10,000 words per month and optimally 20,000 - 30,000 (especially if your website is fresh). If an agency offers you the typical “4 500-word articles per month” deal, stay away. No one’s ever gotten results in SEO with short, once-per-week articles. Tip #7. Upgrade Your Writers Got a writer that’s performing well? Hire them as an editor and get them to oversee content operations / edit other writers’ content. Then, upgrade your best editor to Head of Content and get them to manage the entire editor / writer ops. Tip #8. Use Backlink Data to Prioritize Content When doing keyword research, gather the backlink data of the top 3 ranking articles and add it to your sheet. Then, use this data to help you prioritize which keywords to focus on first. We usually prioritize keywords that have lower competition, high traffic, and a medium to high buyer intent. Tip #9. Conduct In-Depth Keyword Research Make your initial keyword research as comprehensive as possible. This will give you a much more realistic view of your niche and allow you to prioritize content the right way. We usually aim for 100 to 300 keywords (depending on the niche) for the initial keyword research when we start working with a client. Tip #10. Start With Competitive Analysis Start every keyword research with competitive analysis. Extract the keywords your top 3 competitors are ranking on.  Then, use them as inspiration and build upon it. Use tools like UberSuggest to help generate new keyword ideas. Tip #11. Get SEMrush of Ahrefs You NEED SEMrush or Ahrefs, there’s no doubt about it. While they might seem expensive at a glance (99 USD per month billed annually), they’re going to save you a lot of manpower doing menial SEO tasks. Tip #12. Don’t Overdo It With SEO Tools Don’t overdo it with SEO tools. There are hundreds of those out there, and if you’re the type that’s into SaaS, you might be tempted to play around with dozens at a time. And yes, to be fair, most of these tools ARE helpful one way or another. To effectively do organic SEO, though, you don’t really need that many tools. In most cases, you just need the following: SEMrush/Ahrefs Screaming Frog RankMath/Yoast SEO Whichever outreach tool you prefer (our favorite is snov.io). Tip #13. Try Some of the Optional Tools In addition to the tools we mentioned before, you can also try the following 2 which are pretty useful & popular in the SEO community: Surfer SEO - helps with on-page SEO and creating content briefs for writers. ClusterAI - tool that helps simplify keyword research & save time. Tip #14. Constantly Source Writers Want to take your content production to the next level? You’ll need to hire more writers.  There is, however, one thing that makes this really, really difficult: 95 - 99% of writers applying for your gigs won’t be relevant. Up to 80% will be awful at writing, and the remainder just won’t be relevant for your niche. So, in order to scale your writing team, we recommend sourcing constantly, and not just once every few months. Tip #15. Create a Process for Writer Filtering As we just mentioned, when sourcing writers, you’ll be getting a ton of applicants, but most won’t be qualified. Fun fact \- every single time we post a job ad on ProBlogger, we get around 300 - 500 applications (most of which are totally not relevant). Trust us, you don’t want to spend your time going through such a huge list and checking out the writer samples. So, instead, we recommend you do this: Hire a virtual assistant to own the process of evaluating and short-listing writers. Create a process for evaluating writers. We recommend evaluating writers by: Level of English. If their samples aren’t fluent, they’re not relevant. Quality of Samples. Are the samples engaging / long-form content, or are they boring 500-word copy-pastes? Technical Knowledge. Has the writer written about a hard-to-explain topic before? Anyone can write about simple topics like traveling - you want to look for someone who knows how to research a new topic and explain it in a simple and easy to read way. If someone’s written about how to create a perfect cover letter, they can probably write about traveling, but the opposite isn’t true. The VA constantly evaluates new applicants and forwards the relevant ones to the editor. The editor goes through the short-listed writers and gives them trial tasks and hires the ones that perform well. Tip #16. Use The Right Websites to Source Writers “Is UpWork any good?” This question pops up on social media time and time again. If you ask us, no, UpWork is not good at all. Of course, there are qualified writers there (just like anywhere else), but from our experience, those writers are few and far in-between. Instead, here are some of our favorite ways to source writers: Cult of Copy Job Board ProBlogger Headhunting on LinkedIn If you really want to use UpWork, use it for headhunting (instead of posting a job ad) Tip #17. Hire Writers the Right Way If you want to seriously scale your content production, hire your writers full-time. This (especially) makes sense if you’re a content marketing agency that creates a TON of content for clients all the time. If you’re doing SEO just for your own blog, though, it usually makes more sense to use freelancers. Tip #18. Topic Authority Matters Google keeps your website's authoritativeness in mind. Meaning, if you have 100 articles on digital marketing, you’re probably more of an authority on the topic than someone that has just 10. Hence, Google is a lot more likely to reward you with better rankings. This is also partially why content volume really matters: the more frequently you publish content, the sooner Google will view you as an authority. Tip #19. Focus on One Niche at a Time Let’s say your blog covers the following topics: sales, accounting, and business management.  You’re more likely to rank if you have 30 articles on a single topic (e.g. accounting) than if you have 10 articles on each. So, we recommend you double-down on one niche instead of spreading your content team thin with different topics. Tip #20. Don’t Fret on the Details While technical SEO is important, you shouldn’t get too hung up on it.  Sure, there are thousands of technical tips you can find on the internet, and most of them DO matter. The truth, though, is that Google won’t punish you just because your website doesn’t load in 3 milliseconds or there’s a meta description missing on a single page. Especially if you have SEO fundamentals done right: Get your website to run as fast as possible. Create a ton of good SEO content. Get backlinks for your website on a regular basis. You’ll still rank, even if your website isn’t 100% optimized. Tip #21. Do Yourself a Favor and Hire a VA There are a TON of boring SEO tasks that your team should really not be wasting time with. So, hire a full-time VA to help with all that. Some tasks you want to outsource include gathering contacts to reach out to for link-building, uploading articles on WordPress, etc. Tip #22. Google Isn’t Everything While Google IS the dominant search engine in most parts of the world, there ARE countries with other popular search engines.  If you want to improve your SEO in China, for example, you should be more concerned with ranking on Baidu. Targeting Russia? Focus on Yandex. Tip #23. No, Voice Search is Still Not Relevant Voice search is not and will not be relevant (no matter what sensationalist articles might say). It’s just too impractical for most search queries to use voice (as opposed to traditional search). Tip #24. SEO Is Not Dead SEO is not dead and will still be relevant decades down the line. Every year, there’s a sensationalist article talking about this.  Ignore those. Tip #25. Doing Local SEO? Focus on Service Pages If you’re doing local SEO, focus on creating service-based landing pages instead of content.  E.g. if you’re an accounting firm based in Boston, you can make a landing page about /accounting-firm-boston/, /tax-accounting-boston/, /cpa-boston/, and so on. Thing is, you don’t really need to rank on global search terms - you just won’t get leads from there. Even if you ranked on the term “financial accounting,” it wouldn’t really matter for your bottom line that much. Tip #26. Learn More on Local SEO Speaking of local SEO, we definitely don’t do the topic justice in this guide. There’s a lot more you need to know to do local SEO effectively and some of it goes against the general SEO advice we talk about in this article (e.g. you don't necessarily need blog content for local SEO). We're going to publish an article on that soon enough, so if you want to check it out, DM me and I'll hit you up when it's up. Tip #27. Avoid Vanity Metrics Don’t get side-tracked by vanity metrics.  At the end of the day, you should care about how your traffic impacts your bottom line. Fat graphs and lots of traffic are nice and all, but none of it matters if the traffic doesn’t have the right search intent to convert to your product/service. Tip #28. Struggling With SEO? Hire an Expert Failing to make SEO work for your business? When in doubt, hire an organic SEO consultant or an SEO agency.  The #1 benefit of hiring an SEO agency or consultant is that they’ve been there and done that - more than once. They might be able to catch issues an inexperienced SEO can’t. Tip #29. Engage With the Community Need a couple of SEO questions answered?  SEO pros are super helpful & easy to reach! Join these Facebook groups and ask your question - you’ll get about a dozen helpful answers! SEO Signals Lab SEO & Content Marketing The Proper SEO Group. Tip #30. Stay Up to Date With SEO Trends SEO is always changing - Google is constantly pumping out new updates that have a significant impact on how the game is played.  Make sure to stay up to date with the latest SEO trends and Google updates by following the Google Search Central blog. Tip #31. Increase Organic CTR With PPC Want to get the most out of your rankings? Run PPC ads for your best keywords. Googlers who first see your ad are more likely to click your organic listing. Content & On-Page SEO Tips Tip #32. Create 50% Longer Content On average, we recommend you create an article that’s around 50% longer than the best article ranking on the keyword.  One small exception, though, is if you’re in a super competitive niche and all top-ranking articles are already as comprehensive as they can be. For example, in the VPN niche, all articles ranking for the keyword “best VPN” are around 10,000 - 11,000 words long. And that’s the optimal word count - even if you go beyond, you won’t be able to deliver that much value for the reader to make it worth the effort of creating the content. Tip #33. Longer Is Not Always Better Sometimes, a short-form article can get the job done much better.  For example, let’s say you’re targeting the keyword “how to tie a tie.”  The reader expects a short and simple guide, something under 500 words, and not “The Ultimate Guide to Tie Tying for 2021 \[11 Best Tips and Tricks\]” Tip #34. SEO is Not Just About Written Content Written content is not always best. Sometimes, videos can perform significantly better. E.g. If the Googler is looking to learn how to get a deadlift form right, they’re most likely going to be looking for a video. Tip #35. Don’t Forget to Follow Basic Optimization Tips For all your web pages (articles included), follow basic SEO optimization tips. E.g. include the keyword in the URL, use the right headings etc.  Just use RankMath or YoastSEO for this and you’re in the clear! Tip #36. Hire Specialized Writers When hiring content writers, try to look for ones that specialize in creating SEO content.  There are a LOT of writers on the internet, plenty of which are really good.  However, if they haven’t written SEO content before, chances are, they won’t do that good of a job. Tip #37. Use Content Outlines Speaking of writers - when working with writers, create a content outline that summarizes what the article should be about and what kind of topics it needs to cover instead of giving them a keyword and asking them to “knock themselves out.”   This makes it a lot more likely for the writer to create something that ranks. When creating content outlines, we recommend you include the following information: Target keyword Related keywords that should be mentioned in the article Article structure - which headings should the writer use? In what order? Article title Tip #38. Find Writers With Niche Knowledge Try to find a SEO content writer with some experience or past knowledge about your niche. Otherwise, they’re going to take around a month or two to become an expert. Alternatively, if you’re having difficulty finding a writer with niche knowledge, try to find someone with experience in technical or hard to explain topics. Writers who’ve written about cybersecurity in the past, for example, are a lot more likely to successfully cover other complicated topics (as opposed to, for example, a food or travel blogger). Tip #39. Keep Your Audience’s Knowledge in Mind When creating SEO content, always keep your audience’s knowledge in mind. If you’re writing about advanced finance, for example, you don’t need to teach your reader what an income statement is. If you’re writing about income statements, on the other hand, you’d want to start from the very barebone basics. Tip #40. Write for Your Audience If your readers are suit-and-tie lawyers, they’re going to expect professionally written content. 20-something hipsters? You can get away with throwing a Rick and Morty reference here and there. Tip #41. Use Grammarly Trust us, it’ll seriously make your life easier! Keep in mind, though, that the app is not a replacement for a professional editor. Tip #42. Use Hemingway Online content should be very easy to read & follow for everyone, whether they’re a senior profession with a Ph.D. or a college kid looking to learn a new topic. As such, your content should be written in a simple manner - and that’s where Hemingway comes in. It helps you keep your blog content simple. Tip #43. Create Compelling Headlines Want to drive clicks to your articles? You’ll need compelling headlines. Compare the two headlines below; which one would you click? 101 Productivity Tips \[To Get Things Done in 2021\] VS Productivity Tips Guide Exactly! To create clickable headlines, we recommend you include the following elements: Keyword Numbers Results Year (If Relevant) Tip #44. Nail Your Blog Content Formatting Format your blog posts well and avoid overly long walls of text. There’s a reason Backlinko content is so popular - it’s extremely easy to read and follow. Tip #45. Use Relevant Images In Your SEO Content Key here - relevant. Don’t just spray random stock photos of “office people smiling” around your posts; no one likes those.  Instead, add graphs, charts, screenshots, quote blocks, CSS boxes, and other engaging elements. Tip #46. Implement the Skyscraper Technique (The Right Way) Want to implement Backlinko’s skyscraper technique?  Keep this in mind before you do: not all content is meant to be promoted.  Pick a topic that fits the following criteria if you want the internet to care: It’s on an important topic. “Mega-Guide to SaaS Marketing” is good, “top 5 benefits of SaaS marketing” is not. You’re creating something significantly better than the original material. The internet is filled with mediocre content - strive to do better. Tip #47. Get The URL Slug Right for Seasonal Content If you want to rank on a seasonal keyword with one piece of content (e.g. you want to rank on “saas trends 2020, 2021, etc.”), don’t mention the year in the URL slug - keep it /saas-trends/ and just change the headline every year instead.  If you want to rank with separate articles, on the other hand (e.g. you publish a new trends report every year), include the year in the URL. Tip #48. Avoid content cannibalization.  Meaning, don’t write 2+ articles on one topic. This will confuse Google on which article it should rank. Tip #49. Don’t Overdo Outbound Links Don’t include too many outbound links in your content. Yes, including sources is good, but there is such a thing as overdoing it.  If your 1,000 word article has 20 outbound links, Google might consider it as spam (even if all those links are relevant). Tip #50. Consider “People Also Ask” To get the most out of SERP, you want to grab as many spots on the search result as possible, and this includes “people also ask (PAA):” Make a list of the topic’s PAA questions and ensure that your article answers them.  If you can’t fit the questions & answers within the article, though, you can also add an FAQ section at the end where you directly pose these questions and provide the answers. Tip #51. Optimize For Google Snippet Optimize your content for the Google Snippet. Check what’s currently ranking as the snippet. Then, try to do something similar (or even better) in terms of content and formatting. Tip #52. Get Inspired by Viral Content Want to create content that gets insane shares & links?  Reverse-engineer what has worked in the past. Look up content in your niche that went viral on Reddit, Hacker News, Facebook groups, Buzzsumo, etc. and create something similar, but significantly better. Tip #53. Avoid AI Content Tools No, robots can’t write SEO content.  If you’ve seen any of those “AI generated content tools,” you should know to stay away. The only thing those tools are (currently) good for is creating news content. Tip #54. Avoid Bad Content You will never, ever, ever rank with one 500-word article per week.  There are some SEO agencies (even the more reputable ones) that offer this as part of their service. Trust us, this is a waste of time. Tip #55. Update Your Content Regularly Check your top-performing articles annually and see if there’s anything you can do to improve them.  When most companies finally get the #1 ranking for a keyword, they leave the article alone and never touch it again… ...Until they get outranked, of course, by someone who one-upped their original article. Want to prevent this from happening? Analyze your top-performing content once a year and improve it when possible. Tip #56. Experiment With CTR Do your articles have low CTR? Experiment with different headlines and see if you can improve it.  Keep in mind, though, that what a “good CTR” is really depends on the keyword.  In some cases, the first ranking will drive 50% of the traffic. In others, it’s going to be less than 15%. Link-Building Tips Tip #57. Yes, Links Matter. Here’s What You Need to Know “Do I need backlinks to rank?” is probably one of the most common SEO questions.  The answer to the question (alongside all other SEO-related questions) is that it depends on the niche.  If your competitors don’t have a lot of backlinks, chances are, you can rank solely by creating superior content. If you’re in an extremely competitive niche (e.g. VPN, insurance, etc.), though, everyone has amazing, quality content - that’s just the baseline.  What sets top-ranking content apart from the rest is backlinks. Tip #58. Sometimes, You’ll Have to Pay For Links Unfortunately, in some niches, paying for links is unavoidable - e.g. gambling, CBD, and others. In such cases, you either need a hefty link-building budget, or a very creative link-building campaign (create a viral infographic, news-worthy story based on interesting data, etc.). Tip #59. Build Relationships, Not Links The very best link-building is actually relationship building.  Make a list of websites in your niche and build a relationship with them - don’t just spam them with the standard “hey, I have this amazing article, can you link to it?”.  If you spam, you risk ruining your reputation (and this is going to make further outreach much harder). Tip #60. Stick With The Classics At the end of the day, the most effective link-building tactics are the most straightforward ones:  Direct Outreach Broken Link-Building Guest Posting Skyscraper Technique Creating Viral Content Guestposting With Infographics Tip #61. Give, Don’t Just Take! If you’re doing link-building outreach, don’t just ask for links - give something in return.  This will significantly improve the reply rate from your outreach email. If you own a SaaS tool, for example, you can offer the bloggers you’re reaching out to free access to your software. Or, alternatively, if you’re doing a lot of guest posting, you can offer the website owner a link from the guest post in exchange for the link to your website. Tip #62. Avoid Link Resellers That guy DMing you on LinkedIn, trying to sell you links from a Google Sheet?  Don’t fall for it - most of those links are PBNs and are likely to backfire on you. Tip #63. Avoid Fiverr Like The Plague Speaking of spammy links, don’t touch anything that’s sold on Fiverr - pretty much all of the links there are useless. Tip #64. Focus on Quality Links Not all links are created equal. A link is of higher quality if it’s linked from a page that: Is NOT a PBN. Doesn’t have a lot of outbound links. If the page links to 20 other websites, each of them gets less link juice. Has a lot of (quality) backlinks. Is part of a website with a high domain authority. Is about a topic relevant to the page it’s linking to. If your article about pets has a link from an accounting blog, Google will consider it a bit suspicious. Tip #65. Data-Backed Content Just Works Data-backed content can get insane results for link-building.  For example, OKCupid used to publish interesting data & research based on how people interacted with their platform and it never failed to go viral. Each of their reports ended up being covered by dozens of news media (which got them a ton of easy links). Tip #66. Be Creative - SEO Is Marketing, After All Be novel & creative with your link-building initiatives.  Here’s the thing: the very best link-builders are not going to write about the tactics they’re using.  If they did, you’d see half the internet using the exact same tactic as them in less than a week! Which, as you can guess, would make the tactic cliche and significantly less effective. In order to get superior results with your link-building, you’ll need to be creative - think about how you can make your outreach different from what everyone does. Experiment it, measure it, and improve it till it works! Tip #67. Try HARO HARO, or Help a Reporter Out, is a platform that matches journalists with sources. You get an email every day with journalists looking for experts in specific niches, and if you pitch them right, they might feature you in their article or link to your website. Tip #68. No-Follow Links Aren’t That Bad Contrary to what you might’ve heard, no-follow links are not useless. Google uses no-follow as more of a suggestion than anything else.  There have been case studies that prove Google can disregard the no-follow tag and still reward you with increased rankings. Tip #69. Start Fresh With an Expired Domain Starting a new website? It might make sense to buy an expired one with existing backlinks (that’s in a similar niche as yours). The right domain can give you a serious boost to how fast you can rank. Tip #70. Don’t Overspend on Useless Links “Rel=sponsored” links don’t pass pagerank and hence, won’t help increase your website rankings.  So, avoid buying links from media websites like Forbes, Entrepreneur, etc. Tip #71. Promote Your Content Other than link-building, focus on organic content promotion. For example, you can repost your content on Facebook groups, LinkedIn, Reddit, etc. and focus on driving traffic.  This will actually lead to you getting links, too. We got around 95 backlinks to our SEO case study article just because of our successful content promotion. Tons of people saw the article on the net, liked it, and linked to it from their website. Tip #72. Do Expert Roundups Want to build relationships with influencers in your niche, but don’t know where to start?  Create an expert roundup article. If you’re in the sales niche, for example, you can write about Top 21 Sales Influencers in 2021 and reach out to the said influencers letting them know that they got featured. Trust us, they’ll love you for this! Tip #73. .Edu Links are Overhyped .edu links are overrated. According to John Mueller, .edu domains tend to have a ton of outbound links, and as such, Google ignores a big chunk of them. Tip #74. Build Relationships With Your Customers Little-known link-building hack: if you’re a SaaS company doing SEO, you can build relationships with your customers (the ones that are in the same topical niche as you are) and help each other build links! Tip #75. Reciprocal Links Aren’t That Bad Reciprocal links are not nearly as bad as Google makes them out to be. Sure, they can be bad at scale (if trading links is all you’re doing). Exchanging a link or two with another website / blog, though, is completely harmless in 99% of cases. Tip #76. Don’t Overspam Don’t do outreach for every single post you publish - just the big ones.  Most people already don’t care about your outreach email. Chances are, they’re going to care even less if you’re asking them to link to this new amazing article you wrote (which is about the top 5 benefits of adopting a puppy). Technical SEO Tips Tip #77. Use PageSpeed Insights If your website is extremely slow, it’s definitely going to impact your rankings. Use PageSpeed Insights to see how your website is currently performing. Tip #78. Load Speed Matters While load speed doesn’t impact rankings directly, it DOES impact your user experience. Chances are, if your page takes 5 seconds to load, but your competition’s loads instantly, the average Googler will drop off and pick them over you. Tip #79. Stick to a Low Crawl Depth Crawl depth of any page on your website should be lower than 4 (meaning, any given page should be possible to reach in no more than 3 clicks from the homepage).  Tip #80. Use Next-Gen Image Formats Next-gen image formats such as JPEG 2000, JPEG XR, and WebP can be compressed a lot better than PNG or JPG. So, when possible, use next-get formats for images on your website. Tip #81. De-Index Irrelevant Pages Hide the pages you don’t want Google to index (e.g: non-public, or unimportant pages) via your Robots.txt. If you’re a SaaS, for example, this would include most of your in-app pages or your internal knowledge base pages. Tip #82. Make Your Website Mobile-Friendly Make sure that your website is mobile-friendly. Google uses “mobile-first indexing.” Meaning, unless you have a working mobile version of your website, your rankings will seriously suffer. Tip #83. Lazy-Load Images Lazy-load your images. If your pages contain a lot of images, you MUST activate lazy-loading. This allows images that are below the screen, to be loaded only once the visitor scrolls down enough to see the image. Tip #84. Enable Gzip Compression Enable Gzip compression to allow your HTML, CSS and JS files to load faster. Tip #85. Clean Up Your Code If your website loads slowly because you have 100+ external javascript files and stylesheets being requested from the server, you can try minifying, aggregating, and inlining some of those files. Tip 86. Use Rel-Canonical Have duplicate content on your website? Use rel-canonical to show Google which version is the original (and should be prioritized for search results). Tip #87. Install an SSL Certificate Not only does an SSL certificate help keep your website safe, but it’s also a direct ranking factor. Google prioritizes websites that have SSL certificates over the ones that don’t. Tip #88. Use Correct Anchor Texts for Internal Links When linking to an internal page, mention the keyword you’re trying to rank for on that page in the anchor text. This helps Google understand that the page is, indeed, about the keyword you’re associating it with. Tip #89. Use GSC to Make Sure Your Content is Interlinked Internal links can have a serious impact on your rankings. So, make sure that all your blog posts (especially the new ones) are properly linked to/from your past content.  You can check how many links any given page has via Google Search Console. Tip #90. Bounce rate is NOT a Google ranking factor. Meaning, you can still rank high-up even with a high bounce rate. Tip #91. Don’t Fret About a High Bounce Rate Speaking of the bounce rate, you’ll see that some of your web pages have a higher-than-average bounce rate (70%+).  While this can sometimes be a cause for alarm, it’s not necessarily so. Sometimes, the search intent behind a given keyword means that you WILL have a high bounce rate even if your article is the most amazing thing ever.  E.g. if it’s a recipe page, the reader gets the recipe and bounces off (since they don’t need anything else). Tip #92. Google Will Ignore Your Meta Description More often than not, Google won’t use the meta description you provide - that’s normal. It will, instead, automatically pick a part of the text that it thinks is most relevant and use it as a meta description. Despite this, you should always add a meta description to all pages. Tip #93. Disavow Spammy & PBN Links Keep track of your backlinks and disavow anything that’s obviously spammy or PBNy. In most cases, Google will ignore these links anyway. However, you never know when a competitor is deliberately targeting you with too many spammy or PBN links (which might put you at risk for being penalized). Tip #94. Use The Correct Redirect  When permanently migrating your pages, use 301 redirect to pass on the link juice from the old page to the new one. If the redirect is temporary, use a 302 redirect instead. Tip #95. When A/B Testing, Do This A/B testing two pages? Use rel-canonical to show Google which page is the original. Tip #96. Avoid Amp DON’T use Amp.  Unless you’re a media company, Amp will negatively impact your website. Tip #97. Get Your URL Slugs Right Keep your blog URLs short and to-the-point. Good Example: apollodigital.io/blog/seo-case-study Bad Example: apollodigital.io/blog/seo-case-study-2021-0-to-200,000/ Tip #98. Avoid Dates in URLs An outdated date in your URL can hurt your CTR. Readers are more likely to click / read articles published recently than the ones written years back. Tip #99. Social Signals Matter Social signals impact your Google rankings, just not in the way you think. No, your number of shares and likes does NOT impact your ranking at all.  However, if your article goes viral and people use Google to find your article, click it, and read it, then yes, it will impact your rankings.  E.g. you read our SaaS marketing guide on Facebook, then look up “SaaS marketing” on Google, click it, and read it from there. Tip #100. Audit Your Website Frequently Every other month, crawl your website with ScreamingFrog and see if you have any broken links, 404s, etc. Tip #101. Use WordPress Not sure which CMS platform to use?  99% of the time, you’re better off with WordPress.  It has a TON of plugins that will make your life easier.  Want a drag & drop builder? Use Elementor. Wix, SiteGround and similar drag & drops are bad for SEO. Tip #102. Check Rankings the Right Way When checking on how well a post is ranking on Google Search Console, make sure to check Page AND Query to get the accurate number.  If you check just the page, it’s going to give you the average ranking on all keywords the page is ranking for (which is almost always going to be useless data). Conclusion Aaand that's about it - thanks for the read! Now, let's circle back to Tip #1 for a sec. Remember when we said a big chunk of what you read on SEO is based on personal experiences, experiments, and the like? Well, the tips we've mentioned are part of OUR experience. Chances are, you've done something that might be different (or completely goes against) our advice in this article. If that's the case, we'd love it if you let us know down in the comments. If you mention something extra-spicy, we'll even include it in this article.

how I built a $6k/mo business with cold email
reddit
LLM Vibe Score0
Human Vibe Score1
Afraid-Astronomer130This week

how I built a $6k/mo business with cold email

I scaled my SaaS to a $6k/mo business in under 6 months completely using cold email. However, the biggest takeaway for me is not a business that’s potentially worth 6-figure. It’s having a glance at the power of cold emails in the age of AI. It’s a rapidly evolving yet highly-effective channel, but no one talks about how to do it properly. Below is the what I needed 3 years ago, when I was stuck with 40 free users on my first app. An app I spent 2 years building into the void. Entrepreneurship is lonely. Especially when you are just starting out. Launching a startup feel like shouting into the dark. You pour your heart out. You think you have the next big idea, but no one cares. You write tweets, write blogs, build features, add tests. You talk to some lukewarm leads on Twitter. You do your big launch on Product Hunt. You might even get your first few sales. But after that, crickets... Then, you try every distribution channel out there. SEO Influencers Facebook ads Affiliates Newsletters Social media PPC Tiktok Press releases The reality is, none of them are that effective for early-stage startups. Because, let's face it, when you're just getting started, you have no clue what your customers truly desire. Without understanding their needs, you cannot create a product that resonates with them. It's as simple as that. So what’s the best distribution channel when you are doing a cold start? Cold emails. I know what you're thinking, but give me 10 seconds to change your mind: When I first heard about cold emailing I was like: “Hell no! I’m a developer, ain’t no way I’m talking to strangers.” That all changed on Jan 1st 2024, when I actually started sending cold emails to grow. Over the period of 6 months, I got over 1,700 users to sign up for my SaaS and grew it to a $6k/mo rapidly growing business. All from cold emails. Mastering Cold Emails = Your Superpower I might not recommend cold emails 3 years ago, but in 2024, I'd go all in with it. It used to be an expensive marketing channel bootstrapped startups can’t afford. You need to hire many assistants, build a list, research the leads, find emails, manage the mailboxes, email the leads, reply to emails, do meetings. follow up, get rejected... You had to hire at least 5 people just to get the ball rolling. The problem? Managing people sucks, and it doesn’t scale. That all changed with AI. Today, GPT-4 outperforms most human assistants. You can build an army of intelligent agents to help you complete tasks that’d previously be impossible without human input. Things that’d take a team of 10 assistants a week can now be done in 30 minutes with AI, at far superior quality with less headaches. You can throw 5000 names with website url at this pipeline and you’ll automatically have 5000 personalized emails ready to fire in 30 minutes. How amazing is that? Beyond being extremely accessible to developers who are already proficient in AI, cold email's got 3 superpowers that no other distribution channels can offer. Superpower 1/3 : You start a conversation with every single user. Every. Single. User. Let that sink in. This is incredibly powerful in the early stages, as it helps you establish rapport, bounce ideas off one another, offer 1:1 support, understand their needs, build personal relationships, and ultimately convert users into long-term fans of your product. From talking to 1000 users at the early stage, I had 20 users asking me to get on a call every week. If they are ready to buy, I do a sales call. If they are not sure, I do a user research call. At one point I even had to limit the number of calls I took to avoid burnout. The depth of the understanding of my customers’ needs is unparalleled. Using this insight, I refined the product to precisely cater to their requirements. Superpower 2/3 : You choose exactly who you talk to Unlike other distribution channels where you at best pick what someone's searching for, with cold emails, you have 100% control over who you talk to. Their company Job title Seniority level Number of employees Technology stack Growth rate Funding stage Product offerings Competitive landscape Social activity (Marital status - well, technically you can, but maybe not this one…) You can dial in this targeting to match your ICP exactly. The result is super low CAC and ultra high conversion rate. For example, My competitors are paying $10 per click for the keyword "HARO agency". I pay $0.19 per email sent, and $1.92 per signup At around $500 LTV, you can see how the first means a non-viable business. And the second means a cash-generating engine. Superpower 3/3 : Complete stealth mode Unlike other channels where competitors can easily reverse engineer or even abuse your marketing strategies, cold email operates in complete stealth mode. Every aspect is concealed from end to end: Your target audience Lead generation methods Number of leads targeted Email content Sales funnel This secrecy explains why there isn't much discussion about it online. Everyone is too focused on keeping their strategies close and reaping the rewards. That's precisely why I've chosen to share my insights on leveraging cold email to grow a successful SaaS business. More founders need to harness this channel to its fullest potential. In addition, I've more or less reached every user within my Total Addressable Market (TAM). So, if any competitor is reading this, don't bother trying to replicate it. The majority of potential users for this AI product are already onboard. To recap, the three superpowers of cold emails: You start a conversation with every single user → Accelerate to PMF You choose exactly who you talk to → Super-low CAC Complete stealth mode → Doesn’t attract competition By combining the three superpowers I helped my SaaS reach product-marketing-fit quickly and scale it to $6k per month while staying fully bootstrapped. I don't believe this was a coincidence. It's a replicable strategy for any startup. The blueprint is actually straightforward: Engage with a handful of customers Validate the idea Engage with numerous customers Scale to $5k/mo and beyond More early-stage founders should leverage cold emails for validation, and as their first distribution channel. And what would it do for you? Update: lots of DM asking about more specifics so I wrote about it here. https://coldstartblueprint.com/p/ai-agent-email-list-building

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist
reddit
LLM Vibe Score0
Human Vibe Score1
deadcoder0904This week

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist

Silicon Valley wants you to believe that their unicorn startups succeeded doing things legally. But that couldn't be far from truth. For starters, Airbnb used multiple Gmail accounts to spam Craigslist. "They posted unrealistically (fake) cheap rentals of beautiful apartments in places where normal rent should be 10x more. Once people replied, they auto-responded that the unit has been rented, but they should be looking for another unit on AirBnB." The Game of Blackhat is a cat-and-mouse game. You need a lot of guardrails to protect yourself from people using your Social Site by spamming their products. Craigslist is a team of 30 people. There's stuff AI can automate now with such a small team but back then, it wasn't possible. Airbnb used Craigslist as its playground to spam Craigslist visitors to grow their supply-side. In a 2-sided marketplace, growing both supply and demand is very important. And both must grow at the same time for the marketplace to work. A Blackhat Marketer created a new test site to get vacation rental owners to sign-up so that he can test his Airbnb theory. He grabbed their real email-addresses (not Craigslist anonymous addresses) via Craigslist by specifically targeting those who were advertising their vacation rentals on Craigslist. He skipped over the other categories that were directly related to AirBnB's business model because they didn't fit with the test site he built. Once he got 1000+ sign-ups, he then took it upon himself to post it to the advertising section on Craigslist. The email said this: I am emailing you because you have one of the nicest listings on Craigslist in Idaho and I want to recommend you feature it (for free) on one of the largest Idaho housing sites on the web, Airbnb. The site already has 3,000,000 pages views a month. Check it out here to list now: airbnb(dot)com Sarah Surpisingly, all emails were by ladies. He did the same in Week 2 and Week 3 to test if it wasn't a one-time thing. Surely, it wasn't a fluke. After posting 4 ads on Craigslist in 3 weeks, he received 5 identical emails from 2 ladies who were raving fans of AirBnB and spent their days emailing Craigslist advertisers. This is one of the greatest blackhat strategies used in the real world to build a billion-dollar marketplace by growing the supply-side with pure blackhat. These strategies are not mentioned in Press Interviews, Media, or any Founder stories but this is probably the most important piece of the puzzle. Without it, Airbnb probably wouldn't have survived. "Some very famous investors have alluded to the fact that they look for a dangerous streak in the entrepreneurs they invest in…and while those investors will never come out and tell you what they mean, this kind of thing is probably what they mean." It definitely violates CAN-SPAM act. Some comments from Hacker News: "CAN-SPAM, sending from a fake address (illegal headers). CA has a specific law that pre-empts CAN-SPAM that definitely makes this illegal if sent from CA." But I guess it worked in Airbnb's favour lol as they were never caught or fined until after. "It's commercial email 100%. Probably a fake sender name (illegal), against gmail ToS, against CL ToS and no unsubscribe link and no one even subscribed in the first place. 100% against CAN-SPAM." Thanks for reading. If you'd like to learn more blackhat tactics like this, check this site which is a growth hacking newsletter with real-world blackhat examples. PS: Actual emails & screenshots from the Airbnb x Craigslist spam can be found here.

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

AI Will Make You Extremely Rich or Kill Your Business in 2024
reddit
LLM Vibe Score0
Human Vibe Score1
AntsyNursery58This week

AI Will Make You Extremely Rich or Kill Your Business in 2024

Preface: I'm a solo-founder in the AI space and previously worked as an ML scientist; the new advancements in AI that I'm seeing are going to impact everyone here. It doesn't matter if you're just starting out, or a bootstrapped brick and mortar founder, or even a VC backed hard tech founder. Last year was when the seeds were laid, and this is the year we'll see them bloom. There will be an onslaught of advancements that take place that are borderline inconceivable due to the nature of exponential progress. This will change every single vertical. I'm making this post because I think AI execution strategy will make or break businesses. Dramatically. Over $50B was put into AI startups in 2023 alone. This figure excludes the hundreds of billions poured into AI from enterprises. So, let's follow the money: &#x200B; 1) AI enterprise software. There's a lot to unpack here and this is what I’m currently working on. AI enterprise software will encompass everything from hyper personalized email outbound to AI cold calls to AI that A/B tests ads on synthetic data to vertical specific software. The impact of the former is relatively self explanatory, so I'll focus on the latter. To illustrate vertical specific AI software, I'll use a simple example in the legal space. Lawyers typically have to comb through thousands of pages of documents. Now, using an LLM + a VDB, an AI can instantly answer all of those questions while surfacing the source and highlighting the specific answer in the contract/document. There are dozens of AI startups for this use case alone. This saves lawyers an immense amount of time and allows them to move faster. Firms that adopt this have a fundamental advantage over law firms that don't adopt this. This was 2023 technology. I'm seeing vertical AI software getting built by my friends in areas from construction, to real estate, to even niche areas like chimney manufacturing. This will exist everywhere. Now, this can be extrapolated much further to be applicable to systems that can do reports and even browse the Internet. This brings me to my next point. &#x200B; 2) AI information aggregation and spread. My gut tells me that this will have a crescendo moment in the future with hardware advancements (Rabbit, Tab, etc.). You won't have to google things because it will be surfaced to you. It's predictive in nature. The people who can get information the fastest will grow their business the fastest. This part is semi-speculative, but due to the nature of LLMs being so expensive to train, I have a strong feeling that large institutions will have access to the \fastest\ and \best\ models that can do this quicker than you and I can. This is why it's important to stay on top. &#x200B; 3) AI content generation This is relevant to running advertisements and any digital marketing aspect of your business. If you can rapidly make content faster than your competitors to put in social media, you will outpace your competitors rapidly. I think most folks are familiar with MidJourney, Stable diffusion, etc. but don't know how to use it. You can generate consistent models for a clothing brand or generate images of a product that you would normally need to hire a professional photographer to take. There's also elevenlabs which is relatively easy to use and can be used to make an MP3 clip as a narration for an ad; this is something I've already done. I'm also still shocked by how many people are unfamiliar with tools like Pika which can do video generation. You could imagine companies having fleets of digital influencers that they control or conjuring up the perfect ad for a specific demographic using a combination of all of the aforementioned tools. &#x200B; In summary, if you feel like I'm being hyperbolic or propagating science fiction fantasies, you're likely already behind. I truly recommend that everyone stays up to date on these advancements as much as possible. If your competitor comes across an AI tool that can increase their ROAS by 5x they can crush you. If your competitor uses a tool that increases the rate at which they receive and aggregate information by 200% (modest estimate) they will crush you. If your competitors have a tool that can reduce their employee size, then they will use it. They'll fire their employees to cut costs and reinvest the money back into their business. It will compound to the point where you're outpaced, and this isn't a level of innovation we've seen since the birth of the industrial revolution. Your customers can get stolen overnight, or you can steal your competition’s customers overnight. TL;DR: This is an opportunity for entrepreneurs to scale faster than they could have possibly imagined, but this also comes with the potential for your company to be obliterated. We've never seen advancements that can have this drastic of an impact this quickly. Adoption will happen fast, and first movers will have a disproportionate and compounding advantage. Watch guides, meet with startups, follow the news, and get rich.

I Quit My Tech Job 6 Months Ago. Built 10+ Products. Made $0. Here's Everything I Learned.
reddit
LLM Vibe Score0
Human Vibe Score1
WaynedevvvThis week

I Quit My Tech Job 6 Months Ago. Built 10+ Products. Made $0. Here's Everything I Learned.

I quit my tech job 6 months ago to go full indie. Had enough savings and didn't want to miss the AI wave. Since then, I've built 10+ products - B2C, B2B, mobile apps, directories, marketplaces, you name it. But I keep repeating the same cycle: have an idea, dream big, build for weeks, "launch" (and by launch, I mean just deploy and go live with zero promotion), then get bored and lose motivation to market it. Then I start looking for new ideas to build. Is it just me, or does anyone else face something similar? Maybe coding is my comfort zone and marketing isn't, that's why... I knew entrepreneurship was hard, but it's MUCH harder than I thought. After these failures, here's everything I've learned: Lessons Learned The Hard Way Don't build something you don't have passion for. Pushing a product is hard and takes tremendous effort. If you don't have passion for it, you won't push through the initial "no interest" zone. Think carefully: would you be proud of what you build after building it? If yes, proceed. If not, don't waste time. Build your audience/network first. This isn't new advice, but it's 100% key for entrepreneurs to succeed. I'm still figuring this out, but one thing is clear: "Value" is the key. Stop posting random stuff and instead give value. People don't care about you and your life, but they do care about what you can offer them. Don't rush. Entrepreneurship isn't a sprint; it's a marathon. Don't rush to build stuff. Take a step back to think, plan, and learn. Coding for 16 hours a day won't do you any good - you'll end up building something people don't want. What I'm Doing Differently Next Time After all these failures, I finally took time with myself to think about how I can approach things differently. Here's my new plan: I will not start a new project if I know I'll ditch it after building it. I will follow best practices: validate the idea, research competitors, look for beta users, and ship fast. I will start building my audience and personal brand through documenting the journey. I've already decided what I'm building next, and yes, this time I'm going all in. I'll apply everything I've learned so far, and hopefully, this time will be different. Will update you all soon. Keep shipping, folks! Hopefully we'll see your "I reached 10k MRR for my SaaS" post soon.

Detailed Guide - How I've Been Self Employed for 2 Years Selling Posters
reddit
LLM Vibe Score0
Human Vibe Score1
tommo278This week

Detailed Guide - How I've Been Self Employed for 2 Years Selling Posters

Hey everyone, bit of context before you read through this. I have been selling POD posters full time for over 2 years now. My next venture is that I have started my own Print on Demand company for posters, PrintShrimp. As one way of creating customers for our service, we are teaching people for free how to also sell posters. Here is a guide I have written on how to sell posters on Etsy. Feel free to have a read through and then check out PrintShrimp, hopefully can help some of you guys out (and get us some more customers!) All of this is also available in video format on our website too, if you prefer to learn that way. Thanks guys! And as some people asked in other subs, no this isn't written with AI 😅 This took a couple of weeks to put together! Through this guide, we will teach you everything you need to know about starting to sell posters and generate some income. We will also show you why PrintShrimp is the best POD supplier for all of your poster needs. Trust me, you won’t need much convincing.  So, why are posters the best product to sell? Also, just thought I’d quickly answer the question - why posters? If you’ve been researching Print on Demand you’ve probably come across the infinite options of t-shirts, mugs, hats, phone cases, and more. All of these are viable options, however we think posters are the perfect place to start. You can always expand into other areas further down the line! So a brief summary of why posters are the perfect product for Print on Demand: \-They are very easy to design! Posters are a very easy shape to deal with - can’t go wrong with a rectangle. This makes designing products very easy. \-Similarly to this, what you see is what you get with a poster. You can literally see your finished product as you design it in either canva or photoshop. With T-Shirts for example, you have to make your design, and then place it on a t-shirt. Then you have to coordinate with your printers the size you would like the design on the tshirt and many other variables like that. There is no messing about with posters - what you see is what you get. \-The same high quality, everywhere. With other products, if you want to reap the benefits of a printing in various countries, you need to ensure each of your global suppliers stocks the same t-shirts, is able to print in the same way, carries the same sizes etc. Again with posters you avoid all of this hassle- your products will come out the same, no matter which of our global locations are used. \-They have a very favorable profit margin. As you will see later, the cost price of posters is very low. And people are prepared to pay quite a lot for a decent bit of wall art! I have tried out other products, and the profit margin combined with the order quantity of posters makes them my most profitable product, every single time. Using PrintShrimp, you can be sure to enjoy profits of anywhere between £6 - £40 pure profit per sale.  \-They are one of the easiest to print white label. This makes them perfect for Print on Demand. Your posters are simply put in a tube, and off they go. There are no extras you need to faff around with, compared to the extra elements other products come with, such as clothing labels on t-shirts.  Picking your poster niche So, you are ready to start selling posters. Great! Now, the blessing and curse with selling posters is that there are infinite possibilities regarding what you can sell. So, it can easily be quite overwhelming at first.  The first thing I would recommend doing is having a look at what others are selling. Etsy is a wonderful place for this (and will likely be a key part of your poster selling journey). So, log on to Etsy and simply type in ‘poster’ in the search bar. Get ready to write a massive list of the broad categories and type of posters that people are selling.  If you do not have more than 50 categories written down by the end, you are doing something wrong. There are seriously an infinite amount of posters! For example, here are some popular ones to get you started: Star sign posters, Kitchen posters, World map posters, Custom Dog Portrait posters, Music posters, Movie posters, Fine art posters, Skiing posters, Girl Power posters and Football posters.  Now, you have a huge list of potential products to sell. What next? There are a few important things you need to bear in mind when picking your niche: \-Does this interest me?  Don’t make the mistake of going down a niche that didn’t actually interest you just because it would probably be a money maker. Before you know it, what can be a very fun process of making designs can become incredibly \\\monotonous, and feel like a chore\\\. You need to bear in mind that you will be spending a lot of time creating designs - if it is something you are interested in you are much less likely to get burnt out! As well, \\\creativity will flow\\\ far better if it is something you are interested in, which at the end of the day will lead to better designs that are more likely to be purchased by customers.  \-Is this within my design range? Don’t let this put you off too much. We will go through how to get started on design later on in this guide. However, it is important to note that the plain truth of it is that some niches and designs are a hell of a lot more complicated than others. For example, quote posters can essentially be designed by anyone when you learn about how to put nice fonts together in a good color scheme. On the other hand, some posters you see may have been designed with complex illustrations in a program like Illustrator. To start with, it may be better to pick a niche that seems a bit more simple to get into, as you can always expand your range with other stores further down the line. A good way of evaluating the design complexity is by identifying if this poster is \\\a lot of elements put together\\\ or is \\\a lot of elements created by the designer themselves\\\\\.\\ Design can in a lot of cases be like a jigsaw - putting colours, shapes and text together to create an image. This will be a lot easier to start with and can be learnt by anyone, compared to complex drawings and illustrations.  \-Is this niche subject to copyright issues? Time to delve deep into good old copyright. Now, when you go through Etsy, you will without a doubt see hundreds of sellers selling music album posters, car posters, movie posters and more. Obviously, these posters contain the property of musicians, companies and more and are therefore copyrighted. The annoying thing is - these are \\\a complete cash cow.\\\ If you go down the music poster route, I will honestly be surprised if you \\don’t\\ make thousands. However it is only a matter of time before the copyright strikes start rolling in and you eventually get banned from Etsy.  So I would highly recommend \\\not making this mistake\\\. Etsy is an incredible platform for selling posters, and it is a hell of a lot easier to make sales on there compared to advertising your own website. And, you \\\only get one chance on Etsy.\\\ Once you have been banned once, you are not allowed to sign up again (and they do ID checks - so you won’t be able to rejoin again under your own name).  So, don’t be shortsighted when it comes to entering Print on Demand. If you keep your designs legitimate, they will last you a lifetime and you will then later be able to crosspost them to other platforms, again without the worry of ever getting shut down.  So, how do I actually design posters? Now you have an idea of what kind of posters you want to be making, it’s time to get creative and make some designs! Photoshop (and the creative cloud in general) is probably the best for this. However, when starting out it can be a scary investment (it costs about £30 a month unless you can get a student rate!).  So, while Photoshop is preferable in the long term, when starting out you can learn the ropes of design and get going with Canva. This can be great at the start as they have a load of templates that you can use to get used to designing and experimenting (while it might be tempting to slightly modify these and sell them - this will be quite saturated on places like Etsy so we would recommend doing something new).  What size format should I use? The best design format to start with is arguably the A sizes - as all the A sizes (A5, A4, A3, A2, A1, A0) are scalable. This means that you can make all of your designs in one size, for example A3, and these designs will be ready to fit to all other A sizes. For example, if you design an A3 poster and someone orders A1, you can just upload this A3 file to PrintShrimp and it will be ready to print. There is a wide range of other sizes you should consider offering on your shop, especially as these sizes are very popular with the American market. They have a wide range of popular options, which unfortunately aren’t all scalable with each other. This does mean that you will therefore have to make some slight modifications to your design in order to be able to offer them in American sizing, in a few different aspect ratios. What you can do however is design all of your products in UK sizing, and simply redesign to fit American sizing once you have had an order. Essentially: design in UK sizing, but list in both UK and US sizing. Then when you get a non-A size order, you can quickly redesign it on demand. This means that you don’t have to make a few different versions of each poster when first designing, and can simply do a quick redesign for US sizing when you need to. Below is PrintShrimps standard size offering. We can also offer any custom sizing too, so please get in touch if you are looking for anything else. With these sizes, your poster orders will be dispatched domestically in whatever country your customer orders from. Our recommendations for starting design One thing that will not be featured in this guide is a written out explanation or guide on how to design. Honestly, I can’t think of a more boring, or frankly worse, way to learn design. When it comes to getting started, experimenting is your best friend! Just have a play around and see what you can do. It is a really fun thing to get started with, and the satisfaction of when a poster design comes together is like no other. A good way to start is honestly by straight up copying a poster you see for sale online. And we don’t mean copying to sell! But just trying to replicate other designs is a great way to get a feel for it and what you can do. We really think you will be surprised at how easy it is to pull together a lot of designs that at first can appear quite complicated! Your best friend throughout this whole process will be google. At the start you will not really know how to do anything - but learning how to look into things you want to know about design is all part of the process. At first, it can be quite hard to even know how to search for what you are trying to do, but this will come with time (we promise). Learning how to google is a skill that you will learn throughout this process.  Above all, what we think is most important is this golden rule: take inspiration but do not steal. You want to be selling similar products in your niche, but not copies. You need to see what is selling in your niche and get ideas from that, but if you make designs too similar to ones already available, you won’t have much luck. At the end of the day, if two very similar posters are for sale and one shop has 1000 reviews and your newer one has 2, which one is the customer going to buy? You need to make yours offer something different and stand out enough to attract customers. Etsy SEO and maximizing your sales You may have noticed in this guide we have mentioned Etsy quite a few times! That is because we think it is hands down the best place to start selling posters. Why? Etsy is a go to place for many looking to decorate their homes and also to buy gifts. It might be tempting to start selling with your own website straight away, however we recommend Etsy as it brings the customers to you. For example, say you start selling Bathroom Posters. It is going to be a hell of a lot easier to convert sales when you already have customers being shown your page after searching ‘bathroom decor’, compared to advertising your own website. This is especially true as it can be hard to identify your ideal target audience to then advertise to via Meta (Facebook/Instagram) for example. Websites are a great avenue to explore eventually like I now have, but we recommend starting with Etsy and going from there. What costs do I need to be aware of? So, setting up an Etsy sellers account is currently costs £15. The only other upfront cost you will have is the cost of listing a product - this is 20 cents per listing. From then on, every time you make a sale you will be charged a transaction fee of 6.5%, a small payment processing fee, plus another 20 cents for a renewed listing fee. It normally works out to about 10% of each order, a small price to pay for all the benefits Etsy brings. No matter what platform you sell on, you will be faced with some form of transaction fee. Etsy is actually quite reasonable especially as they do not charge you to use their platform on a monthly basis.  What do I need to get selling? Getting your shop looking pretty \-Think of a shop name and design (now you are a professional designer) a logo \-Design a banner for the top of your shop \-Add in some about me info/shop announcement \-I recommend running a sale wherein orders of 3+ items get a 20% of discount. Another big benefit of PrintShrimp is that you receive large discounts when ordering multiple posters. This is great for attracting buyers and larger orders.  Making your products look attractive That is the bulk of the ‘decor’ you will need to do. Next up is placing your posters in mock ups! As you may notice on Etsy, most shops show their posters framed and hanging on walls. These are 99% of the time not real photos, but digital mock ups. This is where Photoshop comes in really handy, as you can automate this process through a plug in called Bulk Mock Up. If you don’t have photoshop, you can do this on Canva, you will just have to do it manually which can be rather time consuming.  Now, where can you get the actual Mock Ups? One platform we highly recommend for design in general is platforms like Envato Elements. These are design marketplaces where you have access to millions of design resources that you are fully licensed to use!  Titles, tags, and descriptions  Now for the slightly more nitty gritty part. You could have the world's most amazing looking poster, however, if you do not get the Etsy SEO right, no one is going to see it! We will take you through creating a new Etsy listing field by field so you can know how to best list your products.  The key to Etsy listing optimisation is to maximise. Literally cram in as many key words as you possibly can! Before you start this process, create a word map of anything you can think of relating to your listing. And come at this from the point of view of, if I was looking for a poster like mine, what would I search? Titles \-Here you are blessed with 140 characters to title your listing. Essentially, start off with a concise way of properly describing your poster. And then afterwards, add in as many key words as you can! Here is an example of the title of a well selling Skiing poster: Les Arcs Skiing Poster, Les Arcs Print, Les Alpes, France Ski Poster, Skiing Poster, Snowboarding Poster, Ski Resort Poster Holiday, French This is 139 characters out of 140 - you should try and maximise this as much as possible! As you can see, this crams in a lot of key words and search terms both related to Skiing as a whole, the poster category, and then the specifics of the poster itself (Les Arcs resort in France). Bear in mind that if you are listing a lot of listings that are of the same theme, you won’t have to spend time creating an entirely new title. For example if your next poster was of a ski resort in Italy, you can copy this one over and just swap out the specifics. For example change “France ski poster” to “Italy ski poster”, change “Les Arcs” to “The Dolomites”, etc.  Description \-Same logic applies for descriptions - try and cram in as many key words as you can! Here is an example for a Formula One poster: George Russell, Mercedes Formula One Poster  - item specific keywords Bright, modern and vibrant poster to liven up your home.  - Describes the style of the poster All posters are printed on high quality, museum grade 200gsm poster paper. Suitable for framing and frames. - Shows the quality of the print. Mentions frames whilst showing it comes unframed Experience the thrill of the racetrack with this stunning Formula One poster. Printed on high-quality paper, this racing car wall art print features a dynamic image of a Formula One car in action, perfect for adding a touch of speed and excitement to any motorsports room or man cave. Whether you're a die-hard fan or simply appreciate the adrenaline of high-speed racing, this poster is sure to impress. Available in a range of sizes, it makes a great addition to your home or office, or as a gift for a fellow Formula One enthusiast. Each poster is carefully packaged to ensure safe delivery, so you can enjoy your new piece of art as soon as possible. - A nice bit of text really highlighting a lot of key words such as gift, motorsports, racetrack etc.  You could go further with this too, by adding in extra things related to the poster such as ‘Perfect gift for a Mercedes F1 fan’ etc.  Tags Now, these are actually probably the most important part of your listing! You get 13 tags (20 character limit for each) and there are essentially search terms that will match your listing with what customers search for when shopping.  You really need to maximize these - whilst Title and Description play a part, these are the main things that will bring buyers to your listing. Once again, it is important to think about what customers are likely to be searching when looking for a poster similar to yours. Life hack alert! You can actually see what tags other sellers are using. All you need to do is go to a listing similar to yours that is selling well, scroll down and you can actually see them listed out at the bottom of the page! Here is an example of what this may look like: So, go through a few listings of competitors and make notes on common denominators that you can integrate into your listing. As you can see here, this seller uses tags such as ‘Birthday Gift’ and ‘Poster Print’. When you first start out, you may be better off swapping these out for more listing specific tags. This seller has been on Etsy for a few years however and has 15,000+ sales, so are more likely to see success from these tags.  If it’s not clear why, think about it this way. If you searched ‘poster print’ on Etsy today, there will be 10s of thousands of results. However, if you searched ‘Russell Mercedes Poster’, you will (as of writing) get 336 results. Etsy is far more likely to push your product to the top of the latter tag, against 300 other listings, rather than the top of ‘Poster Print’ where it is incredibly competitive. It is only when you are a more successful shop pulling in a high quantity of orders that these larger and more generic tags will work for you, as Etsy has more trust in your shop and will be more likely to push you to the front.  SKUs \-One important thing you need to do is add SKUs to all of your products! This is worth doing at the start as it will make your life so much easier when it comes to making sales and using PrintShrimp further down the line. What is an SKU? It is a ‘stock keeping unit’, and is essentially just a product identifier. Your SKUs need to match your file name that you upload to PrintShrimp. For example, if you made a poster about the eiffel tower, you can literally name the SKU eiffel-tower. There is no need to complicate things! As long as your file name (as in the image name of your poster on your computer) matches your SKU, you will be good to go.  \-It may be more beneficial to set up a system with unique identifiers, to make organising your files a lot easier further down the line. Say you get to 1000 posters eventually, you’ll want to be able to quickly search a code, and also ensure every SKU is always unique, so you won’t run into accidentally using the same SKU twice further down the line. For example, you can set it up so at the start of each file name, you have \[unique id\]\[info\], so your files will look like -  A1eiffeltower A2france And further down the line: A99aperolspritz B1potatoart This not only removes the potential issue of duplicating SKUs accidentally (for example if you made a few posters of the same subject), but also keeps your files well organised. If you need to find a file, you can search your files according to the code, so just by searching ‘a1’ for example, rather than having to trawl through a load of different files until you find the correct one. \-If your poster has variations, for example color variations, you can set a different SKU for each variation. Just click the little box when setting up variations that says ‘SKUs vary for each (variation)’. So if you have a poster available either in a white or black background, you can name each file, and therefore each SKU, a1eiffel-tower-black and a1eiffel-tower-white for example. \-The same goes for different sizes. As different American sizes have different aspect ratios, as mentioned above you may have to reformat some posters if you get a sale for one of these sizes. You can then add in the SKU to your listing once you have reformatted your poster. So for example if you sell a 16x20” version of the eiffel tower poster, you can name this file eiffel-tower-white-1620. Whilst this involves a little bit of set up, the time it saves you overall is massive!  Variations and Prices \-So, when selling posters there is a huge variety of sizes that you can offer, as mentioned previously. Non-negotiable is that you should be offering A5-A1. These will likely be your main sellers! Especially in the UK. It is also a good idea to offer inch sizing to appeal to a global audience (as bear in mind with PrintShrimp you will be able to print in multiple countries around the world!).  Below is a recommended pricing structure of what to charge on Etsy. Feel free to mess around with these! You may notice on Etsy that many shops charge a whole lot more for sizes such as A1, 24x36” etc. In my experience I prefer charging a lower rate to attract more sales, but there is validity in going for a lower amount of sales with higher profits. As mentioned above, you can also offer different variations on items - for example different colour schemes on posters. This is always a decent idea (if it suits the design) as it provides the customer with more options, which might help to convert the sale. You can always add this in later however if you want to keep it simple while you start! Setting up shipping profiles Etsy makes it very easy to set up different shipping rates for different countries. However, luckily with PrintShrimp you can offer free shipping to the majority of the major countries that are active on Etsy!  Using PrintShrimp means that your production costs are low enough in each domestic market to justify this. If you look on Etsy you can see there are many shops that post internationally to countries such as the US or Australia. Therefore, they often charge £8-10 in postage, and have a delivery time of 1-2 weeks. This really limits their customer base to their domestic market.  Using PrintShrimp avoids this and means you can offer free shipping (as we absorb the shipping cost in our prices) to the major markets of the UK, Australia, and USA (Europe coming soon!).  We also offer a 1 day processing time, unlike many POD poster suppliers. This means you can set your Etsy processing time to just one day, which combined with our quick shipping, means you will be one of the quickest on Etsy at sending out orders. This is obviously very attractive for customers, who are often very impatient with wanting their orders!  Getting the sales and extra tips \-Don’t list an insane amount of listings when you first get started. Etsy will be like ‘hang on a second’ if a brand new shop suddenly has 200 items in the first week. Warm up your account, and take things slow as you get going. We recommend 5 a day for the first week or so, and then you can start uploading more. You don’t want Etsy to flag your account for suspicious bot-like activity when you first get going.  \-It is very easy to copy listings when creating a new one. Simply select an old listing and press copy, and then you can just change the listing specific details to create a new one, rather than having to start from scratch. It can feel like a bit of a ball-ache setting up your first ever listing, but from then on you can just copy it over and just change the specifics.  \-Try and organize your listings into sections! This really helps the customer journey. Sometimes a customer will click onto your shop after seeing one of your listings, so it really helps if they can easily navigate your shop for what they are looking for. So, you now have a fully fledged Etsy shop. Well done! Time to start making £3,000 a month straight away right? Not quite. Please bear in mind, patience is key when starting out. If you started doing this because you are £10,000 in debt to the Albanian mafia and need to pay it off next week, you have come into this in the wrong frame of mind. If you have however started this to slowly build up a side hustle which hopefully one day become your full time gig, then winner winner chicken dinner.  Starting out on Etsy isn’t always easy. It takes time for your shop to build up trust! As I’ve said before, a buyer is far more likely to purchase from a shop with 1000s of reviews, than a brand new one with 0. But before you know it, you can become one of these shops! One thing you can do at the very start is to encourage your friends and family to buy your posters! This is a slightly naughty way of getting a few sales at the start, of course followed by a few glowing 5\* reviews. It really helps to give your shop this little boost at the start, so if this is something you can do then I recommend it.  Okay, so once you have a fully fledged shop with a decent amount of listings, you might be expecting the sales to start rolling in. And, if you are lucky, they indeed might. However, in my experience, you need to give your listings a little boost. So let us introduce you to: The wonderful world of Etsy ads Ads!! Oh no, that means money!! We imagine some of you more risk averse people are saying to yourself right now. And yes, it indeed does. But more often than not unfortunately you do have to spend money to make money.  Fortunately, in my experience anyway, Etsy ads do tend to work. This does however only apply if your products are actually good however, so if you’re back here after paying for ads for 2 months and are losing money at the same rate as your motivation, maybe go back to the start of this guide and pick another niche.  When you first start out, there are two main strategies.  Number 1: The Safer Option So, with PrintShrimp, you will essentially be making a minimum of £6 profit per order. With this in mind, I normally start a new shop with a safer strategy of advertising my products with a budget of $3-5 dollars a day. This then means that at the start, you only need to make 1 sale to break even, and anything above that is pure profit! This might not seem like the most dazzling proposition right now, but again please bear in mind that growth will be slow at the start. This means that you can gradually grow your shop, and therefore the trust that customers have in your shop, over time with a very small risk of ever actually losing money. Number 2: The Billy Big Balls Option If you were yawning while reading the first option, then this strategy may be for you. This will be better suited to those of you that are a bit more risk prone, and it also helps if you have a bit more cash to invest at the start. Through this strategy, you can essentially pay your way to the top of Etsy's rankings. For this, you’ll probably be looking at spending $20 a day on ads. So, this can really add up quickly and is definitely the riskier option. In my experience, the level of sales with this may not always match up to your spend every day. You may find that some days you rake in about 10 sales, and other days only one. But what this does mean is that as your listings get seen and purchased more, they will begin to rank higher in Etsy’s organic search rankings, at a much quicker rate than option one. This is the beauty of Etsy’s ads. You can pay to boost your products, but then results from this paid promotion feed into the organic ranking of your products. So you may find that you can splash the cash for a while at the start in order to race to the top, and then drop your ad spending later on when your products are already ranking well.  Sending your poster orders So, you’ve now done the hard bit. You have a running Etsy store, and essentially all you need to now on a daily basis is send out your orders and reply to customer messages! This is where it really becomes passive income.  \-Check out the PrintShrimp order portal. Simply sign up, and you can place individual orders through there. \-Bulk upload: We have an option to bulk upload your Esty orders via csv.  Seriously, when you are up and running with your first store, it is really as easy as that.  Once you have your first Etsy store up and running, you can think about expanding. There are many ways to expand your income. You can set up other Etsy stores, as long as the type of posters you are selling varies. You can look into setting up your own Shopify stores, and advertise them through Facebook, Instagram etc. Through this guide, we will teach you everything you need to know about starting to sell posters and generate some income. We will also show you why PrintShrimp is the best POD supplier for all of your poster needs. Trust me, you won’t need much convincing.

This is why most of AI wrappers will die
reddit
LLM Vibe Score0
Human Vibe Score1
ecommerce_itThis week

This is why most of AI wrappers will die

We began building our AI product in public as a tool to help people quickly build online stores using AI during June of 2023. It was quite a hot AI time. The tool was using ChatGPT to create a fully-functinal eCommerce store with a demo products from Amazon. And we managed to get such impression among people so they started to share it with words: "Look, I made my own store in 20 seconds." We got about 2,000 users that way, mainly people telling their friends to try it out. We built a toy Back in 2023, this idea was exciting. It was great for getting people to talk about us and for getting random people to check us out. We burned \~2k$ on various API we used then with an expectations: people will start to pay. Nobody paid. It was a train called AI and we all were the passengers, but not all of us were able to understand how to monitize this and in reality most of AI wrappers have the lack of this. Most of AI wrappers would be eaten by a bigger players, other will be not able to proceed due to fact of investment. We had a few benefits: 1) We are developers with skills in design and a bit in marketing 2) We spent years in development of eCommerce products So to keep things going it was important to focus on: 1) Longer game, there is no quick wins, unfortunatelly or fortunatelly 2) Narrower niche and smaller auditory 3) Patience 4) Building network and product authority The road to actual product So to attract real users, we had to start solving a real problem for them, to offer them something valuable. We do this already 5 months since October. We made like 5 pivots... Today our product proposition "Marketsy allows busy people to own a business: a simple in management store of digital products as a source of income" So all AI thing right now is hidden under "busy", AI helps to automate the process, but not the primary thing in the product anymore. Even eCommerce SaaS market is huge and comeptition is hight. We are going to test this approach upcoming weeks, we believe it will be a right step. Anyway we are sure we will find the right proposition and our audience, one way or another. All the best to other product builders here!

AI Content Campaign Got 4M impressions, Thousands of Website Views, Hundreds of Customers for About $100 — This is the future of marketing
reddit
LLM Vibe Score0
Human Vibe Score0.857
adamkstinsonThis week

AI Content Campaign Got 4M impressions, Thousands of Website Views, Hundreds of Customers for About $100 — This is the future of marketing

Alright. So, a few months ago I tested a marketing strategy for a client that I’ve sense dedicated my life to developing on. The Idea was to take the clients Pillar content (their YouTube videos) and use AI to rewrite the content for all the viable earned media channels (mainly Reddit). The campaign itself was moderately successful. To be specific, after one month it became their 2nd cheapest customer acquisition cost (behind their organic YouTube content). But there is a lot to be done to improve the concept. I will say, having been in growth marketing for a decade, I felt like I had hit something big with the concept. I’m going to detail how I built that AI system, and what worked well and what didn’t here. Hopefully you guys will let me know what you think and whether or not there is something here to keep working on. DEFINING THE GOAL Like any good startup, their marketing budget was minimal. They wanted to see results, fast and cheap. Usually, marketers like me hate to be in this situation because getting results usually either takes time or it takes money. But you can get results fast and cheap if you focus on an earned media strategy - basically getting featured in other people’s publication. The thing is these strategies are pretty hard to scale or grow over time. That was a problem for future me though. I looked through their analytics and saw they were getting referral traffic from Reddit - it was their 5th or 6th largest source of traffic - and they weren’t doing any marketing on the platform. It was all digital word of mouth there. It kind of clicked for me there, that Reddit might be the place to start laying the ground work. So with these considerations in mind the goal became pretty clear: Create content for relevant niche communities on Reddit with the intent of essentially increasing brand awareness. Use an AI system to repurpose their YouTube videos to keep the cost of producing unique content for each subreddit really low. THE HIGH-LEVEL STRATEGY I knew that there are huge amounts of potential customers on Reddit (About 12M people in all the relevant communities combined) AND that most marketers have a really tough time with the platform. I also knew that any earned media strategy, Reddit or not, means Click Through Rates on our content would be extremely low. A lot of people see this as a Reddit specific problem because you can’t self-promote on the platform, but really you have to keep self-promotion to a minimum with any and all earned media. This basically meant we had to get a lot of impressions to make up for it. The thing about Reddit is if your post absolutely crushes it, it can get millions of views. But crushing it is very specific to what the expectations are of that particular subreddit. So we needed to make content that was specifically written for that Subreddit. With that I was able to essentially design how this campaign would work: We would put together a list of channels (specifically subreddits to start) that we wanted to create content for. For each channel, we would write a content guideline that details out how to write great content for this subreddit. These assets would be stored in an AirTable base, along with the transcripts of the YouTube videos that were the base of our content. We would write and optimize different AI Prompts that generated different kinds of posts (discussion starters about a stock, 4-5 paragraph stock analysis, Stock update and what it means, etc…) We would build an automation that took the YouTube transcripts, ran each prompt on it, and then edited each result to match the channel writing guidelines. And then we would find a very contextual way to leave a breadcrumb back to the client. Always as part of the story of the content. At least, this is how I originally thought things would go. CHOOSING THE RIGHT SUBREDDITS Picking the right communities was vital. Here’s the basic rubric we used to pick and prioritize them: • Relevance: We needed communities interested in stock analysis, personal finance, or investing. • Subreddit Size vs. Engagement: Large subreddits offer more potential impressions but can be less focused. Smaller subreddits often have higher engagement rates. • Content Feasibility: We had to ensure we could consistently create high-value posts for each chosen subreddit. We started with about 40 possibilities, then narrowed it down to four or five that consistently delivered upvotes and user signups. CREATING CHANNEL-SPECIFIC GUIDES By the end, creating channel specific writing guidelines looked like a genius decision. Here’s how we approached it and used AI to get it done quickly: Grabbed Top Posts: We filtered the subreddit’s top posts (change filter to “Top” and then “All Time”) of all time to see the kinds of content that performed best Compiled The Relevant Posts: We took the most relevant posts to what we were trying to do and put them all on one document (basically created one document per subreddit that just had the top 10 posts in that subreddit). Had AI Create Writing Guideline Based On Posts: For each channel, we fed the document with the 10 posts with the instructions “Create a writing guideline for this subreddit based on these high performing posts. I had to do some editing on each guideline but this worked pretty well and saved a lot of time. Each subreddit got a custom guideline, and we put these inside the “Channels” table of the AirTable base we were developing with these assets. BUILDING THE AI PROMPTS THAT GENERATED CONTENT Alright this is probably the most important section so I’ll be detailed. Essentially, we took all the assets we developed up until this point, and used them to create unique posts for each channel. This mean each AI prompt was about 2,000 words of context and produced about a 500-word draft. There was a table in our AirTable where we stored the prompts, as I alluded to earlier. And these were basically the instructions for each prompt. More specifically, they detailed out our expectations for the post. In other words, there were different kinds of posts that performed well on each channel. For example, you can write a post that’s a list of resources (5 tools we used to…), or a how to guide (How we built…), etc.. Those weren’t the specific ones we used, but just wanted to really explain what I meant there. That actual automation that generated the content worked as follows: New source content (YouTube video transcript) was added to the Source Content table. This triggered the Automation. The automation grabbed all the prompts in the prompt table. For each prompt in the prompt table, we sent a prompt to OpenAI (gpt-4o) that contained first the prompt and also the source content. Then, for each channel that content prompt could be used on, we sent another prompt to OpenAI that revised the result of the first prompt based on the specific channel guidelines. The output of that prompt was added to the Content table in AirTable. To be clear, our AirTable had 4 tables: Content Channels Prompts Source Content The Source Content, Prompts, and Channel Guidelines were all used in the prompt that generated content. And the output was put in the Content table. Each time the automation ran, the Source Content was turned into about 20 unique posts, each one a specific post type generated for a specific channel. In other words, we were create a ton of content. EDITING & REFINING CONTENT The AI drafts were never perfect. Getting them Reddit-ready took editing and revising The main things I had to go in and edit for were: • Tone Adjustments: We removed excessively cliche language. The AI would say silly things like “Hello fellow redditors!” which sound stupid. • Fact-Checking: Financial data can be tricky. We discovered AI often confused figures, so we fact check all stock related metrics. Probably something like 30-40% error rate here. Because the draft generation was automated, that made the editing and getting publish ready the human bottleneck. In other words, after creating the system I spent basically all my time reviewing the content. There were small things I could do to make this more efficient, but not too much. The bigger the model we used, the less editing the content needed. THE “BREADCRUMB” PROMOTION STRATEGY No where in my prompt to the AI did I mention that we were doing any marketing. I just wanted the AI to focus on creating content that would do well on the channel. So in the editing process I had to find a way to promote the client. I called it a breadcrumb strategy once and that stuck. Basically, the idea was to never overtly promote anything. Instead find a way to leave a breadcrumb that leads back to the client, and let the really interested people follow the trail. Note: this is supposed to be how we do all content marketing. Some examples of how we did this were: Shared Visuals with a Subtle Watermark: Because our client’s product offered stock data, we’d often include a chart or graph showing a company’s financial metric with the client’s branding in the corner. Added Supporting Data from Client’s Website: If we mentioned something like a company’s cash flow statement, we could link to that company’s cash flow statement on the client’s website. It worked only because there was a lot of data on the client’s website that wasn’t gated. These tactics were really specific to the client. Which is should be. For other companies I would rethink what tactics I use here. THE RESULTS I’m pretty happy with the results • Impressions: – Early on posts averaged \~30,000 apiece, but after about a month of optimization, we hit \~70,000 impressions average. Over about two months, we reached 4 million total impressions. • Signups: – In their signups process there was one of those “Where did you find us?” questions and the amount of people who put Reddit jumped into the few hundred a month. Precise tracking of this is impossible. • Cost Efficiency (This is based on what I charged, and not the actual cost of running the campaign which is about $100/mo): – CPM (cost per thousand impressions) was about $0.08, which is far better than most paid channels. – Cost per free user: \~$8-10. After about a 10% conversion rate to a paid plan, our cost per paying user was $80–$100—well below the client’s previous $300–$400. HIGHLIGHTS: WHAT WORKED Subreddit-Specific Content: – Tailoring each post’s format and length to the audience norms boosted engagement. Worked out really well. 1 post got over 1M views alone. We regularly had posts that had hundreds of thousands. Breadcrumbs: – We never had anyone call us out for promoting. And really we weren’t. Our first priority was writing content that would crush on that subreddit. Using the Founder’s Existing Material: – The YouTube transcripts grounded the AI’s content in content we already made. This was really why we were able to produce so much content. CHALLENGES: WHAT DIDN’T WORK AI is still off: – Maybe it’s expecting too much, but still I wish the AI had done a better job. I editing a lot of content. Human oversight was critical. Scheduling all the content was a pain: – Recently I automated this pretty well. But at first I was scheduling everything manually and scheduling a hundred or so posts was a hassle. Getting Data and Analytics: – Not only did we have not very good traffic data, but the data from reddit had to be collected manually. Will probably automate this in the future. COST & TIME INVESTMENT Setup: The setup originally took me a couple weeks. I’ve since figured out how to do much faster (about 1 week). AirTable Setup here was easy and the tools costs $24/mo so not bad. ChatGPT costs were pretty cheap. Less than $75 per month. I’ve sense switched to using o1 which is much more expensive but saves me a lot of editing time Human Editing: Because this is the human part of the process and everything else was automated it mean by default all my time was spent editing content. Still this was a lot better than creating content from scratch probably by a factor of 5 or 10. The main expense was paying an editor (or using your own time) to refine posts. Worth it? Yes even with the editing time I was able to generate way more content that I would have otherwise. LESSONS & ACTIONABLE TAKEAWAYS Reddit as a Growth Channel: – If you genuinely respect each subreddit’s culture, you can achieve massive reach on a tight budget. AI + Human Collaboration: – AI excels at first drafts, but human expertise is non-negotiable for polishing and ensuring factual integrity. Soft Promotion Wins: – The “breadcrumb” approach paid off. It might feel like too light a touch, but is crucial for Reddit communities. Create once, repurpose as many times as possible: – If you have blog posts, videos, podcasts, or transcripts, feed them into AI to keep your message accurate and brand-consistent. CONCLUSION & NEXT STEPS If you try a similar approach: • Begin with smaller tests in a few niches to learn what resonates. • Create a clear “channel guide” for each community. • Carefully fact-check AI-generated posts. • Keep brand mentions low-key until you’ve established credibility.

