VibeBuilders.ai Logo
VibeBuilders.ai

Co Founder

Explore resources related to co founder to help implement AI solutions for your business.

Technical founders - is "bulling" your way through learning right for a startup? [I will not promote]
reddit
LLM Vibe Score0
Human Vibe Score0
JustZed32This week

Technical founders - is "bulling" your way through learning right for a startup? [I will not promote]

Sup, This is a question for technical founders. \--a little backstory-- I am starting a company in AI field that creates something nobody has ever done before. 7 months in. \--- How most software companies are created - you have an improvement idea, then you have a thousand or so problems to solve to make that improvement happen, and for each one that you don't know, you go to Stackoverflow or ChatGPT to look for solutions for that problem. Which involves next-to-no upfront preparation because for vast majority of traditional software you can solve it on-the-go - "traditional" software is very easy compared to, say, mechanical, pharma or AI engineering. However, for more advanced disciplines - can you just "Google" it on-the-go? I'm a solo founder, and 8 months in, creating a foundational model, BECAUSE I did not know things upfront, I've wasted at least 3 months doing something which was mostly technically unviable in the first place. Out of 14000 lines of code that I've done (including tests), I had to scrap 10000 recently. Imagine the scale of it. Obviously I didn't even know how ML works when I've started. Major fuck-up. How do you operate in industries which you've done before? How do you determine that it's time to start creating you big technological leaps instead of continuing to learn? Cheers. Edit: No need to push me on business topics. I know how to create value very well. It's only a tech question, and I'm only asking because - well - to deliver my value, I need to do a lot of novel tech.

160 of Y Combinators 229 Startup Cohort are AI Startups with and 75% of the Cohort has 0 revenue
reddit
LLM Vibe Score0
Human Vibe Score1
DemocratizingfinanceThis week

160 of Y Combinators 229 Startup Cohort are AI Startups with and 75% of the Cohort has 0 revenue

Y Combinator (YC), one of the most prestigious startup accelerators in the world, has just unveiled its latest batch of innovative startups, providing key insights into what the future might hold. Y Combinators Summer 2023 Batch In a recent post by Garry Tan, YC's president, Tan offers a nostalgic look back at his first YC Demo Day in 2008, where he, as a budding entrepreneur, pitched his startup. Now, fifteen years later, he's at the helm, proudly launching the 37th Demo Day, this time for the Summer 2023 batch. Tan proudly declares this batch as one of YC's most impressive yet, emphasizing the deep technical talent of the participants. From a staggering pool of over 24,000 applications, only 229 startups were chosen, making this one of the most competitive batches to date. This batch marks a number of firsts and solidifies several rising trends within the startups landscape. 75% of these companies began their YC journey with zero revenue, and 81% hadn't raised any funding before joining the accelerator. YC's decision to focus on early-stage startups this round signals their commitment to nurturing raw, untapped potential. A Return to Face-to-Face Interaction After three years, YC has brought back the in-person Demo Day format, allowing startups, investors, and mentors to connect directly. While the virtual format has its merits, there's an unmistakable magic in the YC Demo Day room, filled with anticipation, hope, and innovation. AI Takes Center Stage Artificial Intelligence is the standout sector in the Summer 2023 batch. With recent advancements making waves across various industries, there's arguably no better time to launch an AI-focused startup, and no better platform than YC to foster its growth. This signals a clear trend in the startup investing and venture capital space: AI is just getting started. Of the entire Summer 2023 batch, 160 out of the entire 229 Summer 2023 batch that are utilizing or implementing artificial intelligence in some capacity. This means over 2 out of every 3 startups accepted is focused on artificial intelligence in some capacity. Some of the startups include: Quill AI: Automating the job of a financial analyst Fiber AI: Automating prospecting and outbound marketing Reworkd AI: Open Source Zapier of AI Agents Watto AI: AI-powered McKinsey-quality reports in seconds Agentive: AI-powered auditing platform Humanlike: Replace your call center with voice bots that sound human Greenlite: AI compliance team for fintech and banking atla: AI assistants to help in-house lawyers answer legal questions Studdy: An AI Match tutor Glade: League of Legends with AI-generated maps and gameplay and literally over 100 others. As you can see, there's a startup covering nearly every sector of AI in the new batch. YC By The Numbers YC continues to grow as a community. The accelerator now boasts over 10,000 founders spanning more than 4,500 startups. The success stories are impressive: over 350 startups valued at over $150 million and 90 valued at more than $1 billion. The unicorn creation rate of 5% is truly unparalleled in the industry. To cater to the ever-growing community, YC has added more full-time Group Partners than ever. This includes industry veterans such as Tom Blomfield, co-founder of billion-dollar startups GoCardless and Monzo, and YC alumni like Wayne Crosby (Zenter) and Emmett Shear (Twitch). YC Core Values YC's commitment to diversity is evident in the demographics of the S23 batch. They've also spotlighted the industries these startups operate in, with 70% in B2B SaaS/Enterprise, followed by fintech, healthcare, consumer, and proptech/industrials. Garry Tan emphasizes three core tenets for YC investors: to act ethically, to make decisions swiftly, and to commit long-term. He underlines the importance of the YC community, urging investors to provide valuable introductions and guidance to founders. The Road Ahead With YC's track record and the promise shown by the Summer 2023 batch, the future of the startup ecosystem looks promising. As always, YC remains at the forefront, championing innovation and shaping the next generation of global startups. Original Post: https://www.democratizing.finance/post/take-a-peek-into-the-future-with-y-combinators-finalized-summer-2023-batch

Created the Shopify Alternative in a 3rd world country “I will not promote”
reddit
LLM Vibe Score0
Human Vibe Score1
uwalkirunThis week

Created the Shopify Alternative in a 3rd world country “I will not promote”

Built a Shopify alternative I’ve been a long-time follower of this subreddit and have always valued the insights shared here. Today, I’m reaching out to share our story and seek advice or guidance on potential next steps for our business. Four years ago, we set out to build a local e-commerce platform tailored to the unique challenges of operating in a third-world country where global solutions like Shopify fall short. Shopify, while a fantastic platform, doesn’t provide localized support or integrations here, and the costs of running a Shopify store are prohibitively high due to: The need for multiple apps to replicate basic functionality Expensive international support calls or long chat queues Higher payment gateway fees (no Shopify Pay) USD-only subscription payments, which incur additional bank conversion fees And more We built a solution that addresses these pain points, and today, we’re proud to have over 4,000 merchants on our platform, with 1,600+ paying customers. We’re processing over $1 million per month across 50,000+ orders, which translates to a significant impact in our local economy. As experienced founders, we’ve managed our financials meticulously, allowing us to thrive while many local competitors have shut down. However, scaling in our current economic climate has been challenging, and raising capital has proven to be incredibly tough. We’re exploring strategic options, including potential partnerships, acquisitions, or investments. For example, we believe our platform could be an attractive opportunity for a player like Shopify or another company looking to expand into emerging markets. I’m reaching out to this community to ask: Are there doors we haven’t knocked on? Are there opportunities or strategies we might be overlooking? Any advice, introductions, or insights would be immensely appreciated. Thank you for taking the time to read this, and I look forward to any feedback or ideas you might have! [post refined by AI]

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

Looking for a tech cofounder. Revoltionary (yes really!) gig economy app. I will not promote.
reddit
LLM Vibe Score0
Human Vibe Score1
sweetpea___This week

Looking for a tech cofounder. Revoltionary (yes really!) gig economy app. I will not promote.

Hey everyone! I’m building a new gig-work app that cuts out the hassles of interviews, applications, and sky-high fees. We’re aiming to make it easy for businesses to hire qualified freelancers for short shifts or one-off tasks—and for freelancers to set their own rates and get paid quickly. Why This App? Time-Saving Model: Instead of posting jobs and conducting multiple interviews, employers can instantly book from a list of KYC-verified freelancers who showcase their skills via 30-second video bios. Cost Leadership: We plan to charge only 5%, far below the 15–50% common in other gig platforms. This keeps more money in the pockets of both freelancers and businesses. Proven Demand: A beta test in 2018 drew nearly 600 active users, validating that there’s appetite for a simpler, fairer way to fill short shifts. About Me 20+ years’ experience in payroll, workforce management, and operations for Fortune 500 companies. Led cross-functional teams, implemented large-scale solutions, and believe in building with a user-first mindset. Offering meaningful equity—I want a true partner, not a hired gun. Who I’m Looking For Full-Stack Developer (comfortable with Node.js, React, Python, or similar and ML/Ai) who can manage everything from front-end to database integration (ideally Postgres/MySQL) and build a same day payments system. Passion for creating solutions that genuinely help gig workers and small businesses. Excitement to collaborate on the product roadmap, from the booking interface to same-day payment features. The Opportunity Major Market: The gig economy is huge and still growing. If we nail speed, cost-effectiveness, and ease of use, we can capture a significant share of it. Remote-Friendly: We can work together from anywhere, though I’m planning to relaunch in London where the initial beta gained momentum. If this sounds like your kind of challenge, drop a comment or DM me. Let’s chat about how we can merge our strengths—my operations background and your technical expertise—to build a platform that truly transforms the gig-work experience. Thanks for reading, and I look forward to creating something impactful together!

Is my idea + progress good enough to raise pre-seed round? CRM for construction niches. Non-tech founder.
reddit
LLM Vibe Score0
Human Vibe Score1
GPT-RexThis week

Is my idea + progress good enough to raise pre-seed round? CRM for construction niches. Non-tech founder.

Is my startup idea and progress good enough to raise a pre-seed round? It’s a CRM with meaningful AI integrations for specific type of B2B construction companies. I only want to continue at my current pace if it’s realistic to start raising within the next 2 weeks. At first, I thought it was fine because simple companies still get on Y-comb such as hammr and Relate CRM , but now I’m not sure. Would love to get the community’s thoughts on this. I’ve been working on this for about a week. ​ Key Highlights (You can skip to longer section below) Product is CRM for B2B construction companies. The previous tech company I worked at used an in-house built CRM for their workflow, and I’m creating that solution and applying it to B2B construction companies that have similar workflows. No competitors I’ve found. I’m uniquely positioned to spearhead: B2B SaaS/tech sales + expertise in construction I’m a non-tech sales founder with experience in UI/UX. Will bring on CTO co-founder once I start raising as that would entice better talent Progress + Traction $400 MRR in pre-sales, can get to \~$800-1000 EOM Validated through customer interviews Created some Figma frames, product overview, user journeys, business plan Made a simple but meaningful AI tool that will be available to those that sign up for waitlist. Did this with GitHub + ChatGPT Landing page website going up this week followed by PPC campaign, email marketing, and outreach. My GF works in enterprise sales and she’ll help me generate more leads. ​ Long Version Background B2B SaaS/Tech sales. I worked at enterprise company as an Account Executive where I worked with funded startups and their development, UI/UX, and Product management teams. I have a general knowledge in all these - my best being UI/UX design as I can work with Figma well Domain expertise: my family has had a construction company since I was young. I have a large network because of this. Problem At my previous company, we had a custom in-house built CRM for our workflow. It worked okay, despite being maintained by multiple engineers costing hundreds of thousands a year. I’m creating a CRM that solves that, and applying it to construction industries that can make use of it. I have a great network here which makes it easy for me get sales quickly. Vision Building this CRM for construction niche will allow us to generate MRR fast. We will be first movers in bringing meaningful AI tools to construction, which is generating significant interest. This gives us the opportunity to build the foundational technology that can be adapted to a wider audience such as my previous company and others - think researchers, consultants, etc. Traction + Current Progress (1 week) Validated idea through user interviews and pre-sales. Currently have $400 MRR in pre-sales. I expect $800-1000 in a month if I continue at my pace. This is from doing typical B2B sales. I’ve set up a CRM for this. Created product overview, user journeys, wireframes and some Figma frames, business plan Created a simple but meaningful AI tool for the niche which will be available to those that sign up for the waitlist. Created with GitHub + ChatGPT Completing landing page website this week. Will start PPC ads (I’m experienced in this) after that to generate sign-ups. I’ll also start email marketing from lists I’ve scraped. Team Solo-founder, will bring on CTO co-founder once I start raising funds. I have promising candidates, but feel that I need to raise funds to really entice a good co-founder. I’m uniquely positioned to head this product; B2B sales having worked with many CRMs + construction expertise and network. That said, I’ve never actually done anything that* impressive besides being an AE at a known enterprise techy company (but not FAANG level). ​ I want to acknowledge that my progress might sound more impressive than it is - it's still just a CRM after all, and I'm non-technical. Should I keep going? Advice? I also have a great offer to lead sales at a profitable startup, but I could always do both if it was worth it. I’m feeling really uncertain for some reason :/ maybe it’s just burnout.

Looking for a technical cofounder with experience in building websites and marketplaces
reddit
LLM Vibe Score0
Human Vibe Score1
SlideZealousideal540This week

Looking for a technical cofounder with experience in building websites and marketplaces

Are you passionate about revolutionizing traditional processes? Do you have the expertise to build scalable platforms and want to be part of something transformative? I’m a second-year Economics student at the University of Warwick with a deep drive for creating impactful solutions. I’m seeking a technical co-founder to join me in building a startup dedicated to transforming how startups hire entry-level talent. About the Project I’m developing a recruitment marketplace that connects early-stage and growing startups with talented students and graduates. Our goal is to streamline the hiring process, making it hassle-free for startups while creating meaningful career opportunities for the next generation of talent. What I’m Looking For in a Technical Co-Founder I need someone who can complement my non-technical skills and help take this project to the next level. The ideal co-founder will have: A strong background in programming online marketplace platforms. Experience managing large databases efficiently. Knowledge in machine learning and AI, with a vision to integrate these in future features. Skills in scaling online platforms for a larger audience. The ability to work in synergy with me to shape and execute the vision. A passion for the idea—I’m happy to share more details in a meeting! Key responsibilities will include platform development, handling backend work, deploying the MVP, aiding in design, and collaborating on product iterations. About Me I bring experience in business strategy, operations, finance, product/project management, marketing, and sales—essentially, I cover everything except the technical aspects of development. I previously worked on a social communication platform for school students during high school. I also gained valuable experience as a business analyst in another startup. Why Join me? This is an exciting opportunity to build a product from the ground up, make an impact in the startup ecosystem, and grow alongside a venture poised to redefine hiring. We need: A seamless MVP launch. Networking efforts to onboard startups and expand our reach. Together, we can create something transformative, fostering innovation and enabling career growth for students while helping startups find the talent they need to succeed. If you’re excited about the prospect of building something revolutionary and have the technical skills to complement my business acumen, I’d love to connect. Let’s discuss how we can work together to create the next generation of hiring solutions. Please DM if you are interested in getting to know more about this project! Looking forward

Technical Co-Founder Seeking Commercial/Marketing Partner for Micro SaaS Projects
reddit
LLM Vibe Score0
Human Vibe Score1
Weekly-Offer-4172This week

Technical Co-Founder Seeking Commercial/Marketing Partner for Micro SaaS Projects

Hi everyone, I’m looking for a commercial or marketing co-founder to join me in developing some Micro SaaS (MSaaS) apps. Here’s a bit about where I’m coming from and what I’m hoping to find: About Me: I’m a full-stack developer with over 15 years of experience, including some work in AI. I’m currently working part-time, which gives me the time to focus on developing MVPs quickly. I’m passionate about creating SaaS solutions and would love to find someone who can help bring these ideas to life. Based in french alps. What I’m Looking For: Role: Non-Technical Co-Founder (Commercial/Marketing) Location: Remote Equity: 50% co-founder stake What I’m Hoping You’ll Bring: Experience: Background in business development, marketing, or similar fields. Vision: An eye for potential in new SaaS ideas and a drive to help make them successful. Commitment: Enthusiasm for building and growing a business together. What’s In It For You: Revenue Potential: Share in the financial rewards of successful products with a 50% equity stake, giving you a direct share of the profits. Fast ROI: Benefit from rapid MVP development, which allows for quicker validation and faster revenue generation. Dynamic Approach: We move quickly—if an app doesn’t gain traction in a few weeks, we pivot to the next idea, keeping our efforts focused on what works. Financial Growth: As we iterate and scale, there are opportunities for significant financial upside based on the success of our products. Shared Success: Be an integral part of a partnership where both of us share equally in the risks and rewards, creating a strong incentive for mutual success. What’s In It For You: Partnership: Equal share in the business (50/50). Opportunity: Work on interesting MSaaS projects with room for creativity. Flexibility: A remote role that fits around your schedule. If you’re interested or would like to learn more, please reach out. I’d be thrilled to discuss how we might work together. Thank you for considering this!

Non-technical founders with experienced outside vendor — ok?
reddit
LLM Vibe Score0
Human Vibe Score0
Secure-Proof-4872This week

Non-technical founders with experienced outside vendor — ok?

I’m a non-technical cofounder of early stage startup. (“Non-technical” but I’ve developed multimedia courseware and led teams in the past (LMS, edu content, no code). My question: how crucial is it that my other biz founder and I have a technical co-founder for our data- and AI-driven product rather than use an experienced vendor whose team has been doing machine learning and AI for 10 years? During our manual work as consultants we have identified a problem in a niche market that can be solved via a combo of hard-to-gather data and AI (and other market-specific stuff that that we will train our LLM on). We’ve done market research, designed and validated the solution with potential customers in numerous interviews via click-through prototypes/wireframes, quantified TAM, SAM, SOM, written biz plan, etc. We have deep experience in our market having proven expertise over years. But as we’ve been learning about fundraising (we hope to begin a seed round in early 2025) we continually hear about the importance of technical cofounder. We get it— but our product will only be half-developed by a technical dev team. The other aspect to the product is: gathering hard to find data, and figuring out relationships in the data — that we will do via mapping work with a cohort with unique expertise in our niche market. Also our outside vendor is very reputable with years’ experience in AI and machine learning prior to the latest gen-AI craze — he’s not a newbie and has an established dev team. And our platform is not a consumer product but a more complicated SaaS product. Like, you can’t just code it by yourself. Sure, in the long run we can hire/bring everything in house, but would investors shy away from working with us if our short-term dev effort does not have a “technical” co-founder? Thanks for your thoughts.

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

After building an AI Co-founder to solve my startup struggles, I realized we might be onto something bigger. What problems would you want YOUR AI Co-founder to solve?
reddit
LLM Vibe Score0
Human Vibe Score0
Consistent_Yak6765This week

After building an AI Co-founder to solve my startup struggles, I realized we might be onto something bigger. What problems would you want YOUR AI Co-founder to solve?

A few days ago, I shared my entrepreneurial journey and the endless loop of startup struggles I was facing. The response from the community was overwhelming, and it validated something I had stumbled upon while trying to solve my own problems. In just a matter of days, we've built out the core modules I initially used for myself, deep market research capabilities, automated outreach systems, and competitor analysis. It's surreal to see something born out of personal frustration turning into a tool that others might actually find valuable. But here's where it gets interesting (and where I need your help). While we're actively onboarding users for our alpha test, I can't shake the feeling that we're just scratching the surface. We've built what helped me, but what would help YOU? When you're lying awake at 3 AM, stressed about your startup, what tasks do you wish you could delegate to an AI co-founder who actually understands context and can take meaningful action? Of course, it's not a replacement for an actual AI cofounder, but using our prior entrepreneurial experience and conversations with other folks, we understand that OUTREACH and SALES might actually be a big problem statement we can go deeper on as it naturally helps with the following: Idea Validation - Testing your assumptions with real customers before building Pricing strategy - Understanding what the market is willing to pay Product strategy - Getting feedback on features and roadmap Actually revenue - Converting conversations into real paying customers I'm not asking you to imagine some sci-fi scenario, we've already built modules that can: Generate comprehensive 20+ page market analysis reports with actionable insights Handle customer outreach Monitor competitors and target accounts, tracking changes in their strategy Take supervised actions based on the insights gathered (Manual effort is required currently) But what else should it do? What would make you trust an AI co-founder with parts of your business? Or do you think this whole concept is fundamentally flawed? I'm committed to building this the right way, not just another AI tool or an LLM Wrapper, but an agentic system that can understand your unique challenges and work towards overcoming them. Whether you think this is revolutionary or ridiculous, I want to hear your honest thoughts. But more importantly, I want to hear your unfiltered feedback in the comments. What would make this truly valuable for YOU? Edit 1: The AI cofounder will take no equity in your startup.

Looking for an accountability partner as a solo founder. [I will not promote]
reddit
LLM Vibe Score0
Human Vibe Score1
EquivalentDecent5582This week

Looking for an accountability partner as a solo founder. [I will not promote]

Hello! I am a technical founder focused on using AI solutions to drive automation. Recently had a co-founder split after working together for a couple month. We had a very good traction but I made a decision to leave because I believed we didn't have a solid foundational relationship that can be sustained for a long time. Had more of a co-worker style relationship. Took on the short-term pain to set myself up for a long term success. He was the one leading the sales and relation with the businesses, so we decided he will be leading the company moving forward and we split on very good terms. Back in the gulag now and starting from scratch. Took three days to reset and recover. When I tried to get back at things yesterday, my brain wasn't just having it. My stress activation got so high, i did like 4 wim hof breathing sessions and a 10 mile run to relieve the stress buildup. There is something about uncertainty and working without a lack of clear path that is super hard to process especially when you are solo. Currently I am working through my previous idea backlogs that I have built up and re-starting previous conversations. But my brain isn't giving me the dopamine hit from driving toward action as much as I used to. So any work that i do feels like a slogging through mud. I am looking to experiment with having an accountability partner, to make the initial ramp up easier. Thinking of doing the elon musk style "What have you done this week?" report that we can do to drive accountability and give that extra motivation. If you're navigating similar challenges as a solo founder and believe mutual accountability could accelerate our progress and growth, I'd love to connect. Let's help each other build momentum and stay motivated—drop a comment or DM if interested! I will not promote

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
GummyBear8659This week

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)

Hey everyone! Long-time lurker, first-time founder here. I’m reaching out to get feedback on a recent startup experience—what went wrong, what I could have done better, and how I should approach future opportunities. The Background There were three founders in this venture: • Founder A (CEO, 50%) – The product/growth guy who identified the problem space. • Founder B (Me, CTO, 37.5%) – A software engineer with a software dev shop and multiple clients. I wanted to diversify into building my own products but am not inherently a “product person.” • Founder C (COO, 12.5%) – Brought into the mix by Founder A, with the goal of leveraging his network for traction once the product was built. The idea was to create Product X, a solution targeting the SMB space while competitors were moving upmarket. It wasn’t revolutionary—more of a strategic market play. The Initial Plan & My Role • Founder A would define and prioritize product specs, guiding what needed to be built. • I (Founder B) didn’t have time to code myself, so I allocated engineers from my dev shop (which I personally paid for). My stake was adjusted from 32.5% to 37.5% to reflect this contribution. • Founder C was more of an observer early on, planning to help with traction once we had a product ready. We agreed on a 1-year cliff and a 4-year vesting schedule for equity. Where Things Started to Go Wrong • Lack of a Clear Product Roadmap – Founder A was very focused on getting something built fast, but we never signed off on a structured roadmap or milestones. I underestimated the complexity of what was actually needed for customer conversations. • Engineering Expectations vs. Reality – The team (one part-time lead + two full-time juniors from my dev shop) faced early feedback that development was too slow. In response, I ramped up the lead to full-time and added a part-time PM. But Founder A continued pushing for speed, despite real hurdles (OAuth integrations, etc.). • Shifting MVP Goalposts – Midway, Founder A concluded that an MVP wouldn’t cut it—we needed a more complete product to be competitive. This meant more engineering, more delays, and more of my own money spent on development. The Breaking Point Near the 1-year vesting mark, we had an opportunity: a paying client willing to fund an app. I didn’t have devs on the bench, so I asked Founder A to hold off our project briefly while I hired more engineers to avoid stalling either effort. This was the final straw. Founder A (with Founder C somewhat aligned) decided the arrangement wasn’t working—citing past disagreements and the “slowness” issue. The decision was made to end the partnership. Now, Founder A, as majority holder, is requesting a full handover of the code, Founder C is indifferent, and all engineering costs I covered are essentially lost. Key Takeaways (So Far) Crystal-Clear Agreements Upfront – A formalized product roadmap and timeline should’ve been locked in from day one. Business Needs > Engineering Standards – I wanted to build something solid and scalable, but in an early-stage startup, speed to market is king. This was before AI tools became mainstream, so our approach wasn’t as optimized. Don’t Overextend Without Protection – I personally financed all engineering, but without clear safeguards, that investment became a sunk cost. Expenses Must Be Distributed – I was solely covering engineering salaries, which created an imbalance in financial risk. Future partnerships should ensure costs are shared proportionally, rather than one person shouldering the burden. Where I Need Advice Looking back, I want to improve as an engineer, CEO, and co-founder. • What should I have done differently in structuring this partnership? • How do you balance engineering quality with the startup need for speed? • As a dev shop owner, how can I better navigate equity deals where I’m also bringing in engineering resources? I really appreciate everyone who went through this long post and provide any insights from founders, engineers, or anyone who has been in a similar situation. Thanks for reading! ===================================================================== For readers who might be thinking what set this type of expectation? Because I had a dev shop and I thought my co-founders will be understanding of my business circumstance and I was a bit trigger to build a product with a C-exec team, I gave the impression of "unlimited" engineering which I later realized down the line that it was not feasible for me. Something I learned that I have to be more careful with and set expectations accordingly from the very beginning. And from the feedback of the commenters here, I am much more aware what I should offer and how to set expectations, esp. in the early stages of execution. So thank you all! 🙏🏾 EDIT: I would like to thank everyone who contributed to this thread. You not only helped me but future founders who are considering to get into the startup scene!