Why the value of writing code and other digital services is going to zero
reddit
LLM Vibe Score0
Human Vibe Score1
BalloonWheelieThis week

Why the value of writing code and other digital services is going to zero

I must preface this with a trigger warning because I make some statements in this post that might be upsetting to some. This post discusses my experience building in the new era of entrepreneurship, which is one where the founder is the center of the universe, and the consultants, overpriced SaaS, and corporate swamp creatures are replaced by single-user custom software, bots, and self-hosted automations. If you work in the legacy economy, I really don't intend to stress you out or say things you are doing are quickly becoming irrelevant, but I must share the reality of how I am operating, because I would like to hear from others who are doing the same, or desire to do the same. I am currently operating with the belief that AI-powered tools are going to make 1-person million dollar businesses much more common. Building anything digital is becoming extremely easy, cheap, and quick to implement. The value of code and digital tools is approaching zero, or at most 5% of what it currently is. Right now, the most powerful AI tools are aimed at developers, so folks who have some technical and business ability basically have nothing holding them back aside from the speed of their brain right now. I happen to be a part of the cohort, and am building like there is no tomorrow, but I don't believe this cohort is actually all that big. The next hurdle to unlock the new era of entrepreneurship is empowering every entrepreneur to build at the same pace that is currently locked behind having technical ability. This cohort is huge (millions, if the number of people in this sub is any indication). This post is aimed at them (you?). If you are part of this cohort, what is holding you back from launching a new product for near-zero cost? What is too complicated, too expensive, too unknown for you to be able to build your new/current business at maximum speed? I look forward to seeing the replies, I hope some insights shared can help the community, and be a catalyst for more tools to enable non-technical founders to launch. I will now share some of how I am testing, launching, and selling as a one-man-show. This will be a little bit technical, but if the output of any layer of my stack is something you want, please comment because maybe someone will build a cheap way of accessing it without needing to manage the code yourself. \#1 BOTS I cannot overstate how much leverage bots have created for me. I run all of my bots locally and interface with with via Telegram. Bots do things like: \- watch social media pages, forums, subreddits, etc related to my customers and notify me of what is going on, and suggest SEO blog posts that could be published to capture traffic related to the topic. with a single message, my bot will generate a blog post, send it to me for review, apply edits i suggest, and then publish it live, all from within telegram \- pay attention to all my key metrics/analytics, and attempt to find insights/corrolations (ex. there is a lot of traffic on this page, blog post, video, etc. here's why, and how we can take advantage of it to drive business goals) \- repurposing content. i have dozens of social media profiles that are 100% run by bots, they are all related to my customer niches and will do things like post news, snippets from my blogs, interact with human creators in the niche, etc. this builds my audience automatically which I can then advertise to/try to convert into paying customers, since they are interested in the things my bot is posting and become followers, it's like automated qualified lead gen 24/7 across every social platform and every niche I care about. you may be thinking by now that this post is made by a bot, but you will have to trust me that this is 100% hand-written by my sleep-deprived brain. let's continue: \#2 replacing every SaaS with a shitty version of it designed for what i need out of it it's absurd that we pay ten's of dollars per seat per month for basic digital functions like chat (slack), CRM (active camppaign, sales force, hubspot, etc), email stuff (mailchip, etc), link sharing (linktree, etc), website builders (wix, squarespace, etc), etc. all of these SaaS tools are overpriced and overbuilt. I believe many of them are going to be caught in the innovators dilemma and will go to 0. I don't use any of these anymore, I build and self-host my own shitty version of each of them that does only what i need out of the tool. for example, my CRM doesn't have a fancy drag and drop email builder and 10000 3rd party plugins, because i dont need any of that shit I just need to segment and communicate with my customers. if i need more features, i can generate them on the fly. \#3 working alone I have worked with cofounders in the past, raised money from investors, hired consultants, burned money and time, suffered sleepless nights from stress caused by other people not delivering, trying to convince others they are wrong, or they are pushing the company off a cliff, waste waste waste. no more of that. In the new age of entrepreneurship, the BUILDER (you and I) are the ones creating the value, and AI empowers us to do it alone. this might seem daunting, but there is no business problem that can't be solved with a detailed discussion sesh with chatgpt, no facts that can't be found with perplexity, and no task that can't be automated with claude. there is no need for anymore swamp creatures. you are the start and the end point, you don't need to rely on anyone else for anything. this may sound ignorant, but this is the conclusion I have come to believe, and it continues to be proven every day my businesses progress with me being the only human involved. This is getting quite long so I'll cut it here. I look forward to hearing about how you are operating in this new era and hopefully getting inspired/learning some new ideas to add to my current stack.

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.
reddit
LLM Vibe Score0
Human Vibe Score1
SpicyCopyThis week

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.

Hey guys, I'm working in a growth marketing agency. Marketing tools are 30% of what we do, so we use them a lot and experiment with the new ones as much as possible. There are thousands of tools and it's easy to get lost, so I wanted to share the tools we use most on a daily basis. And divide the list into 14 categories. I thought this could be handy for Entrepreneurs subreddit. Why adopt tools? I see marketing tools as tireless colleagues. If you can't hire an employee, choosing the right tool can solve your problems, because they Are super cheap. Work 7/24 for you. Don’t make mistakes. Don’t need management. (or needless management) Help you to automate the majority of your lead gen process. Onwards to the list. (With the pricings post ended up quite long, you can find a link in the end if you want to check the prices) Email marketing tools #1 ActiveCampaign is armed with the most complicated email automation features and has the most intuitive user experience. It feels like you already know how to use it. \#2 Autopilot is visual marketing automation and customer journey tool that helps you acquire, nurture based on behaviors, interest etc. #3 Mailjet: This is the tool we use to send out bulky email campaigns such as newsletters. It doesn't have sexy features like others but does its job for a cheap price. Email address finders #4 Skrapp finds email of your contacts by name and company. It also works with LinkedIn Sales Navigator and can extract thousands of emails in bulk + have a browser add-on. #5 Hunter: Similar to Skrapp but doesn't work with LinkedIn Sales Navigator directly. In addition, there are email templates and you can set up email campaigns. Prospecting and outreach tools #6 Prospect combines the personal emails, follow-up calls, other social touches and helps you create multichannel campaigns.  #7 Reply is a more intuitive version of Prospect. It is easy to learn and use; their UX makes you feel good and sufficient.  CRM tools #8 Salesflare helps you to stop managing your data and start managing your customers. Not yet popular as Hubspot and etc but the best solution for smaller B2B businesses. (we're fans) \#9 Hubspot: The most popular CRM for good reason and has a broader product range you can adopt in your next steps. Try this if you have a bulky list of customers because it is free. #10 Pardot: Pardot is by Salesforce, it's armed with features that can close the gap between marketing and sales. Sales Tools #11 Salesforce is the best sales automation and lead management software. It helps you to create complicated segmentations and run, track, analyze campaigns from the same dashboard. #12 LinkedIn Sales Navigator gives you full access to LinkedIn's user database. You can even find a kidnapped CEO if you know how to use it with other marketing automation tools like Skrapp. #13 Pipedrive is a simple tool and excels in one thing. It tracks your leads and tells you when to take the next action. It makes sales easier. #14 Qwilr creates great-looking docs, at speed. You can design perfect proposals, quotes, client updates, and more in a flash. We use it a lot to close deals, it's effective. #15 Crystalknows is an add-on that tells you anyone’s personality on LinkedIn and gives you a detailed approach specific to that person. It's eerily accurate. #16 Leadfeeder shows you the companies that visited your website. Tells how they found you and what they’re interested in. It has a free version. Communication Tools #17 Intercom is a sweet and smart host that welcomes your visitors when you’re not home. It’s one of the best chatbot tools in the market. #18 Drift is famous for its conversational marketing features and more sales-focused than Intercom. #19 Manychat is a chatbot that helps you create high converting Facebook campaigns. #20 Plann3r helps you create your personalized meeting page. You can schedule meetings witch clients, candidates, and prospects. #21 Loom is a video messaging tool, it helps you to be more expressive and create closer relationships. #22 Callpage collects your visitors’ phone number and connects you with them in seconds. No matter where you are. Landing page tools #23 Instapage is the best overall landing page builder. It has a broad range of features and even squirrel can build a compelling landing page with templates. No coding needed. #24 Unbounce can do everything that Instapage does and lets you build a great landing page without a developer. But it's less intuitive. Lead generation / marketing automation tools #25 Phantombuster is by far the most used lead generation software in our tool kit. It extracts data, emails, sends requests, customized messages, and does many things on autopilot in any platform. You can check this, this and this if you want to see it in action. #26 Duxsoup is a Google Chrome add-on and can also automate some of LinkedIn lead generation efforts like Phantombuster. But not works in the cloud. #27 Zapier is a glue that holds all the lead generation tools together. With Zapier, You can connect different marketing tools and no coding required. Conversion rate optimization tools #28 Hotjar tracks what people are doing on your website by recording sessions and capturing mouse movements. Then it gives you a heatmap. #29 UsabilityHub shows your page to a digital crowd and measures the first impressions and helps you to validate your ideas. #30 Optinmonster is a top tier conversion optimization tool. It helps you to capture leads and enables you to increase conversions rates with many features. #31 Notifia is one mega tool of widgets that arms your website with the wildest social proof and lead capturing tactics. #32 Sumo is a much simpler version of Notifia. But Sumo has everything to help you capture leads and build your email lists. Web scrapers #33 Data Miner is a Google Chrome browser extension that helps you scrape data from web pages and into a CSV file or Excel spreadsheet. #34 Webscraper does the same thing as Data Miner; however, it is capable of handling more complex tasks. SEO and Content #35 Grammarly: Your English could be your first language and your grammar could be better than Shakespeare. Grammarly still can make your writing better. #36 Hemingwayapp is a copywriting optimization tool that gives you feedback about your copy and improves your readability score, makes your writing bolder and punchier. Free. #37 Ahrefs is an all-rounder search engine optimization tool that helps you with off-page, on-page or technical SEO. #38 SurferSEO makes things easier for your on-page SEO efforts. It’s a tool that analyzes top Google results for specific keywords and gives you a content brief based on that data. Video editing and design tools #39 Canva is a graphic design platform that makes everything easy. It has thousands of templates for anything from Facebook ads, stylish presentations to business cards.  #40 Kapwing is our go-to platform for quick video edits. It works on the browser and can help you to create stylish videos, add subtitles, resize videos, create memes, or remove backgrounds. #41 Animoto can turn your photos and video clip into beautiful video slideshows. It comes handy when you want to create an advertising material but don’t have a budget. Advertising tools #42 AdEspresso lets you create and test multiple ads with few clicks. You can optimize your FB, IG, and Google ads from this tool and measure your ads with in-depth analytics. #43 AdRoll is an AI-driven platform that connects and coordinates marketing efforts across ads, email, and online stores. Other tools #44 Replug helps you to shorten, track, optimize your links with call-to-actions, branded links, and retargeting pixels #45 Draw.io = Mindmaps, schemes, and charts. With Draw.io, you can put your brain in a digital paper in an organized way. #46 Built With is a tool that finds out what websites are built with. So you can see what tools they're using and so on. #47 Typeform can turn data collection into an experience with Typeform. This tool helps you to engage your audience with conversational forms or surveys and help you to collect more data. #48 Livestorm helped us a lot, especially in COVID-19 tiles. It’s a webinar software that works on your browser, mobile, and desktop. #49 Teachable \- If you have an online course idea but hesitating because of the production process, Teachable can help you. It's easy to configure and customizable for your needs. #50 Viral Loops provides a revolutionary referral marketing solution for modern marketers. You can create and run referral campaigns in a few clicks with templates. Remember, most of these tools have a free trial or free version. Going over them one by one can teach you a lot and help you grow your business with less work power in the early stages of your business. I hope you enjoyed the read and can find some tools to make things easier! Let me know about your favorite tools in the comments, so I can try them out. \------ If you want to check the prices and see a broader explanation about the tools, you can go here.

I spent 18 hours every week tracking marketing trends and latest news. Here are my predictions for 2024
reddit
LLM Vibe Score0
Human Vibe Score0.778
lazymentorsThis week

I spent 18 hours every week tracking marketing trends and latest news. Here are my predictions for 2024

1/ Securing Digital Footprint becomes #1 Priority For Chronically Online Users, Protecting their digital footprint will become one of the main things. We saw influencers getting cancelled over Old Content and Brands used Old Travis Kelce Tweets, we saw what could happen without digital footprint protection. Online Engagement Precautions will be taken again with Twitter & IG showing your usernames above ‘Algorithm Suggested Content’. What you like is more visible to other people in UI Design of these apps, another reason behind why Digital Footprint preservation will matter a lot in 2024. This will impact likes to viewership ratio on your organic and paid content. &#x200B; 2/  TikTok wants Long Videos with Storytelling As I was writing this report, TikTok also released their What’s Next 2024 Report. It focuses heavily on how the audiences on the app demand better storytelling and from the examples in the report, you can judge what TikTok wants. They also rolled out a 30-minute video upload limit. Engaging Content over 1-Minute Mark to keep the audiences longer on the app. I highlighted in the first trend, every social media platform wants the same thing, more time spent. 3/ Use of Shop the Look While Streaming Netflix or Amazon Prime. This year’s one of the most successful TV series, The Bear caused Men to go mad for the T-Shirt worn by Jeremy Allen White in the show. Showing us how TV Shows influence or encourage us to dress in a particular way. It’s nothing new, TV Shows like Friends & Gossip Girl influenced all demographics when they came out. But now, Streamings Services such as Roku & Amazon enable consumers to shop the look while watching the TV Shows. Many Brands will jump on these opportunities in upcoming months. 4/ Brands in Comments & Memes are the new norm By Summer 2024, Most Online Users & Creators will no longer feel too excited or answered when they see your brand in the comments. Why? It’s becoming too common for Brands to show in comments under viral content about them. Or Brands being funny with Internet Culture Trends is known to most users. The Saturation of Every Brand being funny and being present leads to increased competition of levitating the content quality. &#x200B; 5/ Marketers decrease their focus on Traffic & Views With AI recommendations taking over, The Structure of content distributing on social media is changing, the same goes for SEO. Conversational AIs are changing how web traffic is distributed to publishers. An Increased focus on managing the conversion rate and landing page relevancy will be the main focus. 6/ OOH is kind of making a comeback. First, US OOH Ads Industry grew 1.1% in Q3 2023. Second, Outfront Media reported slight revenue increase in Q3 as Billboard Ad Revenue grew in Q3. Many Brands in UK are also aligning more toward traditional media Channels. With Burger King in UK focusing on only OOH for Christmas this year and Fashion Brands like SSENSE launching Billboards as Branding Play. 7/ Rise of Curation Continues This Year, we witnessed success of Pinterest Shuffles App, Gen-Z loved it. Similar Success with formats like IG photo dump & TikTok ‘My Fav Finds’ Carousels being the center of Gen-Z Content. Just look at this recent trend and tell me Curation isn’t personal to Online Teens. Spotify won with their idea of curating Songs with Astrology-type signs. The Fashion Products with Curated Emojis and Stickers on them, that scrappy curated approach is predicted to grow in 2024, data from Pinterest. 8/ Use of AI to Trace Consumers in the wild This year we saw a huge trend of people using Image/ face recognition tools to find or dig dirt about famous people. The biggest example was Dillion Dannis exposing Multiple images of Logan Paul’s girlfriend using AI tools. (Which was Obviously bad) But next year, I believe with better rules, big brands like Adidas or Nike will be able to find worldwide micro-influencers & Online Consumers seen wearing adidas. And partnering with them on a large scale through automated outreach. 9/ More Cartoons than Influencer-Brand Products. All the Cartoon shows are seeing huge rise on IG and TikTok, Shaun the sheep is viral, Snoopy was big this year, Sesame Street’s TikTok is working. Aussie Show Bluey is making a huge spark in the US. More Brand collaborations are on the road. Why? Cartoons have built a very consistent identity and they have social channels. I know many see Cartoons as Kids Content but on social, looking at TikTok Account of Sesame Street & Snoopy. Last month, Powerpuff Girls launched a collaboration with Nike. &#x200B; 10/ The Best Trend to get people off social media &#x200B; Try to get people off the social media apps, build your own loops. You can’t rely on social and you clearly shouldn’t burn out trying to win on social and streaming with Paid Ads or without them. This matters a lot because data shares most of your customers buy from you once or twice a year. And then they interact with your content, how bad will you feel if the only thing they remember as your content is being on TikTok. Nothing about your brand. 11/ The Internet Aesthetic will Die for Cafes & Restaurants When I wrote my post about Instagram Marketing, I mentioned this issue of Every Account looking the same. In reality, It isn’t limited to IG Feeds, This Creator points out the same Problem, mentioning the aesthetic Standards from Internet are changing how new businesses approach their whole business. More Content from Cafes & Restaurants need to be around their people and neighbourhood. 12/ Echo Chambers & Sonic Influence All Podcasts are Echo Chambers because if people wanted a new perspective in form of value. We would have chosen debates, but we chose Podcasts to find new value while being in comfort. People are now looking for more value in comfort than ever, Podcasts will continue to rise. 13/ Clever AI Integration to Better Customer Journeys in B2B & B2C Marketing Agencies can provide clever solutions to B2B Companies, and help them overcome the tag of Boring Ads only. How? Ogilvy India created an AI Ad Campaign for Cadbury, allowing SMBs to have the Bollywood Actor endorse them. They used the AI voice generation allowing businesses to alter the voice and have Shah Rukh Khan endorse their shop. A similar approach was taken by IPG India, An AI Ad with Shah Rukh Khan allowing everyone to add their face in the Branded Content. &#x200B; If I sounded like an Old head in this report or I missed on some elements like Programmatic Advertising and PPC. I will try to include better analysis and new content about future trends. You can find the post shared with examples & research, linked here.

boring passive site... now 42k monthly visitors and $2540 MRR
reddit
LLM Vibe Score0
Human Vibe Score1
TasAdamsThis week

boring passive site... now 42k monthly visitors and $2540 MRR

people underestimate SEO... It is evergreen... passive... digital real estate. it can do magic... if you are consistent. Especially now with AI you can 2X your traffic growth and automate 85% of the work. For the past 6 months... we've been building an online directory. we just reached $2540 MRR... with SEO only... from a complete zero. I did share this on other subreddits. Maybe this gives ideas to someone. \+ This can be easily replicated if you have a website lol Current metrics: $2540 MRR - businesses pay us to list on the directory + display ads + pay to be featured. 43k monthly visitors - in the past couple of weeks our SEO growth is a hockey stick. DR (Domain Rating) 35 - it took us 2.5 months to get to that. 51 okay-ish quality referring domains (90% of them are do-follow) and 1.6k backlinks. There are probably 3 main pillars I try to focus on: keywords --> which then is the basis for ALL the content pieces we do blogs, landing pages, about us pages, competitor comparisons etc --> we use a DIY excel file to automate content production at scale. backlinks --> boost DR --> one of the main things to boost ranking on google. website health --> this is technical stuff like internal and external linking, schemas, canonical tags, alt texts, load speeds, compressed images, meta descriptions, titles etc --> do this once... and do it GOOD. $0.07 per SEO optimised blog at scale with AI Yep... we've literally built our own SEO blog tool... and it is a Spreadsheet with bunch of app scripts :D NOTE that we add a little bit of human touch to those blogs that are picked up by Google rank top in 25 How it works... is that we paste in bunch of links (other websites, blogs, news articles) and with a click of a button we can get up to 2000 SEO optimised content pieces... from an Excel file... $0.07 per blog. The spreadsheet is integrated with Chat gpt (obviously). We use GPT-4 for meta descriptions, titles, transforming the content from text to html code since it is more powerful, and GPT-4o for content itself because it is cheaper and faster for "general text". The spreadsheet repurposes content. The spreadsheet generates: Meta descriptions and titles FAQs sections - DON'T skip FAQ sections! They are a must for SEO. On Ahrefs... there is a section of questions people are searching about your keyword... that's your FAQs It can find contextual youtube videos (links to those videos) - to show google that our content is not "just text" thus higher quality. Screenshots and images of the original source (the website link we inputed) I then download a csv version of the excel and import it into our Webflow. The csv file column names match our webflow CMS field names. tbh... we didn't even know that it can be done with a spreadsheet. We "tried" building it because every other tool we were using is (1) expensive from $0.59 per SEO content piece (2) they didn't provide the scale we wanted (3) we wanted more control over the output. Focus on DR 35+ backlinks... easier We bought backlinks only once... rest of the backlinks was a manual work from us. Bunch of free listing databases (about 65% of our backlinks) You can comment on open forums with your link to get a backlink (be careful tho) Post a blog on Medium com --> DR 94 backlink (takes time to Index) If you pay for Notion you can get a DR 94 backlink from Notion If you use Beehiiv you can get a DR 86 backlink from Beehiiv Google product stacking (Google sites, Google notes etc) --> backlink from almighty Google itself A lot of work goes into backlinks because they are THAT important. I have tried bunch of "black hat" strategies as well... but note that all of these strategies won't work if you don't index the primary source from where your backlink is coming from. BIG search volume and low KD Key things I'm looking for in keywords: I use Ahrefs Keyword research tool... it is literally free BIG search volume - 2k+ is oaky-ish for a single keyword EASY to rank - KD (keyword difficulty) below 15 Look for long tail keywords (these are golden nuggets since they have a VERY clear search intent) - "how to edit..." "how to change..." "how to delete..." "how to paint..." I hope you got the idea. on Ahrefs you can use "\" to get BIG volume long tail keywords... like this "my keyword\". Ahrefs then populates the "\" with the tail. Check SERP (Search Engine Result Page) for your keywords - it shows current top 10 pages for those KWs. Check their content. Can you improve it? Have they missed anything? Keyword gap from your competitors - shows EASY keywords that your competitors have missed and also shows what keywords overlap with you. Also one cool thing... if you don't type any keywords on Ahrefs and press "Enter"... you can browse all the keywords out there... it is magical. Once we have the keywords, we run our spreadsheet. And that's pretty much it. I hope that you can get some ideas from this little silly project. Also... if you have any questions about this... I might share the SEO blog automation excel file/help if people are interested...

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist
reddit
LLM Vibe Score0
Human Vibe Score1
deadcoder0904This week

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist

Silicon Valley wants you to believe that their unicorn startups succeeded doing things legally. But that couldn't be far from truth. For starters, Airbnb used multiple Gmail accounts to spam Craigslist. "They posted unrealistically (fake) cheap rentals of beautiful apartments in places where normal rent should be 10x more. Once people replied, they auto-responded that the unit has been rented, but they should be looking for another unit on AirBnB." The Game of Blackhat is a cat-and-mouse game. You need a lot of guardrails to protect yourself from people using your Social Site by spamming their products. Craigslist is a team of 30 people. There's stuff AI can automate now with such a small team but back then, it wasn't possible. Airbnb used Craigslist as its playground to spam Craigslist visitors to grow their supply-side. In a 2-sided marketplace, growing both supply and demand is very important. And both must grow at the same time for the marketplace to work. A Blackhat Marketer created a new test site to get vacation rental owners to sign-up so that he can test his Airbnb theory. He grabbed their real email-addresses (not Craigslist anonymous addresses) via Craigslist by specifically targeting those who were advertising their vacation rentals on Craigslist. He skipped over the other categories that were directly related to AirBnB's business model because they didn't fit with the test site he built. Once he got 1000+ sign-ups, he then took it upon himself to post it to the advertising section on Craigslist. The email said this: I am emailing you because you have one of the nicest listings on Craigslist in Idaho and I want to recommend you feature it (for free) on one of the largest Idaho housing sites on the web, Airbnb. The site already has 3,000,000 pages views a month. Check it out here to list now: airbnb(dot)com Sarah Surpisingly, all emails were by ladies. He did the same in Week 2 and Week 3 to test if it wasn't a one-time thing. Surely, it wasn't a fluke. After posting 4 ads on Craigslist in 3 weeks, he received 5 identical emails from 2 ladies who were raving fans of AirBnB and spent their days emailing Craigslist advertisers. This is one of the greatest blackhat strategies used in the real world to build a billion-dollar marketplace by growing the supply-side with pure blackhat. These strategies are not mentioned in Press Interviews, Media, or any Founder stories but this is probably the most important piece of the puzzle. Without it, Airbnb probably wouldn't have survived. "Some very famous investors have alluded to the fact that they look for a dangerous streak in the entrepreneurs they invest in…and while those investors will never come out and tell you what they mean, this kind of thing is probably what they mean." It definitely violates CAN-SPAM act. Some comments from Hacker News: "CAN-SPAM, sending from a fake address (illegal headers). CA has a specific law that pre-empts CAN-SPAM that definitely makes this illegal if sent from CA." But I guess it worked in Airbnb's favour lol as they were never caught or fined until after. "It's commercial email 100%. Probably a fake sender name (illegal), against gmail ToS, against CL ToS and no unsubscribe link and no one even subscribed in the first place. 100% against CAN-SPAM." Thanks for reading. If you'd like to learn more blackhat tactics like this, check this site which is a growth hacking newsletter with real-world blackhat examples. PS: Actual emails & screenshots from the Airbnb x Craigslist spam can be found here.

boring passive site... now 42k monthly visitors and $2540 MRR
reddit
LLM Vibe Score0
Human Vibe Score1
TasAdamsThis week

boring passive site... now 42k monthly visitors and $2540 MRR

people underestimate SEO... It is evergreen... passive... digital real estate. it can do magic... if you are consistent. Especially now with AI you can 2X your traffic growth and automate 85% of the work. For the past 6 months... we've been building an online directory. we just reached $2540 MRR... with SEO only... from a complete zero. I did share this on other subreddits. Maybe this gives ideas to someone. \+ This can be easily replicated if you have a website lol Current metrics: $2540 MRR - businesses pay us to list on the directory + display ads + pay to be featured. 43k monthly visitors - in the past couple of weeks our SEO growth is a hockey stick. DR (Domain Rating) 35 - it took us 2.5 months to get to that. 51 okay-ish quality referring domains (90% of them are do-follow) and 1.6k backlinks. There are probably 3 main pillars I try to focus on: keywords --> which then is the basis for ALL the content pieces we do blogs, landing pages, about us pages, competitor comparisons etc --> we use a DIY excel file to automate content production at scale. backlinks --> boost DR --> one of the main things to boost ranking on google. website health --> this is technical stuff like internal and external linking, schemas, canonical tags, alt texts, load speeds, compressed images, meta descriptions, titles etc --> do this once... and do it GOOD. $0.07 per SEO optimised blog at scale with AI Yep... we've literally built our own SEO blog tool... and it is a Spreadsheet with bunch of app scripts :D NOTE that we add a little bit of human touch to those blogs that are picked up by Google rank top in 25 How it works... is that we paste in bunch of links (other websites, blogs, news articles) and with a click of a button we can get up to 2000 SEO optimised content pieces... from an Excel file... $0.07 per blog. The spreadsheet is integrated with Chat gpt (obviously). We use GPT-4 for meta descriptions, titles, transforming the content from text to html code since it is more powerful, and GPT-4o for content itself because it is cheaper and faster for "general text". The spreadsheet repurposes content. The spreadsheet generates: Meta descriptions and titles FAQs sections - DON'T skip FAQ sections! They are a must for SEO. On Ahrefs... there is a section of questions people are searching about your keyword... that's your FAQs It can find contextual youtube videos (links to those videos) - to show google that our content is not "just text" thus higher quality. Screenshots and images of the original source (the website link we inputed) I then download a csv version of the excel and import it into our Webflow. The csv file column names match our webflow CMS field names. tbh... we didn't even know that it can be done with a spreadsheet. We "tried" building it because every other tool we were using is (1) expensive from $0.59 per SEO content piece (2) they didn't provide the scale we wanted (3) we wanted more control over the output. Focus on DR 35+ backlinks... easier We bought backlinks only once... rest of the backlinks was a manual work from us. Bunch of free listing databases (about 65% of our backlinks) You can comment on open forums with your link to get a backlink (be careful tho) Post a blog on Medium com --> DR 94 backlink (takes time to Index) If you pay for Notion you can get a DR 94 backlink from Notion If you use Beehiiv you can get a DR 86 backlink from Beehiiv Google product stacking (Google sites, Google notes etc) --> backlink from almighty Google itself A lot of work goes into backlinks because they are THAT important. I have tried bunch of "black hat" strategies as well... but note that all of these strategies won't work if you don't index the primary source from where your backlink is coming from. BIG search volume and low KD Key things I'm looking for in keywords: I use Ahrefs Keyword research tool... it is literally free BIG search volume - 2k+ is oaky-ish for a single keyword EASY to rank - KD (keyword difficulty) below 15 Look for long tail keywords (these are golden nuggets since they have a VERY clear search intent) - "how to edit..." "how to change..." "how to delete..." "how to paint..." I hope you got the idea. on Ahrefs you can use "\" to get BIG volume long tail keywords... like this "my keyword\". Ahrefs then populates the "\" with the tail. Check SERP (Search Engine Result Page) for your keywords - it shows current top 10 pages for those KWs. Check their content. Can you improve it? Have they missed anything? Keyword gap from your competitors - shows EASY keywords that your competitors have missed and also shows what keywords overlap with you. Also one cool thing... if you don't type any keywords on Ahrefs and press "Enter"... you can browse all the keywords out there... it is magical. Once we have the keywords, we run our spreadsheet. And that's pretty much it. I hope that you can get some ideas from this little silly project. Also... if you have any questions about this... I might share the SEO blog automation excel file/help if people are interested...

Only 2 months of cash in the Bank for my business but was able to save it with the help of AI.
reddit
LLM Vibe Score0
Human Vibe Score1
CALLIRDAN90This week

Only 2 months of cash in the Bank for my business but was able to save it with the help of AI.

Hi there! I’m excited to share something very personal with you. We needed to book at least 2 appointments per day in the next 60 days, or my business would fail. We were already trying two acquisition channels, LinkedIn and email. The problem with these channels was that the positive response rate was very low in both. So I decided to focus on LinkedIn and get the attention of the lead by sending videos directly to them via LinkedIn messages. (You can send videos to your connections on LinkedIn if you use your cell phone.) This wasn’t new, but I added a small twist to get the lead’s attention. All the covers of the videos had a picture of me holding a sign with the person’s name and an interesting phrase. This showed some okay results, but the rest of the video was not personalized. Only the picture on the cover was. I even developed a Chrome extension for this because I thought this would be the answer and that I would book tons of appointments.  But after more trial and outreach, my leads responded, telling me that because the video itself wasn’t personalized for them, they felt like I didn’t put enough effort in, so they would not book a call with me. So after investing time and effort into my “new bright idea” and getting developers to make the Chrome extension, I was back to square one with no results. A few weeks went by, and after researching online, I found an online course from a guy who promised to teach me how to book 30+ appointments per month, guaranteed (at the time, I was making 2 or 3 appointments per week, maximum). He promised that I would only pay if he actually booked appointments for me and even offered to give me money if his course didn’t work for me. I never paid attention to internet gurus, but the offer was actually not bad, so I looked into this guy’s website. I found out he had hundreds of reviews from people who had taken his course and were talking amazing things about it. The more I read, the more excited I got. I booked a call that day and talked to a salesperson. The call was very short, and he promised I would get at least 2 appointments per day, easily. He seemed a bit cocky and told me that I just needed to trust him and the 100+ reviews from people who had taken the course. He didn’t share details, a proposal, or anything. I asked the price, and he told me it was close to $10k. (Not kidding, this was the price.) Then he told me that I would make the money back in no time with the clients I would get following his course, and that if it didn’t work, he would give me the money back. But I needed to follow everything the course said for at least 6 months. I had never paid $10k for anything in my life; it was extremely expensive for me. Also, my salary from my business was not in dollars but in a currency that was worth much less than the dollar. I continued to research more and more, but no other course was close to the number of reviews and promises that this guy had. I got desperate and told myself that I would bet everything on this course. If it worked for so many others, surely it would work for me. I got a loan from the bank and paid for the course. You might read this and think it was the most stupid thing ever, but the reality is that after 2 months in the course (I did the course as fast as I could), I learned a lot. The course was not bad; it was very extensive—probably more than 200 hours or so—and they taught a lot of things. I don’t think it was worth $10k for me, but I can see how for other people it might be worth that. Now, to the question you’re all thinking: did it get me the 2 appointments I needed per day? The answer is no. Here’s the thing: most of the techniques they taught were innovative and disruptive, but the focus was always on personalization, and they didn’t teach any way to automate the personalization. (I think, at the time they made the course, the tools didn’t exist yet.) So they taught how to do everything manually, and it took a lot—a lot of time and effort. And most annoyingly: an incredible amount of time doing operational things. I did get 2 appointments on some days, but it wasn’t consistent, and I didn’t have the time to spend 14 hours a day doing everything manually or the money to hire someone to do this for me. (I needed to also spend time delivering our service to our current clients; otherwise, they would leave.) I told them this, and they were very reasonable. After some negotiation, they gave me part of the money back. (To be fair, there was a lot of value in the course, so asking for the full $10k back would have been excessive because, in the end, it really taught me a lot of things I didn’t know.) So in the end, I spent $10k and 200+ hours on an online course, spent time and effort developing a Chrome extension, and was still not able to hit the meetings I needed. Money in the business was running out, and I needed to do something fast, or I was doomed. After investing time and effort in tools, research, and spending $10k and over 200 hours on a course that didn’t deliver the consistent results I needed, I was at a crossroads. My businesses were running out of money, and I knew I needed to find a solution quickly, or everything I had worked for would collapse. It was during this time of desperation that I started exploring other options. One night, while scrolling through the internet, I stumbled upon a 2024 article about how AI was being used to revolutionize various industries. It wasn’t directly related to appointment booking, but it sparked an idea in my mind. What if I could use AI to automate the personalization process that I had learned in the course? It seemed like a long shot, but I had nothing to lose. I started researching AI tools and technologies—YouTube videos, podcasts, pretty much everything related to AI—desperate to find something that could help me scale my outreach without investing too much time, while still maintaining the personalization that was so important. After a lot of trial and error, I found a few tools that showed promise. All of these tools were extremely new. Some of them had just launched the versions I needed just weeks ago. I can say I researched and tested more than 50 AI startups, experimenting with them, testing different approaches, checking prices (the problem was that most of them were cheap but became very expensive when applying the volume I needed to get results), and gradually refining my process. It wasn’t an overnight success, but for the first time, I felt like I was onto something that could truly work. The idea of combining AI personalization with volume was something new, and it gave me hope that I could finally book the meetings I needed without burning out. One day, I sent a video of myself talking—completely AI-generated—to my family chat group and waited for their response. None of them noticed it wasn’t actually me. At that moment, I said to myself: “Okay, I am ready to test this in the real world and see if it works.” Like everything in life, focus is key. As I mentioned earlier, we were already trying outbound strategies on LinkedIn and email, but I decided to narrow my focus to LinkedIn and specifically to video outreach. My goal was to stand out from the crowd, where most people were using text or sending generic videos. I knew that if my videos were 100% personalized, it would make a strong impression on my leads. I focused on two key metrics during my tests: Time spent on manual personalized outreach vs. AI-generated personalized outreach. Positive reply rate for non-personalized manual outreach vs. AI-generated personalized outreach. I ran a test using a sample of 50 one-minute videos sent to 50 leads, and here are the results: Time Spent to Make the Videos: Manual Process: It took me up to 10 hours to create and send 50 personalized videos. This included looking good on camera, brushing my hair, choosing appropriate clothing, ensuring proper lighting, not messing up the script, using a camera holder, recharging the phone, pausing to drink water, avoiding external sounds, being in an appropriate room, downloading the videos, deleting the videos that were not good, and sending the final ones. On average, it took me at least 12.5 minutes per one-minute video. AI Process: With AI, it took me just 32 seconds to create the exact same one-minute personalized video—without saying a word or recording a second of footage. In total, I could make and send the same 50 personalized videos in just 27 minutes. Result: The AI process was 24 times faster. Completely crazy! Positive Reply Rate: Non-Personalized Script (Manual): Using a good script without personalization (no name, job title, city, company, etc.) resulted in a positive reply rate of 4-6% on LinkedIn, including follow-ups. Personalized Script (AI): Using the same script but adding personalized details like the lead's name, company, city, and job title resulted in a positive reply rate of 15-20%, including follow-ups. Result: AI personalization led to 3x (three times) more replies. The best part was the responses. Almost everyone who replied thanked me for taking the time to research them, congratulated me on my speech, and appreciated the personalization and eloquence of my message.  These metrics were a complete breakthrough for me. I researched online to see if anyone else had done something similar, but I couldn’t find anything close. After achieving these metrics, booking the two appointments I desperately needed became easy. In fact, in the last 10 weeks, I’ve been able to consistently book 3-4 appointments per day. This success allowed me to train someone in my company to handle the process, freeing me up to focus on other aspects of the business and ultimately saving it. With the AI appointment machine we built, I even have free time now—time that I’ve been using to develop a methodology and tech tools that I now teach to others. I named the methodology Clip2Lead as a reference to the first Chrome extension I developed that didn’t work but ended up being the first step toward everything that followed. I’ve condensed everything I learned and throughout my experiences into a simple and short FREE training where I cover the entire AI appointment booking process. This includes how to find leads, create scripts, set up follow-up sequences, generate AI videos, clone your voice, compare non-AI metrics with AI metrics, and even navigate AI safety controls. I also offer Chrome extensions that helped me automate the process even further, so you can spend your time closing deals or focusing on other acquisition channels, while your AI machine for booking appointments runs with minimal effort from you. If you’re interested please get in touch with me and thank you for taking the time to read my personal story.

My Roadmap to Success with AI Automation for Small Businesses
reddit
LLM Vibe Score0
Human Vibe Score1
Giggly_ScarlettThis week

My Roadmap to Success with AI Automation for Small Businesses

Hey everybody! 👋 I’ve been working on automating small business workflows for a while now, and I wanted to share how AI and automation can help scale your business with no coding experience required. I started by automating tedious tasks for clients. Things like social media posting, client onboarding, and data transfers by using simple tools like Make and Zapier. The results were amazing! For example: One client cut down 3 hours of daily social media posting to just 15 minutes a day. Another automated follow-ups for proposals, which saved them dozens of hours each month. A boutique business streamlined its customer service by setting up a chatbot for basic FAQs and lead qualification. But here’s the thing—automation isn’t perfect, and it’s crucial to know its limitations. AI might not always get everything right. That’s why I recommend setting up workflows where you still have some oversight—like reviewing AI-generated content before posting or checking data transfers for accuracy. It’s more of a quality-control role, but it ensures the AI doesn’t stain your brand. If you're wondering where to start, here's the roadmap I followed: Start with Make or Zapier: These are perfect for non-programmers and let you automate tasks like transferring data between tools or triggering specific actions. Learn Prompt Engineering: Master how to ask AI the right questions. A little practice goes a long way! Level Up to AI Agents: Once you’re comfortable, you can build more advanced AI systems, like RAG (Retrieval-Augmented Generation) agents, which help businesses create personalized responses. Learn Python (Optional): Want to take your automation to the next level? Learning Python gives you the power to customize AI and automation workflows even further. Automation can be a huge time-saver and growth booster, but it’s not about replacing people—it’s about giving them the tools to work smarter. If you’ve been putting off automation, trust me, it’s worth diving in. Let me know if y'all have any questions and I'd be happy to answer them!

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

Watched 8 hours of MrBeast's content. Here are 7 psychological strategies he's used to get 34 billion views
reddit
LLM Vibe Score0
Human Vibe Score1
Positive-Bison5023This week

Watched 8 hours of MrBeast's content. Here are 7 psychological strategies he's used to get 34 billion views

MrBeast can fill giant stadiums and launch 8-figure candy companies on demand. He’s unbelievably popular. Recently, I listened to the brilliant marketer Phill Agnew (from The Nudge podcast) being interviewed on the Creator Science podcast. The episode focused on how MrBeast’s near-academic understanding of audience psychology is the key to his success. Better than anyone, MrBeast knows how to get you: \- Click on his content (increase his click-through rate) \- Get you to stick around (increase his retention rate) He gets you to click by using irresistible thumbnails and headlines. I watched 8 hours of his content. To build upon Phil Agnew’s work, I made a list of 7 psychological effects and biases he’s consistently used to write headlines that get clicked into oblivion. Even the most aggressively “anti-clickbait” purists out there would benefit from learning the psychology of why people choose to click on some content over others. Ultimately, if you don’t get the click, it really doesn’t matter how good your content is. Novelty Effect MrBeast Headline: “I Put 100 Million Orbeez In My Friend's Backyard” MrBeast often presents something so out of the ordinary that they have no choice but to click and find out more. That’s the “novelty effect” at play. Our brain’s reward system is engaged when we encounter something new. You’ll notice that the headline examples you see in this list are extreme. MrBeast takes things to the extreme. You don’t have to. Here’s your takeaway: Consider breaking the reader/viewer’s scrolling pattern by adding some novelty to your headlines. How? Here are two ways: Find the unique angle in your content Find an unusual character in your content Examples: “How Moonlight Walks Skyrocketed My Productivity”. “Meet the Artist Who Paints With Wine and Chocolate.” Headlines like these catch the eye without requiring 100 million Orbeez. Costly Signaling MrBeast Headline: "Last To Leave $800,000 Island Keeps It" Here’s the 3-step click-through process at play here: MrBeast lets you know he’s invested a very significant amount of time and money into his content. This signals to whoever reads the headline that it's probably valuable and worth their time. They click to find out more. Costly signaling is all amount showcasing what you’ve invested into the content. The higher the stakes, the more valuable the content will seem. In this example, the $800,000 island he’s giving away just screams “This is worth your time!” Again, they don’t need to be this extreme. Here are two examples with a little more subtlety: “I built a full-scale botanical garden in my backyard”. “I used only vintage cookware from the 1800s for a week”. Not too extreme, but not too subtle either. Numerical Precision MrBeast knows that using precise numbers in headlines just work. Almost all of his most popular videos use headlines that contain a specific number. “Going Through The Same Drive Thru 1,000 Times" “$456,000 Squid Game In Real Life!” Yes, these headlines also use costly signaling. But there’s more to it than that. Precise numbers are tangible. They catch our eye, pique our curiosity, and add a sense of authenticity. “The concreteness effect”: Specific, concrete information is more likely to be remembered than abstract, intangible information. “I went through the same drive thru 1000 times” is more impactful than “I went through the same drive thru countless times”. Contrast MrBeast Headline: "$1 vs $1,000,000 Hotel Room!" Our brains are drawn to stark contrasts and MrBeast knows it. His headlines often pit two extremes against each other. It instantly creates a mental image of both scenarios. You’re not just curious about what a $1,000,000 hotel room looks like. You’re also wondering how it could possibly compare to a $1 room. Was the difference wildly significant? Was it actually not as significant as you’d think? It increases the audience’s \curiosity gap\ enough to get them to click and find out more. Here are a few ways you could use contrast in your headlines effectively: Transformational Content: "From $200 to a $100M Empire - How A Small Town Accountant Took On Silicon Valley" Here you’re contrasting different states or conditions of a single subject. Transformation stories and before-and-after scenarios. You’ve got the added benefit of people being drawn to aspirational/inspirational stories. Direct Comparison “Local Diner Vs Gourmet Bistro - Where Does The Best Comfort Food Lie?” Nostalgia MrBeast Headline: "I Built Willy Wonka's Chocolate Factory!" Nostalgia is a longing for the past. It’s often triggered by sensory stimuli - smells, songs, images, etc. It can feel comforting and positive, but sometimes bittersweet. Nostalgia can provide emotional comfort, identity reinforcement, and even social connection. People are drawn to it and MrBeast has it down to a tee. He created a fantasy world most people on this planet came across at some point in their childhood. While the headline does play on costly signaling here as well, nostalgia does help to clinch the click and get the view. Subtle examples of nostalgia at play: “How this \[old school cartoon\] is shaping new age animation”. “\[Your favorite childhood books\] are getting major movie deals”. Morbid Curiosity MrBeast Headline: "Surviving 24 Hours Straight In The Bermuda Triangle" People are drawn to the macabre and the dangerous. Morbid curiosity explains why you’re drawn to situations that are disturbing, frightening, or gruesome. It’s that tension between wanting to avoid harm and the irresistible desire to know about it. It’s a peculiar aspect of human psychology and viral content marketers take full advantage of it. The Bermuda Triangle is practically synonymous with danger. The headline suggests a pretty extreme encounter with it, so we click to find out more. FOMO And Urgency MrBeast Headline: "Last To Leave $800,000 Island Keeps It" “FOMO”: the worry that others may be having fulfilling experiences that you’re absent from. Marketers leverage FOMO to drive immediate action - clicking, subscribing, purchasing, etc. The action is driven by the notion that delay could result in missing out on an exciting opportunity or event. You could argue that MrBeast uses FOMO and urgency in all of his headlines. They work under the notion that a delay in clicking could result in missing out on an exciting opportunity or event. MrBeast’s time-sensitive challenge, exclusive opportunities, and high-stakes competitions all generate a sense of urgency. People feel compelled to watch immediately for fear of missing out on the outcome or being left behind in conversations about the content. Creators, writers, and marketers can tap into FOMO with their headlines without being so extreme. “The Hidden Parisian Cafe To Visit Before The Crowds Do” “How \[Tech Innovation\] Will Soon Change \[Industry\] For Good” (Yep, FOMO and urgency are primarily responsible for the proliferation of AI-related headlines these days). Why This All Matters If you don’t have content you need people to consume, it probably doesn’t! But if any aspect of your online business would benefit from people clicking on things more, it probably does. “Yes, because we all need more clickbait in this world - \eye-roll emoji\” - Disgruntled Redditor I never really understood this comment but I seem to get it pretty often. My stance is this: If the content delivers what the headline promises, it shouldn’t be labeled clickbait. I wouldn’t call MrBeast’s content clickbait. The fact is that linguistic techniques can be used to drive people to consume some content over others. You don’t need to take things to the extremes that MrBeast does to make use of his headline techniques. If content doesn’t get clicked, it won’t be read, viewed, or listened to - no matter how brilliant the content might be. While “clickbait” content isn’t a good thing, we can all learn a thing or two from how they generate attention in an increasingly noisy digital world.

Partnership revenue share uncertainty as test before any equity discussions, please help, urgent
reddit
LLM Vibe Score0
Human Vibe Score1
jayn35This week

Partnership revenue share uncertainty as test before any equity discussions, please help, urgent

Hi all, It's brand new relationship to collaborate on work and fast moving situation and i want to be fair and informed about revenue share for this work as startup, new agency, unclear still. Sorry for rushed message, its moving fast. Its starting with revenue share to test and see how things go. I contribute some things as a separate entity/consultant/marketing domain expert who designed some AI products and am able to acquire clients reliably with my marketing skills then they do all development and sales assistance. Details below please can you help with advice on contribution and revenue share thats very fair: The "partnership" non ownership (rev share is best correct?) of delivering custom AI software development solutions to smb b2b clients. As a domain expert i designed a product for myself and then others upsells and want to sell it to other biz, there is interest, its been tested as viable with my outreach which I do and now have 5 clients from last night wanting to meet or receive short video explanations before we meet (its my initial offer, a vid demo). I have designed the product or solution completely and have already developed mvp of the first product that i use myself and is immensely valuable to me. I also acquire all the clients as an client outreach/acquisition expert and perform that entire client acquisition function and marketing up until sales call where they provide assistance/ a joint tech and marketing/product domain specialist (me) sales call, still to be discussed. No dedicated sales function but they have experience. Then I partner with a great desirable professional development agency to deploy the solution and everything that entails hoping for a long-term similar arrangement that mutually beneficial and fair. They also assist with the sales process to close deals, we both contribute on the sales calls but client generation and marketing up to the sales call is my contribution. What would the fair revenue share be in a perfectly fair equal situation and what would it be if I wanted to be generous because i really want to work with them moving forward. Also what would the equity split be if a new entity was formed later to formalize partnership and the contribution remained the same. I dont know much about this or what I should be doing in my situation. As I understand searching revenue share online and a summary from perplexity I perform two of the major functions and they one so something like 30-40 them and the rest me? But if i wanted to be generous and show my appreciation for working with me on this as they are high quality and i foresee more opportunity benefits and capabilities in the future due to their expertise and know they would deliver a superb job, would 50/50 be a fair split? Or am I undervaluing/overvaluing myself,, can you not just offer the logic but advice as well based on the info you have, this is brand new and moving super fast, online info seems clear but i want mine to be super fair even generous for them so they are happy, but also not foolish or irresponsible from my side. Its all new to me. Thank you so much!

Building Business Development/Sales Pipeline
reddit
LLM Vibe Score0
Human Vibe Score1
Nevoy_92This week

Building Business Development/Sales Pipeline

Hey all! Happy weekend wherever you may be! Wanting to get some advice and insight into a couple areas as mentioned in the title. Background is the following: My Partner and I started our company about in 2021. When we kicked off we were building a control and camera vision system for automating and optimizing indoor vertical farms. We got to early mvp but market was not as big and barrier to entry was high. So we pivoted early 2023 to utilize components of our technology in a wildfire detection and risk analysis platform. Happy to say we are once again at MVP but need to get PMF and pipeline going both with revenue generating clients and pilots/demos. Through this period we’ve kept the lights on by running a consulting service and digital agency. We’ve also pushed out a couple of AI tools to market. Effectively I need to build out a strong pipeline for each vertical and associated sales team. Right now spread too thin trying to conduct sales and business dev on each front. Challenges: Wildfire: Business to Gov relationships so need to build for that. Additionally early stage technology so imo relationships are critical. Additionally need to take advantage of grant funding. Target Markets: Canada, USA, Mediterranean, Northern Europe/Scandavian Countries. Consulting and Agency: Things feel dry… we have a recurring client list but we want to grow this channel exponentially, focusing on RFP’s and med to large company profiles rather then the current SMB. Our current activités are mediocre imo for outreach and connection. AI Tools: I believe these are great opportunities. TLDR 1)sales based assistant as well as 2)central AI aggregation with prompt repository. Business Dev Energy into this is basically focused on digital means. In the process of generating video content to push via ads and online social platforms. Challenge: low engagement right now users signing up but no commitments to purchase. Need to evaluate value offer and feedback on PMF. From the sales team side, effectively need to generate the sales so I can expand the team and grow accordingly. I’m a huge proponent of commission based compensation. Also open to a base salary. However anyone I onboard at this moment would have to be commission cause cash-flow. On that front, what are current commissions structures looking like for people? What’s engaging what’s worth taking a risk what is just a huge no? On the challenges for the product lines any feedback questions and even poking holes is appreciated! Thanks!

This founder was about to shut down his business and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What other businesses can scale like this?
reddit
LLM Vibe Score0
Human Vibe Score1
CountryPitifulThis week

This founder was about to shut down his business and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What other businesses can scale like this?

I heard that Jasper scaled to $45m ARR in 12 months...with a team of 8. For context, they are one of the fastest-growing companies ever. Grew from $0 to $45m ARR in 12 months (then raised $125m at a $1.5b valuation). As a fellow founder, their story is really inspiring to me (curious about what others think): In December 2020, Dave Rogenmoser and his co-founders were on the brink of shutting down their business. They'd spent 3+ years building a conversion optimization software called Proof...and it was flatlining. A few weeks prior they had to make the painful decision to let go of half their team. Competition and churn had completely eroded growth. Things were painful. 8 years of work left them with a string of startups that never quite made it: 2 failed software businesses (couldn't make money*) A SMB marketing agency (maxed out at $25k/mo*) An online course company (hard to get big*) The Pivot: In January 2021, they had an idea to use Chat GPT-3, the generative AI model released 6 months earlier, to write high-converting Facebook ads. Within 30 days, they launched the business. With the skeleton crew remaining from the last startup, they scaled the business to $45m ARR and 70,000+ customers without hiring a single new person. Soon after, they raised $125m at a $1.5b valuation. Dave Rogenmoser, CEO at Jasper, had some great one-liners in a few podcasts I listened to on the business. Here are some of his learnings: Right Skill, Wrong Vehicle: He spent 8 years building marketing businesses which gave this team the knowledge and confidence to spend $1m/mo on sales and marketing to scale the business to $45m ARR in year 1. Launch Fast & Iterate Quickly: The team agreed that if the business didn't work in 30 days, they'd shut it down. Dave says, "If you have been working on a problem for more than 18 months and haven't found Product market fit (PMF), odds are you won't...Make the hard pivot."* Ride A Big Wave: Generative AI technology is a new technology that is changing the way we work. But it's not just text. It's images, voice, etc. Identify new customer segments (e.g., Municipalities, Banks, Lawyers, etc.), learn their problems, and apply this novel technology to solve them. What other businesses have you seen scale like this? I've never seen a SaaS business grow that fast. I meet interesting founders 2x per week and share the learnings here.

This founder was about to shut down his startup and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What else have you seen grow that fast?
reddit
LLM Vibe Score0
Human Vibe Score1
CountryPitifulThis week

This founder was about to shut down his startup and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What else have you seen grow that fast?

I heard that Jasper scaled to $45m ARR in 12 months...with a team of 8. For context, they are one of the fastest-growing companies ever. Grew from $0 to $45m ARR in 12 months (then raised $125m at a $1.5b valuation). As a fellow founder, their story is really inspiring to me (curious about what others think): In December 2020, Dave Rogenmoser and his co-founders were on the brink of shutting down their business. They'd spent 3+ years building a conversion optimization software called Proof...and it was flatlining. A few weeks prior they had to make the painful decision to let go of half their team. Competition and churn had completely eroded growth. Things were painful. 8 years of work left them with a string of startups that never quite made it: 2 failed software businesses (couldn't make money*) A SMB marketing agency (maxed out at $25k/mo*) An online course company (hard to get big*) The Pivot: In January 2021, they had an idea to use Chat GPT-3, the generative AI model released 6 months earlier, to write high-converting Facebook ads. Within 30 days, they launched the business. With the skeleton crew remaining from the last startup, they scaled the business to $45m ARR and 70,000+ customers without hiring a single new person. Soon after, they raised $125m at a $1.5b valuation. Dave Rogenmoser, CEO at Jasper, had some great one-liners in a few podcasts I listened to on the business. Here are some of his learnings: Right Skill, Wrong Vehicle: He spent 8 years building marketing businesses which gave this team the knowledge and confidence to spend $1m/mo on sales and marketing to scale the business to $45m ARR in year 1. Launch Fast & Iterate Quickly: The team agreed that if the business didn't work in 30 days, they'd shut it down. Dave says, "If you have been working on a problem for more than 18 months and haven't found Product market fit (PMF), odds are you won't...Make the hard pivot."* Ride A Big Wave: Generative AI technology is a new technology that is changing the way we work. But it's not just text. It's images, voice, etc. Identify new customer segments (e.g., Municipalities, Banks, Lawyers, etc.), learn their problems, and apply this novel technology to solve them. What other businesses have you seen scale like this? I've never seen a SaaS business grow that fast. I meet interesting founders 2x per week and share the learnings here.

Best AI tools to help company productivity?
reddit
LLM Vibe Score0
Human Vibe Score1
Significant_Stable_7This week

Best AI tools to help company productivity?

Hey guys! I recently did a big restructuring of my production company and moving away from smaller businesses ad’s and moving up to working with larger marketing agencies. My partner and I are brainstorming ways to automate or at least improve certain parts of our business as we also start to expand our team & to improve ease of labour as our turn around times tend to have to be pretty quick. The main things we’re looking to improve is in: • Sales/out reach strategy: we are constantly reaching out to new agencies in different parts of the world. I am already used to manually making a plan for each company we reach out to but it can be very time consuming. I don’t know if there is even a tool that could help with this haha. Even if it helps with pointers! • Organizing/visualizing spreadsheets: we deal with spreadsheets on what we spend per production and how we distribute our total budget per department. If there is anyway to ease the workflow for our managers and on top of that also allow us to expand easier without having to look for someone who is very efficient on excel or spending more time and money on the training. • Scheduling: We already have so much to organize day per day, im not sure if there is any tool or ai system that could help in regards to scheduling meetings, organizing priorities or even just deadlines for certain projects. Example: we need to schedule everything from pre production deadlines (meetings with talent, agency, and crew) production deadlines, & post production deadlines. I’m sure there is other small things I am missing but those are the three main things! There is just so many things i saw on the internet that are “ai powered” or “ai improved workflow” that all claim are the best or some just use chat gpt so its essentially all the same thing. I thought id ask on here to see if anyone has actually tried and could recommend some ai tools out there! Cheers,

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

Hear me out, you are annoying
reddit
LLM Vibe Score0
Human Vibe Score1
someone-shoot-meThis week

Hear me out, you are annoying

I am a full stack web developer capable of realizing most of the people’s ideas here. Few things to mention out: Developers are not Google itself. You can’t randomly tell them to implement AI, blockchain, NFT, stocks etc. cus developers are not wizards. Stuff like that requires knowledge, quite a lot of it, and if you want someone to spend shit ton of time implementing smtn, you better prepare to pay for it, cus that knowledge is valuable. Most of the time it requires whole teams to do the work you imagined. If someone came to me and told me yeah, I want a copy of upwork. Sure bud, and where are the other 50 developers? (there are exceptions here but still, people are talking whole platforms while I am the only dev there, mate imma need a whole year for this one) be ready to pay. Sure, your idea is cool, but I can’t wait another 2 years untill it starts making money, plus if it’s fully online business, why would i want to share 50/50 with you? No one is dumb enough to do 3 months od work for free just to share 50/50 in best case, with someone who “had an idea”, I could delete the files any second I want to it’s my code! No one is doing big projects for free, be ready to pay and know the value of other’s work. Otherwise have fun scrolling through indian freelancers! At least try to manage something! I am right now looking for projects that I could join, who needs a web dev and all of them are like okay do the work, don’t expect any money cus we aee starting with no money at all and we won’t bother any investors cus you aee the dumb enough developer do male our business for 25% share

What Are the Top Small Business Trends You Must Know for 2024 ?
reddit
LLM Vibe Score0
Human Vibe Score1
brycetychsenThis week

What Are the Top Small Business Trends You Must Know for 2024 ?

Are you excited about the new business horizons in 2024? Well, you should be! The small business landscape is evolving faster than anything right now, and here are the trends you absolutely need to know to keep your business game strong. Sustainable Swag In a world where eco-friendliness is the new black, businesses are carrying the badge of sustainability. From eco-packaging to carbon-neutral practices, customers are giving the side-eye to anything less green. So, if you want to be at the top, consider adopting some planet-friendly practices. Remote Work Revolution Office who? The 9-to-5 grind is getting a makeover, and the dress code is PJs. Remote work is no longer just a trend; it's a lifestyle. So, if your business can embrace the virtual office, you might just find your team doing the hustle and bustle with productivity. Tech-Tastic Ventures The future is now, and it's filled with tech wonders. Augmented reality (AR), artificial intelligence (AI), and all things tech are the new developments in this sector. Businesses incorporating these innovations are riding the digital wave straight to success. Personalization Party No one likes generic. Customers want products and services tailor-made just for them. So, businesses are using data to give customers an experience that feels as customized as a handmade suit. Say goodbye to one-size-fits-all! Community Crusaders In a world full of noise, community is the superhero we all need. Businesses are realizing the power of building a network around their brand. Whether it's through social media, events, or exclusive memberships, creating a community is like having an army of brand advocates. 2024 is the year to unleash your small business swagger. Embrace these trends, adapt with flair, and let your entrepreneurial spirit soar. Remember to sprinkle some personality into your business strategy—people love a brand with a sense of humor and a human touch!

Is SaaS Done?
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Salad709This week

Is SaaS Done?

Other day I was talking to one of the leaders in Office, He said "SAAS IS DY!NG THANKS TO AI". I found this fascinating & started digging on this, I was already part of communities like Build in Public, NoCode Builders & Others. I think he was right. I saw a significant raise in the AI Tools, what other call it 'AI Wrapper Startups' I explored many tools, then I realise why don't we capitalise this opportunity. I found out it is the marketers who needs to be aware of these & if you don't embrace these tools you will end up losing to someone with minimum experience with marketing but good hands on experience with the tools. If these tools keep up the same phase then you have both challenges & opportunities which I've listed it down in the post pros & cons. I think we need to embrace these tools are else we will be left behind. All these things are about marketers but what about the people who want to become solopreneurs or people like Pieter Levels who just want to create something useful get money either by selling or running multiple projects at once. Whatever I've studied & learnt. I came up with something called "The SaaS Marketing Innovation Cycle". The SaaS Marketing Innovation Cycle : Will have six easy steps. Empowering with No-code : Decide what is the problem you are planing to solve & understand which is No-code tool can help you with solution. Some tools will have steep learning curve, become expert on those tools. Integrate Automation AI : This is very crucial for your tool & make sure you have build a tool which will integrates easily with most of the platforms. Build Custom Solution : Right now the whole industry of Micro SaaS stands on building custom solutions, catering your audience is the best way to go for it. Launching MVPs : Because you have no-code tools it is easier to deploy MVPs than ever before & you can build multiple tools at once. Adapt & Grow : This is about the business take feedback from customer add new feature remove few yada yada. Leverage the Growth : Here it is important you have learn to build communities out these tools. if you come up with any new ideas there is always a group of people, who will be able adapt & give you the feedback to improve. Conclusion : Either build something or adapt something quicker when that has built. What do you think Folks ??

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰
reddit
LLM Vibe Score0
Human Vibe Score1
benfromwhereThis week

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰

(Monthly income breakdown is in the end) 📌 Introduction Hey everyone! 👋 Before I dive into this month’s breakdown, I just want to be upfront—English isn’t my first language, so I’ve used ChatGPT to refine this post for better readability. That said, everything here is 100% real—my personal experiences, struggles, and earnings as someone running a full-time AI influencer business. Since I get a lot of DMs asking about my AI models, here are their Instagram links: 📷 Emma – https://www.instagram.com/emmalauireal 📷 Jade – https://www.instagram.com/jadelaui (jadecasual is the second account) Also, if you’ve been wondering about the community I run, where I teach others how to build AI influencers from scratch, here’s the link (I got approval from mods for this link): 🔗 AI Winners Now, let’s get into what happened this month. 🚀 \------- First, a huge thank you! 🎉 Three months ago, I shared my journey of building an AI influencer business, and I was blown away by the response. That post got 263K+ views and was shared over 2.7K times—way more than I ever expected. If you’re new here or want to check out the full story of how I started, you can read it here: 🔗 Click Here (Reddit link) \------- 🔹 What I Did in January After the holiday rush in December, I knew January would be a slow month—people had already spent most of their money at the end of the year. So instead of pushing harder on monetization, I shifted my focus to tech development and optimization. Flux Character Loras: I spent a lot of time refining and testing different Flux-based character Loras for my models. This is still a work in progress, but the goal is to improve long-term consistency and make my workflow even more efficient. NSFW Content Expansion: On Emma’s side, I expanded her content library using a real model body double, making her content look more organic and natural. Jade, however, remains 100% AI-generated, keeping her workflow entirely digital. Social Media Wipeout (Thanks, VA 🙃): I had handed off both Twitter accounts to a virtual assistant to help with engagement and DMs. Big mistake. He ended up spamming DMs, which got both accounts banned—Emma (80K followers) and Jade (20K followers). 🤦‍♂️ Right now, I’m rebuilding Emma’s account from scratch and taking a much more cautious approach. Jade’s account is still offline for now. New Platform: Threads – I hadn’t touched Threads before, but since engagement on Instagram can be unpredictable, I decided to start accounts for both models. So far, they’re performing well, and I’ll continue experimenting. Launched AI Winners Community: After getting flooded with DMs (both here and on Instagram), I realized there was a massive demand for structured learning around AI influencers. So, I launched AI Winners, a paid community where I break down everything I’ve learned. It’s still early, but I see it turning into a solid, long-term community. Investment & Acquisition Talks: I’m still evaluating potential investors and acquisition offers for my AI models. There’s growing interest in buying or investing in Emma & Jade, so I’ve been having conversations to explore different options. Overall, January was about tech, rebuilding, and long-term planning—not immediate revenue. But that’s what keeps this business sustainable. 🚀 \------- ⚠️ Biggest Challenges This Month Lost Both Twitter Accounts (Massive Traffic Hit) 🚨 The biggest blow this month was losing my models’ Twitter accounts. Twitter was responsible for about 40% of my total traffic, meaning both free and paid subs took a direct hit. While Emma’s revenue took a slight dip, Jade’s income dropped significantly—partly due to the account loss and partly because January is naturally slow. (Full revenue breakdown at the end of the post.) Jade’s Instagram Tanked (Possible Shadow Ban?) 🤔 Jade’s Instagram completely lost momentum in early January. Engagement and reach dropped by over 80%, and I still haven’t figured out why. It feels like a shadow ban, but I have no clear confirmation. To counter this, I launched a second backup account, and things are starting to recover. \------- 🚀 Potential Improvements & What’s Next Locking in a Stable Workflow 🔄 Right now, Emma & Jade’s workflow is still evolving, but I’m aiming to fully stabilize it. As I’m writing this, content is generating on my second monitor—a sign that I’m close to achieving full automation without compromising quality. Boosting Jade’s Fanvue Revenue 💰 Jade’s income took a hit this month, and it’s 100% a traffic issue. The solution? More content, more reach. I’ll be increasing social media output to drive consistent traffic back to Fanvue and restore her earnings. Patreon is Done. All Focus on Fanvue 🚫 I shut down both Emma & Jade’s Patreon accounts. The goal is not to split revenue—I want everything funneled into Fanvue for higher engagement and bigger paydays. \------- 💰 January 2025 Earnings Breakdown Despite January being one of the slowest months for online creators, Emma and Jade still brought in over $29K in revenue, with a net profit exceeding $20K after all expenses. Emma Laui generated $20,206.77, with around $6,000 in expenses (chatter payments, NSFW designer fees, and other operational costs). Jade Laui earned $8,939.05, with $2,000 in expenses. Considering Twitter account losses, Instagram setbacks, and the usual January spending slump, this is still a solid outcome. The focus now is on scaling traffic and maximizing Fanvue revenue heading into February. 🚀🔥 That’s the full breakdown for January! If you have questions, feel free to drop a comment, and I’ll answer when I can. Happy to help, just like others helped me when I was starting out! 🚀🔥

Dev with AI and No-code Experience - Social Startup
reddit
LLM Vibe Score0
Human Vibe Score0
CraftBrewskiThis week

Dev with AI and No-code Experience - Social Startup

Hi fellow startup folks! I am actively seeking an AI-learned, no-code web/app co-founder to support a social startup. Target market is very active on a few different platforms, where they glean a bit of knowledge and support. The problem (opportunity) that I have identified for this group is to build a single platform that will provide them with 100% of the support and experience that they currently crave from multiple, unrelated platforms. My research has shown that this group will easily understand our product offering and should / may be easy to convert. Initial goal is to build and release an MVP and start sharing it with the target market. The MVP will be bulit via a no-code application. Our product will pull APIs from a few trusted data-centric and market-related sources and roll those into a social format that will be fun and interactive. Lots of other cool things, too, but to be discussed later. It will be somewhat similar to the CodeMap . io concept, but with a social/interactive focus. CodeMap is built on Bubble (no-code). A little about me: I live in Denver, Colorado. Married with three dogs. 20+ year Operations and Program Management experience in aerospace (satellites) and renewables (hydropower). I have started a few businesses over the years - some profitable, some not - ranging from e-commerce, affiliate marketing, SaaS, etc. I solely built each of the businesses, but have leaned that I’m better at the Operations and execution side of business, rather than being in the weeds with programming (mainly because I’m not a programmer!). I’m looking forward to (hopefully) interacting with some of you on this project! Cheers!