Looking for a tech cofounder. Revoltionary (yes really!) gig economy app. I will not promote.
reddit
LLM Vibe Score0
Human Vibe Score1
sweetpea___This week

Looking for a tech cofounder. Revoltionary (yes really!) gig economy app. I will not promote.

Hey everyone! I’m building a new gig-work app that cuts out the hassles of interviews, applications, and sky-high fees. We’re aiming to make it easy for businesses to hire qualified freelancers for short shifts or one-off tasks—and for freelancers to set their own rates and get paid quickly. Why This App? Time-Saving Model: Instead of posting jobs and conducting multiple interviews, employers can instantly book from a list of KYC-verified freelancers who showcase their skills via 30-second video bios. Cost Leadership: We plan to charge only 5%, far below the 15–50% common in other gig platforms. This keeps more money in the pockets of both freelancers and businesses. Proven Demand: A beta test in 2018 drew nearly 600 active users, validating that there’s appetite for a simpler, fairer way to fill short shifts. About Me 20+ years’ experience in payroll, workforce management, and operations for Fortune 500 companies. Led cross-functional teams, implemented large-scale solutions, and believe in building with a user-first mindset. Offering meaningful equity—I want a true partner, not a hired gun. Who I’m Looking For Full-Stack Developer (comfortable with Node.js, React, Python, or similar and ML/Ai) who can manage everything from front-end to database integration (ideally Postgres/MySQL) and build a same day payments system. Passion for creating solutions that genuinely help gig workers and small businesses. Excitement to collaborate on the product roadmap, from the booking interface to same-day payment features. The Opportunity Major Market: The gig economy is huge and still growing. If we nail speed, cost-effectiveness, and ease of use, we can capture a significant share of it. Remote-Friendly: We can work together from anywhere, though I’m planning to relaunch in London where the initial beta gained momentum. If this sounds like your kind of challenge, drop a comment or DM me. Let’s chat about how we can merge our strengths—my operations background and your technical expertise—to build a platform that truly transforms the gig-work experience. Thanks for reading, and I look forward to creating something impactful together!

From Running a $350M Startup to Failing Big and Rediscovering What Really Matters in Life ❤️
reddit
LLM Vibe Score0
Human Vibe Score1
Disastrous-Airport88This week

From Running a $350M Startup to Failing Big and Rediscovering What Really Matters in Life ❤️

This is my story. I’ve always been a hustler. I don’t remember a time I wasn’t working since I was 14. Barely slept 4 hours a night, always busy—solving problems, putting out fires. After college (LLB and MBA), I was lost. I tried regular jobs but couldn’t get excited, and when I’m not excited, I spiral. But I knew entrepreneurship; I just didn’t realize it was an option for adults. Then, in 2017 a friend asked me to help with their startup. “Cool,” I thought. Finally, a place where I could solve problems all day. It was a small e-commerce idea, tackling an interesting angle. I worked 17-hour days, delivering on a bike, talking to customers, vendors, and even random people on the street. Things moved fast. We applied to Y Combinator, got in, and raised $18M before Demo Day even started. We grew 100% month-over-month. Then came another $40M, and I moved to NYC. Before I knew it, we had 1,000 employees and raised $80M more. I was COO, managing 17 direct reports (VPs of Ops, Finance, HR, Data, and more) and 800 indirect employees. On the surface, I was on top of the world. But in reality, I was at rock bottom. I couldn’t sleep, drowning in anxiety, and eventually ended up on antidepressants. Then 2022 hit. We needed to raise $100M, but we couldn’t. In three brutal months, we laid off 900 people. It was the darkest period of my life. I felt like I’d failed everyone—myself, investors, my company, and my team. I took a year off. Packed up the car with my wife and drove across Europe, staying in remote places, just trying to calm my nervous system. I couldn’t speak to anyone, felt ashamed, and battled deep depression. It took over a year, therapy, plant medicine, intense morning routines, and a workout regimen to get back on my feet, physically and mentally. Now, I’m on the other side. In the past 6 months, I’ve been regaining my mojo, with a new respect for who I am and why I’m here. I made peace with what I went through over those 7 years—the lessons, the people, the experiences. I started reconnecting with my community, giving back. Every week, I have conversations with young founders, offering direction, or even jumping in to help with their operations. It’s been a huge gift. I also began exploring side projects. I never knew how to code, but I’ve always had ideas. Recent advances in AI gave me the push I needed. I built my first app, as my first attempt at my true passion—consumer products for kids. Today, I feel wholesome about my journey. I hope others can see that too. ❤️ EDIT: Wow, I didn’t expect this post to resonate with so many people. A lot of you have DM’d me, and I’ll try to respond. Just a heads-up, though—I’m juggling consulting and new projects, so I can’t jump on too many calls. Since I’m not promoting anything, I won’t be funneling folks to my page, so forgive me if I don’t get back to everyone. Anyway, it’s amazing to connect with so many of you. I’d love to write more, so let me know what topics you’d be interested in!

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
GummyBear8659This week

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)

Hey everyone! Long-time lurker, first-time founder here. I’m reaching out to get feedback on a recent startup experience—what went wrong, what I could have done better, and how I should approach future opportunities. The Background There were three founders in this venture: • Founder A (CEO, 50%) – The product/growth guy who identified the problem space. • Founder B (Me, CTO, 37.5%) – A software engineer with a software dev shop and multiple clients. I wanted to diversify into building my own products but am not inherently a “product person.” • Founder C (COO, 12.5%) – Brought into the mix by Founder A, with the goal of leveraging his network for traction once the product was built. The idea was to create Product X, a solution targeting the SMB space while competitors were moving upmarket. It wasn’t revolutionary—more of a strategic market play. The Initial Plan & My Role • Founder A would define and prioritize product specs, guiding what needed to be built. • I (Founder B) didn’t have time to code myself, so I allocated engineers from my dev shop (which I personally paid for). My stake was adjusted from 32.5% to 37.5% to reflect this contribution. • Founder C was more of an observer early on, planning to help with traction once we had a product ready. We agreed on a 1-year cliff and a 4-year vesting schedule for equity. Where Things Started to Go Wrong • Lack of a Clear Product Roadmap – Founder A was very focused on getting something built fast, but we never signed off on a structured roadmap or milestones. I underestimated the complexity of what was actually needed for customer conversations. • Engineering Expectations vs. Reality – The team (one part-time lead + two full-time juniors from my dev shop) faced early feedback that development was too slow. In response, I ramped up the lead to full-time and added a part-time PM. But Founder A continued pushing for speed, despite real hurdles (OAuth integrations, etc.). • Shifting MVP Goalposts – Midway, Founder A concluded that an MVP wouldn’t cut it—we needed a more complete product to be competitive. This meant more engineering, more delays, and more of my own money spent on development. The Breaking Point Near the 1-year vesting mark, we had an opportunity: a paying client willing to fund an app. I didn’t have devs on the bench, so I asked Founder A to hold off our project briefly while I hired more engineers to avoid stalling either effort. This was the final straw. Founder A (with Founder C somewhat aligned) decided the arrangement wasn’t working—citing past disagreements and the “slowness” issue. The decision was made to end the partnership. Now, Founder A, as majority holder, is requesting a full handover of the code, Founder C is indifferent, and all engineering costs I covered are essentially lost. Key Takeaways (So Far) Crystal-Clear Agreements Upfront – A formalized product roadmap and timeline should’ve been locked in from day one. Business Needs > Engineering Standards – I wanted to build something solid and scalable, but in an early-stage startup, speed to market is king. This was before AI tools became mainstream, so our approach wasn’t as optimized. Don’t Overextend Without Protection – I personally financed all engineering, but without clear safeguards, that investment became a sunk cost. Expenses Must Be Distributed – I was solely covering engineering salaries, which created an imbalance in financial risk. Future partnerships should ensure costs are shared proportionally, rather than one person shouldering the burden. Where I Need Advice Looking back, I want to improve as an engineer, CEO, and co-founder. • What should I have done differently in structuring this partnership? • How do you balance engineering quality with the startup need for speed? • As a dev shop owner, how can I better navigate equity deals where I’m also bringing in engineering resources? I really appreciate everyone who went through this long post and provide any insights from founders, engineers, or anyone who has been in a similar situation. Thanks for reading! ===================================================================== For readers who might be thinking what set this type of expectation? Because I had a dev shop and I thought my co-founders will be understanding of my business circumstance and I was a bit trigger to build a product with a C-exec team, I gave the impression of "unlimited" engineering which I later realized down the line that it was not feasible for me. Something I learned that I have to be more careful with and set expectations accordingly from the very beginning. And from the feedback of the commenters here, I am much more aware what I should offer and how to set expectations, esp. in the early stages of execution. So thank you all! 🙏🏾 EDIT: I would like to thank everyone who contributed to this thread. You not only helped me but future founders who are considering to get into the startup scene!

After building an AI Co-founder to solve my startup struggles, I realized we might be onto something bigger. What problems would you want YOUR AI Co-founder to solve?
reddit
LLM Vibe Score0
Human Vibe Score0
Consistent_Yak6765This week

After building an AI Co-founder to solve my startup struggles, I realized we might be onto something bigger. What problems would you want YOUR AI Co-founder to solve?

A few days ago, I shared my entrepreneurial journey and the endless loop of startup struggles I was facing. The response from the community was overwhelming, and it validated something I had stumbled upon while trying to solve my own problems. In just a matter of days, we've built out the core modules I initially used for myself, deep market research capabilities, automated outreach systems, and competitor analysis. It's surreal to see something born out of personal frustration turning into a tool that others might actually find valuable. But here's where it gets interesting (and where I need your help). While we're actively onboarding users for our alpha test, I can't shake the feeling that we're just scratching the surface. We've built what helped me, but what would help YOU? When you're lying awake at 3 AM, stressed about your startup, what tasks do you wish you could delegate to an AI co-founder who actually understands context and can take meaningful action? Of course, it's not a replacement for an actual AI cofounder, but using our prior entrepreneurial experience and conversations with other folks, we understand that OUTREACH and SALES might actually be a big problem statement we can go deeper on as it naturally helps with the following: Idea Validation - Testing your assumptions with real customers before building Pricing strategy - Understanding what the market is willing to pay Product strategy - Getting feedback on features and roadmap Actually revenue - Converting conversations into real paying customers I'm not asking you to imagine some sci-fi scenario, we've already built modules that can: Generate comprehensive 20+ page market analysis reports with actionable insights Handle customer outreach Monitor competitors and target accounts, tracking changes in their strategy Take supervised actions based on the insights gathered (Manual effort is required currently) But what else should it do? What would make you trust an AI co-founder with parts of your business? Or do you think this whole concept is fundamentally flawed? I'm committed to building this the right way, not just another AI tool or an LLM Wrapper, but an agentic system that can understand your unique challenges and work towards overcoming them. Whether you think this is revolutionary or ridiculous, I want to hear your honest thoughts. But more importantly, I want to hear your unfiltered feedback in the comments. What would make this truly valuable for YOU? Edit 1: The AI cofounder will take no equity in your startup.

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

Good at coding, bad at marketing. Summary
reddit
LLM Vibe Score0
Human Vibe Score0.4
Official-DATSThis week

Good at coding, bad at marketing. Summary

Hello. I posted a question on what to do if you are good at coding but bad at marketing four days ago, and I received so many responses and tips. The original post is here. I was really glad and excited to read comments. To return the favor to the community and add some more value, I’ve summarized all the comments I got on the original post. Here are they, with my personal comments on some of the advice I got. You’ll never believe it, but the most common advice was to learn. Really, the first and only thing you should start with if you’re bad at marketing is learning. Yet learning could be different. I highlighted 5 main areas. Educate yourself on general questions. Learn more about some basics. For example, start by finding out what the 4P’s of marketing are, and afterward, you’ll inevitably run into YouTube videos, seminars, Udemy courses, or any other resource that resonates with you on some ideas/avenues you could pursue. Read books and watch videos. There are tons of books on marketing and sales. People shared in the comments books by Dan Kennedy and “Cashvertising”, written by Drew Eric Whitman. (I’ve never heard of them, but already ordered on Amazon). For sales, the most common idea was to start with YouTube videos. For example, Alex Hormozi videos and Startup school delivered by Ycombinator videos. Check out Indie Hackers and scrutinize it for a piece of good advice from developers in the same situation. Also, there was advice to follow up and read some guy on Twitter. (Don't want to get unfairly banned from here, so won't post it) Educate yourself and hire a professional or find a co-founder to help you: Hire a seasoned marketer in this field to help you out. He will help you achieve cost-efficient scales. But it could be a real problem to find the right person. Marketing agencies are expensive. Try to look on LinkedIn or among your acquaintances. Look for professionals with credentials or extensive experience. Seek marketing referrals from startups of a similar size/industry. If you don't have those, try to bring a trusted/experienced marketer friend into the intro meetings to help assess whether the service provider knows what they are doing. Talented freelancers can often get the job done for less than hiring an entire agency. Look for a co-founder who is savvy in marketing, passionate, and ready to work hard towards mutual success. Educate and DIY Being the face of your business is way better than having faceless communication. The startup checklist is made based on the comments is next: At least have your product defined. Define your target audience. Set up the goals you want to achieve. Make domain expertise and understand the market and the direction of its development. The next stage is answering tricky questions: Have you created a business model? How do you plan to compete? What’s your unique selling point? How much do you plan to budget for marketing? Are you planning to work alone, or will you need other devs? Then you start thinking about clients… You need the exposure to truly understand the customer's pain points and build a product that they love. You need to think about how your clients would think, and you should tailor each step you take for them. Get feedback from your early users if you already have a product. Interview your potential customers to learn how they buy. This will help you narrow your choice of marketing channels. Get your product or service used by several startups and help them achieve their goals. Endorsements are very valuable marketing assets. You need a landing to validate your value proposition and start sending traffic, or you can run meta instant form campaigns... It would depend on the category of your startup. You need a benchmark of the competition's ads both in Meta and Google, blog posts, domain authority, their landing page, and average search volumes. Do affiliate marketing for your product since it's an effective strategy. Educate and use AI tools for dealing with marketing. Build an LLM-based product to automate marketing. (Sounds like an idea for a startup, right?) Learn following ChatGPT advice. In 1–3 months, you will be another updated person. Look at marketowl, an AI marketing department for startups and microbusinesses that have no budget or time to do marketing. It will automate the basic tasks your business needs, but it doesn't require your marketing expertise. Check out AI tools that are delivering very good marketing content (gocharlie, jasper, copyai). Educate yourself and run socials Start a blog or YouTube channel where you can share your expertise in coding or anything else you are good at and how your product simplifies life. Engage with your audience on social media platforms like Instagram and LinkedIn, where you can showcase your industry knowledge. Start a page on Twitter and an account on Reddit. Follow and read subreddits and pages where your potential customers are. Learn the pain from the inside. Do not simply promote, people will lose interest immediately. Start by taking focused time to create informational content, so people will eventually be naturally intrigued by what you do and want to support you when they start to “know” you. Educate your potential users about the value of your product. Create content based on what ideal customers are asking at the various stages of marketing. e.g., if they are at the beginning of the process, they may use basic language; if they are further down the process, maybe they’ll be specific. Try to get on podcasts and build as many social links as you can. In other words, don’t live in a shell! Post regularly, and eventually you’ll find sites or people that are willing to promote for you. I omitted here all personal help offers and newsletters, however you could find them in the original post. Hope that will be helpful!

What Does “Building a Community” Actually Mean for a Startup?
reddit
LLM Vibe Score0
Human Vibe Score1
ManagerCompetitive77This week

What Does “Building a Community” Actually Mean for a Startup?

I’ve talked to a lot of founders, and almost everyone gives the same advice: “Build your product and do sales at the same time. Also, build a community alongside it.” I get the first part. Shipping and selling together makes sense. But the “community building” part? That’s where things get blurry for me. Does community building mean posting regular updates on Twitter or LinkedIn? Does it mean making Instagram reels about the product? Or is it more about actually talking to potential customers one-on-one? When people say “build a community,” do they mean creating a place where users can interact with each other or just a way to keep them engaged with the product? The reason I’m asking is that I see different approaches everywhere. Some founders document their startup journey on social media, and that seems to attract an audience. Others focus on getting early users into a private group (Discord, Slack, or WhatsApp) and nurturing relationships there. And then there are those who take a totally different approach—like building in public, sharing code, or offering free tools to bring people in. For my startup, I’m trying to figure out what community building should look like in 2025. The startup landscape has changed drastically in the past year, especially with AI and automation becoming more mainstream. Founders no longer have time to manually interact with every user. So what’s the new way of doing this? What’s working for early-stage startups today? I’d love to hear thoughts from fellow founders. What does “community” actually mean in today’s world, and what’s the best way to build one?

 Struggling with Cold Start for Our AI PowerPoint Tool - Seeking Platform and Strategy Suggestions!
reddit
LLM Vibe Score0
Human Vibe Score1
yamaggieThis week

Struggling with Cold Start for Our AI PowerPoint Tool - Seeking Platform and Strategy Suggestions!

Hello everyone, I'm one of the co-founders of a new AI-generated PowerPoint company, and I handle the marketing side of things. Our product is currently in the cold start phase, and we’re facing some challenges in gaining traction. We've already tried some influencer marketing, but the results have been underwhelming. We're looking for advice on the best platforms and strategies to effectively launch our product and reach our target audience. Here’s a bit more about our product: AI-Powered: Our tool leverages AI to help users quickly create professional PowerPoint presentations by simply entering their desired topic. User-Friendly: The process is streamlined to save users time and effort, making it ideal for professionals, educators, and students. Given our current situation, we would greatly appreciate any suggestions on: Platforms: Which platforms have you found most effective for cold starts, especially for tech or AI products? Strategies: What marketing strategies or tactics have worked for you in the early stages? Any tips on refining our influencer marketing approach or alternative methods to consider? Partnerships: Are there any specific types of partnerships or collaborations that you’ve found beneficial for similar products? Thank you in advance for your insights and advice. We're eager to learn from this community and hopefully turn things around for our launch. Best, Maggie

Seeking co-founder to build LinkedIn’s biggest rival(curated version)
reddit
LLM Vibe Score0
Human Vibe Score1
ItzdreeThis week

Seeking co-founder to build LinkedIn’s biggest rival(curated version)

How do you connect with likeminded people? You see the polished wins everywhere, but what about the messy drafts , the awkward pitches and the moments you’re not sure you’ve got it right? Problem: The whole idea of founding and starting a business can be super intimidating for some people, specially those who don’t know any founders personally, those who don’t have a large network, those who don’t have rich parents with large networks, those not inserted in an entrepreneurial culture like in the US for example (which is my case). Sometimes all you need is the right support network, and too see others do what you want, to know that it’s possible! Everyone has an “ultimate guide” to make 7 figures or build a business on YouTube but NO ONE shoes you the HOW, just the results… I’ve tried joining founder communities, LinkedIn ,Reddit … you name it. Most of these founder communities are inaccessible for regular people and often ask for you to have an already existing business with a min ARR… or their simply geography based and if you’re not in a certain area you can’t really participate… As of LinkedIn… full of empty AI generated posts about how some random dude raised $10m in 7 days. Okay Jonathan, but what about the HOW?? How did you write your first pitch? How many rejection calls did you get? What is an MVP? There simply isn’t a platform out there to document your founding journey and find inspiration within a community of people who are doing the same as you. What better way to feel motivated then to see someone actually document their process? Solution: I’m working on building a social media platform for aspiring/founders to connect through the RAW, UNFILTERED process of turning ideas into reality in REAL time. It’s all gonna be around the “building in public “ concept and content creation. Picture an instagram/tiktok profile where instead of seeing someone’s dog you see them documenting their founding process—from the moment they had the idea, to the moment they launched, you’re going to see the successes, the fails, the rejected calls, all documented through actual content and not some AI generated LinkedIn post. Imagine if you wanted to learn about how Steve Jobs started Apple , you could simply go through his profile on this app—exactly. To make sure all interactions are meaningful people would have to apply. It’s a truly curated community, with REAL people, building REAL things in REAL time, and not just tell us the story of how they did it… Audience: I’m targeting people who have a burning desire of building a business and early stage founders starting their founder journeys, that don’t have a support network and simply don’t know where to start. People who are tired of watching 30 min “ultimate guides “ on how to make it on YouTube from “business gurus” selling courses. People who haven’t reached the min ARR required to join an “exclusive “ founder a community. People who can’t simply just move to the US to get into the “exclusive” YC combinator. People who want to connect with real people building real things and not anonymous people on Reddit, or LinkedIn influencers again trying to promote their services. I believe in the idea because I’m also part of my audience. Have always wanted to start my own thing just never knew how to and where to find a community of likeminded people . I don’t know any founders myself, I come from a non-entrepreneurial society and I’d pay good money to access a community of REAL passionate founders building REAL things, in REAL time. This would be my first ever business, and I want to share my journey building it and hopefully inspire others to just start so I’ve created a mailing list to keep anyone interested in the project updated on my fails , learnings and successes. I’m not worried about “making it” but just “starting” and hopefully reach the right audience and inspire anyone to start whatever they have marinating in their thoughts. If you’re a founder struggling with staying consistent or an aspiring founder with an insane desire of starting and don’t know how to start, I’d love to get your feedback on what’s stopping you, your challenges starting out and what you’d find useful in such platform. And finally would this be something that interests you?? PS: casually looking for a technical co-founder

ChatPDF and PDF.ai are making millions using open source tech... here's the code
reddit
LLM Vibe Score0
Human Vibe Score1
Level-Thought6152This week

ChatPDF and PDF.ai are making millions using open source tech... here's the code

Why "copy" an existing product? The best SaaS products weren’t the first of their kind - think Slack, Shopify, Zoom, Dropbox, or HubSpot. They didn’t invent team communication, e-commerce, video conferencing, cloud storage, or marketing tools; they just made them better. What is a "Chat with PDF" SaaS? These are AI-powered PDF assistants that let you upload a PDF and ask questions about its content. You can summarize articles, extract key details from a contract, analyze a research paper, and more. To see this in action or dive deeper into the tech behind it, check out this YouTube video. Let's look at the market Made possible by advances in AI like ChatGPT and Retrieval-Augmented Generation (RAG), PDF chat tools started gaining traction in early 2023 and have seen consistent growth in market interest, which is currently at an all-time high (source:google trends) Keywords like "chat PDF" and "PDF AI" get between 1 to 10 million searches every month (source:keyword planner), with a broad target audience that includes researchers, students, and professionals across various industries. Leaders like PDF.ai and ChatPDF have already gained millions of users within a year of launch, driven by the growing market demand, with paid users subscribing at around $20/month. Alright, so how do we build this with open source? The core tech for most PDF AI tools are based on the same architecture. You generate text embeddings (AI-friendly text representations; usually via OpenAI APIs) for the uploaded PDF’s chapters/topics and store them in a vector database (like Pinecone). Now, every time the user asks a question, a similarity search is performed to find the most similar PDF topics from the vector database. The selected topic contents are then sent to an LLM (like ChatGPT) along with the question, which generates a contextual answer! Here are some of the best open source implementations for this process: GPT4 & LangChain Chatbot for large PDF docs by Mayo Oshin MultiPDF Chat App by Alejandro AO PDFToChat by Hassan El Mghari Worried about building signups, user management, payments, etc.? Here are my go-to open-source SaaS boilerplates that include everything you need out of the box: SaaS Boilerplate by Remi Wg Open SaaS by wasp-lang A few ideas to stand out from the noise: Here are a few strategies that could help you differentiate and achieve product market fit (based on the pivot principles from The Lean Startup by Eric Ries): Narrow down your target audience for a personalized UX: For instance, an exam prep assistant for students with study notes and quiz generator; or a document due diligence and analysis tool for lawyers. Add unique features to increase switching cost: You could autogenerate APIs for the uploaded PDFs to enable remote integrations (eg. support chatbot knowledge base); or build in workflow automation features for bulk analyses of PDFs. Offer platform level advantages: You could ship a native mobile/desktop apps for a more integrated UX; or (non-trivial) offer private/offline support by replacing the APIs with local open source deployments (eg. llama for LLM, an embedding model from the MTEB list, and FAISS for vector search). TMI? I’m an ex-AI engineer and product lead, so don’t hesitate to reach out with any questions! P.S. I've started a free weekly newsletter to share open-source/turnkey resources behind popular products (like this one). If you’re a founder looking to launch your next product without reinventing the wheel, please subscribe :)

ChatPDF and PDF.ai are making millions using open source tech... here's the code
reddit
LLM Vibe Score0
Human Vibe Score1
Level-Thought6152This week