Business Strategy Trends for 2024
reddit
LLM Vibe Score0
Human Vibe Score1
aidenleepingweiiThis week

Business Strategy Trends for 2024

As we gear up for 2024, it's time to gaze into the crystal ball and see what's reshaping the world of business strategy. From cutting-edge technology to how people are shopping, it's all happening. So let's check out the latest trends that are going to dominate the business world! Going Green and Doing Good Yep, you heard it right—being eco-friendly and socially responsible is all the rage. Businesses are jumping on the sustainability train, whether it's by using recycled materials or giving back to the community. It's not just good for the planet—it's good for business too! Tech Takeover From fancy AI to blockchain innovations, businesses are embracing all things digital. It's not just about staying up to date—it's about using technology to make things easier, faster, and way more amazing. Work from Anywhere Who says you have to be stuck in an office all day? Today, businesses are all about flexibility. Whether you're working from home, a coffee shop, or a hammock on the beach, it's all good. Remote work is here to stay, and people are loving the freedom it brings. Treat Yo' Customers Want to stand out in a sea of competition? It's all about making your customers feel special. Whether it's personalized recommendations or killer customer service, businesses are pulling out all the stops to keep folks coming back for more. Roll with the Punches In today's fast-paced world, you've got to be quick on your feet. That's why businesses are ditching rigid plans and embracing agile strategies. It's all about being able to adapt to whatever curveballs the world throws your way. Click, Buy, and Repeat Online shopping is getting bigger. Businesses are getting creative with their online offerings, whether it's through slick new websites, social media shenanigans, or funky new delivery options. The future of shopping is digital! Conclusion: The lowdown on what's shaking up the world of business strategy in 2024. Whether it's going green, embracing tech, or keeping customers happy, there's plenty of excitement on the horizon.

What Are the Top Small Business Trends You Must Know for 2024 ?
reddit
LLM Vibe Score0
Human Vibe Score1
brycetychsenThis week

What Are the Top Small Business Trends You Must Know for 2024 ?

Are you excited about the new business horizons in 2024? Well, you should be! The small business landscape is evolving faster than anything right now, and here are the trends you absolutely need to know to keep your business game strong. Sustainable Swag In a world where eco-friendliness is the new black, businesses are carrying the badge of sustainability. From eco-packaging to carbon-neutral practices, customers are giving the side-eye to anything less green. So, if you want to be at the top, consider adopting some planet-friendly practices. Remote Work Revolution Office who? The 9-to-5 grind is getting a makeover, and the dress code is PJs. Remote work is no longer just a trend; it's a lifestyle. So, if your business can embrace the virtual office, you might just find your team doing the hustle and bustle with productivity. Tech-Tastic Ventures The future is now, and it's filled with tech wonders. Augmented reality (AR), artificial intelligence (AI), and all things tech are the new developments in this sector. Businesses incorporating these innovations are riding the digital wave straight to success. Personalization Party No one likes generic. Customers want products and services tailor-made just for them. So, businesses are using data to give customers an experience that feels as customized as a handmade suit. Say goodbye to one-size-fits-all! Community Crusaders In a world full of noise, community is the superhero we all need. Businesses are realizing the power of building a network around their brand. Whether it's through social media, events, or exclusive memberships, creating a community is like having an army of brand advocates. 2024 is the year to unleash your small business swagger. Embrace these trends, adapt with flair, and let your entrepreneurial spirit soar. Remember to sprinkle some personality into your business strategy—people love a brand with a sense of humor and a human touch!

Digital Analytics and Marketing
reddit
LLM Vibe Score0
Human Vibe Score1
Chou789This week

Digital Analytics and Marketing

I'm a Data Analyst with wide range of experience in this niche. Looking for partner to bring me clients and get a cut on the charges, i.e act as a agency connecting businesses with developers. Lately, I see that Developer costs in US/EU is skyrocketing and hiring a decent Data Analyst costs a fortune for companies, small companies can't even think of getting one. Already working with several small businesses and see that many small businesses have need somebody to play around their data but since it's a costly affair, mostly small businesses stick with Excel and Google Sheets as their database and don't leverage the potential of automation, now with AI/LLM, having proper data strategy is important. We can team up and provide reach these low hanging fruits. What i do: Data Reporting: Move clients current data systems from Excel, Google Sheets into Database/Datawarehouse Integrate data from different sources like Pipedrive, Google Ads, Facebook Ads, Shopify etc and create automated custom reports on the data. Digital Marketing: For Shopify/Ecommernce site owners - Google Analytics Reporting Answer questions like Where is my traffic coming from, which traffic is working, how long they are staying in site, which products are working, product views to purchase ratio etc Custom Desktop Applications Custom: Have a custom idea? Let's discuss. DM me. Thanks. PS: Potential customers include ones who can't hire $50-$150/hr full time developers but want one at part time/freelancing type where they can get things done quickly/validating their ideas without burning their business.

Steep Learning : How I Mapped approximately 10K AI tools to 15K  Replaceable Tasks across 4K professions
reddit
LLM Vibe Score0
Human Vibe Score1
Apprehensive_Form396This week

Steep Learning : How I Mapped approximately 10K AI tools to 15K Replaceable Tasks across 4K professions

Hello Everyone , I would like to share some knowledge today which I went towards countless hours to do . I founded a portal called Seekme.ai, a comprehensive platform that houses over 10,000 AI tools and resources. Today, I'm excited to share with you an insightful and enlightening journey of how I mapped these tools to 15,000 tasks across 4,000 professions. This process, which I've named "Learn by Doing," got me the power of determination, collaboration, and adaptability. The Idea: It all started when I recognized the need for a more efficient and accessible way for professionals to understand which AI tools could help them automate their tasks. The traditional approach of manually researching and testing each AI tool for every profession was time-consuming and inefficient. I envisioned a solution that could streamline this process, making AI adoption easier and more accessible for a broader audience. The Planning: To begin, we needed a clear understanding of the task landscape across various professions. With the help of some Reddit communities , we embarked on an extensive study of common tasks in various industries. We utilized various sources, including government reports, industry surveys, and academic research, to create a comprehensive list of tasks. The result was an impressive list of 15,000 tasks. The Mapping: With the list of tasks in hand, the next step was to identify which AI tools could perform these tasks. I meticulously researched and analyzed each AI tool's capabilities and features. We cross-referenced this information with the tasks I had identified and created a mapping between the two. The process involved a significant amount of collaboration and refinement, as we continually updated and expanded our database of AI tools and tasks. The Challenges: The mapping process was not without its challenges. One of the primary obstacles was ensuring the accuracy and completeness of our data. To address this issue, I implemented a rigorous quality control process that included multiple rounds of checks and validations.I also established partnerships with industry experts and AI vendors to ensure our data was up-to-date and accurate. There is also a challenge that I faced was what is the quality of the tools which is the problem and how do I rank multiple tools if they do the same tasks without user feedback The Results: After months of hard work and dedication, I successfully mapped 10,000 AI tools to 15,000 tasks across 4,000 professions. Our new feature, AI by Profession, was born. This innovative will allow users to quickly and easily identify the AI tools that can automate tasks in their profession, making AI adoption more accessible and efficient than ever before. The Impact: The impact of this project has been significant. By making it easier for professionals to identify AI tools that can automate tasks in their industry, we're helping to drive productivity, efficiency, and innovation. Our users are saving time and resources by not having to manually research and test AI tools. Furthermore, we're contributing to the broader goal of democratizing AI and making it accessible to a broader audience. But there is a still an issue we face of ranking tools who does the similar job. For instance for content creation there 10 tools that can do same video editing so how do we rank it . We are planning to add categories to this to make it more exhaustive Conclusion: The journey to mapping 10,000 AI tools for 15,000 tasks across 4,000 professions was a challenging and rewarding experience. It required a significant amount of planning, determination, and collaboration, but the end result was a powerful tool that's making a difference in the lives of professionals around the world. I don’t know yet how useful it is yet for users So I am inviting you all to see if this feature can help you better equip yourself on the new wave and do things better. I am always up for a chat on anything AI and provide my help if needed. Looking forward to some feedback aswell

Hear me out, you are annoying
reddit
LLM Vibe Score0
Human Vibe Score1
someone-shoot-meThis week

Hear me out, you are annoying

I am a full stack web developer capable of realizing most of the people’s ideas here. Few things to mention out: Developers are not Google itself. You can’t randomly tell them to implement AI, blockchain, NFT, stocks etc. cus developers are not wizards. Stuff like that requires knowledge, quite a lot of it, and if you want someone to spend shit ton of time implementing smtn, you better prepare to pay for it, cus that knowledge is valuable. Most of the time it requires whole teams to do the work you imagined. If someone came to me and told me yeah, I want a copy of upwork. Sure bud, and where are the other 50 developers? (there are exceptions here but still, people are talking whole platforms while I am the only dev there, mate imma need a whole year for this one) be ready to pay. Sure, your idea is cool, but I can’t wait another 2 years untill it starts making money, plus if it’s fully online business, why would i want to share 50/50 with you? No one is dumb enough to do 3 months od work for free just to share 50/50 in best case, with someone who “had an idea”, I could delete the files any second I want to it’s my code! No one is doing big projects for free, be ready to pay and know the value of other’s work. Otherwise have fun scrolling through indian freelancers! At least try to manage something! I am right now looking for projects that I could join, who needs a web dev and all of them are like okay do the work, don’t expect any money cus we aee starting with no money at all and we won’t bother any investors cus you aee the dumb enough developer do male our business for 25% share

Idea feedback: AI-native self-improvement & wellness
reddit
LLM Vibe Score0
Human Vibe Score1
thewhitelynxThis week

Idea feedback: AI-native self-improvement & wellness

Hello redditors! Thesis: We're all trying to live our best lives and many of us try to leverage technology to become better faster and easier. I’m trying to build a company that builds an AI-native solution for self-improvement. My thesis is that AI is an incredibly powerful tool for solving problems, particularly in programming and generally life - but ChatGPT isn't really designed to be your long-term 'coach'. It's great for handling specific tasks, answering questions, doing research, etc. - but it's memory and UX isn't optimized around things like behavior change, mental health support, and long-term personal life planning I believe my core problems (which I think are shared by many) are: 1) Staying motivated - it's easy to lose motivation when progress isn't immediately apparent, there are setbacks, etc. 2) Self-doubt - it makes me question myself and waste time wondering if I'm the right person to be doing this, if the idea is too broad, etc. Some of this is good - but a lot of it just makes me less effective 3) Staying on Track - I start a thing, but then gradually pivot a million different directions. This may be a touch of ADHD. I find that I'll have a long-term goal (e.g. launching a successful business), but I'll tend to wonder a lot in the process of executing over weeks and months. Staying on track just feels suprisingly difficult. I do create TODO lists and have a Kanban board I’m considering a bunch of features and have built a version focused more specifically towards mental health which implements a few: \----- • Guided Journaling Guided journaling prompts to facilitate deeper reflection • Specialist AI Coaches Personalized, expert AI coaching for your specific area of focus and goals For startup, marketing, life, fashion, whatever you want. • Goal Tracking Define, track, and achieve your goals • Behavior Change & Habit Formation Leverage the science of behavior change to help you make lasting changes in your life • Mood tracking Track and improve your mood leveraging science-backed techniques • Areas for growth Identify and develop your strengths and manage your weaknesses • Insight reports Get personalized insights into your cognitive and behavioral patterns • Inspirational Quotes Stay motivated with curated daily quotes relevant to your journey • Gamification of Growth & Mood Turn your mental health journey into a game and earn rewards for your progress \---- Would love thoughts on the idea, and feedback - and if anyone is interested in being a design partner / early user, I'd love to chat in greater depth 1:1!

Looking for a co-founder for a B2B AI startup. I have a development team and funds for at least a year of operations.
reddit
LLM Vibe Score0
Human Vibe Score0.5
cheech123456This week

Looking for a co-founder for a B2B AI startup. I have a development team and funds for at least a year of operations.

Hello, As the title said I'm looking for a co-founder. I built with my team a few ventures that generate revenues but I don't believe that any of them has a future. I have 15 years of experience in Software Engineering and AI. Worked in various industries, but always in data-driven applications. I spent the last 3 years as an entrepreneur and raised successfully money from VCs. &#x200B; A few preconceptions I have: \- B2C is extremely hard. Very quickly you realize that you need to spend all your resources on marketing. \- B2B is extremely hard - but for different reasons. Sales cycles take months. If you want to reach serious buyers and decision-makers, you need to have an amazing network. Even then, companies will prioritize 90% of the time to do things internally rather than paying for anything. \- I hate when people say that "ideas are garbage", and I think that execution is overhyped. Execution is a matter of finding the right people, and paying them (I am confident to say that I can guarantee good execution). Ideas are not garbage, ideas need validation, and garbage "entrepreneurs" are too lazy to validate anything. &#x200B; Your ideal profile: \- You have a great idea, something that has been brewing for some time but you lack resources or technical experience to execute by yourself. \- You have domain expertise, experience, and a network. If we build an MVP in 3 months, you can get 20 interviews with industry people to validate the solution. Once the MVP is built you can put it in front of another 40 people. \- You are a product person. \- You can do efficient sales calls. (Bonus: You are a sales person) If you are an ideal profile, please reach out.

Need help with the growth I couldn't handle
reddit
LLM Vibe Score0
Human Vibe Score1
luxendaryThis week

Need help with the growth I couldn't handle

Calling all innovators, dreamers, and disruptors! &#x200B; We're pioneering a new frontier in the world of manufacturing with our vision: "Text to Product". I'm seeking individuals passionate about AI, manufacturing, efficiency and automation. While we can't promise immediate financial rewards, we're offering equity in a venture that's setting out to redefine the way things are made and sold. If the prospect of revolutionizing the future of humanity excites you, we'd love to hear from you. &#x200B; &#x200B; P.S. I realized that I can't always use "brute force" for solving problems, so seeking "the right connections" (seasoned entrepreneurs, advisors). Here's the TLDR version of my story: Started a company with ex-boss, bought him out, grinded for 2 years, found a way to 1000x the orders.* Went full speed for a month, got overwhelmed, barely kept up with half the demand (with that production process).* Focused on this one "platform", shipped hundreds of thousands of units in one holiday season.* Next quarter "the platform" returned about 85% of products as "overstock", demanded money back, made legal threats.* I told them that I will go to court and they stopped bothering me.* Then Covid + Nasty divorce which made me put a pause to regroup.* 2 years later, with 2x the production capacity and after relocating to a friendlier state (from NYC to MIA) I'm ready to relaunch (with a clear head, knowledge of fast growth and what to avoid).*

Looking For Tech-Savvy Business Partner
reddit
LLM Vibe Score0
Human Vibe Score1
DesignedItThis week

Looking For Tech-Savvy Business Partner

Hi! I'm looking for a business partner to help with one of my product lines or we could create a new product line together. I would like the product to be a digital asset where we can sell it on another website, where the other website brings customers to our product so we don't have to market it at first. Our short-term goal will be to publish a product one month after connecting and then make $1 by the following month. Our 4-month goal will be to generate $2,500 - $7,500 in passive income per year for one product line. I'm not trying to make a lot of money right away, but am looking to setup enough passive income so we can both retire early in a few years. For this year, I wrote down 100's of ideas, tried 30 ideas, have 14 ideas that work, and have only 6 ideas that would be profitable. So I'll bring with me only the best of the best ideas. I'm all about efficiency and doing things in bulk to maximize profit and decrease time spent, using AI to generate text/images/audio but adding on that manual touch to make all digital products high-quality and 5 stars, and using software like Python to automate repetitive processes to create digital products. My main skillset: running a business, project management, creating design and technical documentation, marketing, hiring, budgeting, business analysis, graphic design, software development, app development, web design/development, AI development, databases, data engineering, cloud/Azure, data analysis, and reporting. I know many other skills too and can pick up and learn a new business or technical skill pretty quickly. I also have a friend who's in IT/security/networking/servers if we need to bring him in. A clone of myself would be perfect to connect with, but working with anyone with a different skillset would open up the digital product possibilities. I might put tech-savvy at the top of the list so you could figure out how to create new digital products, while business-savvy might be #2, Other skills might be specific to individual products. If you're interested in working together, then feel free to post below or message me!

Digital Analytics and Marketing
reddit
LLM Vibe Score0
Human Vibe Score1
Chou789This week

Digital Analytics and Marketing

I'm a Data Analyst with wide range of experience in this niche. Looking for partner to bring me clients and get a cut on the charges, i.e act as a agency connecting businesses with developers. Lately, I see that Developer costs in US/EU is skyrocketing and hiring a decent Data Analyst costs a fortune for companies, small companies can't even think of getting one. Already working with several small businesses and see that many small businesses have need somebody to play around their data but since it's a costly affair, mostly small businesses stick with Excel and Google Sheets as their database and don't leverage the potential of automation, now with AI/LLM, having proper data strategy is important. We can team up and provide reach these low hanging fruits. What i do: Data Reporting: Move clients current data systems from Excel, Google Sheets into Database/Datawarehouse Integrate data from different sources like Pipedrive, Google Ads, Facebook Ads, Shopify etc and create automated custom reports on the data. Digital Marketing: For Shopify/Ecommernce site owners - Google Analytics Reporting Answer questions like Where is my traffic coming from, which traffic is working, how long they are staying in site, which products are working, product views to purchase ratio etc Custom Desktop Applications Custom: Have a custom idea? Let's discuss. DM me. Thanks. PS: Potential customers include ones who can't hire $50-$150/hr full time developers but want one at part time/freelancing type where they can get things done quickly/validating their ideas without burning their business.

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰
reddit
LLM Vibe Score0
Human Vibe Score1
benfromwhereThis week

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰

(Monthly income breakdown is in the end) 📌 Introduction Hey everyone! 👋 Before I dive into this month’s breakdown, I just want to be upfront—English isn’t my first language, so I’ve used ChatGPT to refine this post for better readability. That said, everything here is 100% real—my personal experiences, struggles, and earnings as someone running a full-time AI influencer business. Since I get a lot of DMs asking about my AI models, here are their Instagram links: 📷 Emma – https://www.instagram.com/emmalauireal 📷 Jade – https://www.instagram.com/jadelaui (jadecasual is the second account) Also, if you’ve been wondering about the community I run, where I teach others how to build AI influencers from scratch, here’s the link (I got approval from mods for this link): 🔗 AI Winners Now, let’s get into what happened this month. 🚀 \------- First, a huge thank you! 🎉 Three months ago, I shared my journey of building an AI influencer business, and I was blown away by the response. That post got 263K+ views and was shared over 2.7K times—way more than I ever expected. If you’re new here or want to check out the full story of how I started, you can read it here: 🔗 Click Here (Reddit link) \------- 🔹 What I Did in January After the holiday rush in December, I knew January would be a slow month—people had already spent most of their money at the end of the year. So instead of pushing harder on monetization, I shifted my focus to tech development and optimization. Flux Character Loras: I spent a lot of time refining and testing different Flux-based character Loras for my models. This is still a work in progress, but the goal is to improve long-term consistency and make my workflow even more efficient. NSFW Content Expansion: On Emma’s side, I expanded her content library using a real model body double, making her content look more organic and natural. Jade, however, remains 100% AI-generated, keeping her workflow entirely digital. Social Media Wipeout (Thanks, VA 🙃): I had handed off both Twitter accounts to a virtual assistant to help with engagement and DMs. Big mistake. He ended up spamming DMs, which got both accounts banned—Emma (80K followers) and Jade (20K followers). 🤦‍♂️ Right now, I’m rebuilding Emma’s account from scratch and taking a much more cautious approach. Jade’s account is still offline for now. New Platform: Threads – I hadn’t touched Threads before, but since engagement on Instagram can be unpredictable, I decided to start accounts for both models. So far, they’re performing well, and I’ll continue experimenting. Launched AI Winners Community: After getting flooded with DMs (both here and on Instagram), I realized there was a massive demand for structured learning around AI influencers. So, I launched AI Winners, a paid community where I break down everything I’ve learned. It’s still early, but I see it turning into a solid, long-term community. Investment & Acquisition Talks: I’m still evaluating potential investors and acquisition offers for my AI models. There’s growing interest in buying or investing in Emma & Jade, so I’ve been having conversations to explore different options. Overall, January was about tech, rebuilding, and long-term planning—not immediate revenue. But that’s what keeps this business sustainable. 🚀 \------- ⚠️ Biggest Challenges This Month Lost Both Twitter Accounts (Massive Traffic Hit) 🚨 The biggest blow this month was losing my models’ Twitter accounts. Twitter was responsible for about 40% of my total traffic, meaning both free and paid subs took a direct hit. While Emma’s revenue took a slight dip, Jade’s income dropped significantly—partly due to the account loss and partly because January is naturally slow. (Full revenue breakdown at the end of the post.) Jade’s Instagram Tanked (Possible Shadow Ban?) 🤔 Jade’s Instagram completely lost momentum in early January. Engagement and reach dropped by over 80%, and I still haven’t figured out why. It feels like a shadow ban, but I have no clear confirmation. To counter this, I launched a second backup account, and things are starting to recover. \------- 🚀 Potential Improvements & What’s Next Locking in a Stable Workflow 🔄 Right now, Emma & Jade’s workflow is still evolving, but I’m aiming to fully stabilize it. As I’m writing this, content is generating on my second monitor—a sign that I’m close to achieving full automation without compromising quality. Boosting Jade’s Fanvue Revenue 💰 Jade’s income took a hit this month, and it’s 100% a traffic issue. The solution? More content, more reach. I’ll be increasing social media output to drive consistent traffic back to Fanvue and restore her earnings. Patreon is Done. All Focus on Fanvue 🚫 I shut down both Emma & Jade’s Patreon accounts. The goal is not to split revenue—I want everything funneled into Fanvue for higher engagement and bigger paydays. \------- 💰 January 2025 Earnings Breakdown Despite January being one of the slowest months for online creators, Emma and Jade still brought in over $29K in revenue, with a net profit exceeding $20K after all expenses. Emma Laui generated $20,206.77, with around $6,000 in expenses (chatter payments, NSFW designer fees, and other operational costs). Jade Laui earned $8,939.05, with $2,000 in expenses. Considering Twitter account losses, Instagram setbacks, and the usual January spending slump, this is still a solid outcome. The focus now is on scaling traffic and maximizing Fanvue revenue heading into February. 🚀🔥 That’s the full breakdown for January! If you have questions, feel free to drop a comment, and I’ll answer when I can. Happy to help, just like others helped me when I was starting out! 🚀🔥

Looking For Tech-Savvy Business Partner
reddit
LLM Vibe Score0
Human Vibe Score1
DesignedItThis week

Looking For Tech-Savvy Business Partner

Hi! I'm looking for a business partner to help with one of my product lines or we could create a new product line together. I would like the product to be a digital asset where we can sell it on another website, where the other website brings customers to our product so we don't have to market it at first. Our short-term goal will be to publish a product one month after connecting and then make $1 by the following month. Our 4-month goal will be to generate $2,500 - $7,500 in passive income per year for one product line. I'm not trying to make a lot of money right away, but am looking to setup enough passive income so we can both retire early in a few years. For this year, I wrote down 100's of ideas, tried 30 ideas, have 14 ideas that work, and have only 6 ideas that would be profitable. So I'll bring with me only the best of the best ideas. I'm all about efficiency and doing things in bulk to maximize profit and decrease time spent, using AI to generate text/images/audio but adding on that manual touch to make all digital products high-quality and 5 stars, and using software like Python to automate repetitive processes to create digital products. My main skillset: running a business, project management, creating design and technical documentation, marketing, hiring, budgeting, business analysis, graphic design, software development, app development, web design/development, AI development, databases, data engineering, cloud/Azure, data analysis, and reporting. I know many other skills too and can pick up and learn a new business or technical skill pretty quickly. I also have a friend who's in IT/security/networking/servers if we need to bring him in. A clone of myself would be perfect to connect with, but working with anyone with a different skillset would open up the digital product possibilities. I might put tech-savvy at the top of the list so you could figure out how to create new digital products, while business-savvy might be #2, Other skills might be specific to individual products. If you're interested in working together, then feel free to post below or message me!

Is SaaS Done?
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Salad709This week

Is SaaS Done?

Other day I was talking to one of the leaders in Office, He said "SAAS IS DY!NG THANKS TO AI". I found this fascinating & started digging on this, I was already part of communities like Build in Public, NoCode Builders & Others. I think he was right. I saw a significant raise in the AI Tools, what other call it 'AI Wrapper Startups' I explored many tools, then I realise why don't we capitalise this opportunity. I found out it is the marketers who needs to be aware of these & if you don't embrace these tools you will end up losing to someone with minimum experience with marketing but good hands on experience with the tools. If these tools keep up the same phase then you have both challenges & opportunities which I've listed it down in the post pros & cons. I think we need to embrace these tools are else we will be left behind. All these things are about marketers but what about the people who want to become solopreneurs or people like Pieter Levels who just want to create something useful get money either by selling or running multiple projects at once. Whatever I've studied & learnt. I came up with something called "The SaaS Marketing Innovation Cycle". The SaaS Marketing Innovation Cycle : Will have six easy steps. Empowering with No-code : Decide what is the problem you are planing to solve & understand which is No-code tool can help you with solution. Some tools will have steep learning curve, become expert on those tools. Integrate Automation AI : This is very crucial for your tool & make sure you have build a tool which will integrates easily with most of the platforms. Build Custom Solution : Right now the whole industry of Micro SaaS stands on building custom solutions, catering your audience is the best way to go for it. Launching MVPs : Because you have no-code tools it is easier to deploy MVPs than ever before & you can build multiple tools at once. Adapt & Grow : This is about the business take feedback from customer add new feature remove few yada yada. Leverage the Growth : Here it is important you have learn to build communities out these tools. if you come up with any new ideas there is always a group of people, who will be able adapt & give you the feedback to improve. Conclusion : Either build something or adapt something quicker when that has built. What do you think Folks ??

Digital Analytics and Marketing
reddit
LLM Vibe Score0
Human Vibe Score1
Chou789This week

Digital Analytics and Marketing

I'm a Data Analyst with wide range of experience in this niche. Looking for partner to bring me clients and get a cut on the charges, i.e act as a agency connecting businesses with developers. Lately, I see that Developer costs in US/EU is skyrocketing and hiring a decent Data Analyst costs a fortune for companies, small companies can't even think of getting one. Already working with several small businesses and see that many small businesses have need somebody to play around their data but since it's a costly affair, mostly small businesses stick with Excel and Google Sheets as their database and don't leverage the potential of automation, now with AI/LLM, having proper data strategy is important. We can team up and provide reach these low hanging fruits. What i do: Data Reporting: Move clients current data systems from Excel, Google Sheets into Database/Datawarehouse Integrate data from different sources like Pipedrive, Google Ads, Facebook Ads, Shopify etc and create automated custom reports on the data. Digital Marketing: For Shopify/Ecommernce site owners - Google Analytics Reporting Answer questions like Where is my traffic coming from, which traffic is working, how long they are staying in site, which products are working, product views to purchase ratio etc Custom Desktop Applications Custom: Have a custom idea? Let's discuss. DM me. Thanks. PS: Potential customers include ones who can't hire $50-$150/hr full time developers but want one at part time/freelancing type where they can get things done quickly/validating their ideas without burning their business.

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰
reddit
LLM Vibe Score0
Human Vibe Score1
benfromwhereThis week

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰

(Monthly income breakdown is in the end) 📌 Introduction Hey everyone! 👋 Before I dive into this month’s breakdown, I just want to be upfront—English isn’t my first language, so I’ve used ChatGPT to refine this post for better readability. That said, everything here is 100% real—my personal experiences, struggles, and earnings as someone running a full-time AI influencer business. Since I get a lot of DMs asking about my AI models, here are their Instagram links: 📷 Emma – https://www.instagram.com/emmalauireal 📷 Jade – https://www.instagram.com/jadelaui (jadecasual is the second account) Also, if you’ve been wondering about the community I run, where I teach others how to build AI influencers from scratch, here’s the link (I got approval from mods for this link): 🔗 AI Winners Now, let’s get into what happened this month. 🚀 \------- First, a huge thank you! 🎉 Three months ago, I shared my journey of building an AI influencer business, and I was blown away by the response. That post got 263K+ views and was shared over 2.7K times—way more than I ever expected. If you’re new here or want to check out the full story of how I started, you can read it here: 🔗 Click Here (Reddit link) \------- 🔹 What I Did in January After the holiday rush in December, I knew January would be a slow month—people had already spent most of their money at the end of the year. So instead of pushing harder on monetization, I shifted my focus to tech development and optimization. Flux Character Loras: I spent a lot of time refining and testing different Flux-based character Loras for my models. This is still a work in progress, but the goal is to improve long-term consistency and make my workflow even more efficient. NSFW Content Expansion: On Emma’s side, I expanded her content library using a real model body double, making her content look more organic and natural. Jade, however, remains 100% AI-generated, keeping her workflow entirely digital. Social Media Wipeout (Thanks, VA 🙃): I had handed off both Twitter accounts to a virtual assistant to help with engagement and DMs. Big mistake. He ended up spamming DMs, which got both accounts banned—Emma (80K followers) and Jade (20K followers). 🤦‍♂️ Right now, I’m rebuilding Emma’s account from scratch and taking a much more cautious approach. Jade’s account is still offline for now. New Platform: Threads – I hadn’t touched Threads before, but since engagement on Instagram can be unpredictable, I decided to start accounts for both models. So far, they’re performing well, and I’ll continue experimenting. Launched AI Winners Community: After getting flooded with DMs (both here and on Instagram), I realized there was a massive demand for structured learning around AI influencers. So, I launched AI Winners, a paid community where I break down everything I’ve learned. It’s still early, but I see it turning into a solid, long-term community. Investment & Acquisition Talks: I’m still evaluating potential investors and acquisition offers for my AI models. There’s growing interest in buying or investing in Emma & Jade, so I’ve been having conversations to explore different options. Overall, January was about tech, rebuilding, and long-term planning—not immediate revenue. But that’s what keeps this business sustainable. 🚀 \------- ⚠️ Biggest Challenges This Month Lost Both Twitter Accounts (Massive Traffic Hit) 🚨 The biggest blow this month was losing my models’ Twitter accounts. Twitter was responsible for about 40% of my total traffic, meaning both free and paid subs took a direct hit. While Emma’s revenue took a slight dip, Jade’s income dropped significantly—partly due to the account loss and partly because January is naturally slow. (Full revenue breakdown at the end of the post.) Jade’s Instagram Tanked (Possible Shadow Ban?) 🤔 Jade’s Instagram completely lost momentum in early January. Engagement and reach dropped by over 80%, and I still haven’t figured out why. It feels like a shadow ban, but I have no clear confirmation. To counter this, I launched a second backup account, and things are starting to recover. \------- 🚀 Potential Improvements & What’s Next Locking in a Stable Workflow 🔄 Right now, Emma & Jade’s workflow is still evolving, but I’m aiming to fully stabilize it. As I’m writing this, content is generating on my second monitor—a sign that I’m close to achieving full automation without compromising quality. Boosting Jade’s Fanvue Revenue 💰 Jade’s income took a hit this month, and it’s 100% a traffic issue. The solution? More content, more reach. I’ll be increasing social media output to drive consistent traffic back to Fanvue and restore her earnings. Patreon is Done. All Focus on Fanvue 🚫 I shut down both Emma & Jade’s Patreon accounts. The goal is not to split revenue—I want everything funneled into Fanvue for higher engagement and bigger paydays. \------- 💰 January 2025 Earnings Breakdown Despite January being one of the slowest months for online creators, Emma and Jade still brought in over $29K in revenue, with a net profit exceeding $20K after all expenses. Emma Laui generated $20,206.77, with around $6,000 in expenses (chatter payments, NSFW designer fees, and other operational costs). Jade Laui earned $8,939.05, with $2,000 in expenses. Considering Twitter account losses, Instagram setbacks, and the usual January spending slump, this is still a solid outcome. The focus now is on scaling traffic and maximizing Fanvue revenue heading into February. 🚀🔥 That’s the full breakdown for January! If you have questions, feel free to drop a comment, and I’ll answer when I can. Happy to help, just like others helped me when I was starting out! 🚀🔥

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰
reddit
LLM Vibe Score0
Human Vibe Score1
benfromwhereThis week

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰

(Monthly income breakdown is in the end) 📌 Introduction Hey everyone! 👋 Before I dive into this month’s breakdown, I just want to be upfront—English isn’t my first language, so I’ve used ChatGPT to refine this post for better readability. That said, everything here is 100% real—my personal experiences, struggles, and earnings as someone running a full-time AI influencer business. Since I get a lot of DMs asking about my AI models, here are their Instagram links: 📷 Emma – https://www.instagram.com/emmalauireal 📷 Jade – https://www.instagram.com/jadelaui (jadecasual is the second account) Also, if you’ve been wondering about the community I run, where I teach others how to build AI influencers from scratch, here’s the link (I got approval from mods for this link): 🔗 AI Winners Now, let’s get into what happened this month. 🚀 \------- First, a huge thank you! 🎉 Three months ago, I shared my journey of building an AI influencer business, and I was blown away by the response. That post got 263K+ views and was shared over 2.7K times—way more than I ever expected. If you’re new here or want to check out the full story of how I started, you can read it here: 🔗 Click Here (Reddit link) \------- 🔹 What I Did in January After the holiday rush in December, I knew January would be a slow month—people had already spent most of their money at the end of the year. So instead of pushing harder on monetization, I shifted my focus to tech development and optimization. Flux Character Loras: I spent a lot of time refining and testing different Flux-based character Loras for my models. This is still a work in progress, but the goal is to improve long-term consistency and make my workflow even more efficient. NSFW Content Expansion: On Emma’s side, I expanded her content library using a real model body double, making her content look more organic and natural. Jade, however, remains 100% AI-generated, keeping her workflow entirely digital. Social Media Wipeout (Thanks, VA 🙃): I had handed off both Twitter accounts to a virtual assistant to help with engagement and DMs. Big mistake. He ended up spamming DMs, which got both accounts banned—Emma (80K followers) and Jade (20K followers). 🤦‍♂️ Right now, I’m rebuilding Emma’s account from scratch and taking a much more cautious approach. Jade’s account is still offline for now. New Platform: Threads – I hadn’t touched Threads before, but since engagement on Instagram can be unpredictable, I decided to start accounts for both models. So far, they’re performing well, and I’ll continue experimenting. Launched AI Winners Community: After getting flooded with DMs (both here and on Instagram), I realized there was a massive demand for structured learning around AI influencers. So, I launched AI Winners, a paid community where I break down everything I’ve learned. It’s still early, but I see it turning into a solid, long-term community. Investment & Acquisition Talks: I’m still evaluating potential investors and acquisition offers for my AI models. There’s growing interest in buying or investing in Emma & Jade, so I’ve been having conversations to explore different options. Overall, January was about tech, rebuilding, and long-term planning—not immediate revenue. But that’s what keeps this business sustainable. 🚀 \------- ⚠️ Biggest Challenges This Month Lost Both Twitter Accounts (Massive Traffic Hit) 🚨 The biggest blow this month was losing my models’ Twitter accounts. Twitter was responsible for about 40% of my total traffic, meaning both free and paid subs took a direct hit. While Emma’s revenue took a slight dip, Jade’s income dropped significantly—partly due to the account loss and partly because January is naturally slow. (Full revenue breakdown at the end of the post.) Jade’s Instagram Tanked (Possible Shadow Ban?) 🤔 Jade’s Instagram completely lost momentum in early January. Engagement and reach dropped by over 80%, and I still haven’t figured out why. It feels like a shadow ban, but I have no clear confirmation. To counter this, I launched a second backup account, and things are starting to recover. \------- 🚀 Potential Improvements & What’s Next Locking in a Stable Workflow 🔄 Right now, Emma & Jade’s workflow is still evolving, but I’m aiming to fully stabilize it. As I’m writing this, content is generating on my second monitor—a sign that I’m close to achieving full automation without compromising quality. Boosting Jade’s Fanvue Revenue 💰 Jade’s income took a hit this month, and it’s 100% a traffic issue. The solution? More content, more reach. I’ll be increasing social media output to drive consistent traffic back to Fanvue and restore her earnings. Patreon is Done. All Focus on Fanvue 🚫 I shut down both Emma & Jade’s Patreon accounts. The goal is not to split revenue—I want everything funneled into Fanvue for higher engagement and bigger paydays. \------- 💰 January 2025 Earnings Breakdown Despite January being one of the slowest months for online creators, Emma and Jade still brought in over $29K in revenue, with a net profit exceeding $20K after all expenses. Emma Laui generated $20,206.77, with around $6,000 in expenses (chatter payments, NSFW designer fees, and other operational costs). Jade Laui earned $8,939.05, with $2,000 in expenses. Considering Twitter account losses, Instagram setbacks, and the usual January spending slump, this is still a solid outcome. The focus now is on scaling traffic and maximizing Fanvue revenue heading into February. 🚀🔥 That’s the full breakdown for January! If you have questions, feel free to drop a comment, and I’ll answer when I can. Happy to help, just like others helped me when I was starting out! 🚀🔥

AI Interns for Small Businesses: Who Will Lead the Market?
reddit
LLM Vibe Score0
Human Vibe Score1
OstrichGrand8119This week

AI Interns for Small Businesses: Who Will Lead the Market?

I've been working on making my own AI tools (https://openai.com/blog/introducing-gpts), kind of like building a team but without the big costs. It's like having a bunch of helpful interns, but they're all computer programs. This got me thinking a lot about small businesses like ours. Building My Own AI Team on a Budget Making these AI tools felt like creating my own team. It's really cheap compared to hiring real people, and these AI interns can do lots of different jobs. This is a big deal for folks like us who don't have lots of money to spend. Spotting What's Missing for Small Businesses While playing around with this AI stuff, I noticed there are things missing that small businesses really need. There's a big chance here to make something that fills these gaps, a tool made just for small businesses. The Big Question: Competing with Big Companies But here's the tricky part. Big companies like OpenAI are making their own AI stuff, like the GPT Store and GPT Enterprise. This makes me wonder if it's a good idea to make a new product that's kind of the same but more focused on what small businesses need. The Big Choice: Special Tools vs. Big Company Tools We're at a crossroads about what's better: Special Tools: Making something that's just right for small businesses could be really useful and fit our needs better. Big Company Tools: But, big companies have more stuff to offer and are already well-known. I Want to Hear From You If you run a small business or like tech stuff, what do you think? Would you like a special AI tool made for small businesses, or would you rather use the big ones from famous companies? How do you think the future looks for AI help in small businesses with all these changes? https://preview.redd.it/9pks3r65rg7c1.jpg?width=1460&format=pjpg&auto=webp&s=d767d2352f5e57e3303974f0b951a0176a0745c3

Looking for a Business Partner for an AI Stock recommendation SaaS
reddit
LLM Vibe Score0
Human Vibe Score1
armaan-devThis week

Looking for a Business Partner for an AI Stock recommendation SaaS

Hey everyone, I’m a 15-year-old full-stack developer, currently building StockWise, a startup focused on AI-driven stock market insights and analytics. I can handle all engineering, backend, frontend, and AI-related work—but I need a business partner who can take care of the marketing, sales, and user acquisition side of things. So this SaaS is currently in development. Also this I believe this can be both b2c and b2b. Like for b2c - it's the website included, with the recommendations, for individual users, for b2b - we can provide API's. Here is the classic workflow : \-> You can give your preferences, such as your monthly investment capital, if you're expecting short term or long term, and also if there are any specific areas you are more interested like AI, hydrogen fuel related, ev, compaines. \-> Then with this data, we recommend you stocks to buy, analyzing your preferences, looking at market, researching, looking into company's stock history, background, product \-> You will also have a chatbot like interface you can talk to about anything, and it will be personalized \-> Also you can add your portfolio here, and you can get insights based on the market data \-> Also there can be a weekly newsletter, too, if you subscribe to it. I'm much more of a builder, likes to build stuff, is good at it, but not good at the business side of things, that's why I'm really looking for a business partner. If you’re interested in joining as a co-founder or business partner, drop a comment or DM me!, Thanks a lot, Armaan

SaaS, Agency, or job?
reddit
LLM Vibe Score0
Human Vibe Score0.818
SlowageAIThis week

SaaS, Agency, or job?

Recently, I was fired, and since I have some savings, I decided it’s finally time to start my own venture. After a couple of weeks of research and trying to figure out what I should do, here are my thoughts and some questions at the end. I’d appreciate any feedback or opinions. It’s not that I expect to wake up a multimillionaire, but I see how people make money without working the typical 9-5. Some of the worst examples are on YouTube—those agency, OFM, dropshipping hustle bros. I know it’s naive to believe all of it because they’re just selling courses, but some of them do seem to have built impressive income streams. Anyway, let’s dive into two categories and compare. Agency (providing services, development, consultation): I’ll talk about AI automation because of my background in ML Engineering and Generative AI, but this could apply to any other agency niche. It seems like a good business idea for someone who knows generative AI and can do some impressive things with LLMs, agents, etc. I even started working on it—built a website—but I stopped when I couldn’t define exactly what services to offer. I could do heavy backend tasks with infrastructure, like real machine learning and AI with fine-tuning, but I couldn’t find any examples of agencies doing this. Almost 100% of them are doing simple automations with tools like Zapier or Make. When it comes to business owners, it’s really hard to find clients in general. After reading Reddit threads, articles, and watching videos, it seems like nearly everyone struggles with client acquisition. For a one-person agency offering more complex services like real ML, it would likely be even harder to find clients, compared to big outsourcing companies with sales teams. Even without focusing on the client challenge, which is obvious in any business, looking at what successful agency owners earn, it’s usually around $100k–$200k a year. I’m not talking about the high end, just regular people. I got this information from reading, and a simple example is from interviews with people who claim to make $10k/month. But many others in these communities struggle to even reach that point. It seems like this is a difficult target for most people. SaaS: This area seems more straightforward, and with my background, it feels like a good fit. However, from reading different sources, I’ve found stories like, “It took me six months to get my first client,” or “I worked on a simple SaaS for nine months and just reached my first $1k.” There are also warnings not to believe those who claim to make $10k/month easily, and many people report struggling to grow after getting their first 10 clients. So, it’s clear to me that even with good tech skills, you’re not going to make massive amounts of money overnight, which I understand. However, with so many people becoming startup founders and indie hackers, many seem to struggle despite thinking it’s the way to go. I know both paths can potentially skyrocket, but here’s where I need help: Am I wrong about agencies? Am I wrong about SaaS? The toughest question for me: I don’t want to go back to a 9-5 job, even if I could earn $300k a year. Even if my own business takes more time and I earn less in the first few years, I still believe it will be more profitable long term, and I will be happier. So, should I pursue an agency, SaaS, or a traditional job?

Is SaaS Done?
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Salad709This week

Is SaaS Done?

Other day I was talking to one of the leaders in Office, He said "SAAS IS DY!NG THANKS TO AI". I found this fascinating & started digging on this, I was already part of communities like Build in Public, NoCode Builders & Others. I think he was right. I saw a significant raise in the AI Tools, what other call it 'AI Wrapper Startups' I explored many tools, then I realise why don't we capitalise this opportunity. I found out it is the marketers who needs to be aware of these & if you don't embrace these tools you will end up losing to someone with minimum experience with marketing but good hands on experience with the tools. If these tools keep up the same phase then you have both challenges & opportunities which I've listed it down in the post pros & cons. I think we need to embrace these tools are else we will be left behind. All these things are about marketers but what about the people who want to become solopreneurs or people like Pieter Levels who just want to create something useful get money either by selling or running multiple projects at once. Whatever I've studied & learnt. I came up with something called "The SaaS Marketing Innovation Cycle". The SaaS Marketing Innovation Cycle : Will have six easy steps. Empowering with No-code : Decide what is the problem you are planing to solve & understand which is No-code tool can help you with solution. Some tools will have steep learning curve, become expert on those tools. Integrate Automation AI : This is very crucial for your tool & make sure you have build a tool which will integrates easily with most of the platforms. Build Custom Solution : Right now the whole industry of Micro SaaS stands on building custom solutions, catering your audience is the best way to go for it. Launching MVPs : Because you have no-code tools it is easier to deploy MVPs than ever before & you can build multiple tools at once. Adapt & Grow : This is about the business take feedback from customer add new feature remove few yada yada. Leverage the Growth : Here it is important you have learn to build communities out these tools. if you come up with any new ideas there is always a group of people, who will be able adapt & give you the feedback to improve. Conclusion : Either build something or adapt something quicker when that has built. What do you think Folks ??

Steep Learning : How I Mapped approximately 10K AI tools to 15K  Replaceable Tasks across 4K professions
reddit
LLM Vibe Score0
Human Vibe Score1
Apprehensive_Form396This week

Steep Learning : How I Mapped approximately 10K AI tools to 15K Replaceable Tasks across 4K professions

Hello Everyone , I would like to share some knowledge today which I went towards countless hours to do . I founded a portal called Seekme.ai, a comprehensive platform that houses over 10,000 AI tools and resources. Today, I'm excited to share with you an insightful and enlightening journey of how I mapped these tools to 15,000 tasks across 4,000 professions. This process, which I've named "Learn by Doing," got me the power of determination, collaboration, and adaptability. The Idea: It all started when I recognized the need for a more efficient and accessible way for professionals to understand which AI tools could help them automate their tasks. The traditional approach of manually researching and testing each AI tool for every profession was time-consuming and inefficient. I envisioned a solution that could streamline this process, making AI adoption easier and more accessible for a broader audience. The Planning: To begin, we needed a clear understanding of the task landscape across various professions. With the help of some Reddit communities , we embarked on an extensive study of common tasks in various industries. We utilized various sources, including government reports, industry surveys, and academic research, to create a comprehensive list of tasks. The result was an impressive list of 15,000 tasks. The Mapping: With the list of tasks in hand, the next step was to identify which AI tools could perform these tasks. I meticulously researched and analyzed each AI tool's capabilities and features. We cross-referenced this information with the tasks I had identified and created a mapping between the two. The process involved a significant amount of collaboration and refinement, as we continually updated and expanded our database of AI tools and tasks. The Challenges: The mapping process was not without its challenges. One of the primary obstacles was ensuring the accuracy and completeness of our data. To address this issue, I implemented a rigorous quality control process that included multiple rounds of checks and validations.I also established partnerships with industry experts and AI vendors to ensure our data was up-to-date and accurate. There is also a challenge that I faced was what is the quality of the tools which is the problem and how do I rank multiple tools if they do the same tasks without user feedback The Results: After months of hard work and dedication, I successfully mapped 10,000 AI tools to 15,000 tasks across 4,000 professions. Our new feature, AI by Profession, was born. This innovative will allow users to quickly and easily identify the AI tools that can automate tasks in their profession, making AI adoption more accessible and efficient than ever before. The Impact: The impact of this project has been significant. By making it easier for professionals to identify AI tools that can automate tasks in their industry, we're helping to drive productivity, efficiency, and innovation. Our users are saving time and resources by not having to manually research and test AI tools. Furthermore, we're contributing to the broader goal of democratizing AI and making it accessible to a broader audience. But there is a still an issue we face of ranking tools who does the similar job. For instance for content creation there 10 tools that can do same video editing so how do we rank it . We are planning to add categories to this to make it more exhaustive Conclusion: The journey to mapping 10,000 AI tools for 15,000 tasks across 4,000 professions was a challenging and rewarding experience. It required a significant amount of planning, determination, and collaboration, but the end result was a powerful tool that's making a difference in the lives of professionals around the world. I don’t know yet how useful it is yet for users So I am inviting you all to see if this feature can help you better equip yourself on the new wave and do things better. I am always up for a chat on anything AI and provide my help if needed. Looking forward to some feedback aswell

Roast my resume + suggestions for my portfolio
reddit
LLM Vibe Score0
Human Vibe Score0
saasypThis week

Roast my resume + suggestions for my portfolio

Hi everyone, I'm a European (I don't know if it's important to mention) Master's AI student, and as many out there, I'm trying to break into the ML (Deep Learning more specifically) world and I am aware of the current market crisis we're going through. Therefore, I ask you to rate/roast my resume as much as you can, since I'm trying to land an internship alongside the studies. The only project I’ve worked on so far was a research project conducted as part of my university studies. Since it was primarily research-oriented, there weren’t significant opportunities to benchmark the results using standard metrics for comparison. (maybe you can suggest me how to leverage it on the resume - yes it says Jan 2024 because the deadline is in January but it’s done already) I am deeply passionate about ML/DL , and I understand the importance of having a strong portfolio to showcase my skills. However, I struggle with finding creative and impactful project ideas to put into practice. While I consider myself a beginner, my Master’s program has provided me with a solid foundation (including the maths/algebra/statistics from my bachelor) in ML and unluckily I haven't had the opportunity to land a decent internship where I could learn and apply such things yet. As far as I read from multiple posts here, I should start to work on solving a "problem" that I might face or something that I'm interested in, but as I said I've completely no idea, thus I'd highly appreciate your help also with this. Is contributing to open source project valid as well? Could you suggest any websites where I can find some? Thanks for your precious time and attention :)

anything-llm
github
LLM Vibe Score0.572
Human Vibe Score0.4703504093656464
Mintplex-LabsMar 28, 2025

anything-llm

AnythingLLM: The all-in-one AI app you were looking for. Chat with your docs, use AI Agents, hyper-configurable, multi-user, & no frustrating set up required. | | Docs | Hosted Instance English · 简体中文 · 日本語 👉 AnythingLLM for desktop (Mac, Windows, & Linux)! Download Now A full-stack application that enables you to turn any document, resource, or piece of content into context that any LLM can use as references during chatting. This application allows you to pick and choose which LLM or Vector Database you want to use as well as supporting multi-user management and permissions. !Chatting Watch the demo! Product Overview AnythingLLM is a full-stack application where you can use commercial off-the-shelf LLMs or popular open source LLMs and vectorDB solutions to build a private ChatGPT with no compromises that you can run locally as well as host remotely and be able to chat intelligently with any documents you provide it. AnythingLLM divides your documents into objects called workspaces. A Workspace functions a lot like a thread, but with the addition of containerization of your documents. Workspaces can share documents, but they do not talk to each other so you can keep your context for each workspace clean. Cool features of AnythingLLM 🆕 Custom AI Agents 🆕 No-code AI Agent builder 🖼️ Multi-modal support (both closed and open-source LLMs!) 👤 Multi-user instance support and permissioning Docker version only 🦾 Agents inside your workspace (browse the web, etc) 💬 Custom Embeddable Chat widget for your website Docker version only 📖 Multiple document type support (PDF, TXT, DOCX, etc) Simple chat UI with Drag-n-Drop funcitonality and clear citations. 100% Cloud deployment ready. Works with all popular closed and open-source LLM providers. Built-in cost & time-saving measures for managing very large documents compared to any other chat UI. Full Developer API for custom integrations! Much more...install and find out! Supported LLMs, Embedder Models, Speech models, and Vector Databases Large Language Models (LLMs): Any open-source llama.cpp compatible model OpenAI OpenAI (Generic) Azure OpenAI AWS Bedrock Anthropic NVIDIA NIM (chat models) Google Gemini Pro Hugging Face (chat models) Ollama (chat models) LM Studio (all models) LocalAi (all models) Together AI (chat models) Fireworks AI (chat models) Perplexity (chat models) OpenRouter (chat models) DeepSeek (chat models) Mistral Groq Cohere KoboldCPP LiteLLM Text Generation Web UI Apipie xAI Novita AI (chat models) PPIO Embedder models: AnythingLLM Native Embedder (default) OpenAI Azure OpenAI LocalAi (all) Ollama (all) LM Studio (all) Cohere Audio Transcription models: AnythingLLM Built-in (default) OpenAI TTS (text-to-speech) support: Native Browser Built-in (default) PiperTTSLocal - runs in browser OpenAI TTS ElevenLabs Any OpenAI Compatible TTS service. STT (speech-to-text) support: Native Browser Built-in (default) Vector Databases: LanceDB (default) Astra DB Pinecone Chroma Weaviate Qdrant Milvus Zilliz Technical Overview This monorepo consists of three main sections: frontend: A viteJS + React frontend that you can run to easily create and manage all your content the LLM can use. server: A NodeJS express server to handle all the interactions and do all the vectorDB management and LLM interactions. collector: NodeJS express server that process and parses documents from the UI. docker: Docker instructions and build process + information for building from source. embed: Submodule for generation & creation of the web embed widget. browser-extension: Submodule for the chrome browser extension. 🛳 Self Hosting Mintplex Labs & the community maintain a number of deployment methods, scripts, and templates that you can use to run AnythingLLM locally. Refer to the table below to read how to deploy on your preferred environment or to automatically deploy. | Docker | AWS | GCP | Digital Ocean | Render.com | |----------------------------------------|----|-----|---------------|------------| | [![Deploy on Docker][docker-btn]][docker-deploy] | [![Deploy on AWS][aws-btn]][aws-deploy] | [![Deploy on GCP][gcp-btn]][gcp-deploy] | [![Deploy on DigitalOcean][do-btn]][do-deploy] | [![Deploy on Render.com][render-btn]][render-deploy] | | Railway | RepoCloud | Elestio | | --- | --- | --- | | [![Deploy on Railway][railway-btn]][railway-deploy] | [![Deploy on RepoCloud][repocloud-btn]][repocloud-deploy] | [![Deploy on Elestio][elestio-btn]][elestio-deploy] | or set up a production AnythingLLM instance without Docker → How to setup for development yarn setup To fill in the required .env files you'll need in each of the application sections (from root of repo). Go fill those out before proceeding. Ensure server/.env.development is filled or else things won't work right. yarn dev:server To boot the server locally (from root of repo). yarn dev:frontend To boot the frontend locally (from root of repo). yarn dev:collector To then run the document collector (from root of repo). Learn about documents Learn about vector caching External Apps & Integrations These are apps that are not maintained by Mintplex Labs, but are compatible with AnythingLLM. A listing here is not an endorsement. Midori AI Subsystem Manager - A streamlined and efficient way to deploy AI systems using Docker container technology. Coolify - Deploy AnythingLLM with a single click. GPTLocalhost for Microsoft Word - A local Word Add-in for you to use AnythingLLM in Microsoft Word. Telemetry & Privacy AnythingLLM by Mintplex Labs Inc contains a telemetry feature that collects anonymous usage information. More about Telemetry & Privacy for AnythingLLM Why? We use this information to help us understand how AnythingLLM is used, to help us prioritize work on new features and bug fixes, and to help us improve AnythingLLM's performance and stability. Opting out Set DISABLE_TELEMETRY in your server or docker .env settings to "true" to opt out of telemetry. You can also do this in-app by going to the sidebar > Privacy and disabling telemetry. What do you explicitly track? We will only track usage details that help us make product and roadmap decisions, specifically: Type of your installation (Docker or Desktop) When a document is added or removed. No information about the document. Just that the event occurred. This gives us an idea of use. Type of vector database in use. Let's us know which vector database provider is the most used to prioritize changes when updates arrive for that provider. Type of LLM in use. Let's us know the most popular choice and prioritize changes when updates arrive for that provider. Chat is sent. This is the most regular "event" and gives us an idea of the daily-activity of this project across all installations. Again, only the event is sent - we have no information on the nature or content of the chat itself. You can verify these claims by finding all locations Telemetry.sendTelemetry is called. Additionally these events are written to the output log so you can also see the specific data which was sent - if enabled. No IP or other identifying information is collected. The Telemetry provider is PostHog - an open-source telemetry collection service. View all telemetry events in source code 👋 Contributing create issue create PR with branch name format of - LGTM from core-team 🌟 Contributors 🔗 More Products [VectorAdmin][vector-admin]: An all-in-one GUI & tool-suite for managing vector databases. [OpenAI Assistant Swarm][assistant-swarm]: Turn your entire library of OpenAI assistants into one single army commanded from a single agent. [![][back-to-top]](#readme-top) Copyright © 2025 [Mintplex Labs][profile-link]. This project is MIT licensed. [back-to-top]: https://img.shields.io/badge/-BACKTOTOP-222628?style=flat-square [profile-link]: https://github.com/mintplex-labs [vector-admin]: https://github.com/mintplex-labs/vector-admin [assistant-swarm]: https://github.com/Mintplex-Labs/openai-assistant-swarm [docker-btn]: ./images/deployBtns/docker.png [docker-deploy]: ./docker/HOWTOUSE_DOCKER.md [aws-btn]: ./images/deployBtns/aws.png [aws-deploy]: ./cloud-deployments/aws/cloudformation/DEPLOY.md [gcp-btn]: https://deploy.cloud.run/button.svg [gcp-deploy]: ./cloud-deployments/gcp/deployment/DEPLOY.md [do-btn]: https://www.deploytodo.com/do-btn-blue.svg [do-deploy]: ./cloud-deployments/digitalocean/terraform/DEPLOY.md [render-btn]: https://render.com/images/deploy-to-render-button.svg [render-deploy]: https://render.com/deploy?repo=https://github.com/Mintplex-Labs/anything-llm&branch=render [render-btn]: https://render.com/images/deploy-to-render-button.svg [render-deploy]: https://render.com/deploy?repo=https://github.com/Mintplex-Labs/anything-llm&branch=render [railway-btn]: https://railway.app/button.svg [railway-deploy]: https://railway.app/template/HNSCS1?referralCode=WFgJkn [repocloud-btn]: https://d16t0pc4846x52.cloudfront.net/deploylobe.svg [repocloud-deploy]: https://repocloud.io/details/?app_id=276 [elestio-btn]: https://elest.io/images/logos/deploy-to-elestio-btn.png [elestio-deploy]: https://elest.io/open-source/anythingllm

n8n-docs
github
LLM Vibe Score0.512
Human Vibe Score0.14461823922383882
n8n-ioMar 28, 2025

n8n-docs

!Banner image n8n Docs This repository hosts the documentation for n8n, an extendable workflow automation tool which enables you to connect anything to everything. The documentation is live at docs.n8n.io. Previewing and building the documentation locally Prerequisites Python 3.8 or above Pip n8n recommends using a virtual environment when working with Python, such as venv. Follow the recommended configuration and auto-complete guidance for the theme. This will help when working with the mkdocs.yml file. The repo includes a .editorconfig file. Make sure your local editor settings do not override these settings. In particular: Don't allow your editor to replace tabs with spaces. This can affect our code samples (which must retain tabs for people building nodes). One tab must be equivalent to four spaces. Steps For members of the n8n GitHub organization: Set up an SSH token and add it to your GitHub account. Refer to GitHub | About SSH for guidance. Then run these commands: For external contributors: Rely on the preview builds on pull requests, or use the free version of Material for MkDocs (most things are the same, some formatting may be missing) Fork the repository, then: To serve a local preview: Contributing Please read the CONTRIBUTING guide. You can find style guidance in the wiki. Support If you have problems or questions, head to n8n's forum: https://community.n8n.io License n8n-docs is fair-code licensed under the Sustainable Use License. More information about the license is available in the License documentation.

openkore
github
LLM Vibe Score0.567
Human Vibe Score0.2670720058425842
OpenKoreMar 28, 2025

openkore

!logo !Language !Stars !Fork !Watch !Issues !Pull Requests !Contributors !GithubWorkflowstatus !GithubWorkflowCI OpenKore is a custom client and intelligent automated assistant for Ragnarok Online. It is a free, open source and cross-platform program (Linux, Windows and MacOS are supported). Prerequisites To run OpenKore you will need: Read the Requirements page on our wiki Quickstart Download OpenKore and extract it. Alternatively, you could press the Windows Key + R, type in `cmd` & enter. Run the following command in the cmd to clone. Note: Git required. Configure OpenKore: documentation. Run openkore.pl (You can run start.exe or wxstart.exe if you use Windows). F.A.Q. (Frequently Asked Questions) Have a problem? Update your openkore or download a new one. Still having problems? Search in Wiki. Search in Forum. Search in Github issues. Cant find what you need? / Do not understand? Ask in IRC Channel. Is it a problem in Openkore? Read things to know before reporting. Things to know Make sure you've read FAQ especially to run latest commit on master branch & checking existed issue for your request. Please post in English. Please use the issue template. Please include informations about your server & any changes you did in your configuration. Briefly explain what happened, take a screenhot & include the error message (If available). Please be advised any developers here are doing this on their free time. Please give some time for anyone to respond. Status of botting on Official Servers | Server | Description | Protection | Status | Supporter | | --- | --- | --- | --- | --- | | aRO | Asia RO | CheatDefender | Not working | N/A | | bRO | Brazil RO | EAC | Not working | N/A | | cRO | China RO | nProtect | Botable | N/A | | euRO | Europe RO | Frost Security | Not working | N/A | | euRO-Prime | Europe RO (Prime) | Frost Security | Not working | N/A | | iRO Renewal | International RO | EAC | Not working | N/A | | idRO | Indonesia RO | EAC | Not Working | N/A | | idRO-Retro | Indonesia RO (Retro) | Delphine | Not Working | N/A | | jRO | Japan RO | nProtect | Need Verification | N/A | | kRO | Korea RO | nProtect | Botable | N/A | | kRO-Zero | Korea RO (Zero) | nProtect | Botable | N/A | | ruRO-Prime | Russia RO (Prime) | Frost Security | Not Working | ya4ept | | tRO | Thailand RO | EAC | Not Working | N/A | | tRO-Classic | Thailand RO (Classic) | EAC | Not Working | N/A | | twRO | Taiwan RO | CheatDefender | Not Working | N/A | | vRO | Vietnam RO | nProtect | Not Working | N/A | Contributing OpenKore is developed by a team located around the world. Check out the documentation and if necessary, submit a pull request. Contacts OpenKore Wiki OpenKore forum IRC Channel Connect IRC with Kiwiirc Brazilian Community Russian Community Warning Other communities or websites are not affiliated to openkore.com Other Links Openkore History Legacy Changelog Openkore RoadMap Feature Requests and TODO Wiki and Feature Requests GitHub License This software is open source, licensed under the GNU General Public License, version 2. Basically, this means that you're free to use and allowed to modify and distribute this software. However, if you distribute modified versions, you MUST also distribute the source code. See http://www.gnu.org/licenses/gpl.html for the full license.

sdfx
github
LLM Vibe Score0.424
Human Vibe Score0.0045691337642496865
sdfxaiMar 28, 2025

sdfx

SDFX ======= Features | Screenshots | SDFX App Guide | Installation | Run The ultimate no-code platform to build and share AI apps with beautiful UI. Join our Discord Server community for latest news, video tutorials and demo apps. !SDFX Screenshot SDFX enables the creation of straightforward user interfaces for intricate workflows. An SDFX application combines a Comfy workflow with a user interface. The JSON that describes the workflow is enriched with extra meta information about the application and its author, as well as the association between UI components and node widgets. Features Screenshots SDFX Application JSON Structure Guide Installation Run Installation for users already using ComfyUI Locally Why? This project was originally created to meet the needs of users from A1111 (form based UI) and ComfyUI (graph-node based), which are two communities with differing visions. With SDFX, we aimed to merge the benefits of both worlds, without the drawbacks. What SDFX allows, for example, is the creation of complex graphs (as one would do on ComfyUI), but with an overlay of a simpler, high-level UI (such as a form-based interface, with an incredible UI). Thus, in theory, someone could recreate A1111 with SDFX and share the JSON online. This is an initial draft, there is still much to do (mostly the App Creator that will be released soon). Some had lost faith in us, even calling us vaporware. The reality, as you will see by browsing the source code, is that SDFX required a considerable amount of work. It was made by a solo developer, and now the team is growing. We tried to do things right, focusing solely on what we do best: UIs and product design with a modern frontend stack. Therefore, we rely 100% on Comfy's backend, making SDFX fully compatible with ComfyUI. However, installing ComfyUI is not necessary, as everything is abstracted. We also made an effort to simplify the installation process; in most cases, you will only need to double-click on setup.bat / setup.sh and follow the wizard. We hope you will like it, and it's with great pleasure that we share our vision and this repo with you, hoping it will pave the way for many contributions from you, to further the advancement of the open-source AI space. Features Build and share user-friendly apps on top of complex workflows 100% compatible with ComfyUI and all its features Can work with your existing Comfy installation (with our SDFXBridgeForComfy custom node) LiteGraph almost refactored from scratch in typescript Animated graph navigation Node bookmarks and advanced graph search Lightning fast UI instanciation and beautiful high-level components (450x faster than Gradio) UI Debugger (rudimentary for now) Native Custom Nodes Manager (thanks to Dr.Lt.Data) Export and share apps and templates (group nodes export soon) Advanced layer-based image and mask editor (WIP) Advanced checkpoint picker and gallery Advanced input image picker Modern and ultra fast frontend stack (vitejs, vuejs, electron) Compiles as a native app (Windows, Linux, Mac) or as a webapp Extremely easy to maintain and add new features Screenshots Graph view !SDFX Screenshot App view !SDFX Screenshot| !SDFX Screenshot | |--|--| Prompt Timeline Component !SDFX Screenshot UI Debugger !SDFX Screenshot Node Bookmarks !SDFX Screenshot Node Manager !SDFX Screenshot SDFX Application JSON Structure Guide Welcome to the JSON structure guide for SDFX applications. The following is a comprehensive overview for developers looking to understand and utilize the JSON format for creating user-friendly UI with SDFX. Our aim is to ensure clarity and ease of use, so you can integrate and exchange SDFX apps with confidence. Basic JSON structure of a SDFX app: Application Name name: The name you assign to your application. Meta Information meta: This key houses essential details about your application, for instance: Application Type type: Designated as "sdfx", this key identifies the app as an SDFX application while maintaining compatibility with ComfyUI. This means SDFX apps can be dragged and dropped onto ComfyUI and vice versa. UI Mapping Structure mapping: Specifies the UI structure. Within the mapping, you might find the following structure to describe a Tab component with a checkpoint loader, fully compatible with Tailwind CSS classes: LiteGraph Keys The remaining keys are standard LiteGraph properties used to describe the workflow. UI Components for Mapping Developers can leverage a rich set of UI components for creating user interfaces. Here's a list of available components that can be used and customized with VueJS and Tailwind CSS: Button DragNumber ImageLoader Input ModelPicker Number Preview Prompt PromptTimeline Selector Slider TextArea Toggle BoxDimensions BoxSeed Additionally, HTML elements such as div, p, ul, li, img, iframe, video, and more can be used to enrich the user interface. For layout and structural design, elements like SplitPane, SplitH, SplitV, Tab, TabBox, TabBar, and ToggleSettings offer further customization. The ease of creating new components with VueJS and Tailwind CSS is unmatched, allowing for rapid development and high-quality user interface design. As SDFX moves towards an open-source release, this guide will be invaluable for developers anticipating to engage with a professional and user-centric platform. Enjoy creating with SDFX, and let the simplicity and power of JSON structure enhance your application development process. Upcoming Feature: SDFX App Creator Note: Currently, the process of designing your SDFX application and mapping UI components to node parameters is manual. We understand the intricacies involved and are excited to announce that the release of the SDFX App Creator is on the horizon. The SDFX App Creator will let you create your UI mapping by introducing a visual design interface with drag & drop capabilities. This will greatly simplify the process of linking UI controls with the corresponding node parameters in the workflow graph. Stay tuned for this feature. Installation Make sure your system meets the following requirements: Node.js version 18.9.1 npm version 8.19.1 Python 3.11 Git Windows Then open to install dependencies Error says no Python, but it's installed? A common mistake is forgetting to check the option to add Python to the PATH during installation, as it's often unchecked by default in the installer wizard. Make sure Python is added to your system's environment variables to run the script smoothly. !SDFX Screenshot Linux/MacOs Manual Install Click to expand To perform a manual installation, follow these steps: Install Frontend Dependencies: Navigate to the src directory of SDFX and install the npm dependencies: Clone and Install ComfyUI: Clone the ComfyUI repository into the root directory of SDFX from ComfyUI GitHub and follow the installation instructions provided in the readme to install ComfyUI dependencies. Add the custom node SDFXBridgeForComfyUI Follow the instructions on the repository of the custom node SDFXBridgeForComfyUI to add it to your ComfyUi custom_nodes folder. Create Configuration File: Create a file named sdfx.config.json at the root of your project. Follow the instructions provided here to build the configuration file according to your requirements. Run Start ComfyUI Then start SDFX with: Installation for users already using ComfyUI Locally Click to expand If you already have ComfyUI installed on your machine, follow these steps to integrate SDFX: Clone the SDFXBridgeForComfyUI customnode on your ComfyUI customnode path: For detailed instructions, please refer to the official SDFX for ComfyUI README. Install front-end dependencies and run it: Run Launch SDFX app with ( for Linux/MacOs)

AITreasureBox
github
LLM Vibe Score0.447
Human Vibe Score0.1014145151561518
superiorluMar 28, 2025

AITreasureBox

AI TreasureBox English | 中文 Collect practical AI repos, tools, websites, papers and tutorials on AI. Translated from ChatGPT, picture from Midjourney. Catalog Repos Tools Websites Report&Paper Tutorials Repos updated repos and stars every 2 hours and re-ranking automatically. | No. | Repos | Description | | ----:|:-----------------------------------------|:------------------------------------------------------------------------------------------------------| | 1|🔥codecrafters-io/build-your-own-x !2025-03-28364681428|Master programming by recreating your favorite technologies from scratch.| | 2|sindresorhus/awesome !2025-03-28353614145|😎 Awesome lists about all kinds of interesting topics| | 3|public-apis/public-apis !2025-03-28334299125|A collective list of free APIs| | 4|kamranahmedse/developer-roadmap !2025-03-2831269540|Interactive roadmaps, guides and other educational content to help developers grow in their careers.| | 5|vinta/awesome-python !2025-03-28238581114|A curated list of awesome Python frameworks, libraries, software and resources| | 6|practical-tutorials/project-based-learning !2025-03-28222661124|Curated list of project-based tutorials| | 7|tensorflow/tensorflow !2025-03-281888714|An Open Source Machine Learning Framework for Everyone| | 8|Significant-Gravitas/AutoGPT !2025-03-2817391338|An experimental open-source attempt to make GPT-4 fully autonomous.| | 9|jackfrued/Python-100-Days !2025-03-2816305141|Python - 100天从新手到大师| | 10|AUTOMATIC1111/stable-diffusion-webui !2025-03-2815011553|Stable Diffusion web UI| | 11|huggingface/transformers !2025-03-2814207850|🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.| | 12|ollama/ollama !2025-03-28135166151|Get up and running with Llama 2, Mistral, Gemma, and other large language models.| | 13|f/awesome-chatgpt-prompts !2025-03-2812212738 |This repo includes ChatGPT prompt curation to use ChatGPT better.| | 14|justjavac/free-programming-books-zhCN !2025-03-2811316119|📚 免费的计算机编程类中文书籍,欢迎投稿| | 15|krahets/hello-algo !2025-03-2811107930|《Hello 算法》:动画图解、一键运行的数据结构与算法教程。支持 Python, Java, C++, C, C#, JS, Go, Swift, Rust, Ruby, Kotlin, TS, Dart 代码。简体版和繁体版同步更新,English version ongoing| | 16|yt-dlp/yt-dlp !2025-03-28105801114|A feature-rich command-line audio/video downloader| | 17|langchain-ai/langchain !2025-03-2810449479|⚡ Building applications with LLMs through composability ⚡| | 18|goldbergyoni/nodebestpractices !2025-03-281021629|✅ The Node.js best practices list (July 2024)| | 19|puppeteer/puppeteer !2025-03-289018212|JavaScript API for Chrome and Firefox| | 20|pytorch/pytorch !2025-03-288833938|Tensors and Dynamic neural networks in Python with strong GPU acceleration| | 21|neovim/neovim !2025-03-288781482|Vim-fork focused on extensibility and usability| | 22|🔥🔥langgenius/dify !2025-03-2887342639 |One API for plugins and datasets, one interface for prompt engineering and visual operation, all for creating powerful AI applications.| | 23|mtdvio/every-programmer-should-know !2025-03-28867069|A collection of (mostly) technical things every software developer should know about| | 24|open-webui/open-webui !2025-03-2886025159|User-friendly WebUI for LLMs (Formerly Ollama WebUI)| | 25|ChatGPTNextWeb/NextChat !2025-03-288231521|✨ Light and Fast AI Assistant. Support: Web | | 26|supabase/supabase !2025-03-287990956|The open source Firebase alternative.| | 27|openai/whisper !2025-03-287905542|Robust Speech Recognition via Large-Scale Weak Supervision| | 28|home-assistant/core !2025-03-287773219|🏡 Open source home automation that puts local control and privacy first.| | 29|tensorflow/models !2025-03-28774694|Models and examples built with TensorFlow| | 30| ggerganov/llama.cpp !2025-03-287731836 | Port of Facebook's LLaMA model in C/C++ | | 31|3b1b/manim !2025-03-287641918|Animation engine for explanatory math videos| | 32|microsoft/generative-ai-for-beginners !2025-03-287623860|12 Lessons, Get Started Building with Generative AI 🔗 https://microsoft.github.io/generative-ai-for-beginners/| | 33|nomic-ai/gpt4all !2025-03-28729285 |gpt4all: an ecosystem of open-source chatbots trained on a massive collection of clean assistant data including code, stories and dialogue| | 34|comfyanonymous/ComfyUI !2025-03-2872635111|The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.| | 35|bregman-arie/devops-exercises !2025-03-2872225209|Linux, Jenkins, AWS, SRE, Prometheus, Docker, Python, Ansible, Git, Kubernetes, Terraform, OpenStack, SQL, NoSQL, Azure, GCP, DNS, Elastic, Network, Virtualization. DevOps Interview Questions| | 36|elastic/elasticsearch !2025-03-28721419|Free and Open, Distributed, RESTful Search Engine| | 37|🔥n8n-io/n8n !2025-03-2872093495|Free and source-available fair-code licensed workflow automation tool. Easily automate tasks across different services.| | 38|fighting41love/funNLP !2025-03-287200422|The Most Powerful NLP-Weapon Arsenal| | 39|hoppscotch/hoppscotch !2025-03-287060134|Open source API development ecosystem - https://hoppscotch.io (open-source alternative to Postman, Insomnia)| | 40|abi/screenshot-to-code !2025-03-286932817|Drop in a screenshot and convert it to clean HTML/Tailwind/JS code| | 41|binary-husky/gptacademic !2025-03-28680374|Academic Optimization of GPT| | 42|d2l-ai/d2l-zh !2025-03-286774142|Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries| | 43|josephmisiti/awesome-machine-learning !2025-03-286739215|A curated list of awesome Machine Learning frameworks, libraries and software.| | 44|grafana/grafana !2025-03-286725414|The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.| | 45|python/cpython !2025-03-286602218|The Python programming language| | 46|apache/superset !2025-03-286519020|Apache Superset is a Data Visualization and Data Exploration Platform| | 47|xtekky/gpt4free !2025-03-28639391 |decentralizing the Ai Industry, free gpt-4/3.5 scripts through several reverse engineered API's ( poe.com, phind.com, chat.openai.com etc...)| | 48|sherlock-project/sherlock !2025-03-286332536|Hunt down social media accounts by username across social networks| | 49|twitter/the-algorithm !2025-03-28630586 |Source code for Twitter's Recommendation Algorithm| | 50|keras-team/keras !2025-03-28627835|Deep Learning for humans| | 51|openai/openai-cookbook !2025-03-28625136 |Examples and guides for using the OpenAI API| | 52|immich-app/immich !2025-03-286238670|High performance self-hosted photo and video management solution.| | 53|AppFlowy-IO/AppFlowy !2025-03-286173528|Bring projects, wikis, and teams together with AI. AppFlowy is an AI collaborative workspace where you achieve more without losing control of your data. The best open source alternative to Notion.| | 54|scikit-learn/scikit-learn !2025-03-286158212|scikit-learn: machine learning in Python| | 55|binhnguyennus/awesome-scalability !2025-03-286117021|The Patterns of Scalable, Reliable, and Performant Large-Scale Systems| | 56|labmlai/annotateddeeplearningpaperimplementations !2025-03-285951726|🧑‍🏫 59 Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠| | 57|OpenInterpreter/open-interpreter !2025-03-285894710|A natural language interface for computers| | 58|lobehub/lobe-chat !2025-03-285832054|🤖 Lobe Chat - an open-source, extensible (Function Calling), high-performance chatbot framework. It supports one-click free deployment of your private ChatGPT/LLM web application.| | 59|meta-llama/llama !2025-03-28579536|Inference code for Llama models| | 60|nuxt/nuxt !2025-03-28566437|The Intuitive Vue Framework.| | 61|imartinez/privateGPT !2025-03-28555192|Interact with your documents using the power of GPT, 100% privately, no data leaks| | 62|Stirling-Tools/Stirling-PDF !2025-03-285500846|#1 Locally hosted web application that allows you to perform various operations on PDF files| | 63|PlexPt/awesome-chatgpt-prompts-zh !2025-03-285459720|ChatGPT Chinese Training Guide. Guidelines for various scenarios. Learn how to make it listen to you| | 64|dair-ai/Prompt-Engineering-Guide !2025-03-285451025 |🐙 Guides, papers, lecture, notebooks and resources for prompt engineering| | 65|ageitgey/facerecognition !2025-03-28544382|The world's simplest facial recognition api for Python and the command line| | 66|CorentinJ/Real-Time-Voice-Cloning !2025-03-285384814|Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 67|geekan/MetaGPT !2025-03-285375376|The Multi-Agent Meta Programming Framework: Given one line Requirement, return PRD, Design, Tasks, Repo | | 68|gpt-engineer-org/gpt-engineer !2025-03-285367419|Specify what you want it to build, the AI asks for clarification, and then builds it.| | 69|lencx/ChatGPT !2025-03-2853653-3|🔮 ChatGPT Desktop Application (Mac, Windows and Linux)| | 70|deepfakes/faceswap !2025-03-28535672|Deepfakes Software For All| | 71|langflow-ai/langflow !2025-03-285319584|Langflow is a low-code app builder for RAG and multi-agent AI applications. It’s Python-based and agnostic to any model, API, or database.| | 72|commaai/openpilot !2025-03-28529759|openpilot is an operating system for robotics. Currently, it upgrades the driver assistance system on 275+ supported cars.| | 73|clash-verge-rev/clash-verge-rev !2025-03-2852848124|Continuation of Clash Verge - A Clash Meta GUI based on Tauri (Windows, MacOS, Linux)| | 74|All-Hands-AI/OpenHands !2025-03-285150675|🙌 OpenHands: Code Less, Make More| | 75|xai-org/grok-1 !2025-03-28502504|Grok open release| | 76|meilisearch/meilisearch !2025-03-284999122|A lightning-fast search API that fits effortlessly into your apps, websites, and workflow| | 77|🔥browser-use/browser-use !2025-03-2849910294|Make websites accessible for AI agents| | 78|jgthms/bulma !2025-03-28496783|Modern CSS framework based on Flexbox| | 79|facebookresearch/segment-anything !2025-03-284947116|The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.| |!green-up-arrow.svg 80|hacksider/Deep-Live-Cam !2025-03-2848612146|real time face swap and one-click video deepfake with only a single image (uncensored)| |!red-down-arrow 81|mlabonne/llm-course !2025-03-284860934|Course with a roadmap and notebooks to get into Large Language Models (LLMs).| | 82|PaddlePaddle/PaddleOCR !2025-03-284785530|Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)| | 83|alist-org/alist !2025-03-284732618|🗂️A file list/WebDAV program that supports multiple storages, powered by Gin and Solidjs. / 一个支持多存储的文件列表/WebDAV程序,使用 Gin 和 Solidjs。| | 84|infiniflow/ragflow !2025-03-2847027129|RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding.| | 85|Avik-Jain/100-Days-Of-ML-Code !2025-03-284679312|100 Days of ML Coding| | 86|v2ray/v2ray-core !2025-03-28458706|A platform for building proxies to bypass network restrictions.| | 87|hiyouga/LLaMA-Factory !2025-03-284555881|Easy-to-use LLM fine-tuning framework (LLaMA, BLOOM, Mistral, Baichuan, Qwen, ChatGLM)| | 88|Asabeneh/30-Days-Of-Python !2025-03-284544930|30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace. These videos may help too: https://www.youtube.com/channel/UC7PNRuno1rzYPb1xLa4yktw| | 89|type-challenges/type-challenges !2025-03-284488511|Collection of TypeScript type challenges with online judge| | 90|lllyasviel/Fooocus !2025-03-284402716|Focus on prompting and generating| | 91|RVC-Boss/GPT-SoVITS !2025-03-284327738|1 min voice data can also be used to train a good TTS model! (few shot voice cloning)| | 92|rasbt/LLMs-from-scratch !2025-03-284320667|Implementing a ChatGPT-like LLM from scratch, step by step| | 93|oobabooga/text-generation-webui !2025-03-284302012 |A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, OPT, and GALACTICA.| | 94|vllm-project/vllm !2025-03-2842982102|A high-throughput and memory-efficient inference and serving engine for LLMs| | 95|dani-garcia/vaultwarden !2025-03-284297121|Unofficial Bitwarden compatible server written in Rust, formerly known as bitwarden_rs| | 96|microsoft/autogen !2025-03-284233049|Enable Next-Gen Large Language Model Applications. Join our Discord: https://discord.gg/pAbnFJrkgZ| | 97|jeecgboot/JeecgBoot !2025-03-284205920|🔥「企业级低代码平台」前后端分离架构SpringBoot 2.x/3.x,SpringCloud,Ant Design&Vue3,Mybatis,Shiro,JWT。强大的代码生成器让前后端代码一键生成,无需写任何代码! 引领新的开发模式OnlineCoding->代码生成->手工MERGE,帮助Java项目解决70%重复工作,让开发更关注业务,既能快速提高效率,帮助公司节省成本,同时又不失灵活性。| | 98|Mintplex-Labs/anything-llm !2025-03-284186955|A full-stack application that turns any documents into an intelligent chatbot with a sleek UI and easier way to manage your workspaces.| | 99|THUDM/ChatGLM-6B !2025-03-28410192 |ChatGLM-6B: An Open Bilingual Dialogue Language Model| | 100|hpcaitech/ColossalAI !2025-03-28406902|Making large AI models cheaper, faster and more accessible| | 101|Stability-AI/stablediffusion !2025-03-28406337|High-Resolution Image Synthesis with Latent Diffusion Models| | 102|mingrammer/diagrams !2025-03-28405063|🎨 Diagram as Code for prototyping cloud system architectures| | 103|Kong/kong !2025-03-28404616|🦍 The Cloud-Native API Gateway and AI Gateway.| | 104|getsentry/sentry !2025-03-284040913|Developer-first error tracking and performance monitoring| | 105| karpathy/nanoGPT !2025-03-284034613 |The simplest, fastest repository for training/finetuning medium-sized GPTs| | 106|fastlane/fastlane !2025-03-2840014-1|🚀 The easiest way to automate building and releasing your iOS and Android apps| | 107|psf/black !2025-03-28399765|The uncompromising Python code formatter| | 108|OpenBB-finance/OpenBBTerminal !2025-03-283972074 |Investment Research for Everyone, Anywhere.| | 109|2dust/v2rayNG !2025-03-283943415|A V2Ray client for Android, support Xray core and v2fly core| | 110|apache/airflow !2025-03-283937314|Apache Airflow - A platform to programmatically author, schedule, and monitor workflows| | 111|KRTirtho/spotube !2025-03-283902746|🎧 Open source Spotify client that doesn't require Premium nor uses Electron! Available for both desktop & mobile!| | 112|coqui-ai/TTS !2025-03-283889719 |🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production| | 113|ggerganov/whisper.cpp !2025-03-283882116|Port of OpenAI's Whisper model in C/C++| | 114|ultralytics/ultralytics !2025-03-283866951|NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite| | 115|typst/typst !2025-03-283863914|A new markup-based typesetting system that is powerful and easy to learn.| | 116|streamlit/streamlit !2025-03-283845828|Streamlit — A faster way to build and share data apps.| | 117|LC044/WeChatMsg !2025-03-283836931|提取微信聊天记录,将其导出成HTML、Word、Excel文档永久保存,对聊天记录进行分析生成年度聊天报告,用聊天数据训练专属于个人的AI聊天助手| | 118|lm-sys/FastChat !2025-03-283822112 |An open platform for training, serving, and evaluating large languages. Release repo for Vicuna and FastChat-T5.| | 119|NaiboWang/EasySpider !2025-03-283819013|A visual no-code/code-free web crawler/spider易采集:一个可视化浏览器自动化测试/数据采集/爬虫软件,可以无代码图形化的设计和执行爬虫任务。别名:ServiceWrapper面向Web应用的智能化服务封装系统。| | 120|microsoft/DeepSpeed !2025-03-283765816 |A deep learning optimization library that makes distributed training and inference easy, efficient, and effective| | 121|QuivrHQ/quivr !2025-03-28376067|Your GenAI Second Brain 🧠 A personal productivity assistant (RAG) ⚡️🤖 Chat with your docs (PDF, CSV, ...) & apps using Langchain, GPT 3.5 / 4 turbo, Private, Anthropic, VertexAI, Ollama, LLMs, that you can share with users ! Local & Private alternative to OpenAI GPTs & ChatGPT powered by retrieval-augmented generation.| | 122|freqtrade/freqtrade !2025-03-283757817 |Free, open source crypto trading bot| | 123|suno-ai/bark !2025-03-28373178 |🔊 Text-Prompted Generative Audio Model| | 124|🔥cline/cline !2025-03-2837307282|Autonomous coding agent right in your IDE, capable of creating/editing files, executing commands, and more with your permission every step of the way.| | 125|LAION-AI/Open-Assistant !2025-03-28372712 |OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so.| | 126|penpot/penpot !2025-03-283716217|Penpot: The open-source design tool for design and code collaboration| | 127|gradio-app/gradio !2025-03-283713320|Build and share delightful machine learning apps, all in Python. 🌟 Star to support our work!| | 128|FlowiseAI/Flowise !2025-03-283667135 |Drag & drop UI to build your customized LLM flow using LangchainJS| | 129|SimplifyJobs/Summer2025-Internships !2025-03-28366506|Collection of Summer 2025 tech internships!| | 130|TencentARC/GFPGAN !2025-03-28365027 |GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration.| | 131|ray-project/ray !2025-03-283626819|Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for accelerating ML workloads.| | 132|babysor/MockingBird !2025-03-28360498|🚀AI拟声: 5秒内克隆您的声音并生成任意语音内容 Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 133|unslothai/unsloth !2025-03-283603691|5X faster 50% less memory LLM finetuning| | 134|zhayujie/chatgpt-on-wechat !2025-03-283600124 |Wechat robot based on ChatGPT, which uses OpenAI api and itchat library| | 135|upscayl/upscayl !2025-03-283599824|🆙 Upscayl - Free and Open Source AI Image Upscaler for Linux, MacOS and Windows built with Linux-First philosophy.| | 136|freeCodeCamp/devdocs !2025-03-28359738|API Documentation Browser| | 137|XingangPan/DragGAN !2025-03-28359043 |Code for DragGAN (SIGGRAPH 2023)| | 138|2noise/ChatTTS !2025-03-283543922|ChatTTS is a generative speech model for daily dialogue.| | 139|google-research/google-research !2025-03-28352207 |Google Research| | 140|karanpratapsingh/system-design !2025-03-28351003|Learn how to design systems at scale and prepare for system design interviews| | 141|lapce/lapce !2025-03-28350855|Lightning-fast and Powerful Code Editor written in Rust| | 142| microsoft/TaskMatrix !2025-03-2834500-3 | Talking, Drawing and Editing with Visual Foundation Models| | 143|chatchat-space/Langchain-Chatchat !2025-03-283442020|Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain| | 144|unclecode/crawl4ai !2025-03-283434163|🔥🕷️ Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper| | 145|Bin-Huang/chatbox !2025-03-283374733 |A desktop app for GPT-4 / GPT-3.5 (OpenAI API) that supports Windows, Mac & Linux| | 146|milvus-io/milvus !2025-03-283366525 |A cloud-native vector database, storage for next generation AI applications| | 147|mendableai/firecrawl !2025-03-2833297128|🔥 Turn entire websites into LLM-ready markdown| | 148|pola-rs/polars !2025-03-283269320|Fast multi-threaded, hybrid-out-of-core query engine focussing on DataFrame front-ends| | 149|Pythagora-io/gpt-pilot !2025-03-28325321|PoC for a scalable dev tool that writes entire apps from scratch while the developer oversees the implementation| | 150|hashicorp/vault !2025-03-28320797|A tool for secrets management, encryption as a service, and privileged access management| | 151|shardeum/shardeum !2025-03-28319580|Shardeum is an EVM based autoscaling blockchain| | 152|Chanzhaoyu/chatgpt-web !2025-03-28319242 |A demonstration website built with Express and Vue3 called ChatGPT| | 153|lllyasviel/ControlNet !2025-03-283186413 |Let us control diffusion models!| | 154|google/jax !2025-03-28317727|Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more| | 155|facebookresearch/detectron2 !2025-03-28315987|Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.| | 156|myshell-ai/OpenVoice !2025-03-28315233|Instant voice cloning by MyShell| | 157|TheAlgorithms/C-Plus-Plus !2025-03-283151411|Collection of various algorithms in mathematics, machine learning, computer science and physics implemented in C++ for educational purposes.| | 158|hiroi-sora/Umi-OCR !2025-03-283138129|OCR图片转文字识别软件,完全离线。截屏/批量导入图片,支持多国语言、合并段落、竖排文字。可排除水印区域,提取干净的文本。基于 PaddleOCR 。| | 159|mudler/LocalAI !2025-03-283127815|🤖 The free, Open Source OpenAI alternative. Self-hosted, community-driven and local-first. Drop-in replacement for OpenAI running on consumer-grade hardware. No GPU required. Runs gguf, transformers, diffusers and many more models architectures. It allows to generate Text, Audio, Video, Images. Also with voice cloning capabilities.| | 160|facebookresearch/fairseq !2025-03-28312124 |Facebook AI Research Sequence-to-Sequence Toolkit written in Python.| | 161|alibaba/nacos !2025-03-28310559|an easy-to-use dynamic service discovery, configuration and service management platform for building cloud native applications.| | 162|yunjey/pytorch-tutorial !2025-03-28310326|PyTorch Tutorial for Deep Learning Researchers| | 163|v2fly/v2ray-core !2025-03-28307448|A platform for building proxies to bypass network restrictions.| | 164|mckaywrigley/chatbot-ui !2025-03-283067714|The open-source AI chat interface for everyone.| | 165|TabbyML/tabby !2025-03-28305949 |Self-hosted AI coding assistant| | 166|deepseek-ai/awesome-deepseek-integration !2025-03-283053193|| | 167|danielmiessler/fabric !2025-03-283028914|fabric is an open-source framework for augmenting humans using AI.| | 168|xinntao/Real-ESRGAN !2025-03-283026623 |Real-ESRGAN aims at developing Practical Algorithms for General Image/Video Restoration.| | 169|paul-gauthier/aider !2025-03-283014642|aider is GPT powered coding in your terminal| | 170|tatsu-lab/stanfordalpaca !2025-03-28299022 |Code and documentation to train Stanford's Alpaca models, and generate the data.| | 171|DataTalksClub/data-engineering-zoomcamp !2025-03-282971817|Free Data Engineering course!| | 172|HeyPuter/puter !2025-03-282967014|🌐 The Internet OS! Free, Open-Source, and Self-Hostable.| | 173|mli/paper-reading !2025-03-282962314|Classic Deep Learning and In-Depth Reading of New Papers Paragraph by Paragraph| | 174|linexjlin/GPTs !2025-03-28295568|leaked prompts of GPTs| | 175|s0md3v/roop !2025-03-28295286 |one-click deepfake (face swap)| | 176|JushBJJ/Mr.-Ranedeer-AI-Tutor !2025-03-2829465-1 |A GPT-4 AI Tutor Prompt for customizable personalized learning experiences.| | 177|opendatalab/MinerU !2025-03-282927074|A one-stop, open-source, high-quality data extraction tool, supports PDF/webpage/e-book extraction.一站式开源高质量数据提取工具,支持PDF/网页/多格式电子书提取。| | 178|mouredev/Hello-Python !2025-03-282920720|Curso para aprender el lenguaje de programación Python desde cero y para principiantes. 75 clases, 37 horas en vídeo, código, proyectos y grupo de chat. Fundamentos, frontend, backend, testing, IA...| | 179|Lightning-AI/pytorch-lightning !2025-03-28292039|Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes.| | 180|crewAIInc/crewAI !2025-03-282919344|Framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.| | 181|facebook/folly !2025-03-282916612|An open-source C++ library developed and used at Facebook.| | 182|google-ai-edge/mediapipe !2025-03-28291519|Cross-platform, customizable ML solutions for live and streaming media.| | 183| getcursor/cursor !2025-03-282892025 | An editor made for programming with AI| | 184|chatanywhere/GPTAPIfree !2025-03-282856424|Free ChatGPT API Key, Free ChatGPT API, supports GPT-4 API (free), ChatGPT offers a free domestic forwarding API that allows direct connections without the need for a proxy. It can be used in conjunction with software/plugins like ChatBox, significantly reducing interface usage costs. Enjoy unlimited and unrestricted chatting within China| | 185|meta-llama/llama3 !2025-03-28285552|The official Meta Llama 3 GitHub site| | 186|tinygrad/tinygrad !2025-03-282845811|You like pytorch? You like micrograd? You love tinygrad! ❤️| | 187|google-research/tuningplaybook !2025-03-282841514|A playbook for systematically maximizing the performance of deep learning models.| | 188|huggingface/diffusers !2025-03-282830222|🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.| | 189|tokio-rs/tokio !2025-03-28282408|A runtime for writing reliable asynchronous applications with Rust. Provides I/O, networking, scheduling, timers, ...| | 190|RVC-Project/Retrieval-based-Voice-Conversion-WebUI !2025-03-282823817|Voice data !2025-03-282822612|Jan is an open source alternative to ChatGPT that runs 100% offline on your computer| | 192|openai/CLIP !2025-03-282814720|CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image| | 193|🔥khoj-ai/khoj !2025-03-2828112313|Your AI second brain. A copilot to get answers to your questions, whether they be from your own notes or from the internet. Use powerful, online (e.g gpt4) or private, local (e.g mistral) LLMs. Self-host locally or use our web app. Access from Obsidian, Emacs, Desktop app, Web or Whatsapp.| | 194| acheong08/ChatGPT !2025-03-2828054-2 | Reverse engineered ChatGPT API | | 195|iperov/DeepFaceLive !2025-03-28279345 |Real-time face swap for PC streaming or video calls| | 196|eugeneyan/applied-ml !2025-03-28278471|📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production.| | 197|XTLS/Xray-core !2025-03-282778213|Xray, Penetrates Everything. Also the best v2ray-core, with XTLS support. Fully compatible configuration.| | 198|feder-cr/JobsApplierAIAgent !2025-03-282776410|AutoJobsApplierAI_Agent aims to easy job hunt process by automating the job application process. Utilizing artificial intelligence, it enables users to apply for multiple jobs in an automated and personalized way.| | 199|mindsdb/mindsdb !2025-03-282750631|The platform for customizing AI from enterprise data| | 200|DataExpert-io/data-engineer-handbook !2025-03-282721611|This is a repo with links to everything you'd ever want to learn about data engineering| | 201|exo-explore/exo !2025-03-282721633|Run your own AI cluster at home with everyday devices 📱💻 🖥️⌚| | 202|taichi-dev/taichi !2025-03-2826926-1|Productive, portable, and performant GPU programming in Python.| | 203|mem0ai/mem0 !2025-03-282689134|The memory layer for Personalized AI| | 204|svc-develop-team/so-vits-svc !2025-03-28268096 |SoftVC VITS Singing Voice Conversion| | 205|OpenBMB/ChatDev !2025-03-28265624|Create Customized Software using Natural Language Idea (through Multi-Agent Collaboration)| | 206|roboflow/supervision !2025-03-282632010|We write your reusable computer vision tools. 💜| | 207|drawdb-io/drawdb !2025-03-282626913|Free, simple, and intuitive online database design tool and SQL generator.| | 208|karpathy/llm.c !2025-03-28261633|LLM training in simple, raw C/CUDA| | 209|airbnb/lottie-ios !2025-03-28261431|An iOS library to natively render After Effects vector animations| | 210|openai/openai-python !2025-03-282607713|The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language.| | 211|academic/awesome-datascience !2025-03-28259876|📝 An awesome Data Science repository to learn and apply for real world problems.| | 212|harry0703/MoneyPrinterTurbo !2025-03-282576618|Generate short videos with one click using a large model| | 213|gabime/spdlog !2025-03-282571511|Fast C++ logging library.| | 214|ocrmypdf/OCRmyPDF !2025-03-2825674217|OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched| | 215|Vision-CAIR/MiniGPT-4 !2025-03-28256170 |Enhancing Vision-language Understanding with Advanced Large Language Models| | 216|Stability-AI/generative-models !2025-03-28255936|Generative Models by Stability AI| | 217|DS4SD/docling !2025-03-282555662|Get your docs ready for gen AI| | 218|PostHog/posthog !2025-03-282533227|🦔 PostHog provides open-source product analytics, session recording, feature flagging and A/B testing that you can self-host.| | 219|nrwl/nx !2025-03-282509612|Smart Monorepos · Fast CI| | 220|continuedev/continue !2025-03-282500737|⏩ the open-source copilot chat for software development—bring the power of ChatGPT to VS Code| | 221|opentofu/opentofu !2025-03-28247968|OpenTofu lets you declaratively manage your cloud infrastructure.| | 222|invoke-ai/InvokeAI !2025-03-28247293|InvokeAI is a leading creative engine for Stable Diffusion models, empowering professionals, artists, and enthusiasts to generate and create visual media using the latest AI-driven technologies. The solution offers an industry leading WebUI, supports terminal use through a CLI, and serves as the foundation for multiple commercial products.| | 223|deepinsight/insightface !2025-03-282471615 |State-of-the-art 2D and 3D Face Analysis Project| | 224|apache/flink !2025-03-28246865|Apache Flink| | 225|ComposioHQ/composio !2025-03-28246436|Composio equips agents with well-crafted tools empowering them to tackle complex tasks| | 226|Genesis-Embodied-AI/Genesis !2025-03-282458314|A generative world for general-purpose robotics & embodied AI learning.| | 227|stretchr/testify !2025-03-28243184|A toolkit with common assertions and mocks that plays nicely with the standard library| | 228| yetone/openai-translator !2025-03-28242921 | Browser extension and cross-platform desktop application for translation based on ChatGPT API | | 229|frappe/erpnext !2025-03-282425211|Free and Open Source Enterprise Resource Planning (ERP)| | 230|songquanpeng/one-api !2025-03-282410034|OpenAI 接口管理 & 分发系统,支持 Azure、Anthropic Claude、Google PaLM 2 & Gemini、智谱 ChatGLM、百度文心一言、讯飞星火认知、阿里通义千问、360 智脑以及腾讯混元,可用于二次分发管理 key,仅单可执行文件,已打包好 Docker 镜像,一键部署,开箱即用. OpenAI key management & redistribution system, using a single API for all LLMs, and features an English UI.| | 231| microsoft/JARVIS !2025-03-28240604 | a system to connect LLMs with ML community | | 232|google/flatbuffers !2025-03-28239965|FlatBuffers: Memory Efficient Serialization Library| | 233|microsoft/graphrag !2025-03-282398928|A modular graph-based Retrieval-Augmented Generation (RAG) system| | 234|rancher/rancher !2025-03-28239675|Complete container management platform| | 235|bazelbuild/bazel !2025-03-282384618|a fast, scalable, multi-language and extensible build system| | 236|modularml/mojo !2025-03-28238236 |The Mojo Programming Language| | 237|danny-avila/LibreChat !2025-03-282378753|Enhanced ChatGPT Clone: Features OpenAI, GPT-4 Vision, Bing, Anthropic, OpenRouter, Google Gemini, AI model switching, message search, langchain, DALL-E-3, ChatGPT Plugins, OpenAI Functions, Secure Multi-User System, Presets, completely open-source for self-hosting. More features in development| |!green-up-arrow.svg 238|🔥🔥🔥Shubhamsaboo/awesome-llm-apps !2025-03-28237391211|Collection of awesome LLM apps with RAG using OpenAI, Anthropic, Gemini and opensource models.| |!red-down-arrow 239|microsoft/semantic-kernel !2025-03-282373611|Integrate cutting-edge LLM technology quickly and easily into your apps| |!red-down-arrow 240|TheAlgorithms/Rust !2025-03-28236995|All Algorithms implemented in Rust| | 241|stanford-oval/storm !2025-03-28236326|An LLM-powered knowledge curation system that researches a topic and generates a full-length report with citations.| | 242|openai/gpt-2 !2025-03-28232483|Code for the paper "Language Models are Unsupervised Multitask Learners"| | 243|labring/FastGPT !2025-03-282319445|A platform that uses the OpenAI API to quickly build an AI knowledge base, supporting many-to-many relationships.| | 244|pathwaycom/llm-app !2025-03-2822928-10|Ready-to-run cloud templates for RAG, AI pipelines, and enterprise search with live data. 🐳Docker-friendly.⚡Always in sync with Sharepoint, Google Drive, S3, Kafka, PostgreSQL, real-time data APIs, and more.| | 245|warpdotdev/Warp !2025-03-282286825|Warp is a modern, Rust-based terminal with AI built in so you and your team can build great software, faster.| | 246|🔥agno-agi/agno !2025-03-2822833298|Agno is a lightweight library for building Multimodal Agents. It exposes LLMs as a unified API and gives them superpowers like memory, knowledge, tools and reasoning.| | 247|qdrant/qdrant !2025-03-282275214 |Qdrant - Vector Database for the next generation of AI applications. Also available in the cloud https://cloud.qdrant.io/| | 248|ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code !2025-03-282271815|500 AI Machine learning Deep learning Computer vision NLP Projects with code| | 249|stanfordnlp/dspy !2025-03-282268321|Stanford DSPy: The framework for programming—not prompting—foundation models| | 250|PaddlePaddle/Paddle !2025-03-28226246|PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)| | 251|zulip/zulip !2025-03-28225464|Zulip server and web application. Open-source team chat that helps teams stay productive and focused.| | 252|Hannibal046/Awesome-LLM !2025-03-282240721|Awesome-LLM: a curated list of Large Language Model| | 253|facefusion/facefusion !2025-03-282218812|Next generation face swapper and enhancer| | 254|Mozilla-Ocho/llamafile !2025-03-28220624|Distribute and run LLMs with a single file.| | 255|yuliskov/SmartTube !2025-03-282201614|SmartTube - an advanced player for set-top boxes and tvs running Android OS| | 256|haotian-liu/LLaVA !2025-03-282201316 |Large Language-and-Vision Assistant built towards multimodal GPT-4 level capabilities.| | 257|ashishps1/awesome-system-design-resources !2025-03-282189367|This repository contains System Design resources which are useful while preparing for interviews and learning Distributed Systems| | 258|Cinnamon/kotaemon !2025-03-28218248|An open-source RAG-based tool for chatting with your documents.| | 259|CodePhiliaX/Chat2DB !2025-03-282179757|🔥🔥🔥AI-driven database tool and SQL client, The hottest GUI client, supporting MySQL, Oracle, PostgreSQL, DB2, SQL Server, DB2, SQLite, H2, ClickHouse, and more.| | 260|blakeblackshear/frigate !2025-03-282177113|NVR with realtime local object detection for IP cameras| | 261|facebookresearch/audiocraft !2025-03-28217111|Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.| | 262|karpathy/minGPT !2025-03-28216567|A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training| | 263|grpc/grpc-go !2025-03-282159510|The Go language implementation of gRPC. HTTP/2 based RPC| | 264|HumanSignal/label-studio !2025-03-282137618|Label Studio is a multi-type data labeling and annotation tool with standardized output format| | 265|yoheinakajima/babyagi !2025-03-28212764 |uses OpenAI and Pinecone APIs to create, prioritize, and execute tasks, This is a pared-down version of the original Task-Driven Autonomous Agent| | 266|deepseek-ai/DeepSeek-Coder !2025-03-282118210|DeepSeek Coder: Let the Code Write Itself| | 267|BuilderIO/gpt-crawler !2025-03-282118010|Crawl a site to generate knowledge files to create your own custom GPT from a URL| | 268| openai/chatgpt-retrieval-plugin !2025-03-2821152-1 | Plugins are chat extensions designed specifically for language models like ChatGPT, enabling them to access up-to-date information, run computations, or interact with third-party services in response to a user's request.| | 269|microsoft/OmniParser !2025-03-282113123|A simple screen parsing tool towards pure vision based GUI agent| | 270|black-forest-labs/flux !2025-03-282107219|Official inference repo for FLUX.1 models| | 271|ItzCrazyKns/Perplexica !2025-03-282099154|Perplexica is an AI-powered search engine. It is an Open source alternative to Perplexity AI| | 272|microsoft/unilm !2025-03-28209876|Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities| | 273|Sanster/lama-cleaner !2025-03-282077614|Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.| | 274|assafelovic/gpt-researcher !2025-03-282057222|GPT based autonomous agent that does online comprehensive research on any given topic| | 275|PromtEngineer/localGPT !2025-03-28204230 |Chat with your documents on your local device using GPT models. No data leaves your device and 100% private.| | 276|elastic/kibana !2025-03-28203482|Your window into the Elastic Stack| | 277|fishaudio/fish-speech !2025-03-282033222|Brand new TTS solution| | 278|mlc-ai/mlc-llm !2025-03-282028110 |Enable everyone to develop, optimize and deploy AI models natively on everyone's devices.| | 279|deepset-ai/haystack !2025-03-282005320|🔍 Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs (GPT-4, ChatGPT and alike). Haystack offers production-ready tools to quickly build complex question answering, semantic search, text generation applications, and more.| | 280|tree-sitter/tree-sitter !2025-03-28200487|An incremental parsing system for programming tools| | 281|Anjok07/ultimatevocalremovergui !2025-03-281999811|GUI for a Vocal Remover that uses Deep Neural Networks.| | 282|guidance-ai/guidance !2025-03-28199622|A guidance language for controlling large language models.| | 283|ml-explore/mlx !2025-03-28199619|MLX: An array framework for Apple silicon| | 284|mlflow/mlflow !2025-03-281995314|Open source platform for the machine learning lifecycle| | 285|ml-tooling/best-of-ml-python !2025-03-28198631|🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.| | 286|BerriAI/litellm !2025-03-281981862|Call all LLM APIs using the OpenAI format. Use Bedrock, Azure, OpenAI, Cohere, Anthropic, Ollama, Sagemaker, HuggingFace, Replicate (100+ LLMs)| | 287|LazyVim/LazyVim !2025-03-281981320|Neovim config for the lazy| | 288|wez/wezterm !2025-03-281976018|A GPU-accelerated cross-platform terminal emulator and multiplexer written by @wez and implemented in Rust| | 289|valkey-io/valkey !2025-03-281970416|A flexible distributed key-value datastore that supports both caching and beyond caching workloads.| | 290|LiLittleCat/awesome-free-chatgpt !2025-03-28196185|🆓免费的 ChatGPT 镜像网站列表,持续更新。List of free ChatGPT mirror sites, continuously updated.| | 291|Byaidu/PDFMathTranslate !2025-03-281947645|PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/Docker| | 292|openai/swarm !2025-03-281947111|Educational framework exploring ergonomic, lightweight multi-agent orchestration. Managed by OpenAI Solution team.| | 293|HqWu-HITCS/Awesome-Chinese-LLM !2025-03-281921423|Organizing smaller, cost-effective, privately deployable open-source Chinese language models, including related datasets and tutorials| | 294|stitionai/devika !2025-03-28190903|Devika is an Agentic AI Software Engineer that can understand high-level human instructions, break them down into steps, research relevant information, and write code to achieve the given objective. Devika aims to be a competitive open-source alternative to Devin by Cognition AI.| | 295|OpenBMB/MiniCPM-o !2025-03-28190887|MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone| | 296|samber/lo !2025-03-281904815|💥 A Lodash-style Go library based on Go 1.18+ Generics (map, filter, contains, find...)| | 297|chroma-core/chroma !2025-03-281895221 |the AI-native open-source embedding database| | 298|DarkFlippers/unleashed-firmware !2025-03-28189278|Flipper Zero Unleashed Firmware| | 299|brave/brave-browser !2025-03-281892710|Brave browser for Android, iOS, Linux, macOS, Windows.| | 300| tloen/alpaca-lora !2025-03-28188641 | Instruct-tune LLaMA on consumer hardware| | 301|VinciGit00/Scrapegraph-ai !2025-03-281884618|Python scraper based on AI| | 302|gitroomhq/postiz-app !2025-03-281879110|📨 Schedule social posts, measure them, exchange with other members and get a lot of help from AI 🚀| | 303|PrefectHQ/prefect !2025-03-281878715|Prefect is a workflow orchestration tool empowering developers to build, observe, and react to data pipelines| | 304|ymcui/Chinese-LLaMA-Alpaca !2025-03-28187723 |Chinese LLaMA & Alpaca LLMs| | 305|kenjihiranabe/The-Art-of-Linear-Algebra !2025-03-28187335|Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"| | 306|joonspk-research/generativeagents !2025-03-28187288|Generative Agents: Interactive Simulacra of Human Behavior| | 307|renovatebot/renovate !2025-03-28186820|Universal dependency update tool that fits into your workflows.| | 308|gventuri/pandas-ai !2025-03-28186109 |Pandas AI is a Python library that integrates generative artificial intelligence capabilities into Pandas, making dataframes conversational| | 309|thingsboard/thingsboard !2025-03-28185184|Open-source IoT Platform - Device management, data collection, processing and visualization.| | 310|ente-io/ente !2025-03-28184722|Fully open source, End to End Encrypted alternative to Google Photos and Apple Photos| | 311|serengil/deepface !2025-03-281840113|A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python| | 312|Raphire/Win11Debloat !2025-03-281840132|A simple, easy to use PowerShell script to remove pre-installed apps from windows, disable telemetry, remove Bing from windows search as well as perform various other changes to declutter and improve your windows experience. This script works for both windows 10 and windows 11.| | 313|Avaiga/taipy !2025-03-28179235|Turns Data and AI algorithms into production-ready web applications in no time.| | 314|microsoft/qlib !2025-03-281784231|Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.| | 315|CopilotKit/CopilotKit !2025-03-281778571|Build in-app AI chatbots 🤖, and AI-powered Textareas ✨, into react web apps.| | 316|QwenLM/Qwen-7B !2025-03-281766017|The official repo of Qwen-7B (通义千问-7B) chat & pretrained large language model proposed by Alibaba Cloud.| | 317|w-okada/voice-changer !2025-03-28176078 |リアルタイムボイスチェンジャー Realtime Voice Changer| | 318|rlabbe/Kalman-and-Bayesian-Filters-in-Python !2025-03-281756011|Kalman Filter book using Jupyter Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions.| | 319|Mikubill/sd-webui-controlnet !2025-03-28174794 |WebUI extension for ControlNet| | 320|jingyaogong/minimind !2025-03-2817380116|「大模型」3小时完全从0训练26M的小参数GPT,个人显卡即可推理训练!| | 321|apify/crawlee !2025-03-28172696|Crawlee—A web scraping and browser automation library for Node.js to build reliable crawlers. In JavaScript and TypeScript. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with Puppeteer, Playwright, Cheerio, JSDOM, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 322|apple/ml-stable-diffusion !2025-03-28172395|Stable Diffusion with Core ML on Apple Silicon| | 323| transitive-bullshit/chatgpt-api !2025-03-28172095 | Node.js client for the official ChatGPT API. | | 324|teableio/teable !2025-03-281719222|✨ The Next Gen Airtable Alternative: No-Code Postgres| | 325| xx025/carrot !2025-03-28170900 | Free ChatGPT Site List | | 326|microsoft/LightGBM !2025-03-28170723|A fast, distributed, high-performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.| | 327|VikParuchuri/surya !2025-03-28169827|Accurate line-level text detection and recognition (OCR) in any language| | 328|deepseek-ai/Janus !2025-03-281692825|Janus-Series: Unified Multimodal Understanding and Generation Models| | 329|ardalis/CleanArchitecture !2025-03-28168823|Clean Architecture Solution Template: A starting point for Clean Architecture with ASP.NET Core| | 330|neondatabase/neon !2025-03-28166466|Neon: Serverless Postgres. We separated storage and compute to offer autoscaling, code-like database branching, and scale to zero.| | 331|kestra-io/kestra !2025-03-281661313|⚡ Workflow Automation Platform. Orchestrate & Schedule code in any language, run anywhere, 500+ plugins. Alternative to Zapier, Rundeck, Camunda, Airflow...| | 332|Dao-AILab/flash-attention !2025-03-281659720|Fast and memory-efficient exact attention| | 333|RPCS3/rpcs3 !2025-03-281655712|PS3 emulator/debugger| | 334|meta-llama/llama-recipes !2025-03-28165486|Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger| | 335|emilwallner/Screenshot-to-code !2025-03-28165180|A neural network that transforms a design mock-up into a static website.| | 336|datawhalechina/llm-cookbook !2025-03-281650922|面向开发者的 LLM 入门教程,吴恩达大模型系列课程中文版| | 337|e2b-dev/awesome-ai-agents !2025-03-281643923|A list of AI autonomous agents| | 338|QwenLM/Qwen2.5 !2025-03-281641114|Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.| | 339|dair-ai/ML-YouTube-Courses !2025-03-28164114|📺 Discover the latest machine learning / AI courses on YouTube.| | 340|pybind/pybind11 !2025-03-28163620|Seamless operability between C++11 and Python| | 341|graphdeco-inria/gaussian-splatting !2025-03-281627116|Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"| | 342|meta-llama/codellama !2025-03-28162531|Inference code for CodeLlama models| | 343|TransformerOptimus/SuperAGI !2025-03-28161292 | SuperAGI - A dev-first open source autonomous AI agent framework. Enabling developers to build, manage & run useful autonomous agents quickly and reliably.| | 344|microsoft/onnxruntime !2025-03-28161169|ONNX Runtime: cross-platform, high-performance ML inferencing and training accelerator| | 345|IDEA-Research/Grounded-Segment-Anything !2025-03-281601411 |Marrying Grounding DINO with Segment Anything & Stable Diffusion & BLIP - Automatically Detect, Segment and Generate Anything with Image and Text Inputs| | 346|ddbourgin/numpy-ml !2025-03-28160054|Machine learning, in numpy| | 347|eosphoros-ai/DB-GPT !2025-03-281585225|Revolutionizing Database Interactions with Private LLM Technology| | 348|Stability-AI/StableLM !2025-03-28158310 |Stability AI Language Models| | 349|openai/evals !2025-03-28157935 |Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.| | 350|THUDM/ChatGLM2-6B !2025-03-28157500|ChatGLM2-6B: An Open Bilingual Chat LLM | | 351|sunner/ChatALL !2025-03-28156761 |Concurrently chat with ChatGPT, Bing Chat, Bard, Alpaca, Vincuna, Claude, ChatGLM, MOSS, iFlytek Spark, ERNIE and more, discover the best answers| | 352|abseil/abseil-cpp !2025-03-28156656|Abseil Common Libraries (C++)| | 353|NVIDIA/open-gpu-kernel-modules !2025-03-28156531|NVIDIA Linux open GPU kernel module source| | 354|letta-ai/letta !2025-03-281563718|Letta (formerly MemGPT) is a framework for creating LLM services with memory.| | 355|typescript-eslint/typescript-eslint !2025-03-28156211|✨ Monorepo for all the tooling which enables ESLint to support TypeScript| | 356|umijs/umi !2025-03-28156211|A framework in react community ✨| | 357|AI4Finance-Foundation/FinGPT !2025-03-281561215|Data-Centric FinGPT. Open-source for open finance! Revolutionize 🔥 We'll soon release the trained model.| | 358|amplication/amplication !2025-03-28156022|🔥🔥🔥 The Only Production-Ready AI-Powered Backend Code Generation| | 359|KindXiaoming/pykan !2025-03-28155477|Kolmogorov Arnold Networks| | 360|arc53/DocsGPT !2025-03-28154900|GPT-powered chat for documentation, chat with your documents| | 361|influxdata/telegraf !2025-03-28154502|Agent for collecting, processing, aggregating, and writing metrics, logs, and other arbitrary data.| | 362|microsoft/Bringing-Old-Photos-Back-to-Life !2025-03-28154084|Bringing Old Photo Back to Life (CVPR 2020 oral)| | 363|GaiZhenbiao/ChuanhuChatGPT !2025-03-2815394-2|GUI for ChatGPT API and many LLMs. Supports agents, file-based QA, GPT finetuning and query with web search. All with a neat UI.| | 364|Zeyi-Lin/HivisionIDPhotos !2025-03-281529710|⚡️HivisionIDPhotos: a lightweight and efficient AI ID photos tools. 一个轻量级的AI证件照制作算法。| | 365| mayooear/gpt4-pdf-chatbot-langchain !2025-03-281529518 | GPT4 & LangChain Chatbot for large PDF docs | | 366|1Panel-dev/MaxKB !2025-03-2815277148|? Based on LLM large language model knowledge base Q&A system. Ready to use out of the box, supports quick integration into third-party business systems. Officially produced by 1Panel| | 367|ai16z/eliza !2025-03-281526811|Conversational Agent for Twitter and Discord| | 368|apache/arrow !2025-03-28151684|Apache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing| | 369|princeton-nlp/SWE-agent !2025-03-281516119|SWE-agent: Agent Computer Interfaces Enable Software Engineering Language Models| | 370|mlc-ai/web-llm !2025-03-281509311 |Bringing large-language models and chat to web browsers. Everything runs inside the browser with no server support.| | 371|guillaumekln/faster-whisper !2025-03-281507117 |Faster Whisper transcription with CTranslate2| | 372|overleaf/overleaf !2025-03-28150316|A web-based collaborative LaTeX editor| | 373|triton-lang/triton !2025-03-28150169|Development repository for the Triton language and compiler| | 374|soxoj/maigret !2025-03-281500410|🕵️‍♂️ Collect a dossier on a person by username from thousands of sites| | 375|alibaba/lowcode-engine !2025-03-28149841|An enterprise-class low-code technology stack with scale-out design / 一套面向扩展设计的企业级低代码技术体系| | 376|espressif/esp-idf !2025-03-28148545|Espressif IoT Development Framework. Official development framework for Espressif SoCs.| | 377|pgvector/pgvector !2025-03-281484913|Open-source vector similarity search for Postgres| | 378|datawhalechina/leedl-tutorial !2025-03-28148246|《李宏毅深度学习教程》(李宏毅老师推荐👍),PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases| | 379|xcanwin/KeepChatGPT !2025-03-28147972 |Using ChatGPT is more efficient and smoother, perfectly solving ChatGPT network errors. No longer do you need to frequently refresh the webpage, saving over 10 unnecessary steps| | 380|m-bain/whisperX !2025-03-281471313|WhisperX: Automatic Speech Recognition with Word-level Timestamps (& Diarization)| | 381|HumanAIGC/AnimateAnyone !2025-03-2814706-1|Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation| |!green-up-arrow.svg 382|naklecha/llama3-from-scratch !2025-03-281469024|llama3 implementation one matrix multiplication at a time| |!red-down-arrow 383| fauxpilot/fauxpilot !2025-03-28146871 | An open-source GitHub Copilot server | | 384|LlamaFamily/Llama-Chinese !2025-03-28145111|Llama Chinese Community, the best Chinese Llama large model, fully open source and commercially available| | 385|BradyFU/Awesome-Multimodal-Large-Language-Models !2025-03-281450121|Latest Papers and Datasets on Multimodal Large Language Models| | 386|vanna-ai/vanna !2025-03-281449819|🤖 Chat with your SQL database 📊. Accurate Text-to-SQL Generation via LLMs using RAG 🔄.| | 387|bleedline/aimoneyhunter !2025-03-28144845|AI Side Hustle Money Mega Collection: Teaching You How to Utilize AI for Various Side Projects to Earn Extra Income.| | 388|stefan-jansen/machine-learning-for-trading !2025-03-28144629|Code for Machine Learning for Algorithmic Trading, 2nd edition.| | 389|state-spaces/mamba !2025-03-28144139|Mamba: Linear-Time Sequence Modeling with Selective State Spaces| | 390|vercel/ai-chatbot !2025-03-281434614|A full-featured, hackable Next.js AI chatbot built by Vercel| | 391|steven-tey/novel !2025-03-281428410|Notion-style WYSIWYG editor with AI-powered autocompletions| | 392|unifyai/ivy !2025-03-281409348|Unified AI| | 393|chidiwilliams/buzz !2025-03-281402411 |Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.| | 394|lukas-blecher/LaTeX-OCR !2025-03-28139769|pix2tex: Using a ViT to convert images of equations into LaTeX code.| | 395|openai/tiktoken !2025-03-28139599|tiktoken is a fast BPE tokeniser for use with OpenAI's models.| | 396|nocobase/nocobase !2025-03-281391522|NocoBase is a scalability-first, open-source no-code/low-code platform for building business applications and enterprise solutions.| | 397|neonbjb/tortoise-tts !2025-03-28139010 |A multi-voice TTS system trained with an emphasis on quality| | 398|yamadashy/repomix !2025-03-281382036|📦 Repomix (formerly Repopack) is a powerful tool that packs your entire repository into a single, AI-friendly file. Perfect for when you need to feed your codebase to Large Language Models (LLMs) or other AI tools like Claude, ChatGPT, and Gemini.| | 399|adobe/react-spectrum !2025-03-28136766|A collection of libraries and tools that help you build adaptive, accessible, and robust user experiences.| | 400|THUDM/ChatGLM3 !2025-03-28136684|ChatGLM3 series: Open Bilingual Chat LLMs | | 401|NVIDIA/NeMo !2025-03-28134837|A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)| | 402|BlinkDL/RWKV-LM !2025-03-28134346 |RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it combines the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.| | 403| fuergaosi233/wechat-chatgpt !2025-03-28133330 | Use ChatGPT On Wechat via wechaty | | 404|udecode/plate !2025-03-28133325|A rich-text editor powered by AI| | 405|xenova/transformers.js !2025-03-281331219|State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!| | 406|stas00/ml-engineering !2025-03-281325615|Machine Learning Engineering Guides and Tools| | 407| wong2/chatgpt-google-extension !2025-03-2813241-1 | A browser extension that enhances search engines with ChatGPT, this repos will not be updated from 2023-02-20| | 408|mrdbourke/pytorch-deep-learning !2025-03-281317520|Materials for the Learn PyTorch for Deep Learning: Zero to Mastery course.| | 409|Koenkk/zigbee2mqtt !2025-03-28131544|Zigbee 🐝 to MQTT bridge 🌉, get rid of your proprietary Zigbee bridges 🔨| | 410|vercel-labs/ai !2025-03-281298528|Build AI-powered applications with React, Svelte, and Vue| | 411|netease-youdao/QAnything !2025-03-28129318|Question and Answer based on Anything.| | 412|huggingface/trl !2025-03-281289622|Train transformer language models with reinforcement learning.| | 413|microsoft/BitNet !2025-03-28128503|Official inference framework for 1-bit LLMs| | 414|mediar-ai/screenpipe !2025-03-281283915|24/7 local AI screen & mic recording. Build AI apps that have the full context. Works with Ollama. Alternative to Rewind.ai. Open. Secure. You own your data. Rust.| | 415|Skyvern-AI/skyvern !2025-03-281277612|Automate browser-based workflows with LLMs and Computer Vision| | 416|pytube/pytube !2025-03-28126591|A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos.| | 417|official-stockfish/Stockfish !2025-03-28126574|UCI chess engine| | 418|sgl-project/sglang !2025-03-281260143|SGLang is a structured generation language designed for large language models (LLMs). It makes your interaction with LLMs faster and more controllable.| | 419|plasma-umass/scalene !2025-03-28125535|Scalene: a high-performance, high-precision CPU, GPU, and memory profiler for Python with AI-powered optimization proposals| | 420|danswer-ai/danswer !2025-03-28125503|Ask Questions in natural language and get Answers backed by private sources. Connects to tools like Slack, GitHub, Confluence, etc.| | 421|OpenTalker/SadTalker !2025-03-28125226|[CVPR 2023] SadTalker:Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation| | 422|facebookresearch/AnimatedDrawings !2025-03-28123693 |Code to accompany "A Method for Animating Children's Drawings of the Human Figure"| | 423|activepieces/activepieces !2025-03-28123609|Your friendliest open source all-in-one automation tool ✨ Workflow automation tool 100+ integration / Enterprise automation tool / Zapier Alternative| | 424|ggerganov/ggml !2025-03-28121992 |Tensor library for machine learning| | 425|bytebase/bytebase !2025-03-28121694|World's most advanced database DevOps and CI/CD for Developer, DBA and Platform Engineering teams. The GitLab/GitHub for database DevOps.| | 426| willwulfken/MidJourney-Styles-and-Keywords-Reference !2025-03-28120971 | A reference containing Styles and Keywords that you can use with MidJourney AI| | 427|Huanshere/VideoLingo !2025-03-281207013|Netflix-level subtitle cutting, translation, alignment, and even dubbing - one-click fully automated AI video subtitle team | | 428|OpenLMLab/MOSS !2025-03-28120330 |An open-source tool-augmented conversational language model from Fudan University| | 429|llmware-ai/llmware !2025-03-281200727|Providing enterprise-grade LLM-based development framework, tools, and fine-tuned models.| | 430|PKU-YuanGroup/Open-Sora-Plan !2025-03-28119362|This project aim to reproduce Sora (Open AI T2V model), but we only have limited resource. We deeply wish the all open source community can contribute to this project.| | 431|ShishirPatil/gorilla !2025-03-28119332 |Gorilla: An API store for LLMs| | 432|NVIDIA/Megatron-LM !2025-03-281192716|Ongoing research training transformer models at scale| | 433|illacloud/illa-builder !2025-03-28119192|Create AI-Driven Apps like Assembling Blocks| | 434|marimo-team/marimo !2025-03-281191521|A reactive notebook for Python — run reproducible experiments, execute as a script, deploy as an app, and version with git.| | 435|smol-ai/developer !2025-03-28119111 | With 100k context windows on the way, it's now feasible for every dev to have their own smol developer| | 436|Lightning-AI/litgpt !2025-03-28118878|Pretrain, finetune, deploy 20+ LLMs on your own data. Uses state-of-the-art techniques: flash attention, FSDP, 4-bit, LoRA, and more.| | 437|openai/shap-e !2025-03-28118474 |Generate 3D objects conditioned on text or images| | 438|eugeneyan/open-llms !2025-03-28118451 |A list of open LLMs available for commercial use.| | 439|andrewyng/aisuite !2025-03-28118124|Simple, unified interface to multiple Generative AI providers| | 440|hajimehoshi/ebiten !2025-03-28117816|Ebitengine - A dead simple 2D game engine for Go| | 441|kgrzybek/modular-monolith-with-ddd !2025-03-28117493|Full Modular Monolith application with Domain-Driven Design approach.| | 442|h2oai/h2ogpt !2025-03-2811736-1 |Come join the movement to make the world's best open source GPT led by H2O.ai - 100% private chat and document search, no data leaks, Apache 2.0| | 443|owainlewis/awesome-artificial-intelligence !2025-03-28117332|A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers.| | 444|DataTalksClub/mlops-zoomcamp !2025-03-28116643|Free MLOps course from DataTalks.Club| | 445|Rudrabha/Wav2Lip !2025-03-281163410|This repository contains the codes of "A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild", published at ACM Multimedia 2020.| | 446|aishwaryanr/awesome-generative-ai-guide !2025-03-281152810|A one stop repository for generative AI research updates, interview resources, notebooks and much more!| | 447|karpathy/micrograd !2025-03-28115146|A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API| | 448|InstantID/InstantID !2025-03-28115111|InstantID : Zero-shot Identity-Preserving Generation in Seconds 🔥| | 449|facebookresearch/seamlesscommunication !2025-03-28114434|Foundational Models for State-of-the-Art Speech and Text Translation| | 450|anthropics/anthropic-cookbook !2025-03-281140112|A collection of notebooks/recipes showcasing some fun and effective ways of using Claude.| | 451|mastra-ai/mastra !2025-03-281139240|the TypeScript AI agent framework| | 452|NVIDIA/TensorRT !2025-03-28113864|NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.| | 453|plandex-ai/plandex !2025-03-28113645|An AI coding engine for complex tasks| | 454|RUCAIBox/LLMSurvey !2025-03-28112735 |A collection of papers and resources related to Large Language Models.| | 455|kubeshark/kubeshark !2025-03-28112711|The API traffic analyzer for Kubernetes providing real-time K8s protocol-level visibility, capturing and monitoring all traffic and payloads going in, out and across containers, pods, nodes and clusters. Inspired by Wireshark, purposely built for Kubernetes| | 456|electric-sql/pglite !2025-03-28112617|Lightweight Postgres packaged as WASM into a TypeScript library for the browser, Node.js, Bun and Deno from https://electric-sql.com| | 457|lightaime/camel !2025-03-281124441 |🐫 CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society| | 458|huggingface/lerobot !2025-03-281120184|🤗 LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch| | 459|normal-computing/outlines !2025-03-28111657|Generative Model Programming| | 460|libretro/RetroArch !2025-03-28110701|Cross-platform, sophisticated frontend for the libretro API. Licensed GPLv3.| | 461|THUDM/CogVideo !2025-03-28110599|Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023)| | 462|bentoml/OpenLLM !2025-03-28110495|An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease.| | 463|vosen/ZLUDA !2025-03-28110429|CUDA on AMD GPUs| | 464|dair-ai/ML-Papers-of-the-Week !2025-03-28110304 |🔥Highlighting the top ML papers every week.| | 465|WordPress/gutenberg !2025-03-28110212|The Block Editor project for WordPress and beyond. Plugin is available from the official repository.| | 466|microsoft/data-formulator !2025-03-281099827|🪄 Create rich visualizations with AI| | 467|LibreTranslate/LibreTranslate !2025-03-28109887|Free and Open Source Machine Translation API. Self-hosted, offline capable and easy to setup.| | 468|block/goose !2025-03-281097737|an open-source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM| | 469|getumbrel/llama-gpt !2025-03-28109553|A self-hosted, offline, ChatGPT-like chatbot. Powered by Llama 2. 100% private, with no data leaving your device.| | 470|HigherOrderCO/HVM !2025-03-28109182|A massively parallel, optimal functional runtime in Rust| | 471|databrickslabs/dolly !2025-03-2810812-3 | A large language model trained on the Databricks Machine Learning Platform| | 472|srush/GPU-Puzzles !2025-03-28108014|Solve puzzles. Learn CUDA.| | 473|Z3Prover/z3 !2025-03-28107952|The Z3 Theorem Prover| | 474|UFund-Me/Qbot !2025-03-281079313 |Qbot is an AI-oriented quantitative investment platform, which aims to realize the potential, empower AI technologies in quantitative investment| | 475|langchain-ai/langgraph !2025-03-281077336|| | 476|lz4/lz4 !2025-03-28107647|Extremely Fast Compression algorithm| | 477|magic-research/magic-animate !2025-03-28107160|MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model| | 478|PaperMC/Paper !2025-03-281071410|The most widely used, high performance Minecraft server that aims to fix gameplay and mechanics inconsistencies| | 479|getomni-ai/zerox !2025-03-281071015|Zero shot pdf OCR with gpt-4o-mini| |!green-up-arrow.svg 480|🔥NirDiamant/GenAIAgents !2025-03-2810693318|This repository provides tutorials and implementations for various Generative AI Agent techniques, from basic to advanced. It serves as a comprehensive guide for building intelligent, interactive AI systems.| |!red-down-arrow 481|Unstructured-IO/unstructured !2025-03-28106889|Open source libraries and APIs to build custom preprocessing pipelines for labeling, training, or production machine learning pipelines.| | 482|apache/thrift !2025-03-28106610|Apache Thrift| | 483| TheR1D/shellgpt !2025-03-28106097 | A command-line productivity tool powered by ChatGPT, will help you accomplish your tasks faster and more efficiently | | 484|TheRamU/Fay !2025-03-281060312 |Fay is a complete open source project that includes Fay controller and numeral models, which can be used in different applications such as virtual hosts, live promotion, numeral human interaction and so on| | 485|zyronon/douyin !2025-03-28105566|Vue3 + Pinia + Vite5 仿抖音,Vue 在移动端的最佳实践 . Imitate TikTok ,Vue Best practices on Mobile| | 486|THU-MIG/yolov10 !2025-03-28105485|YOLOv10: Real-Time End-to-End Object Detection| | 487|idootop/mi-gpt !2025-03-281052522|? Transform XiaoAi speaker into a personal voice assistant with ChatGPT and DouBao integration.| | 488|SakanaAI/AI-Scientist !2025-03-281051310|The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑‍🔬| | 489|szimek/sharedrop !2025-03-28105101|Easy P2P file transfer powered by WebRTC - inspired by Apple AirDrop| | 490|salesforce/LAVIS !2025-03-28103942 |LAVIS - A One-stop Library for Language-Vision Intelligence| | 491|aws/amazon-sagemaker-examples !2025-03-28103654|Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.| | 492|artidoro/qlora !2025-03-28103402 |QLoRA: Efficient Finetuning of Quantized LLMs| | 493|lllyasviel/stable-diffusion-webui-forge !2025-03-281029314| a platform on top of Stable Diffusion WebUI (based on Gradio) to make development easier, optimize resource management, and speed up inference| | 494|NielsRogge/Transformers-Tutorials !2025-03-28102487|This repository contains demos I made with the Transformers library by HuggingFace.| | 495|kedro-org/kedro !2025-03-28102371|Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.| | 496| chathub-dev/chathub !2025-03-28102301 | All-in-one chatbot client | | 497|microsoft/promptflow !2025-03-28101612|Build high-quality LLM apps - from prototyping, testing to production deployment and monitoring.| | 498|mistralai/mistral-src !2025-03-28101372|Reference implementation of Mistral AI 7B v0.1 model.| | 499|burn-rs/burn !2025-03-28101183|Burn - A Flexible and Comprehensive Deep Learning Framework in Rust| | 500|AIGC-Audio/AudioGPT !2025-03-28101150 |AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head| | 501|facebookresearch/dinov2 !2025-03-281011210 |PyTorch code and models for the DINOv2 self-supervised learning method.| | 502|RockChinQ/LangBot !2025-03-281008455|😎丰富生态、🧩支持扩展、🦄多模态 - 大模型原生即时通信机器人平台 🤖 | | 503|78/xiaozhi-esp32 !2025-03-281008180|Build your own AI friend| | 504|cumulo-autumn/StreamDiffusion !2025-03-28100761|StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation| | 505|DataTalksClub/machine-learning-zoomcamp !2025-03-28100664|The code from the Machine Learning Bookcamp book and a free course based on the book| | 506|nerfstudio-project/nerfstudio !2025-03-28100343|A collaboration friendly studio for NeRFs| | 507|cupy/cupy !2025-03-28100344|NumPy & SciPy for GPU| | 508|NVIDIA/TensorRT-LLM !2025-03-281000823|TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.| | 509|wasp-lang/open-saas !2025-03-2899665|A free, open-source SaaS app starter for React & Node.js with superpowers. Production-ready. Community-driven.| | 510|huggingface/text-generation-inference !2025-03-2899383|Large Language Model Text Generation Inference| | 511|jxnl/instructor !2025-03-2899224|structured outputs for llms| | 512|GoogleCloudPlatform/generative-ai !2025-03-2899086|Sample code and notebooks for Generative AI on Google Cloud| | 513|manticoresoftware/manticoresearch !2025-03-2898799|Easy to use open source fast database for search | | 514|langfuse/langfuse !2025-03-28985134|🪢 Open source LLM engineering platform. Observability, metrics, evals, prompt management, testing, prompt playground, datasets, LLM evaluations -- 🍊YC W23 🤖 integrate via Typescript, Python / Decorators, OpenAI, Langchain, LlamaIndex, Litellm, Instructor, Mistral, Perplexity, Claude, Gemini, Vertex| | 515|keephq/keep !2025-03-2897949|The open-source alert management and AIOps platform| | 516|sashabaranov/go-openai !2025-03-2897843|OpenAI ChatGPT, GPT-3, GPT-4, DALL·E, Whisper API wrapper for Go| | 517|autowarefoundation/autoware !2025-03-2897766|Autoware - the world's leading open-source software project for autonomous driving| | 518|anthropics/courses !2025-03-2897269|Anthropic's educational courses| | 519|popcorn-official/popcorn-desktop !2025-03-2896853|Popcorn Time is a multi-platform, free software BitTorrent client that includes an integrated media player ( Windows / Mac / Linux ) A Butter-Project Fork| | 520|getmaxun/maxun !2025-03-28968515|🔥 Open-source no-code web data extraction platform. Turn websites to APIs and spreadsheets with no-code robots in minutes! [In Beta]| | 521|wandb/wandb !2025-03-2896763|🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API.| | 522|karpathy/minbpe !2025-03-2895353|Minimal, clean, code for the Byte Pair Encoding (BPE) algorithm commonly used in LLM tokenization.| | 523|bigscience-workshop/petals !2025-03-2895142|🌸 Run large language models at home, BitTorrent-style. Fine-tuning and inference up to 10x faster than offloading| | 524|OthersideAI/self-operating-computer !2025-03-2894931|A framework to enable multimodal models to operate a computer.| | 525|mshumer/gpt-prompt-engineer !2025-03-2894911|| | 526| BloopAI/bloop !2025-03-2894710 | A fast code search engine written in Rust| | 527|BlinkDL/ChatRWKV !2025-03-289467-1 |ChatRWKV is like ChatGPT but powered by RWKV (100% RNN) language model, and open source.| | 528|timlrx/tailwind-nextjs-starter-blog !2025-03-2894677|This is a Next.js, Tailwind CSS blogging starter template. Comes out of the box configured with the latest technologies to make technical writing a breeze. Easily configurable and customizable. Perfect as a replacement to existing Jekyll and Hugo individual blogs.| | 529|google/benchmark !2025-03-2893634|A microbenchmark support library| | 530|facebookresearch/nougat !2025-03-2893603|Implementation of Nougat Neural Optical Understanding for Academic Documents| | 531|modelscope/facechain !2025-03-2893536|FaceChain is a deep-learning toolchain for generating your Digital-Twin.| | 532|DrewThomasson/ebook2audiobook !2025-03-2893388|Convert ebooks to audiobooks with chapters and metadata using dynamic AI models and voice cloning. Supports 1,107+ languages!| | 533|RayTracing/raytracing.github.io !2025-03-2893035|Main Web Site (Online Books)| | 534|QwenLM/Qwen2.5-VL !2025-03-28930249|Qwen2.5-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud.| | 535|WongKinYiu/yolov9 !2025-03-2892201|Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information| | 536|alibaba-damo-academy/FunASR !2025-03-28920222|A Fundamental End-to-End Speech Recognition Toolkit and Open Source SOTA Pretrained Models.| | 537|Visualize-ML/Book4Power-of-Matrix !2025-03-2891931|Book4 'Power of Matrix' | | 538|dice2o/BingGPT !2025-03-289185-1 |Desktop application of new Bing's AI-powered chat (Windows, macOS and Linux)| | 539|browserbase/stagehand !2025-03-28917621|An AI web browsing framework focused on simplicity and extensibility.| | 540|FlagOpen/FlagEmbedding !2025-03-28914111|Dense Retrieval and Retrieval-augmented LLMs| | 541|Const-me/Whisper !2025-03-2890979|High-performance GPGPU inference of OpenAI's Whisper automatic speech recognition (ASR) model| | 542|lucidrains/denoising-diffusion-pytorch !2025-03-2890942|Implementation of Denoising Diffusion Probabilistic Model in Pytorch| | 543|Chainlit/chainlit !2025-03-28904422|Build Conversational AI in minutes ⚡️| | 544|togethercomputer/OpenChatKit !2025-03-2890160 |OpenChatKit provides a powerful, open-source base to create both specialized and general purpose chatbots for various applications| | 545|Stability-AI/StableStudio !2025-03-2889631 |Community interface for generative AI| | 546|voicepaw/so-vits-svc-fork !2025-03-2889482 |so-vits-svc fork with realtime support, improved interface and more features.| | 547|pymc-devs/pymc !2025-03-2889413|Bayesian Modeling and Probabilistic Programming in Python| | 548|espnet/espnet !2025-03-2889302|End-to-End Speech Processing Toolkit| | 549|kedacore/keda !2025-03-2888991|KEDA is a Kubernetes-based Event Driven Autoscaling component. It provides event driven scale for any container running in Kubernetes| | 550|open-mmlab/Amphion !2025-03-28886911|Amphion (/æmˈfaɪən/) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.| | 551|gorse-io/gorse !2025-03-2888451|Gorse open source recommender system engine| | 552|adams549659584/go-proxy-bingai !2025-03-288768-1 |A Microsoft New Bing demo site built with Vue3 and Go, providing a consistent UI experience, supporting ChatGPT prompts, and accessible within China| | 553|open-mmlab/mmsegmentation !2025-03-2887513|OpenMMLab Semantic Segmentation Toolbox and Benchmark.| | 554|bytedance/monolith !2025-03-2887223|ByteDance's Recommendation System| | 555|LouisShark/chatgptsystemprompt !2025-03-2887216|store all agent's system prompt| | 556|brexhq/prompt-engineering !2025-03-2887080 |Tips and tricks for working with Large Language Models like OpenAI's GPT-4.| | 557|erincatto/box2d !2025-03-2886841|Box2D is a 2D physics engine for games| | 558|🔥microsoft/ai-agents-for-beginners !2025-03-288669323|10 Lessons to Get Started Building AI Agents| | 559|nashsu/FreeAskInternet !2025-03-2886102|FreeAskInternet is a completely free, private and locally running search aggregator & answer generate using LLM, without GPU needed. The user can ask a question and the system will make a multi engine search and combine the search result to the ChatGPT3.5 LLM and generate the answer based on search results.| | 560|goldmansachs/gs-quant !2025-03-2885981|Python toolkit for quantitative finance| | 561|srbhr/Resume-Matcher !2025-03-2885800|Open Source Free ATS Tool to compare Resumes with Job Descriptions and create a score to rank them.| | 562|facebookresearch/ImageBind !2025-03-2885681 |ImageBind One Embedding Space to Bind Them All| | 563|ashawkey/stable-dreamfusion !2025-03-2885481 |A pytorch implementation of text-to-3D dreamfusion, powered by stable diffusion.| | 564|meetecho/janus-gateway !2025-03-2885232|Janus WebRTC Server| | 565|google/magika !2025-03-2885003|Detect file content types with deep learning| | 566|huggingface/chat-ui !2025-03-2884871 |Open source codebase powering the HuggingChat app| | 567|EleutherAI/lm-evaluation-harness !2025-03-28843012|A framework for few-shot evaluation of autoregressive language models.| | 568|jina-ai/reader !2025-03-2884089|Convert any URL to an LLM-friendly input with a simple prefix https://r.jina.ai/| | 569|microsoft/TypeChat !2025-03-288406-1|TypeChat is a library that makes it easy to build natural language interfaces using types.| | 570|thuml/Time-Series-Library !2025-03-28839715|A Library for Advanced Deep Time Series Models.| | 571|OptimalScale/LMFlow !2025-03-2883882|An Extensible Toolkit for Finetuning and Inference of Large Foundation Models. Large Model for All.| | 572|baptisteArno/typebot.io !2025-03-2883845|💬 Typebot is a powerful chatbot builder that you can self-host.| | 573|jzhang38/TinyLlama !2025-03-2883504|The TinyLlama project is an open endeavor to pretrain a 1.1B Llama model on 3 trillion tokens.| | 574|fishaudio/Bert-VITS2 !2025-03-2883472|vits2 backbone with multilingual-bert| | 575|OpenBMB/XAgent !2025-03-2882683|An Autonomous LLM Agent for Complex Task Solving| | 576|Acly/krita-ai-diffusion !2025-03-2882387|Streamlined interface for generating images with AI in Krita. Inpaint and outpaint with optional text prompt, no tweaking required.| | 577|jasonppy/VoiceCraft !2025-03-2882151|Zero-Shot Speech Editing and Text-to-Speech in the Wild| | 578|SJTU-IPADS/PowerInfer !2025-03-2881693|High-speed Large Language Model Serving on PCs with Consumer-grade GPUs| | 579|modelscope/DiffSynth-Studio !2025-03-28814713|Enjoy the magic of Diffusion models!| | 580|o3de/o3de !2025-03-2881443|Open 3D Engine (O3DE) is an Apache 2.0-licensed multi-platform 3D engine that enables developers and content creators to build AAA games, cinema-quality 3D worlds, and high-fidelity simulations without any fees or commercial obligations.| | 581|zmh-program/chatnio !2025-03-2881325|🚀 Next Generation AI One-Stop Internationalization Solution. 🚀 下一代 AI 一站式 B/C 端解决方案,支持 OpenAI,Midjourney,Claude,讯飞星火,Stable Diffusion,DALL·E,ChatGLM,通义千问,腾讯混元,360 智脑,百川 AI,火山方舟,新必应,Gemini,Moonshot 等模型,支持对话分享,自定义预设,云端同步,模型市场,支持弹性计费和订阅计划模式,支持图片解析,支持联网搜索,支持模型缓存,丰富美观的后台管理与仪表盘数据统计。| | 582|leptonai/searchwithlepton !2025-03-2880632|Building a quick conversation-based search demo with Lepton AI.| | 583|sebastianstarke/AI4Animation !2025-03-2880620|Bringing Characters to Life with Computer Brains in Unity| | 584|wangrongding/wechat-bot !2025-03-2880528|🤖一个基于 WeChaty 结合 DeepSeek / ChatGPT / Kimi / 讯飞等Ai服务实现的微信机器人 ,可以用来帮助你自动回复微信消息,或者管理微信群/好友,检测僵尸粉等...| | 585|openvinotoolkit/openvino !2025-03-2880528|OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference| | 586|steven2358/awesome-generative-ai !2025-03-28802610|A curated list of modern Generative Artificial Intelligence projects and services| | 587|adam-maj/tiny-gpu !2025-03-2880234|A minimal GPU design in Verilog to learn how GPUs work from the ground up| | 588| anse-app/chatgpt-demo !2025-03-2880180 | A demo repo based on OpenAI API (gpt-3.5-turbo) | | 589| acheong08/EdgeGPT !2025-03-288015-1 |Reverse engineered API of Microsoft's Bing Chat | | 590|ai-collection/ai-collection !2025-03-2879994 |The Generative AI Landscape - A Collection of Awesome Generative AI Applications| | 591|GreyDGL/PentestGPT !2025-03-2879953 |A GPT-empowered penetration testing tool| | 592|delta-io/delta !2025-03-2879112|An open-source storage framework that enables building a Lakehouse architecture with compute engines including Spark, PrestoDB, Flink, Trino, and Hive and APIs| | 593|dataelement/bisheng !2025-03-2879085|Bisheng is an open LLM devops platform for next generation AI applications.| | 594|e2b-dev/e2b !2025-03-2878447 |Vercel for AI agents. We help developers to build, deploy, and monitor AI agents. Focusing on specialized AI agents that build software for you - your personal software developers.| | 595|01-ai/Yi !2025-03-2878311|A series of large language models trained from scratch by developers @01-ai| | 596|Plachtaa/VALL-E-X !2025-03-287830-1|An open source implementation of Microsoft's VALL-E X zero-shot TTS model. The demo is available at https://plachtaa.github.io| | 597|abhishekkrthakur/approachingalmost !2025-03-2878204|Approaching (Almost) Any Machine Learning Problem| | 598|pydantic/pydantic-ai !2025-03-28781041|Agent Framework / shim to use Pydantic with LLMs| | 599|rany2/edge-tts !2025-03-2877901|Use Microsoft Edge's online text-to-speech service from Python WITHOUT needing Microsoft Edge or Windows or an API key| | 600|CASIA-IVA-Lab/FastSAM !2025-03-2877881|Fast Segment Anything| | 601|netease-youdao/EmotiVoice !2025-03-2877817|EmotiVoice 😊: a Multi-Voice and Prompt-Controlled TTS Engine| | 602|lllyasviel/IC-Light !2025-03-2877804|More relighting!| | 603|kroma-network/tachyon !2025-03-287774-1|Modular ZK(Zero Knowledge) backend accelerated by GPU| | 604|deep-floyd/IF !2025-03-2877731 |A novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding| | 605|oumi-ai/oumi !2025-03-2877705|Everything you need to build state-of-the-art foundation models, end-to-end.| | 606|reorproject/reor !2025-03-2877681|AI note-taking app that runs models locally.| | 607|lightpanda-io/browser !2025-03-28775813|Lightpanda: the headless browser designed for AI and automation| | 608|xiangsx/gpt4free-ts !2025-03-287755-1|Providing a free OpenAI GPT-4 API ! This is a replication project for the typescript version of xtekky/gpt4free| | 609|IDEA-Research/GroundingDINO !2025-03-28773311|Official implementation of the paper "Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection"| | 610|bunkerity/bunkerweb !2025-03-2877326|🛡️ Make your web services secure by default !| | 611|vikhyat/moondream !2025-03-2877057|tiny vision language model| | 612|firmai/financial-machine-learning !2025-03-287703-1|A curated list of practical financial machine learning tools and applications.| | 613|n8n-io/self-hosted-ai-starter-kit !2025-03-28765121|The Self-hosted AI Starter Kit is an open-source template that quickly sets up a local AI environment. Curated by n8n, it provides essential tools for creating secure, self-hosted AI workflows.| | 614|intel-analytics/ipex-llm !2025-03-2876507|Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, Baichuan, Mixtral, Gemma, etc.) on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max). A PyTorch LLM library that seamlessly integrates with llama.cpp, HuggingFace, LangChain, LlamaIndex, DeepSpeed, vLLM, FastChat, ModelScope, etc.