ChatPDF and PDF.ai are making millions using open source tech... here's the code

Why "copy" an existing product? The best SaaS products weren’t the first of their kind - think Slack, Shopify, Zoom, Dropbox, or HubSpot. They didn’t invent team communication, e-commerce, video conferencing, cloud storage, or marketing tools; they just made them better. What is a "Chat with PDF" SaaS? These are AI-powered PDF assistants that let you upload a PDF and ask questions about its content. You can summarize articles, extract key details from a contract, analyze a research paper, and more. To see this in action or dive deeper into the tech behind it, check out this YouTube video. Let's look at the market Made possible by advances in AI like ChatGPT and Retrieval-Augmented Generation (RAG), PDF chat tools started gaining traction in early 2023 and have seen consistent growth in market interest, which is currently at an all-time high (source:google trends) Keywords like "chat PDF" and "PDF AI" get between 1 to 10 million searches every month (source:keyword planner), with a broad target audience that includes researchers, students, and professionals across various industries. Leaders like PDF.ai and ChatPDF have already gained millions of users within a year of launch, driven by the growing market demand, with paid users subscribing at around $20/month. Alright, so how do we build this with open source? The core tech for most PDF AI tools are based on the same architecture. You generate text embeddings (AI-friendly text representations; usually via OpenAI APIs) for the uploaded PDF’s chapters/topics and store them in a vector database (like Pinecone). Now, every time the user asks a question, a similarity search is performed to find the most similar PDF topics from the vector database. The selected topic contents are then sent to an LLM (like ChatGPT) along with the question, which generates a contextual answer! Here are some of the best open source implementations for this process: GPT4 & LangChain Chatbot for large PDF docs by Mayo Oshin MultiPDF Chat App by Alejandro AO PDFToChat by Hassan El Mghari Worried about building signups, user management, payments, etc.? Here are my go-to open-source SaaS boilerplates that include everything you need out of the box: SaaS Boilerplate by Remi Wg Open SaaS by wasp-lang A few ideas to stand out from the noise: Here are a few strategies that could help you differentiate and achieve product market fit (based on the pivot principles from The Lean Startup by Eric Ries): Narrow down your target audience for a personalized UX: For instance, an exam prep assistant for students with study notes and quiz generator; or a document due diligence and analysis tool for lawyers. Add unique features to increase switching cost: You could autogenerate APIs for the uploaded PDFs to enable remote integrations (eg. support chatbot knowledge base); or build in workflow automation features for bulk analyses of PDFs. Offer platform level advantages: You could ship a native mobile/desktop apps for a more integrated UX; or (non-trivial) offer private/offline support by replacing the APIs with local open source deployments (eg. llama for LLM, an embedding model from the MTEB list, and FAISS for vector search). TMI? I’m an ex-AI engineer and product lead, so don’t hesitate to reach out with any questions! P.S. I've started a free weekly newsletter to share open-source/turnkey resources behind popular products (like this one). If you’re a founder looking to launch your next product without reinventing the wheel, please subscribe :)

New Year Resolution: I Will Generate Some Viable SaaS Ideas AND Help You Become a Brand New AI Startup Founder Within 7 Days
reddit
LLM Vibe Score0
Human Vibe Score1
BaronofEssexThis week

New Year Resolution: I Will Generate Some Viable SaaS Ideas AND Help You Become a Brand New AI Startup Founder Within 7 Days

Over the Christmas period, I conceived and debuted on some reddit communities, The 7-Day Startup Challenge. The feedback I got from the various communities have been nothing short of fantastic! The 7-Day Startup Challenge simply means leveraging the power of no code platforms like Bubble, Flutterflow, Glide, Thunkable, Softr etc. along with AI APIs to build a functioning MicroSaaS/SaaS within 7 days. I can tailor this around your interests or hobbies so you are more passionate about your new startup. Whether you're a startup novice or a veteran, I am happy to work with you every step of the way. I will work with you from validating and refining your idea(s) to building and publishing your app! I can even work with you on a viable marketing strategy that will help fetch your new startup some revenue within the next 10 to 45 days. Here's what I will provide as part of The 7-Day Startup Challenge A fully validated and refined version of your idea described in technical terms in a shared document A startup name, domain and logo (if you don't have one already) A landing page to capture pre-sign ups, generate some early buzz and index your app on search engines Figma files showing the design of your app(s) Web app (dependent on whether your startup idea requires a web app or a mobile app instead)) iOS app (dependent on whether your startup idea requires a web app or a mobile app instead) Android app (dependent on whether your startup idea requires a web app or a mobile app instead) 1-month of in scope support to fix any bugs and address any issues An outlined marketing strategy you can implement to grow your startup both short and long term. As per tentative timelines, you can expect the following deliverables on schedule Day 1: Secure digital assets such as domain name, hosting, logo etc.; deliver validated and refined version of your startup idea Day 2-3: Landing page & Figma files Day 1-5/6: Build your apps (web app and/or iOS and Android app) Day 6: Evaluations and review if necessary; demo day Day 7: Live launch on web; publish on Android and iOS app stores PS: For more sophisticated ideas (non MicroSaaS), kindly allow approx. 30 days for delivery. I can be as hands on or hands off as you wish. Meaning I can do all the work whilst you sit back and wait for the results OR I can work with you every step of the way to deliver on your demands. For high potential startup ideas, I can partner with you long term to build them out together. I have to be selective because I'm unable to partner together on every single idea out there. Outside of a partnership, all the digital assets (startup name, logo, web app, mobile app etc.) are 100% owned by you. If building an AI SaaS startup via the outlined strategy sounds intriguing enough to you, feel free to send me a DM with any questions you have!

I just built footyGPT.com , an AI assistant for football stats, data and data-backed predictions
reddit
LLM Vibe Score0
Human Vibe Score1
footyamigoThis week

I just built footyGPT.com , an AI assistant for football stats, data and data-backed predictions

Hey Amigos! I am based in London and I build lots of fun tools and websites in the sports data space to help sports bettors make better data-driven decisions. One of my recently launched ones is footyGPT.com I have tried to launch this earlier in 2023 but my team were not able to achieve the end goal (I am a non-technical founder) Funny story, I bought the domain footygpt(dot)com back in 2023 and let it expire because i felt like since we weren't able to acheieve the end goal, there was no need to keep the domain. But 2 months ago I started working on it one more time with a different team, and since AI has become "more friendly" than it was early in 2023, it was a much smoother ride and i was so scared someone else had already bought the domain, only to find out it was still available to buy! I was so scared I lost such a clean domain. Below is an example of how footyGPT works: Ask FootyGPT for Predictions for a Given Fixture how footyGPT works \(case study\) Ask FootyGPT to Scrape and Summarize Data from a Stats Website using footyGPT to scrape football stats websites Ask FootyGPT for Sentiments and Online Opinion About a Given Match or Events. ask footygpt for up to date sentiments and opinions about football matches Ask FootyGPT to Find Teams with Certain Streaks, Trends, or Stats https://reddit.com/link/1frdk04/video/9oyaj5ldqjrd1/player If you are into football (soccer) please give it a spin and let me know your thoughts! Cheers Amigos

I am building my agency to help founders build AI startups after 2 successful AI SaaS exits and 4 failures
reddit
LLM Vibe Score0
Human Vibe Score1
_Gautam19This week

I am building my agency to help founders build AI startups after 2 successful AI SaaS exits and 4 failures

Hey everyone, I have been building AI products before ChatGPT was launched. In these years, I have managed to launch, scale and exit 2 SaaS products successfully. Today I am launching a new service offering - Query Labs - Helping you build AI agents for your startups. Like all my previous products, I will be building this in public and share my learning along the way. Here's what I have built so far : Microsponsors ( Fail ) My first product ever. I tried to create a marketplace for newsletter writers to find sponsorship opportunity. Got a few very big newsletter listed on the marketplace as well. However, building marketplace is tough. I found it very difficult to bring in sponsors. Ended up shutting it down, AI Query (Exit - Pre revenue ) It was the second half of 2022 and GPT-3 was the most advance AI on the market. I decided to build a tool that can help developers and non-technical folks write SQL queries by just asking in plain english. I got my first taste of success with this. Had a decent offer even before I figured out monetisation. Accepted the offer to focus on my next product which had already started gaining traction AI Excel Bot ( Exit - Revenue Generating ) AI Excel Bot was my wild success. I had worked hard on the SEO for the site, along with the UI / UX to make it the best AI to write excel formulas and general excel task. There was already a large competitor in the market. However, the reality is that you don't need to be the top player. There is always room for multiple players to survive in a large market. You just need to find the good differentiating factor For AI Excel Bot, the differentiator was the chrome extension, that helped users access it anywhere on the internet. Scaled the product to more than 40k users at the time of exit. However, in the end I decided to exit and focus on my software service business that needed more time. Tutore AI ( Fail ) I wanted to build something useful for students to help them learn better. Tutore was my idea to build AI tools for students. I did launch quickly with multiple tools. However, wasn't motivated enough to continue with the grind. I have decided to sell the product. Have had some meetings with potential buyers but didn't agree on price. Prompt Hackers ( 1k users but no revenue ) Prompt Hackers is a directory of AI prompts for all the use cases you can image. I focused a lot on bringing traffic and newsletter subscription from the day 1. I have never had a problem bringing initial set of users to my products. Prompt Hackers was getting close to 20k page views a month. At the same time we had close to 1k newsletter subscribers. Since our target customers were people choosing to use ChatGPT / Bard instead of some specific software for their task, I built a Prompt Generation and Prompt Optimisation AI. Along with this I also created features to build private prompt library. To make the experience even better, I launched a Chrome Extension that helps users access the prompt generation AI and their prompt library while using ChatGPT. However, I couldn't figure out monetisation. I still get close to 4k page views per month with no marketing at all. There are users who use the AI tools and the prompt library feature daily. But, since I couldn't figure out monetisation, I decided to not put time into the project. There you go. These are all the products I have built in the last 3 years. I have been heavy investing myself in the latest tech in LLMs and AI agents. I know the biggest challenge for AI founders is the AI agents and backend pipelines. That's why I am launching Query Labs. To help you build the best AI implementation for your innovative AI startup. I would love to hear feedback from the community. I will be sharing my learning with my new service along the way. Thanks!

Solopreneur making $40k MRR with a No Code SaaS sideproject
reddit
LLM Vibe Score0
Human Vibe Score1
bts_23This week

Solopreneur making $40k MRR with a No Code SaaS sideproject

Hey, I'm Elias and I do case studies analyzing successful startups and solopreneurs. I wanted to share the summarized version of this one with you because this entrepreneurial journey blew my mind. This post will be about FormulaBot (ExcelFormulaBot), an AI No Code SaaS founded by David Bressler back in August 2022. FormulaBot is currently making $40k MRR (monthly recurring revenue). How did the founder come up with the idea. David is a data guy who worked in analytics for several years. In July 2022, David got really interested in AI, especially ChatGPT. One night, he tried it out at home, just like we all did back in the time. But in his case, trying ChatGPT gave him a big idea. That idea ended up making him a lot of money and changing the life of 750 million people who use Excel. That night David started by asking GPT easy questions, then complex ones. Since he used Excel a lot and helped his colleagues with it, he thought about an AI that could make Excel easier, like generating formulas from text. He looked online but found nothing. Seeing a big chance, he decided to do something about it. What challenges did the founder face. But David didn’t have any idea about how to develop an app. However, with no-code tools this is not a problem anymore. He discovered Bubble, a no-code web app tool that could connect with the OpenAI API.After, learning Bubble from YouTube tutorials and through trial and error and spending his nights studying the OpenAI API documentation, he launched the first version of the app in around three weeks. Strategies that made the project successful. David validated his idea by posting about ExcelFormulaBot on a Reddit Excel subreddit, receiving surprising attention with 10,000 upvotes. This encouraged him to offer the tool for free to gather feedback. Facing a hefty $4,999 API bill after the Reddit post, David quickly monetized his product with a subscription-based SaaS website. On launch day, 82 customers signed up, surpassing his expectations. A successful Product Hunt launch followed, generating $2.4k in sales within 24 hours, and a TikTok influencer with 4.5 million followers brought in thousands of new users overnight with a viral video. Marketing approach: -Paid ads: FormulaBot boosted website traffic with Paid Ads, notably on Google Ads, prioritizing Quality Score. This ensured ads aligned better with user searches, maximizing visibility and cost-efficiency, targeting those seeking Excel formula assistance. -SEO: a) Content/Keyword optimization: FormulaBot improved its SEO by making helpful pages about Excel formulas, like guides on topics such as "How to use SUMIFS." b) Site Speed Enhancement: David boosted FormulaBot's marketing site speed by moving it from Bubble to Framer, aiming to improve user experience and SEO performance. c) On-page optimization: David optimized FormulaBot's on-page elements by adjusting title tags, meta descriptions, and content to enhance SEO performance and align with search intent. These strategic refinements aimed to address ranking declines and emphasize FormulaBot's uniqueness, ultimately improving its visibility and competitiveness in search results. -Virality: FormulaBot went viral as users found it highly useful and cool. Influencers on platforms like TikTok and Twitter shared it with their followers because they found it valuable. Offering numerous free features further enhanced its appeal. Lessons: successes and mistakes. ✅ Leverage industry expertise: David identified a problem in analytics and used his experience to start an online business addressing it, turning an industry challenge into a profitable venture. ✅ Embrace learning new skills: Despite lacking initial technical know-how, David learned what he needed to develop the software himself, demonstrating a commitment to continuous learning and adaptability crucial for success. ❌ Minimize dependency on third parties: Relying solely on the ChatGPT API poses risks for FormulaBot. Any issues with the API could disrupt functionality and limit scalability. ⁉️ Caution with free tools: Offering a free tool can attract users and drive viral growth, but converting them to paying customers is challenging. Avoid relying solely on a 100% free model unless your revenue comes from non-user sources like ads. For businesses dependent on user subscriptions or purchases, balancing user attraction with conversion challenges is crucial. How could you replicate this idea step-by-step. To replicate the success of FormulaBot and similar AI wrapper startups, it's crucial to tread carefully in a competitive market. Avoid mere replication of existing solutions unless you can offer something distinct or superior. Consider these steps to effectively develop an AI Wrapper/ChatGPT wrapper product using Bubble as a no-code tool: Design the user interface: Utilize Bubble's drag-and-drop editor to create a user-friendly interface with input fields, buttons, and result displays. Set up workflows: Define workflows to connect the interface with the ChatGPT API, enabling seamless interaction between users and the AI. Integrate the ChatGPT API: Obtain the API key from OpenAI and integrate it into your app using Bubble's API connector feature. Test and gather feedback: Thoroughly test your app, soliciting feedback to refine functionality and usability. Refine and optimize: Continuously improve your app based on user input and testing results to enhance performance and user experience. The in-depth version of the case study was originally posted here. Feel free to comment if you have any questions, and let me know which similar ideas you'd like me to analyze.

Looking for a technical co-founder to build LinkedIn’s rival
reddit
LLM Vibe Score0
Human Vibe Score1
ItzdreeThis week

Looking for a technical co-founder to build LinkedIn’s rival

How do you connect with likeminded people? You see the polished wins everywhere, but what about the messy drafts , the awkward pitches and the moments you’re not sure you’ve got it right? Problem: The whole idea of founding and starting a business can be super intimidating for some people, specially those who don’t know any founders personally, those who don’t have a large network, those who don’t have rich parents with large networks, those not inserted in an entrepreneurial culture like in the US for example (which is my case). Sometimes all you need is the right support network, and too see others do what you want, to know that it’s possible! Everyone has an “ultimate guide” to make 7 figures or build a business on YouTube but NO ONE shoes you the HOW, just the results… I’ve tried joining founder communities, LinkedIn ,Reddit … you name it. Most of these founder communities are inaccessible for regular people and often ask for you to have an already existing business with a min ARR… or their simply geography based and if you’re not in a certain area you can’t really participate… As of LinkedIn… full of empty AI generated posts about how some random dude raised $10m in 7 days. Okay Jonathan, but what about the HOW?? How did you write your first pitch? How many rejection calls did you get? What is an MVP? There simply isn’t a platform out there to document your founding journey and find inspiration within a community of people who are doing the same as you. What better way to feel motivated then to see someone actually document their process? Solution: I’m working on building a social media platform for aspiring/founders to connect through the RAW, UNFILTERED process of turning ideas into reality in REAL time. It’s all gonna be around the “building in public “ concept and content creation. Picture an instagram/tiktok profile where instead of seeing someone’s dog you see them documenting their founding process—from the moment they had the idea, to the moment they launched, you’re going to see the successes, the fails, the rejected calls, all documented through actual content and not some AI generated LinkedIn post. Imagine if you wanted to learn about how Steve Jobs started Apple , you could simply go through his profile on this app—exactly. To make sure all interactions are meaningful people would have to apply. It’s a truly curated community, with REAL people, building REAL things in REAL time, and not just tell us the story of how they did it… Audience: I’m targeting people who have a burning desire of building a business and early stage founders starting their founder journeys, that don’t have a support network and simply don’t know where to start. People who are tired of watching 30 min “ultimate guides “ on how to make it on YouTube from “business gurus” selling courses. People who haven’t reached the min ARR required to join an “exclusive “ founder a community. People who can’t simply just move to the US to get into the “exclusive” YC combinator. People who want to connect with real people building real things and not anonymous people on Reddit, or LinkedIn influencers again trying to promote their services. I believe in the idea because I’m also part of my audience. Have always wanted to start my own thing just never knew how to and where to find a community of likeminded people . I don’t know any founders myself, I come from a non-entrepreneurial society and I’d pay good money to access a community of REAL passionate founders building REAL things, in REAL time. This would be my first ever business, and I want to share my journey building it and hopefully inspire others to just start so I’ve created a mailing list to keep anyone interested in the project updated on my fails , learnings and successes. I’m not worried about “making it” but just “starting” and hopefully reach the right audience and inspire anyone to start whatever they have marinating in their thoughts. If you’re a founder struggling with staying consistent or an aspiring founder with an insane desire of starting and don’t know how to start, I’d love to get your feedback on what’s stopping you, your challenges starting out and what you’d find useful in such platform. And finally would this be something that interests you?? Feel free to subscribe to get new updates 🫶🏼 : https://mailchi.mp/037c56b89994/d-founder PS: casually looking for a technical co-founder

How I Built a $6k/mo Business with Cold Email
reddit
LLM Vibe Score0
Human Vibe Score1
Afraid-Astronomer130This week

How I Built a $6k/mo Business with Cold Email

I scaled my SaaS to a $6k/mo business in under 6 months completely using cold email. However, the biggest takeaway for me is not a business that’s potentially worth 6-figure. It’s having a glance at the power of cold emails in the age of AI. It’s a rapidly evolving yet highly-effective channel, but no one talks about how to do it properly. Below is the what I needed 3 years ago, when I was stuck with 40 free users on my first app. An app I spent 2 years building into the void. Entrepreneurship is lonely. Especially when you are just starting out. Launching a startup feel like shouting into the dark. You pour your heart out. You think you have the next big idea, but no one cares. You write tweets, write blogs, build features, add tests. You talk to some lukewarm leads on Twitter. You do your big launch on Product Hunt. You might even get your first few sales. But after that, crickets... Then, you try every distribution channel out there. SEO Influencers Facebook ads Affiliates Newsletters Social media PPC Tiktok Press releases The reality is, none of them are that effective for early-stage startups. Because, let's face it, when you're just getting started, you have no clue what your customers truly desire. Without understanding their needs, you cannot create a product that resonates with them. It's as simple as that. So what’s the best distribution channel when you are doing a cold start? Cold emails. I know what you're thinking, but give me 10 seconds to change your mind: When I first heard about cold emailing I was like: “Hell no! I’m a developer, ain’t no way I’m talking to strangers.” That all changed on Jan 1st 2024, when I actually started sending cold emails to grow. Over the period of 6 months, I got over 1,700 users to sign up for my SaaS and grew it to a $6k/mo rapidly growing business. All from cold emails. Mastering Cold Emails = Your Superpower I might not recommend cold emails 3 years ago, but in 2024, I'd go all in with it. It used to be an expensive marketing channel bootstrapped startups can’t afford. You need to hire many assistants, build a list, research the leads, find emails, manage the mailboxes, email the leads, reply to emails, do meetings. follow up, get rejected... You had to hire at least 5 people just to get the ball rolling. The problem? Managing people sucks, and it doesn’t scale. That all changed with AI. Today, GPT-4 outperforms most human assistants. You can build an army of intelligent agents to help you complete tasks that’d previously be impossible without human input. Things that’d take a team of 10 assistants a week can now be done in 30 minutes with AI, at far superior quality with less headaches. You can throw 5000 names with website url at this pipeline and you’ll automatically have 5000 personalized emails ready to fire in 30 minutes. How amazing is that? Beyond being extremely accessible to developers who are already proficient in AI, cold email's got 3 superpowers that no other distribution channels can offer. Superpower 1/3 : You start a conversation with every single user. Every. Single. User. Let that sink in. This is incredibly powerful in the early stages, as it helps you establish rapport, bounce ideas off one another, offer 1:1 support, understand their needs, build personal relationships, and ultimately convert users into long-term fans of your product. From talking to 1000 users at the early stage, I had 20 users asking me to get on a call every week. If they are ready to buy, I do a sales call. If they are not sure, I do a user research call. At one point I even had to limit the number of calls I took to avoid burnout. The depth of the understanding of my customers’ needs is unparalleled. Using this insight, I refined the product to precisely cater to their requirements. Superpower 2/3 : You choose exactly who you talk to Unlike other distribution channels where you at best pick what someone's searching for, with cold emails, you have 100% control over who you talk to. Their company Job title Seniority level Number of employees Technology stack Growth rate Funding stage Product offerings Competitive landscape Social activity (Marital status - well, technically you can, but maybe not this one…) You can dial in this targeting to match your ICP exactly. The result is super low CAC and ultra high conversion rate. For example, My competitors are paying $10 per click for the keyword "HARO agency". I pay $0.19 per email sent, and $1.92 per signup At around $500 LTV, you can see how the first means a non-viable business. And the second means a cash-generating engine. Superpower 3/3 : Complete stealth mode Unlike other channels where competitors can easily reverse engineer or even abuse your marketing strategies, cold email operates in complete stealth mode. Every aspect is concealed from end to end: Your target audience Lead generation methods Number of leads targeted Email content Sales funnel This secrecy explains why there isn't much discussion about it online. Everyone is too focused on keeping their strategies close and reaping the rewards. That's precisely why I've chosen to share my insights on leveraging cold email to grow a successful SaaS business. More founders need to harness this channel to its fullest potential. In addition, I've more or less reached every user within my Total Addressable Market (TAM). So, if any competitor is reading this, don't bother trying to replicate it. The majority of potential users for this AI product are already onboard. To recap, the three superpowers of cold emails: You start a conversation with every single user → Accelerate to PMF You choose exactly who you talk to → Super-low CAC Complete stealth mode → Doesn’t attract competition By combining the three superpowers I helped my SaaS reach product-marketing-fit quickly and scale it to $6k per month while staying fully bootstrapped. I don't believe this was a coincidence. It's a replicable strategy for any startup. The blueprint is actually straightforward: Engage with a handful of customers Validate the idea Engage with numerous customers Scale to $5k/mo and beyond More early-stage founders should leverage cold emails for validation, and as their first distribution channel. And what would it do for you? Update: lots of DM asking about more specifics so I wrote about it here. https://coldstartblueprint.com/p/ai-agent-email-list-building

How to get your first 10 customers with cold email
reddit
LLM Vibe Score0
Human Vibe Score0.905
LieIgnorant6304This week