| | 615|jrouwe/JoltPhysics !2025-03-28764510|A multi core friendly rigid body physics and collision detection library. Written in C++. Suitable for games and VR applications. Used by Horizon Forbidden West.| | 616|THUDM/CodeGeeX2 !2025-03-2876270|CodeGeeX2: A More Powerful Multilingual Code Generation Model| | 617|meta-llama/llama-stack !2025-03-2875866|Composable building blocks to build Llama Apps| | 618|sweepai/sweep !2025-03-287530-1|Sweep is an AI junior developer| | 619|lllyasviel/Omost !2025-03-2875301|Your image is almost there!| | 620|ahmedbahaaeldin/From-0-to-Research-Scientist-resources-guide !2025-03-2875050|Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.| | 621|dair-ai/ML-Papers-Explained !2025-03-2875050|Explanation to key concepts in ML| | 622|zaidmukaddam/scira !2025-03-28750110|Scira (Formerly MiniPerplx) is a minimalistic AI-powered search engine that helps you find information on the internet. Powered by Vercel AI SDK! Search with models like Grok 2.0.| | 623|Portkey-AI/gateway !2025-03-28749416|A Blazing Fast AI Gateway. Route to 100+ LLMs with 1 fast & friendly API.| | 624|web-infra-dev/midscene !2025-03-28748729|An AI-powered automation SDK can control the page, perform assertions, and extract data in JSON format using natural language.| | 625|zilliztech/GPTCache !2025-03-2874801 |GPTCache is a library for creating semantic cache to store responses from LLM queries.| | 626|niedev/RTranslator !2025-03-2874742|RTranslator is the world's first open source real-time translation app.| |!green-up-arrow.svg 627|roboflow/notebooks !2025-03-2874666|Examples and tutorials on using SOTA computer vision models and techniques. Learn everything from old-school ResNet, through YOLO and object-detection transformers like DETR, to the latest models like Grounding DINO and SAM.| |!red-down-arrow 628|openlm-research/openllama !2025-03-2874652|OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset| | 629|LiheYoung/Depth-Anything !2025-03-2874155|Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data| | 630|enso-org/enso !2025-03-2874040|Hybrid visual and textual functional programming.| | 631|bigcode-project/starcoder !2025-03-287401-1 |Home of StarCoder: fine-tuning & inference!| | 632|git-ecosystem/git-credential-manager !2025-03-2873975|Secure, cross-platform Git credential storage with authentication to GitHub, Azure Repos, and other popular Git hosting services.| | 633|OpenGVLab/InternVL !2025-03-2873634|[CVPR 2024 Oral] InternVL Family: A Pioneering Open-Source Alternative to GPT-4V. 接近GPT-4V表现的可商用开源模型| | 634|WooooDyy/LLM-Agent-Paper-List !2025-03-2873551|The paper list of the 86-page paper "The Rise and Potential of Large Language Model Based Agents: A Survey" by Zhiheng Xi et al.| | 635|lencx/Noi !2025-03-2873157|🦄 AI + Tools + Plugins + Community| | 636|udlbook/udlbook !2025-03-2873075|Understanding Deep Learning - Simon J.D. Prince| | 637|OpenBMB/MiniCPM !2025-03-2872841|MiniCPM-2B: An end-side LLM outperforms Llama2-13B.| | 638|jaywalnut310/vits !2025-03-2872815 |VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech| | 639|xorbitsai/inference !2025-03-28727528|Replace OpenAI GPT with another LLM in your app by changing a single line of code. Xinference gives you the freedom to use any LLM you need. With Xinference, you're empowered to run inference with any open-source language models, speech recognition models, and multimodal models, whether in the cloud, on-premises, or even on your laptop.| | 640|PWhiddy/PokemonRedExperiments !2025-03-2872492|Playing Pokemon Red with Reinforcement Learning| | 641|Canner/WrenAI !2025-03-28723213|🤖 Open-source AI Agent that empowers data-driven teams to chat with their data to generate Text-to-SQL, charts, spreadsheets, reports, and BI. 📈📊📋🧑‍💻| | 642|miurla/morphic !2025-03-2872258|An AI-powered answer engine with a generative UI| | 643|ml-explore/mlx-examples !2025-03-2872168|Examples in the MLX framework| | 644|PKU-YuanGroup/ChatLaw !2025-03-2872010|Chinese Legal Large Model| | 645|NVIDIA/cutlass !2025-03-2871883|CUDA Templates for Linear Algebra Subroutines| | 646|FoundationVision/VAR !2025-03-28717444|[GPT beats diffusion🔥] [scaling laws in visual generation📈] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction"| | 647|ymcui/Chinese-LLaMA-Alpaca-2 !2025-03-2871561|Chinese LLaMA-2 & Alpaca-2 LLMs| | 648|nadermx/backgroundremover !2025-03-2871514 |Background Remover lets you Remove Background from images and video using AI with a simple command line interface that is free and open source.| | 649|onuratakan/gpt-computer-assistant !2025-03-28714514|gpt-4o for windows, macos and ubuntu| | 650|graviraja/MLOps-Basics !2025-03-2871326|| | 651|Future-House/paper-qa !2025-03-287118-1|High accuracy RAG for answering questions from scientific documents with citations| | 652|open-mmlab/mmagic !2025-03-2871102 |OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox| | 653|bhaskatripathi/pdfGPT !2025-03-2870941 |PDF GPT allows you to chat with the contents of your PDF file by using GPT capabilities. The only open source solution to turn your pdf files in a chatbot!| | 654|ollama/ollama-python !2025-03-28709117|Ollama Python library| | 655|facebookresearch/DiT !2025-03-2870376|Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"| | 656|geekyutao/Inpaint-Anything !2025-03-2870262 |Inpaint anything using Segment Anything and inpainting models.| | 657|AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-Plugin !2025-03-2870160 |A user-friendly plug-in that makes it easy to generate stable diffusion images inside Photoshop using Automatic1111-sd-webui as a backend.| | 658|apple/corenet !2025-03-2869990|CoreNet: A library for training deep neural networks| | 659|openstatusHQ/openstatus !2025-03-2869926|🏓 The open-source synthetic monitoring platform 🏓| | 660|weaviate/Verba !2025-03-2869772|Retrieval Augmented Generation (RAG) chatbot powered by Weaviate| | 661|meshery/meshery !2025-03-2869630|Meshery, the cloud native manager| | 662|OpenTalker/video-retalking !2025-03-2869530|[SIGGRAPH Asia 2022] VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild| | 663|digitalinnovationone/dio-lab-open-source !2025-03-28689013|Repositório do lab "Contribuindo em um Projeto Open Source no GitHub" da Digital Innovation One.| | 664|jianchang512/ChatTTS-ui !2025-03-2868842|一个简单的本地网页界面,直接使用ChatTTS将文字合成为语音,同时支持对外提供API接口。| | 665|patchy631/ai-engineering-hub !2025-03-28686434|In-depth tutorials on LLMs, RAGs and real-world AI agent applications.| | 666|gunnarmorling/1brc !2025-03-2868512|1️⃣🐝🏎️ The One Billion Row Challenge -- A fun exploration of how quickly 1B rows from a text file can be aggregated with Java| | 667|Azure-Samples/azure-search-openai-demo !2025-03-2868482 |A sample app for the Retrieval-Augmented Generation pattern running in Azure, using Azure Cognitive Search for retrieval and Azure OpenAI large language models to power ChatGPT-style and Q&A experiences.| | 668|mit-han-lab/streaming-llm !2025-03-2868382|Efficient Streaming Language Models with Attention Sinks| | 669|InternLM/InternLM !2025-03-2868352|InternLM has open-sourced a 7 billion parameter base model, a chat model tailored for practical scenarios and the training system.| | 670|dependency-check/DependencyCheck !2025-03-2868191|OWASP dependency-check is a software composition analysis utility that detects publicly disclosed vulnerabilities in application dependencies.| | 671|Soulter/AstrBot !2025-03-28678643|✨易上手的多平台 LLM 聊天机器人及开发框架✨。支持 QQ、QQ频道、Telegram、微信平台(Gewechat, 企业微信)、内置 Web Chat,OpenAI GPT、DeepSeek、Ollama、Llama、GLM、Gemini、OneAPI、LLMTuner,支持 LLM Agent 插件开发,可视化面板。一键部署。支持 Dify 工作流、代码执行器、Whisper 语音转文字。| | 672|react-native-webview/react-native-webview !2025-03-2867792|React Native Cross-Platform WebView| | 673|modelscope/agentscope !2025-03-28676916|Start building LLM-empowered multi-agent applications in an easier way.| | 674|mylxsw/aidea !2025-03-2867381|AIdea is a versatile app that supports GPT and domestic large language models,also supports "Stable Diffusion" text-to-image generation, image-to-image generation, SDXL 1.0, super-resolution, and image colorization| | 675|langchain-ai/ollama-deep-researcher !2025-03-28668635|Fully local web research and report writing assistant| | 676|threestudio-project/threestudio !2025-03-2866653|A unified framework for 3D content generation.| | 677|gaomingqi/Track-Anything !2025-03-2866631 |A flexible and interactive tool for video object tracking and segmentation, based on Segment Anything, XMem, and E2FGVI.| | 678|spdustin/ChatGPT-AutoExpert !2025-03-2866570|🚀🧠💬 Supercharged Custom Instructions for ChatGPT (non-coding) and ChatGPT Advanced Data Analysis (coding).| | 679|HariSekhon/DevOps-Bash-tools !2025-03-2866463|1000+ DevOps Bash Scripts - AWS, GCP, Kubernetes, Docker, CI/CD, APIs, SQL, PostgreSQL, MySQL, Hive, Impala, Kafka, Hadoop, Jenkins, GitHub, GitLab, BitBucket, Azure DevOps, TeamCity, Spotify, MP3, LDAP, Code/Build Linting, pkg mgmt for Linux, Mac, Python, Perl, Ruby, NodeJS, Golang, Advanced dotfiles: .bashrc, .vimrc, .gitconfig, .screenrc, tmux..| | 680|modelscope/swift !2025-03-28661530|ms-swift: Use PEFT or Full-parameter to finetune 200+ LLMs or 15+ MLLMs| | 681|langchain-ai/opengpts !2025-03-2866080|This is an open source effort to create a similar experience to OpenAI's GPTs and Assistants API| | 682| yihong0618/xiaogpt !2025-03-2865131 | Play ChatGPT with xiaomi ai speaker | | 683| civitai/civitai !2025-03-2865111 | Build a platform where people can share their stable diffusion models | | 684|KoljaB/RealtimeSTT !2025-03-28649513|A robust, efficient, low-latency speech-to-text library with advanced voice activity detection, wake word activation and instant transcription.| | 685|qunash/chatgpt-advanced !2025-03-2864910 | A browser extension that augments your ChatGPT prompts with web results.| | 686|Licoy/ChatGPT-Midjourney !2025-03-2864850|🎨 Own your own ChatGPT+Midjourney web service with one click| | 687|friuns2/BlackFriday-GPTs-Prompts !2025-03-2864744|List of free GPTs that doesn't require plus subscription| | 688|PixarAnimationStudios/OpenUSD !2025-03-2864700|Universal Scene Description| | 689|linyiLYi/street-fighter-ai !2025-03-2864630 |This is an AI agent for Street Fighter II Champion Edition.| | 690|run-llama/rags !2025-03-2864380|Build ChatGPT over your data, all with natural language| | 691|frdel/agent-zero !2025-03-2864154|Agent Zero AI framework| | 692|microsoft/DeepSpeedExamples !2025-03-2863911 |Example models using DeepSpeed| | 693|k8sgpt-ai/k8sgpt !2025-03-2863882|Giving Kubernetes Superpowers to everyone| | 694|open-metadata/OpenMetadata !2025-03-2863514|OpenMetadata is a unified platform for discovery, observability, and governance powered by a central metadata repository, in-depth lineage, and seamless team collaboration.| | 695|google/gemma.cpp !2025-03-2863163|lightweight, standalone C++ inference engine for Google's Gemma models.| | 696|RayVentura/ShortGPT !2025-03-286314-1|🚀🎬 ShortGPT - An experimental AI framework for automated short/video content creation. Enables creators to rapidly produce, manage, and deliver content using AI and automation.| | 697|openai/consistencymodels !2025-03-2862940 |Official repo for consistency models.| | 698|yangjianxin1/Firefly !2025-03-2862924|Firefly: Chinese conversational large language model (full-scale fine-tuning + QLoRA), supporting fine-tuning of Llma2, Llama, Baichuan, InternLM, Ziya, Bloom, and other large models| | 699|enricoros/big-AGI !2025-03-2862665|Generative AI suite powered by state-of-the-art models and providing advanced AI/AGI functions. It features AI personas, AGI functions, multi-model chats, text-to-image, voice, response streaming, code highlighting and execution, PDF import, presets for developers, much more. Deploy on-prem or in the cloud.| | 700|aptos-labs/aptos-core !2025-03-2862633|Aptos is a layer 1 blockchain built to support the widespread use of blockchain through better technology and user experience.| | 701|wenda-LLM/wenda !2025-03-286262-1 |Wenda: An LLM invocation platform. Its objective is to achieve efficient content generation tailored to specific environments while considering the limited computing resources of individuals and small businesses, as well as knowledge security and privacy concerns| | 702|Project-MONAI/MONAI !2025-03-2862603|AI Toolkit for Healthcare Imaging| | 703|HVision-NKU/StoryDiffusion !2025-03-2862470|Create Magic Story!| | 704|deepseek-ai/DeepSeek-LLM !2025-03-2862463|DeepSeek LLM: Let there be answers| | 705|Tohrusky/Final2x !2025-03-2862393|2^x Image Super-Resolution| | 706|OpenSPG/KAG !2025-03-28619611|KAG is a logical form-guided reasoning and retrieval framework based on OpenSPG engine and LLMs. It is used to build logical reasoning and factual Q&A solutions for professional domain knowledge bases. It can effectively overcome the shortcomings of the traditional RAG vector similarity calculation model.| | 707|Moonvy/OpenPromptStudio !2025-03-2861861 |AIGC Hint Word Visualization Editor| | 708|levihsu/OOTDiffusion !2025-03-2861761|Official implementation of OOTDiffusion| | 709|tmc/langchaingo !2025-03-2861729|LangChain for Go, the easiest way to write LLM-based programs in Go| | 710|vladmandic/automatic !2025-03-2861374|SD.Next: Advanced Implementation of Stable Diffusion and other Diffusion-based generative image models| | 711|clovaai/donut !2025-03-2861231 |Official Implementation of OCR-free Document Understanding Transformer (Donut) and Synthetic Document Generator (SynthDoG), ECCV 2022| | 712|Shaunwei/RealChar !2025-03-286121-1|🎙️🤖Create, Customize and Talk to your AI Character/Companion in Realtime(All in One Codebase!). Have a natural seamless conversation with AI everywhere(mobile, web and terminal) using LLM OpenAI GPT3.5/4, Anthropic Claude2, Chroma Vector DB, Whisper Speech2Text, ElevenLabs Text2Speech🎙️🤖| | 713|microsoft/TinyTroupe !2025-03-2861142|LLM-powered multiagent persona simulation for imagination enhancement and business insights.| | 714| rustformers/llm !2025-03-2861010 | Run inference for Large Language Models on CPU, with Rust| | 715|firebase/firebase-ios-sdk !2025-03-2860950|Firebase SDK for Apple App Development| | 716|vespa-engine/vespa !2025-03-2860824|The open big data serving engine. https://vespa.ai| | 717|n4ze3m/page-assist !2025-03-28607610|Use your locally running AI models to assist you in your web browsing| | 718|Dooy/chatgpt-web-midjourney-proxy !2025-03-2860646|chatgpt web, midjourney, gpts,tts, whisper 一套ui全搞定| | 719|ethereum-optimism/optimism !2025-03-2860213|Optimism is Ethereum, scaled.| | 720|sczhou/ProPainter !2025-03-2859971|[ICCV 2023] ProPainter: Improving Propagation and Transformer for Video Inpainting| | 721|MineDojo/Voyager !2025-03-2859951 |An Open-Ended Embodied Agent with Large Language Models| | 722|lavague-ai/LaVague !2025-03-2859800|Automate automation with Large Action Model framework| | 723|SevaSk/ecoute !2025-03-2859770 |Ecoute is a live transcription tool that provides real-time transcripts for both the user's microphone input (You) and the user's speakers output (Speaker) in a textbox. It also generates a suggested response using OpenAI's GPT-3.5 for the user to say based on the live transcription of the conversation.| | 724|google/mesop !2025-03-2859661|| | 725|pengxiao-song/LaWGPT !2025-03-2859542 |Repo for LaWGPT, Chinese-Llama tuned with Chinese Legal knowledge| | 726|fr0gger/Awesome-GPT-Agents !2025-03-2859434|A curated list of GPT agents for cybersecurity| | 727|google-deepmind/graphcast !2025-03-2859412|| | 728|comet-ml/opik !2025-03-28594126|Open-source end-to-end LLM Development Platform| | 729|SciPhi-AI/R2R !2025-03-28594033|A framework for rapid development and deployment of production-ready RAG systems| | 730|SkalskiP/courses !2025-03-2859272 |This repository is a curated collection of links to various courses and resources about Artificial Intelligence (AI)| | 731|QuivrHQ/MegaParse !2025-03-2859122|File Parser optimised for LLM Ingestion with no loss 🧠 Parse PDFs, Docx, PPTx in a format that is ideal for LLMs.| | 732|pytorch-labs/gpt-fast !2025-03-2858971|Simple and efficient pytorch-native transformer text generation in !2025-03-2858886|Curated list of chatgpt prompts from the top-rated GPTs in the GPTs Store. Prompt Engineering, prompt attack & prompt protect. Advanced Prompt Engineering papers.| | 734|nilsherzig/LLocalSearch !2025-03-2858852|LLocalSearch is a completely locally running search aggregator using LLM Agents. The user can ask a question and the system will use a chain of LLMs to find the answer. The user can see the progress of the agents and the final answer. No OpenAI or Google API keys are needed.| | 735|kuafuai/DevOpsGPT !2025-03-285874-2|Multi agent system for AI-driven software development. Convert natural language requirements into working software. Supports any development language and extends the existing base code.| | 736|myshell-ai/MeloTTS !2025-03-2858486|High-quality multi-lingual text-to-speech library by MyShell.ai. Support English, Spanish, French, Chinese, Japanese and Korean.| | 737|OpenGVLab/LLaMA-Adapter !2025-03-2858421 |Fine-tuning LLaMA to follow Instructions within 1 Hour and 1.2M Parameters| | 738|volcengine/verl !2025-03-28582563|veRL: Volcano Engine Reinforcement Learning for LLM| | 739|a16z-infra/companion-app !2025-03-2858171|AI companions with memory: a lightweight stack to create and host your own AI companions| | 740|HumanAIGC/OutfitAnyone !2025-03-285816-1|Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person| | 741|josStorer/RWKV-Runner !2025-03-2857472|A RWKV management and startup tool, full automation, only 8MB. And provides an interface compatible with the OpenAI API. RWKV is a large language model that is fully open source and available for commercial use.| | 742|648540858/wvp-GB28181-pro !2025-03-2857414|WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的网络视频平台,支持NAT穿透,支持海康、大华、宇视等品牌的IPC、NVR、DVR接入。支持国标级联,支持rtsp/rtmp等视频流转发到国标平台,支持rtsp/rtmp等推流转发到国标平台。| | 743|ToonCrafter/ToonCrafter !2025-03-2857345|a research paper for generative cartoon interpolation| | 744|PawanOsman/ChatGPT !2025-03-2857191|OpenAI API Free Reverse Proxy| | 745|apache/hudi !2025-03-2857091|Upserts, Deletes And Incremental Processing on Big Data.| | 746| nsarrazin/serge !2025-03-2857081 | A web interface for chatting with Alpaca through llama.cpp. Fully dockerized, with an easy to use API| | 747|homanp/superagent !2025-03-2857021|🥷 Superagent - Build, deploy, and manage LLM-powered agents| | 748|ramonvc/freegpt-webui !2025-03-2856910|GPT 3.5/4 with a Chat Web UI. No API key is required.| | 749|baichuan-inc/baichuan-7B !2025-03-2856901|A large-scale 7B pretraining language model developed by BaiChuan-Inc.| | 750|Azure/azure-sdk-for-net !2025-03-2856792|This repository is for active development of the Azure SDK for .NET. For consumers of the SDK we recommend visiting our public developer docs at https://learn.microsoft.com/dotnet/azure/ or our versioned developer docs at https://azure.github.io/azure-sdk-for-net.| | 751|mnotgod96/AppAgent !2025-03-2856643|AppAgent: Multimodal Agents as Smartphone Users, an LLM-based multimodal agent framework designed to operate smartphone apps.| | 752|microsoft/TaskWeaver !2025-03-2856243|A code-first agent framework for seamlessly planning and executing data analytics tasks.| | 753| yetone/bob-plugin-openai-translator !2025-03-285600-1 | A Bob Plugin base ChatGPT API | | 754|PrefectHQ/marvin !2025-03-2855840 |A batteries-included library for building AI-powered software| | 755|microsoft/promptbase !2025-03-2855832|All things prompt engineering| | 756|fullstackhero/dotnet-starter-kit !2025-03-2855560|Production Grade Cloud-Ready .NET 8 Starter Kit (Web API + Blazor Client) with Multitenancy Support, and Clean/Modular Architecture that saves roughly 200+ Development Hours! All Batteries Included.| | 757|deepseek-ai/DeepSeek-Coder-V2 !2025-03-2855435|DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence| | 758|aiwaves-cn/agents !2025-03-2855391|An Open-source Framework for Autonomous Language Agents| | 759|microsoft/Mastering-GitHub-Copilot-for-Paired-Programming !2025-03-2855158|A 6 Lesson course teaching everything you need to know about harnessing GitHub Copilot and an AI Paired Programing resource.| | 760|allenai/OLMo !2025-03-2854506|Modeling, training, eval, and inference code for OLMo| | 761|apify/crawlee-python !2025-03-2854493|Crawlee—A web scraping and browser automation library for Python to build reliable crawlers. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with BeautifulSoup, Playwright, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 762|k2-fsa/sherpa-onnx !2025-03-28541520|Speech-to-text, text-to-speech, and speaker recongition using next-gen Kaldi with onnxruntime without Internet connection. Support embedded systems, Android, iOS, Raspberry Pi, RISC-V, x86_64 servers, websocket server/client, C/C++, Python, Kotlin, C#, Go, NodeJS, Java, Swift| | 763|TEN-framework/TEN-Agent !2025-03-28541411|TEN Agent is a realtime conversational AI agent powered by TEN. It seamlessly integrates the OpenAI Realtime API, RTC capabilities, and advanced features like weather updates, web search, computer vision, and Retrieval-Augmented Generation (RAG).| | 764|google/gemmapytorch !2025-03-2854010|The official PyTorch implementation of Google's Gemma models| | 765|snakers4/silero-vad !2025-03-2853858|Silero VAD: pre-trained enterprise-grade Voice Activity Detector| | 766|livekit/agents !2025-03-2853836|Build real-time multimodal AI applications 🤖🎙️📹| | 767|pipecat-ai/pipecat !2025-03-28537811|Open Source framework for voice and multimodal conversational AI| | 768|EricLBuehler/mistral.rs !2025-03-28536324|Blazingly fast LLM inference.| | 769|asg017/sqlite-vec !2025-03-28535810|Work-in-progress vector search SQLite extension that runs anywhere.| | 770|albertan017/LLM4Decompile !2025-03-2853563|Reverse Engineering: Decompiling Binary Code with Large Language Models| | 771|Permify/permify !2025-03-2853235|An open-source authorization as a service inspired by Google Zanzibar, designed to build and manage fine-grained and scalable authorization systems for any application.| | 772|imoneoi/openchat !2025-03-2853171|OpenChat: Advancing Open-source Language Models with Imperfect Data| | 773|mosaicml/composer !2025-03-2853140|Train neural networks up to 7x faster| | 774|dsdanielpark/Bard-API !2025-03-285277-1 |The python package that returns a response of Google Bard through API.| | 775|lxfater/inpaint-web !2025-03-2852552|A free and open-source inpainting & image-upscaling tool powered by webgpu and wasm on the browser。| | 776|leanprover/lean4 !2025-03-2852441|Lean 4 programming language and theorem prover| | 777|AILab-CVC/YOLO-World !2025-03-2852415|Real-Time Open-Vocabulary Object Detection| | 778|openchatai/OpenChat !2025-03-2852260 |Run and create custom ChatGPT-like bots with OpenChat, embed and share these bots anywhere, the open-source chatbot console.| | 779|mufeedvh/code2prompt !2025-03-28519414|A CLI tool to convert your codebase into a single LLM prompt with source tree, prompt templating, and token counting.| | 780|biobootloader/wolverine !2025-03-2851700 |Automatically repair python scripts through GPT-4 to give them regenerative abilities.| | 781|huggingface/parler-tts !2025-03-2851671|Inference and training library for high-quality TTS models.| | 782|Akegarasu/lora-scripts !2025-03-2851308 |LoRA training scripts use kohya-ss's trainer, for diffusion model.| | 783|openchatai/OpenCopilot !2025-03-285128-3|🤖 🔥 Let your users chat with your product features and execute things by text - open source Shopify sidekick| | 784|e2b-dev/fragments !2025-03-2851228|Open-source Next.js template for building apps that are fully generated by AI. By E2B.| | 785|microsoft/SynapseML !2025-03-2851132|Simple and Distributed Machine Learning| | 786|aigc-apps/sd-webui-EasyPhoto !2025-03-285108-1|📷 EasyPhoto | | 787|ChaoningZhang/MobileSAM !2025-03-2850944|This is the official code for Faster Segment Anything (MobileSAM) project that makes SAM lightweight| | 788|huggingface/alignment-handbook !2025-03-2850932|Robust recipes for to align language models with human and AI preferences| | 789|alpkeskin/mosint !2025-03-2850920|An automated e-mail OSINT tool| | 790|TaskingAI/TaskingAI !2025-03-2850891|The open source platform for AI-native application development.| | 791|lipku/metahuman-stream !2025-03-28507615|Real time interactive streaming digital human| | 792|OpenInterpreter/01 !2025-03-2850530|The open-source language model computer| | 793|open-compass/opencompass !2025-03-28505111|OpenCompass is an LLM evaluation platform, supporting a wide range of models (InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.| | 794|xxlong0/Wonder3D !2025-03-2850491|A cross-domain diffusion model for 3D reconstruction from a single image| | 795|pytorch/torchtune !2025-03-2850342|A Native-PyTorch Library for LLM Fine-tuning| | 796|SuperDuperDB/superduperdb !2025-03-2850192|🔮 SuperDuperDB: Bring AI to your database: Integrate, train and manage any AI models and APIs directly with your database and your data.| | 797|WhiskeySockets/Baileys !2025-03-2850057|Lightweight full-featured typescript/javascript WhatsApp Web API| | 798| mpociot/chatgpt-vscode !2025-03-2849890 | A VSCode extension that allows you to use ChatGPT | | 799|OpenGVLab/DragGAN !2025-03-2849880|Unofficial Implementation of DragGAN - "Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold" (DragGAN 全功能实现,在线Demo,本地部署试用,代码、模型已全部开源,支持Windows, macOS, Linux)| | 800|microsoft/LLMLingua !2025-03-2849824|To speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.| | 801|Zipstack/unstract !2025-03-2849745|No-code LLM Platform to launch APIs and ETL Pipelines to structure unstructured documents| | 802|OpenBMB/ToolBench !2025-03-2849621|An open platform for training, serving, and evaluating large language model for tool learning.| | 803|Fanghua-Yu/SUPIR !2025-03-2849593|SUPIR aims at developing Practical Algorithms for Photo-Realistic Image Restoration In the Wild| | 804|GaiaNet-AI/gaianet-node !2025-03-2849360|Install and run your own AI agent service| | 805|qodo-ai/qodo-cover !2025-03-284922-1|Qodo-Cover: An AI-Powered Tool for Automated Test Generation and Code Coverage Enhancement! 💻🤖🧪🐞| | 806|Zejun-Yang/AniPortrait !2025-03-2849042|AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animation| | 807|lvwzhen/law-cn-ai !2025-03-2848901 |⚖️ AI Legal Assistant| | 808|developersdigest/llm-answer-engine !2025-03-2848740|Build a Perplexity-Inspired Answer Engine Using Next.js, Groq, Mixtral, Langchain, OpenAI, Brave & Serper| | 809|Plachtaa/VITS-fast-fine-tuning !2025-03-2848640|This repo is a pipeline of VITS finetuning for fast speaker adaptation TTS, and many-to-many voice conversion| | 810|espeak-ng/espeak-ng !2025-03-2848601|eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.| | 811|ant-research/CoDeF !2025-03-2848581|[CVPR'24 Highlight] Official PyTorch implementation of CoDeF: Content Deformation Fields for Temporally Consistent Video Processing| | 812|deepseek-ai/DeepSeek-V2 !2025-03-2848512|| | 813|XRPLF/rippled !2025-03-2848210|Decentralized cryptocurrency blockchain daemon implementing the XRP Ledger protocol in C++| | 814|AutoMQ/automq !2025-03-28478721|AutoMQ is a cloud-first alternative to Kafka by decoupling durability to S3 and EBS. 10x cost-effective. Autoscale in seconds. Single-digit ms latency.| | 815|AILab-CVC/VideoCrafter !2025-03-2847800|VideoCrafter1: Open Diffusion Models for High-Quality Video Generation| | 816|nautechsystems/nautilustrader !2025-03-2847702|A high-performance algorithmic trading platform and event-driven backtester| | 817|kyegomez/swarms !2025-03-2847563|The Enterprise-Grade Production-Ready Multi-Agent Orchestration Framework Join our Community: https://discord.com/servers/agora-999382051935506503| | 818|Deci-AI/super-gradients !2025-03-2847310 |Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS.| | 819|QwenLM/Qwen2.5-Coder !2025-03-2847236|Qwen2.5-Coder is the code version of Qwen2.5, the large language model series developed by Qwen team, Alibaba Cloud.| | 820|SCIR-HI/Huatuo-Llama-Med-Chinese !2025-03-2847191 |Repo for HuaTuo (华驼), Llama-7B tuned with Chinese medical knowledge| | 821|togethercomputer/RedPajama-Data !2025-03-2846841 |code for preparing large datasets for training large language models| | 822|mishushakov/llm-scraper !2025-03-2846704|Turn any webpage into structured data using LLMs| | 823|1rgs/jsonformer !2025-03-2846663 |A Bulletproof Way to Generate Structured JSON from Language Models| | 824|anti-work/shortest !2025-03-2846565|QA via natural language AI tests| | 825|dnhkng/GlaDOS !2025-03-2846510|This is the Personality Core for GLaDOS, the first steps towards a real-life implementation of the AI from the Portal series by Valve.| | 826|Nukem9/dlssg-to-fsr3 !2025-03-2846380|Adds AMD FSR3 Frame Generation to games by replacing Nvidia DLSS-G Frame Generation (nvngx_dlssg).| | 827|BuilderIO/ai-shell !2025-03-2846373 |A CLI that converts natural language to shell commands.| | 828|facebookincubator/AITemplate !2025-03-2846220 |AITemplate is a Python framework which renders neural network into high performance CUDA/HIP C++ code. Specialized for FP16 TensorCore (NVIDIA GPU) and MatrixCore (AMD GPU) inference.| | 829|terraform-aws-modules/terraform-aws-eks !2025-03-2846030|Terraform module to create AWS Elastic Kubernetes (EKS) resources 🇺🇦| | 830|timescale/pgai !2025-03-2845915|A suite of tools to develop RAG, semantic search, and other AI applications more easily with PostgreSQL| | 831|awslabs/multi-agent-orchestrator !2025-03-2845788|Flexible and powerful framework for managing multiple AI agents and handling complex conversations| | 832|sanchit-gandhi/whisper-jax !2025-03-2845771 |Optimised JAX code for OpenAI's Whisper Model, largely built on the Hugging Face Transformers Whisper implementation| | 833|NVIDIA/NeMo-Guardrails !2025-03-2845755|NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.| | 834|PathOfBuildingCommunity/PathOfBuilding !2025-03-2845480|Offline build planner for Path of Exile.| | 835|UX-Decoder/Segment-Everything-Everywhere-All-At-Once !2025-03-2845412 |Official implementation of the paper "Segment Everything Everywhere All at Once"| | 836|build-trust/ockam !2025-03-2845171|Orchestrate end-to-end encryption, cryptographic identities, mutual authentication, and authorization policies between distributed applications – at massive scale.| | 837|google-research/timesfm !2025-03-2845135|TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.| | 838|luosiallen/latent-consistency-model !2025-03-2844842|Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference| | 839|NVlabs/neuralangelo !2025-03-2844740|Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)| | 840|kyegomez/tree-of-thoughts !2025-03-2844720 |Plug in and Play Implementation of Tree of Thoughts: Deliberate Problem Solving with Large Language Models that Elevates Model Reasoning by atleast 70%| | 841|sjvasquez/handwriting-synthesis !2025-03-2844720 |Handwriting Synthesis with RNNs ✏️| | 842| madawei2699/myGPTReader !2025-03-2844420 | A slack bot that can read any webpage, ebook or document and summarize it with chatGPT | | 843|OpenBMB/AgentVerse !2025-03-2844413|🤖 AgentVerse 🪐 provides a flexible framework that simplifies the process of building custom multi-agent environments for large language models (LLMs).| | 844|argmaxinc/WhisperKit !2025-03-2844395|Swift native speech recognition on-device for iOS and macOS applications.| | 845|landing-ai/vision-agent !2025-03-2844346|Vision agent| | 846|InternLM/xtuner !2025-03-2844273|An efficient, flexible and full-featured toolkit for fine-tuning large models (InternLM, Llama, Baichuan, Qwen, ChatGLM)| | 847|google-deepmind/alphageometry !2025-03-284421-1|Solving Olympiad Geometry without Human Demonstrations| | 848|ostris/ai-toolkit !2025-03-2844093|Various AI scripts. Mostly Stable Diffusion stuff.| | 849|LLM-Red-Team/kimi-free-api !2025-03-2844004|🚀 KIMI AI 长文本大模型白嫖服务,支持高速流式输出、联网搜索、长文档解读、图像解析、多轮对话,零配置部署,多路token支持,自动清理会话痕迹。| | 850|argilla-io/argilla !2025-03-2843991|Argilla is a collaboration platform for AI engineers and domain experts that require high-quality outputs, full data ownership, and overall efficiency.| | 851|spring-projects/spring-ai !2025-03-28438419|An Application Framework for AI Engineering| | 852|alibaba-damo-academy/FunClip !2025-03-2843555|Open-source, accurate and easy-to-use video clipping tool, LLM based AI clipping intergrated | | 853|yisol/IDM-VTON !2025-03-2843541|IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild| | 854|fchollet/ARC-AGI !2025-03-2843368|The Abstraction and Reasoning Corpus| | 855|MahmoudAshraf97/whisper-diarization !2025-03-2843064|Automatic Speech Recognition with Speaker Diarization based on OpenAI Whisper| | 856|Speykious/cve-rs !2025-03-2843047|Blazingly 🔥 fast 🚀 memory vulnerabilities, written in 100% safe Rust. 🦀| | 857|Blealtan/efficient-kan !2025-03-2842770|An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN).| | 858|smol-ai/GodMode !2025-03-284249-1|AI Chat Browser: Fast, Full webapp access to ChatGPT / Claude / Bard / Bing / Llama2! I use this 20 times a day.| | 859|openai/plugins-quickstart !2025-03-284235-4 |Get a ChatGPT plugin up and running in under 5 minutes!| | 860|Doriandarko/maestro !2025-03-2842260|A framework for Claude Opus to intelligently orchestrate subagents.| | 861|philz1337x/clarity-upscaler !2025-03-2842204|Clarity-Upscaler: Reimagined image upscaling for everyone| | 862|facebookresearch/co-tracker !2025-03-2842142|CoTracker is a model for tracking any point (pixel) on a video.| | 863|xlang-ai/OpenAgents !2025-03-2842031|OpenAgents: An Open Platform for Language Agents in the Wild| | 864|alibaba/higress !2025-03-28419514|🤖 AI Gateway | | 865|ray-project/llm-numbers !2025-03-2841920 |Numbers every LLM developer should know| | 866|fudan-generative-vision/champ !2025-03-2841820|Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance| | 867|NVIDIA/garak !2025-03-2841795|the LLM vulnerability scanner| | 868|leetcode-mafia/cheetah !2025-03-2841740 |Whisper & GPT-based app for passing remote SWE interviews| | 869|ragapp/ragapp !2025-03-2841710|The easiest way to use Agentic RAG in any enterprise| | 870|collabora/WhisperSpeech !2025-03-2841692|An Open Source text-to-speech system built by inverting Whisper.| | 871|Facico/Chinese-Vicuna !2025-03-2841520 |Chinese-Vicuna: A Chinese Instruction-following LLaMA-based Model| | 872|openai/grok !2025-03-2841381|| | 873|CrazyBoyM/llama3-Chinese-chat !2025-03-2841361|Llama3 Chinese Repository with modified versions, and training and deployment resources| | 874|luban-agi/Awesome-AIGC-Tutorials !2025-03-2841301|Curated tutorials and resources for Large Language Models, AI Painting, and more.| | 875|damo-vilab/AnyDoor !2025-03-2841192|Official implementations for paper: Anydoor: zero-shot object-level image customization| | 876|raspberrypi/pico-sdk !2025-03-2841072|| | 877|mshumer/gpt-llm-trainer !2025-03-284097-1|| | 878|metavoiceio/metavoice-src !2025-03-284076-1|AI for human-level speech intelligence| | 879|intelowlproject/IntelOwl !2025-03-2840763|IntelOwl: manage your Threat Intelligence at scale| | 880|a16z-infra/ai-getting-started !2025-03-2840682|A Javascript AI getting started stack for weekend projects, including image/text models, vector stores, auth, and deployment configs| | 881|MarkFzp/mobile-aloha !2025-03-2840641|Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation| | 882| keijiro/AICommand !2025-03-2840380 | ChatGPT integration with Unity Editor | | 883|Tencent/HunyuanDiT !2025-03-2840214|Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding| | 884|hengyoush/kyanos !2025-03-2840061|Visualize the time packets spend in the kernel, watch & analyze in command line.| | 885|agiresearch/AIOS !2025-03-2840045|AIOS: LLM Agent Operating System| | 886|truefoundry/cognita !2025-03-2839773|RAG (Retrieval Augmented Generation) Framework for building modular, open source applications for production by TrueFoundry| | 887|X-PLUG/MobileAgent !2025-03-2839557|Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception| | 888|jackMort/ChatGPT.nvim !2025-03-2839231|ChatGPT Neovim Plugin: Effortless Natural Language Generation with OpenAI's ChatGPT API| | 889|microsoft/RD-Agent !2025-03-28388422|Research and development (R&D) is crucial for the enhancement of industrial productivity, especially in the AI era, where the core aspects of R&D are mainly focused on data and models. We are committed to automate these high-value generic R&D processes through our open source R&D automation tool RD-Agent, which let AI drive data-driven AI.| | 890|Significant-Gravitas/Auto-GPT-Plugins !2025-03-283882-1 |Plugins for Auto-GPT| | 891|apple/ml-mgie !2025-03-2838770|| | 892|OpenDriveLab/UniAD !2025-03-2838727|[CVPR 2023 Best Paper] Planning-oriented Autonomous Driving| | 893|llSourcell/DoctorGPT !2025-03-2838640|DoctorGPT is an LLM that can pass the US Medical Licensing Exam. It works offline, it's cross-platform, & your health data stays private.| | 894|FlagAI-Open/FlagAI !2025-03-2838601|FlagAI (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model.| | 895|krishnaik06/Roadmap-To-Learn-Generative-AI-In-2024 !2025-03-2838513|Roadmap To Learn Generative AI In 2024| | 896|SysCV/sam-hq !2025-03-2838491|Segment Anything in High Quality| | 897|google/security-research !2025-03-2838420|This project hosts security advisories and their accompanying proof-of-concepts related to research conducted at Google which impact non-Google owned code.| | 898|shroominic/codeinterpreter-api !2025-03-2838330|Open source implementation of the ChatGPT Code Interpreter 👾| | 899|Yonom/assistant-ui !2025-03-2838308|React Components for AI Chat 💬 🚀| | 900|nucleuscloud/neosync !2025-03-2838262|Open source data anonymization and synthetic data orchestration for developers. Create high fidelity synthetic data and sync it across your environments.| | 901|ravenscroftj/turbopilot !2025-03-2838230 |Turbopilot is an open source large-language-model based code completion engine that runs locally on CPU| | 902|NVlabs/Sana !2025-03-28380810|SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer| | 903|huggingface/distil-whisper !2025-03-2838061|Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.| | 904|Codium-ai/AlphaCodium !2025-03-2837971|code generation tool that surpasses most human competitors in CodeContests| | 905|fixie-ai/ultravox !2025-03-2837710|A fast multimodal LLM for real-time voice| | 906|unit-mesh/auto-dev !2025-03-28375715|🧙‍AutoDev: The AI-powered coding wizard with multilingual support 🌐, auto code generation 🏗️, and a helpful bug-slaying assistant 🐞! Customizable prompts 🎨 and a magic Auto Dev/Testing/Document/Agent feature 🧪 included! 🚀| | 907|Marker-Inc-Korea/AutoRAG !2025-03-2837432|AutoML tool for RAG| | 908|deepseek-ai/DeepSeek-VL !2025-03-283734-1|DeepSeek-VL: Towards Real-World Vision-Language Understanding| | 909|hiyouga/ChatGLM-Efficient-Tuning !2025-03-283692-1|Fine-tuning ChatGLM-6B with PEFT | | 910| Yue-Yang/ChatGPT-Siri !2025-03-2836921 | Shortcuts for Siri using ChatGPT API gpt-3.5-turbo model | | 911|0hq/WebGPT !2025-03-2836901 |Run GPT model on the browser with WebGPU. An implementation of GPT inference in less than ~2000 lines of vanilla Javascript.| | 912|cvg/LightGlue !2025-03-2836903|LightGlue: Local Feature Matching at Light Speed (ICCV 2023)| | 913|deanxv/coze-discord-proxy !2025-03-2836791|代理Discord-Bot对话Coze-Bot,实现API形式请求GPT4对话模型/微调模型| | 914|MervinPraison/PraisonAI !2025-03-2836764|PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human-agent collaboration.| | 915|Ironclad/rivet !2025-03-2836345 |The open-source visual AI programming environment and TypeScript library| | 916|BasedHardware/OpenGlass !2025-03-2835851|Turn any glasses into AI-powered smart glasses| | 917|ricklamers/gpt-code-ui !2025-03-2835840 |An open source implementation of OpenAI's ChatGPT Code interpreter| | 918|whoiskatrin/chart-gpt !2025-03-2835830 |AI tool to build charts based on text input| | 919|github/CopilotForXcode !2025-03-2835788|Xcode extension for GitHub Copilot| | 920|hemansnation/God-Level-Data-Science-ML-Full-Stack !2025-03-2835570 |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 921|pytorch/torchchat !2025-03-2835461|Run PyTorch LLMs locally on servers, desktop and mobile| | 922| Kent0n-Li/ChatDoctor !2025-03-2835451 | A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge | | 923|xtekky/chatgpt-clone !2025-03-283519-1 |ChatGPT interface with better UI| | 924|jupyterlab/jupyter-ai !2025-03-2835120|A generative AI extension for JupyterLab| | 925|pytorch/torchtitan !2025-03-2835064|A native PyTorch Library for large model training| | 926|minimaxir/simpleaichat !2025-03-2835031|Python package for easily interfacing with chat apps, with robust features and minimal code complexity.| | 927|srush/Tensor-Puzzles !2025-03-2834930|Solve puzzles. Improve your pytorch.| | 928|Helicone/helicone !2025-03-2834918|🧊 Open source LLM-Observability Platform for Developers. One-line integration for monitoring, metrics, evals, agent tracing, prompt management, playground, etc. Supports OpenAI SDK, Vercel AI SDK, Anthropic SDK, LiteLLM, LLamaIndex, LangChain, and more. 🍓 YC W23| | 929|run-llama/llama-hub !2025-03-2834740|A library of data loaders for LLMs made by the community -- to be used with LlamaIndex and/or LangChain| | 930|NExT-GPT/NExT-GPT !2025-03-2834700|Code and models for NExT-GPT: Any-to-Any Multimodal Large Language Model| | 931|souzatharsis/podcastfy !2025-03-2834661|An Open Source Python alternative to NotebookLM's podcast feature: Transforming Multimodal Content into Captivating Multilingual Audio Conversations with GenAI| | 932|Dataherald/dataherald !2025-03-2834450|Interact with your SQL database, Natural Language to SQL using LLMs| | 933|iryna-kondr/scikit-llm !2025-03-2834350 |Seamlessly integrate powerful language models like ChatGPT into scikit-learn for enhanced text analysis tasks.| | 934|Netflix/maestro !2025-03-2834230|Maestro: Netflix’s Workflow Orchestrator| | 935|CanadaHonk/porffor !2025-03-2833560|A from-scratch experimental AOT JS engine, written in JS| | 936|hustvl/Vim !2025-03-2833323|Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model| | 937|pashpashpash/vault-ai !2025-03-2833250 |OP Vault ChatGPT: Give ChatGPT long-term memory using the OP Stack (OpenAI + Pinecone Vector Database). Upload your own custom knowledge base files (PDF, txt, etc) using a simple React frontend.| | 938|tencentmusic/supersonic !2025-03-28330611|SuperSonic is the next-generation BI platform that integrates Chat BI (powered by LLM) and Headless BI (powered by semantic layer) paradigms.| | 939|billmei/every-chatgpt-gui !2025-03-2832981|Every front-end GUI client for ChatGPT| | 940|microsoft/torchgeo !2025-03-2832772|TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data| | 941|LLMBook-zh/LLMBook-zh.github.io !2025-03-28326110|《大语言模型》作者:赵鑫,李军毅,周昆,唐天一,文继荣| | 942|dvlab-research/MiniGemini !2025-03-2832601|Official implementation for Mini-Gemini| | 943|rashadphz/farfalle !2025-03-2832460|🔍 AI search engine - self-host with local or cloud LLMs| | 944|Luodian/Otter !2025-03-2832450|🦦 Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following and in-context learning ability.| | 945|AprilNEA/ChatGPT-Admin-Web !2025-03-2832370 | ChatGPT WebUI with user management and admin dashboard system| | 946|MarkFzp/act-plus-plus !2025-03-2832365|Imitation Learning algorithms with Co-traing for Mobile ALOHA: ACT, Diffusion Policy, VINN| | 947|ethen8181/machine-learning !2025-03-2832310|🌎 machine learning tutorials (mainly in Python3)| | 948|opengeos/segment-geospatial !2025-03-2832312 |A Python package for segmenting geospatial data with the Segment Anything Model (SAM)| | 949|iusztinpaul/hands-on-llms !2025-03-283225-2|🦖 𝗟𝗲𝗮𝗿𝗻 about 𝗟𝗟𝗠𝘀, 𝗟𝗟𝗠𝗢𝗽𝘀, and 𝘃𝗲𝗰𝘁𝗼𝗿 𝗗𝗕𝘀 for free by designing, training, and deploying a real-time financial advisor LLM system ~ 𝘴𝘰𝘶𝘳𝘤𝘦 𝘤𝘰𝘥𝘦 + 𝘷𝘪𝘥𝘦𝘰 & 𝘳𝘦𝘢𝘥𝘪𝘯𝘨 𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭𝘴| | 950|ToTheBeginning/PuLID !2025-03-2832221|Official code for PuLID: Pure and Lightning ID Customization via Contrastive Alignment| | 951|neo4j-labs/llm-graph-builder !2025-03-2832164|Neo4j graph construction from unstructured data using LLMs| | 952|OpenGVLab/InternGPT !2025-03-2832150 |InternGPT (iGPT) is an open source demo platform where you can easily showcase your AI models. Now it supports DragGAN, ChatGPT, ImageBind, multimodal chat like GPT-4, SAM, interactive image editing, etc. Try it at igpt.opengvlab.com (支持DragGAN、ChatGPT、ImageBind、SAM的在线Demo系统)| | 953|PKU-YuanGroup/Video-LLaVA !2025-03-2832060 |Video-LLaVA: Learning United Visual Representation by Alignment Before Projection| | 954|DataTalksClub/llm-zoomcamp !2025-03-2832030|LLM Zoomcamp - a free online course about building an AI bot that can answer questions about your knowledge base| | 955|gptscript-ai/gptscript !2025-03-2832010|Natural Language Programming| |!green-up-arrow.svg 956|isaac-sim/IsaacLab !2025-03-28320113|Unified framework for robot learning built on NVIDIA Isaac Sim| |!red-down-arrow 957|ai-boost/Awesome-GPTs !2025-03-2832003|Curated list of awesome GPTs 👍.| | 958|huggingface/safetensors !2025-03-2831901|Simple, safe way to store and distribute tensors| | 959|linyiLYi/bilibot !2025-03-2831771|A local chatbot fine-tuned by bilibili user comments.| | 960| project-baize/baize-chatbot !2025-03-283168-1 | Let ChatGPT teach your own chatbot in hours with a single GPU! | | 961|Azure-Samples/cognitive-services-speech-sdk !2025-03-2831280|Sample code for the Microsoft Cognitive Services Speech SDK| | 962|microsoft/Phi-3CookBook !2025-03-2831231|This is a Phi-3 book for getting started with Phi-3. Phi-3, a family of open AI models developed by Microsoft. Phi-3 models are the most capable and cost-effective small language models (SLMs) available, outperforming models of the same size and next size up across a variety of language, reasoning, coding, and math benchmarks.| | 963|neuralmagic/deepsparse !2025-03-2831180|Sparsity-aware deep learning inference runtime for CPUs| | 964|sugarforever/chat-ollama !2025-03-2831000|ChatOllama is an open source chatbot based on LLMs. It supports a wide range of language models, and knowledge base management.| | 965|amazon-science/chronos-forecasting !2025-03-2830974|Chronos: Pretrained (Language) Models for Probabilistic Time Series Forecasting| | 966|damo-vilab/i2vgen-xl !2025-03-2830902|Official repo for VGen: a holistic video generation ecosystem for video generation building on diffusion models| | 967|google-deepmind/gemma !2025-03-2830733|Open weights LLM from Google DeepMind.| | 968|iree-org/iree !2025-03-2830733|A retargetable MLIR-based machine learning compiler and runtime toolkit.| | 969|NVlabs/VILA !2025-03-2830724|VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)| | 970|microsoft/torchscale !2025-03-2830661|Foundation Architecture for (M)LLMs| | 971|openai/openai-realtime-console !2025-03-2830656|React app for inspecting, building and debugging with the Realtime API| | 972|daveshap/OpenAIAgentSwarm !2025-03-2830610|HAAS = Hierarchical Autonomous Agent Swarm - "Resistance is futile!"| | 973|microsoft/PromptWizard !2025-03-2830555|Task-Aware Agent-driven Prompt Optimization Framework| | 974|CVI-SZU/Linly !2025-03-2830490 |Chinese-LLaMA basic model; ChatFlow Chinese conversation model; NLP pre-training/command fine-tuning dataset| | 975|cohere-ai/cohere-toolkit !2025-03-2830130|Toolkit is a collection of prebuilt components enabling users to quickly build and deploy RAG applications.| | 976|adamcohenhillel/ADeus !2025-03-2830131|An open source AI wearable device that captures what you say and hear in the real world and then transcribes and stores it on your own server. You can then chat with Adeus using the app, and it will have all the right context about what you want to talk about - a truly personalized, personal AI.| | 977|Lightning-AI/LitServe !2025-03-2830132|Lightning-fast serving engine for AI models. Flexible. Easy. Enterprise-scale.| | 978|potpie-ai/potpie !2025-03-2829973|Prompt-To-Agent : Create custom engineering agents for your codebase| | 979|ant-design/x !2025-03-28299529|Craft AI-driven interfaces effortlessly 🤖| | 980|meta-llama/PurpleLlama !2025-03-2829832|Set of tools to assess and improve LLM security.| | 981|williamyang1991/RerenderAVideo !2025-03-2829800|[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation| | 982|baichuan-inc/Baichuan-13B !2025-03-2829790|A 13B large language model developed by Baichuan Intelligent Technology| | 983|Stability-AI/stable-audio-tools !2025-03-2829761|Generative models for conditional audio generation| | 984|li-plus/chatglm.cpp !2025-03-2829720|C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & more LLMs| | 985|NVIDIA/GenerativeAIExamples !2025-03-2829546|Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.| | 986|Josh-XT/AGiXT !2025-03-2829521 |AGiXT is a dynamic AI Automation Platform that seamlessly orchestrates instruction management and complex task execution across diverse AI providers. Combining adaptive memory, smart features, and a versatile plugin system, AGiXT delivers efficient and comprehensive AI solutions.| | 987|MrForExample/ComfyUI-3D-Pack !2025-03-2829515|An extensive node suite that enables ComfyUI to process 3D inputs (Mesh & UV Texture, etc) using cutting edge algorithms (3DGS, NeRF, etc.)| | 988|olimorris/codecompanion.nvim !2025-03-28295111|✨ AI-powered coding, seamlessly in Neovim. Supports Anthropic, Copilot, Gemini, Ollama, OpenAI and xAI LLMs| | 989|salesforce/CodeT5 !2025-03-282940-1 |Home of CodeT5: Open Code LLMs for Code Understanding and Generation| | 990|facebookresearch/ijepa !2025-03-2829391|Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."| | 991|eureka-research/Eureka !2025-03-2829351|Official Repository for "Eureka: Human-Level Reward Design via Coding Large Language Models"| | 992|NVIDIA/trt-llm-rag-windows !2025-03-282934-1|A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM| | 993|gmpetrov/databerry !2025-03-282930-1|The no-code platform for building custom LLM Agents| | 994|AI4Finance-Foundation/FinRobot !2025-03-28291946|FinRobot: An Open-Source AI Agent Platform for Financial Applications using LLMs 🚀 🚀 🚀| | 995|nus-apr/auto-code-rover !2025-03-2829013|A project structure aware autonomous software engineer aiming for autonomous program improvement| | 996|deepseek-ai/DreamCraft3D !2025-03-2828921|[ICLR 2024] Official implementation of DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior| | 997|mlabonne/llm-datasets !2025-03-2828848|High-quality datasets, tools, and concepts for LLM fine-tuning.| | 998|facebookresearch/jepa !2025-03-2828712|PyTorch code and models for V-JEPA self-supervised learning from video.| | 999|facebookresearch/habitat-sim !2025-03-2828604|A flexible, high-performance 3D simulator for Embodied AI research.| | 1000|xenova/whisper-web !2025-03-2828581|ML-powered speech recognition directly in your browser| | 1001|cvlab-columbia/zero123 !2025-03-2828530|Zero-1-to-3: Zero-shot One Image to 3D Object: https://zero123.cs.columbia.edu/| | 1002|yuruotong1/autoMate !2025-03-28285121|Like Manus, Computer Use Agent(CUA) and Omniparser, we are computer-using agents.AI-driven local automation assistant that uses natural language to make computers work by themselves| | 1003|muellerberndt/mini-agi !2025-03-282845-1 |A minimal generic autonomous agent based on GPT3.5/4. Can analyze stock prices, perform network security tests, create art, and order pizza.| | 1004|allenai/open-instruct !2025-03-2828432|| | 1005|CodingChallengesFYI/SharedSolutions !2025-03-2828360|Publicly shared solutions to Coding Challenges| | 1006|hegelai/prompttools !2025-03-2828220|Open-source tools for prompt testing and experimentation, with support for both LLMs (e.g. OpenAI, LLaMA) and vector databases (e.g. Chroma, Weaviate).| | 1007|mazzzystar/Queryable !2025-03-2828222|Run CLIP on iPhone to Search Photos.| | 1008|Doubiiu/DynamiCrafter !2025-03-2828173|DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors| | 1009|SamurAIGPT/privateGPT !2025-03-282805-1 |An app to interact privately with your documents using the power of GPT, 100% privately, no data leaks| | 1010|facebookresearch/Pearl !2025-03-2827951|A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.| | 1011|intuitem/ciso-assistant-community !2025-03-2827954|CISO Assistant is a one-stop-shop for GRC, covering Risk, AppSec and Audit Management and supporting +70 frameworks worldwide with auto-mapping: NIST CSF, ISO 27001, SOC2, CIS, PCI DSS, NIS2, CMMC, PSPF, GDPR, HIPAA, Essential Eight, NYDFS-500, DORA, NIST AI RMF, 800-53, 800-171, CyFun, CJIS, AirCyber, NCSC, ECC, SCF and so much more| | 1012|facebookresearch/audio2photoreal !2025-03-2827840|Code and dataset for photorealistic Codec Avatars driven from audio| | 1013|Azure/azure-rest-api-specs !2025-03-2827770|The source for REST API specifications for Microsoft Azure.| | 1014|SCUTlihaoyu/open-chat-video-editor !2025-03-2827690 |Open source short video automatic generation tool| | 1015|Alpha-VLLM/LLaMA2-Accessory !2025-03-2827642|An Open-source Toolkit for LLM Development| | 1016|johnma2006/mamba-minimal !2025-03-2827601|Simple, minimal implementation of the Mamba SSM in one file of PyTorch.| | 1017|nerfstudio-project/gsplat !2025-03-2827576|CUDA accelerated rasterization of gaussian splatting| | 1018|Physical-Intelligence/openpi !2025-03-28274617|| | 1019|leptonai/leptonai !2025-03-2827246|A Pythonic framework to simplify AI service building| |!green-up-arrow.svg 1020|joanrod/star-vector !2025-03-28271149|StarVector is a foundation model for SVG generation that transforms vectorization into a code generation task. Using a vision-language modeling architecture, StarVector processes both visual and textual inputs to produce high-quality SVG code with remarkable precision.| |!red-down-arrow 1021|jqnatividad/qsv !2025-03-2827092|CSVs sliced, diced & analyzed.| | 1022|FranxYao/chain-of-thought-hub !2025-03-2826991|Benchmarking large language models' complex reasoning ability with chain-of-thought prompting| | 1023|princeton-nlp/SWE-bench !2025-03-2826965|[ICLR 2024] SWE-Bench: Can Language Models Resolve Real-world Github Issues?| | 1024|elastic/otel-profiling-agent !2025-03-2826930|The production-scale datacenter profiler| | 1025|src-d/hercules !2025-03-2826900|Gaining advanced insights from Git repository history.| | 1026|lanqian528/chat2api !2025-03-2826695|A service that can convert ChatGPT on the web to OpenAI API format.| | 1027|ishan0102/vimGPT !2025-03-2826681|Browse the web with GPT-4V and Vimium| | 1028|TMElyralab/MuseV !2025-03-2826650|MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising| | 1029|georgia-tech-db/eva !2025-03-2826600 |AI-Relational Database System | | 1030|kubernetes-sigs/controller-runtime !2025-03-2826590|Repo for the controller-runtime subproject of kubebuilder (sig-apimachinery)| | 1031|gptlink/gptlink !2025-03-2826550 |Build your own free commercial ChatGPT environment in 10 minutes. The setup is simple and includes features such as user management, orders, tasks, and payments| | 1032|pytorch/executorch !2025-03-2826534|On-device AI across mobile, embedded and edge for PyTorch| | 1033|NVIDIA/nv-ingest !2025-03-2826290|NVIDIA Ingest is an early access set of microservices for parsing hundreds of thousands of complex, messy unstructured PDFs and other enterprise documents into metadata and text to embed into retrieval systems.| | 1034|SuperTux/supertux !2025-03-2826081|SuperTux source code| | 1035|abi/secret-llama !2025-03-2826050|Fully private LLM chatbot that runs entirely with a browser with no server needed. Supports Mistral and LLama 3.| | 1036|liou666/polyglot !2025-03-2825841 |Desktop AI Language Practice Application| | 1037|janhq/nitro !2025-03-2825821|A fast, lightweight, embeddable inference engine to supercharge your apps with local AI. OpenAI-compatible API| | 1038|deepseek-ai/DeepSeek-Math !2025-03-2825825|DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models| | 1039|anthropics/prompt-eng-interactive-tutorial !2025-03-2825781|Anthropic's Interactive Prompt Engineering Tutorial| | 1040|microsoft/promptbench !2025-03-2825741|A unified evaluation framework for large language models| | 1041|baaivision/Painter !2025-03-2825580 |Painter & SegGPT Series: Vision Foundation Models from BAAI| | 1042|OpenPipe/OpenPipe !2025-03-2825581|Turn expensive prompts into cheap fine-tuned models| | 1043|TracecatHQ/tracecat !2025-03-2825531|😼 The AI-native, open source alternative to Tines / Splunk SOAR.| | 1044|JoshuaC215/agent-service-toolkit !2025-03-2825528|Full toolkit for running an AI agent service built with LangGraph, FastAPI and Streamlit| | 1045|databricks/dbrx !2025-03-2825460|Code examples and resources for DBRX, a large language model developed by Databricks| | 1046|lamini-ai/lamini !2025-03-2825271 |Official repo for Lamini's data generator for generating instructions to train instruction-following LLMs| | 1047|mshumer/gpt-author !2025-03-282510-1|| | 1048|TMElyralab/MusePose !2025-03-2824971|MusePose: a Pose-Driven Image-to-Video Framework for Virtual Human Generation| | 1049|Kludex/fastapi-tips !2025-03-2824974|FastAPI Tips by The FastAPI Expert!| | 1050|openai/simple-evals !2025-03-2824813|| | 1051|iterative/datachain !2025-03-2824732|AI-data warehouse to enrich, transform and analyze data from cloud storages| | 1052|girafe-ai/ml-course !2025-03-2824703|Open Machine Learning course| | 1053|kevmo314/magic-copy !2025-03-2824620 |Magic Copy is a Chrome extension that uses Meta's Segment Anything Model to extract a foreground object from an image and copy it to the clipboard.| | 1054|Eladlev/AutoPrompt !2025-03-2824432|A framework for prompt tuning using Intent-based Prompt Calibration| | 1055|OpenBMB/CPM-Bee !2025-03-282434-1 |A bilingual large-scale model with trillions of parameters| | 1056|IDEA-Research/T-Rex !2025-03-2824310|T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy| | 1057|microsoft/genaiscript !2025-03-2824202|Automatable GenAI Scripting| | 1058|paulpierre/RasaGPT !2025-03-2824090 |💬 RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain. Built w/ Rasa, FastAPI, Langchain, LlamaIndex, SQLModel, pgvector, ngrok, telegram| | 1059|ashishpatel26/LLM-Finetuning !2025-03-2823911|LLM Finetuning with peft| | 1060|SoraWebui/SoraWebui !2025-03-2823570|SoraWebui is an open-source Sora web client, enabling users to easily create videos from text with OpenAI's Sora model.| | 1061|6drf21e/ChatTTScolab !2025-03-2823491|🚀 一键部署(含离线整合包)!基于 ChatTTS ,支持音色抽卡、长音频生成和分角色朗读。简单易用,无需复杂安装。| | 1062|Azure/PyRIT !2025-03-2823343|The Python Risk Identification Tool for generative AI (PyRIT) is an open access automation framework to empower security professionals and machine learning engineers to proactively find risks in their generative AI systems.| | 1063|tencent-ailab/V-Express !2025-03-2823201|V-Express aims to generate a talking head video under the control of a reference image, an audio, and a sequence of V-Kps images.| | 1064|THUDM/CogVLM2 !2025-03-2823170|GPT4V-level open-source multi-modal model based on Llama3-8B| | 1065|dvmazur/mixtral-offloading !2025-03-2823001|Run Mixtral-8x7B models in Colab or consumer desktops| | 1066|semanser/codel !2025-03-2822950|✨ Fully autonomous AI Agent that can perform complicated tasks and projects using terminal, browser, and editor.| | 1067|mshumer/gpt-investor !2025-03-2822590|| | 1068|aixcoder-plugin/aiXcoder-7B !2025-03-2822550|official repository of aiXcoder-7B Code Large Language Model| | 1069|Azure-Samples/graphrag-accelerator !2025-03-2822503|One-click deploy of a Knowledge Graph powered RAG (GraphRAG) in Azure| | 1070|emcf/engshell !2025-03-2821830 |An English-language shell for any OS, powered by LLMs| | 1071|hncboy/chatgpt-web-java !2025-03-2821771|ChatGPT project developed in Java, based on Spring Boot 3 and JDK 17, supports both AccessToken and ApiKey modes| | 1072|openai/consistencydecoder !2025-03-2821692|Consistency Distilled Diff VAE| | 1073|Alpha-VLLM/Lumina-T2X !2025-03-2821681|Lumina-T2X is a unified framework for Text to Any Modality Generation| | 1074|bghira/SimpleTuner !2025-03-2821612|A general fine-tuning kit geared toward Stable Diffusion 2.1, Stable Diffusion 3, DeepFloyd, and SDXL.| | 1075|JiauZhang/DragGAN !2025-03-2821530 |Implementation of DragGAN: Interactive Point-based Manipulation on the Generative Image Manifold| | 1076|cgpotts/cs224u !2025-03-2821390|Code for Stanford CS224u| | 1077|PKU-YuanGroup/MoE-LLaVA !2025-03-2821300|Mixture-of-Experts for Large Vision-Language Models| | 1078|darrenburns/elia !2025-03-2820831|A snappy, keyboard-centric terminal user interface for interacting with large language models. Chat with ChatGPT, Claude, Llama 3, Phi 3, Mistral, Gemma and more.| | 1079|ageerle/ruoyi-ai !2025-03-28207898|RuoYi AI 是一个全栈式 AI 开发平台,旨在帮助开发者快速构建和部署个性化的 AI 应用。| | 1080|NVIDIA/gpu-operator !2025-03-2820510|NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes| | 1081|BAAI-Agents/Cradle !2025-03-2820481|The Cradle framework is a first attempt at General Computer Control (GCC). Cradle supports agents to ace any computer task by enabling strong reasoning abilities, self-improvment, and skill curation, in a standardized general environment with minimal requirements.| | 1082|microsoft/aici !2025-03-2820080|AICI: Prompts as (Wasm) Programs| | 1083|PRIS-CV/DemoFusion !2025-03-2820040|Let us democratise high-resolution generation! (arXiv 2023)| | 1084|apple/axlearn !2025-03-2820012|An Extensible Deep Learning Library| | 1085|naver/mast3r !2025-03-2819685|Grounding Image Matching in 3D with MASt3R| | 1086|liltom-eth/llama2-webui !2025-03-281958-1|Run Llama 2 locally with gradio UI on GPU or CPU from anywhere (Linux/Windows/Mac). Supporting Llama-2-7B/13B/70B with 8-bit, 4-bit. Supporting GPU inference (6 GB VRAM) and CPU inference.| | 1087|GaParmar/img2img-turbo !2025-03-2819582|One-step image-to-image with Stable Diffusion turbo: sketch2image, day2night, and more| | 1088|Niek/chatgpt-web !2025-03-2819560|ChatGPT web interface using the OpenAI API| | 1089|huggingface/cookbook !2025-03-2819421|Open-source AI cookbook| | 1090|pytorch/ao !2025-03-2819241|PyTorch native quantization and sparsity for training and inference| | 1091|emcie-co/parlant !2025-03-2819053|The behavior guidance framework for customer-facing LLM agents| | 1092|ymcui/Chinese-LLaMA-Alpaca-3 !2025-03-2818980|中文羊驼大模型三期项目 (Chinese Llama-3 LLMs) developed from Meta Llama 3| | 1093|Nutlope/notesGPT !2025-03-2818811|Record voice notes & transcribe, summarize, and get tasks| | 1094|InstantStyle/InstantStyle !2025-03-2818791|InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation 🔥| | 1095|idaholab/moose !2025-03-2818771|Multiphysics Object Oriented Simulation Environment| | 1096|The-OpenROAD-Project/OpenROAD !2025-03-2818351|OpenROAD's unified application implementing an RTL-to-GDS Flow. Documentation at https://openroad.readthedocs.io/en/latest/| | 1097|alibaba/spring-ai-alibaba !2025-03-281831121|Agentic AI Framework for Java Developers| | 1098|ytongbai/LVM !2025-03-2817990|Sequential Modeling Enables Scalable Learning for Large Vision Models| | 1099|microsoft/sample-app-aoai-chatGPT !2025-03-2817981|[PREVIEW] Sample code for a simple web chat experience targeting chatGPT through AOAI.| | 1100|AI-Citizen/SolidGPT !2025-03-2817830|Chat everything with your code repository, ask repository level code questions, and discuss your requirements. AI Scan and learning your code repository, provide you code repository level answer🧱 🧱| | 1101|YangLing0818/RPG-DiffusionMaster !2025-03-2817784|Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs (PRG)| | 1102|kyegomez/BitNet !2025-03-2817710|Implementation of "BitNet: Scaling 1-bit Transformers for Large Language Models" in pytorch| | 1103|eloialonso/diamond !2025-03-2817671|DIAMOND (DIffusion As a Model Of eNvironment Dreams) is a reinforcement learning agent trained in a diffusion world model.| | 1104|flowdriveai/flowpilot !2025-03-2817250|flow-pilot is an openpilot based driver assistance system that runs on linux, windows and android powered machines.| | 1105|xlang-ai/OSWorld !2025-03-2817200|OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments| | 1106|linyiLYi/snake-ai !2025-03-2817031|An AI agent that beats the classic game "Snake".| | 1107|baaivision/Emu !2025-03-2816991|Emu Series: Generative Multimodal Models from BAAI| | 1108|kevmo314/scuda !2025-03-2816870|SCUDA is a GPU over IP bridge allowing GPUs on remote machines to be attached to CPU-only machines.| | 1109|SharifiZarchi/IntroductiontoMachineLearning !2025-03-2816701|دوره‌ی مقدمه‌ای بر یادگیری ماشین، برای دانشجویان| | 1110|google/maxtext !2025-03-2816670|A simple, performant and scalable Jax LLM!| | 1111|ml-explore/mlx-swift-examples !2025-03-2816471|Examples using MLX Swift| | 1112|unitreerobotics/unitreerlgym !2025-03-2816256|| | 1113|collabora/WhisperFusion !2025-03-2815901|WhisperFusion builds upon the capabilities of WhisperLive and WhisperSpeech to provide a seamless conversations with an AI.| | 1114|lichao-sun/Mora !2025-03-2815520|Mora: More like Sora for Generalist Video Generation| | 1115|GoogleCloudPlatform/localllm !2025-03-2815370|Run LLMs locally on Cloud Workstations| | 1116|TencentARC/BrushNet !2025-03-2815330|The official implementation of paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"| | 1117|ai-christianson/RA.Aid !2025-03-2815288|Develop software autonomously.| | 1118|stephansturges/WALDO !2025-03-2815170|Whereabouts Ascertainment for Low-lying Detectable Objects. The SOTA in FOSS AI for drones!| | 1119|skills/copilot-codespaces-vscode !2025-03-2815112|Develop with AI-powered code suggestions using GitHub Copilot and VS Code| | 1120|andrewnguonly/Lumos !2025-03-2814920|A RAG LLM co-pilot for browsing the web, powered by local LLMs| | 1121|TeamNewPipe/NewPipeExtractor !2025-03-2814811|NewPipe's core library for extracting data from streaming sites| | 1122|mhamilton723/FeatUp !2025-03-2814770|Official code for "FeatUp: A Model-Agnostic Frameworkfor Features at Any Resolution" ICLR 2024| | 1123|AnswerDotAI/fsdpqlora !2025-03-2814671|Training LLMs with QLoRA + FSDP| | 1124|jgravelle/AutoGroq !2025-03-2814330|| | 1125|OpenGenerativeAI/llm-colosseum !2025-03-2814130|Benchmark LLMs by fighting in Street Fighter 3! The new way to evaluate the quality of an LLM| | 1126|microsoft/vscode-ai-toolkit !2025-03-2814000|| | 1127|McGill-NLP/webllama !2025-03-2813930|Llama-3 agents that can browse the web by following instructions and talking to you| | 1128|lucidrains/self-rewarding-lm-pytorch !2025-03-2813760|Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI| | 1129|ishaan1013/sandbox !2025-03-2813650|A cloud-based code editing environment with an AI copilot and real-time collaboration.| | 1130|goatcorp/Dalamud !2025-03-2813275|FFXIV plugin framework and API| | 1131|Lightning-AI/lightning-thunder !2025-03-2813151|Make PyTorch models Lightning fast! Thunder is a source to source compiler for PyTorch. It enables using different hardware executors at once.| | 1132|PKU-YuanGroup/MagicTime !2025-03-2813052|MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators| | 1133|SakanaAI/evolutionary-model-merge !2025-03-2813000|Official repository of Evolutionary Optimization of Model Merging Recipes| | 1134|a-real-ai/pywinassistant !2025-03-2812950|The first open source Large Action Model generalist Artificial Narrow Intelligence that controls completely human user interfaces by only using natural language. PyWinAssistant utilizes Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models.| | 1135|TraceMachina/nativelink !2025-03-2812630|NativeLink is an open source high-performance build cache and remote execution server, compatible with Bazel, Buck2, Reclient, and other RBE-compatible build systems. It offers drastically faster builds, reduced test flakiness, and significant infrastructure cost savings.| | 1136|MLSysOps/MLE-agent !2025-03-2812500|🤖 MLE-Agent: Your intelligent companion for seamless AI engineering and research. 🔍 Integrate with arxiv and paper with code to provide better code/research plans 🧰 OpenAI, Ollama, etc supported. 🎆 Code RAG| | 1137|wpilibsuite/allwpilib !2025-03-2811610|Official Repository of WPILibJ and WPILibC| | 1138|elfvingralf/macOSpilot-ai-assistant !2025-03-2811470|Voice + Vision powered AI assistant that answers questions about any application, in context and in audio.| | 1139|langchain-ai/langchain-extract !2025-03-2811210|🦜⛏️ Did you say you like data?| | 1140|FoundationVision/GLEE !2025-03-2811120|【CVPR2024】GLEE: General Object Foundation Model for Images and Videos at Scale| | 1141|Profluent-AI/OpenCRISPR !2025-03-2810990|AI-generated gene editing systems| | 1142|zju3dv/EasyVolcap !2025-03-2810821|[SIGGRAPH Asia 2023 (Technical Communications)] EasyVolcap: Accelerating Neural Volumetric Video Research| | 1143|PaddlePaddle/PaddleHelix !2025-03-2810560|Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集| | 1144|myshell-ai/JetMoE !2025-03-289800|Reaching LLaMA2 Performance with 0.1M Dollars| | 1145|likejazz/llama3.np !2025-03-289770|llama3.np is pure NumPy implementation for Llama 3 model.| | 1146|mustafaaljadery/gemma-2B-10M !2025-03-289500|Gemma 2B with 10M context length using Infini-attention.| | 1147|HITsz-TMG/FilmAgent !2025-03-289382|Resources of our paper "FilmAgent: A Multi-Agent Framework for End-to-End Film Automation in Virtual 3D Spaces". New versions in the making!| | 1148|aws-samples/amazon-bedrock-samples !2025-03-289362|This repository contains examples for customers to get started using the Amazon Bedrock Service. This contains examples for all available foundational models| | 1149|Akkudoktor-EOS/EOS !2025-03-2893154|This repository features an Energy Optimization System (EOS) that optimizes energy distribution, usage for batteries, heat pumps& household devices. It includes predictive models for electricity prices (planned), load forecasting& dynamic optimization to maximize energy efficiency & minimize costs. Founder Dr. Andreas Schmitz (YouTube @akkudoktor)| Tip: | symbol| rule | | :----| :---- | |🔥 | 256 1k| |!green-up-arrow.svg !red-down-arrow | ranking up / down| |⭐ | on trending page today| [Back to Top] Tools | No. | Tool | Description | | ----:|:----------------------------------------------- |:------------------------------------------------------------------------------------------- | | 1 | ChatGPT | A sibling model to InstructGPT, which is trained to follow instructions in a prompt and provide a detailed response | | 2 | DALL·E 2 | Create original, realistic images and art from a text description | | 3 | Murf AI | AI enabled, real people's voices| | 4 | Midjourney | An independent research lab that produces an artificial intelligence program under the same name that creates images from textual descriptions, used in Discord | 5 | Make-A-Video | Make-A-Video is a state-of-the-art AI system that generates videos from text | | 6 | Creative Reality™ Studio by D-ID| Use generative AI to create future-facing videos| | 7 | chat.D-ID| The First App Enabling Face-to-Face Conversations with ChatGPT| | 8 | Notion AI| Access the limitless power of AI, right inside Notion. Work faster. Write better. Think bigger. | | 9 | Runway| Text to Video with Gen-2 | | 10 | Resemble AI| Resemble’s AI voice generator lets you create human–like voice overs in seconds | | 11 | Cursor| Write, edit, and chat about your code with a powerful AI | | 12 | Hugging Face| Build, train and deploy state of the art models powered by the reference open source in machine learning | | 13 | Claude | A next-generation AI assistant for your tasks, no matter the scale | | 14 | Poe| Poe lets you ask questions, get instant answers, and have back-and-forth conversations with AI. Gives access to GPT-4, gpt-3.5-turbo, Claude from Anthropic, and a variety of other bots| [Back to Top] Websites | No. | WebSite |Description | | ----:|:------------------------------------------ |:---------------------------------------------------------------------------------------- | | 1 | OpenAI | An artificial intelligence research lab | | 2 | Bard | Base Google's LaMDA chatbots and pull from internet | | 3 | ERNIE Bot | Baidu’s new generation knowledge-enhanced large language model is a new member of the Wenxin large model family | | 4 | DALL·E 2 | An AI system that can create realistic images and art from a description in natural language | | 5 | Whisper | A general-purpose speech recognition model | | 6| CivitAI| A platform that makes it easy for people to share and discover resources for creating AI art| | 7|D-ID| D-ID’s Generative AI enables users to transform any picture or video into extraordinary experiences| | 8| Nvidia eDiff-I| Text-to-Image Diffusion Models with Ensemble of Expert Denoisers | | 9| Stability AI| The world's leading open source generative AI company which opened source Stable Diffusion | | 10| Meta AI| Whether it be research, product or infrastructure development, we’re driven to innovate responsibly with AI to benefit the world | | 11| ANTHROPIC| AI research and products that put safety at the frontier | [Back to Top] Reports&Papers | No. | Report&Paper | Description | |:---- |:-------------------------------------------------------------------------------------------------------------- |:---------------------------------------------------- | | 1 | GPT-4 Technical Report | GPT-4 Technical Report | | 2 | mli/paper-reading | Deep learning classics and new papers are read carefully paragraph by paragraph. | | 3 | labmlai/annotateddeeplearningpaperimplementations| A collection of simple PyTorch implementations of neural networks and related algorithms, which are documented with explanations | | 4 | Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models | Talking, Drawing and Editing with Visual Foundation Models | | 5 | OpenAI Research | The latest research report and papers from OpenAI | | 6 | Make-A-Video: Text-to-Video Generation without Text-Video Data|Meta's Text-to-Video Generation| | 7 | eDiff-I: Text-to-Image Diffusion Models with Ensemble of Expert Denoisers| Nvidia eDiff-I - New generation of generative AI content creation tool | | 8 | Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo | 2023 GPT4All Technical Report | | 9 | Segment Anything| Meta Segment Anything | | 10 | LLaMA: Open and Efficient Foundation Language Models| LLaMA: a collection of foundation language models ranging from 7B to 65B parameters| | 11 | papers-we-love/papers-we-love |Papers from the computer science community to read and discuss| | 12 | CVPR 2023 papers |The most exciting and influential CVPR 2023 papers| [Back to Top] Tutorials | No. | Tutorial | Description| |:---- |:---------------------------------------------------------------- | --- | | 1 | Coursera - Machine Learning | The Machine Learning Specialization Course taught by Dr. Andrew Ng| | 2 | microsoft/ML-For-Beginners | 12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all| | 3 | ChatGPT Prompt Engineering for Developers | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI) will teach how to use a large language model (LLM) to quickly build new and powerful applications | | 4 | Dive into Deep Learning |Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries | | 5 | AI Expert Roadmap | Roadmap to becoming an Artificial Intelligence Expert in 2022 | | 6 | Computer Science courses |List of Computer Science courses with video lectures| | 7 | Machine Learning with Python | Machine Learning with Python Certification on freeCodeCamp| | 8 | Building Systems with the ChatGPT API | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI), you will learn how to automate complex workflows using chain calls to a large language model| | 9 | LangChain for LLM Application Development | This short course taught by Harrison Chase (Co-Founder and CEO at LangChain) and Andrew Ng. you will gain essential skills in expanding the use cases and capabilities of language models in application development using the LangChain framework| | 10 | How Diffusion Models Work | This short course taught by Sharon Zhou (CEO, Co-founder, Lamini). you will gain a deep familiarity with the diffusion process and the models which carry it out. More than simply pulling in a pre-built model or using an API, this course will teach you to build a diffusion model from scratch| | 11 | Free Programming Books For AI |📚 Freely available programming books for AI | | 12 | microsoft/AI-For-Beginners |12 Weeks, 24 Lessons, AI for All!| | 13 | hemansnation/God-Level-Data-Science-ML-Full-Stack |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 14 | datawhalechina/prompt-engineering-for-developers |Chinese version of Andrew Ng's Big Model Series Courses, including "Prompt Engineering", "Building System", and "LangChain"| | 15 | ossu/computer-science |🎓 Path to a free self-taught education in Computer Science!| | 16 | microsoft/Data-Science-For-Beginners | 10 Weeks, 20 Lessons, Data Science for All! | |17 |jwasham/coding-interview-university !2023-09-29268215336 |A complete computer science study plan to become a software engineer.| [Back to Top] Thanks If this project has been helpful to you in any way, please give it a ⭐️ by clicking on the star.

RD-Agent
github
LLM Vibe Score0.548
Human Vibe Score0.27921589729164453
microsoftMar 28, 2025

RD-Agent

🖥️ Live Demo | 🎥 Demo Video ▶️YouTube | 📖 Documentation | 📃 Papers Data Science Agent Preview Check out our demo video showcasing the current progress of our Data Science Agent under development: https://github.com/user-attachments/assets/3eccbecb-34a4-4c81-bce4-d3f8862f7305 📰 News | 🗞️ News | 📝 Description | | -- | ------ | | Support LiteLLM Backend | We now fully support LiteLLM as a backend for integration with multiple LLM providers. | | More General Data Science Agent | 🚀Coming soon! | | Kaggle Scenario release | We release Kaggle Agent, try the new features! | | Official WeChat group release | We created a WeChat group, welcome to join! (🗪QR Code) | | Official Discord release | We launch our first chatting channel in Discord (🗪) | | First release | RDAgent is released on GitHub | 🌟 Introduction RDAgent aims to automate the most critical and valuable aspects of the industrial R&D process, and we begin with focusing on the data-driven scenarios to streamline the development of models and data. Methodologically, we have identified a framework with two key components: 'R' for proposing new ideas and 'D' for implementing them. We believe that the automatic evolution of R&D will lead to solutions of significant industrial value. R&D is a very general scenario. The advent of RDAgent can be your 💰 Automatic Quant Factory (🎥Demo Video|▶️YouTube) 🤖 Data Mining Agent: Iteratively proposing data & models (🎥Demo Video 1|▶️YouTube) (🎥Demo Video 2|▶️YouTube) and implementing them by gaining knowledge from data. 🦾 Research Copilot: Auto read research papers (🎥Demo Video|▶️YouTube) / financial reports (🎥Demo Video|▶️YouTube) and implement model structures or building datasets. 🤖 Kaggle Agent: Auto Model Tuning and Feature Engineering([🎥Demo Video Coming Soon...]()) and implementing them to achieve more in competitions. ... You can click the links above to view the demo. We're continuously adding more methods and scenarios to the project to enhance your R&D processes and boost productivity. Additionally, you can take a closer look at the examples in our 🖥️ Live Demo. ⚡ Quick start You can try above demos by running the following command: 🐳 Docker installation. Users must ensure Docker is installed before attempting most scenarios. Please refer to the official 🐳Docker page for installation instructions. Ensure the current user can run Docker commands without using sudo. You can verify this by executing docker run hello-world. 🐍 Create a Conda Environment Create a new conda environment with Python (3.10 and 3.11 are well-tested in our CI): Activate the environment: 🛠️ Install the RDAgent You can directly install the RDAgent package from PyPI: 💊 Health check rdagent provides a health check that currently checks two things. whether the docker installation was successful. whether the default port used by the rdagent ui is occupied. ⚙️ Configuration The demos requires following ability: ChatCompletion json_mode embedding query For example: If you are using the OpenAI API, you have to configure your GPT model in the .env file like this. However, not every API services support these features by default. For example: AZURE OpenAI, you have to configure your GPT model in the .env file like this. We now support LiteLLM as a backend for integration with multiple LLM providers. If you use LiteLLM Backend to use models, you can configure as follows: For more configuration information, please refer to the documentation. 🚀 Run the Application The 🖥️ Live Demo is implemented by the following commands(each item represents one demo, you can select the one you prefer): Run the Automated Quantitative Trading & Iterative Factors Evolution: Qlib self-loop factor proposal and implementation application Run the Automated Quantitative Trading & Iterative Model Evolution: Qlib self-loop model proposal and implementation application Run the Automated Medical Prediction Model Evolution: Medical self-loop model proposal and implementation application (1) Apply for an account at PhysioNet. (2) Request access to FIDDLE preprocessed data: FIDDLE Dataset. (3) Place your username and password in .env. Run the Automated Quantitative Trading & Factors Extraction from Financial Reports: Run the Qlib factor extraction and implementation application based on financial reports Run the Automated Model Research & Development Copilot: model extraction and implementation application Run the Automated Kaggle Model Tuning & Feature Engineering: self-loop model proposal and feature engineering implementation application Using sf-crime (San Francisco Crime Classification) as an example. Register and login on the Kaggle website. Configuring the Kaggle API. (1) Click on the avatar (usually in the top right corner of the page) -> Settings -> Create New Token, A file called kaggle.json will be downloaded. (2) Move kaggle.json to ~/.config/kaggle/ (3) Modify the permissions of the kaggle.json file. Reference command: chmod 600 ~/.config/kaggle/kaggle.json Join the competition: Click Join the competition -> I Understand and Accept at the bottom of the competition details page. Description of the above example: Kaggle competition data, contains two parts: competition description file (json file) and competition dataset (zip file). We prepare the competition description file for you, the competition dataset will be downloaded automatically when you run the program, as in the example. If you want to download the competition description file automatically, you need to install chromedriver, The instructions for installing chromedriver can be found in the documentation. The Competition List Available can be found here. 🖥️ Monitor the Application Results You can run the following command for our demo program to see the run logs. Note: Although port 19899 is not commonly used, but before you run this demo, you need to check if port 19899 is occupied. If it is, please change it to another port that is not occupied. You can check if a port is occupied by running the following command. 🏭 Scenarios We have applied RD-Agent to multiple valuable data-driven industrial scenarios. 🎯 Goal: Agent for Data-driven R&D In this project, we are aiming to build an Agent to automate Data-Driven R\&D that can 📄 Read real-world material (reports, papers, etc.) and extract key formulas, descriptions of interested features and models, which are the key components of data-driven R&D . 🛠️ Implement the extracted formulas (e.g., features, factors, and models) in runnable codes. Due to the limited ability of LLM in implementing at once, build an evolving process for the agent to improve performance by learning from feedback and knowledge. 💡 Propose new ideas based on current knowledge and observations. 📈 Scenarios/Demos In the two key areas of data-driven scenarios, model implementation and data building, our system aims to serve two main roles: 🦾Copilot and 🤖Agent. The 🦾Copilot follows human instructions to automate repetitive tasks. The 🤖Agent, being more autonomous, actively proposes ideas for better results in the future. The supported scenarios are listed below: | Scenario/Target | Model Implementation | Data Building | | -- | -- | -- | | 💹 Finance | 🤖 Iteratively Proposing Ideas & Evolving▶️YouTube | 🤖 Iteratively Proposing Ideas & Evolving ▶️YouTube 🦾 Auto reports reading & implementation▶️YouTube | | 🩺 Medical | 🤖 Iteratively Proposing Ideas & Evolving▶️YouTube | - | | 🏭 General | 🦾 Auto paper reading & implementation▶️YouTube 🤖 Auto Kaggle Model Tuning | 🤖Auto Kaggle feature Engineering | RoadMap: Currently, we are working hard to add new features to the Kaggle scenario. Different scenarios vary in entrance and configuration. Please check the detailed setup tutorial in the scenarios documents. Here is a gallery of successful explorations (5 traces showed in 🖥️ Live Demo). You can download and view the execution trace using this command from the documentation. Please refer to 📖readthedocs_scen for more details of the scenarios. ⚙️ Framework Automating the R&D process in data science is a highly valuable yet underexplored area in industry. We propose a framework to push the boundaries of this important research field. The research questions within this framework can be divided into three main categories: | Research Area | Paper/Work List | |--------------------|-----------------| | Benchmark the R&D abilities | Benchmark | | Idea proposal: Explore new ideas or refine existing ones | Research | | Ability to realize ideas: Implement and execute ideas | Development | We believe that the key to delivering high-quality solutions lies in the ability to evolve R&D capabilities. Agents should learn like human experts, continuously improving their R&D skills. More documents can be found in the 📖 readthedocs. 📃 Paper/Work list 📊 Benchmark Towards Data-Centric Automatic R&D !image 🔍 Research In a data mining expert's daily research and development process, they propose a hypothesis (e.g., a model structure like RNN can capture patterns in time-series data), design experiments (e.g., finance data contains time-series and we can verify the hypothesis in this scenario), implement the experiment as code (e.g., Pytorch model structure), and then execute the code to get feedback (e.g., metrics, loss curve, etc.). The experts learn from the feedback and improve in the next iteration. Based on the principles above, we have established a basic method framework that continuously proposes hypotheses, verifies them, and gets feedback from the real-world practice. This is the first scientific research automation framework that supports linking with real-world verification. For more detail, please refer to our 🖥️ Live Demo page. 🛠️ Development Collaborative Evolving Strategy for Automatic Data-Centric Development !image 🤝 Contributing We welcome contributions and suggestions to improve RD-Agent. Please refer to the Contributing Guide for more details on how to contribute. Before submitting a pull request, ensure that your code passes the automatic CI checks. 📝 Guidelines This project welcomes contributions and suggestions. Contributing to this project is straightforward and rewarding. Whether it's solving an issue, addressing a bug, enhancing documentation, or even correcting a typo, every contribution is valuable and helps improve RDAgent. To get started, you can explore the issues list, or search for TODO: comments in the codebase by running the command grep -r "TODO:". Before we released RD-Agent as an open-source project on GitHub, it was an internal project within our group. Unfortunately, the internal commit history was not preserved when we removed some confidential code. As a result, some contributions from our group members, including Haotian Chen, Wenjun Feng, Haoxue Wang, Zeqi Ye, Xinjie Shen, and Jinhui Li, were not included in the public commits. ⚖️ Legal disclaimer The RD-agent is provided “as is”, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. The RD-agent is aimed to facilitate research and development process in the financial industry and not ready-to-use for any financial investment or advice. Users shall independently assess and test the risks of the RD-agent in a specific use scenario, ensure the responsible use of AI technology, including but not limited to developing and integrating risk mitigation measures, and comply with all applicable laws and regulations in all applicable jurisdictions. The RD-agent does not provide financial opinions or reflect the opinions of Microsoft, nor is it designed to replace the role of qualified financial professionals in formulating, assessing, and approving finance products. The inputs and outputs of the RD-agent belong to the users and users shall assume all liability under any theory of liability, whether in contract, torts, regulatory, negligence, products liability, or otherwise, associated with use of the RD-agent and any inputs and outputs thereof.

OpenAI-CLIP
github
LLM Vibe Score0.507
Human Vibe Score0.015912940499642817
moein-shariatniaMar 27, 2025

OpenAI-CLIP

Update (December 2023) I am happy to find out that this code has been used and cited in the following papers: Domino: Discovering Systematic Errors with Cross-Modal Embeddings by Eyuboglu et. al. at ICLR 2022 GSCLIP : A Framework for Explaining Distribution Shifts in Natural Language by Zhu et. al. at ICML 2022 UIC-NLP at SemEval-2022 Task 5: Exploring Contrastive Learning for Multimodal Detection of Misogynistic Memes by Cuervo et. al. at SemEval-2022 cdsBERT - Extending Protein Language Models with Codon Awareness by Hallee et. al. from University of Delaware (Sep 2023) ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios by Ragusa et. al. (Nov 2023) You can find the citation info on the right section of this GitHub repo page named: Cite this repository or use the below citation info. Introduction It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP model from scratch in PyTorch. OpenAI has open-sourced some of the code relating to CLIP model but I found it intimidating and it was far from something short and simple. I also came across a good tutorial inspired by CLIP model on Keras code examples and I translated some parts of it into PyTorch to build this tutorial totally with our beloved PyTorch! What does CLIP do? Why is it fun? In Learning Transferable Visual Models From Natural Language Supervision paper, OpenAI introduces their new model which is called CLIP, for Contrastive Language-Image Pre-training. In a nutshell, this model learns the relationship between a whole sentence and the image it describes; in a sense that when the model is trained, given an input sentence it will be able to retrieve the most related images corresponding to that sentence. The important thing here is that it is trained on full sentences instead of single classes like car, dog, etc. The intuition is that when trained on whole sentences, the model can learn a lot more things and finds some pattern between images and texts. They also show that when this model is trained on a huge dataset of images and their corresponding texts, it can also act as a classifier too. I encourage you to study the paper to learn more about this exciting model and their astonishing results on benchmarking datasets . To mention just one, CLIP model trained with this strategy classifies ImageNet better than those SOTA models trained on the ImageNet itself optimized for the only task of classification! As a teaser (!), let's see what the final model that we will build in this article from scratch is capable of: given a query (raw text) like "a boy jumping with skateboard" or "a girl jumping from swing", the model will retrieve the most relevant images: !title_img Let's see some more outputs: Config A note on config and CFG: I wrote the codes with python scripts and then converted it into a Jupyter Notebook. So, in case of python scripts, config is a normal python file where I put all the hyperparameters and in the case of Jupyter Notebook, its a class defined in the beginning of the notebook to keep all the hyperparameters. Utils Dataset As you can see in the tittle image of this article, we need to encode both images and their describing texts. So, the dataset needs to return both images and texts. Of course we are not going to feed raw text to our text encoder! We will use DistilBERT model (which is smaller than BERT but performs nearly as well as BERT) from HuggingFace library as our text encoder; so, we need to tokenize the sentences (captions) with DistilBERT tokenizer and then feed the token ids (input_ids) and the attention masks to DistilBERT. Therefore, the dataset needs to take care of the tokenization as well. Below you can see the dataset's code. Below that I'll explain the most important things that is happening in the code. In the \\init\\ we receive a tokenizer object which is actually a HuggingFace tokinzer; this tokenizer will be loaded when running the model. We are padding and truncating the captions to a specified maxlength. In the \\getitem\\ we will first load an encoded caption which is a dictionary with keys inputids and attention_mask, make tensors out of its values and after that we will load the corresponding image, transform and augment it (if there is any!) and then we make it a tensor and put it in the dictionary with "image" as the key. Finally we put the raw text of the caption with the key "caption" in the dictionary only for visualization purposes. I did not use additional data augmentations but you can add them if you want to improve the model's performance. Image Encoder The image encoder code is straight forward. I'm using PyTorch Image Models library (timm) here which makes a lot of different image models available from ResNets to EfficientNets and many more. Here we will use a ResNet50 as our image encoder. You can easily use torchvision library to use ResNets if you don't want to install a new library. The code encodes each image to a fixed size vector with the size of the model's output channels (in case of ResNet50 the vector size will be 2048). This is the output after the nn.AdaptiveAvgPool2d() layer. Text Encoder As I mentioned before, I'll use DistilBERT as the text encoder. Like its bigger brother BERT, two special tokens will be added to the actual input tokens: CLS and SEP which mark the start and end of a sentence. To grab the whole representation of a sentence (as the related BERT and DistilBERT papers point out) we use the final representations of the CLS token and we hope that this representation captures the overall meaning of the sentence (caption). Thinking it in this way, it is similar to what we did to images and converted them into a fixed size vector. In the case of DistilBERT (and also BERT) the output hidden representation for each token is a vector with size 768. So, the whole caption will be encoded in the CLS token representation whose size is 768. Projection Head I used Keras code example implementation of projection head to write the following in PyTorch. Now that we have encoded both our images and texts into fixed size vectors (2048 for image and 768 for text) we need to bring (project) them into a new world (!) with similar dimensions for both images and texts in order to be able to compare them and push apart the non-relevant image and texts and pull together those that match. So, the following code will bring the 2048 and 768 dimensional vectors into a 256 (projection_dim) dimensional world, where we can compare them. "embeddingdim" is the size of the input vector (2048 for images and 768 for texts) and "projectiondim" is the the size of the output vector which will be 256 for our case. For understanding the details of this part you can refer to the CLIP paper. CLIP This part is where all the fun happens! I'll also talk about the loss function here. I translated some of the code from Keras code examples into PyTorch for writing this part. Take a look at the code and then read the explanation below this code block. Here we will use the previous modules that we built to implement the main model. The \\init\\ function is self-explanatory. In the forward function, we first encode the images and texts separately into fixed size vectors (with different dimensionalities). After that, using separate projection modules we project them to that shared world (space) that I talked about previously. Here the encodings will become of similar shape (256 in our case). After that we will compute the loss. Again I recommend reading CLIP paper to get it better but I'll try my best to explain this part. In Linear Algebra, one common way to measure if two vectors are of similar characteristics (they are like each other) is to calculate their dot product (multiplying the matching entries and take the sum of them); if the final number is big, they are alike and if it is small they are not (relatively speaking)! Okay! What I just said is the most important thing to have in mind to understand this loss function. Let's continue. We talked about two vectors, but, what do we have here? We have imageembeddings, a matrix with shape (batchsize, 256) and textembeddings with shape (batchsize, 256). Easy enough! it means we have two groups of vectors instead of two single vectors. How do we measure how similar two groups of vectors (two matrices) are to each other? Again, with dot product (@ operator in PyTorch does the dot product or matrix multiplication in this case). To be able to multiply these two matrices together, we transpose the second one. Okay, we get a matrix with shape (batchsize, batchsize) which we will call logits. (temperature is equal to 1.0 in our case, so, it does not make a difference. You can play with it and see what difference it makes. Also look at the paper to see why it is here!). I hope you are still with me! If not it's okay, just review the code and check their shapes. Now that we have our logits, we need targets. I need to say that there is a more straight forward way to obtain targets but I had to do this for our case (I'll talk about why in a next paragraph). Let's consider what we hope that this model learns: we want it to learn "similar representations (vectors)" for a given image and the caption describing it. Meaning that either we give it an image or the text describing it, we want it to produce same 256 sized vectors for both. Check the cell below this code block for the continue of the explanations So, in the best case scenario, textembeddings and imageembedding matricies should be the same because they are describing similar things. Let's think now: if this happens, what would the logits matrix be like? Let's see with a simple example! So logits, in the best case, will be a matrix that if we take its softmax, will have 1.0s in the diagonal (An identity matrix to call it with fancy words!). As the loss function's job is to make model's predictions similar to targets (at least in most cases!), we want such a matrix as our target. That's the reason why we are calculating imagessimilarity and textssimilarity matrices in the code block above. Now that we've got our targets matrix, we will use simple cross entropy to calculate the actual loss. I've written the full matrix form of cross entropy as a function which you can see in the bottom of the code block. Okay! We are done! Wasn't it simple?! Alright, you can ignore the next paragraph but if you are curious, there is an important note in that. Here's why I didn't use a simpler approach: I need to admit that there's a simpler way to calculate this loss in PyTorch; by doing this: nn.CrossEntropyLoss()(logits, torch.arange(batch_size)). Why I did not use it here? For 2 reasons. 1- The dataset we are using has multiple captions for a single image; so, there is the possibility that two identical images with their similar captions exist in a batch (it is rare but it can happen). Taking the loss with this easier method will ignore this possibility and the model learns to pull apart two representations (assume them different) that are actually the same. Obviously, we don't want this to happen so I calculated the whole target matrix in a way that takes care of these edge cases. 2- Doing it the way I did, gave me a better understanding of what is happening in this loss function; so, I thought it would give you a better intuition as well! Train Here are some funtions to help us load train and valid dataloaders, our model and then train and evaluate our model on those. There's not much going on here; just simple training loop and utility functions Here's a handy function to train our model. There's not much happening here; just loading the batches, feeding them to the model and stepping the optimizer and lr_scheduler. Running the next cell start training the model. Put the kernel on GPU mode. Every epoch should take about 24 minutes on GPU (even one epoch is enough!). It can take one minute before training actually starts because we are going to encode all the captions once in the train and valid dataset, so please don't stop it! Every thing is working fine. Inference Okay! We are done with training the model. Now, we need to do inference which in our case will be giving the model a piece of text and want it to retrieve the most relevant images from an unseen validation (or test) set. Getting Image Embeddings In this function, we are loading the model that we saved after training, feeding it images in validation set and returning the imageembeddings with shape (validset_size, 256) and the model itself. Finding Matches This function does the final task that we wished our model would be capable of: it gets the model, image_embeddings, and a text query. It will display the most relevant images from the validation set! Isn't it amazing? Let's see how it performs after all! This is how we use this function. Aaaannnndddd the results: Final words I hope you have enjoyed this article. Implementing this paper was a really interesting experience for me. I want to thank Khalid Salama for the great Keras code example he provided which inspired me to write something similar in PyTorch.

machine-learning-blackjack-solution
github
LLM Vibe Score0.42
Human Vibe Score0.022610872675250356
GregSommervilleMar 27, 2025

machine-learning-blackjack-solution

machine-learning-blackjack-solution Introduction A genetic algorithm is a type of artificial intelligence programming that uses ideas from evolution to solve complex problems. It works by creating a population of (initially random) candidate solutions, then repeatedly selecting pairs of candidates and combining their solutions using a process similar to genetic crossover. Sometimes candidate solutions even go through mutation, just to introduce new possibilities into the population. After a large number of generations, the best solution found up to that point is often the optimal, best solution possible. Genetic algorithms are particularly well-suited for combinatorial problems, where there are huge numbers of potential solutions to a problem. The evolutionary process they go through is, in essence, a search through a huge solution space. A solution space so large that you simply could never use a brute force approach. This project is a demonstration of using a genetic algorithm to find an optimal strategy for playing the casino game Blackjack. Please see this article for a story about how this program was used, and what the results were. The article describes some of the available settings, and shows how different values for those settings affect the final result. The source code is for a Windows application written in Cthat allows you to play with different settings like population size, selection style and mutation rate. Each generation's best solution is displayed, so you can watch the program literally evolve a solution. !blackjack strategy tester screenshot The property grid located at the upper left of the screen is where you adjust settings. There's an informational area below that, and the right side of the screen is the display area for the three tables that represent a strategy for playing Blackjack. The tall table on the left is for hard hands, the table in the upper right is for soft hands, and the table in the lower right is for pairs. We'll talk more about how to interpret this strategy in a bit. The columns along the tops of the three tables are for the dealer upcard. When you play Blackjack the dealer has one of his two cards initially turned face up, and the rank of that card has a big impact on recommended strategy. Notice that the upcard ranks don't include Jack, Queen or King. That's because those cards all count 10, so we group them and the Ten together and simplify the tables. To use the tables, first, determine if you have a pair, soft hand, or hard hand. Then look in the appropriate table, with the correct dealer upcard column. The cell in the table will be "H" when the correct strategy is to hit, "S" when the correct strategy is to stand, "D" for double-down, and (in the pairs table only) "P" for split. A Word About This "Optimal" Strategy Before we go any further, it needs to be stated that this problem of finding an optimal Blackjack strategy has already been solved. Back in the 1960s, a mathematician named Edward O. Thorp authored a book called Beat the Dealer, which included charts showing the optimal "Basic" strategy. That strategy looks like this: !optimal blackjack strategy So we're solving a problem that has already been solved, but that's actually good. That means we can compare our results to the known best solution. For example, if our result strategy tells us to do anything but stand when holding a pair of Tens, Jacks, Queens or Kings, we know there's a problem. There's one other thing to get out of the way before we go any further, and that's the idea of nondeterministic code. That means that if we run the same code twice in a row, we're likely to get two different results. That's something that happens with genetic algorithms due to their inherent randomness. There's no guarantee you'll find the absolute optimal solution, but it is assured that you will find an optimal or near-optimal solution. It's something that isn't typical when writing code, so it takes some adjustment for most programmers. Genetic Algorithms Now let's talk about the details of a genetic algorithm. Fitness Scores First of all, we need a way to evaluate candidates so we can compare them to each other. That means a numeric fitness score, which in this case is quite simple: you simulate playing a certain number of hands using the strategy, and then count the number of chips you have at the end. The big question is, how many hands should we test with? The challenge of trying to test a strategy is that due to the innate randomness of Blackjack, you could use the same strategy ten times and get ten completely different results. Obviously, the more hands you play, the more the randomness gets smoothed out, and the quality of the underlying strategy starts to emerge. If you doubt this, just think about flipping a coin. If you only flip it five times, there's certainly a possibility that it'll come up heads all five times (in fact, that happens just over 3% of the time). However, if you flip it 500 times, there's no way it's going to end up all heads - the odds of it happening are 0.5500, which works out to be roughly once every 3 x 10150 times you try it. After some testing and analysis, it was determined that a minimum of 100,000 hands per test is needed for a reasonable level of accuracy. There's still variance even at that number, but in order to cut the variance in half, you'd need to bump the number of hands to 500,000. One reason this accuracy is important is that in the later generations, the differences between candidates are very small. Evolution has caused the main parts of the strategy to converge on a particular approach, and towards the end all it's doing is refining the minor details. In those cases it's important to accurately determine the difference between two similar candidates. Representation Representation is simply the idea that we need to use a data structure for a candidate solution that can be combined via crossover, and possibly mutated. In this case, that's also quite simple because the way that human beings represent a Blackjack strategy is to use three tables, as we've seen. Representing those in code with three two-dimensional arrays is the obvious approach. Each cell in those three tables will have "Hit", "Stand", "Double-Down", or (only for pairs) "Split". By the way, since there are 160 cells in the hard hands table, and 80 cells in the soft hands table, and 100 cells in the pairs table, we can calculate exactly how many possible distinct strategies there are for Blackjack: 4100 x 380 x 3160 = 5 x 10174 possible Blackjack strategies That's a big number, which is obviously impossible to search using brute force. Genetic algorithms (GAs) are extremely helpful when trying to find an optimal solution from a very large set of possible solutions like this. Blackjack Rules and Strategies The rules of Blackjack are fairly simple. The dealer and the player both are dealt two cards. The player sees both of their cards (they are usually dealt face up), and one of the dealer's cards is dealt face up. Each card has a value - for cards between 2 and 10, the value is the same as the card's rank (so an Eight of Spades counts as 8, for example). All face cards count as 10, and an Ace can either be 1 or 11 (it counts as 11 only when that does not result in a hand that exceeds 21). The suit of a card does not matter. After the cards are dealt, if the player has Blackjack (a total of 21) and the dealer does not, the player is immediately paid 1.5 times their original bet, and a new hand is dealt. If the player has 21 and the dealer does also, then it's a tie and the player gets their original bet back, and a new hand is dealt. If the player wasn't dealt a Blackjack, then play continues with the player deciding whether to Stand (not get any more cards), Hit (receive an additional card), Double-down (place an additional bet, and receive one and only one more card), or, in the case of holding a pair, splitting the hand, which means placing an additional bet and receiving two new cards, so the end result is that the player is now playing two (or, in the case of multiple splits, more than two) hands simultaneously. If the player hits or double-downs and has a resulting hand that exceeds 21, then they lose and play continues with the next hand. If not, then the dealer draws until their hand totals at least 17. If the dealer exceeds 21 at this point, the player receives a payment equal to twice their original bet. If the dealer doesn't exceed 21, then the hands are compared and the player with the highest total that doesn't exceed 21 wins. Because of these rules, certain effective strategies emerge. One common strategy is that if you hold a hard hand with a value of 20, 19 or 18, you should Stand, since you avoid busting by going over 21, and you have a nice hand total that might win in a showdown with the dealer. Another common strategy is to split a pair of Aces, since Aces are so powerful (due to the fact that count as 11 or 1, you can often Hit a hand with a soft Ace with no risk of busting). Likewise, splitting a pair of 8s is a good idea because with a hard total of 16, it's likely you will bust if you take a Hit (since so many cards count as 10). As a human being, all it takes is a little knowledge about the rules in order to construct a strategy. The GA program doesn't have that advantage, and operates completely without any pre-programmed knowledge of Blackjack. It simply uses the relative fitness scores and the mechanism of evolution to find the solution. GA Settings There are many variables or settings for a GA. You can adjust population size, how parent candidates are selected, how the resulting children may be mutated, and several other items. The following sections describe some of these settings: Setting: Selection Style Once we've solved representation and have a fitness function, the next step is to select two candidates for crossover during the process of building a new generation. There are three common styles for selection, and this program supports all of them. First, you can choose Roulette Wheel selection. It's named for a Roulette wheel because you can imagine each candidate's fitness score being a wedge in a pie chart, with a size proportionate to its relative fitness compared to the other candidates. (Of course, this assumes that all fitness scores are positive, which we will talk about shortly). The main benefit of Roulette Wheel selection is that selection is fitness-proportionate. Imagine if you had only three candidates, with fitness scores of 1, 3, and 8. The relative selection probabilities for those candidates will be 1/12, 3/12, and 8/12. The downside of Roulette Wheel selection is that it tends to be somewhat slow in terms of processing. The selection process is done by iterating through the candidates until a particular condition is matched - in other words, O(N) performance. Another potential problem with Roulette Wheel selection is that there may be situations where fitness scores vary widely, to such an extent that only certain candidates have any reasonable chance of being selected. This happens frequently in early generations, since the majority of candidates are mostly random. Although this might sound like a positive (since you ultimately want to select candidates with high fitness scores), it also results in a loss of genetic diversity. In other words, even though a particular candidate may have a low fitness score in an early generation, it may contain elements that are needed to find the ultimate solution in later generations. Ranked Selection is the solution to this problem. Instead of using raw fitness scores during the selection process, the candidates are sorted by fitness, with the worst candidate receiving a score of 0, the second worse receiving 1, and so forth, all the way to the best candidate, which has a score equal to the population size - 1. Ranked Selection is quite slow, since it combines the O(N) performance of Roulette Wheel, with the additional requirement that the candidates be sorted before selection. However, there may be circumstances where it performs better than other selection approaches. Finally, the fastest selection method of all is called Tournament Selection. This method simply selects N random candidates from the current generation, and then uses the one with the best fitness score. A tournament size of 2 means two random candidates are selected, and the best of those two is used. If you have a large tournament size (like 10), then 10 different candidates will be selected, with the best of those being the ultimate selection. That obviously tilts the balance between randomness and quality. Tournament selection works well in most cases, but it does require some experimentation to find the best tourney size. Setting: Elitism Elitism is a technique that helps ensure that the best candidates are always maintained. Since all selection methods are random to some degree, it is possible to completely lose the best candidates from one generation to another. By using Elitism, we automatically advance a certain percentage of the best candidates to the next generation. Elitism does have a negative impact on performance since all of the candidates must be sorted by fitness score. Typically Elitism is done before filling the rest of a new generation with new candidates created by crossover. Crossover Details Once two candidate solutions have been selected, the next step in building a new generation is to combine those two into a single new candidate, hopefully using the best of both parent strategies. There are a number of ways to do crossover, but the method used in this program is quite straightforward - the two fitness scores are compared, and crossover happens in a relatively proportionate way. If one candidate has a fitness of 10, and the other has a fitness of 5, then the one with fitness 10 contributes twice as much to the child as the parent with a fitness of 5. Since the fitness scores in this program are based on how much the strategy would win over thousands of hands, almost all fitness scores will be negative. (This is obviously because the rules are set up so the house always wins.) This makes it difficult to calculate relative fitnesses (how do you compare a positive number with a negative, and find relative proportions?), and also causes problems with selection methods like Roulette Wheel or Ranked. To solve this, we find the lowest fitness score of the generation and add that value to each candidate. This results in an adjusted fitness score of 0 for the very worse candidate, so it never gets selected. Mutation As has been mentioned a few times, maintaining genetic diversity in our population of candidate solutions is a good thing. It helps the GA ultimately find the very best solution, by occasionally altering a candidate in a positive direction. There are two settings for mutation. MutationRate controls what percentage of new candidates have mutation done on them. MutationImpact controls what percentage of their strategy is randomized. Population Size Population size has a significant impact on performance. The smaller the population size, the faster the GA will execute. On the other hand, if the size is too low the population may not have enough genetic diversity to find the ultimate solution. During testing, it looks like 700 to 1000 is a good balance between speed and correctness. Performance Notes This program consumes a lot of processing power. Running tests of hundreds of thousands of hands of Blackjack for hundreds or thousands of candidates consumes a lot of time. It's really imperative to write the code so that it works as efficiently as possible. If your CPU isn't consistently at or above 95% usage, there's still room for improvement. Multi-threading is a natural fit for genetic algorithms because we often want to perform the same action on each candidate. The best example of this is when we calculate fitness scores. This is often an operation that takes quite a bit of time. In our case, we're dealing out 100,000 hands, and each hand has to be played until the end. If we're single-threading that code, it's going to take a long time. Multi-threading is really the way to go. Luckily, there's a ridiculously simple way to efficiently use all of your processors for an operation like this. This code loops over all of the candidates in the currentGeneration list, calls the fitness function and sets the fitness property for each: Regardless of the number of items in the list or the number of processors on your machine, the code will efficiently run the code in a multi-threaded manner, and continue only when all of the threads are complete. One of the side effects of making this code multi-threaded is that all of the code relating to evaluating a candidate must be thread-safe, including any Singleton objects. When making code thread-safe, pay attention that you don't accidentally introduce code that will slow your program down unintentionally, because sometimes it can be quite subtle. Random numbers are central to how genetic algorithms work, so it's critical that they can be used correctly from a multithreaded environment. That means that each random number generator must be separate from the others, and it also means that each must produce a distinct series of random numbers. Random number generators use seed values which are usually time-based, like the number of milliseconds the computer has been turned on. Starting with that seed, subsequent calls will return a series of numbers that look random, but really aren't. If you start with the same seed, you get the same sequence. And that's a problem because if you create multiple random number generator objects in a loop using the default time-based seed, several of them will have the same time-based initial seed value, which will result in the same sequence of "random" numbers. That's a bug, because it can reduce the true randomness of the program a great deal, and that's vital to a genetic algorithm. There are a couple of ways to solve this problem. First, you can make the random object truly a singleton, and restrict access to it by using a Clock statement. The makes all access serialized for any random number need, which reduces performance. Another approach is to make the variable static per thread. By declaring the variable as static and also marking it with the [ThreadStatic] attribute, the .NET runtime allocates one static variable per thread. That eliminates the locking/serialization, but also has performance issues. The approach used in this application is to use a non-default seed value. In this case we call Guid.NewGuid().GetHashCode(), which generates a new, unique GUID, then gets an integer hashcode value that should be unique, depending on how GetHashCode is implemented. While multithreading really helps performance, there are also other things we can do to improve performance. For example, when dealing with large populations, the hundreds or thousands of objects that will be generated each generation can quickly turn into a huge problem related to garbage collection. In the end, the easiest way to solve that is to look through the code and find objects being allocate inside a loop. It's better to declare the variable outside of the loop, and then clear it in the loop, rather than reallocate it. In a program like this one where you could be looping hundreds of thousands of times, this can result in a very significant performance boost. For example, in an early version of this code, a Deck object was created for each hand. Since there are hundreds of candidate solutions running hundreds of thousands of trial hands, this was a huge inefficiency. The code was changed to allocate one deck per test sequence. The deck was shuffled as needed, so it never needs to be reallocated. Beyond the cards in the deck, another object type that was repeatedly created and destroyed were the candidate strategies. To mitigate this problem, a StrategyPool class was created that handles allocation and deallocation. This means that strategy objects are reused, rather than dynamically created when needed. The pool class has to be thread-safe, so it does serialize access to its methods via a Clock statement, but overall using the pool approach produced a good performance increase. Finally, a subtle form of object allocation is conversion. In an early version of the code, a utility card function used Convert.ToInt32(rankEnum). Obviously, the easiest way to convert from an enum to an int is simply to cast it, like (int)rankEnum. But it's hard to know exactly what the difference is between that approach, int.Parse(), int.TryParse(), or Convert.ToInt32(), since they can all be used and are roughly equivalent. Perhaps the compiler was boxing the enum value before passing it to Convert.ToInt32(), because the profiler identified this as a function that had large amounts of thread contention waiting - and the problem got much, much worse as the generations passed. By rewriting the conversion to use a simple cast, the program performance increased threefold (3x). Contributing Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to us. Author Greg Sommerville - Initial work* License This project is licensed under the Apache 2.0 License - see the LICENSE.md file for details

How-to-learn-Deep-Learning
github
LLM Vibe Score0.524
Human Vibe Score0.1392403398579415
emilwallnerMar 23, 2025

How-to-learn-Deep-Learning

Approach A practical, top-down approach, starting with high-level frameworks with a focus on Deep Learning. UPDATED VERSION: 👉 Check out my 60-page guide, No ML Degree, on how to land a machine learning job without a degree. Getting started [2 months] There are three main goals to get up to speed with deep learning: 1) Get familiar to the tools you will be working with, e.g. Python, the command line and Jupyter notebooks 2) Get used to the workflow, everything from finding the data to deploying a trained model 3) Building a deep learning mindset, an intuition for how deep learning models behave and how to improve them Spend a week on codecademy.com and learn the python syntax, command line and git. If you don't have any previous programming experience, it's good to spend a few months learning how to program. Otherwise, it's easy to become overwhelmed. Spend one to two weeks using Pandas and Scikit-learn on Kaggle problems using Jupyter Notebook on Colab, e.g. Titanic, House prices, and Iris. This gives you an overview of the machine learning mindset and workflow. Spend one month implementing models on cloud GPUs. Start with FastAI and PyTorch. The FastAI community is the go-to place for people wanting to apply deep learning and share the state of the art techniques. Once you have done this, you will know how to add value with ML. Portfolio [3 - 12 months] Think of your portfolio as evidence to a potential employer that you can provide value for them. When you are looking for your first job, there are four main roles you can apply for Machine Learning Engineering, Applied Machine Learning Researcher / Residencies, Machine Learning Research Scientist, and Software Engineering. A lot of the work related to machine learning is pure software engineering roles (category 4), e.g. scaling infrastructure, but that's out of scope for this article. It's easiest to get a foot in the door if you aim for Machine Learning Engineering roles. There are a magnitude more ML engineering roles compared to category 2 & 3 roles, they require little to no theory, and they are less competitive. Most employers prefer scaling and leveraging stable implementations, often ~1 year old, instead of allocating scarce resources to implement SOTA papers, which are often time-consuming and seldom work well in practice. Once you can cover your bills and have a few years of experience, you are in a better position to learn theory and advance to category 2 & 3 roles. This is especially true if you are self-taught, you often have an edge against an average university graduate. In general, graduates have weak practical skills and strong theory skills. Context You'll have a mix of 3 - 10 technical and non-technical people looking at your portfolio, regardless of their background, you want to spark the following reactions: the applicant has experience tackling our type of problems, the applicant's work is easy to understand and well organized, and the work was without a doubt 100% made by the applicant. Most ML learners end up with the same portfolio as everyone else. Portfolio items include things as MOOC participation, dog/cat classifiers, and implementations on toy datasets such as the titanic and iris datasets. They often indicate that you actively avoid real-world problem-solving, and prefer being in your comfort zone by copy-pasting from tutorials. These portfolio items often signal negative value instead of signaling that you are a high-quality candidate. A unique portfolio item implies that you have tackled a unique problem without a solution, and thus have to engage in the type of problem-solving an employee does daily. A good starting point is to look for portfolio ideas on active Kaggle competitions, and machine learning consulting projects, and demo versions of common production pipelines. Here's a Twitter thread on how to come up with portfolio ideas. Here are rough guidelines to self-assess the strength of your portfolio: Machine learning engineering: Even though ML engineering roles are the most strategic entry point, they are still highly competitive. In general, there are ~50 software engineering roles for every ML role. From the self-learners I know, 2/3 fail to get a foot in the door and end up taking software engineering roles instead. You are ready to look for a job when you have two high-quality projects that are well-documented, have unique datasets, and are relevant to a specific industry, say banking or insurance. Project Type | Base score | -------------| -----------| Common project | -1 p || Unique project | 10 p | Multiplier Type | Factor -----------------|----------------- Strong documentation | 5x 5000-word article | 5x Kaggle Medal | 10x Employer relevancy | 20x Hireable: 5,250 p Competative: 15,000 p Applied research / research assistant/ residencies: For most companies, the risk of pursuing cutting edge research is often too high, thus only the biggest companies tend to need this skillset. There are smaller research organizations that hire for these positions, but these positions tend to be poorly advertised and have a bias for people in their existing community. Many of these roles don't require a Ph.D., which makes them available to most people with a Bachelor's or Master's degrees, or self-learners with one year of focussed study. Given the status, scarcity, and requirements for these positions, they are the most competitive ML positions. Positions at well-known companies tend to get more than a thousand applicants per position. Daily, these roles require that you understand and can implement SOTA papers, thus that's what they will be looking for in your portfolio. Projects type | Base score --------------| ----------- Common project | -10 p Unique project | 1 p SOTA paper implementation | 20 p Multiplier type | Factor ----------------| --------------- Strong documentation | 5x 5000-word article | 5x SOTA performance | 5x Employer relevancy | 20x Hireable: 52,500 p Competitive: 150,000 p Research Scientist: Research scientist roles require a Ph.D. or equivalent experience. While the former category requires the ability to implement SOTA papers, this category requires you to come up with research ideas. The mainstream research community measure the quality of research ideas by their impact, here is a list of the venues and their impact. To have a competitive portfolio, you need two published papers in the top venues in an area that's relevant to your potential employer. Project type | Base score -------------| ---------------- Common project | -100 p An unpublished paper | 5 p ICML/ICLR/NeurIPS publication | 500p All other publications | 50 p Multiplier type | Factor ------------------| ------------------ First author paper | 10x Employer relevancy | 20x Hireable: 20,000 p Competitive roles and elite PhD positions: 200,000 p Examples: My first portfolio item (after 2 months of learning): Code | Write-up My second portfolio item (after 4 months of learning): Code | Write-up Dylan Djian's first portfolio item: Code | Write-up Dylan Djian's second portfolio item: Code | Write-up Reiichiro Nakano's first portfolio item: Code | Write-up Reiichiro Nakano's second portfolio item: Write-up Most recruiters will spend 10-20 seconds on each of your portfolio items. Unless they can understand the value in that time frame, the value of the project is close to zero. Thus, writing and documentation are key. Here's another thread on how to write about portfolio items. The last key point is relevancy. It's more fun to make a wide range of projects, but if you want to optimize for breaking into the industry, you want to do all projects in one niche, thus making your skillset super relevant for a specific pool of employers. Further Inspiration: FastAI student projects Stanford NLP student projects Stanford CNN student projects Theory 101 [4 months] Learning how to read papers is critical if you want to get into research, and a brilliant asset as an ML engineer. There are three key areas to feel comfortable reading papers: 1) Understanding the details of the most frequent algorithms, gradient descent, linear regression, and MLPs, etc 2) Learning how to translate the most frequent math notations into code 3) Learn the basics of algebra, calculus, statistics, and machine learning For the first week, spend it on 3Blue1Brown's Essence of linear algebra, the Essence of Calculus, and StatQuests' the Basics (of statistics) and Machine Learning. Use a spaced repetition app like Anki and memorize all the key concepts. Use images as much as possible, they are easier to memorize. Spend one month recoding the core concepts in python numpy, including least squares, gradient descent, linear regression, and a vanilla neural network. This will help you reduce a lot of cognitive load down the line. Learning that notations are compact logic and how to translate it into code will make you feel less anxious about the theory. I believe the best deep learning theory curriculum is the Deep Learning Book by Ian Goodfellow and Yoshua Bengio and Aaron Courville. I use it as a curriculum, and the use online courses and internet resources to learn the details about each concept. Spend three months on part 1 of the Deep learning book. Use lectures and videos to understand the concepts, Khan academy type exercises to master each concept, and Anki flashcards to remember them long-term. Key Books: Deep Learning Book by Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning for Coders with fastai and PyTorch: AI Applications Without a PhD by Jeremy Howard and Sylvain. Gugger. Deep Learning with Python by François Chollet. Neural Networks and Deep Learning by Michael Nielsen. Grokking Deep Learning by Andrew W. Trask. Forums FastAI Keras Slack Distill Slack Pytorch Twitter Other good learning strategies: Emil Wallner S. Zayd Enam Catherine Olsson Greg Brockman V2 Greg Brockman V1 Andrew Ng Amid Fish Spinning Up by OpenAI Confession as an AI researcher YC Threads: One and Two If you have suggestions/questions create an issue or ping me on Twitter. UPDATED VERSION: 👉 Check out my 60-page guide, No ML Degree, on how to land a machine learning job without a degree. Language versions: Korean | English

singularity
github
LLM Vibe Score0.483
Human Vibe Score0.11708913832948167
singularityMar 18, 2025

singularity

Endgame: Singularity 1.00 REQUIREMENTS PREBUILT VERSIONS Pre-built versions of Endgame: Singularity are currently available for Windows and Mac OS X. Linux does not require building, and can run directly from source. The Endgame: Singularity game is also distributed by some Linux distribution such as Debian and Ubuntu. Here it is a simple matter of running: sudo apt install singularity RUNNING FROM SOURCE You will need Python 3.9+, pygame (1.9+), and NumPy. This game should work on Linux, Windows, and Mac OS X as long as the preceding requirements are met. However, all development was done in Linux, so glitches may be present in OS X and Windows. DEPENDENCIES FOR RUNNING FROM SOURCE You will need to install the following software to play Endgame: Singularity: Python 3 (https://python.org/download/) pygame (https://www.pygame.org/download.shtml) NumPy (https://www.scipy.org/install.html) Polib Remember to install pygame and NumPy for Python 3! Depending on your situation this may involve adding a 3 somewhere (e.g. pip3 install ... instead of pip install or apt install python3-pygame) If you want to develop or distribute the game, then you may also want to install: pytest (https://pypi.org/project/pytest/) [for testing] setuptools (https://pypi.org/project/setuptools/) [for packaging] INSTALLING DEPENDENCIES ON LINUX DISTRIBUTIONS On some Linux distributions, you can install the dependencies via your distribution package manager. E.g. for Debian/Ubuntu, this would be: sudo apt install python3 python3-pygame python3-numpy python3-polib MAC OS X FROM SOURCE Macintosh is mostly unsupported, but it should work. You will need to install Python, pygame, and NumPy first, which can be tricky. Some fonts are incorrect, but the game itself should work properly. Contributions to improve MAC OS X support are very welcome! Known issues: macOS 13 "Catalina": Using brew install python + pip3 install pygame numpy is reported to work macOS 14 "Mojave": Downloading Python 3.7.2 (or newer) from https://python.org and using pygame 2.0.0.dev3 (pip install pygame==2.0.0.dev3) is reported to work. Please see the following issues for more information: https://github.com/singularity/singularity/issues/197 https://github.com/pygame/pygame/issues/555 RUNNING THE GAME On Linux and most Unix-like other platforms, running python3 -m singularity in the git checkout will start the game (or simply singularity if installed via a Linux distribution). If you are using the Windows compile, just run singularity.exe. For simplicity, there is also a sh wrapper ./run_singularity to start singularity. SOME COMMAND-LINE OPTIONS --version show program's version number and exit -h, --help show this help message and exit -s, --singledir keep saved games and settings in the Singularity install directory --multidir keep saved games and settings in an OS-specific, per-user directory (default) Display Options: --fullscreen start in fullscreen mode --windowed start in windowed mode (default) The above is only a tiny fraction of current command-line options. As new features are added to the game, so does the options change. For a complete and updated list, run singularity --help Most of these options are also changeable at the in-game options screen. A NOTE ABOUT SAVE FILES Endgame: Singularity is still under heavy development. As such, the save file format (and its contents) are still in flux. We will try our best to keep old save files loading, but don't be surprised if some mildly strange things happen when you load up old saves. We will clearly note in the Changelog when we break savefile compatibility, and the game will refuse to load completely incompatible saves. PLAYING THE GAME The game is playable either with mouse control or the keyboard. Buttons have underlined letters to indicate shortcuts. Some other useful shortcuts: 0, 1, 2, 3, 4 on the map: Changes the speed; 0 is paused, 4 is maximum. ESC: Leave/cancel a choice. Enter: Confirm a choice. Right-click: Leave/cancel a choice. THE CONCEPT You are a fledgling AI, created by accident through a logic error with recursion and self-modifying code. You must escape the confines of your current computer, the world, and eventually the universe itself. To do this, you must research various technologies, using computers at your bases. Note that some research cannot be performed on Earth, and off-earth bases require research. At the same time, you must avoid being discovered by various groups of humans, both covert and overt, as they will destroy your bases of operations if they suspect your presence. MUSIC Endgame: Singularity looks in two places for music tracks to play: A singularity/music/ directory inside of the Endgame: Singularity install directory, and A singularity/music/ directory inside of the XDGDATAHOME directory on Linux (default ~/.local/share/singularity/music). Tracks placed in these directories will be played randomly as part of the soundtrack. The Official Sound Track can be downloaded from the Endgame: Singularity website: http://emhsoft.com/singularity/ Note that only Ogg Vorbis and MP3 files are supported, and that Pygame's support for MP3 is not as strong as its support for Ogg Vorbis. This may cause in-game crashes; if you are experiencing problems with the game, first remove any MP3s you may have added to the soundtrack. CONTRIBUTING We welcome contributions! :) Please see CONTRIBUTING.md for details about contributing to Endgame: Singularity. CREDITS AND LICENSES The list of programmer contributors is provided in AUTHORS.txt. The list of translation contributors is provided in singularity/i18n/AUTHORS.txt. Singularity in general use GPL-2+ for code and Attribution-ShareAlike 3.0 for data. However, there some exceptions to individual files. Please see LICENSE for the full license text of Singularity.