How to get your first 10 customers with cold email

Cold email is an insane channel for growth, especially for bootstrapped startups as it's very low cost but completely scalable. Yet there's a huge difference between blind cold emailing and crafting personalized outreach for select individuals. The latter is a legit channel which makes many businesses scale in short amounts of time (i.e. see Alex Hormozi’s ‘$100 Million Dollar Offer’). My goal here is to help other founders do what I did but quicker. So you can learn faster. And then teach me something new too. These are the step-by-step lessons I've learnt as a bootstrapped founder, showing you how to use cold email to get your first customers: Find your leads Write engaging email copy Personalize your outreach Send emails Scale up Find your leads This is a key step. Once you figure out exactly who you want to target and where to find them, you'll be printing money. There's a few different ways to go about finding valuable leads. The secret? Keep testing different approaches until you strike gold. First, dedicate some time every day to find and organise leads. Then, keep an eye on your numbers and bounce rates. If something's not working, switch it up. Stick with what's bringing in results and ditch what's not. It's all about staying flexible and learning as you go. Apollo.io is a great starting point as an effective lead source. Their tool allows you to specify filters including job titles, location, company size, industry, keywords, technologies, and revenue. Get specific with your searches to find your ideal customers. Once you have some results you can save and export them, you'll get a list of contact information including name, email, company, LinkedIn, ready to be verified and used. LinkedIn Sales Navigator is another good source. You can either do manual searches or use a scraper to automate the process. The scrapers I'd recommend checking out are FindyMail and Evaboot. As with Apollo, it's best to get very specific with your targeting so you know the prospect will be interested in your offer. BuiltWith is more expensive but ideal if you're targeting competitors. With BuiltWith you can build lists based on what technologies companies are using. For example if you're selling a Shopify app, you'd want to know websites or stores using Shopify, and reach out to them. The best lead sources will always be those that haven't been contacted a lot in the past. If you are able to find places where your target audience uniquely hangs out, and you can get their company website domains, they have the potential to be scrapped, and you have a way to personalize like "I spotted your comment on XYZ website". Once you've got your leads, keep them organized. Set up folders for different niches, countries, company sizes, so you can review what works and what doesn't. One more thing – before you start firing off emails, make sure those addresses are verified. Always use an email verifier to clean up your list and avoid bounces that may affect your sending reputation, and land you in the spam folder. I use Neverbounce for this but there are other tools available. Write engaging email copy Writing a good copy that gets replies is difficult, it changes depending on your offer/audience and nobody knows what's going to work. The best approach is to keep testing different targeting and messaging until you find what works. However, there are some key rules to stick to that I've outlined. For the subject line, keep it short and personalized. Try to write something that sparks interest, and mention the recipients name: Thought you’d like this {{first name}} {{firstName}} - quick question For the email body it's best to use a framework of personalization, offer, then call to action. Personalization is an entire subject in its own right, which I've covered below. In short, a personalized email opener is the best way to grab their attention, and let them know the email is relevant to them and to keep reading. Take it from Alex Hormozi and his $100M Offers playbook – your offer is very important to get right. Make sure your offer hits the mark for your target audience, and get as specific as possible. For example: I built a SaaS shopify app for small ecommerce businesses selling apparel that doubles your revenue in 60-days or your money back. We developed a cold email personalization tool for lead generation agencies that saves hundreds of hours, and can 3x your reply rate. Lastly, the CTA. The goal here isn't to get sign-ups directly from your first email. It's better to ask a brief question about whether the prospect would be interested in learning more. Something very low friction, that warrants a response. Some examples might include: Would you be interested in learning more about this? Can we connect a bit more on this? Mind if I send over a loom I recorded for you? Never send any links in the first email. You've reached out to this person because you have good reason to believe they'd find real value in your offer, and you want to verify if that's the case. After you get one reply, this is a great positive signal and from there you can send a link, book a call, provide a free resource, whatever makes sense based on their response. Personalize your outreach Personalization is one of the most important parts of the process to get right. Your recipient probably receives a multitude of emails every day, how can you make yours stand out, letting them know you've done your research, and that your email is relevant to them? Personalizing each email ensures you get more positive replies, and avoid spam filters, as your email is unique and hasn't been copied and pasted a million times over. The goal is to spark the recipient's interest, and let them know that you're contacting them for good reason. You might mention a recent achievement, blog post or product release that led you to reach out to the prospect specifically. For example: Your post on "Doing Nothing" gave me a good chuckle. Savvy marketing on Cadbury's part. Saw that you've been at Google for just under a year now as a new VP of sales. Spotted that you've got over 7 years of experience in the digital marketing space. Ideally you'll mention something specifically about the prospect or their company that relates to your offer. The downside to personalization is that it's hard to get right, and very time consuming at scale, but totally worth it. Full disclosure, me and my partner Igor just launched our new startup ColdClicks which uses AI to generate hyper-personalized email openers at scale. We built the tool as we were sending hundreds of emails a day, and personalizing every individual email took hours out of our day. ColdClicks automates this process, saving you time and getting you 2-3x more replies. Send emails At this stage you've decided on who you're targeting, you've mined some leads, and written copy. Now it's time to get sending. You can do this manually by copy and pasting each message, but one of the reasons cold email is so powerful is that it's scalable. When you build a process that gets customers, you'll want to send as many emails as you can to your target market. To get started quickly, you can use a mail-merge gmail tool, the best I've used is Maileteor. With Maileteor you upload your lead data to Google sheets, set-up an email template and Mailmetor will send out emails every day automatically. In your template you can define variables including name, company, and personalization to ensure your email is unique for each recipient. Alternatively, you may opt for a more comprehensive tool such as Instantly. Instantly includes unlimited email sending and accounts. There's more initial setup involved as you'll need to set-up Google workspace, buy sending domains, and warm up your email accounts, but when you become familiar with the process you can build a powerful lead generation / customer acquisition machine. Some key points to note, it's very important to warm up any new email accounts you set up. Warmup is the process of gradually establishing a positive reputation with email service providers like Gmail or Yahoo. Make sure to set up DKIM and DMARC on those new email accounts too, to maximise your chances of landing in the inbox. Scale up Once you've found a process that works, good things happen, and it becomes a numbers game. As you get replies and start to see new users signing up, you'll want to scale the process and send more emails. It's straightforward to add new sending accounts in a sending tool like Instantly, and you'll want to broaden your targeting when mining to test new markets. Unfortunately, sending more emails usually comes with a drop in reply rate as you have less time to personalize your messaging for each recipient. This is where ColdClicks shines. The tool allows you to upload thousands of leads and generate perfectly relevant email personalizations for every lead in your list, then export to your favorite sending tool. The examples I listed above in the personalization section were all generated by ColdClicks. Wrapping it up Cold email is an amazing way to validate your product and get new customers. The channel gets a bad rap, but there's a huge difference between blind cold emailing and crafting personalized outreach for individuals who will find value in your product. It's perfect for bootstrapped founders due to its affordability and scalability, and it's the driver of growth for many SaaS businesses. Time to get your first 10 customers! As you start sending, make it a habit to regularly check for new leads. Always experiment with market/messaging, track every campaign so you can learn what's working and iterate, and when you do get positive responses, reply as soon as you can!

I acquired a SaaS for ~5 figures to solve my content problem
reddit
LLM Vibe Score0
Human Vibe Score1
Either_Discussion635This week

I acquired a SaaS for ~5 figures to solve my content problem

In 2023 I bought a SaaS called Cuppa AI. I actually found the product on twitter, run by a very talented engineer in the UK.  I’ve spent tens of thousands of dollars on content for various media companies. In one consumer health company, it cost us around $200-$500 for each SEO optimized article. This adds up pretty quickly. Not forgetting the 20 hours of edits! This isn’t just an isolated problem for a single company. It’s industry wide and affects small business + agency owners alike. I spent over a decade in media, and have seen many agency founders complain about long lead times and high costs for low output.  This is an issue. Large swathes of would-be customers that prefer to consume content before buying are being ignored - either because it takes too long or costs too much for founders to scale this channel.   I eventually became tired of the media content game in 2022 and looked into using SaaS to solve my previous life’s challenges. I started building, acquiring and scaling a portfolio of products that I found useful in my day to day. But the content issue was still there.  So I started to look for ways to reduce the time + cost content burden for my own portfolio.   I initially discovered Cuppa using it for my own personal pains of content research, editing, publishing, and scaling. But then I saw potential. I wanted to turn it into an end to end solution for the content gap that myself and other business owners weren’t taking advantage of because of time, cost, or other priorities.  I sent a DM. Then a few calls later, I acquired it in June 2023.  I chose cuppa vs other competing products for a few reasons:  The founder gave excellent support during and post acquisition  It already had a large, loyal existing user base I’d personally used it and solved a pain with it. I saw the potential to solve many others for more people like me  The founder has put a ton of quality and care into it. There wasn’t a risk of picking up a patchy product, plus it already had great social distribution  It naturally fits my expertise from the ‘other side’. I was the original customer of it, so I knew I could evolve it with features that could create content at scale without losing the human touch  Since then we’ve added a lot of new stuff: Chat with articles Image generation for articles API keys to reduce cost Brand / persona voice custom prompts  Month on month iterative content improvement  Full stack content team that blends AI and human editors for agencies I’m still in full build mode with the team. I want to take it to a place where agencies and SMB owners can trust the AI + human content model enough to see this product as a no-brainer for their biz. I don’t believe in AI slop - there’s enough of that out there - I DO believe in using AI to do the grunt work, but to always have that human element a machine can’t quite mimic.  We have a lot more to get through, but I’m very excited about it. View of the done for you content workflow

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[N] AI Robotics startup Covariant (founded by Peter Chen, Pieter Abbeel, other Berkeley / ex-OpenAI folks) just raised $40M in Series B funding round. “Covariant has recently seen increased usage from clients hoping to avoid supply chain disruption due to the coronavirus pandemic.”
reddit
LLM Vibe Score0
Human Vibe Score0
baylearnThis week

[N] AI Robotics startup Covariant (founded by Peter Chen, Pieter Abbeel, other Berkeley / ex-OpenAI folks) just raised $40M in Series B funding round. “Covariant has recently seen increased usage from clients hoping to avoid supply chain disruption due to the coronavirus pandemic.”

h/t their announcement, VB and WSJ article: Logistics AI Startup Covariant Reaps $40 Million in Funding Round Company plans to explore uses of machine learning for automation beyond warehouse operations Artificial-intelligence robotics startup Covariant raised $40 million to expand its logistics automation technology to new industries and ramp up hiring, the company said Wednesday. The Berkeley, Calif.-based company makes AI software that it says helps warehouse robots pick objects at a faster rate than human workers, with a roughly 95% accuracy rate. Covariant is working with Austrian logistics-automation company Knapp AG and the robotics business of Swiss industrial conglomerate ABB Ltd., which provide hardware such as robot arms or conveyor belts to pair with the startup’s technology platform. “What we’ve built is a universal brain for robotic manipulation tasks,” Covariant co-founder and Chief Executive Peter Chen said in an interview. “We provide the software, they provide the rest of the systems.” Logistics-sector appetite for such technology is growing as distribution and fulfillment operations that have relied on human labor look to speed output and meet rising digital commerce demand. The coronavirus pandemic has accelerated that interest as businesses have sought to adjust their operations to volatile swings in consumer demand and to new restrictions, such as spacing workers further apart to guard against contagion. That has provided a bright spot for some technology startups even as many big backers scale back venture-capital spending. Last month logistics delivery platform Bringg said it raised $30 million in a Series D funding round, for example, as demand for home delivery of food, household goods and e-commerce staples soared among homebound consumers. Covariant’s Series B round brings the company’s total funding to $67 million. New investor Index Ventures led the round, with participation from existing investor Amplify Partners and new investors including Radical Ventures. Mr. Chen said the funding will be used to explore the technology’s potential application in other markets such as manufacturing, recycling or agriculture “where there are repetitive manual processes.” Covariant also plans to hire more engineering and other staff, he said. Covariant was founded in 2017 and now has about 50 employees. The company’s technology uses camera systems to capture images of objects, and artificial intelligence to analyze objects and how to pick them up. Machine learning helps Covariant-powered robots learn from experience. The startup’s customers include a German electrical supplies wholesaler that uses the technology to control a mechanical arm that picks out orders of circuit boards, switches and other goods.

[N] AI Robotics startup Covariant (founded by Peter Chen, Pieter Abbeel, other Berkeley / ex-OpenAI folks) just raised $40M in Series B funding round. “Covariant has recently seen increased usage from clients hoping to avoid supply chain disruption due to the coronavirus pandemic.”
reddit
LLM Vibe Score0
Human Vibe Score0
baylearnThis week

[N] AI Robotics startup Covariant (founded by Peter Chen, Pieter Abbeel, other Berkeley / ex-OpenAI folks) just raised $40M in Series B funding round. “Covariant has recently seen increased usage from clients hoping to avoid supply chain disruption due to the coronavirus pandemic.”

h/t their announcement, VB and WSJ article: Logistics AI Startup Covariant Reaps $40 Million in Funding Round Company plans to explore uses of machine learning for automation beyond warehouse operations Artificial-intelligence robotics startup Covariant raised $40 million to expand its logistics automation technology to new industries and ramp up hiring, the company said Wednesday. The Berkeley, Calif.-based company makes AI software that it says helps warehouse robots pick objects at a faster rate than human workers, with a roughly 95% accuracy rate. Covariant is working with Austrian logistics-automation company Knapp AG and the robotics business of Swiss industrial conglomerate ABB Ltd., which provide hardware such as robot arms or conveyor belts to pair with the startup’s technology platform. “What we’ve built is a universal brain for robotic manipulation tasks,” Covariant co-founder and Chief Executive Peter Chen said in an interview. “We provide the software, they provide the rest of the systems.” Logistics-sector appetite for such technology is growing as distribution and fulfillment operations that have relied on human labor look to speed output and meet rising digital commerce demand. The coronavirus pandemic has accelerated that interest as businesses have sought to adjust their operations to volatile swings in consumer demand and to new restrictions, such as spacing workers further apart to guard against contagion. That has provided a bright spot for some technology startups even as many big backers scale back venture-capital spending. Last month logistics delivery platform Bringg said it raised $30 million in a Series D funding round, for example, as demand for home delivery of food, household goods and e-commerce staples soared among homebound consumers. Covariant’s Series B round brings the company’s total funding to $67 million. New investor Index Ventures led the round, with participation from existing investor Amplify Partners and new investors including Radical Ventures. Mr. Chen said the funding will be used to explore the technology’s potential application in other markets such as manufacturing, recycling or agriculture “where there are repetitive manual processes.” Covariant also plans to hire more engineering and other staff, he said. Covariant was founded in 2017 and now has about 50 employees. The company’s technology uses camera systems to capture images of objects, and artificial intelligence to analyze objects and how to pick them up. Machine learning helps Covariant-powered robots learn from experience. The startup’s customers include a German electrical supplies wholesaler that uses the technology to control a mechanical arm that picks out orders of circuit boards, switches and other goods.

[N] Montreal-based Element AI sold for $230-million as founders saw value mostly wiped out
reddit
LLM Vibe Score0
Human Vibe Score1
sensetimeThis week

[N] Montreal-based Element AI sold for $230-million as founders saw value mostly wiped out

According to Globe and Mail article: Element AI sold for $230-million as founders saw value mostly wiped out, document reveals Montreal startup Element AI Inc. was running out of money and options when it inked a deal last month to sell itself for US$230-milion to Silicon Valley software company ServiceNow Inc., a confidential document obtained by the Globe and Mail reveals. Materials sent to Element AI shareholders Friday reveal that while many of its institutional shareholders will make most if not all of their money back from backing two venture financings, employees will not fare nearly as well. Many have been terminated and had their stock options cancelled. Also losing out are co-founders Jean-François Gagné, the CEO, his wife Anne Martel, the chief administrative officer, chief science officer Nick Chapados and Yoshua Bengio, the University of Montreal professor known as a godfather of “deep learning,” the foundational science behind today’s AI revolution. Between them, they owned 8.8 million common shares, whose value has been wiped out with the takeover, which goes to a shareholder vote Dec 29 with enough investor support already locked up to pass before the takeover goes to a Canadian court to approve a plan of arrangement with ServiceNow. The quartet also owns preferred shares worth less than US$300,000 combined under the terms of the deal. The shareholder document, a management proxy circular, provides a rare look inside efforts by a highly hyped but deeply troubled startup as it struggled to secure financing at the same time as it was failing to live up to its early promises. The circular states the US$230-million purchase price is subject to some adjustments and expenses which could bring the final price down to US$195-million. The sale is a disappointing outcome for a company that burst onto the Canadian tech scene four years ago like few others, promising to deliver AI-powered operational improvements to a range of industries and anchor a thriving domestic AI sector. Element AI became the self-appointed representative of Canada’s AI sector, lobbying politicians and officials and landing numerous photo ops with them, including Prime Minister Justin Trudeau. It also secured $25-million in federal funding – $20-million of which was committed earlier this year and cancelled by the government with the ServiceNow takeover. Element AI invested heavily in hype and and earned international renown, largely due to its association with Dr. Bengio. It raised US$102-million in venture capital in 2017 just nine months after its founding, an unheard of amount for a new Canadian company, from international backers including Microsoft Corp., Intel Corp., Nvidia Corp., Tencent Holdings Ltd., Fidelity Investments, a Singaporean sovereign wealth fund and venture capital firms. Element AI went on a hiring spree to establish what the founders called “supercredibility,” recruiting top AI talent in Canada and abroad. It opened global offices, including a British operation that did pro bono work to deliver “AI for good,” and its ranks swelled to 500 people. But the swift hiring and attention-seeking were at odds with its success in actually building a software business. Element AI took two years to focus on product development after initially pursuing consulting gigs. It came into 2019 with a plan to bring several AI-based products to market, including a cybersecurity offering for financial institutions and a program to help port operators predict waiting times for truck drivers. It was also quietly shopping itself around. In December 2018, the company asked financial adviser Allen & Co LLC to find a potential buyer, in addition to pursuing a private placement, the circular reveals. But Element AI struggled to advance proofs-of-concept work to marketable products. Several client partnerships faltered in 2019 and 2020. Element did manage to reach terms for a US$151.4-million ($200-million) venture financing in September, 2019 led by the Caisse de dépôt et placement du Québec and backed by the Quebec government and consulting giant McKinsey and Co. However, the circular reveals the company only received the first tranche of the financing – roughly half of the amount – at the time, and that it had to meet unspecified conditions to get the rest. A fairness opinion by Deloitte commissioned as part of the sale process estimated Element AI’s enterprises value at just US$76-million around the time of the 2019 financing, shrinking to US$45-million this year. “However, the conditions precedent the closing of the second tranche … were not going to be met in a timely manner,” the circular reads. It states “new terms were proposed” for a round of financing that would give incoming investors ranking ahead of others and a cumulative dividend of 12 per cent on invested capital and impose “other operating and governance constraints and limitations on the company.” Management instead decided to pursue a sale, and Allen contacted prospective buyers in June. As talks narrowed this past summer to exclusive negotiations with ServiceNow, “the company’s liquidity was diminishing as sources of capital on acceptable terms were scarce,” the circular reads. By late November, it was generating revenue at an annualized rate of just $10-million to $12-million, Deloitte said. As part of the deal – which will see ServiceNow keep Element AI’s research scientists and patents and effectively abandon its business – the buyer has agreed to pay US$10-million to key employees and consultants including Mr. Gagne and Dr. Bengio as part of a retention plan. The Caisse and Quebec government will get US$35.45-million and US$11.8-million, respectively, roughly the amount they invested in the first tranche of the 2019 financing.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company
reddit
LLM Vibe Score0
Human Vibe Score0.778
wutangsamThis week

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company

I’ve learned so much over the years from this subreddit. I thought I’d return the favour and share some of my own learnings. In November 2020 my best friend and I had an idea. “What if we could find out which stocks the Internet is talking about?” This formed the origins of Ticker Nerd. 9 months later we sold Ticker Nerd to Finder (an Australian fintech company valued at around $500m). In this post, I am going to lay out how we got there. How we came up with the idea First off, like other posts have covered - you don’t NEED a revolutionary or original idea to build a business. There are tonnes of “boring” businesses making over 7 figures a year e.g. law firms, marketing agencies, real estate companies etc. If you’re looking for an exact formula to come up with a great business idea I’m sorry, but it doesn’t exist. Finding new business opportunities is more of an art than a science. Although, there are ways you can make it easier to find inspiration. Below are the same resources I use for inspiration. I rarely ever come up with ideas without first searching one of the resources below for inspiration: Starter Story Twitter Startup Ideas My First Million Trends by the Hustle Trends VC To show how you how messy, random and unpredictable it can be to find an idea - let me explain how my co-founder and I came up with the idea for Ticker Nerd: We discovered a new product on Twitter called Exploding Topics. It was a newsletter that uses a bunch of software and algorithms to find trends that are growing quickly before they hit the mainstream. I had recently listened to a podcast episode from My First Million where they spoke about Motley Fool making hundreds of millions from their investment newsletters. We asked ourselves what if we could build a SaaS platform similar to Exploding Topics but it focused on stocks? We built a quick landing page using Carrd + Gumroad that explained what our new idea will do and included a payment option to get early access for $49. We called it Exploding Stock (lol). We shared it around a bunch of Facebook groups and subreddits. We made $1,000 in pre-sales within a couple days. My co-founder and I can’t code so we had to find a developer to build our idea. We interviewed a bunch of potential candidates. Meanwhile, I was trawling through Wall Street Bets and found a bunch of free tools that did roughly what we wanted to build. Instead of building another SaaS tool that did the same thing as these free tools we decided to pivot from our original idea. Our new idea = a paid newsletter that sends a weekly report that summarises 2 of the best stocks that are growing in interest on the Internet. We emailed everyone who pre-ordered access, telling them about the change and offered a full refund if they wanted. tl;dr: We essentially combined two existing businesses (Exploding Topics and Motley Fool) and made it way better. We validated the idea by finding out if people will actually pay money for it BEFORE we decided to build it. The idea we started out with changed over time. How to work out if your idea will actually make money It’s easy to get hung up on designing the logo or choosing the perfect domain name for your new idea. At this stage none of that matters. The most important thing is working out if people will pay money for it. This is where validation comes in. We usually validate ideas using Carrd. It lets you build a simple one page site without having to code. The Ticker Nerd site was actually built using a Carrd template. Here’s how you can do it yourself (at a high level): Create a Carrd pro account (yes it's a $49 one off payment but you’ll get way more value out of it). Buy a cheap template and send it to your Carrd account. You can build your own template but this will save you a lot of time. Once the template reaches your Carrd account, duplicate it. Leave the original so it can be duplicated for other ideas. Jump onto Canva (free) and create a logo using the free logos provided. Import your logo. Add copy to the page that explains your idea. Use the AIDA formula. Sign up to Gumroad (free) and create a pre-sale campaign. Create a discounted lifetime subscription or version of the product. This will be used pre-sales. Add the copy from the site into the pre-sale campaign on Gumroad. Add a ‘widget’ to Carrd and connect it to Gumroad using the existing easy integration feature. Purchase a domain name. Connect it to Carrd. Test the site works. Share your website Now the site is ready you can start promoting it in various places to see how the market reacts. An easy method is to find relevant subreddits using Anvaka (Github tool) or Subreddit Stats. The Anvaka tool provides a spider map of all the connected subreddits that users are active in. The highlighted ones are most relevant. You can post a thread in these subreddits that offer value or can generate discussion. For example: ‘I’m creating a tool that can write all your copy, would anyone actually use this?’ ‘What does everything think of using AI to get our copy written faster?’ ‘It’s time to scratch my own itch, I’m creating a tool that writes marketing copy using GPT-3. What are the biggest problems you face writing marketing copy? I’ll build a solution for it’ Reddit is pretty brutal these days so make sure the post is genuine and only drop your link in the comments or in the post if it seems natural. If people are interested they’ll ask for the link. Another great place to post is r/entrepreuerridealong and r/business_ideas. These subreddits expect people to share their ideas and you’ll likely make some sales straight off the bat. I also suggest posting in some Facebook groups (related to your idea) as well just for good measure. Assess the results If people are paying you for early access you can assume that it’s worth building your idea. The beauty of posting your idea on Reddit or in Facebook groups is you’ll quickly learn why people love/hate your idea. This can help you decide how to tweak the idea or if you should drop it and move on to the next one. How we got our first 100 customers (for free) By validating Ticker Nerd using subreddits and Facebook groups this gave us our first paying customers. But we knew this wouldn’t be sustainable. We sat down and brainstormed every organic strategy we could use to get traction as quickly as possible. The winner: a Product Hunt launch. A successful Product Hunt launch isn’t easy. You need: Someone that has a solid reputation and audience to “hunt” your product (essentially an endorsement). An aged Product Hunt account - you can’t post any products if your account is less than a week old. To be following relevant Product Hunt members - since they get notified when you launch a new product if they’re following you. Relationships with other builders and makers on Product Hunt that also have a solid reputation and following. Although, if you can pull it off you can get your idea in front of tens of thousands of people actively looking for new products. Over the next few weeks, I worked with my co-founder on connecting with different founders, indie hackers and entrepreneurs mainly via Twitter. We explained to them our plans for the Product Hunt launch and managed to get a small army of people ready to upvote our product on launch day. We were both nervous on the day of the launch. We told ourselves to have zero expectations. The worst that could happen was no one signed up and we were in the same position as we’re in now. Luckily, within a couple of hours Ticker Nerd was on the homepage of Product Hunt and in the top 10. The results were instant. After 24 hours we had around 200 people enter their payment details to sign up for our free trial. These signups were equal to around $5,800 in monthly recurring revenue. \-- I hope this post was useful! Drop any questions you have below and I’ll do my best to respond :)

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience
reddit
LLM Vibe Score0
Human Vibe Score1
hopefully_usefulThis week

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience

I met my co-founder in late 2022 after an introduction from a mutual friend to talk about how to find contract Product Management roles. I was sporadically contracting at start-up at the time and he had just come out of another start-up that was wiped out by the pandemic. We hit it off, talking about ideas, sharing what other indie-hackers were doing, and given GPT-3’s prominence at the time, we started throwing around ideas about things we could build with it, if nothing else, just to learn. I should caveat, neither of us were AI experts when starting out, everything we learned has been through Twitter and blogs, my background is as an accountant, and his a consultant. Here’s how it went since then: &#x200B; Nov 2022 (+$50) \- We built a simple tool in around a week using GPT-3 fine-tuning and a no-code tool (Bubble) that helped UK university students write their personal statements for their applications \- We set some Google Ads going and managed to make a few sales (\~$50) in the first week \- OpenAI were still approving applications at the time and said this went against their “ethics” so we had to take it down &#x200B; Dec 2022 (+$200) \- We couldn’t stop coming up with ideas related to AI fine-tuning, but realised it was almost impossible to decide which to pursue \- We needed a deadline to force us so we signed up for the Ben’s Bites hackathon in late December \- In a week, we built and launched a no-code fine-tuning platform, allowing people to create fine-tuned models by dragging and dropping an Excel file onto it \- We launched it on Product Hunt, having no idea how to price it, and somehow managed to get \~2,000 visitors on the site and make 2 sales at $99 &#x200B; Jan 2023 (+$3,000) \- We doubled down on the fine-tuning idea and managed to get up to \~$300 MRR, plus a bunch of one-time sales and a few paid calls to help people get the most out of their models \- We quickly realised that people didn’t want to curate models themselves, they just wanted to dump data and get magic out \- That was when we saw people building “Talk with x book/podcast” on Twitter as side projects and realised that was the missing piece, we needed to turn it into a tool \- We started working on the new product in late January &#x200B; Feb 2023 (+$9,000) \- We started pre-selling access to an MVP for the new product, which allowed people to “chat with their data/content”, we got $5,000 in pre-sales, more than we made from the previous product in total \- By mid-February, after 3 weeks of building we were able to launch and immediately managed to get traction, getting to $1k MRR in < 1 week, building on the hype of ChatGPT and AI (we were very lucky here) &#x200B; Mar - Jul 2023 (+$98,000) \- We worked all the waking hours to keep up with customer demand, bugs, OpenAI issues \- We built integrations for a bunch of services like Slack, Teams, Wordpress etc, added tons of new functionality and continue talking to customers every day \- We managed to grow to $17k MRR (just about enough to cover our living expenses and costs in London) through building in public on Twitter, newsletters and AI directories (and a million other little things) \- We sold our fine-tuning platform for \~$20k and our university project for \~$3k on Acquire &#x200B; Aug 2023 (+$100,000) \- We did some custom development work based on our own product for a customer that proved pretty lucrative &#x200B; Sep - Oct 2023 (+$62,000) \- After 8 months of building constantly, we started digging more seriously into our usage and saw subscriptions plateauing \- We talked to and analysed all our paying users to identify the main use cases and found 75% were for SaaS customer support \- We took the leap to completely rebuild a version of our product around this use case, our biggest to date (especially given most features with no-code took us <1 day) &#x200B; Nov - Dec 2023 (+$53,000) \- We picked up some small custom development work that utilised our own tech \- We’re sitting at around $22k MRR now with a few bigger clients signed up and coming soon \- After 2 months of building and talking to users, we managed to finish our “v2” of our product, focussed squarely on SaaS customer support and launched it today. &#x200B; We have no idea what the response will be to this new version, but we’re pretty happy with it, but couldn’t have planned anything that happened to us in 2023 so who knows what will come of 2024, we just know that we are going to be learning a ton more. &#x200B; Overall, it is probably the most I have had to think in my life - other jobs you can zone out from time to time or rely on someone else if you aren’t feeling it - not when you are doing this, case and point, I am writing this with a banging head-cold right now, but wanted to get this done. A few more things we have learned along the way - context switching is unreal, as is keeping up with, learning and reacting to AI. There isn’t a moment of the day I am not thinking about what we do next. But while in some way we now have hundreds of bosses (our customers) I still haven’t felt this free and can’t imagine ever going back to work for someone else. Next year we’re really hoping to figure out some repeatable distribution channels and personally, I want to get a lot better at creating content/writing, this is a first step! Hope this helps someone else reading this to just try starting something and see what happens.

The delicate balance of building an online community business
reddit
LLM Vibe Score0
Human Vibe Score0.895
matthewbarbyThis week

The delicate balance of building an online community business

Hey /r/Entrepreneur 👋 Just under two years ago I launched an online community business called Traffic Think Tank with two other co-founders, Nick Eubanks and Ian Howells. As a Traffic Think Tank customer you (currently) pay $119 a month to get access to our online community, which is run through Slack. The community is focused on helping you learn various aspects of marketing, with a particular focus on search engine optimization (SEO). Alongside access to the Slack community, we publish new educational video content from outside experts every week that all customers have access to. At the time of writing, Traffic Think Tank has around 650 members spanning across 17 of the 24 different global time zones. I was on a business trip over in Sydney recently, and during my time there I met up with some of our Australia-based community members. During dinner I was asked by several of them how the idea for Traffic Think Tank came about and what steps we took to validate that the idea was worth pursuing.  This is what I told them… How it all began It all started with a personal need. Nick, an already successful entrepreneur and owner of a marketing agency, had tested out an early version Traffic Think Tank in early 2017. He offered real-time consulting for around ten customers that he ran from Slack. He would publish some educational videos and offer his advice on projects that the members were running. The initial test went well, but it was tough to maintain on his own and he had to charge a fairly high price to make it worth his time. That’s when he spoke to me and Ian about turning this idea into something much bigger. Both Ian and I offered something slightly different to Nick. We’ve both spent time in senior positions at marketing agencies, but currently hold senior director positions in 2,000+ public employee companies (HubSpot and LendingTree). Alongside this, as a trio we could really ramp up the quality and quantity of content within the community, spread out the administrative workload and just generally have more resources to throw at getting this thing off the ground. Admittedly, Nick was much more optimistic about the potential of Traffic Think Tank – something I’m very thankful for now – whereas Ian and I were in the camp of “you’re out of your mind if you think hundreds of people are going to pay us to be a part of a Slack channel”. To validate the idea at scale, we decided that we’d get an initial MVP of the community up and running with a goal of reaching 100 paying customers in the first six months. If we achieved that, we’d validated that it was a viable business and we would continue to pursue it. If not, we’d kill it. We spent the next month building out the initial tech stack that enabled us to accept payments, do basic user management to the Slack channel, and get a one-page website up and running with information on what Traffic Think Tank was all about.  After this was ready, we doubled down on getting some initial content created for members – I mean, we couldn’t have people just land in an empty Slack channel, could we? We created around ten initial videos, 20 or so articles and then some long threads full of useful information within the Slack channel so that members would have some content to pour into right from the beginning.  Then, it was time to go live. The first 100 customers Fortunately, both Nick and I had built a somewhat substantial following in the SEO space over the previous 5-10 years, so we at least had a large email list to tap into (a total of around 40,000 people). We queued up some launch emails, set an initial price of $99 per month and pressed send. [\[LINK\] The launch email I sent to my subscribers announcing Traffic Think Tank](https://mailchi.mp/matthewbarby/future-of-marketing-1128181) What we didn’t expect was to sell all of the initial 100 membership spots in the first 72 hours. “Shit. What do we do now? Are we ready for this many people? Are we providing them with enough value? What if something breaks in our tech stack? What if they don’t like the content? What if everyone hates Slack?” All of these were thoughts running through my head. This brings me to the first great decision we made: we closed down new membership intake for 3 months so that we could focus completely on adding value to the first cohort of users. The right thing at the right time SEO is somewhat of a dark art to many people that are trying to learn about it for the first time. There’s hundreds of thousands (possibly millions) of articles and videos online that talk about how to do SEO.  Some of it’s good advice; a lot of it is very bad advice.  Add to this that the barrier to entry of claiming to be an “expert” in SEO is practically non-existent and you have a recipe for disaster. This is why, for a long time, individuals involved in SEO have flocked in their masses to online communities for information and to bounce ideas off of others in the space. Forums like SEObook, Black Hat World, WickedFire, Inbound.org, /r/BigSEO, and many more have, at one time, been called home by many SEOs.  In recent times, these communities have either been closed down or just simply haven’t adapted to the changing needs of the community – one of those needs being real-time feedback on real-world problems.  The other big need that we all spotted and personally had was the ability to openly share the things that are working – and the things that aren’t – in SEO within a private forum. Not everyone wanted to share their secret sauce with the world. One of the main reasons we chose Slack as the platform to run our community on was the fact that it solved these two core needs. It gave the ability to communicate in real-time across multiple devices, and all of the information shared within it was outside of the public domain. The other problem that plagued a lot of these early communities was spam. Most of them were web-based forums that were free to access. That meant they became a breeding ground for people trying to either sell their services or promote their own content – neither of which is conducive to building a thriving community. This was our main motivation for charging a monthly fee to access Traffic Think Tank. We spent a lot of time thinking through pricing. It needed to be enough money that people would be motivated to really make use of their membership and act in a way that’s beneficial to the community, but not too much money that it became cost prohibitive to the people that would benefit from it the most. Considering that most of our members would typically spend between $200-800 per month on SEO software, $99 initially felt like the perfect balance. Growing pains The first three months of running the community went by without any major hiccups. Members were incredibly patient with us, gave us great feedback and were incredibly helpful and accommodating to other members. Messages were being posted every day, with Nick, Ian and myself seeding most of the engagement at this stage.  With everything going smoothly, we decided that it was time to open the doors to another intake of new members. At this point we’d accumulated a backlog of people on our waiting list, so we knew that simply opening our doors would result in another large intake. Adding more members to a community has a direct impact on the value that each member receives. For Traffic Think Tank in particular, the value for members comes from three areas: The ability to have your questions answered by me, Nick and Ian, as well as other members of the community. The access to a large library of exclusive content. The ability to build connections with the wider community. In the early stages of membership growth, there was a big emphasis on the first of those three points. We didn’t have an enormous content library, nor did we have a particularly large community of members, so a lot of the value came from getting a lot of one-to-one time with the community founders. [\[IMAGE\] Screenshot of engagement within the Traffic Think Tank Slack community](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1322/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-in-Traffic-Think-Tank.png) The good thing about having 100 members was that it was just about feasible to give each and every member some one-to-one time within the month, which really helped us to deliver those moments of delight that the community needed early on. Two-and-a-half months after we launched Traffic Think Tank, we opened the doors to another 250 people, taking our total number of members to 350. This is where we experienced our first growing pains.  Our original members had become used to being able to drop us direct messages and expect an almost instant response, but this wasn’t feasible anymore. There were too many people, and we needed to create a shift in behavior. We needed more value to come from the community engaging with one another or we’d never be able to scale beyond this level. We started to really pay attention to engagement metrics; how many people were logging in every day, and of those, how many were actually posting messages within public channels.  We asked members that were logging in a lot but weren’t posting (the “lurkers”) why that was the case. We also asked the members that engaged in the community the most what motivated them to post regularly. We learned a lot from doing this. We found that the large majority of highly-engaged members had much more experience in SEO, whereas most of the “lurkers” were beginners. This meant that most of the information being shared in the community was very advanced, with a lot of feedback from the beginners in the group being that they “didn’t want to ask a stupid question”.  As managers of the community, we needed to facilitate conversations that catered to all of our members, not just those at a certain level of skill. To tackle this problem, we created a number of new channels that had a much deeper focus on beginner topics so novice members had a safe place to ask questions without judgment.  We also started running live video Q&As each month where we’d answer questions submitted by the community. This gave our members one-on-one time with me, Nick and Ian, but spread the value of these conversations across the whole community rather than them being hidden within private messages. As a result of these changes, we found that the more experienced members in the community were really enjoying sharing their knowledge with those with less experience. The number of replies within each question thread was really starting to increase, and the community started to shift away from just being a bunch of threads created by me, Nick and Ian to a thriving forum of diverse topics compiled by a diverse set of individuals. This is what we’d always wanted. A true community. It was starting to happen. [\[IMAGE\] Chart showing community engagement vs individual member value](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1602/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-Balance-Graph.jpg) At the same time, we started to realize that we’ll eventually reach a tipping point where there’ll be too much content for us to manage and our members to engage with. When we reach this point, the community will be tough to follow and the quality of any given post will go down. Not only that, but the community will become increasingly difficult to moderate. We’re not there yet, but we recognize that this will come, and we’ll have to adjust our model again. Advocating advocacy As we started to feel more comfortable about the value that members were receiving, we made the decision to indefinitely open for new members. At the same time, we increased the price of membership (from $99 a month to $119) in a bid to strike the right balance between profitability as a business and to slow down the rate at which we were reaching the tipping point of community size. We also made the decision to repay all of our early adopters by grandfathering them in to the original pricing – and committing to always do this in the future. Despite the price increase, we saw a continued flow of new members come into the community. The craziest part about this was that we were doing practically no marketing activities to encourage new members– this was all coming from word of mouth. Our members were getting enough value from the community that they were recommending it to their friends, colleagues and business partners.  The scale at which this was happening really took us by surprise and it told us one thing very clearly: delivering more value to members resulted in more value being delivered to the business. This is a wonderful dynamic to have because it perfectly aligns the incentives on both sides. We’d said from the start that we wouldn’t sacrifice value to members for more revenue – this is something that all three of us felt very strongly about. First and foremost, we wanted to create a community that delivered value to its members and was run in a way that aligned with our values as people. If we could find a way to stimulate brand advocacy, while also tightening the bonds between all of our individual community members, we’d be boosting both customer retention and customer acquisition in the same motion. This became our next big focus. [\[TWEET\] Adam, one of our members wore his Traffic Think Tank t-shirt in the Sahara desert](https://twitter.com/AdamGSteele/status/1130892481099382784) We started with some simple things: We shipped out Traffic Think Tank branded T-shirts to all new members. We’d call out each of the individuals that would submit questions to our live Q&A sessions and thank them live on air. We set up a new channel that was dedicated to sharing a quick introduction to who you are, what you do and where you’re based for all new members. We’d created a jobs channel and a marketplace for selling, buying and trading services with other members. Our monthly “blind dates” calls were started where you’d be randomly grouped with 3-4 other community members so that you could hop on a call to get to know each other better. The Traffic Think Tank In Real Life (IRL)* channel was born, which enabled members to facilitate in-person meetups with each other. In particular, we saw that as members started to meet in person or via calls the community itself was feeling more and more like a family. It became much closer knit and some members started to build up a really positive reputation for being particularly helpful to other members, or for having really strong knowledge in a specific area. [\[TWEET\] Dinner with some of the Traffic Think Tank members in Brighton, UK](https://twitter.com/matthewbarby/status/1117175584080134149) Nick, Ian and I would go out of our way to try and meet with members in real life wherever we could. I was taken aback by how appreciative people were for us doing this, and it also served as an invaluable way to gain honest feedback from members. There was another trend that we’d observed that we didn’t really expect to happen. More and more members were doing business with each another. We’ve had people find new jobs through the community, sell businesses to other members, launch joint ventures together and bring members in as consultants to their business. This has probably been the most rewarding thing to watch, and it was clear that the deeper relationships that our members were forming were resulting in an increased level of trust to work with each other. We wanted to harness this and take it to a new level. This brought us to arguably the best decision we’ve made so far running Traffic Think Tank… we were going to run a big live event for our members. I have no idea what I’m doing It’s the first week of January 2019 and we’re less than three weeks away from Traffic Think Tank LIVE, our first ever in-person event hosting 150 people, most of which are Traffic Think Tank members. It's like an ongoing nightmare I can’t wake up from. That was Nick’s response in our private admin channel to myself and Ian when I asked if they were finding the run-up to the event as stressful as I was. I think that all three of us were riding on such a high from how the community was growing that we felt like we could do anything. Running an event? How hard can it be? Well, turns out it’s really hard. We had seven different speakers flying over from around the world to speak at the event, there was a pre- and after event party, and we’d planned a charity dinner where we would take ten attendees (picked at random via a raffle) out for a fancy meal. Oh, and Nick, Ian and I were hosting a live Q&A session on stage. It wasn’t until precisely 48 hours before the event that we’d realized we didn’t have any microphones, nor had a large amount of the swag we’d ordered arrived. Plus, a giant storm had hit Philly causing a TON of flight cancellations. Perfect. Just perfect. This was honestly the tip of the iceberg. We hadn’t thought about who was going to run the registration desk, who would be taking photos during the event and who would actually field questions from the audience while all three of us sat on stage for our live Q&A panel. Turns out that the answer to all of those questions were my wife, Laura, and Nick’s wife, Kelley. Thankfully, they were on hand to save our asses. The weeks running up to the event were honestly some of the most stressful of my life. We sold around 50% of our ticket allocation within the final two weeks before the event. All of the event organizers told us this would happen, but did we believe them? Hell no!  Imagine having two weeks until the big day and as it stood half of the room would be completely empty. I was ready to fly most of my extended family over just to make it look remotely busy. [\[IMAGE\] One of our speakers, Ryan Stewart, presenting at Traffic Think Tank LIVE](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1920/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LIVE-Ryan-Presenting.jpg) Thankfully, if all came together. We managed to acquire some microphones, the swag arrived on the morning of the event, all of our speakers were able to make it on time and the weather just about held up so that our entire allocation of ticket holders was able to make it to the event. We pooled together and I’m proud to say that the event was a huge success. While we made a substantial financial loss on the event itself, January saw a huge spike in new members, which more than recouped our losses. Not only that, but we got to hang out with a load of our members all day while they said really nice things about the thing we’d built. It was both exhausting and incredibly rewarding. Bring on Traffic Think Tank LIVE 2020! (This time we’re hiring an event manager...)   The road ahead Fast forward to today (August 2019) and Traffic Think Tank has over 650 members. The biggest challenges that we’re tackling right now include making sure the most interesting conversations and best content surfaces to the top of the community, making Slack more searchable (this is ultimately one of its flaws as a platform) and giving members a quicker way to find the exclusive content that we create. You’ll notice there’s a pretty clear theme here. In the past 30 days, 4,566 messages were posted in public channels inside Traffic Think Tank. If you add on any messages posted inside private direct messages, this number rises to 21,612. That’s a lot of messages. To solve these challenges and enable further scale in the future, we’ve invested a bunch of cash and our time into building out a full learning management system (LMS) that all members will get access to alongside the Slack community. The LMS will be a web-based portal that houses all of the video content we produce. It will also  provide an account admin section where users can update or change their billing information (they have to email us to do this right now, which isn’t ideal), a list of membership perks and discounts with our partners, and a list of links to some of the best threads within Slack – when clicked, these will drop you directly into Slack. [\[IMAGE\] Designs for the new learning management system (LMS)](https://cdn.shortpixel.ai/client/qglossy,retimg,w_2378/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LMS.png) It’s not been easy, but we’re 95% of the way through this and I’m certain that it will have a hugely positive impact on the experience for our members. Alongside this we hired a community manager, Liz, who supports with any questions that our members have, coordinates with external experts to arrange webinars for the community, helps with new member onboarding, and has tightened up some of our processes around billing and general accounts admin. This was a great decision. Finally, we’ve started planning next year’s live event, which we plan to more than double in size to 350 attendees, and we decided to pick a slightly warmer location in Miami this time out. Stay tuned for me to have a complete meltdown 3 weeks from the event. Final thoughts When I look back on the journey we’ve had so far building Traffic Think Tank, there’s one very important piece to this puzzle that’s made all of this work that I’ve failed to mention so far: co-founder alignment. Building a community is a balancing act that relies heavily on those in charge being completely aligned. Nick, Ian and I completely trust each other and more importantly, are philosophically aligned on how we want to run and grow the community. If we didn’t have this, the friction between us could tear apart the entire community. Picking the right people to work with is important in any company, but when your business is literally about bringing people together, there’s no margin for error here.  While I’m sure there will be many more challenges ahead, knowing that we all trust each other to make decisions that fall in line with each of our core values makes these challenges dramatically easier to overcome. Finally, I’d like to thank all of our members for making the community what it is today – it’d be nothing without you and I promise that we’ll never take that for granted. &#x200B; I originally posted this on my blog here. Welcoming all of your thoughts, comments, questions and I'll do my best to answer them :)

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security

Uzair Javaid, a Ph.D. with a passion for data privacy, co-founded Betterdata to tackle one of AI's most pressing challenges: protecting privacy while enabling innovation. Recently, Betterdata secured a lucrative contract with the US Department of Homeland Security, 1 of only 4 companies worldwide to do so and the only one in Asia. Here's how he did it: The Story So what's your story? I grew up in Peshawar, Pakistan, excelling in coding despite studying electrical engineering. Inspired by my professors, I set my sights on studying abroad and eventually earned a Ph.D. scholarship at NUS Singapore, specializing in data security and privacy. During my research, I ethically hacked Ethereum and published 15 papers—three times the requirement. While wrapping up my Ph.D., I explored startup ideas and joined Entrepreneur First, where I met Kevin Yee. With his expertise in generative models and mine in privacy, we founded Betterdata. Now, nearly three years in, we’ve secured a major contract with the U.S. Department of Homeland Security—one of only four companies globally and the only one from Asia. The Startup In a nutshell, what does your startup do? Betterdata is a startup that uses AI and synthetic data generation to address two major challenges: data privacy and the scarcity of high-quality data for training AI models. By leveraging generative models and privacy-enhancing technologies, Betterdata enables businesses, such as banks, to use customer data without breaching privacy regulations. The platform trains AI on real data, learns its patterns, and generates synthetic data that mimics the real thing without containing any personal or sensitive information. This allows companies to innovate and develop AI solutions safely and ethically, all while tackling the growing need for diverse, high-quality data in AI development. How did you conduct ideation and validation for your startup? The initial idea for Betterdata came from personal experience. During my Ph.D., I ethically hacked Ethereum’s blockchain, exposing flaws in encryption-based data sharing. This led me to explore AI-driven deep synthesis technology—similar to deepfakes but for structured data privacy. With GDPR impacting 28M+ businesses, I saw a massive opportunity to help enterprises securely share data while staying compliant. To validate the idea, I spoke to 50 potential customers—a number that strikes the right balance. Some say 100, but that’s impractical for early-stage founders. At 50, patterns emerge: if 3 out of 10 mention the same problem, and this repeats across 50, you have 10–15 strong signals, making it a solid foundation for an MVP. Instead of outbound sales, which I dislike, we used three key methods: Account-Based Marketing (ABM)—targeting technically savvy users with solutions for niche problems, like scaling synthetic data for banks. Targeted Content Marketing—regular customer conversations shaped our thought leadership and outreach. Raising Awareness Through Partnerships—collaborating with NUS, Singapore’s PDPC, and Plug and Play to build credibility and educate the market. These strategies attracted serious customers willing to pay, guiding Betterdata’s product development and market fit. How did you approach the initial building and ongoing product development? In the early stages, we built synthetic data generation algorithms and a basic UI for proof-of-concept, using open-source datasets to engage with banks. We quickly learned that banks wouldn't share actual customer data due to privacy concerns, so we had to conduct on-site installations and gather feedback to refine our MVP. Through continuous consultation with customers, we discovered real enterprise data posed challenges, such as missing values, which led us to adapt our prototype accordingly. This iterative approach of listening to customer feedback and observing their usage allowed us to improve our product, enhance UX, and address unmet needs while building trust and loyalty. Working closely with our customers also gives us a data advantage. Our solution’s effectiveness depends on customer data, which we can't fully access, but bridging this knowledge gap gives us a competitive edge. The more customers we test on, the more our algorithms adapt to diverse use cases, making it harder for competitors to replicate our insights. My approach to iteration is simple: focus solely on customer feedback and ignore external noise like trends or advice. The key question for the team is: which customer is asking for this feature or solution? As long as there's a clear answer, we move forward. External influences, such as AI hype, often bring more confusion than clarity. True long-term success comes from solving real customer problems, not chasing trends. Customers may not always know exactly what they want, but they understand their problems. Our job is to identify these problems and solve them in innovative ways. While customers may suggest specific features, we stay focused on solving the core issue rather than just fulfilling their exact requests. The idea aligns with the quote often attributed to Henry Ford: "If I asked people what they wanted, they would have said faster horses." The key is understanding their problems, not just taking requests at face value. How do you assess product-market fit? To assess product-market fit, we track two key metrics: Customers' Willingness to Pay: We measure both the quantity and quality of meetings with potential customers. A high number of meetings with key decision-makers signals genuine interest. At Betterdata, we focused on getting meetings with people in banks and large enterprises to gauge our product's resonance with the target market. How Much Customers Are Willing to Pay: We monitor the price customers are willing to pay, especially in the early stages. For us, large enterprises, like banks, were willing to pay a premium for our synthetic data platform due to the growing need for privacy tech. This feedback guided our product refinement and scaling strategy. By focusing on these metrics, we refined our product and positioned it for scaling. What is your business model? We employ a structured, phase-driven approach for out business model, as a B2B startup. I initially struggled with focusing on the core value proposition in sales, often becoming overly educational. Eventually, we developed a product roadmap with models that allowed us to match customer needs to specific offerings and justify our pricing. Our pricing structure includes project-based pilots and annual contracts for successful deployments. At Betterdata, our customer engagement unfolds across three phases: Phase 1: Trial and Benchmarking \- We start with outreach and use open-source datasets to showcase results, offering customers a trial period to evaluate the solution. Phase 2: Pilot or PoC \- After positive trial results, we conduct a PoC or pilot using the customer’s private data, with the understanding that successful pilots lead to an annual contract. Phase 3: Multi-Year Contracts \- Following a successful pilot, we transition to long-term commercial contracts, focusing on multi-year agreements to ensure stability and ongoing partnerships. How do you do marketing for your brand? We take a non-conventional approach to marketing, focusing on answering one key question: Which customers are willing to pay, and how much? This drives our messaging to show how our solution meets their needs. Our strategy centers around two main components: Building a network of lead magnets \- These are influential figures like senior advisors, thought leaders, and strategic partners. Engaging with institutions like IMDA, SUTD, and investors like Plug and Play helps us gain access to the right people and foster warm introductions, which shorten our sales cycle and ensure we’re reaching the right audience. Thought leadership \- We build our brand through customer traction, technology evidence, and regulatory guidelines. This helps us establish credibility in the market and position ourselves as trusted leaders in our field. This holistic approach has enabled us to navigate diverse market conditions in Asia and grow our B2B relationships. By focusing on these areas, we drive business growth and establish strong trust with stakeholders. What's your advice for fundraising? Here are my key takeaways for other founders when it comes to fundraising: Fundraise When You Don’t Need To We closed our seed round in April 2023, a time when we weren't actively raising. Founders should always be in fundraising mode, even when they're not immediately in need of capital. Don’t wait until you have only a few months of runway left. Keep the pipeline open and build relationships. When the timing is right, execution becomes much easier. For us, our investment came through a combination of referrals and inbound interest. Even our lead investor initially rejected us, but after re-engaging, things eventually fell into place. It’s crucial to stay humble, treat everyone with respect, and maintain those relationships for when the time is right. Be Mindful of How You Present Information When fundraising, how you present information matters a lot. We created a comprehensive, easily digestible investment memo, hosted on Notion, which included everything an investor might need—problem, solution, market, team, risks, opportunities, and data. The goal was for investors to be able to get the full picture within 30 minutes without chasing down extra details. We also focused on making our financial model clear and meaningful, even though a 5-year forecast might be overkill at the seed stage. The key was clarity and conciseness, and making it as easy as possible for investors to understand the opportunity. I learned that brevity and simplicity are often the best ways to make a memorable impact. For the pitch itself, keep it simple and focus on 4 things: problem, solution, team, and market. If you can summarize each of these clearly and concisely, you’ll have a compelling pitch. Later on, you can expand into market segments, traction, and other metrics, but for seed-stage, focus on those four areas, and make sure you’re strong in at least three of them. If you do, you'll have a compelling case. How do you run things day-to-day? i.e what's your operational workflow and team structure? Here's an overview of our team structure and process: Internally: Our team is divided into two main areas: backend (internal team) and frontend (market-facing team). There's no formal hierarchy within the backend team. We all operate as equals, defining our goals based on what needs to be developed, assigning tasks, and meeting weekly to share updates and review progress. The focus is on full ownership of tasks and accountability for getting things done. I also contribute to product development, identifying challenges and clearing obstacles to help the team move forward. Backend Team: We approach tasks based on the scope defined by customers, with no blame or hierarchy. It's like a sports team—sometimes someone excels, and other times they struggle, but we support each other and move forward together. Everyone has the creative freedom to work in the way that suits them best, but we establish regular meetings and check-ins to ensure alignment and progress. Frontend Team: For the market-facing side, we implement a hierarchy because the market expects this structure. If I present myself as "CEO," it signals authority and credibility. This distinction affects how we communicate with the market and how we build our brand. The frontend team is split into four main areas: Business Product (Software Engineering) Machine Learning Engineering R&D The C-suite sits at the top, followed by team leads, and then the executors. We distill market expectations into actionable tasks, ensuring that everyone is clear on their role and responsibilities. Process: We start by receiving market expectations and defining tasks based on them. Tasks are assigned to relevant teams, and execution happens with no communication barriers between team members. This ensures seamless collaboration and focused execution. The main goal is always effectiveness—getting things done efficiently while maintaining flexibility in how individuals approach their work. In both teams, there's an emphasis on accountability, collaboration, and clear communication, but the structure varies according to the nature of the work and external expectations.