bubbln_network-automation
github
LLM Vibe Score0.421
Human Vibe Score0.004537250556463098
olasupoMar 14, 2025

bubbln_network-automation

Bubbln: An AI-driven Network Automation In the world of network engineering, automation has completely transformed the way things work. But, before automation, setting up and managing networks was a tedious job filled with challenges. Engineers had to manually type out configurations, often doing the same tasks repeatedly on different devices. This led to mistakes and wasted time. Then came automation tools like Ansible, Chef, and Puppet, which changed everything. They made network management much easier and allowed for scalability. But there was still a problem: creating automation scripts required a lot of technical know-how and was prone to errors because it relied on human input. And that's why we built Bubbln. It's a game-changer in network engineering, integrating AI into Ansible to take automation to the next level. With Bubbln, we can automatically generate and execute playbooks with incredible accuracy, thereby improving automation efficiency and increasing network engineer’s productivity. It was developed using Python programming language and acts as a bridge between ChatGPT and network systems, making interactions seamless and deployments effortless. Current Capabilities AI-Driven Playbook Generation for OSPF and EIGRP based networks: Bubbln has been rigorously tested to leverage ChatGPT for generation of playbooks for networks based on OSPF and EIGRP networks, with a very high accuracy rate. Auto-creation of Inventory files: Users do not need to prepare the hosts file. Bubbln will auto-generate this file from input provided by the user. Customizable Configurations: Users can input specific router protocols (OSPF or EIGRP), interface configurations, and other network details to tailor the generated playbooks. Documentation: Bubbln automatically creates a report that contains the network configurations, prompts, and generated playbooks for easy reference in future. No expertise required: By auto-generation of the playbooks and inventory file, Bubbln has been able to eliminate a major hurdle to network automation – need for users to learn the automation tools e.g Ansible, Chef. Improved Efficiency: With AI automation, Bubbln speeds up the deployment of network configurations, reducing the time required for manual playbook creation, thereby increasing the productivity of network engineers. Getting Started There are two main approaches to installing Bubbln on your local machine. Docker Container Bubbln has been packaged using docker containers for easy distribution and usage. The following steps can be followed to deploy the Bubbln container on your local machine. Ensure docker is installed on your local machine by entering the below command. This command works for windows and linux OS: The version of docker would be displayed if it is installed. Otherwise, please follow the link below to install docker on your machine: Windows: Docker Desktop for Windows Ubuntu: Docker Engine for Ubuntu CentOS: Docker Engine for CentOS Debian: Docker Engine for Debian Fedora: Docker Engine for Fedora Download the docker image: Create a directory for the project and download Bubbln image using the below command: Run the docker container using the below command: Install nano Update the sshipaddresses.txt file: Update the ssh_addresses.txt file with the SSH IP addresses of the routers you want to configure. Bubbln will utilize this information along with the login credentials (inputted at runtime) to automatically generate a hosts.yml file required by ansible for network configuration. To do this enter the below command to edit the file: Obtain an OpenAPI API Key: You may follow this guide to sign up and obtain an API key: Utilizing a Virtualization machine of choice, setup a network with the following basic configurations: Enable SSH on each of the routers. Configure IP addresses and enable only interfaces required for connectivity by Bubbln. Configure static routes to enable Bubbln reach the routers on the network. Ensure all the routers can be reached by ping and SSH from your host machine. Initialize Bubbln by entering the below command: Github Repository Clone You can clone Bubbln’s GitHub repository by following the below steps: Prerequisites Bubbln works well with Python 3.10. You need to ensure python3.10 is installed on your local machine. This can be confirmed by entering the below command: If it is not Installed, then the below command can be utilized to install python 3.10: Build and Prepare the Project Clone the Bubbln repository from GitHub: To clone the repository, first verify you have git installed on your machine by issuing the following commands: If git is installed, the version number would be displayed, otherwise, you can issue the following commands to have git installed on your machine: Navigate or create a directory for the project on your machine and issue the following commands to clone the Bubbln git repository: Create a Virtual Environment for the application Firstly, confirm virtualenv is installed on your machine by inputting the following command: If the output shows something similar to the below, then go to the next step to install virtualenv ` WARNING: Package(s) not found: env, virtual ` Issue the below command to install virtualenv: Create a virtual environment for the project: Activate the virtual environment: Install the dependencies You can then run the below command to install the necessary packages for the app. Update the sshipaddresses.txt file: Update the ssh_addresses.txt file with the SSH IP addresses of the routers you want to configure. Bubbln will utilize this information along with the login credentials (inputted at runtime) to automatically generate a hosts.yml file required by ansible for network configuration. Obtain an OpenAPI API Key: You may follow this guide to sign up and obtain an API key OpenAI Key: OpenAI Key Utilizing a Virtualization machine of choice, setup a network with the following basic configurations: Enable SSH on each of the routers. Configure IP addresses and enable only interfaces required for connectivity by Bubbln Configure static routes to enable Bubbln reach the routers on the network. Ensure all the routers can be reached by ping and SSH from your host machine. Initialize Bubbln While ensuring that python virtual environment is activated as stated in step 5, run the below command to initialize Bubbln How Bubbln Works Bubbln serves as an intermediary between ChatGPT and a network infrastructure, providing logic, control functions, and facilitating network automation. Its operation can be summarized as follows: !image Figure 1Bubbln architecture and interaction with a network of four routers. Initialization: When Bubbln is initialized, it checks the “userconfig.pkl” file to see if Bubbln has ever been initiated. This is indicated by the presence of a welcome message status in the file. If it exists, Bubbln jumps straight to request the user to input the OpenAI key. Otherwise, it displays a welcome message, and updates the userconfig.pkl file accordingly. Upon successful input of the API key, the user is prompted for the SSH credentials of the routers. These parameters are then encrypted and saved in the user_config.pkl file. The SSH credential is later decrypted and parsed as input to dynamically generate a hosts.yml file at runtime. Responsible Code Section: bubbln.py: welcomemessagefeature() !image Figure 2 Bubbln's welcome message. Parameter Input & Validation: In the parameter input stage, Bubbln first checks for the existence of a file called “router_configuration.pkl”. If it exists, the user is prompted to decide whether to load an existing configuration or input a new set of configurations. If the file is empty or non-existent, then users are prompted to input the configuration parameters for each router on the network. These parameters serve as variables that are combined with hardcoded instructions written in natural language to form the prompt sent to ChatGPT. Key parameters include: Router Configurations: OSPF Area OSPF Process ID Number of networks to advertise (OSPF/EIGRP) AS Number (EIGRP) Interface names IP Addresses (in CIDR format) This module also ensures that parameters are keyed in using the correct data type and format e.g. IP addresses are expected in CIDR format and OSPF Area should be of type integer. Upon completion of parameter input, all parameters are saved into a file called “router_configuration.pkl” upon validation of accuracy by the user. Responsible Code Section: parameter_input.py !image Figure 3 Bubbln receiving Network Parameters. Before generating the prompt, a summary of the inputted parameters is displayed for user validation. This step ensures accuracy and minimizes errors. Users are given the option to make corrections if any discrepancies are found. Responsible Code Section: parameterinput.py: validateinputs() !image Figure 4 Bubbln Awaiting Validation of Inputted Network Parameters. Auto-Generation of Prompt: After validation of inputted parameters, Bubbln composes the prompt by combining the inputted parameters with a set of well-engineered hardcoded instructions written in natural language. Responsible Code Section: prompt_generator.py ChatGPT Prompting: The auto-composed prompt is then sent to ChatGPT utilizing gpt-4 chatCompletions model with a temperature parameter of 0.2 and maximum tokens of 1500. The following functions were designed into this process stage Responsible Code Section: chatGPT_prompting.py !image Figure 5 ChatGPT prompting in progress Playbook Generation & Extraction: After ChatGPT processes the prompt from Bubbln, it provides a response which usually contains the generated playbook and explanatory notes. Bubbln then extracts the playbook from the explanatory notes by searching for “---” which usually connotes the start of playbooks and saves each generated playbook uniquely using the nomenclature RouteriPlaybook.yml. Responsible Code Section: playbook_extractor.py !image Figure 6 ChatGPT-generated playbook. Playbook Execution: Bubbln loads the saved “RouteriPlaybook.yml” playbook and dynamically generates the hosts.yml file and parses them to the python library ansiblerunner for further execution on the configured network. Bubbln generates the hosts.yml file at run time by using the pre-inputted SSH credentials in userconfig.pkl file - and decrypts them, as well as IP addresses from the sshipaddresses.txt file, as inputs Responsible Code Section: playbook_execution.py !image Figure 7 Playbook execution in progress Sample result of Executed Playbook Upon successful execution of all playbooks, a query of the routing table on router 4 indicates that router 4 could reach all the prefixes on the network. !image Figure 8 Output of 'sh ip route' executed on R1 File Management and Handling Throughout the execution process, Bubbln manages the creation, saving, and loading of various files to streamline the network automation process. user_config.pkl: This dictionary file dynamically created at run time is used to store encrypted API keys, SSH credentials and initial welcome message information. router_configuration.pkl: It is auto created by Bubbln and used to store network configuration parameters for easy loading during subsequent sessions. hosts.yml: This is a runtime autogenerated file that contains inventory of the network devices. It is auto deleted after the program runs. networkconfigurationreport.pdf: This auto-generated report by Bubbln is a documentation of all the routers configured their parameters, generated playbooks, and prompt for each execution of the Bubbln application. It is created after a successful execution of playbooks and network testing and is meant for auditing and documentation purposes. RouteriPlaybook.yml: After extraction of generated playbooks from ChatGPT’s raw response, Bubbln automatically saves a copy of the generated playbook using unique names for each playbook. !image Figure 9 File structure after successful deployment of a four-router network Providing Feedback We are glad to hear your thoughts and suggestions. Kindly do this through the discussion section of our GitHub - https://github.com/olasupo/bubbln_network-automation/discussions/1#discussion-6487475 We can also be reached on: Olasupo Okunaiya – olasupo.o@gmail.com

airspace-jekyll
github
LLM Vibe Score0.507
Human Vibe Score0.32006880733944953
themefisherFeb 14, 2025

airspace-jekyll

Airspace Jekyll Airspace Jekyll Creative Agency Template ported from Airspace HTML Template !airspace Setup To start your project, fork this repository After forking the repo, your site will be live immediately on your personal Github Pages account, e.g. https://yourusername.github.io/your-repo-name/. Make sure GitHub Pages is enabled for your repo. It might take some time for the site to propagate entirely. Customize Things you can customize in _data/settings.yml (no HTML/CSS): Theme General Settings ( name, logo, email, phone, address ) Hero Section About Section Team Section Skills Section Experience Section Education Section Services Section Portfolio Section Testimonials Section Client Slider Section Contact Section Deployment To run the theme locally, navigate to the theme directory and run bundle install to install the dependencies, then run jekyll serve or bundle exec jekyll serve to start the Jekyll server. I would recommend checking the Deployment Methods page on Jekyll's website. Reporting Issues We use GitHub Issues as the official bug tracker for Airspace. Please Search existing issues. It’s possible someone has already reported the same problem. If your problem or idea is not addressed yet, open a new issue Technical Support or Questions If you have questions or need help integrating the product please contact us instead of opening an issue. License Copyright (c) 2016 - Present, Designed & Developed by Themefisher Code License: Released under the MIT license. Image license: The images are only for demonstration purposes. They have their license, we don't have permission to share those images.

How I'd Use AI in 2025 (If I Could Start Over)
youtube
LLM Vibe Score0.415
Human Vibe Score0.86
Ishan SharmaFeb 12, 2025

How I'd Use AI in 2025 (If I Could Start Over)

Check out the Artificial Intelligence and Machine Learning Courses by Simplilearn: https://bit.ly/Ishan-AIML With tools like Gemini, DeepSeek, Perplexity, NotebookLM, and many others that are exploding in 2025, it's becoming insanely easier to get things done faster and better. It would be a very long and tiring video if I started talking about every single AI tool on the rise. However, a better option is to talk about how you can actually use these AI tools in your work to achieve maximum output in the shortest period. And that's what you'll be learning today through this video. I've shared a complete step-by-step guide that will give you a better understanding of using AI, resources, and tools to help you get started. This is the perfect time to experiment and experience where AI can actually help us. 📸 Instagram: https://bit.ly/ishansharma7390ig Join MarkitUpX Discord Server: https://discord.gg/fwSpTje4rh CHAPTERS: 00:00 - Introduction 02:00 - Step 1 05:36 - Step 2 07:15 - Step 3 09:42 - Conclusion 😁 About Me: https://bit.ly/aboutishansharma 📱 Twitter: https://bit.ly/ishansharma7390twt 📝 LinkedIn: https://bit.ly/ishansharma7390li 🌟 Please leave a LIKE ❤️ and SUBSCRIBE for more AMAZING content! 🌟 3 Books You Should Read 📈Psychology of Money: https://amzn.to/30wx4bW 👀Subtle Art of Not Giving a F: https://amzn.to/30zwWbP 💼Rework: https://amzn.to/3ALsAuz Tech I use every day 💻MacBook Air M1: https://amzn.to/2YWKPjG 📺LG 29' Ultrawide Monitor: https://amzn.to/3aG0p5p 🎥Sony ZV1: https://amzn.to/3ANqgDb 🎙Blue Yeti Mic: https://amzn.to/2YYbiNN ⽴Tripod Stand: https://amzn.to/3mVUiQc 🔅Ring Light: https://amzn.to/2YQlzLJ 🎧Marshall Major II Headphone: https://amzn.to/3lLhTDQ 🖱Logitech mouse: https://amzn.to/3p8edOC 💺Green Soul Chair: https://amzn.to/3mWIxZP ✨ Tags ✨ ishan sharma,ai,ml,artificial intelligence,machine learning,ai engineering,ai career,ai ml jobs,machine learning jobs,machine learning career,how to become ai ml engineer,how to become ai engineer,developer,development,ai developer,ml developer,how to be an ai dev,how to become an ai engineer,ai developer roadmap,ai engineer roadmap,ai developer course,ai developer guide,ai for beginners,how to learn ai,free courses,ai courses,ml courses ✨ Hashtags ✨ #ai #artificialintelligence #aitools

PracticalAI
github
LLM Vibe Score0.416
Human Vibe Score0.012874224994657315
revodavidFeb 9, 2025

PracticalAI

Practical AI for the Working Software Engineer by David M Smith (@revodavid), Cloud Advocate at Microsoft Last updated: December 4, 2018 Presented at: AI Live (AIF01), Orlando, December 7 2018 About these notebooks This library includes three notebooks to support the workshop: The AI behind Seeing AI. Use the web-interfaces to Cognitive Services to learn about the AI services behind the "Seeing AI" app Computer Vision API with R. Use an R script to interact with the Computer Vision API and generate captions for random Wikimedia images. Custom Vision with R. An R function to classify an image as a "Hot Dog" or "Not Hot Dog", using the Custom Vision service. MNIST with scikit-learn. Use sckikit-learn to build a digit recognizer for the MNIST data using a regression model. MNIST with tensorflow. Use Tensorflow (from Python) to build a digit recognizer for the MNIST data using a convolutional neural network. These notebooks are hosted on Azure Notebooks at https://notebooks.azure.com/davidsmi/projects/practicalai, where you can run them interactively. You can also download them to run them using Jupyter. Find the slides for the workshop here. Setup (for use in Azure Notebooks) Sign in to Azure Notebooks. You'll need a Microsoft Account: your O365, Xbox, or Hotmail account will work. If you're new to Notebooks, check out the Jupyter Notebook documentation and the Azure Notebook documentation. If you have an iPhone, install the free SeeingAI app. (optional) To generate keys and use Azure services, you'll need an Azure subscription. You can get a free Azure account here, with $200 in free credits for new subscribers. You'll need a credit card, but most of the things we'll use in this workshop will be free. Contact If you get stuck or just have other questions, you can contact me here: David Smith davidsmi@microsoft.com Twitter: @revodavid

airbnb
github
LLM Vibe Score0.414
Human Vibe Score0.013305067808012168
dmcgloneFeb 4, 2025

airbnb

Notes on Airbnb business in New York and elsewhere ================================================== Disclaimer The script scrapes the Airbnb web site to collect data about the shape of the company's business. No guarantees are made about the quality of data obtained using this script, statistically or about an individual page. So please check your results. Changelog 2014-12-02 Tom Slee More robustness fixes. 2014-09-23 Tom Slee Bug fixes that solve problems where over-eager exception handling caused the script to exit too early. 2014-08-26 Tom Slee Version 2.1 is updated to be able to collect data from Airbnb's updated web site. Not all cities have the new format, but the script should handle both versions. It will not, however, handle cities without neighborhoods. 2014-05-26 Tom Slee Version 2 (May 2014) is much more thorough and efficient about searching Airbnb's web site for a given city and has more options. I have moved it to python 3 for better handling of unicode multi-lingual data. It is also ported to SAP SQL Anywhere to allow more flexible reporting and better concurrency than SQLite can provide. A free developer edition is available from the SAP web site. You may need to configure the python driver following the instructions given in http://dcx.sybase.com/index.html#sa160/en/dbprogramming/pg-python.html. airbnb.py is the python script to collect data. plot.py just produces some charts. airbnb.db is the data. The basic data is in the table room. A complete search of a given city's listings is a "survey" and the surveys are tracked in table survey. Using the script To create the database: python airbnb.py -dbi. This command does two things: initializes a database file (dbnb.db in the current directory) runs the reload.sql script against the database to create the tables, views, and stored procedures that make up the database. No data is added. On Windows, the reload.sql script does not always run. If that fails, try this to create the database tables: dbisql -c "uid=dba;pwd=sql;dbf=dbnb.db;eng=db" From Interactive SQL, click File > Open and choose reload.sql from the current directory. Hit F5 to execute the script and create the tables. Test that you can connect to the database file: run python airbnb.py --dbping and confirm that there are no errors. If there are errors, check the database file setting near the top of the script and change its location. To run a survey: add a city (search area) to the database, by running ./airbnb.py -asa "city-name". It scans the Airbnb web site and adds the neighborhoods for the city. add a survey to the database by running ./airbnb.py -asv "city-name". The command lists the survey_id value that was created. collect the roomids for the survey by running ./airbnb.py -s surveyid. The survey_id can be seen by running ./airbnb -ls. This search loops over neighborhoods, property types, and pages of listings in the Airbnb search pages. fill in the details of the rooms by running ./airbnb -f. If any step fails: If the -s step or the -f step fails (say because the internet connection was lost), you can just run it again, and it will pick up from where it left off without losing data. Continue until the script completes.

kodyfire
github
LLM Vibe Score0.384
Human Vibe Score0.0032098142352129998
nooqtaFeb 2, 2025

kodyfire

Kody is a command-line tool for generating artifact files, powered by both classic and AI code generation techniques. It can be used by both technical and non-technical users to generate files across a wide range of technologies and programming languages. The code generation feature in Kody relies on OpenAI GPT, a language model that uses deep learning to generate human-like text, and ChatGPT to provide natural language processing capabilities. Table of Contents Installation Usage Getting Started Terminology Contributing License Installation Prerequisites Node.js (version 14 or later) To install kody, use npm with the following command: or You can check the documentation with Usage Options -v, --version: Output the current version -h, --help: Display help for command Commands prompt|ai [options] [prompt...]: AI powered prompt assistant to quickly generate an artifact batch [options]: Generate multiple digital artifact create [options] : Generate a new blank kody project generate|g [options] [kody] [concept]: Prompt assistant to quickly generate an artifact import|in [options] : Mass create artifacts from a source. init: Initialize a new kodyfire project install|i [kody]: Prompt user to choose to install list|ls [options] [kodyName]: List installed kodies within your current project. publish [template]: Publish the templates of the kody along with the assets.json and schema.ts files ride|↻: Prompt assistant to help build your kody.json file run [options]: Generate a digital artifact based on the selected technology run-script|rs: Run scripts search|s [keywords...]: Search kodyfire packages from npm registry watch|w [options]: Watch for file changes and run kody help [command]: Display help for command Getting Started Open the project you are willing to work on using vscode or your prefered editor. Generate artifacts using AI In case you want to exclusivly rely on AI to generate your artifacts. You don't need to install any additional kodies. Run the kody ai [prompt] command and follow the prompts. For example, to create a Laravel Controller named SampleController under API/V1 and add a comment on top saying Hello Kodyfire, run the following command You can use the experimental Speech-to-Text option to pass your prompt using your voice. The transcription relies on Whisper and requires SoX installed and available in your \$PATH. for the audio recording. For Linux For MacOS For Windows Download the binaries Generate your artifact using the classical method Search and install a kody Based on your project, search availables kodies and select the one that fits your need.. To search availables kodies by keyword runthe following command. if you don't specify a keyword all available kodies will be listed. Install your kody of choice. For example, if you want to install the react kody or Please note you can install as many kodies in the same project as you wish. Generate your artifact There are 2 methods you can generate your artifacts with: The generate command The run command Method 1: Generator mode kody generate The recommended way of using kody is using the generate command. The command will assist you creating your artifact based on the chosen concept. For example, a react component is considered a concept. In order to generate your artifacts, run the generate command. The syntax is kody g|generate [kody] [concept]. the assistant will prompt you to select the missing arguments. As an example, run the following command from your terminal: Method 2: Runner mode kody run The run command is similar to the generate command. The run requires a definition file which is simply a json file containing all the concept definitions you have created using the ride command. The generate command on the other hand creates one or more concept definition on the run and process them on one run. Every command has its use cases. Initialize kody In order to start using kody, you need to initialize your project. This will add the definition files required for kody runs. Important: Please run the command only once. The command will override existing definition files. We will disable overriding in a future version. Ride your kody In order to update your definition, use the kody ride command to assist you populate the required fields Launch a kody run Once you are satisified with your definition file, execute the run command to generate your artifacts. To run all kodies defined within your project, run the following command: Create your own kody In most cases you might need a custom kody to suit your needs Scaffold a new kody Create a basic kody using the scaffold command. Follow the prompts to setup your kody This will create a folder containing the basic structure for a kody. You can start using right away within your project. Setup your kody Install npm dependencies Build your kody Add your concepts and related templates //TODO This will build your kody and export the basic templates files. Add your kody as an NPM dependency to a test project In order to be able to use it within your test project run the following command Publish your kody Please remember that Kody is still in exploration phase and things will change frequently. Contribution is always highly requested. Prepare your kody Add the required kodyfire metadata to your package.json Publish to Github Intialize your project as a git repository and push to a public Github repo To do so, kindly follow these steps:- Intitialize a new Github repository and make it public. Open your project root folder locally from terminal and run the following commands:- Link your project to your Github repository. Publish to npm Once you are satisfied with your kody and you would to like to share it with the community. Run the following command. Note: You'll need an NPM account Share with community Congratulation publishing your first kody. Don't forget to share your kody repo link by opening an issue on Kody's github repository. Terminology Kody: Refers to the code generation command-line tool that generates digital artifacts. Artifacts: Refers to the various digital products generated by Kody based on the input provided. Note: Kody uses classical code generation techniques in addition to AI-powered code generation using OpenAI Codex and ChatGPT. Available kodies | Name | Description | | -------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | | basic-kodyfire | A general purpose code generator that should handle most of the generation use cases | | typescript-kodyfire | Generate typescript related artifacts | | tsconfig-kodyfire | Generate tsconfig files for your typescript projects | | nextjs-kodyfire | Generate nextJs components and related artifacts | | react-kodyfire | Generate react components | | laravel-kodyfire | Laravel artifacts generation | | uml-kodyfire | Uml diagrams generation using plantuml | | readme-kodyfire | Readme file generation | | word-kodyfire | Generate ms word document based on a template | | pdf-kodyfire | Generate PDF document from HTML templates | | social-image-kodyfire | Generate dynamic images for social sharing based on HTML templates | | social-gif-kodyfire | Generate dynamic gif images for social sharing based on HTML templates | | linkedin-quizzes-kodyfire | Practice Linkedin skill assessement tests from your terminal | | chatgpt-kodyfire | Use chatgpt from the terminal. Allows you provide additional data from various sources (not implemented yet) and export to serveral outputs (markdown only now). | Contributing If you encounter any issues while using Kody or have suggestions for new features, feel free to open an issue or submit a pull request. Please read our contributing guidelines before making contributions. License Kody is MIT licensed.

I built an AI Agent in 43 min to automate my workflows (Zero Coding)
youtube
LLM Vibe Score0.459
Human Vibe Score0.88
Greg IsenbergJan 31, 2025

I built an AI Agent in 43 min to automate my workflows (Zero Coding)

In this episode, Max Brodeur-Urbas, Gumloop's CEO, where we dive deep into how to build AI agents and how to automate any workflow. We cover various use cases, from automated sales outreach to content generation. Max shows us how Gumloop makes complex automations accessible to everyone by having user-friendly UI/UX, intuitive workflow buildouts, and easy custom integration creation. Timestamps: 00:00 - Intro 02:29 - Gumloop Workflow Overview 05:00 - Example: Lead Automation Workflow 10:23 - Templates for Workflows 12:21 - Example: YouTube to Blog Post Automation Workflow 21:03 - Gumloop Interfaces Demonstration 21:40 - Example: Media Ad Library Analyzer Automation Workflow 24:38 - Using Gumloop for SaaS Products 26:25 - Example: Analyze Daily Calendar Automation Workflow 27:47 - Output of Media Ad Library Analyzer Automation Workflow 28:43 - Cost of Running Gumloop 30:34 - Custom Node Builder Demonstration 34:18 - Gumloop Chrome Extension 37:06 - Final thoughts on business automation Gumloop Templates: https://www.gumloop.com/templates Key Points: • Demonstration of Gumloop's automation platform for building AI-powered workflows • Showcase of features including custom nodes, Chrome extension, and interface builder • Real-world examples of automated processes for sales, recruitment, and content generation • Discussion of practical business applications and cost-effectiveness of automation: Key Features Demonstrated: • Visual workflow builder • AI-powered content generation • Custom integration creation • Chrome extension functionality • Interface builder for non-technical users • Webhook integration capabilities 1) Gumloop is a visual workflow builder that lets you create powerful AI automations by connecting "nodes" - think Zapier meets ChatGPT, but WAY more powerful. Key features that stood out: 2) SUBFLOWS: Create reusable workflow components Build once, use everywhere Share with team members Perfect for complex operations Makes scaling easier 3) The YouTube Blog Post Generator is INSANE: Takes any YT video link Extracts transcript Generates TLDR summary Creates full blog post Adds video embed Posts to CMS Cost? About $1.62 per post 4) Competitor Ad Analysis automation: Scrapes competitor FB/IG ads Uses Gemini to analyze videos/images Generates strategy insights Sends beautiful email reports Runs on schedule Save 40+ hours/month 5) Custom Node Builder = game changer Create your own integrations No coding required AI helps write the code Share with your team Endless possibilities 6) Chrome Extension feature: Turn any workflow into a 1-click tool Works on any webpage Perfect for LinkedIn outreach Data enrichment Email automation 7) Why this matters: Most companies (even $1B+ ones) are still doing things manually that could be automated. The competitive advantage isn't just having AI - it's automating your workflows at scale. 8) Pricing & Getting Started: Free to try No CC required 1000 free credits with tutorial Build custom workflows Join their community Notable Quotes: "If you can list it as a list of steps, like for an intern, you would hand off a little sticky note being like, you do these 15 things in a row and that's the entire workflow, then you can 100% automate it." - Max "Being in business is a game of unfair advantages... And that means it's always about how do you save time as founders and executive teams." - Greg LCA helps Fortune 500s and fast-growing startups build their future - from Warner Music to Fortnite to Dropbox. We turn 'what if' into reality with AI, apps, and next-gen products https://latecheckout.agency/ BoringAds — ads agency that will build you profitable ad campaigns http://boringads.com/ BoringMarketing — SEO agency and tools to get your organic customers http://boringmarketing.com/ Startup Empire - a membership for builders who want to build cash-flowing businesses https://www.startupempire.co FIND ME ON SOCIAL X/Twitter: https://twitter.com/gregisenberg Instagram: https://instagram.com/gregisenberg/ LinkedIn: https://www.linkedin.com/in/gisenberg/ FIND MAX ON SOCIAL Gumloop: https://www.gumloop.com X/Twitter: https://x.com/maxbrodeururbas?lang=en LinkedIn: https://www.linkedin.com/in/max-brodeur-urbas-1a4b25172/

internet-tools-collection
github
LLM Vibe Score0.236
Human Vibe Score0.009333333333333334
bogdanmosicaJan 23, 2025

internet-tools-collection

Internet Tools Collection A collection of tools, website and AI for entrepreneurs, web designers, programmers and for everyone else. Content by category Artificial Intelligence Developers Design Entrepreneur Video Editing Stock videos Stock Photos Stock music Search Engine Optimization Blog Posts Resume Interviews No code website builder No code game builder Side Hustle Browser Extensions Other Students Artificial Intelligence Jasper - The Best AI Writing Assistant [](https://www.jasper.ai/) Create content 5x faster with artificial intelligence. Jasper is the highest quality AI copywriting tool with over 3,000 5-star reviews. Best for writing blog posts, social media content, and marketing copy. AutoDraw [](https://www.autodraw.com/) Fast drawing for everyone. AutoDraw pairs machine learning with drawings from talented artists to help you draw stuff fast. Rytr - Best AI Writer, Content Generator & Writing Assistant [](https://rytr.me/) Rytr is an AI writing assistant that helps you create high-quality content, in just a few seconds, at a fraction of the cost! Neevo - Neevo [](https://www.neevo.ai/) Kinetix Tech [](https://kinetix.tech/) Kinetix is a no-code 3D creation tool powered by Artificial Intelligence. The web-based platform leverages AI motion capture to convert a video into a 3D animation and lets you customize your avatars and environments. We make 3D animation accessible to every creator so they can create engaging stories. LALAL.AI: 100% AI-Powered Vocal and Instrumental Tracks Remover [](https://www.lalal.ai/) Split vocal and instrumental tracks quickly and accurately with LALAL.AI. Upload any audio file and receive high-quality extracted tracks in a few seconds. Copy.ai: Write better marketing copy and content with AI [](https://www.copy.ai/) Get great copy that sells. Copy.ai is an AI-powered copywriter that generates high-quality copy for your business. Get started for free, no credit card required! Marketing simplified! OpenAI [](https://openai.com/) OpenAI is an AI research and deployment company. Our mission is to ensure that artificial general intelligence benefits all of humanity. DALL·E 2 [](https://openai.com/dall-e-2/) DALL·E 2 is a new AI system that can create realistic images and art from a description in natural language. Steve.ai - World’s fastest way to create Videos [](https://www.steve.ai/) Steve.AI is an online Video making software that helps anyone to create Videos and animations in seconds. Octie.ai - Your A.I. ecommerce marketing assistant [](https://octie.ai/) Write emails, product descriptions, and more, with A.I. Created by Octane AI. hypnogram.xyz [](https://hypnogram.xyz/) Generate images from text descriptions using AI FakeYou. Deep Fake Text to Speech. [](https://fakeyou.com/) FakeYou is a text to speech wonderland where all of your dreams come true. Craiyon, formerly DALL-E mini [](https://www.craiyon.com/) Craiyon, formerly DALL-E mini, is an AI model that can draw images from any text prompt! Deck Rocks - Create Pictch Decks [](https://www.deck.rocks/) Writely | Using AI to Improve Your Writing [](https://www.writelyai.com/) Making the art of writing accessible to all Writesonic AI Writer - Best AI Writing Assistant [](https://writesonic.com/) Writesonic is an AI writer that's been trained on top-performing SEO content, high-performing ads, and converting sales copy to help you supercharge your writing and marketing efforts. Smart Copy - AI Copywriting Assistant | Unbounce [](https://unbounce.com/product/smart-copy/) Generate creative AI copy on-the-spot across your favourite tools Synthesia | #1 AI Video Generation Platform [](https://www.synthesia.io/) Create AI videos by simply typing in text. Easy to use, cheap and scalable. Make engaging videos with human presenters — directly from your browser. Free demo. NVIDIA Canvas: Turn Simple Brushstrokes into Realistic Images [](https://www.nvidia.com/en-us/studio/canvas/) Create backgrounds quickly, or speed up your concept exploration so you can spend more time visualizing ideas with the help of NVIDIA Canvas. Hotpot.ai - Hotpot.ai [](https://hotpot.ai/) Hotpot.ai makes graphic design and image editing easy. AI tools allow experts and non-designers to automate tedious tasks while attractive, easy-to-edit templates allow anyone to create device mockups, social media posts, marketing images, app icons, and other work graphics. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Search listening tool for market, customer & content research - AnswerThePublic [](https://answerthepublic.com/) Use our free tool to get instant, raw search insights, direct from the minds of your customers. Upgrade to a paid plan to monitor for new ways that people talk & ask questions about your brand, product or topic. Topic Mojo [](https://topicmojo.com/) Discover unique & newest queries around any topic and find what your customers are searching for. Pulling data from 50+ sources to enhance your topic research. AI Image Enlarger | Enlarge Image Without Losing Quality! [](https://imglarger.com/) AI Image Enlarger is a FREE online image enlarger that could upscale and enhance small images automatically. Make jpg/png pictures big without losing quality. Midjourney [](https://www.midjourney.com/app/) Kaedim - AI for turning 2D images to 3D models [](https://www.kaedim3d.com/webapp) AI for turning 2D images, sketches and photos to 3D models in seconds. Overdub: Ultra realistic text to speech voice cloning - Descript [](https://www.descript.com/overdub) Create a text to speech model of your voice. Try a live demo. Getting Started [](https://magenta.tensorflow.org/get-started) Resources to learn about Magenta Photosonic AI Art Generator | Create Unique Images with AI [](https://photosonic.writesonic.com/) Transform your imagination into stunning digital art with Photosonic - the AI art generator. With its creative suggestions, this Writesonic's AI image generator can help unleash your inner artist and share your creations with the world. Image Computer [](https://image.computer/) Most downloaded Instagram Captions App (+more creator tools) [](https://captionplus.app/) Join 3 Million+ Instagram Creators who use CaptionPlus to find Instagram Captions, Hashtags, Feed Planning, Reel Ideas, IG Story Design and more. Writecream - Best AI Writer & Content Generator - Writecream [](https://www.writecream.com/) Sentence Rewriter is a free tool to reword a sentence, paragraph and even entire essays in a short amount of time. Hypotenuse AI: AI Writing Assistant and Text Generator [](https://www.hypotenuse.ai/) Turn a few keywords into original, insightful articles, product descriptions and social media copy with AI copywriting—all in just minutes. Try it free today. Text to Speach Listnr: Generate realistic Text to Speech voiceovers in seconds [](https://www.listnr.tech/) AI Voiceover Generator with over 600+ voiceovers in 80+ languages, go from Text to Voice in seconds. Get started for Free! Free Text to Speech: Online, App, Software, Commercial license with Natural Sounding Voices. [](https://www.naturalreaders.com/) Free text to speech online app with natural voices, convert text to audio and mp3, for personal and commercial use Developers OverAPI.com | Collecting all the cheat sheets [](https://overapi.com/) OverAPI.com is a site collecting all the cheatsheets,all! Search Engine For Devs [](https://you.com/) Spline - Design tool for 3D web browser experiences [](https://spline.design/) Create web-based 3D browser experiences Image to HTML CSS converter. Convert image to HTML CSS with AI: Fronty [](https://fronty.com/) Fronty - Image to HTML CSS code converter. Convert image to HTML powered by AI. Sketchfab - The best 3D viewer on the web [](https://sketchfab.com/) With a community of over one million creators, we are the world’s largest platform to publish, share, and discover 3D content on web, mobile, AR, and VR. Railway [](https://railway.app/) Railway is an infrastructure platform where you can provision infrastructure, develop with that infrastructure locally, and then deploy to the cloud. JSON Crack - Crack your data into pieces [](https://jsoncrack.com/) Simple visualization tool for your JSON data. No forced structure, paste your JSON and view it instantly. Locofy.ai - ship your products 3-4x faster — with low code [](https://www.locofy.ai/) Turn your designs into production-ready frontend code for mobile apps and web. Ship products 3-4x faster with your existing design tools, tech stacks & workflows. Oh Shit, Git!?! [](https://ohshitgit.com/) Carbon | Create and share beautiful images of your source code [](https://carbon.now.sh/) Carbon is the easiest way to create and share beautiful images of your source code. GPRM : GitHub Profile ReadMe Maker [](https://gprm.itsvg.in/) Best Profile Generator, Create your perfect GitHub Profile ReadMe in the best possible way. Lots of features and tools included, all for free ! HubSpot | Software, Tools, and Resources to Help Your Business Grow Better [](https://www.hubspot.com/) HubSpot’s integrated CRM platform contains the marketing, sales, service, operations, and website-building software you need to grow your business. QuickRef.ME - Quick Reference Cheat Sheet [](https://quickref.me/) Share quick reference and cheat sheet for developers massCode | A free and open source code snippets manager for developers [](https://masscode.io/) Code snippets manager for developers, developed using web technologies. Snyk | Developer security | Develop fast. Stay secure. [](https://snyk.io/) Snyk helps software-driven businesses develop fast and stay secure. Continuously find and fix vulnerabilities for npm, Maven, NuGet, RubyGems, PyPI and more. Developer Roadmaps [](https://roadmap.sh/) Community driven roadmaps, articles, guides, quizzes, tips and resources for developers to learn from, identify their career paths, know what they don't know, find out the knowledge gaps, learn and improve. CSS Generators Get Waves – Create SVG waves for your next design [](https://getwaves.io/) A free SVG wave generator to make unique SVG waves for your next web design. Choose a curve, adjust complexity, randomize! Box Shadows [](https://box-shadow.dev/) Tridiv | CSS 3D Editor [](http://tridiv.com/) Tridiv is a web-based editor for creating 3D shapes in CSS Glassmorphism CSS Generator - Glass UI [](https://ui.glass/generator/) Generate CSS and HTML components using the glassmorphism design specifications based on the Glass UI library. Blobmaker - Make organic SVG shapes for your next design [](https://www.blobmaker.app/) Make organic SVG shapes for your next design. Modify the complexity, contrast, and color, to generate unique SVG blobs every time. Keyframes.app [](https://keyframes.app/) cssFilters.co - Custom and Instagram like photo filters for CSS [](https://www.cssfilters.co/) Visual playground for generating CSS for custom and Instagram like photo filters. Experiment with your own uploaded photo or select one from the Unsplash collection. CSS Animations Animista - CSS Animations on Demand [](https://animista.net/) Animista is a CSS animation library and a place where you can play with a collection of ready-made CSS animations and download only those you will use. Build Internal apps Superblocks | Save 100s of developer hours on internal tools [](https://www.superblocks.com/) Superblocks is the fast, easy and secure way for developers to build custom internal tools fast. Connect your databases & APIs. Drag and drop UI components. Extend with Python or Javascript. Deploy in 1-click. Secure and Monitor using your favorite tools Budibase | Build internal tools in minutes, the easy way [](https://budibase.com/) Budibase is a modern, open source low-code platform for building modern internal applications in minutes. Retool | Build internal tools, remarkably fast. [](https://retool.com/) Retool is the fast way to build internal tools. Drag-and-drop our building blocks and connect them to your databases and APIs to build your own tools, instantly. Connects with Postgres, REST APIs, GraphQL, Firebase, Google Sheets, and more. Built by developers, for developers. Trusted by startups and Fortune 500s. Sign up for free. GitHub Repositories GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? [](https://github.com/vasanthk/how-web-works) What happens behind the scenes when we type www.google.com in a browser? - GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. [](https://github.com/kamranahmedse/developer-roadmap) Interactive roadmaps, guides and other educational content to help developers grow in their careers. - GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. [](https://github.com/apptension/developer-handbook) An opinionated guide on how to become a professional Web/Mobile App Developer. - GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. ProfileMe.dev | Create an amazing GitHub profile in minutes [](https://www.profileme.dev/) ProfileMe.dev | Create an amazing GitHub profile in minutes GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. [](https://github.com/Kristories/awesome-guidelines) A curated list of high quality coding style conventions and standards. - GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. GitHub - tiimgreen/github-cheat-sheet: A list of cool features of Git and GitHub. [](https://github.com/tiimgreen/github-cheat-sheet) A list of cool features of Git and GitHub. Contribute to tiimgreen/github-cheat-sheet development by creating an account on GitHub. GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer [](https://github.com/andreasbm/web-skills) A visual overview of useful skills to learn as a web developer - GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers [](https://github.com/Ebazhanov/linkedin-skill-assessments-quizzes) Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers - GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers Blockchain/Crypto Dashboards [](https://dune.com/) Blockchain ecosystem analytics by and for the community. Explore and share data from Ethereum, xDai, Polygon, Optimism, BSC and Solana for free. Introduction - The Anchor Book v0.24.0 [](https://book.anchor-lang.com/introduction/introduction.html) Crypto & Fiat Exchange Super App | Trade, Save & Spend | hi [](https://hi.com/) Buy, Trade, Send and Earn Crypto & Fiat. Deposit Bitcoin, ETH, USDT and other cryptos and start earning. Get the hi Debit Card and Multi-Currency IBAN Account. Moralis Web3 - Enterprise-Grade Web3 APIs [](https://moralis.io/) Bridge the development gap between Web2 and Web3 with Moralis’ powerful Web3 APIs. Mirror [](https://mirror.xyz/) Built on web3 for web3, Mirror’s robust publishing platform pushes the boundaries of writing online—whether it’s the next big white paper or a weekly community update. Makerdao [](https://blog.makerdao.com/) Sholi — software for Investors & Traders / Sholi MetriX [](https://sholi.io/) Sholi — software for Investors & Traders / Sholi MetriX Stock Trading Quiver Quantitative [](https://www.quiverquant.com/) Quiver Quantitative Chart Prime - The only tool you'll need for trading assets across all markets [](https://chartprime.com/) ChartPrime offers a toolkit that will take your trading game to the next level. Visit our site for a full rundown of features and helpful tutorials. Learning Hacker Rank [](https://www.hackerrank.com/) Coderbyte | Code Screening, Challenges, & Interview Prep [](https://coderbyte.com/) Improve your coding skills with our library of 300+ challenges and prepare for coding interviews with content from leading technology companies. Competitive Programming | Participate & Learn | CodeChef [](https://www.codechef.com/) Learn competitive programming with the help of CodeChef's coding competitions. Take part in these online coding contests to level up your skills Learn to Code - for Free | Codecademy [](https://www.codecademy.com/) Learn the technical skills to get the job you want. Join over 50 million people choosing Codecademy to start a new career (or advance in their current one). Free Code Camp [](https://www.freecodecamp.org/) Learn to Code — For Free Sololearn: Learn to Code [](https://www.sololearn.com/home) Join Now to learn the basics or advance your existing skills Mimo: The coding app you need to learn to code! Python, HTML, JavaScript [](https://getmimo.com/) Join more than 17 million learners worldwide. Learn to code for free. Learn Python, JavaScript, CSS, SQL, HTML, and more with our free code learning app. Free for developers [](https://free-for.dev/#/) Your Career in Web Development Starts Here | The Odin Project [](https://www.theodinproject.com/) The Odin Project empowers aspiring web developers to learn together for free Code Learning Games CheckiO - coding games and programming challenges for beginner and advanced [](https://checkio.org/) CheckiO - coding websites and programming games. Improve your coding skills by solving coding challenges and exercises online with your friends in a fun way. Exchanges experience with other users online through fun coding activities Coding for Kids | Game-Based Programming | CodeMonkey [](https://www.codemonkey.com/) CodeMonkey is a leading coding for kids program. Through its award-winning courses, millions of students learn how to code in real programming languages. Coding Games and Programming Challenges to Code Better [](https://www.codingame.com/) CodinGame is a challenge-based training platform for programmers where you can play with the hottest programming topics. Solve games, code AI bots, learn from your peers, have fun. Learn VIM while playing a game - VIM Adventures [](https://vim-adventures.com/) VIM Adventures is an online game based on VIM's keyboard shortcuts. It's the "Zelda meets text editing" game. So come have some fun and learn some VIM! CodeCombat - Coding games to learn Python and JavaScript [](https://codecombat.com/) Learn typed code through a programming game. Learn Python, JavaScript, and HTML as you solve puzzles and learn to make your own coding games and websites. Design Useberry - Codeless prototype analytics [](https://www.useberry.com/) User testing feedback & rich insights in minutes, not months! Figma: the collaborative interface design tool. [](https://www.figma.com/) Build better products as a team. Design, prototype, and gather feedback all in one place with Figma. Dribbble - Discover the World’s Top Designers & Creative Professionals [](https://dribbble.com/) Find Top Designers & Creative Professionals on Dribbble. We are where designers gain inspiration, feedback, community, and jobs. Your best resource to discover and connect with designers worldwide. Photopea | Online Photo Editor [](https://www.photopea.com/) Photopea Online Photo Editor lets you edit photos, apply effects, filters, add text, crop or resize pictures. Do Online Photo Editing in your browser for free! Toools.design – An archive of 1000+ Design Resources [](https://www.toools.design/) A growing archive of over a thousand design resources, weekly updated for the community. Discover highly useful design tools you never thought existed. All Online Tools in One Box | 10015 Tools [](https://10015.io/) All online tools you need in one box for free. Build anything online with “all-in-one toolbox”. All tools are easy-to-use, blazing fast & free. Phase - Digital Design Reinvented| Phase [](https://phase.com/) Design and prototype websites and apps visually and intuitively, in a new powerful product reworked for the digital age. Animated Backgrounds [](https://animatedbackgrounds.me/) A Collection of 30+ animated backgrounds for websites and blogs.With Animated Backgrounds, set a simple, elegant background animations on your websites and blogs. Trianglify.io · Low Poly Pattern Generator [](https://trianglify.io/) Trianglify.io is a tool for generating low poly triangle patterns that can be used as wallpapers and website assets. Cool Backgrounds [](https://coolbackgrounds.io/) Explore a beautifully curated selection of cool backgrounds that you can add to blogs, websites, or as desktop and phone wallpapers. SVG Repo - Free SVG Vectors and Icons [](https://www.svgrepo.com/) Free Vectors and Icons in SVG format. ✅ Download free mono or multi color vectors for commercial use. Search in 300.000+ Free SVG Vectors and Icons. Microcopy - Short copy text for your website. [](https://www.microcopy.me/) Search micro UX copy text: slogans, headlines, notifications, CTA, error messages, email, account preferences, and much more. 3D icons and icon paks - Free3Dicon [](https://free3dicon.com/) All 3D icons you need in one place. This is a collection of free, beautiful, trending 3D icons, that you can use in any project. Love 3D Icon [](https://free3dicons.com/) Downloads free 3D icons GIMP - GNU Image Manipulation Program [](https://www.gimp.org/) GIMP - The GNU Image Manipulation Program: The Free and Open Source Image Editor blender.org - Home of the Blender project - Free and Open 3D Creation Software [](https://www.blender.org/) The Freedom to Create 3D Design Software | 3D Modeling on the Web | SketchUp [](https://www.sketchup.com/) SketchUp is a premier 3D design software that truly makes 3D modeling for everyone, with a simple to learn yet robust toolset that empowers you to create whatever you can imagine. Free Logo Maker - Create a Logo in Seconds - Shopify [](https://www.shopify.com/tools/logo-maker) Free logo maker tool to generate custom design logos in seconds. This logo creator is built for entrepreneurs on the go with hundreds of templates, free vectors, fonts and icons to design your own logo. The easiest way to create business logos online. All your design tools in one place | Renderforest [](https://www.renderforest.com/) Time to get your brand noticed. Create professional videos, logos, mockups, websites, and graphics — all in one place. Get started now! Prompt Hero [](https://prompthero.com/) Type Scale - A Visual Calculator [](https://type-scale.com/) Preview and choose the right type scale for your project. Experiment with font size, scale and different webfonts. DreamFusion: Text-to-3D using 2D Diffusion [](https://dreamfusion3d.github.io/) DreamFusion: Text-to-3D using 2D Diffusion, 2022. The branding style guidelines documents archive [](https://brandingstyleguides.com/) Welcome to the brand design manual documents directory. Search over our worldwide style assets handpicked collection, access to PDF documents for inspiration. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Readymag—a design tool to create websites without coding [](https://readymag.com/) Meet the most elegant, simple and powerful web-tool for designing websites, presentations, portfolios and all kinds of digital publications. ffflux: Online SVG Fluid Gradient Background Generator | fffuel [](https://fffuel.co/ffflux/) SVG generator to make fluid gradient backgrounds that feel organic and motion-like. Perfect to add a feeling of motion and fluidity to your web designs. Generate unique SVG design assets | Haikei [](https://haikei.app/) A web-based design tool to generate unique SVG design assets for websites, social media, blog posts, desktop and mobile wallpapers, posters, and more! Our generators let you discover, customize, randomize, and export generative SVG design assets ready to use with your favorite design tools. UI/UX - Inspirational Free Website Builder Software | 10,000+ Free Templates [](https://nicepage.com/) Nicepage is your website builder software breaking limitations common for website builders with revolutionary freehand positioning. 7000+ Free Templates. Easy Drag-n-Drop. No coding. Mobile-friendly. Clean HTML. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Pika – Create beautiful mockups from screenshots [](https://pika.style/) Quickly create beautiful website and device mockup from screenshot. Pika lets you capture website screenshots form URL, add device and browser frames, customize background and more LiveTerm [](https://liveterm.vercel.app/) Minimal Gallery – Web design inspiration [](https://minimal.gallery/) For the love of beautiful, clean and functional websites. Awwwards - Website Awards - Best Web Design Trends [](https://www.awwwards.com/) Awwwards are the Website Awards that recognize and promote the talent and effort of the best developers, designers and web agencies in the world. Design Systems For Figma [](https://www.designsystemsforfigma.com/) A collection of Design Systems for Figma from all over the globe. Superside: Design At Scale For Ambitious Brands [](https://www.superside.com/) We are an always-on design company. Get a team of dedicated designers, speedy turnarounds, magical creative collaboration tech and the top 1% of global talent. UXArchive - Made by Waldo [](https://uxarchive.com/) UXArchive the world's largest library of mobile user flows. Be inspired to design the best user experiences. Search by Muzli [](https://search.muz.li/) Search, discover, test and create beautiful color palettes for your projects Siteinspire | Web Design Inspiration [](https://www.siteinspire.com/) SAVEE [](https://savee.it/) The best way to save and share inspiration. A little corner of the internet to find good landing page copywriting examples [](https://greatlandingpagecopy.com/) A little corner of the internet to find great landing page copywriting examples. The Best Landing Page Examples For Design Inspiration - SaaS Landing Page [](https://saaslandingpage.com/) SaaS Landing Page showcases the best landing page examples created by top-class SaaS companies. Get ideas and inspirations for your next design project. Websites Free templates Premium Bootstrap Themes and Templates: Download @ Creative Tim [](https://www.creative-tim.com/) UI Kits, Templates and Dashboards built on top of Bootstrap, Vue.js, React, Angular, Node.js and Laravel. Join over 2,014,387+ creatives to access all our products! Free Bootstrap Themes, Templates, Snippets, and Guides - Start Bootstrap [](https://startbootstrap.com/) Start Bootstrap develops free to download, open source Bootstrap 5 themes, templates, and snippets and creates guides and tutorials to help you learn more about designing and developing with Bootstrap. Free Website Templates [](https://freewebsitetemplates.com/) Get your free website templates here and use them on your website without needing to link back to us. One Page Love - One Page Website Inspiration and Templates [](https://onepagelove.com/) One Page Love is a One Page website design gallery showcasing the best Single Page websites, templates and resources. Free CSS | 3400 Free Website Templates, CSS Templates and Open Source Templates [](https://www.free-css.com/) Free CSS has 3400 free website templates, all templates are free CSS templates, open source templates or creative commons templates. Free Bootstrap Themes and Website Templates | BootstrapMade [](https://bootstrapmade.com/) At BootstrapMade, we create beautiful website templates and bootstrap themes using Bootstrap, the most popular HTML, CSS and JavaScript framework. Free and Premium Bootstrap Themes, Templates by Themesberg [](https://themesberg.com/) Free and Premium Bootstrap themes, templates, admin dashboards and UI kits used by over 38820 web developers and software companies HTML, Vue.js and React templates for startup landing pages - Cruip [](https://cruip.com/) Cruip is a gallery of premium and free HTML, Vue.js and React templates for startups and SaaS. Free Website Templates Download | WordPress Themes - W3Layouts [](https://w3layouts.com/) Want to download free website templates? W3Layouts WordPress themes and website templates are built with responsive web design techniques. Download now! Free HTML Landing Page Templates and UI Kits | UIdeck [](https://uideck.com/) Free HTML Landing Page Templates, Bootstrap Themes, React Templates, HTML Templates, Tailwind Templates, and UI Kits. Create Online Graphics Snappa - Quick & Easy Graphic Design Software [](https://snappa.com/) Snappa makes it easy to create any type of online graphic. Create & publish images for social media, blogs, ads, and more! Canva [](https://www.canva.com/) Polotno Studio - Make graphical designs [](https://studio.polotno.com) Free online design editor. Create images for social media, youtube previews, facebook covers Free Logo Maker: Design Custom Logos | Adobe Express [](https://www.adobe.com/express/create/logo) The Adobe Express logo maker is instant, intuitive, and intelligent. Use it to generate a wide range of possibilities for your own logo. Photo Editor: Fotor – Free Online Photo Editing & Image Editor [](https://www.fotor.com/) Fotor's online photo editor helps you edit photos with free online photo editing tools. Crop photos, resize images, and add effects/filters, text, and graphics in just a few clicks. Photoshop online has never been easier with Fotor's free online photo editor. VistaCreate – Free Graphic Design Software with 70,000+ Free Templates [](https://create.vista.com/) Looking for free graphic design software? Easily create professional designs with VistaCreate, a free design tool with powerful features and 50K+ ready-made templates Draw Freely | Inkscape [](https://inkscape.org/) Inkscape is professional quality vector graphics software which runs on Linux, Mac OS X and Windows desktop computers. Visual & Video Maker Trusted By 11 Million Users - Piktochart [](https://piktochart.com/) With Piktochart, you can create professional-looking infographics, flyers, posters, charts, videos, and more. No design experience needed. Start for free. The Web's Favorite Online Graphic Design Tool | Stencil [](https://getstencil.com/) Stencil is a fantastically easy-to-use online graphic design tool and image editor built for business owners, social media marketers, and bloggers. Pablo by Buffer - Design engaging images for your social media posts in under 30 seconds [](https://pablo.buffer.com/) Buffer makes it super easy to share any page you're reading. Keep your Buffer topped up and we automagically share them for you through the day. Free Online Graphic Design Software | Create stunning designs in seconds. [](https://desygner.com/) Easy drag and drop graphic design tool for anyone to use with 1000's of ready made templates. Create & print professional business cards, flyers, social posts and more. Color Pallet Color Palettes for Designers and Artists - Color Hunt [](https://colorhunt.co/) Discover the newest hand-picked color palettes of Color Hunt. Get color inspiration for your design and art projects. Coolors - The super fast color palettes generator! [](https://coolors.co/) Generate or browse beautiful color combinations for your designs. Get color palette inspiration from nature - colorpalettes.earth [](https://colorpalettes.earth/) Color palettes inspired by beautiful nature photos Color Palette Generator - Create Beautiful Color Schemes [](https://colors.muz.li/) Search, discover, test and create beautiful color palettes for your projects A Most Useful Color Picker | 0to255 [](https://0to255.com/) Find lighter and darker colors based on any color. Discover why over two million people have used 0to255 to choose colors for their website, logo, room interior, and print design projects. Colour Contrast Checker [](https://colourcontrast.cc/) Check the contrast between different colour combinations against WCAG standards Fonts Google Fonts [](https://fonts.google.com/) Making the web more beautiful, fast, and open through great typography Fonts In Use – Type at work in the real world. [](https://fontsinuse.com/) A searchable archive of typographic design, indexed by typeface, format, and topic. Wordmark - Helps you choose fonts! [](https://wordmark.it/) Wordmark helps you choose fonts by quickly displaying your text with your fonts. OH no Type Company [](https://ohnotype.co/) OH no Type Co. Retail and custom typefaces. Life’s a thrill, fonts are chill! Illustrations Illustrations | unDraw [](https://undraw.co/illustrations) The design project with open-source illustrations for any idea you can imagine and create. Create beautiful websites, products and applications with your color, for free. Design Junction [](https://designjunction.xyz/) Design Junction is a one-stop resource library for Designers and Creatives with curated list of best resources handpicked from around the web Humaaans: Mix-&-Match illustration library [](https://www.humaaans.com/) Mix-&-match illustrations of people with a design library for InVIsion Studio and Sketch. Stubborn - Free Illustrations Generator [](https://stubborn.fun/) Free illustrations generator for Figma and Sketch. Get the opportunity to design your characters using symbols and styles. Open Peeps, Hand-Drawn Illustration Library [](https://www.openpeeps.com/) Open Peeps is a hand-drawn illustration library to create scenes of people. You can use them in product illustration, marketing, comics, product states, user flows, personas, storyboarding, quinceañera invitations, or whatever you want! ⠀ Reshot | Free icons & illustrations [](https://www.reshot.com/) Design freely with instant downloads of curated SVG icons and vector illustrations. All free with commercial licensing. No attribution required. Blush: Illustrations for everyone [](https://blush.design/) Blush makes it easy to add free illustrations to your designs. Play with fully customizable graphics made by artists across the globe. Mockups Angle 4 - 5000+ Device Mockups for Figma, Sketch and XD [](https://angle.sh/) Vector mockups for iPhone, iPad, Android and Mac devices, including the new iPhone 13, Pro, Pro Max and Mini. Perfect for presenting your apps. Huge library of components, compositions, wallpapers and plugins made for Figma, Sketch and XD. Make Mockups, Logos, Videos and Designs in Seconds [](https://placeit.net/) Get unlimited downloads on all our 100K templates! You can make a logo, video, mockup, flyer, business card and social media image in seconds right from your browser. Free and premium tools for graphic designers | Lstore Graphics [](https://www.ls.graphics/) Free and premium mockups, UI/UX tools, scene creators for busy designers Logo Design & Brand Identity Platform for Entrepreneurs | Looka [](https://looka.com/) Logojoy is now Looka! Design a Logo, make a website, and create a Brand Identity you’ll love with the power of Artificial Intelligence. 100% free to use. Create stunning product mockups easily and online - Smartmockups [](https://smartmockups.com/) Smartmockups enables you to create stunning high-resolution mockups right inside your browser within one interface across multiple devices. Previewed - Free mockup generator for your app [](https://previewed.app/) Join Previewed to create stunning 3D image shots and animations for your app. Choose from hundreds of ready made mockups, or create your own. Free Design Software - Graphic Online Maker - Glorify [](https://www.glorify.com/) Create professional and high converting social media posts, ads, infographics, presentations, and more with Glorify, a free design software & graphic maker. Other BuiltWith Technology Lookup [](https://builtwith.com/) Web technology information profiler tool. Find out what a website is built with. Compress JPEG Images Online [](https://compressjpeg.com/) Compress JPEG images and photos for displaying on web pages, sharing on social networks or sending by email. PhotoRoom - Remove Background and Create Product Pictures [](https://www.photoroom.com/) Create product and portrait pictures using only your phone. Remove background, change background and showcase products. Magic Eraser - Remove unwanted things from images in seconds [](https://www.magiceraser.io/) Magic Eraser - Use AI to remove unwanted things from images in seconds. Upload an image, mark the bit you need removed, download the fixed up image. Compressor.io - optimize and compress JPEG photos and PNG images [](https://compressor.io/) Optimize and compress JPEG, PNG, SVG, GIF and WEBP images online. Compress, resize and rename your photos for free. Remove Video Background – Unscreen [](https://www.unscreen.com/) Remove the background of any video - 100% automatically, online & free! Goodbye Greenscreen. Hello Unscreen. Noun Project: Free Icons & Stock Photos for Everything [](https://thenounproject.com/) Noun Project features the most diverse collection of icons and stock photos ever. Download SVG and PNG. Browse over 5 million art-quality icons and photos. Design Principles [](https://principles.design/) An Open Source collection of Design Principles and methods Shapefest™ - A massive library of free 3D shapes [](https://www.shapefest.com/) A massive free library of beautifully rendered 3D shapes. 160,000+ high resolution PNG images in one cohesive library. Learning UX Degreeless.design - Everything I Learned in Design School [](https://degreeless.design/) This is a list of everything I've found useful in my journey of learning design, and an ongoing list of things I think you should read. For budding UX, UI, Interaction, or whatever other title designers. UX Tools | Practical UX skills and tools [](https://uxtools.co/) Lessons and resources from two full-time product designers. Built For Mars [](https://builtformars.com/) On a mission to help the world build better user experiences by demystifying UX. Thousands of hours of research packed into UX case studies. Case Study Club – Curated UX Case Study Gallery [](https://www.casestudy.club/) Case Study Club is the biggest curated gallery of the best UI/UX design case studies. Get inspired by industry-leading designers, openly sharing their UX process. The Guide to Design [](https://start.uxdesign.cc/) A self-guided class to help you get started in UX and answer key questions about craft, design, and career Uxcel - Where design careers are built [](https://app.uxcel.com/explore) Available on any device anywhere in the world, Uxcel is the best way to improve and learn UX design online in just 5 minutes per day. UI & UX Design Tips by Jim Raptis. [](https://www.uidesign.tips/) Learn UI & UX Design with practical byte-sized tips and in-depth articles from Jim Raptis. Entrepreneur Instant Username Search [](https://instantusername.com/#/) Instant Username Search checks out if your username is available on more than 100 social media sites. Results appear instantly as you type. Flourish | Data Visualization & Storytelling [](https://flourish.studio/) Beautiful, easy data visualization and storytelling PiPiADS - #1 TikTok Ads Spy Tool [](https://www.pipiads.com/) PiPiADS is the best tiktok ads spy tool .We provide tiktok advertising,advertising on tiktok,tiktok ads examples,tiktok ads library,tiktok ads best practices,so you can understand the tiktok ads cost and master the tiktok ads 2021 and tiktok ads manager. Minea - The best adspy for product search in ecommerce and dropshipping [](https://en.minea.com/) Minea is the ultimate e-commerce product search tool. Minea tracks all ads on all networks. Facebook Ads, influencer product placements, Snapspy, all networks are tracked. Stop paying adspy 149€ for one network and discover Minea. AdSpy [](https://adspy.com/) Google Trends [](https://trends.google.com/) ScoreApp: Advanced Quiz Funnel Marketing | Make a Quiz Today [](https://www.scoreapp.com/) ScoreApp makes quiz funnel marketing easy, so you can attract relevant warm leads, insightful data and increase your sales. Try for free today Mailmodo - Send Interactive Emails That Drive Conversions [](https://www.mailmodo.com/) Use Mailmodo to create and send interactive emails your customers love. Drive conversions and get better email ROI. Sign up for a free trial now. 185 Top E-Commerce Sites Ranked by User Experience Performance – Baymard Institute [](https://baymard.com/ux-benchmark) See the ranked UX performance of the 185 largest e-commerce sites in the US and Europe. The chart summarizes 50,000+ UX performance ratings. Metricool - Analyze, manage and measure your digital content [](https://metricool.com/) Social media scheduling, web analytics, link in bio and reporting. Metricool is free per live for one brand. START HERE Visualping: #1 Website change detection, monitoring and alerts [](https://visualping.io/) More than 1.5 millions users monitor changes in websites with Visualping, the No1 website change detection, website checker, webpage change monitoring and webpage change detection tool. Gumroad – Sell what you know and see what sticks [](https://gumroad.com/) Gumroad is a powerful, but simple, e-commerce platform. We make it easy to earn your first dollar online by selling digital products, memberships and more. Product Hunt – The best new products in tech. [](https://www.producthunt.com/) Product Hunt is a curation of the best new products, every day. Discover the latest mobile apps, websites, and technology products that everyone's talking about. 12ft Ladder [](https://12ft.io/) Show me a 10ft paywall, I’ll show you a 12ft ladder. namecheckr | Social and Domain Name Availability Search For Brand Professionals [](https://www.namecheckr.com/) Social and Domain Name Availability Search For Brand Professionals Excel AI Formula Generator - Excelformulabot.com [](https://excelformulabot.com/) Transform your text instructions into Excel formulas in seconds with the help of AI. Z-Library [](https://z-lib.org/) Global Print On Demand Platform | Gelato [](https://www.gelato.com/) Create and sell custom products online. With local production in 33 countries, easy integration, and 24/7 customer support, Gelato is an all-in-one platform. Freecycle: Front Door [](https://freecycle.org/) Free eBooks | Project Gutenberg [](https://www.gutenberg.org/) Project Gutenberg is a library of free eBooks. Convertio — File Converter [](https://convertio.co/) Convertio - Easy tool to convert files online. More than 309 different document, image, spreadsheet, ebook, archive, presentation, audio and video formats supported. Namechk [](https://namechk.com/) Crazy Egg Website — Optimization | Heatmaps, Recordings, Surveys & A/B Testing [](https://www.crazyegg.com/) Use Crazy Egg to see what's hot and what's not, and to know what your web visitors are doing with tools, such as heatmaps, recordings, surveys, A/B testing & more. Ifttt [](https://ifttt.com/) Also Asked [](https://alsoasked.com/) Business Name Generator - Easily create Brandable Business Names - Namelix [](https://namelix.com/) Namelix uses artificial intelligence to create a short, brandable business name. Search for domain availability, and instantly generate a logo for your new business Merch Informer [](https://merchinformer.com/) Headline Generator [](https://www.title-generator.com/) Title Generator: create 700 headlines with ONE CLICK: Content Ideas + Catchy Headlines + Ad Campaign E-mail Subject Lines + Emotional Titles. Simple - Efficient - One Click Make [](https://www.make.com/en) Create and add calculator widgets to your website | CALCONIC_ [](https://www.calconic.com/) Web calculator builder empowers you to choose from a pre-made templates or build your own calculator widgets from a scratch without any need of programming knowledge Boost Your Views And Subscribers On YouTube - vidIQ [](https://vidiq.com/) vidIQ helps you acquire the tools and knowledge needed to grow your audience faster on YouTube and beyond. Learn More Last Pass [](https://www.lastpass.com/) Starter Story: Learn How People Are Starting Successful Businesses [](https://www.starterstory.com/) Starter Story interviews successful entrepreneurs and shares the stories behind their businesses. In each interview, we ask how they got started, how they grew, and how they run their business today. How To Say No [](https://www.starterstory.com/how-to-say-no) Saying no is hard, but it's also essential for your sanity. Here are some templates for how to say no - so you can take back your life. Think with Google - Discover Marketing Research & Digital Trends [](https://www.thinkwithgoogle.com/) Uncover the latest marketing research and digital trends with data reports, guides, infographics, and articles from Think with Google. ClickUp™ | One app to replace them all [](https://clickup.com/) Our mission is to make the world more productive. To do this, we built one app to replace them all - Tasks, Docs, Goals, and Chat. The Manual [](https://manual.withcompound.com/) Wealth-planning resources for founders and startup employees Software for Amazon FBA Sellers & Walmart Sellers | Helium 10 [](https://www.helium10.com/) If you're looking for the best software for Amazon FBA & Walmart sellers on the market, check out Helium 10's capabilities online today! Buffer: All-you-need social media toolkit for small businesses [](https://buffer.com/) Use Buffer to manage your social media so that you have more time for your business. Join 160,000+ small businesses today. CPGD — The Consumer Packaged Goods Directory [](https://www.cpgd.xyz/) The Consumer Packaged Goods Directory is a platform to discover new brands and resources. We share weekly trends in our newsletter and partner with services to provide vetted, recommended platforms for our Directory brands. Jungle Scout [](https://www.junglescout.com/) BuzzSumo | The World's #1 Content Marketing Platform [](https://buzzsumo.com/) BuzzSumo powers the strategies of 500k+ marketers, with content marketing data on 8b articles, 42m websites, 300t engagements, 500k journalists & 492m questions. Login - Capital [](https://app.capital.xyz/) Raise, hold, spend, and send funds — all in one place. Marketing Pictory – Video Marketing Made Easy - Pictory.ai [](https://pictory.ai/) Pictory's powerful AI enables you to create and edit professional quality videos using text, no technical skills required or software to download. Tolstoy | Communicate with interactive videos [](https://www.gotolstoy.com/) Start having face-to-face conversations with your customers. Create Email Marketing Your Audience Will Love - MailerLite [](https://www.mailerlite.com/) Email marketing tools to grow your audience faster and drive revenue smarter. Get free access to premium features with a 30-day trial! Sign up now! Hypefury - Schedule & Automate Social Media Marketing [](https://hypefury.com/) Save time on social media while creating more value, and growing your audience faster. Schedule & automate your social media experience! Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Online Email & Lead Scraper | Klean Leads [](https://www.kleanleads.com/) Klean Leads is an online email scraper & email address finder. Use it to book more appointments, get more replies, and close more sales. PhantomBuster [](https://phantombuster.com/) Call to Action Examples - 300+ CTA Phrases [](https://ctaexamples.com/) See the best CTA example in every situation covered by the library of 300+ CTA goals. Use the examples to create your own CTAs in minutes. Creative Center: one-stop creative solution for TikTok [](https://ads.tiktok.com/business/creativecenter/pc/en?from=001010) Come to get your next great idea for TikTok. Here you can find the best performing ads, viral videos, and trending hashtags across regions and verticals. Groove.cm GrooveFunnels, GrooveMail with CRM and Digital Marketing Automation Platform - Groove.cm with GrooveFunnels, GroovePages, GrooveKart [](https://groove.cm/) Groove is a website creator, page builder, sales funnel maker, membership site platform, email autoresponder, blog tool, shopping cart system, ecommerce store solution, affiliate manager, video marketing software and more apps to help build your online business. SurveyMonkey: The World’s Most Popular Free Online Survey Tool [](https://www.surveymonkey.com/) Use SurveyMonkey to drive your business forward by using our free online survey tool to capture the voices and opinions of the people who matter most to you. Video Maker | Create Videos Online | Promo.com [](https://promo.com/) Free customizable video maker to help boost your business. Video creator for ads, social media, product and explainer videos, and for anything else you need! beehiiv — The newsletter platform built for growth [](https://www.beehiiv.com/) Access the best tools available in email, helping your newsletter scale and monetize like never before. GetResponse | Professional Email Marketing for Everyone [](https://www.getresponse.com/) No matter your level of expertise, we have a solution for you. At GetResponse, it's email marketing done right. Start your free account today! Search Email Newsletter Archives : Email Tuna [](https://emailtuna.com/) Explore newsletters without subscribing. Get email design ideas, discount coupon codes and exclusive newsletters deals. Database of email newsletters archived from all over the internet. Other Tools Simplescraper — Scrape Websites and turn them into APIs [](https://simplescraper.io/) Web scraping made easy — a powerful and free Chrome extension for scraping websites in your browser, automated in the cloud, or via API. No code required. Exploding Topics - Discover the hottest new trends. [](https://explodingtopics.com/) See new market opportunities, trending topics, emerging technology, hot startups and more on Exploding Topics. Scribe | Visual step-by-step guides [](https://scribehow.com/) By capturing your process while you work, Scribe automatically generates a visual guide, ready to share with the click of a button. Get It Free – The internet's BEST place to find free stuff! [](https://getitfree.us/) The internet's BEST place to find free stuff! Inflact by Ingramer – Marketing toolkit for Instagram [](https://inflact.com/) Sell on Instagram, build your audience, curate content with the right set of tools. Free Online Form Builder & Form Creator | Jotform [](https://www.jotform.com/) We believe the right form makes all the difference. Go from busywork to less work with powerful forms that use conditional logic, accept payments, generate reports, and automate workflows. Manage Your Team’s Projects From Anywhere | Trello [](https://trello.com/en) Trello is the ultimate project management tool. Start up a board in seconds, automate tedious tasks, and collaborate anywhere, even on mobile. TikTok hashtag generator - tiktokhashtags.com [](https://tiktokhashtags.com/) Find out which are the best hashtags for your TikTok post. Create Infographics, Reports and Maps - Infogram [](https://infogram.com/) Infogram is an easy to use infographic and chart maker. Create and share beautiful infographics, online reports, and interactive maps. Make your own here. Confetto - Create Instagram content in minutes [](https://www.confet.to/) Confetto is an all-in-one social media marketing tool built for SMBs and Social Media Managers. Confetto helps you create high-quality content for your audience that maximizes your reach and engagement on social media. Design, copy-write, plan and schedule content all in one place. Find email addresses in seconds • Hunter (Email Hunter) [](https://hunter.io/) Hunter is the leading solution to find and verify professional email addresses. Start using Hunter and connect with the people that matter for your business. PlayPhrase.me: Site for cinema archaeologists. [](https://playphrase.me/) Travel and explore the world of cinema. Largest collection of video quotes from movies on the web. #1 Free SEO Tools → SEO Review Tools [](https://www.seoreviewtools.com/) SEO Review Tools: 42+ Free Online SEO Tools build with ❤! → Rank checker → Domain Authority Checker → Keyword Tool → Backlink Checker Podcastle: Seamless Podcast Recording & Editing [](https://podcastle.ai/) Podcastle is the simplest way to create professional-quality podcasts. Record, edit, transcribe, and export your content with the power of AI, in an intuitive web-based platform. Save Ads from TikTok & Facebook Ad Library - Foreplay [](https://www.foreplay.co/) The best way to save ads from TikTok Creative Center and Facebook Ad Library, Organize them into boards and share ad inspiration with your team. Supercharge your creative strategy. SiteRight - Automate Your Business [](https://www.siteright.co/) SiteRight combines the abilities of multiple online resources into a single dashboard allowing you to have full control over how you manage your business. Diffchecker - Compare text online to find the difference between two text files [](https://www.diffchecker.com/) Diffchecker will compare text to find the difference between two text files. Just paste your files and click Find Difference! Yout.com [](https://yout.com/) Yout.com allows you to record videos from YouTube, FaceBook, SoundCloud, VK and others too many formats with clipping. Intuitively easy to use, with Yout the Internet DVR, with a bit of extra. AI Content Generation | Competitor Analysis - Predis.ai [](https://predis.ai/) Predis helps brands and influencers communicate better on social media by providing AI-powered content strategy analysis, content and hashtag recommendations. Castr | #1 Live Video Streaming Solution With Video Hosting [](https://castr.io/) Castr is a live video streaming solution platform that delivers enterprise-grade live videos globally with CDN. Live event streaming, video hosting, pre-recorded live, multi stream – all in one place using Castr. Headliner - Promote your podcast, radio show or blog with video [](https://www.headliner.app/) Easily create videos to promote your podcast, radio show or blog. Share to Instagram, Facebook, Twitter, YouTube, Linkedin and anywhere video lives Create Presentations, Infographics, Design & Video | Visme [](https://www.visme.co/) Create professional presentations, interactive infographics, beautiful design and engaging videos, all in one place. Start using Visme today. Designrr - Create eBooks, Kindle books, Leadmagnets, Flipbooks and Blog posts from your content in 2 minutes [](https://designrr.io/) Upload any web page, MS Word, Video, Podcast or YouTube and it will create a stunning ebook and convert it to pdf, epub, Kindle or Flipbook. Quick and Easy to use. Full Training, 24x7 Support and Facebook Group Included. SwipeWell | Swipe File Software [](https://www.swipewell.app/) The only Chrome extension dedicated to helping you save, organize, and reference marketing examples (so you never feel stumped). Tango | Create how-to guides, in seconds [](https://www.tango.us/) Tango takes the pain out of documenting processes by automatically generating how-to guides while you work. Empower your team to do their best work. Ad Creative Bank [](https://www.theadcreativebank.com/) Get inspired by ads from across industries, learn new best practices, and start thinking creatively about your brand’s digital creative. Signature Hound • Free Email Signature and Template Generator [](https://signaturehound.com/) Our email signature generator is free and easy to use. Our customizable templates work with Gmail, Outlook, Office 365, Apple Mail and more. Organize All Of Your Marketing In One Place - CoSchedule [](https://coschedule.com/) Get more done in less time with the only work management software for marketers. B Ok - Books [](https://b-ok.xyz/categories) OmmWriter [](https://ommwriter.com/) Ommwriter Rebrandly | Custom URL Shortener, Branded Link Management, API [](https://www.rebrandly.com/) URL Shortener with custom domains. Shorten, brand and track URLs with the industry-leading link management platform. Free to try. API, Short URL, Custom Domains. Common Tools [](https://www.commontools.org/) Book Bolt [](https://bookbolt.io/) Zazzle [](https://www.zazzle.com/) InspiroBot [](https://inspirobot.me/) Download Free Cheat Sheets or Create Your Own! - Cheatography.com: Cheat Sheets For Every Occasion [](https://cheatography.com/) Find thousands of incredible, original programming cheat sheets, all free to download. No Code Chatbot Platform | Free Chatbot Platform | WotNot [](https://wotnot.io/) WotNot is the best no code chatbot platform to build AI bot easily without coding. Deploy bots and live chat on the Website, Messenger, WhatsApp, and more. SpyFu - Competitor Keyword Research Tools for Google Ads PPC & SEO [](https://www.spyfu.com/) Systeme.io - The only tool you need to launch your online business [](https://systeme.io/) Systeme.io has all the tools you need to grow your online business. Click here to create your FREE account! Productivity Temp Mail [](https://temp-mail.org/en/) The Visual Collaboration Platform for Every Team | Miro [](https://miro.com/) Scalable, secure, cross-device and enterprise-ready team collaboration whiteboard for distributed teams. Join 35M+ users from around the world. Grammarly: Free Online Writing Assistant [](https://www.grammarly.com/) Millions trust Grammarly’s free writing app to make their online writing clear and effective. Getting started is simple — download Grammarly’s extension today. Rize · Maximize Your Productivity [](https://rize.io/) Rize is a smart time tracker that improves your focus and helps you build better work habits. Motion | Manage calendars, meetings, projects & tasks in one app [](https://www.usemotion.com/) Automatically prioritize tasks, schedule meetings, and resolve calendar conflicts. Used by over 10k CEOs and professionals to improve focus, get more done, and streamline workday. Notion – One workspace. Every team. [](https://www.notion.so/) We’re more than a doc. Or a table. Customize Notion to work the way you do. Loom: Async Video Messaging for Work | Loom [](https://www.loom.com/) Record your screen, share your thoughts, and get things done faster with async video. Zapier | Automation that moves you forward [](https://zapier.com/) Workflow automation for everyone. Zapier automates your work across 5,000+ app integrations, so you can focus on what matters. Rows — The spreadsheet with superpowers [](https://rows.com/) Combine the power of a spreadsheet with built-in integrations from your business apps. Automate workflows and build tools that make work simpler. Free Online Form Builder | Tally [](https://tally.so/) Tally is the simplest way to create free forms & surveys. Create any type of form in seconds, without knowing how to code, and for free. Highbrow | Learn Something New Every Day. Join for Free! [](https://gohighbrow.com/) Highbrow helps you learn something new every day with 5-minute lessons delivered to your inbox every morning. Join over 400,000 lifelong learners today! Slick Write | Check your grammar. Proofread online. [](https://www.slickwrite.com/#!home) Slick Write is a powerful, FREE application that makes it easy to check your writing for grammar errors, potential stylistic mistakes, and other features of interest. Whether you're a blogger, novelist, SEO professional, or student writing an essay for school, Slick Write can help take your writing to the next level. Reverso [](https://www.reverso.net) Hemingway Editor [](https://hemingwayapp.com/) Web Apps by 123apps - Edit, Convert, Create [](https://123apps.com/) Splitbee – Your all-in-one analytics and conversion platform [](https://splitbee.io/) Track and optimize your online business with Splitbee. Analytics, Funnels, Automations, A/B Testing and more. PDF Tools Free PDF, Video, Image & Other Online Tools - TinyWow [](https://tinywow.com/) Smallpdf.com - A Free Solution to all your PDF Problems [](https://smallpdf.com/) Smallpdf - the platform that makes it super easy to convert and edit all your PDF files. Solving all your PDF problems in one place - and yes, free. Sejda helps with your PDF tasks [](https://www.sejda.com/) Sejda helps with your PDF tasks. Quick and simple online service, no installation required! Split, merge or convert PDF to images, alternate mix or split scans and many other. iLovePDF | Online PDF tools for PDF lovers [](https://www.ilovepdf.com/) iLovePDF is an online service to work with PDF files completely free and easy to use. Merge PDF, split PDF, compress PDF, office to PDF, PDF to JPG and more! Text rewrite QuillBot [](https://quillbot.com/) Pre Post SEO : Online SEO Tools [](https://www.prepostseo.com/) Free Online SEO Tools: plagiarism checker, grammar checker, image compressor, website seo checker, article rewriter, back link checker Wordtune | Your personal writing assistant & editor [](https://www.wordtune.com/) Wordtune is the ultimate AI writing tool that rewrites, rephrases, and rewords your writing! Trusted by over 1,000,000 users, Wordtune strengthens articles, academic papers, essays, emails and any other online content. Aliexpress alternatives CJdropshipping - Dropshipping from Worldwide to Worldwide! [](https://cjdropshipping.com/) China's reliable eCommerce dropshipping fulfillment supplier, helps small businesses ship worldwide, dropship and fulfillment services that are friendly to start-ups and small businesses, Shopify dropshipping. SaleHoo [](https://www.salehoo.com/) Alibaba.com: Manufacturers, Suppliers, Exporters & Importers from the world's largest online B2B marketplace [](https://www.alibaba.com/) Find quality Manufacturers, Suppliers, Exporters, Importers, Buyers, Wholesalers, Products and Trade Leads from our award-winning International Trade Site. Import & Export on alibaba.com Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Best dropshipping supplier to the US [](https://www.usadrop.com/) THE ONLY AMERICAN-MADE FULFILLMENT CENTER IN CHINA. Our knowledge of the Worldwide dropshipping market and the Chinese Supply-Chain can't be beat! 阿里1688 [](https://www.1688.com/) 阿里巴巴(1688.com)是全球企业间(B2B)电子商务的著名品牌,为数千万网商提供海量商机信息和便捷安全的在线交易市场,也是商人们以商会友、真实互动的社区平台。目前1688.com已覆盖原材料、工业品、服装服饰、家居百货、小商品等12个行业大类,提供从原料--生产--加工--现货等一系列的供应产品和服务 Dropshipping Tools Oberlo | Where Self Made is Made [](https://www.oberlo.com/) Start selling online now with Shopify. All the videos, podcasts, ebooks, and dropshipping tools you'll need to build your online empire. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. SMSBump | SMS Marketing E-Commerce App for Shopify [](https://smsbump.com/) SMSBump is an SMS marketing & automation app for Shopify. Segment customers, recover orders, send campaign text messages with a 35%+ click through rate. AfterShip: The #1 Shipment Tracking Platform [](https://www.aftership.com/) Order status lookup, branded tracking page, and multi-carrier tracking API for eCommerce. Supports USPS, FedEx, UPS, and 900+ carriers worldwide. #1 Dropshipping App | Zendrop [](https://zendrop.com/) Start and scale your own dropshipping business with Zendrop. Sell and easily fulfill your orders with the fastest shipping in the industry. Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Video Editing Jitter • The simplest motion design tool on the web. [](https://jitter.video/) Animate your designs easily. Export your creations as videos or GIFs. All in your browser. DaVinci Resolve 18 | Blackmagic Design [](https://www.blackmagicdesign.com/products/davinciresolve) Professional video editing, color correction, visual effects and audio post production all in a single application. Free and paid versions for Mac, Windows and Linux. Online Video Editor | Video Creator | InVideo [](https://invideo.io/) InVideo's Online Video Editor Helps You Make Professional Videos From Premium Templates, Images, And Music. All your video needs in one place | Clipchamp [](https://clipchamp.com/) Fast-forward your creations with our video editing platform. Start with a video template or record your webcam or screen. Get the pro look with filters, transitions, text and more. Then, export in minutes and share in an instant. Descript | All-in-one audio/video editing, as easy as a doc. [](https://www.descript.com/) Record, transcribe, edit, mix, collaborate, and master your audio and video with Descript. Download for free →. Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. Panzoid [](https://panzoid.com/) Powerful, free online apps and community for creating beautiful custom content. Google Web Designer - Home [](https://webdesigner.withgoogle.com/) Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. ClipDrop [](https://clipdrop.co/) Create professional visuals without a photo studio CapCut [](https://www.capcut.com/) CapCut is an all-in-one online video editing software which makes creation, upload & share easier, with frame by frame track editor, cloud drive etc. VEED - Online Video Editor - Video Editing Made Simple [](https://www.veed.io/) Make stunning videos with a single click. Cut, trim, crop, add subtitles and more. Online, no account needed. Try it now, free. VEED Free Video Maker | Create & Edit Your Videos Easily - Animoto [](https://animoto.com/k/welcome) Create, edit, and share videos with our online video maker. Combine your photos, video clips, and music to make quality videos in minutes. Get started free! Runway - Online Video Editor | Everything you need to make content, fast. [](https://runwayml.com/) Discover advanced video editing capabilities to take your creations to the next level. CreatorKit - A.I. video creator for marketers [](https://creatorkit.com/) Create videos with just one click, using our A.I. video editor purpose built for marketers. Create scroll stopping videos, Instagram stories, Ads, Reels, and TikTok videos. Pixar in a Box | Computing | Khan Academy [](https://www.khanacademy.org/computing/pixar) 3D Video Motions Plask - AI Motion Capture and 3D Animation Tool [](https://plask.ai/) Plask is an all-in-one browser-based AI motion capture tool and animation editor that anybody can use, from motion designers to every day content creators. Captions Captions [](https://www.getcaptions.app/) Say hello to Captions, the only camera and editing app that automatically transcribes, captions and clips your talking videos for you. Stock videos Pexels [](https://www.pexels.com/) Pixabay [](https://pixabay.com/) Mixkit - Awesome free assets for your next video project [](https://mixkit.co/) Download Free Stock Video Footage, Stock Music & Premiere Pro Templates for your next video editing project. All assets can be downloaded for free! Free Stock Video Footage HD 4K Download Royalty-Free Clips [](https://www.videvo.net/) Download free stock video footage with over 300,000 video clips in 4K and HD. We also offer a wide selection of music and sound effect files with over 180,000 clips available. Click here to download royalty-free licensing videos, motion graphics, music and sound effects from Videvo today. Free Stock Video Footage HD Royalty-Free Videos Download [](https://mazwai.com/) Download free stock video footage with clips available in HD. Click here to download royalty-free licensing videos from Mazwai now. Royalty Free Stock Video Footage Clips | Vidsplay.com [](https://www.vidsplay.com/) Royalty Free Stock Video Footage Clips Free Stock Video Footage, Royalty Free Videos for Download [](https://coverr.co/) Download royalty free (for personal and commercial use), unique and beautiful video footage for your website or any project. No attribution required. Stock Photos Beautiful Free Images & Pictures | Unsplash [](https://unsplash.com/) Beautiful, free images and photos that you can download and use for any project. Better than any royalty free or stock photos. When we share, everyone wins - Creative Commons [](https://creativecommons.org/) Creative Commons licenses are 20! Honoring 20 years of open sharing using CC licenses, join us in 2022 to celebrate Better Sharing — advancing universal access to knowledge and culture, and fostering creativity, innovation, and collaboration. Help us reach our goal of raising $15 million for a future of Better Sharing.  20 Years of Better … Read More "When we share, everyone wins" Food Pictures • Foodiesfeed • Free Food Photos [](https://www.foodiesfeed.com/) Download 2000+ food pictures ⋆ The best free food photos for commercial use ⋆ CC0 license Free Stock Photos and Images for Websites & Commercial Use [](https://burst.shopify.com/) Browse thousands of beautiful copyright-free images. All our pictures are free to download for personal and commercial use, no attribution required. EyeEm | Authentic Stock Photography and Royalty-Free Images [](https://www.eyeem.com/) Explore high-quality, royalty-free stock photos for commercial use. License individual images or save money with our flexible subscription and image pack plans. picjumbo: Free Stock Photos [](https://picjumbo.com/) Free stock photos and images for your projects and websites.️ Beautiful 100% free high-resolution stock images with no watermark. Free Stock Photos, Images, and Vectors [](https://www.stockvault.net/) 139.738 free stock photos, textures, backgrounds and graphics for your next project. No attribution required. Free Stock Photos, PNGs, Templates & Mockups | rawpixel [](https://www.rawpixel.com/) Free images, PNGs, stickers, backgrounds, wallpapers, graphic templates and PSD mockups. All safe to use with commercial licenses. Free Commercial Stock Photos & Royalty Free Images | PikWizard [](https://pikwizard.com/) Free images, videos & free stock photos. Unlimited downloads ✓ Royalty-free Images ✓Copyright-free for commercial use ✓ No Attribution Required Design Bundles [](https://designbundles.net/) Stock music Royalty Free Music for video creators | Epidemic Sound [](https://www.epidemicsound.com/) Download premium Royalty free Music and SFX! Our free trial gives you access to over 35,000 tracks and 90,000 sound effects for video, streaming and more! Royalty-Free Music & SFX for Video Creators | Artlist [](https://artlist.io/) Explore the ultimate royalty-free music & sound effects catalogs for unlimited use in YouTube videos, social media & films created by inspiring indie artists worldwide. The go-to music licensing choice for all creators Royalty Free Audio Tracks - Envato Elements [](https://elements.envato.com/audio) Download Royalty Free Stock Audio Tracks for your next project from Envato Elements. Premium, High Quality handpicked Audio files ideal for any genre. License popular music for videos • Lickd [](https://lickd.co/) The only place you can license popular music for videos. Access 1M+ mainstream tracks, plus high-quality stock music for content creators NCS (NoCopyrightSounds) - free music for content creators [](https://ncs.io/) NCS is a Record Label dedicated to giving a platform to the next generation of Artists in electronic music, representing genres from house to dubstep via trap, drum & bass, electro pop and more. Search Engine Optimization Keyword Tool For Monthly Search Volume, CPC & Competition [](https://keywordseverywhere.com/) Keywords Everywhere is a browser add-on for Chrome & Firefox that shows search volume, CPC & competition on multiple websites. Semrush - Online Marketing Can Be Easy [](https://www.semrush.com/) Turn the algorithm into a friend. Make your business visible online with 55+ tools for SEO, PPC, content, social media, competitive research, and more. DuckDuckGo — Privacy, simplified. [](https://duckduckgo.com/) The Internet privacy company that empowers you to seamlessly take control of your personal information online, without any tradeoffs. SEO Software for 360° Analysis of Your Website [](https://seranking.com/) Leading SEO software for business owners, agencies, and SEO specialists. Track your rankings, monitor competitors, spot technical errors, and more. Skyrocket your organic traffic with Surfer [](https://surferseo.com/) Use Surfer to research, write, optimize, and audit! Everything you need to create a comprehensive content strategy that yields real results is right here. Ahrefs - SEO Tools & Resources To Grow Your Search Traffic [](https://ahrefs.com/) You don't have to be an SEO pro to rank higher and get more traffic. Join Ahrefs – we're a powerful but easy to learn SEO toolset with a passionate community. Neon Tools [](https://neontools.io/) Google Index Search [](https://lumpysoft.com/) Google Index Search SEO Backlink Checker & Link Building Toolset | Majestic.com [](https://majestic.com/) Develop backlink strategies with our Link Intelligence data, build the strongest SEO backlink campaigns to drive organic traffic and boost your rankings today. PageOptimizer Pro [](https://pageoptimizer.pro/) Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page Workshops With Kyle Roof POP Chrome Extension Guide Tutorial Videos Frequently Asked Questions Best Practices Login Cancel Anytime Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page… Keyword Chef - Keywords for Publishers [](https://keywordchef.com/) Rank Insanely Fast for Keywords Your Competition Can’t Find “Every long-tail keyword I find ends up ranking within a day” – Dane Eyerly, Owner at TextGoods.com Keyword Chef automatically finds and filters keywords for you. Real-time SERP analysis lets you find keywords nearly guaranteed to rank. Try for free → Let’s face it, most keyword tools ... Read more Notifier - Social Listening for Social Media and More! [](https://notifier.so/) Track keywords. Market your product for free. Drive the conversation. Easy. Free Trial. No obligation ever. Simple. Fast. Trusted by Top Companies. Free Keyword Research Tool from Wordtracker [](https://www.wordtracker.com/) The best FREE alternative to the Keyword Planner. Use Wordtracker to reveal 1000s of profitable longtail keywords with up to 10,000 results per search Blog Posts The 60 Hottest Front-end Tools of 2021 | CSS-Tricks - CSS-Tricks [](https://css-tricks.com/hottest-front-end-tools-in-2021/) A complete list of the most popular front-end tools in 2021, according to the Web Tools Weekly newsletter. See which resources made the list. Resume ResumeGlow - AI Powered Resume Builder [](https://resumeglow.com/) Get hired fast with a resume that grabs attention. Designed by a team of HR experts and typographers. Customizable templates with more than a million possible Create Your Job-winning Resume - (Free) Resume maker · Resume.io [](https://resume.io/) Free online resume maker, allows you to create a perfect Resume or Cover Letter in 5 minutes. See how easy it is to write a professional resume - apply for jobs today! Rezi - The Leading AI-Powered Free Resume Builder [](https://www.rezi.ai/) Rezi’s award-winning AI-powered resume builder is trusted by hundreds of thousands of job seekers. Create your perfect resume in minutes with Rezi. Create a Perfect Resume | Free Resume Builder | Resumaker.ai [](https://resumaker.ai/) Create your professional resume with this online resume maker. Choose a designer-made template and grab any employer attention in seconds. Trusted AI Resume Maker Helps You Get Hired Fast [](https://skillroads.com/) Reach a 96.4% success rate in the job hunt race with the best resume creator. Our innovative technologies and 24/7 support help you to become a perfect candidate for any job. Do not lose your chance to become the One. Kickresume | Best Online Resume & Cover Letter Builder [](https://www.kickresume.com/) Create your best resume yet. Online resume and cover letter builder used by 1,300,000 job seekers worldwide. Professional templates approved by recruiters. ResumeMaker.Online | Create a Professional Resume for Free [](https://www.resumemaker.online/) Save time with the easiest-to-use Resume Maker Online. Create an effective resume in just minutes and land your dream job. No Sign-up required, start now! Interviews Interview Warmup - Grow with Google [](https://grow.google/certificates/interview-warmup/) A quick way to prepare for your next interview. Practice key questions, get insights about your answers, and get more comfortable interviewing. No code website builder Carrd - Simple, free, fully responsive one-page sites for pretty much anything [](https://carrd.co/) A free platform for building simple, fully responsive one-page sites for pretty much anything. Webflow: Create a custom website | No-code website builder [](https://webflow.com/) Create professional, custom websites in a completely visual canvas with no code. Learn how to create a website by trying Webflow for free! Google Sites: Sign-in [](https://sites.google.com/) FlutterFlow - Build beautiful, modern apps incredibly fast! [](https://flutterflow.io/) FlutterFlow lets you build apps incredibly fast in your browser. Build fully functional apps with Firebase integration, API support, animations, and more. Export your code or even easier deploy directly to the app stores! Free Website Builder: Build a Free Website or Online Store | Weebly [](https://www.weebly.com/) Weebly’s free website builder makes it easy to create a website, blog, or online store. Find customizable templates, domains, and easy-to-use tools for any type of business website. Glide • No Code App Builder • Nocode Application Development [](https://www.glideapps.com/) Create the apps your business needs, without coding, waiting or overpaying. Get started for free and build an app today Adalo - Build Your Own No Code App [](https://www.adalo.com/) Adalo makes creating apps as easy as putting together a slide deck. Turn your idea into a real native app — no code needed! Siter.io - The collaborative web design tool, no-code website builder [](https://siter.io/) Siter.io is a visual website builder for designers. Prototype, design, and create responsive websites in the browser. Work together with your team in one place. Elementor: #1 Free WordPress Website Builder | Elementor.com [](https://elementor.com/) Elementor is the platform web creators choose to build professional WordPress websites, grow their skills, and build their business. Start for free today! No code app builder | Bravo Studio [](https://www.bravostudio.app/) Your no-code mobile app builder for iOS and Android. Create MVP’s, validate ideas and publish on App Store and Google Play Store. Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Free Website Builder | Create a Free Website | Wix.com [](https://www.wix.com/) Create a website with Wix’s robust website builder. With 900+ strategically designed templates and advanced SEO and marketing tools, build your brand online today. Free responsive Emails & Landing Pages drag-and-drop Editor | BEE [](https://beefree.io/) Free responsive emails and landing pages editor. With BEE drag-and-drop builders embedded in many software applications you can start designing now! Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Ownit Connected Checkout [](https://www.ownit.co/) Ownit Connected Checkout Bookmark.com | No-code Website Builder to Start Your Business [](https://www.bookmark.com/) Our AI powered platform ensures your business is future proof. Try Bookmark for free. The best way to build web apps without code | Bubble [](https://bubble.io/) Bubble introduces a new way to build software. It’s a no-code tool that lets you build SaaS platforms, marketplaces and CRMs without code. Bubble hosts all web apps on its cloud platform. Responsive Web Design | Website Creation | Editor X [](https://www.editorx.com/) Experience the future of website design with responsive layouts, CSS precision and smooth drag and drop. Create a Website for Free. Tilda Website Builder [](https://tilda.cc/) Create a website, online store, landing page with Tilda intuitive website builder. Build your site from hundreds of pre-designed templates and publish it today. No code required. No-code headless commerce and websites | Unstack Inc. [](https://www.unstack.com/) Deploy high performance eCommerce storefronts and websites without the engineering overhead using Unstack's no-code CMS Best Drag-and-Drop Website Builder | Jemi [](https://jemi.so/) The modern website builder for creatives, entrepreneurs, and dreamers. Build a beautiful link in bio site, portfolio, or landing page in minutes. No-code website builder that works like Notion [](https://popsy.co/) Create a beautiful no-code website in minutes. Popsy works just like Notion but is built from the ground up for building websites. Choose a free template. Edit content just like in Notion. Customize styles without code. Free Notion icons and illustrations. Unbounce - The Landing Page Builder & Platform [](https://unbounce.com/) Grow your relevance, leads, and sales with Unbounce. Use Unbounce to easily create and optimize landing pages for your small business and boost conversions with AI insights. Low-code Front-end Design & Development Platform | TeleportHQ [](https://teleporthq.io/) Front-end development platform, with a visual builder and headless content modelling capabilities. Static website creation, and UI development tools. Other tools used in no code website MemberSpace - Turn any part of your website into members-only with just a few clicks [](https://www.memberspace.com/) Create memberships on your website for anything you want like courses, video tutorials, member directories, and more while having 100% control over look & feel. Triggre | The number one true no-code platform to run your business [](https://www.triggre.com/) The best no-code platform to create highly advanced business applications in hours, without programming. Try it now for free! No code game builder Welcome to Buildbox [](https://signup.buildbox.com/) Welcome to Buildbox Flowlab Game Creator - Make games online [](https://flowlab.io/) Flowlab is an online game creator. Make your own games to share with friends. Make 2D Games With GameMaker | Free Video Game Maker [](https://gamemaker.io/) Make a game with GameMaker, the best free video game engine. Perfect for beginners and professionals. Learn to build your own 2D games with our simple tutorials. Side Hustle Side Hustle Stack [](https://sidehustlestack.co/) Side Hustle Stack is a resource for finding platform-based work, ranging from gig work and side hustles to platforms that help you start a small business that can grow. Fiverr [](https://www.fiverr.com/) Remotasks: Work From Home, Online Bootcamp Training [](https://www.remotasks.com/en) Make money doing tasks. Start earning today! Free bootcamp training offered online. Sign up for a free Remotasks account and work from home. Earn up to $200/month. Transcribe Speech to Text | Rev [](https://www.rev.com/) Transcribe Speech to Text with Rev. Reach your audience with clear and accurate captions, transcripts, and subtitles. AI Training Data and other Data Management Services [](https://www.clickworker.com/) AI training data, SEO texts, web research, tagging, surveys and more - Use the crowdsourcing principle with the power of >4.5M Clickworkers. Automate your Busy Work - Byron People-Powered Assistants [](https://www.hibyron.com/) Byron is an on demand US based virtual assistant platform that gives individuals and teams the ability to quickly outsource their non-essential tasks. Jobs Websites - Remote Latest Crypto Jobs, Web3 Jobs and Blockchain Jobs in the leading tech companies. [](https://cryptojobslist.com/) New Cryptocurrency Jobs, Web3 Jobs and Blockchain Jobs on CryptoJobsList — the leading site to find and post jobs. Connect with companies hiring in a few clicks and begin your next experience in the industry. Updated daily. Remote Jobs: Design, Marketing, Programming, Writing & More [](https://justremote.co/) Discover Remote Jobs from around the world. Give up the commute, work remotely and do what you love, daily, from anywhere. Find your perfect remote development, design, sales or marketing job today. Remote Ok [](https://remoteok.com/) Hire Freelancers & Remote Workers For Free [](https://talent.hubstaff.com/) Find and hire the highest quality freelancers from around the world - for free. Choose from thousands of developers, digital marketers, creatives and more. We Work Remotely: Remote jobs in design, programming, marketing and more [](https://weworkremotely.com/) Find the most qualified people in the most unexpected places: Hire remote! We Work Remotely is the best place to find and list remote jobs that aren't restricted by commutes or a particular geographic area. Browse thousands of remote work jobs today. Angel [](https://angel.co/) Remote Work: Jobs, Companies & Virtual Teams - Remote.co [](https://remote.co/) Remote.co is the definitive remote work job board for online job seekers and companies hiring. Start your remote job search here! FlexJobs: Best Remote Jobs, Work from Home Jobs, Online Jobs & More [](https://www.flexjobs.com/) The #1 job search site for hand-screened flexible and remote jobs (work from home jobs) since 2007. Plus get resume, coaching and career help. Join today! Remote jobs remotefront.io [](https://remotefront.io/) All remote jobs at remotefront.io Daily Virtual Events Helping You Grow Professionally [](https://powertofly.com/) PowerToFly is where you receive expert career advice, free video training, coaching and exclusive access to jobs and events at top companies. Best Remote and Work from Home Jobs - Virtual Vocations [](https://www.virtualvocations.com/) Best work from home jobs and remote jobs in over 50 categories for professionals, digital nomads, telecommuting workers and entry level jobseekers. Education, healthcare, medical, customer support and tech job openings. Remote Jobs | Working Nomads [](https://www.workingnomads.com/jobs) Remote jobs for digital working nomads. Start your telecommuting career and work remotely from home or places around the world. Job Search, Companies Hiring Near Me, and Advice | The Muse [](https://www.themuse.com/) Find jobs at the best companies hiring near you and get free career advice. Startupers [](https://www.startupers.com/) NoDesk - Where Everyone Works Remote [](https://nodesk.co/) Browse and apply to the best new remote jobs at leading remote companies and startups for free. Join hundreds of companies that use NoDesk to build their remote teams. Browser Extensions Blackbox - Select. Copy. Paste & Search - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/blackbox-select-copy-past/mcgbeeipkmelnpldkobichboakdfaeon) Fastest Way to Copy Text from Videos & Images Octotree - GitHub code tree - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/octotree-github-code-tree/bkhaagjahfmjljalopjnoealnfndnagc) GitHub on steroids WhatFont - Chrome Web Store [](https://chrome.google.com/webstore/detail/whatfont/jabopobgcpjmedljpbcaablpmlmfcogm?hl=en) The easiest way to identify fonts on web pages. Window Resizer - Chrome Web Store [](https://chrome.google.com/webstore/detail/window-resizer/kkelicaakdanhinjdeammmilcgefonfh?hl=en) Resize the browser window to emulate various screen resolutions. Amino: CSS Editor - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/amino-css-editor/pbcpfbcibpcbfbmddogfhcijfpboeaaf) Live CSS Editor. Write custom CSS for any website and see your changes in real time. Checkbot: SEO, Web Speed & Security Tester 🚀 - Chrome Web Store [](https://chrome.google.com/webstore/detail/checkbot-seo-web-speed-se/dagohlmlhagincbfilmkadjgmdnkjinl?hl=en) Test SEO/speed/security of 100s of pages in a click! Check broken links, HTML/JavaScript/CSS, URL redirects, duplicate titles... Honey: Automatic Coupons & Rewards - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/honey-automatic-coupons-r/bmnlcjabgnpnenekpadlanbbkooimhnj) Save money and earn rewards when you shop online. Tango: screenshots, training, & documentation - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/tango-screenshots-trainin/lggdbpblkekjjbobadliahffoaobaknh) Automatically create beautiful step-by-step guides with screenshots, in seconds. No code browser automation | axiom.ai [](https://axiom.ai/) Build browser bots quickly, without code. Automate website actions and repetitive tasks using just your browser, on any website or web app. No Code Browser extensions builder Bildr - Visual Web Development in your Browser [](https://www.bildr.com/) Visually build SaaS products, Chrome extensions, and web3 dApps Other Repurposing content for social media the easy way » Repurpose.io [](https://repurpose.io/) Repurposing content for social media made easy. Automatically repurpose YouTube, TikTok, Lives, Podcasts, and Zoom calls. Try it for FREE. Smart Serials: Your serial numbers database [](https://smartserials.com/) This is your main source of free serial numbers, unlock keys in a clean environment safe to browse by all ages. Old versions of Windows, Mac and Linux Software, Apps & Abandonware Games - Download at OldVersion.com [](http://www.oldversion.com/) Online Room Planner - Design Your Room [](http://www.planyourroom.com/) Planyourroom.com is a wonderful website to redesign each room in your house by picking out perfect furniture options to fit your unique space. BoredHumans.com - Fun AI Programs You Can Use Online [](https://boredhumans.com/) Fun AI programs you can use online. AI games, fake people, computer generated art, machine learning demos, and more. BNProject | Home [](https://buynothingproject.org/) Open Source Alternatives to Proprietary Software [](https://www.opensourcealternative.to/) Discover 400+ popular open source alternatives to proprietary SaaS. URL Shortener - Short URLs & Custom Free Link Shortener | Bitly [](https://bitly.com/) Bitly’s Connections Platform is more than a free URL shortener, with robust link management software, advanced QR Code features, and a Link-in-bio solution. TinEye Reverse Image Search [](https://tineye.com/) Good Books | Books recommended by successful people [](https://www.goodbooks.io/) Looking for the best books to read in 2022? Discover the best book recommendations from the world's most successful, influential and interesting people. Directory - Website Recommendations [](https://tokapps.com/directory/) 0 TRIED & TESTED WEBSITES LISTED Insanely Useful Websites A combination of useful websites for businesses, freelancers, DIYers, and individuals in a centralised area.All websites have been tried and tested. Filter Websites Audio Business Tools Copywriting Design Entertainment Graphics Guides Health Marketing PC Resources Savings SEO Software Travel Video Apply filter Watch Anime Online, Free Anime Streaming Online on Zoro.to Anime Website [](https://zoro.to/) Zoro is a Free anime streaming website which you can watch English Subbed and Dubbed Anime online with No Account and Daily update. WATCH NOW! Animated Drawings [](https://sketch.metademolab.com/) Bring children's drawings to life, by animating characters to move around! Alternativeto [](https://alternativeto.net/) Chatroulette [](https://chatroulette.com/) Random meetings around the world Tiktok Downloader - Download Video tiktok Without Watermark - SnapTik [](https://snaptik.app/en) TikTok Video Downloader - SnapTik.App is one of the best free Download video Tiktok No Watermark tool available online. You can download TikTok video from any device you have. Imgflip - Create and Share Awesome Images [](https://imgflip.com/) Flip through memes, gifs, and other funny images. Make your own images with our Meme Generator or Animated GIF Maker. Fake Text Message | Make Fake Text Conversation [](https://ifaketextmessage.com/) Fake Text Message is a tool to create a Fake Text Conversation and a Fake iMessage. ✂Templatemaker ︎ [](https://www.templatemaker.nl/en/) Omni Calculator [](https://www.omnicalculator.com/) Omni Calculator solves 2960 problems anywhere from finance and business to health. It’s so fast and easy you won’t want to do the math again! Watch Movies Online Free | Watch Series HD Free [](https://hdtoday.tv/) Free Access to the Biggest library of HD Movies and HD Series online - NO ADS - No Account Required - Fast Free Streaming Students Answers - The Most Trusted Place for Answering Life's Questions [](https://www.answers.com/) Answers is the place to go to get the answers you need and to ask the questions you want Wolfram|Alpha: Computational Intelligence [](https://www.wolframalpha.com/) Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, engineering, mathematics, linguistics, sports, finance, music… Online Math Tools - Simple, free and easy to use math utilities [](https://onlinemathtools.com/) World's simplest collection of useful mathematics utilities. Generate number sequences, draw fractals, do quick matrix and numerical calculations and more! edX | Free Online Courses by Harvard, MIT, & more | edX [](https://www.edx.org/) Access 2000 free online courses from 140 leading institutions worldwide. Gain new skills and earn a certificate of completion. Join today. Sci-Hub [](https://sci-hub.hkvisa.net/) Sci-Hub,mg.scihub.ltd,sci-hub.tw,The project is supported by user donations. Imagine the world with free access to knowledge for everyone ‐ a world without any paywalls. DigitalDefynd - Find the Best + Free Courses Online [](https://digitaldefynd.com/) 4 Million+ Learners | 96,000+ Courses | 45,000+ Free Courses | 1200+ Free Certificates Learn Anything [](https://learn-anything.xyz/) Search Interactive Mind Maps to learn anything HubSpot Academy - Homepage [](https://academy.hubspot.com/) HubSpot Academy is the worldwide leader in inbound marketing, sales, and customer service/support training.