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

In 2018, I started an AI chatbot company...today, we have over 4000 paying customers and ChatGPT is changing EVERYTHING
reddit
LLM Vibe Score0
Human Vibe Score1
Millionaire_This week

In 2018, I started an AI chatbot company...today, we have over 4000 paying customers and ChatGPT is changing EVERYTHING

Intro: 5 years ago, my co-founders and I ventured into the space of AI chatbots and started our first truly successful company. Never in a million years did I see myself in this business and we truly stumbled upon the opportunity by chance. Prior to that, we ran a successful lead generation business and questioned whether a simple ai chat product would increase our online conversions. Of the 3 co-founders, I was skeptical that it would, but the data was clear that we had something that really worked. We built a really simple MVP version of the product and gave it to some of our top lead buyers who saw even better conversion improvements on their own websites. In just a matter of weeks, a new business opportunity was born and a major pivot away from our lead generation business started. Our growth story: Startup growth is really interesting and in most cases, founders aren't really educated on what a typical growth curve looks like. While we hear about "hockey stick" growth curves, it's really atypical to actually see or experience this. From my experience, growth curves take place in a "stair curve". For example, you can scrap your way to a $100k run rate without much process or tracking. You can even get to $1 million ARR being super disorganized. As you start going beyond $1M ARR, things start to break and growth can flatten out while you put new processes and systems in place. Eventually you'll get to $2M or 3M with your new strategy and then things start breaking again. I've seen the process repeat itself and as you increase your ARR, the processes and systems become more difficult to work through...mainly because more people get involved and the product becomes more complex. When you do end up cracking the code in each step, the growth accelerates faster and faster before things start to break down and flatten out again. Without getting too much into the numbers, here were some of our initial levers for growth: Our first "stair" step was to leverage our existing customer base from our prior lead generation business. Having prior business relationships and a proven track record made it really simple to have conversations with people who already trusted us to try something new that we had to offer. Stair #2 was to build out a partner channel. Since our chat product involved a web developer or agency installing the chat on client sites, we partnered with these developers and agencies to leverage their already existing customer bases. We essentially piggy-backed off of their relationships and gave them a cut of the revenue. We built an internal partner tracking portal which took 6+ months, but it was well worth it. Stair #3 was our most expensive step, biggest headache, but added the most revenue. After COVID, we had and SDR/Account Executive sales team of roughly 30 people. It added revenue fast, but the payback periods were 12+ months so we had to cut back on this strategy after exhausting our universe of clients. Stair #4 involves a variety of paid advertisement strategies with product changes and the introduction of new onboarding features. We're in the middle of this stair and hope it's multiple years before things breakdown again. Don't give up I know it sounds really cliché, but the #1 indicator of success is doing the really boring stuff day in and day out and making incremental improvements. As the weeks, months, and years pass by, you will slowly gain domain expertise and start to see the gaps in the market that can set you apart from your competition. It's so hard for founders to stay focused and not get distracted so I would say it's equally as important to have co-founders who hold each other accountable on what your collective goals are. How GPT is changing everything I could write pages and pages about how GPT is going to change how the world operates, but I'll keep it specific to our business and chatbots. In 2021, we built an industry specific AI model that did a great job of classifying intents which allowed us to train future actions during a chat. It was a great advancement in our customer's industry at the time. With GPT integrated into our system, that training process that would take an employee hours to do, can be done in 5 minutes. The model is also cheaper than our own and more accurate. Because of these training improvements, we have been able to conduct research that is allowing us to leverage GPT models like no one else in the industry. This is both in the realm of chat and also training during onboarding. I really want to refrain from sharing our company, but if you are interested in seeing a model trained for your specific company or website, just PM me your link and I'll send you a free testing link with a model fully trained for your site to play around with. Where we are headed and the dangers of AI The level of advancement in AI is not terribly dangerous in its current state. I'm sure you've heard it before, but those who leverage the technology today will be the ones who get ahead. In the coming years, AI will inevitably replace a large percentage of human labor. This will be great for overall value creation and productivity for the world, but the argument that humans have always adapted and new jobs will be created is sadly not going to be as relevant in this case. As the possibility of AGI becomes a reality in the coming years or decades, productivity through AI will be off the charts. There is a major risk that human innovation and creative thinking will be completely stalled...human potential as we know it will be capped off and there will need to be major economic reform for displaced workers. This may not happen in the next 5 or 10 years, but you would be naïve not to believe the world we live in today will not be completely different in 20 to 30 years. Using AI to create deepfakes, fake voice agents, scam the unsuspecting, or exploit technical vulnerabilities are just a few other examples I could write about, but don't want to go into to much detail for obvious reasons. Concluding If you found the post interesting or you have any questions, please don't hesitate to ask. I'll do my best to answer whatever questions come from this! &#x200B; \*EDIT: Wasn't expecting this sort of response. I posted this right before I went to sleep so I'll get to responding soon.

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience
reddit
LLM Vibe Score0
Human Vibe Score1
hopefully_usefulThis week

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience

I met my co-founder in late 2022 after an introduction from a mutual friend to talk about how to find contract Product Management roles. I was sporadically contracting at start-up at the time and he had just come out of another start-up that was wiped out by the pandemic. We hit it off, talking about ideas, sharing what other indie-hackers were doing, and given GPT-3’s prominence at the time, we started throwing around ideas about things we could build with it, if nothing else, just to learn. I should caveat, neither of us were AI experts when starting out, everything we learned has been through Twitter and blogs, my background is as an accountant, and his a consultant. Here’s how it went since then: &#x200B; Nov 2022 (+$50) \- We built a simple tool in around a week using GPT-3 fine-tuning and a no-code tool (Bubble) that helped UK university students write their personal statements for their applications \- We set some Google Ads going and managed to make a few sales (\~$50) in the first week \- OpenAI were still approving applications at the time and said this went against their “ethics” so we had to take it down &#x200B; Dec 2022 (+$200) \- We couldn’t stop coming up with ideas related to AI fine-tuning, but realised it was almost impossible to decide which to pursue \- We needed a deadline to force us so we signed up for the Ben’s Bites hackathon in late December \- In a week, we built and launched a no-code fine-tuning platform, allowing people to create fine-tuned models by dragging and dropping an Excel file onto it \- We launched it on Product Hunt, having no idea how to price it, and somehow managed to get \~2,000 visitors on the site and make 2 sales at $99 &#x200B; Jan 2023 (+$3,000) \- We doubled down on the fine-tuning idea and managed to get up to \~$300 MRR, plus a bunch of one-time sales and a few paid calls to help people get the most out of their models \- We quickly realised that people didn’t want to curate models themselves, they just wanted to dump data and get magic out \- That was when we saw people building “Talk with x book/podcast” on Twitter as side projects and realised that was the missing piece, we needed to turn it into a tool \- We started working on the new product in late January &#x200B; Feb 2023 (+$9,000) \- We started pre-selling access to an MVP for the new product, which allowed people to “chat with their data/content”, we got $5,000 in pre-sales, more than we made from the previous product in total \- By mid-February, after 3 weeks of building we were able to launch and immediately managed to get traction, getting to $1k MRR in < 1 week, building on the hype of ChatGPT and AI (we were very lucky here) &#x200B; Mar - Jul 2023 (+$98,000) \- We worked all the waking hours to keep up with customer demand, bugs, OpenAI issues \- We built integrations for a bunch of services like Slack, Teams, Wordpress etc, added tons of new functionality and continue talking to customers every day \- We managed to grow to $17k MRR (just about enough to cover our living expenses and costs in London) through building in public on Twitter, newsletters and AI directories (and a million other little things) \- We sold our fine-tuning platform for \~$20k and our university project for \~$3k on Acquire &#x200B; Aug 2023 (+$100,000) \- We did some custom development work based on our own product for a customer that proved pretty lucrative &#x200B; Sep - Oct 2023 (+$62,000) \- After 8 months of building constantly, we started digging more seriously into our usage and saw subscriptions plateauing \- We talked to and analysed all our paying users to identify the main use cases and found 75% were for SaaS customer support \- We took the leap to completely rebuild a version of our product around this use case, our biggest to date (especially given most features with no-code took us <1 day) &#x200B; Nov - Dec 2023 (+$53,000) \- We picked up some small custom development work that utilised our own tech \- We’re sitting at around $22k MRR now with a few bigger clients signed up and coming soon \- After 2 months of building and talking to users, we managed to finish our “v2” of our product, focussed squarely on SaaS customer support and launched it today. &#x200B; We have no idea what the response will be to this new version, but we’re pretty happy with it, but couldn’t have planned anything that happened to us in 2023 so who knows what will come of 2024, we just know that we are going to be learning a ton more. &#x200B; Overall, it is probably the most I have had to think in my life - other jobs you can zone out from time to time or rely on someone else if you aren’t feeling it - not when you are doing this, case and point, I am writing this with a banging head-cold right now, but wanted to get this done. A few more things we have learned along the way - context switching is unreal, as is keeping up with, learning and reacting to AI. There isn’t a moment of the day I am not thinking about what we do next. But while in some way we now have hundreds of bosses (our customers) I still haven’t felt this free and can’t imagine ever going back to work for someone else. Next year we’re really hoping to figure out some repeatable distribution channels and personally, I want to get a lot better at creating content/writing, this is a first step! Hope this helps someone else reading this to just try starting something and see what happens.

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company
reddit
LLM Vibe Score0
Human Vibe Score0.778
wutangsamThis week

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company

I’ve learned so much over the years from this subreddit. I thought I’d return the favour and share some of my own learnings. In November 2020 my best friend and I had an idea. “What if we could find out which stocks the Internet is talking about?” This formed the origins of Ticker Nerd. 9 months later we sold Ticker Nerd to Finder (an Australian fintech company valued at around $500m). In this post, I am going to lay out how we got there. How we came up with the idea First off, like other posts have covered - you don’t NEED a revolutionary or original idea to build a business. There are tonnes of “boring” businesses making over 7 figures a year e.g. law firms, marketing agencies, real estate companies etc. If you’re looking for an exact formula to come up with a great business idea I’m sorry, but it doesn’t exist. Finding new business opportunities is more of an art than a science. Although, there are ways you can make it easier to find inspiration. Below are the same resources I use for inspiration. I rarely ever come up with ideas without first searching one of the resources below for inspiration: Starter Story Twitter Startup Ideas My First Million Trends by the Hustle Trends VC To show how you how messy, random and unpredictable it can be to find an idea - let me explain how my co-founder and I came up with the idea for Ticker Nerd: We discovered a new product on Twitter called Exploding Topics. It was a newsletter that uses a bunch of software and algorithms to find trends that are growing quickly before they hit the mainstream. I had recently listened to a podcast episode from My First Million where they spoke about Motley Fool making hundreds of millions from their investment newsletters. We asked ourselves what if we could build a SaaS platform similar to Exploding Topics but it focused on stocks? We built a quick landing page using Carrd + Gumroad that explained what our new idea will do and included a payment option to get early access for $49. We called it Exploding Stock (lol). We shared it around a bunch of Facebook groups and subreddits. We made $1,000 in pre-sales within a couple days. My co-founder and I can’t code so we had to find a developer to build our idea. We interviewed a bunch of potential candidates. Meanwhile, I was trawling through Wall Street Bets and found a bunch of free tools that did roughly what we wanted to build. Instead of building another SaaS tool that did the same thing as these free tools we decided to pivot from our original idea. Our new idea = a paid newsletter that sends a weekly report that summarises 2 of the best stocks that are growing in interest on the Internet. We emailed everyone who pre-ordered access, telling them about the change and offered a full refund if they wanted. tl;dr: We essentially combined two existing businesses (Exploding Topics and Motley Fool) and made it way better. We validated the idea by finding out if people will actually pay money for it BEFORE we decided to build it. The idea we started out with changed over time. How to work out if your idea will actually make money It’s easy to get hung up on designing the logo or choosing the perfect domain name for your new idea. At this stage none of that matters. The most important thing is working out if people will pay money for it. This is where validation comes in. We usually validate ideas using Carrd. It lets you build a simple one page site without having to code. The Ticker Nerd site was actually built using a Carrd template. Here’s how you can do it yourself (at a high level): Create a Carrd pro account (yes it's a $49 one off payment but you’ll get way more value out of it). Buy a cheap template and send it to your Carrd account. You can build your own template but this will save you a lot of time. Once the template reaches your Carrd account, duplicate it. Leave the original so it can be duplicated for other ideas. Jump onto Canva (free) and create a logo using the free logos provided. Import your logo. Add copy to the page that explains your idea. Use the AIDA formula. Sign up to Gumroad (free) and create a pre-sale campaign. Create a discounted lifetime subscription or version of the product. This will be used pre-sales. Add the copy from the site into the pre-sale campaign on Gumroad. Add a ‘widget’ to Carrd and connect it to Gumroad using the existing easy integration feature. Purchase a domain name. Connect it to Carrd. Test the site works. Share your website Now the site is ready you can start promoting it in various places to see how the market reacts. An easy method is to find relevant subreddits using Anvaka (Github tool) or Subreddit Stats. The Anvaka tool provides a spider map of all the connected subreddits that users are active in. The highlighted ones are most relevant. You can post a thread in these subreddits that offer value or can generate discussion. For example: ‘I’m creating a tool that can write all your copy, would anyone actually use this?’ ‘What does everything think of using AI to get our copy written faster?’ ‘It’s time to scratch my own itch, I’m creating a tool that writes marketing copy using GPT-3. What are the biggest problems you face writing marketing copy? I’ll build a solution for it’ Reddit is pretty brutal these days so make sure the post is genuine and only drop your link in the comments or in the post if it seems natural. If people are interested they’ll ask for the link. Another great place to post is r/entrepreuerridealong and r/business_ideas. These subreddits expect people to share their ideas and you’ll likely make some sales straight off the bat. I also suggest posting in some Facebook groups (related to your idea) as well just for good measure. Assess the results If people are paying you for early access you can assume that it’s worth building your idea. The beauty of posting your idea on Reddit or in Facebook groups is you’ll quickly learn why people love/hate your idea. This can help you decide how to tweak the idea or if you should drop it and move on to the next one. How we got our first 100 customers (for free) By validating Ticker Nerd using subreddits and Facebook groups this gave us our first paying customers. But we knew this wouldn’t be sustainable. We sat down and brainstormed every organic strategy we could use to get traction as quickly as possible. The winner: a Product Hunt launch. A successful Product Hunt launch isn’t easy. You need: Someone that has a solid reputation and audience to “hunt” your product (essentially an endorsement). An aged Product Hunt account - you can’t post any products if your account is less than a week old. To be following relevant Product Hunt members - since they get notified when you launch a new product if they’re following you. Relationships with other builders and makers on Product Hunt that also have a solid reputation and following. Although, if you can pull it off you can get your idea in front of tens of thousands of people actively looking for new products. Over the next few weeks, I worked with my co-founder on connecting with different founders, indie hackers and entrepreneurs mainly via Twitter. We explained to them our plans for the Product Hunt launch and managed to get a small army of people ready to upvote our product on launch day. We were both nervous on the day of the launch. We told ourselves to have zero expectations. The worst that could happen was no one signed up and we were in the same position as we’re in now. Luckily, within a couple of hours Ticker Nerd was on the homepage of Product Hunt and in the top 10. The results were instant. After 24 hours we had around 200 people enter their payment details to sign up for our free trial. These signups were equal to around $5,800 in monthly recurring revenue. \-- I hope this post was useful! Drop any questions you have below and I’ll do my best to respond :)

5 Habits to go from Founder to CEO
reddit
LLM Vibe Score0
Human Vibe Score0.6
FalahilThis week

5 Habits to go from Founder to CEO

Over the years, I've gathered some knowledge about transitioning from a startup founder to a CEO. I started my company 7 years ago. We are now not super big (65 people), but we have learned a lot. We raised $19M in total and we are now profitable. The transition from Founder to CEO was crucial. Your startup begins to mature and scale and you need to scale with it. It's often a challenging phase, but I've managed to summarize it into five habbits. Say no to important things every day Being able to say "no" to important tasks every day is an essential practice for a growing leader. It's a reality that as the magnitude of your company or ideas expands, so does the influx of good ideas and opportunities. However, to transform from a mere hustler to a true leader, you have to become selective. This means learning to refuse good ideas, which is crucial if you want to consistently execute the outstanding ones. The concept that "Startups don't starve, they drown" resonates deeply because it underlines how challenging it can be to reject opportunities. A key strategy to develop this skill is time-constraining your to-do list. Here's how you can do it: Weekly: Formulate a weekly to-do list, including only those tasks that you're sure to complete within the week. Leave some buffer room for unexpected issues. If there's any doubt about whether you'll have time for a certain task, it should not feature on your weekly list. I use Todoist and Notion for task management. Daily: Apply the same rule while creating your daily to-do list. Only include tasks that you're confident about accomplishing that day. If a task seems too big to fit into one day, break it down into manageable chunks. Journaling Journaling is a powerful strategy that can help an individual transition from a reactive approach to a proactive one. As founders, we often find ourselves caught up in a cycle of endless tasks, akin to chopping trees in a dense forest. However, to ensure sustainable growth, it is crucial to develop an ability to "zoom out", or to view the bigger picture. I use The Morning Pages method, from Julia Cameron. It consists of writing each morning about anything that comes to mind. The act of writing effectively combines linear, focused thinking with the benefits of a thoughtful conversation. If you just want to journal, you can use Day One app (The free version will be enough). If you want to go a bit deeper, you can try a coaching app. I use Wave.ai and I also hired it for the managers in the company because it combines both journaling with habit building. &#x200B; Building Robust Systems and Processes (I know, it is boring and founders hate this) As a founder, you often need to wear multiple hats and juggle various roles. But as a CEO, it's vital to establish strong systems and processes that enable the business to function smoothly, even without your direct involvement. This includes: Implementing project management systems. Establishing clear lines of communication and accountability. Designing efficient workflows and procedures. To many founders, developing these systems might seem monotonous or even tedious. After all, the allure of envisioning the next big idea often proves more exciting. I experienced the same predicament. In response, I brought onboard a competent COO who excelled in systematizing processes. This strategy allowed me to kickstart initiatives and explore them in a flexible, less structured manner. Once an idea showed signs of gaining traction, my COO stepped in to streamline it, crafting a process that turned the fledgling idea into a consistent business operation. &#x200B; Meditating Meditation is about reprogramming unconscious mental processes by repeatedly performing fundamental tasks with a distinct intention. This practice can be even more crucial to leadership than acquiring a business school education. Because meditation provides the most direct route to understanding your mind's workings and thus, forms the most effective basis for transforming it. To transition from a founder to a CEO, a significant shift in your mindset is required. This shift involves moving from a hustle mentality to precision, from acting as a superhero solving problems to consciously stepping back, thereby providing room for your team members to discover their own superpowers. It's about shifting your success indicators - from individual achievements to the triumphs of your team. This transformation might not feel comfortable initially, and your instincts, shaped by your scrappy founder phase, might resist this change. However, with consistent practice, you can align your instincts with the stage of your company, promoting more effective leadership. This is where the value of meditation truly shines. It allows you to identify your distinct thought patterns in real time and, over time, modify them. I use Headspace a lot, and I also encourage the employees to use it. The company pays the subscription as a perk. &#x200B; Balancing the Macro and the Micro As the CEO, your primary focus should be on the big picture – your company's vision and strategy. However, you also need to keep an eye on the details, as these can make or break your execution. It's all about balance: Delegate the details but stay informed. Prioritize strategic planning but be ready to dive into the trenches when needed. Keep your eye on your long-term vision but adapt to short-term realities. The transition from founder to CEO isn't about giving up what made you successful initially but augmenting it with additional skills, perspectives, and practices. It's a personal and professional evolution that can lead to greater success for both you and your business. Every great CEO was once a founder. It's just about taking the next step. I’d love to hear your experiences or any tips you might have for this transition. In which step of your journey are you right now? Do you have employees already? What are your main challenges right now?

26 Ways to Make Money as a Startup Founder (for coders & noncoders)
reddit
LLM Vibe Score0
Human Vibe Score1
johnrushxThis week

26 Ways to Make Money as a Startup Founder (for coders & noncoders)

I've launched 24 projects (here is the proof johnrush.me). None of my projects is making millions a month, but many of them make over $1k a month, some do over $10k, and few do even more. I'd not recommend anyone to start by trying to build a unicorn. Better start simple. Aim for $2-4k a month first. Once you get there, either scale it or start a new project with large TAM. From my own experience, the 26 Ways to Make Money as a Startup Founder: One-Feature SaaS. Extract a feature from a popular tool and build a micro SaaS around it. Idea: A SaaS that only offers automated email follow-ups. Launchpads. Develop a launch platform for a specific industry. Idea: A launchpad for growth tools. SEO Tools. Create a tool that focuses on a single aspect of SEO. Idea: A tool that generates alt texts for images. Productized Services. Offer standardized services that are repeatable. Idea: design, coding or social media management. Marketplace Platforms. Create a platform that connects buyers and sellers, earning transaction fees. Idea: An online marketplace for domains. Membership Sites. A subscription-based site with exclusive content. Idea: A founder 0-to-1 site. White Labeling. A product that other businesses can rebrand as their own. Idea: A white-labeled website builder. Selling Data. Provide anonymized data insights to companies. Idea: Selling user behavior data. Affiliate Marketing. Promote products/services and earn commissions on sales. Idea: Recommending hosting services on a tech blog. Selling Leads. Generate and sell business leads. Idea: Selling leads who raised a fresh seed round. Niche Social Networks. Create a paid community around a specific interest. Idea: A network for SEO experts. Sell Domains. Buy and sell domain names for profit. Virtual Products. Sell digital products like templates or graphics. Idea: Website themes for nextjs or boilerplates. On-Demand Services. Build a platform for gigs like delivery or tutoring. Idea: An app for freelance tutors. Niche Job Boards. Start a job board focused on a specific industry. Idea: A job board for remote tech jobs. Crowdsourced Content. Create a user-generated content platform and monetize through ads. Idea: Site to share startup hacks. Buy and Flip Businesses. Purchase underperforming businesses, improve them, and sell for profit. Idea: Acquiring a low-traffic blog, optimizing it, and selling. AI-Powered agents. Develop AI tools that solve specific business problems. Idea: An AI tool that automates customer support. Microservices. Offer small, specialized tools, sdks or APIs. Idea: An api for currency conversion. Influencer Platforms. Create a platform connecting influencers with brands. Idea: Connect AI influencers with AI founders. Niche Directories. Build a paid directory for a specific industry. Idea: A directory of developers who can train models. E-Learning Platforms. Build a platform for educators to sell courses. Idea: A site where AI experts sell AI courses. Virtual assistants. Hire them and sell on subscription. No-Code Tools. Create tools that allow non-technical users to build things. Idea: A no-code website builder for bakeries. Labor arbitrage. Idea: Connect support agents from Portugal with US clients and charge commission.

I built a Word Ladder game using AI only - ZERO coding
reddit
LLM Vibe Score0
Human Vibe Score1
eibrahimThis week

I built a Word Ladder game using AI only - ZERO coding

Hey fellow devs!!! I'm excited to share a unique project I've just completed: an online Word Ladder game built entirely using AI assistance, specifically Claude.ai. The kicker? I wrote zero lines of code myself! 🔗 Check it out: https://www.wordladdergame.com Why this matters: AI-Driven Development: This project showcases the potential of AI in software development. Everything from architecture decisions to actual code implementation was guided by AI. Zero Manual Coding: As someone with a product background but limited coding experience, I was able to bring a full-fledged web app to life without writing a single line of code myself. Rapid Prototyping: The entire process, from ideation to deployment, was incredibly fast compared to traditional development methods. I did the whole thing in under 4 hours and spent another 4 hours tweaking it (also using AI) Learning Opportunity: This approach allowed me to understand modern web development practices and technologies without getting bogged down in syntax and debugging. Tech Stack (all implemented through AI guidance): Next.js TypeScript Prisma (with PostgreSQL) Tailwind CSS Vercel for deployment The game features randomly generated word pairs, a solve button, and a clean, responsive UI. But more than the game itself, I'm excited about what this development process represents for the future of software creation. I'd love to hear your thoughts: Have you experimented with AI-assisted development? How do you see this changing the landscape for entrepreneurs and non-technical founders? What potential challenges or limitations do you foresee with this approach? Feel free to try the game and ask any questions about the development process. I'm here to discuss and learn from your insights!

Unmasking Fake Testimonials on a YC backed company
reddit
LLM Vibe Score0
Human Vibe Score0.75
Far-Amphibian3043This week

Unmasking Fake Testimonials on a YC backed company

As developers, marketeers and builders, we often rely on trusted platforms to guide us in finding tools that meet our unique needs. Recently, I stumbled upon Overlap, a site marketed as a haven for collaboration tools. Its sleek interface and glowing testimonials initially convinced me I had found a gem. But as I dug deeper, I uncovered a jaw-dropping reality: their testimonials featured stock images, all of which were easily identified through a quick reverse image search. Even more shocking was the realization that Overlap is a Y Combinator-backed company—an organization renowned for nurturing some of the most innovative startups in the world. With significant funding at their disposal, the decision to cut corners with fake testimonials felt like a slap in the face to their user base. They could easily afford a robust testimonial platform, yet chose a path that undermined their credibility. As developers, marketeers and builders, we often rely on trusted platforms to guide us in finding tools that meet our unique needs. Recently, I stumbled upon Overlap, a site marketed as a haven for video AI tools. Its sleek interface and glowing testimonials initially convinced me I had found a gem. But as I dug deeper, I uncovered a jaw-dropping reality: their testimonials featured stock images, all of which were easily identified through a quick reverse image search. Even more shocking was the realization that Overlap is a Y Combinator-backed company—an organization renowned for nurturing some of the most innovative startups in the world. With significant funding at their disposal, the decision to cut corners with fake testimonials felt like a slap in the face to their user base. They could easily afford a robust testimonial platform, yet chose a path that undermined their credibility. A screenshot of Overlap's landing page https://preview.redd.it/zosmdl0v01ce1.png?width=1000&format=png&auto=webp&s=83ced4af92ca284486281f00b020f1f0114b4fcd This discovery was nothing short of a wake-up call. For a developer-focused website—an audience that prizes authenticity and technical precision above all else—faking testimonials with stock photos isn’t just misleading, it’s a catastrophic betrayal of trust. It left me questioning the integrity of their entire operation and serves as a stark reminder for businesses everywhere: your audience notices when you’re not authentic, and they won’t forgive it easily. Position of Fake Testimonials One of the stock images https://preview.redd.it/a7ugasrw01ce1.png?width=341&format=png&auto=webp&s=5261df741f1198a92e537f1e61640e7d6ec60a7f Lessons for Startup Founders and Developers This experience offers several critical lessons for startup founders and developers alike: Authenticity is Non-Negotiable: In a competitive market, trust and transparency can make or break your brand. Fake testimonials might provide a short-term boost, but the long-term damage to credibility far outweighs any temporary gains. Invest in Genuine Solutions: If you have the resources, like a Y Combinator-backed company, prioritize tools and practices that enhance authenticity. Platforms like RapidFeedback allow businesses to dynamically update reviews and manage feedback efficiently. Leverage Real User Feedback: Authentic testimonials not only build trust but also provide actionable insights into your product’s strengths and weaknesses. This feedback loop can be invaluable for refining and growing your business. Understand Your Audience: Developers value precision, integrity, and honesty. Catering to this audience requires a commitment to these principles in every aspect of your business. Let’s ensure that the tools we build and the businesses we run prioritize authenticity. In the long run, a commitment to transparency and user trust will always yield greater rewards than any shortcut could provide. Why Fake Testimonials Are a Problem Fake testimonials damage your brand in more ways than one: Loss of Credibility: Developers are a discerning audience. Trust is everything, and losing it can be catastrophic for your reputation. Hurt User Experience: Knowing a platform misrepresents itself makes users skeptical about its features and promises. Missed Opportunities: Genuine feedback can provide valuable insights for growth and improvement, which fake testimonials completely overlook. A Smarter Way: Authentic Testimonials with RapidFeedback This experience reminded me of why tools like RapidFeedback are invaluable. RapidFeedback helps businesses maintain authenticity by dynamically updating reviews and images in real time. Here’s why it stands out: Real-Time Updates: Reviews are fetched and displayed dynamically, ensuring they’re always up-to-date. Dashboard Management: Businesses can monitor and manage good vs. bad reviews from a centralized dashboard, enabling them to address concerns promptly. Authenticity Guaranteed: Dynamic updates ensure that testimonials reflect real users and their experiences, which builds trust and credibility. Lessons for Developers and Businesses If there’s one takeaway from my Overlap experience, it’s this: authenticity isn’t optional. Whether you’re building tools for developers or selling consumer products, your audience values transparency. Using tools like RapidFeedback ensures your business maintains trust while gaining actionable insights to grow. Let’s commit to prioritizing honesty in our work. Because in the end, authentic relationships with users are what truly drive success.

First time founder, looking for guidance
reddit
LLM Vibe Score0
Human Vibe Score0
BigscreennThis week

First time founder, looking for guidance

Hello I am non technical founder based in the UK building a CRM and Order Management System. I have a POC built in Figma that showcases new features that current market options don’t have and improvements on existing features. I lack the technical skill to built a functioning MVP but I do have some technical knowledge. I have enough to understand the complexity and size of what I want to build. My current plan is the following: Raise preseed funding from angel investors or preseed VCs. I have a solid business plan and pitch deck in their final drafts. Find/hire a technical cofounder/development head to build and develop MVP (platform is complex and big enough it will require more then one developer to finish it in a reasonable timeframe) Once MVP is complete, begin sales to ICPs. I have strong connections in the industry already making this step easier. Once the above is done plan is to continue growing, develop main product and create supporting software How would you recommend going forward from the point I’m at? Should I build a functional prototype using a no code webapp builder? Will this be needed when I have a POC in Figma? If so any recommendations? Currently there is no plan for integration of AI but should I add some to drum up more hype when pitching to investors? Adding AI will further improve my planned features but will massively increase complexity. It may be worth noting i have already developed a product internally for my current job that they’re intending to release for internal use down the line. This wasn’t a viable solo business as it was impossible to defend and easy to replicate. Cheers for reading

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security

Uzair Javaid, a Ph.D. with a passion for data privacy, co-founded Betterdata to tackle one of AI's most pressing challenges: protecting privacy while enabling innovation. Recently, Betterdata secured a lucrative contract with the US Department of Homeland Security, 1 of only 4 companies worldwide to do so and the only one in Asia. Here's how he did it: The Story So what's your story? I grew up in Peshawar, Pakistan, excelling in coding despite studying electrical engineering. Inspired by my professors, I set my sights on studying abroad and eventually earned a Ph.D. scholarship at NUS Singapore, specializing in data security and privacy. During my research, I ethically hacked Ethereum and published 15 papers—three times the requirement. While wrapping up my Ph.D., I explored startup ideas and joined Entrepreneur First, where I met Kevin Yee. With his expertise in generative models and mine in privacy, we founded Betterdata. Now, nearly three years in, we’ve secured a major contract with the U.S. Department of Homeland Security—one of only four companies globally and the only one from Asia. The Startup In a nutshell, what does your startup do? Betterdata is a startup that uses AI and synthetic data generation to address two major challenges: data privacy and the scarcity of high-quality data for training AI models. By leveraging generative models and privacy-enhancing technologies, Betterdata enables businesses, such as banks, to use customer data without breaching privacy regulations. The platform trains AI on real data, learns its patterns, and generates synthetic data that mimics the real thing without containing any personal or sensitive information. This allows companies to innovate and develop AI solutions safely and ethically, all while tackling the growing need for diverse, high-quality data in AI development. How did you conduct ideation and validation for your startup? The initial idea for Betterdata came from personal experience. During my Ph.D., I ethically hacked Ethereum’s blockchain, exposing flaws in encryption-based data sharing. This led me to explore AI-driven deep synthesis technology—similar to deepfakes but for structured data privacy. With GDPR impacting 28M+ businesses, I saw a massive opportunity to help enterprises securely share data while staying compliant. To validate the idea, I spoke to 50 potential customers—a number that strikes the right balance. Some say 100, but that’s impractical for early-stage founders. At 50, patterns emerge: if 3 out of 10 mention the same problem, and this repeats across 50, you have 10–15 strong signals, making it a solid foundation for an MVP. Instead of outbound sales, which I dislike, we used three key methods: Account-Based Marketing (ABM)—targeting technically savvy users with solutions for niche problems, like scaling synthetic data for banks. Targeted Content Marketing—regular customer conversations shaped our thought leadership and outreach. Raising Awareness Through Partnerships—collaborating with NUS, Singapore’s PDPC, and Plug and Play to build credibility and educate the market. These strategies attracted serious customers willing to pay, guiding Betterdata’s product development and market fit. How did you approach the initial building and ongoing product development? In the early stages, we built synthetic data generation algorithms and a basic UI for proof-of-concept, using open-source datasets to engage with banks. We quickly learned that banks wouldn't share actual customer data due to privacy concerns, so we had to conduct on-site installations and gather feedback to refine our MVP. Through continuous consultation with customers, we discovered real enterprise data posed challenges, such as missing values, which led us to adapt our prototype accordingly. This iterative approach of listening to customer feedback and observing their usage allowed us to improve our product, enhance UX, and address unmet needs while building trust and loyalty. Working closely with our customers also gives us a data advantage. Our solution’s effectiveness depends on customer data, which we can't fully access, but bridging this knowledge gap gives us a competitive edge. The more customers we test on, the more our algorithms adapt to diverse use cases, making it harder for competitors to replicate our insights. My approach to iteration is simple: focus solely on customer feedback and ignore external noise like trends or advice. The key question for the team is: which customer is asking for this feature or solution? As long as there's a clear answer, we move forward. External influences, such as AI hype, often bring more confusion than clarity. True long-term success comes from solving real customer problems, not chasing trends. Customers may not always know exactly what they want, but they understand their problems. Our job is to identify these problems and solve them in innovative ways. While customers may suggest specific features, we stay focused on solving the core issue rather than just fulfilling their exact requests. The idea aligns with the quote often attributed to Henry Ford: "If I asked people what they wanted, they would have said faster horses." The key is understanding their problems, not just taking requests at face value. How do you assess product-market fit? To assess product-market fit, we track two key metrics: Customers' Willingness to Pay: We measure both the quantity and quality of meetings with potential customers. A high number of meetings with key decision-makers signals genuine interest. At Betterdata, we focused on getting meetings with people in banks and large enterprises to gauge our product's resonance with the target market. How Much Customers Are Willing to Pay: We monitor the price customers are willing to pay, especially in the early stages. For us, large enterprises, like banks, were willing to pay a premium for our synthetic data platform due to the growing need for privacy tech. This feedback guided our product refinement and scaling strategy. By focusing on these metrics, we refined our product and positioned it for scaling. What is your business model? We employ a structured, phase-driven approach for out business model, as a B2B startup. I initially struggled with focusing on the core value proposition in sales, often becoming overly educational. Eventually, we developed a product roadmap with models that allowed us to match customer needs to specific offerings and justify our pricing. Our pricing structure includes project-based pilots and annual contracts for successful deployments. At Betterdata, our customer engagement unfolds across three phases: Phase 1: Trial and Benchmarking \- We start with outreach and use open-source datasets to showcase results, offering customers a trial period to evaluate the solution. Phase 2: Pilot or PoC \- After positive trial results, we conduct a PoC or pilot using the customer’s private data, with the understanding that successful pilots lead to an annual contract. Phase 3: Multi-Year Contracts \- Following a successful pilot, we transition to long-term commercial contracts, focusing on multi-year agreements to ensure stability and ongoing partnerships. How do you do marketing for your brand? We take a non-conventional approach to marketing, focusing on answering one key question: Which customers are willing to pay, and how much? This drives our messaging to show how our solution meets their needs. Our strategy centers around two main components: Building a network of lead magnets \- These are influential figures like senior advisors, thought leaders, and strategic partners. Engaging with institutions like IMDA, SUTD, and investors like Plug and Play helps us gain access to the right people and foster warm introductions, which shorten our sales cycle and ensure we’re reaching the right audience. Thought leadership \- We build our brand through customer traction, technology evidence, and regulatory guidelines. This helps us establish credibility in the market and position ourselves as trusted leaders in our field. This holistic approach has enabled us to navigate diverse market conditions in Asia and grow our B2B relationships. By focusing on these areas, we drive business growth and establish strong trust with stakeholders. What's your advice for fundraising? Here are my key takeaways for other founders when it comes to fundraising: Fundraise When You Don’t Need To We closed our seed round in April 2023, a time when we weren't actively raising. Founders should always be in fundraising mode, even when they're not immediately in need of capital. Don’t wait until you have only a few months of runway left. Keep the pipeline open and build relationships. When the timing is right, execution becomes much easier. For us, our investment came through a combination of referrals and inbound interest. Even our lead investor initially rejected us, but after re-engaging, things eventually fell into place. It’s crucial to stay humble, treat everyone with respect, and maintain those relationships for when the time is right. Be Mindful of How You Present Information When fundraising, how you present information matters a lot. We created a comprehensive, easily digestible investment memo, hosted on Notion, which included everything an investor might need—problem, solution, market, team, risks, opportunities, and data. The goal was for investors to be able to get the full picture within 30 minutes without chasing down extra details. We also focused on making our financial model clear and meaningful, even though a 5-year forecast might be overkill at the seed stage. The key was clarity and conciseness, and making it as easy as possible for investors to understand the opportunity. I learned that brevity and simplicity are often the best ways to make a memorable impact. For the pitch itself, keep it simple and focus on 4 things: problem, solution, team, and market. If you can summarize each of these clearly and concisely, you’ll have a compelling pitch. Later on, you can expand into market segments, traction, and other metrics, but for seed-stage, focus on those four areas, and make sure you’re strong in at least three of them. If you do, you'll have a compelling case. How do you run things day-to-day? i.e what's your operational workflow and team structure? Here's an overview of our team structure and process: Internally: Our team is divided into two main areas: backend (internal team) and frontend (market-facing team). There's no formal hierarchy within the backend team. We all operate as equals, defining our goals based on what needs to be developed, assigning tasks, and meeting weekly to share updates and review progress. The focus is on full ownership of tasks and accountability for getting things done. I also contribute to product development, identifying challenges and clearing obstacles to help the team move forward. Backend Team: We approach tasks based on the scope defined by customers, with no blame or hierarchy. It's like a sports team—sometimes someone excels, and other times they struggle, but we support each other and move forward together. Everyone has the creative freedom to work in the way that suits them best, but we establish regular meetings and check-ins to ensure alignment and progress. Frontend Team: For the market-facing side, we implement a hierarchy because the market expects this structure. If I present myself as "CEO," it signals authority and credibility. This distinction affects how we communicate with the market and how we build our brand. The frontend team is split into four main areas: Business Product (Software Engineering) Machine Learning Engineering R&D The C-suite sits at the top, followed by team leads, and then the executors. We distill market expectations into actionable tasks, ensuring that everyone is clear on their role and responsibilities. Process: We start by receiving market expectations and defining tasks based on them. Tasks are assigned to relevant teams, and execution happens with no communication barriers between team members. This ensures seamless collaboration and focused execution. The main goal is always effectiveness—getting things done efficiently while maintaining flexibility in how individuals approach their work. In both teams, there's an emphasis on accountability, collaboration, and clear communication, but the structure varies according to the nature of the work and external expectations.

Seeking co-founder to build LinkedIn’s biggest rival(curated version)
reddit
LLM Vibe Score0
Human Vibe Score1
ItzdreeThis week

Seeking co-founder to build LinkedIn’s biggest rival(curated version)

How do you connect with likeminded people? You see the polished wins everywhere, but what about the messy drafts , the awkward pitches and the moments you’re not sure you’ve got it right? Problem: The whole idea of founding and starting a business can be super intimidating for some people, specially those who don’t know any founders personally, those who don’t have a large network, those who don’t have rich parents with large networks, those not inserted in an entrepreneurial culture like in the US for example (which is my case). Sometimes all you need is the right support network, and too see others do what you want, to know that it’s possible! Everyone has an “ultimate guide” to make 7 figures or build a business on YouTube but NO ONE shoes you the HOW, just the results… I’ve tried joining founder communities, LinkedIn ,Reddit … you name it. Most of these founder communities are inaccessible for regular people and often ask for you to have an already existing business with a min ARR… or their simply geography based and if you’re not in a certain area you can’t really participate… As of LinkedIn… full of empty AI generated posts about how some random dude raised $10m in 7 days. Okay Jonathan, but what about the HOW?? How did you write your first pitch? How many rejection calls did you get? What is an MVP? There simply isn’t a platform out there to document your founding journey and find inspiration within a community of people who are doing the same as you. What better way to feel motivated then to see someone actually document their process? Solution: I’m working on building a social media platform for aspiring/founders to connect through the RAW, UNFILTERED process of turning ideas into reality in REAL time. It’s all gonna be around the “building in public “ concept and content creation. Picture an instagram/tiktok profile where instead of seeing someone’s dog you see them documenting their founding process—from the moment they had the idea, to the moment they launched, you’re going to see the successes, the fails, the rejected calls, all documented through actual content and not some AI generated LinkedIn post. Imagine if you wanted to learn about how Steve Jobs started Apple , you could simply go through his profile on this app—exactly. To make sure all interactions are meaningful people would have to apply. It’s a truly curated community, with REAL people, building REAL things in REAL time, and not just tell us the story of how they did it… Audience: I’m targeting people who have a burning desire of building a business and early stage founders starting their founder journeys, that don’t have a support network and simply don’t know where to start. People who are tired of watching 30 min “ultimate guides “ on how to make it on YouTube from “business gurus” selling courses. People who haven’t reached the min ARR required to join an “exclusive “ founder a community. People who can’t simply just move to the US to get into the “exclusive” YC combinator. People who want to connect with real people building real things and not anonymous people on Reddit, or LinkedIn influencers again trying to promote their services. I believe in the idea because I’m also part of my audience. Have always wanted to start my own thing just never knew how to and where to find a community of likeminded people . I don’t know any founders myself, I come from a non-entrepreneurial society and I’d pay good money to access a community of REAL passionate founders building REAL things, in REAL time. This would be my first ever business, and I want to share my journey building it and hopefully inspire others to just start so I’ve created a mailing list to keep anyone interested in the project updated on my fails , learnings and successes. I’m not worried about “making it” but just “starting” and hopefully reach the right audience and inspire anyone to start whatever they have marinating in their thoughts. If you’re a founder struggling with staying consistent or an aspiring founder with an insane desire of starting and don’t know how to start, I’d love to get your feedback on what’s stopping you, your challenges starting out and what you’d find useful in such platform. And finally would this be something that interests you?? PS: casually looking for a technical co-founder

Where Do I Find Like-Minded, Unorthodox Co-founders? [Tech]
reddit
LLM Vibe Score0
Human Vibe Score0.6
madscholarThis week

Where Do I Find Like-Minded, Unorthodox Co-founders? [Tech]

After more than 20 years in the tech industry I'm pretty fed up. I've been at it non-stop, so the burnout was building up for a while. Eventually, it's gotten so bad that it was no longer a question whether I need to take a break; I knew that I had to, for the sake of myself and loved ones. A few months ago I quit my well-paying, mid-level mgmt job to have some much-needed respite. I can't say that I've fully recovered, but I'm doing a bit better, so I'm starting to think about what's next. That said, the thoughts of going back into the rat race fill me with dread and anxiety. I've had an interesting career - I spent most of it in startups doing various roles from an SWE to a VP Eng, including having my own startup adventures for a couple of years. The last 4.5 years of my career have been in one of the fastest growing tech companies - it was a great learning experience, but also incredibly stressful, toxic and demoralizing. It's clear to me that I'm not cut out for the corporate world -- the ethos contradicts with my personality and beliefs -- but it's not just. I've accumulated "emotional scars" from practically every place I worked at and it made me loathe the industry to the degree that if I ever have another startup, it'd have to be by my own -- unorthodox -- ideals, even if it means a premature death due to lack of funding. I was young, stupid and overly confident when I had my first startup. I tried to do it "by the book" and dance to the tune of investors. While my startup failed for other, unrelated reasons, it gave me an opportunity to peak behind the curtain, experience the power dynamics, and get a better understanding to how the game is played - VCs and other person of interest have popularized the misconception that if a company doesn't scale, it would stagnate and eventually regress and die. This is nonsense. This narrative was created because it would make the capitalist pigs obsolete - they need companies to go through the entire alphabet before forcing them to sell or IPO. The sad reality is that the most entrepreneurs still believe in this paradigm and fall into the VC's honeypot traps. It's true that many businesses cannot bootstrap or scale without VC money, but it's equally true that far too many companies pivot/scale prematurely (and enshitify their product in the process) due to external pressures fueled by pure greed. This has a top-bottom effect - enshitification doesn't only effect users, but it also heavily effects the processes and structrures of companies, which can explain why the average tenure in tech is only \~2 years. I think that we live in an age where self-starting startups are more feasible than ever. It's not just the rise of AI and automation, but also the plethora of tools, services, and open-source projects that are available to all for free. On the one hand, this is fantastic, but on the other, the low barrier-to-entry creates oversaturation of companies which makes research & discovery incredibly hard - it is overwhelming to keep up with the pace and distill the signal from the noise, and there's a LOT of noise - there's not enough metaphorical real-estate for the graveyard of startups that will be defunct in the very near future. I'd like to experiment with startups again, but I don't want to navigate through this complex mine field all by myself - I want to find a like-minded co-founder who shares the same ideals as I do. It goes without saying that being on the same page isn't enough - I also want someone who's experienced, intelligent, creative, productive, well-rounded, etc. At the moment, I don't have anyone in my professional network who has/wants what it takes. I can look into startup bootcamps/accelerators like YC et al., and sure enough, I'll find talented individuals, but it'd be a mismatch from the get-go. For shits and giggles, this is (very roughly) how I envision the ideal company: Excellent work life balance: the goal is not to make a quick exit, become filthy rich, and turn into a self-absorbed asshole bragging about how they got so succesful. The goal is to generate a steady revenue stream while not succumbing to social norms that encourage greed. The entire purpose is to reach humble financial indepedence while maintaining a stress-free (as one possibly can) work environment. QOL should always be considered before ARR. Bootstraping: no external money. Not now, not later. No quid pro quo. No shady professionals or advisors. Company makes it or dies trying. Finances: very conservative to begin with - the idea is to play it safe and build a long fucking runaway before hiring. Spend every penny mindfully and frugally. Growth shouldn't be too quick & reckless. The business will be extremely efficient in spending. The only exception to the rule is crucial infrastructure and wages to hire top talent and keep salaries competitive and fair. Hiring: fully remote. Global presence, where applicable. Headcount will be limited to the absolute bare minimum. The goal is to run with a skeleton crew of the best generalists out there - bright, self-sufficient, highly motivated, autodidact, and creative individuals. Hiring the right people is everything and should be the company's top priority. Compensation & Perks: transperent and fair, incentivizing exceptional performance with revenue sharing bonuses. The rest is your typical best-in-class perks: top tier health/dental/vision insurance, generous PTO with mandatory required minimum, parental leave, mental wellness, etc. Process: processes will be extremely efficient, automated to the max, documented, unbloated, and data-driven through and through. Internal knowledge & data metrics will be accessible and transparent to all. Employees get full autonomy of their respective areas and are fully in charge of how they spend their days as long as they have agreed-upon, coherent, measurable metrics of success. Meetings will be reduced to the absolute minimum and would have to be justified and actionable - the ideal is that most communications will be done in written form, while face-to-face will be reserved for presentations/socializing. I like the Kaizen philosophy to continuously improve and optimize processes. Product: As previously stated, "data-driven through and through". Mindful approach to understand cost/benefit. Deliberate and measured atomic improvements to avoid feature creep and slow down the inevitable entropy. Most importantly, client input should be treated with the utmost attention but should never be the main driver for the product roadmap. This is a very controversial take, but sometimes it's better to lose a paying customer than to cave to their distracting/unreasonable/time-consuming demands. People Culture: ironicaly, this would be what most companies claim to have, but for realsies. Collaborative, open, blameless environment. People are treated like actual grown ups with flat structure, full autonomy, and unwavering trust. Socializing and bonding is highly encourged, but never required. Creativity and ingenuity is highly valued - people are encouraged to work on side projects one day of the week. Values: I can write a lot about it, but it really boils down to being kind and humble. We all know what happened with "don't be evil". It's incredibly hard to retain values over time, esp. when there are opposing views within a company. I don't know how to solve it, but I believe that there should be some (tried and true) internal checks & balances from the get go to ensure things are on track. I never mentioned what this hypothetical startup does. Sure, there's another very relevant layer of domain experience fit, but this mindset allows one to be a bit more fluid because the goal is not to disrupt an industry or "make the world a better place"; it's to see work for what it truly is - a mean to an end. It's far more important for me to align with a co-founder on these topics than on an actual idea or technical details. Pivoting and rebranding are so common that many VCs outweigh the make up and chemistry of the founding team (and their ability to execute) over the feasibility of their ideas.  To wrap this long-winded post, I'm not naive or disillusioned - utopias aren't real and profitable companies who operate at a 70-80% rate of what I propose are the real unicorns, but despite them being a tiny minority, I think they are the real forward thinkers of the industry. I might be wrong, but I hope that I'm right and that more and more startups will opt towards long-term sustainability over the promise of short-term gains because the status quo really stinks for most people. What do you folks think? Does anyone relate? Where can I find others like me? P.S I thought about starting a blog writing about these topics in length (everything that is wrong with tech & what can be done to improve it), but I have the Impostor Syndrom and I'm too self-conscious about how I come off. If you somehow enjoyed reading through that and would love to hear more of my thoughts and experiences in greater detail, please let me know. P.P.S If you have a company that is close to what I'm describing and you're hiring, let me know!