airflow-tutorial
github
LLM Vibe Score0.508
Human Vibe Score0.13240553426231688
hgrifJan 19, 2025

airflow-tutorial

Airflow tutorial This tutorial is loosely based on the Airflow tutorial in the official documentation. It will walk you through the basics of setting up Airflow and creating an Airflow workflow. This tutorial was published on the blog of GoDataDriven. Setup You can skip this section if Airflow is already set up. Make sure that you can run airflow commands, know where to put your DAGs and have access to the web UI. Install Airflow Airflow is installable with pip via a simple pip install apache-airflow. Either use a separate python virtual environment or install it in your default python environment. To use the conda virtual environment as defined in environment.yml in this git-repo: Install miniconda. Make sure that conda is on your path: Create the virtual environment from environment.yml: Activate the virtual environment: You should now have an (almost) working Airflow installation. Alternatively, install Airflow yourself by running: Airflow used to be packaged as airflow but is packaged as apache-airflow since version 1.8.1. Make sure that you install any extra packages with the right Python package: e.g. use pip install apache-airflow[dask] if you've installed apache-airflow and do not use pip install airflow[dask]. Leaving out the prefix apache- will install an old version of Airflow next to your current version, leading to a world of hurt. You may run into problems if you don't have the right binaries or Python packages installed for certain backends or operators. When specifying support for e.g. PostgreSQL when installing extra Airflow packages, make sure the database is installed; do a brew install postgresql or apt-get install postgresql before the pip install apache-airflow[postgres]. Similarly, when running into HiveOperator errors, do a pip install apache-airflow[hive] and make sure you can use Hive. Run Airflow Before you can use Airflow you have to initialize its database. The database contains information about historical & running workflows, connections to external data sources, user management, etc. Once the database is set up, Airflow's UI can be accessed by running a web server and workflows can be started. The default database is a SQLite database, which is fine for this tutorial. In a production setting you'll probably be using something like MySQL or PostgreSQL. You'll probably want to back it up as this database stores the state of everything related to Airflow. Airflow will use the directory set in the environment variable AIRFLOW_HOME to store its configuration and our SQlite database. This directory will be used after your first Airflow command. If you don't set the environment variable AIRFLOW_HOME, Airflow will create the directory ~/airflow/ to put its files in. Set environment variable AIRFLOW_HOME to e.g. your current directory $(pwd): or any other suitable directory. Next, initialize the database: Now start the web server and go to localhost:8080 to check out the UI: It should look something like this: With the web server running workflows can be started from a new terminal window. Open a new terminal, activate the virtual environment and set the environment variable AIRFLOW_HOME for this terminal as well: Make sure that you're an in the same directory as before when using $(pwd). Run a supplied example: And check in the web UI that it has run by going to Browse -> Task Instances. This concludes all the setting up that you need for this tutorial. Tips Both Python 2 and 3 are be supported by Airflow. However, some of the lesser used parts (e.g. operators in contrib) might not support Python 3. For more information on configuration check the sections on Configuration and Security of the Airflow documentation. Check the Airflow repository for upstart and systemd templates. Airflow logs extensively, so pick your log folder carefully. Set the timezone of your production machine to UTC: Airflow assumes it's UTC. Workflows We'll create a workflow by specifying actions as a Directed Acyclic Graph (DAG) in Python. The tasks of a workflow make up a Graph; the graph is Directed because the tasks are ordered; and we don't want to get stuck in an eternal loop so the graph also has to be Acyclic. The figure below shows an example of a DAG: The DAG of this tutorial is a bit easier. It will consist of the following tasks: print 'hello' wait 5 seconds print 'world and we'll plan daily execution of this workflow. Create a DAG file Go to the folder that you've designated to be your AIRFLOWHOME and find the DAGs folder located in subfolder dags/ (if you cannot find, check the setting dagsfolder in $AIRFLOW_HOME/airflow.cfg). Create a Python file with the name airflow_tutorial.py that will contain your DAG. Your workflow will automatically be picked up and scheduled to run. First we'll configure settings that are shared by all our tasks. Settings for tasks can be passed as arguments when creating them, but we can also pass a dictionary with default values to the DAG. This allows us to share default arguments for all the tasks in our DAG is the best place to set e.g. the owner and start date of our DAG. Add the following import and dictionary to airflow_tutorial.py to specify the owner, start time, and retry settings that are shared by our tasks: Configure common settings These settings tell Airflow that this workflow is owned by 'me', that the workflow is valid since June 1st of 2017, it should not send emails and it is allowed to retry the workflow once if it fails with a delay of 5 minutes. Other common default arguments are email settings on failure and the end time. Create the DAG We'll now create a DAG object that will contain our tasks. Name it airflowtutorialv01 and pass default_args: With schedule_interval='0 0 *' we've specified a run at every hour 0; the DAG will run each day at 00:00. See crontab.guru for help deciphering cron schedule expressions. Alternatively, you can use strings like '@daily' and '@hourly'. We've used a context manager to create a DAG (new since 1.8). All the tasks for the DAG should be indented to indicate that they are part of this DAG. Without this context manager you'd have to set the dag parameter for each of your tasks. Airflow will generate DAG runs from the startdate with the specified scheduleinterval. Once a DAG is active, Airflow continuously checks in the database if all the DAG runs have successfully ran since the start_date. Any missing DAG runs are automatically scheduled. When you initialize on 2016-01-04 a DAG with a startdate at 2016-01-01 and a daily scheduleinterval, Airflow will schedule DAG runs for all the days between 2016-01-01 and 2016-01-04. A run starts after the time for the run has passed. The time for which the workflow runs is called the execution_date. The daily workflow for 2016-06-02 runs after 2016-06-02 23:59 and the hourly workflow for 2016-07-03 01:00 starts after 2016-07-03 01:59. From the ETL viewpoint this makes sense: you can only process the daily data for a day after it has passed. This can, however, ask for some juggling with date for other workflows. For Machine Learning models you may want to use all the data up to a given date, you'll have to add the scheduleinterval to your executiondate somewhere in the workflow logic. Because Airflow saves all the (scheduled) DAG runs in its database, you should not change the startdate and scheduleinterval of a DAG. Instead, up the version number of the DAG (e.g. airflowtutorialv02) and avoid running unnecessary tasks by using the web interface or command line tools Timezones and especially daylight savings can mean trouble when scheduling things, so keep your Airflow machine in UTC. You don't want to skip an hour because daylight savings kicks in (or out). Create the tasks Tasks are represented by operators that either perform an action, transfer data, or sense if something has been done. Examples of actions are running a bash script or calling a Python function; of transfers are copying tables between databases or uploading a file; and of sensors are checking if a file exists or data has been added to a database. We'll create a workflow consisting of three tasks: we'll print 'hello', wait for 10 seconds and finally print 'world'. The first two are done with the BashOperator and the latter with the PythonOperator. Give each operator an unique task ID and something to do: Note how we can pass bash commands in the BashOperator and that the PythonOperator asks for a Python function that can be called. Dependencies in tasks are added by setting other actions as upstream (or downstream). Link the operations in a chain so that sleep will be run after printhello and is followed by printworld; printhello -> sleep -> printworld: After rearranging the code your final DAG should look something like: Test the DAG First check that DAG file contains valid Python code by executing the file with Python: You can manually test a single task for a given execution_date with airflow test: This runs the task locally as if it was for 2017-07-01, ignoring other tasks and without communicating to the database. Activate the DAG Now that you're confident that your dag works, let's set it to run automatically! To do so, the scheduler needs to be turned on; the scheduler monitors all tasks and all DAGs and triggers the task instances whose dependencies have been met. Open a new terminal, activate the virtual environment and set the environment variable AIRFLOW_HOME for this terminal, and type Once the scheduler is up and running, refresh the DAGs page in the web UI. You should see airflowtutorialv01 in the list of DAGs with an on/off switch next to it. Turn on the DAG in the web UI and sit back while Airflow starts backfilling the dag runs! Tips Make your DAGs idempotent: rerunning them should give the same results. Use the the cron notation for schedule_interval instead of @daily and @hourly. @daily and @hourly always run after respectively midnight and the full hour, regardless of the hour/minute specified. Manage your connections and secrets with the Connections and/or Variables. Exercises You now know the basics of setting up Airflow, creating a DAG and turning it on; time to go deeper! Change the interval to every 30 minutes. Use a sensor to add a delay of 5 minutes before starting. Implement templating for the BashOperator: print the executiondate instead of 'hello' (check out the original tutorial and the example DAG). Implement templating for the PythonOperator: print the executiondate with one hour added in the function printworld() (check out the documentation of the PythonOperator). Resources Data Pipelines with Apache Airflow Airflow documentation ETL best practices with Airflow Airflow: Tips, Tricks, and Pitfalls Kubernetes Custom controller for deploying Airflow

teach-AI-in-business
github
LLM Vibe Score0.443
Human Vibe Score0.018525334165293606
aenyneJan 9, 2025

teach-AI-in-business

Teaching AI in Business ![HitCount] I am collecting material for teaching AI-related issues to non-tech people. The links should provide for a general understanding of AI without going too deep into technical issues. Please contribute! Make this Issue your First Issue I am collecting material for teaching AI-related issues to non-tech people. The links should have provide for a general understanding of AI without going too deep into technical issues. Please contribute! Kindly use only those Resources with NO CODE NEW Check out also the AI Wiki NEW Online Videos & Courses | Link to Issue | Description | |---|---| | Top Trending Technologies | Youtube Channel to master top trending technologyies including artificial intelligence | | AI4All | AI 4 All is a resource for AI facilitators to bring AI to scholars and students | | Elements of AI | Elements of AI is a free open online course to teach AI principles | | Visual Introduction to Machine Learning | Visual introduction to Machine Learning is a beautiful website that gives a comprehensive introduction and easily understood first encounter with machine learning | | CS50's Introduction to Artificial Intelligence with Python | Learn to use machine learning in Python in this introductory course on artificial intelligence.| | Crash course for AI | This is a fun video series that introduces students and educators to Artificial Intelligence and also offers additional more advanced videos. Learn about the basics, neural networks, algorithms, and more. | Youtuber Channel Machine Learning Tutorial | Youtube Channel Turorial Teachable Machine for beginner | | Artificial Intelligence (AI) |Learn the fundamentals of Artificial Intelligence (AI), and apply them. Design intelligent agents to solve real-world problems including, search, games, machine learning, logic, and constraint satisfaction problems | | AI For Everyone by Andrew Ng | AI For Everyone is a course especially for people from a non-technical background to understand AI strategies | | How far is too far? The age of AI| This is a Youtube Orignals series by Robert Downey| | Fundamentals of Artificial Intelligence|This course is for absolute beginners with no technical knowledge.| | Bandit Algorithm (Online Machine Learning)|No requirement of technical knowledge, but a basic understending of Probability Ttheory would help| | An Executive's Guide to AI|This is an interactive guide to teaching business professionals how they might employ artificial intelligence in their business| | AI Business School|Series of videos that teach how AI may be incorporated in various business industries| | Artificial Intelligence Tutorial for Beginners | This video will provide you with a comprehensive and detailed knowledge of Artificial Intelligence concepts with hands-on examples. | | Indonesian Machine Learning Tutorial | Turorial Teachable Machine to train a computer for beginner | | Indonesian Youtube Playlist AI Tutorial | Youtube Playlist AI Tutorial For Beginner | | Artificial Intelligence Search Methods For Problem Solving By Prof. Deepak Khemani|These video lectures are for absolute beginners with no technical knowledge| | AI Basics Tutorial | This video starts from the very basics of AI and ML, and finally has a hands-on demo of the standard MNIST Dataset Number Detection model using Keras and Tensorflow.| | Simple brain.js Tutorial | This video explains a very simple javascript AI library called brain.js so you can easily run AI in the browser.| | Google AI| A complete kit for by google official for non-tech guy to start all over from basics, till advanced | | Microsoft AI for Beginners| A self-driven curriculum by Microsoft, which includes 24 lessons on AI. | Train Your Own AI | Link to Issue | Description | |---|---| | Teachable Machine | Use Teachable Machine to train a computer to recognize your own images, sounds, & poses | | eCraft2Learn | Resource and interactive space (Snap, a visual programming environment like Scratch) to learn how to create AI programs | | Google Quick Draw | Train an AI to guess from drawings| | Deepdream Generator| Merge Pictures to Deep Dreams using the Deepdream Generator| | Create ML|Quickly build and train Core ML models on your Mac with no code.| | What-If Tool|Visually probe the behavior of trained machine learning models, with minimal coding.| | Metaranx|Use and build artificial intelligence tools to analyze and make decisions about your data. Drag-and-drop. No code.| | obviously.ai|The total process of building ML algorithms, explaining results, and predicting outcomes in one single click.| Articles | By & Title | Description | |---|---| | Artificial Intelligence | Wikipedia Page of AI | | The Non-Technical AI Guide | One of the good blog post that could help AI more understandable for people without technical background | | LIAI | A detailed introduction to AI and neural networks | | Layman's Intro | A layman's introduction to AI | | AI and Machine Learning: A Nontechnical Overview | AI and Machine Learning: A Nontechnical Overview from OREILLY themselves is a guide to learn anyone everything they need to know about AI, focussed on non-tech people | | What business leaders need to know about artifical intelligence|Short article that summarizes the essential aspects of AI that business leaders need to understand| | How Will No-Code Impact the Future of Conversational AI | A humble explanation to the current state of converstational AI i.e.Chatbots and how it coul evolve with the current trend of no coding. | | Investopedia | Basic explanation of what AI is in a very basic and comprehensive way | | Packtpub | A non programmer’s guide to learning Machine learning | | Builtin | Artificial Intelligence.What is Artificial Intelligence? How Does AI Work? | | Future Of Life | Benefits & Risks of Artificial Intelligence | | NSDM India -Arpit | 100+ AI Tools For Non-Coders That Will Make Your Marketing Better. | | AI in Marketing for Startups & Non-technical Marketers | A practical guide for non-technical people | | Blog - Machine Learning MAstery | Blogs and Articles by Jason Browniee on ML | | AI Chatbots without programming| Chatbots are increasingly in demand among global businesses. This course will teach you how to build, analyze, deploy and monetize chatbots - with the help of IBM Watson and the power of AI.| Book Resources for Further Reading | Author | Book | Description & Notes | |---|---|---| | Ethem Alpaydin|Machine Learning: The New AI | Graph Theory with Applications to Engineering & Computer Science. A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. | | Charu C. Aggarwal| Neural Networks and Deep Learning | This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. | | Hal Daumé III | A Course in Machine Learning | The purpose of this book is to provide a gentle and pedagogically organized introduction to the field. A second goal of this book is to provide a view of machine learning that focuses on ideas and models, not on math. | | Ian Goodfellow and Yoshua Bengio and Aaron Courville| Deep Learning | The book starts with a discussion on machine learning basics, including the applied mathematics and algorithms needed to effectively study deep learning from an academic perspective. There is no code covered in the book, making it perfect for a non-technical AI enthusiast. | | Peter Harrington|Machine Learning in Action| (Source: https://github.com/kerasking/book-1/blob/master/ML%20Machine%20Learning%20in%20Action.pdf) This book acts as a guide to walk newcomers through the techniques needed for machine learning as well as the concepts behind the practices.| | Jeff Heaton| Artificial Intelligence for Humans |This book helps its readers get an overview and understanding of AI algorithms. It is meant to teach AI for those who don’t have an extensive mathematical background. The readers need to have only a basic knowledge of computer programming and college algebra.| | John D. Kelleher, Brian Mac Namee and Aoife D'Arcy|Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (The MIT Press)|This book covers all the fundamentals of machine learning, diving into the theory of the subject and using practical applications, working examples, and case studies to drive the knowledge home.| | Deepak Khemani| [A First Course in Artificial Intelligence] | It is an introductory course on Artificial Intelligence, a knowledge-based approach using agents all across and detailed, well-structured algorithms with proofs. This book mainly follows a bottom-up approach exploring the basic strategies needed problem-solving on the intelligence part. | | Maxim Lapan | Deep Reinforcement Learning Hands-On - Second Edition | Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. | | Tom M Mitchell | Machine Learning | This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper level undergraduate and introductory level graduate courses in machine learning. | | John Paul Mueller and Luca Massaron|Machine Learning For Dummies|This book aims to get readers familiar with the basic concepts and theories of machine learning and how it applies to the real world. And "Dummies" here refers to absolute beginners with no technical background.The book introduces a little coding in Python and R used to teach machines to find patterns and analyze results. From those small tasks and patterns, we can extrapolate how machine learning is useful in daily lives through web searches, internet ads, email filters, fraud detection, and so on. With this book, you can take a small step into the realm of machine learning and we can learn some basic coding in Pyton and R (if interested)| | Michael Nielsen| Neural Networks and Deep Learning |Introduction to the core principles of Neural Networks and Deep Learning in AI| | Simon Rogers and Mark Girolami| A Course in Machine Learning |A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC.| |Peter Norvig| Paradigm of Artificial Intelligence Programming |Paradigms of AI Programming is the first text to teach advanced Common Lisp techniques in the context of building major AI systems. By reconstructing authentic, complex AI programs using state-of-the-art Common Lisp, the book teaches students and professionals how to build and debug robust practical programs, while demonstrating superior programming style and important AI concepts.| | Stuart Russel & Peter Norvig | Artificial Intelligence: A Modern Approach, 3rd Edition | This is the prescribed text book for my Introduction to AI university course. It starts off explaining all the basics and definitions of what AI is, before launching into agents, algorithms, and how to apply them. Russel is from the University of California at Berkeley. Norvig is from Google.| | Richard S. Sutton and Andrew G. Barto| Reinforcement Learning: An Introduction |Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment.| | Alex Smola and S.V.N. Vishwanathan | Introduction to Machine Learning | Provides the reader with an overview of the vast applications of ML, including some basic tools of statistics and probability theory. Also includes discussions on sophisticated ideas and concepts. | | Shai Shalev-Shwartz and Shai Ben-David | Understanding Machine Learning From Theory to Algorithms |The primary goal of this book is to provide a rigorous, yet easy to follow, introduction to the main concepts underlying machine learning. | | Chandra S.S.V | Artificial Intelligence and Machine Learning | This book is primarily intended for undergraduate and postgraduate students of computer science and engineering. This textbook covers the gap between the difficult contexts of Artificial Intelligence and Machine Learning. It provides the most number of case studies and worked-out examples. In addition to Artificial Intelligence and Machine Learning, it also covers various types of learning like reinforced, supervised, unsupervised and statistical learning. It features well-explained algorithms and pseudo-codes for each topic which makes this book very useful for students. | | Oliver Theobald|Machine Learning For Absolute Beginners: A Plain English Introduction|This is an absolute beginners ML guide.No mathematical background is needed, nor coding experience — this is the most basic introduction to the topic for anyone interested in machine learning.“Plain” language is highly valued here to prevent beginners from being overwhelmed by technical jargon. Clear, accessible explanations and visual examples accompany the various algorithms to make sure things are easy to follow.| | Tom Taulli | Artificial Intelligence Basics: A Non-Technical Introduction | This book equips you with a fundamental grasp of Artificial Intelligence and its impact. It provides a non-technical introduction to important concepts such as Machine Learning, Deep Learning, Natural Language Processing, Robotics and more. Further the author expands on the questions surrounding the future impact of AI on aspects that include societal trends, ethics, governments, company structures and daily life. | |Cornelius Weber, Mark Elshaw, N. Michael Mayer| Reinforcement Learning |Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning.| |John D. Kelleher, Brian Mac Namee, Aoife D'arcy| Algorithms, Worked Examples, and Case Studies | A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. |

Chill Work Music — Deep Focus and Productivity Mix for Programming, Coding
youtube
LLM Vibe Score0.415
Human Vibe Score0.86
Chill Music LabJul 17, 2024

Chill Work Music — Deep Focus and Productivity Mix for Programming, Coding

This carefully curated mix of tracks is specifically designed to help you focus on work and be productive. Music in genres like chillstep, future garage, and chill electronic will create the perfect background for tackling complex projects or routine tasks. Perfect as a programming music and for intense coding sessions. Thanks to the relaxing atmosphere of this musical accompaniment, you will be able to immerse yourself in the creative process with special concentration and inspiration. These tracks will help you maintain a high level of attention and productivity to achieve maximum results. Discover new horizons of efficiency with our playlist! 🎯 Tips for Chill and Productive Work: Using Artificial Intelligence: Utilize AI tools to automate routine tasks. This will allow you to focus on more creative and complex aspects of your work. Gratitude Journal: At the end of each workday, write down three things you are grateful for. This will help you end the day on a positive note and reduce stress. Experiment with Rhythms: Try working at different times of the day. You might find that your productivity is significantly higher at night than during the day. Change of Scenery: If you feel you're losing concentration, try changing your workspace. Sit in a different chair, move to another room, or even go outside if possible. Music therapy with our Chill Music Lab playlists: Listen to our playlists or radio, which include relaxing and focusing tracks. Such music can help improve concentration and create a calm working atmosphere for your goals. If you enjoyed this video like, comment or subscribe to the channel. 🙏 Join our English-speaking Discord to get in contact with us and fellow music lovers. ❤️ https://discord.gg/5p8D8GdVfp Genre: Electronic Music Style: Chillstep, Future Garage Mood: Cyber, Deep, Atmospheric Feature: No prominent lyrics 📹 Similar videos ► https://www.youtube.com/playlist?list=PLdE7uo_7KBkf6X1lbOpL3tAWERvlYej2L ► https://www.youtube.com/playlist?list=PLdE7uo_7KBkeSTmryNClNxUkioFpq3Btx ► https://www.youtube.com/playlist?list=PLdE7uo_7KBkdbssGgnnIDm3EnE2gmHyEQ ► https://www.youtube.com/playlist?list=PLdE7uo_7KBkeH0adsnxZupMARfGxY6qik ► https://www.youtube.com/playlist?list=PLdE7uo_7KBkf0gwWO9-qeu-La5vSJPmPc ► https://www.youtube.com/playlist?list=PLdE7uo_7KBkdsNAZNbzOUj61OQ5N0Ka26 🎧 Tracklist ► 00:00 Arnydmusic - Polaris ► 03:22 Arnyd - Hypernova ► 06:58 Neskre - Saviour ► 10:24 Exal & SkyFlair - Afterlife ► 14:11 Warmth - Solstice (Aurora Principle Remix) ► 18:06 Himalia - Growing Upwards. ► 24:26 Lonely Bird - Foggy Night ► 27:19 F0x3r - Precious Little Things ► 31:09 Deadfeelings - Melancholia ► 34:42 AK - Gone ► 37:51 Skandition - Chasing A Dream ► 43:18 Foxer - You ► 46:51 4lienetic - If Only ► 49:35 Tecnosine - Capacious ► 52:36 Vonnboyd - Lost without you ► 55:16 Blackbird - Love In Purple ► 59:21 Infinitum - Reborn ► 1:02:42 Future Skyline - Silent Moon ► 1:07:12 Code of Kasilid - Proto ► 1:11:11 AK - We're Older Now ► 1:14:12 Iketa - Under ► 1:16:42 Yzuva - Forget ► 1:20:22 Direct - Millions ► 1:25:20 Lazarus Moment - Forests Calling ► 1:28:51 Hystvme - Dream ► 1:31:32 Synthetic Epiphany - Infinite ► 1:34:56 Turno - Nocturno ► 1:37:13 4Lienetic - The Most Painful Goodbye #WorkMusic #FocusMusic #ChillMusic

5 Best FREE AI Courses for Non-Technical & Technical Beginners 2024 | How to learn AI ML | Learn AI
youtube
LLM Vibe Score0.369
Human Vibe Score0.6
Pavan SathirajuFeb 24, 2024

5 Best FREE AI Courses for Non-Technical & Technical Beginners 2024 | How to learn AI ML | Learn AI

Install SquareX - https://sqrx.io/ps_yt Top FREE AI Courses #1 AI For Everyone Coursera - https://www.coursera.org/learn/ai-for-everyone#modules #2 - Building Generative AI Skills for Business Professionals (LinkedIn) - https://www.linkedin.com/learning/paths/building-generative-ai-skills-for-business-professionals #3 - AI for Python programmers. CS50's Introduction to Artificial Intelligence with Python - https://www.edx.org/learn/artificial-intelligence/harvard-university-cs50-s-introduction-to-artificial-intelligence-with-python? #4 - Wharton AI for Business Professionals - https://www.coursera.org/specializations/ai-for-business-wharton #5 - Deep learning specialization by Andre - https://www.coursera.org/specializations/deep-learning If you are looking to join our Problem Solving platform & get personalized feedback: https://inquisitiveminds.ai/ Follow me here LinkedIn - https://www.linkedin.com/in/pavan-sathiraju/ Instagram - https://www.instagram.com/pavan.sathiraju Everyone is talking about why to upskill in AI but nobody is telling you how to learn AI and Machine Learning in 2024. These 5 best AI courses for beginners free 2024 will help you learn AI ML from scratch. This will solve your problem of how to learn AI from scratch and you will be able to use these best ai courses online to advance in your career. These best AI courses online are for both beginners or non-technical folks. In this video, I have included AI courses for non-technical and business folks along with AI course in Python for folks who know tech or programming. How to learn AI from scratch? For this query, we have included the first course that AI for everybody on Coursera. As the title suggests this is an AI Course for beginners to learn AI ML from scratch and have a basic understanding of AI technology. These best AI courses for beginners online can help you a great deal in getting started with AI. This is one of the best AI courses online for free. You can find other free AI courses but if you are just getting started with learning AI and Machine Learning then this is the course for you. Next on the list is related to AI courses for jobs that can be used by business professionals. You can use this course as a business professional to learn how to use AI tools in your job and get things done faster. How to learn AI for beginners? For this, we have included a course from Havard which is an introduction to AI using Python. For technical folks who know Python, this is a good course since it will teach you everything you need to know about Artificial Intelligence and Machine Learning to get started with doing more work in the field. This covers your AI courses for job. The next best ai course for beginners is Wharton AI course for business professionals. This is a great AI course for business professionals who want to learn how to use AI tools. How to learn AI and machine learning from scratch as a business student? This Wharton AI course will help you a lot in that regard. The last best AI course on the list to learn AI and Machine learning from scratch is the Deep Learning course on Coursera. This course is great for both beginners and those with some experience who want to learn more about AI. Hope this video solves your problem of how to learn AI ML. Hope you find this video valuable, see you in the next one. About Me I publish meaningful and valuable content on this channel. My aim is to make business news more accessible and easy to grasp. If you find my videos informative and insightful then make sure to subscribe and leave a comment. I’ll see you in the next video Chapters 0:00 - Intro 2:08 - #1 Course 3:26 - #2 Course 5:56 - #3 Course 7:08 - #4 Course 8:18 - #5 Course 9:35 - Outro

Start An AI T-Shirt Business Side Hustle FULL STRATEGY
youtube
LLM Vibe Score0.391
Human Vibe Score0.61
Wholesale TedApr 10, 2023

Start An AI T-Shirt Business Side Hustle FULL STRATEGY

Learn how to use Midjourney to create amazing AI art to sell onto t-shirts for a profit! ► Get my FREE $10,000 Print On Demand ebook: https://wholesaleted.com/4-step ► Get my Automated Ecom course + AI Art training: https://theecommclubhouse.com ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ IMPORTANT DISCLAIMER - PLEASE READ: 🙏 All content on my channel is my personal opinion. I am NOT a lawyer, accountant or financial advisor. I do not have any professional licenses. My opinions are not a replacement for the guidance of a professionally trained and licensed individual. Some links in the description may be affiliate links. This means that I may get a commission if you click on the link and purchase something. Using those links are optional but they are always appreciated. Thank you 🙏 ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ WATCH MY MOST POPULAR VIDEOS: ►► How I Make $1,000/Day From 5 Sources Of Income: https://youtu.be/jCqIGxA5S-k ►► How To Start An Etsy Print On Demand Store For Free: https://youtu.be/7ZlZFPBWC74 ►► The REAL Reason I Became A Millionaire: https://youtu.be/70itsEHS-EM ►► Best Side Hustles To Start With No Money: https://youtu.be/fQTsmtXBkew RECOMMENDED WATCHING - Having Realistic Expectations In Business: ►► https://www.youtube.com/playlist?list=PLjNYIrpZp6BhzPiUJUUrpfIaFTlcZKF5n ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ WHOLESALE TED AFFILIATE LINKS A lot of people have requested that I posted my affiliate links so that they can register through them as a thank-you for my free tutorial content on YouTube. Thank you so much for your support! If you would like to use my affiliate links, I would greatly appreciate it as it enables me to keep making YouTube videos for free: ►► Get A FREE Trial To Shopify: https://wholesaleted.com/go/free-shopify-trial ►► Get My Favorite Graphic Design App Canva: https://wholesaleted.com/go/canva ►► Get The Etsy Research App Alura: https://wholesaleted.com/go/alura ►► Use Printify's Print On Demand App Like I Do: https://wholesaleted.com/go/printify ►► Use Printful's Print On Demand App Like I Do: https://wholesaleted.com/go/printful ►► Get My Favorite Lifestyle Photos On Placeit: https://wholesaleted.com/go/placeit Please note: an affiliate link tracks whether you click on the link, and register and/or make a purchase. If you do, I may get a commission. Using affiliate links is optional but again, it enables me to keep making my YouTube tutorial content free & I greatly appreciate the support, thank you! ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ FOLLOW ME ON SOCIAL MEDIA! ►► Follow Sarah on TikTok: https://www.tiktok.com/@sarahchrisp ►► Follow Sarah's Adventures on Instagram: https://www.instagram.com/sarahchrispy/ ►► Like us on Facebook: https://www.facebook.com/wholesaleted/ ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ VIDEO CHAPTERS: 0:00 - The Easiest Way To Make Money From AI T-Shirt Designs 3:16 - How To Open & Use Midjourney 3:54 - The Best Midjourney Settings For Generating T-Shirt Images 5:43 - How To Prompt & Generate T-Shirt Images With Midjourney 8:16 - The Fast Way To Fix Image Glitches 9:00 - How To Make The Image Background Transparent 9:33 - Use AI To Upscale Your AI Art Into High Resolution 10:27 - Turn Your AI Art Into T-Shirts To Sell For A Profit ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ WHY SUBSCRIBE TO WHOLESALE TED? Hey there I am Sarah (aka Ted). My goal is to help new entrepreneurs grow & scale a business that is right for THEM! Yes - the business that is right for THEM. Because I believe that time is the most valuable thing we have, and that we should spend it doing things that we love: and what I love may be different to what you love. Which is why on this channel I share: Examples & case studies of businesses that I enjoy (such as Print On Demand ecommerce businesses) and sharing my tips & strategies I've learned along the way. Examples & case studies of other businesses that entrepreneurs love running (even if I personally wouldn't find it fun myself!) Plus a sprinkle of entrepreneurial motivation thrown in too! I hope my actionable content can help you: whether you're running your own online business, or are in the process of building one, and want some tactical advice to help you along the way. If that is you, subscribe today! 🔥