Why the value of writing code and other digital services is going to zero
reddit
LLM Vibe Score0
Human Vibe Score1
BalloonWheelieThis week

Why the value of writing code and other digital services is going to zero

I must preface this with a trigger warning because I make some statements in this post that might be upsetting to some. This post discusses my experience building in the new era of entrepreneurship, which is one where the founder is the center of the universe, and the consultants, overpriced SaaS, and corporate swamp creatures are replaced by single-user custom software, bots, and self-hosted automations. If you work in the legacy economy, I really don't intend to stress you out or say things you are doing are quickly becoming irrelevant, but I must share the reality of how I am operating, because I would like to hear from others who are doing the same, or desire to do the same. I am currently operating with the belief that AI-powered tools are going to make 1-person million dollar businesses much more common. Building anything digital is becoming extremely easy, cheap, and quick to implement. The value of code and digital tools is approaching zero, or at most 5% of what it currently is. Right now, the most powerful AI tools are aimed at developers, so folks who have some technical and business ability basically have nothing holding them back aside from the speed of their brain right now. I happen to be a part of the cohort, and am building like there is no tomorrow, but I don't believe this cohort is actually all that big. The next hurdle to unlock the new era of entrepreneurship is empowering every entrepreneur to build at the same pace that is currently locked behind having technical ability. This cohort is huge (millions, if the number of people in this sub is any indication). This post is aimed at them (you?). If you are part of this cohort, what is holding you back from launching a new product for near-zero cost? What is too complicated, too expensive, too unknown for you to be able to build your new/current business at maximum speed? I look forward to seeing the replies, I hope some insights shared can help the community, and be a catalyst for more tools to enable non-technical founders to launch. I will now share some of how I am testing, launching, and selling as a one-man-show. This will be a little bit technical, but if the output of any layer of my stack is something you want, please comment because maybe someone will build a cheap way of accessing it without needing to manage the code yourself. \#1 BOTS I cannot overstate how much leverage bots have created for me. I run all of my bots locally and interface with with via Telegram. Bots do things like: \- watch social media pages, forums, subreddits, etc related to my customers and notify me of what is going on, and suggest SEO blog posts that could be published to capture traffic related to the topic. with a single message, my bot will generate a blog post, send it to me for review, apply edits i suggest, and then publish it live, all from within telegram \- pay attention to all my key metrics/analytics, and attempt to find insights/corrolations (ex. there is a lot of traffic on this page, blog post, video, etc. here's why, and how we can take advantage of it to drive business goals) \- repurposing content. i have dozens of social media profiles that are 100% run by bots, they are all related to my customer niches and will do things like post news, snippets from my blogs, interact with human creators in the niche, etc. this builds my audience automatically which I can then advertise to/try to convert into paying customers, since they are interested in the things my bot is posting and become followers, it's like automated qualified lead gen 24/7 across every social platform and every niche I care about. you may be thinking by now that this post is made by a bot, but you will have to trust me that this is 100% hand-written by my sleep-deprived brain. let's continue: \#2 replacing every SaaS with a shitty version of it designed for what i need out of it it's absurd that we pay ten's of dollars per seat per month for basic digital functions like chat (slack), CRM (active camppaign, sales force, hubspot, etc), email stuff (mailchip, etc), link sharing (linktree, etc), website builders (wix, squarespace, etc), etc. all of these SaaS tools are overpriced and overbuilt. I believe many of them are going to be caught in the innovators dilemma and will go to 0. I don't use any of these anymore, I build and self-host my own shitty version of each of them that does only what i need out of the tool. for example, my CRM doesn't have a fancy drag and drop email builder and 10000 3rd party plugins, because i dont need any of that shit I just need to segment and communicate with my customers. if i need more features, i can generate them on the fly. \#3 working alone I have worked with cofounders in the past, raised money from investors, hired consultants, burned money and time, suffered sleepless nights from stress caused by other people not delivering, trying to convince others they are wrong, or they are pushing the company off a cliff, waste waste waste. no more of that. In the new age of entrepreneurship, the BUILDER (you and I) are the ones creating the value, and AI empowers us to do it alone. this might seem daunting, but there is no business problem that can't be solved with a detailed discussion sesh with chatgpt, no facts that can't be found with perplexity, and no task that can't be automated with claude. there is no need for anymore swamp creatures. you are the start and the end point, you don't need to rely on anyone else for anything. this may sound ignorant, but this is the conclusion I have come to believe, and it continues to be proven every day my businesses progress with me being the only human involved. This is getting quite long so I'll cut it here. I look forward to hearing about how you are operating in this new era and hopefully getting inspired/learning some new ideas to add to my current stack.

how I built a $6k/mo business with cold email
reddit
LLM Vibe Score0
Human Vibe Score1
Afraid-Astronomer130This week

how I built a $6k/mo business with cold email

I scaled my SaaS to a $6k/mo business in under 6 months completely using cold email. However, the biggest takeaway for me is not a business that’s potentially worth 6-figure. It’s having a glance at the power of cold emails in the age of AI. It’s a rapidly evolving yet highly-effective channel, but no one talks about how to do it properly. Below is the what I needed 3 years ago, when I was stuck with 40 free users on my first app. An app I spent 2 years building into the void. Entrepreneurship is lonely. Especially when you are just starting out. Launching a startup feel like shouting into the dark. You pour your heart out. You think you have the next big idea, but no one cares. You write tweets, write blogs, build features, add tests. You talk to some lukewarm leads on Twitter. You do your big launch on Product Hunt. You might even get your first few sales. But after that, crickets... Then, you try every distribution channel out there. SEO Influencers Facebook ads Affiliates Newsletters Social media PPC Tiktok Press releases The reality is, none of them are that effective for early-stage startups. Because, let's face it, when you're just getting started, you have no clue what your customers truly desire. Without understanding their needs, you cannot create a product that resonates with them. It's as simple as that. So what’s the best distribution channel when you are doing a cold start? Cold emails. I know what you're thinking, but give me 10 seconds to change your mind: When I first heard about cold emailing I was like: “Hell no! I’m a developer, ain’t no way I’m talking to strangers.” That all changed on Jan 1st 2024, when I actually started sending cold emails to grow. Over the period of 6 months, I got over 1,700 users to sign up for my SaaS and grew it to a $6k/mo rapidly growing business. All from cold emails. Mastering Cold Emails = Your Superpower I might not recommend cold emails 3 years ago, but in 2024, I'd go all in with it. It used to be an expensive marketing channel bootstrapped startups can’t afford. You need to hire many assistants, build a list, research the leads, find emails, manage the mailboxes, email the leads, reply to emails, do meetings. follow up, get rejected... You had to hire at least 5 people just to get the ball rolling. The problem? Managing people sucks, and it doesn’t scale. That all changed with AI. Today, GPT-4 outperforms most human assistants. You can build an army of intelligent agents to help you complete tasks that’d previously be impossible without human input. Things that’d take a team of 10 assistants a week can now be done in 30 minutes with AI, at far superior quality with less headaches. You can throw 5000 names with website url at this pipeline and you’ll automatically have 5000 personalized emails ready to fire in 30 minutes. How amazing is that? Beyond being extremely accessible to developers who are already proficient in AI, cold email's got 3 superpowers that no other distribution channels can offer. Superpower 1/3 : You start a conversation with every single user. Every. Single. User. Let that sink in. This is incredibly powerful in the early stages, as it helps you establish rapport, bounce ideas off one another, offer 1:1 support, understand their needs, build personal relationships, and ultimately convert users into long-term fans of your product. From talking to 1000 users at the early stage, I had 20 users asking me to get on a call every week. If they are ready to buy, I do a sales call. If they are not sure, I do a user research call. At one point I even had to limit the number of calls I took to avoid burnout. The depth of the understanding of my customers’ needs is unparalleled. Using this insight, I refined the product to precisely cater to their requirements. Superpower 2/3 : You choose exactly who you talk to Unlike other distribution channels where you at best pick what someone's searching for, with cold emails, you have 100% control over who you talk to. Their company Job title Seniority level Number of employees Technology stack Growth rate Funding stage Product offerings Competitive landscape Social activity (Marital status - well, technically you can, but maybe not this one…) You can dial in this targeting to match your ICP exactly. The result is super low CAC and ultra high conversion rate. For example, My competitors are paying $10 per click for the keyword "HARO agency". I pay $0.19 per email sent, and $1.92 per signup At around $500 LTV, you can see how the first means a non-viable business. And the second means a cash-generating engine. Superpower 3/3 : Complete stealth mode Unlike other channels where competitors can easily reverse engineer or even abuse your marketing strategies, cold email operates in complete stealth mode. Every aspect is concealed from end to end: Your target audience Lead generation methods Number of leads targeted Email content Sales funnel This secrecy explains why there isn't much discussion about it online. Everyone is too focused on keeping their strategies close and reaping the rewards. That's precisely why I've chosen to share my insights on leveraging cold email to grow a successful SaaS business. More founders need to harness this channel to its fullest potential. In addition, I've more or less reached every user within my Total Addressable Market (TAM). So, if any competitor is reading this, don't bother trying to replicate it. The majority of potential users for this AI product are already onboard. To recap, the three superpowers of cold emails: You start a conversation with every single user → Accelerate to PMF You choose exactly who you talk to → Super-low CAC Complete stealth mode → Doesn’t attract competition By combining the three superpowers I helped my SaaS reach product-marketing-fit quickly and scale it to $6k per month while staying fully bootstrapped. I don't believe this was a coincidence. It's a replicable strategy for any startup. The blueprint is actually straightforward: Engage with a handful of customers Validate the idea Engage with numerous customers Scale to $5k/mo and beyond More early-stage founders should leverage cold emails for validation, and as their first distribution channel. And what would it do for you? Update: lots of DM asking about more specifics so I wrote about it here. https://coldstartblueprint.com/p/ai-agent-email-list-building

I realized that AI will create equal footing for non-technical / non-coders compared to coders
reddit
LLM Vibe Score0
Human Vibe Score1
MatanNahmaniThis week

I realized that AI will create equal footing for non-technical / non-coders compared to coders

Hey fellow entrepreneurs, I started my current entrepreneurial journey following the advice to “build something that solves a problem you have.” As a coder, I wanted to code faster/better/stronger/etc. So I tried out dozens of AI coding tools to see the state of the market.  I took the best components I saw and started making my own flavor of tool, but sort of shelved it because as a coder I felt that the results were a bit alien (such as getting the AI to follow my code style, write idiomatic code, or refactor the same way I would.) I concluded that building AI coding tools for coders is tricky because as coders we’re so particular about the specifics of our code. Meanwhile, my absolutely non-technical friend was hitting me up to help him build a website for a new real-estate company that he’s launching, and he wanted my help. I really respect his hustle, but I was swamped trying to figure out my own product/market, so I told him he could use my AI coder and I would try to help out when he got stuck. He didn’t get stuck though, not once, and he launched his site over the weekend. I was truly shocked he did it all on his own, so I asked him to share his logs. It was wild – he managed to code a more or less state of the art website (good design, SEO, well-structured source code, Google Analytics, mailing lists. etc.) with absolutely no help. It cost him less than $100 in AI credits, instead of the price quotes of $20,000 - $50,000 from freelancers and agencies. Now I’m seriously pursuing AI coding tools again, but this time with a new passion: AI for non-coder / non-technical people is a 100x game changer. I think 2025 is going to be the year of the entrepreneur, where there will be a hundred times the businesses started because what held people back before was the lack of a technical co-founder or the cash to compensate engineers. Now it costs next to nothing to get started. I’m curious if anyone else has had a similar realization? Anyway, I’ve put the link below to my GitHub if you want to try it (open source, you pay for AI credits). But the main reason for my post is that I feel like I’m living in this new world of realization that being a human on earth is going to get a LOT more interesting in the coming years. There’s literally no excuse to take a job you hate, and nothing stopping people from launching a business. For anyone interested in checking it out or providing feedback you can search for kodu ai on github or kodu ai on google Best of luck to everyone on your entrepreneurial journey! P.s not sure if this is the right flair

AI Content Campaign Got 4M impressions, Thousands of Website Views, Hundreds of Customers for About $100 — This is the future of marketing
reddit
LLM Vibe Score0
Human Vibe Score0.857
adamkstinsonThis week

AI Content Campaign Got 4M impressions, Thousands of Website Views, Hundreds of Customers for About $100 — This is the future of marketing

Alright. So, a few months ago I tested a marketing strategy for a client that I’ve sense dedicated my life to developing on. The Idea was to take the clients Pillar content (their YouTube videos) and use AI to rewrite the content for all the viable earned media channels (mainly Reddit). The campaign itself was moderately successful. To be specific, after one month it became their 2nd cheapest customer acquisition cost (behind their organic YouTube content). But there is a lot to be done to improve the concept. I will say, having been in growth marketing for a decade, I felt like I had hit something big with the concept. I’m going to detail how I built that AI system, and what worked well and what didn’t here. Hopefully you guys will let me know what you think and whether or not there is something here to keep working on. DEFINING THE GOAL Like any good startup, their marketing budget was minimal. They wanted to see results, fast and cheap. Usually, marketers like me hate to be in this situation because getting results usually either takes time or it takes money. But you can get results fast and cheap if you focus on an earned media strategy - basically getting featured in other people’s publication. The thing is these strategies are pretty hard to scale or grow over time. That was a problem for future me though. I looked through their analytics and saw they were getting referral traffic from Reddit - it was their 5th or 6th largest source of traffic - and they weren’t doing any marketing on the platform. It was all digital word of mouth there. It kind of clicked for me there, that Reddit might be the place to start laying the ground work. So with these considerations in mind the goal became pretty clear: Create content for relevant niche communities on Reddit with the intent of essentially increasing brand awareness. Use an AI system to repurpose their YouTube videos to keep the cost of producing unique content for each subreddit really low. THE HIGH-LEVEL STRATEGY I knew that there are huge amounts of potential customers on Reddit (About 12M people in all the relevant communities combined) AND that most marketers have a really tough time with the platform. I also knew that any earned media strategy, Reddit or not, means Click Through Rates on our content would be extremely low. A lot of people see this as a Reddit specific problem because you can’t self-promote on the platform, but really you have to keep self-promotion to a minimum with any and all earned media. This basically meant we had to get a lot of impressions to make up for it. The thing about Reddit is if your post absolutely crushes it, it can get millions of views. But crushing it is very specific to what the expectations are of that particular subreddit. So we needed to make content that was specifically written for that Subreddit. With that I was able to essentially design how this campaign would work: We would put together a list of channels (specifically subreddits to start) that we wanted to create content for. For each channel, we would write a content guideline that details out how to write great content for this subreddit. These assets would be stored in an AirTable base, along with the transcripts of the YouTube videos that were the base of our content. We would write and optimize different AI Prompts that generated different kinds of posts (discussion starters about a stock, 4-5 paragraph stock analysis, Stock update and what it means, etc…) We would build an automation that took the YouTube transcripts, ran each prompt on it, and then edited each result to match the channel writing guidelines. And then we would find a very contextual way to leave a breadcrumb back to the client. Always as part of the story of the content. At least, this is how I originally thought things would go. CHOOSING THE RIGHT SUBREDDITS Picking the right communities was vital. Here’s the basic rubric we used to pick and prioritize them: • Relevance: We needed communities interested in stock analysis, personal finance, or investing. • Subreddit Size vs. Engagement: Large subreddits offer more potential impressions but can be less focused. Smaller subreddits often have higher engagement rates. • Content Feasibility: We had to ensure we could consistently create high-value posts for each chosen subreddit. We started with about 40 possibilities, then narrowed it down to four or five that consistently delivered upvotes and user signups. CREATING CHANNEL-SPECIFIC GUIDES By the end, creating channel specific writing guidelines looked like a genius decision. Here’s how we approached it and used AI to get it done quickly: Grabbed Top Posts: We filtered the subreddit’s top posts (change filter to “Top” and then “All Time”) of all time to see the kinds of content that performed best Compiled The Relevant Posts: We took the most relevant posts to what we were trying to do and put them all on one document (basically created one document per subreddit that just had the top 10 posts in that subreddit). Had AI Create Writing Guideline Based On Posts: For each channel, we fed the document with the 10 posts with the instructions “Create a writing guideline for this subreddit based on these high performing posts. I had to do some editing on each guideline but this worked pretty well and saved a lot of time. Each subreddit got a custom guideline, and we put these inside the “Channels” table of the AirTable base we were developing with these assets. BUILDING THE AI PROMPTS THAT GENERATED CONTENT Alright this is probably the most important section so I’ll be detailed. Essentially, we took all the assets we developed up until this point, and used them to create unique posts for each channel. This mean each AI prompt was about 2,000 words of context and produced about a 500-word draft. There was a table in our AirTable where we stored the prompts, as I alluded to earlier. And these were basically the instructions for each prompt. More specifically, they detailed out our expectations for the post. In other words, there were different kinds of posts that performed well on each channel. For example, you can write a post that’s a list of resources (5 tools we used to…), or a how to guide (How we built…), etc.. Those weren’t the specific ones we used, but just wanted to really explain what I meant there. That actual automation that generated the content worked as follows: New source content (YouTube video transcript) was added to the Source Content table. This triggered the Automation. The automation grabbed all the prompts in the prompt table. For each prompt in the prompt table, we sent a prompt to OpenAI (gpt-4o) that contained first the prompt and also the source content. Then, for each channel that content prompt could be used on, we sent another prompt to OpenAI that revised the result of the first prompt based on the specific channel guidelines. The output of that prompt was added to the Content table in AirTable. To be clear, our AirTable had 4 tables: Content Channels Prompts Source Content The Source Content, Prompts, and Channel Guidelines were all used in the prompt that generated content. And the output was put in the Content table. Each time the automation ran, the Source Content was turned into about 20 unique posts, each one a specific post type generated for a specific channel. In other words, we were create a ton of content. EDITING & REFINING CONTENT The AI drafts were never perfect. Getting them Reddit-ready took editing and revising The main things I had to go in and edit for were: • Tone Adjustments: We removed excessively cliche language. The AI would say silly things like “Hello fellow redditors!” which sound stupid. • Fact-Checking: Financial data can be tricky. We discovered AI often confused figures, so we fact check all stock related metrics. Probably something like 30-40% error rate here. Because the draft generation was automated, that made the editing and getting publish ready the human bottleneck. In other words, after creating the system I spent basically all my time reviewing the content. There were small things I could do to make this more efficient, but not too much. The bigger the model we used, the less editing the content needed. THE “BREADCRUMB” PROMOTION STRATEGY No where in my prompt to the AI did I mention that we were doing any marketing. I just wanted the AI to focus on creating content that would do well on the channel. So in the editing process I had to find a way to promote the client. I called it a breadcrumb strategy once and that stuck. Basically, the idea was to never overtly promote anything. Instead find a way to leave a breadcrumb that leads back to the client, and let the really interested people follow the trail. Note: this is supposed to be how we do all content marketing. Some examples of how we did this were: Shared Visuals with a Subtle Watermark: Because our client’s product offered stock data, we’d often include a chart or graph showing a company’s financial metric with the client’s branding in the corner. Added Supporting Data from Client’s Website: If we mentioned something like a company’s cash flow statement, we could link to that company’s cash flow statement on the client’s website. It worked only because there was a lot of data on the client’s website that wasn’t gated. These tactics were really specific to the client. Which is should be. For other companies I would rethink what tactics I use here. THE RESULTS I’m pretty happy with the results • Impressions: – Early on posts averaged \~30,000 apiece, but after about a month of optimization, we hit \~70,000 impressions average. Over about two months, we reached 4 million total impressions. • Signups: – In their signups process there was one of those “Where did you find us?” questions and the amount of people who put Reddit jumped into the few hundred a month. Precise tracking of this is impossible. • Cost Efficiency (This is based on what I charged, and not the actual cost of running the campaign which is about $100/mo): – CPM (cost per thousand impressions) was about $0.08, which is far better than most paid channels. – Cost per free user: \~$8-10. After about a 10% conversion rate to a paid plan, our cost per paying user was $80–$100—well below the client’s previous $300–$400. HIGHLIGHTS: WHAT WORKED Subreddit-Specific Content: – Tailoring each post’s format and length to the audience norms boosted engagement. Worked out really well. 1 post got over 1M views alone. We regularly had posts that had hundreds of thousands. Breadcrumbs: – We never had anyone call us out for promoting. And really we weren’t. Our first priority was writing content that would crush on that subreddit. Using the Founder’s Existing Material: – The YouTube transcripts grounded the AI’s content in content we already made. This was really why we were able to produce so much content. CHALLENGES: WHAT DIDN’T WORK AI is still off: – Maybe it’s expecting too much, but still I wish the AI had done a better job. I editing a lot of content. Human oversight was critical. Scheduling all the content was a pain: – Recently I automated this pretty well. But at first I was scheduling everything manually and scheduling a hundred or so posts was a hassle. Getting Data and Analytics: – Not only did we have not very good traffic data, but the data from reddit had to be collected manually. Will probably automate this in the future. COST & TIME INVESTMENT Setup: The setup originally took me a couple weeks. I’ve since figured out how to do much faster (about 1 week). AirTable Setup here was easy and the tools costs $24/mo so not bad. ChatGPT costs were pretty cheap. Less than $75 per month. I’ve sense switched to using o1 which is much more expensive but saves me a lot of editing time Human Editing: Because this is the human part of the process and everything else was automated it mean by default all my time was spent editing content. Still this was a lot better than creating content from scratch probably by a factor of 5 or 10. The main expense was paying an editor (or using your own time) to refine posts. Worth it? Yes even with the editing time I was able to generate way more content that I would have otherwise. LESSONS & ACTIONABLE TAKEAWAYS Reddit as a Growth Channel: – If you genuinely respect each subreddit’s culture, you can achieve massive reach on a tight budget. AI + Human Collaboration: – AI excels at first drafts, but human expertise is non-negotiable for polishing and ensuring factual integrity. Soft Promotion Wins: – The “breadcrumb” approach paid off. It might feel like too light a touch, but is crucial for Reddit communities. Create once, repurpose as many times as possible: – If you have blog posts, videos, podcasts, or transcripts, feed them into AI to keep your message accurate and brand-consistent. CONCLUSION & NEXT STEPS If you try a similar approach: • Begin with smaller tests in a few niches to learn what resonates. • Create a clear “channel guide” for each community. • Carefully fact-check AI-generated posts. • Keep brand mentions low-key until you’ve established credibility.

Why the value of writing code and other digital services is going to zero
reddit
LLM Vibe Score0
Human Vibe Score1
BalloonWheelieThis week

Why the value of writing code and other digital services is going to zero

I must preface this with a trigger warning because I make some statements in this post that might be upsetting to some. This post discusses my experience building in the new era of entrepreneurship, which is one where the founder is the center of the universe, and the consultants, overpriced SaaS, and corporate swamp creatures are replaced by single-user custom software, bots, and self-hosted automations. If you work in the legacy economy, I really don't intend to stress you out or say things you are doing are quickly becoming irrelevant, but I must share the reality of how I am operating, because I would like to hear from others who are doing the same, or desire to do the same. I am currently operating with the belief that AI-powered tools are going to make 1-person million dollar businesses much more common. Building anything digital is becoming extremely easy, cheap, and quick to implement. The value of code and digital tools is approaching zero, or at most 5% of what it currently is. Right now, the most powerful AI tools are aimed at developers, so folks who have some technical and business ability basically have nothing holding them back aside from the speed of their brain right now. I happen to be a part of the cohort, and am building like there is no tomorrow, but I don't believe this cohort is actually all that big. The next hurdle to unlock the new era of entrepreneurship is empowering every entrepreneur to build at the same pace that is currently locked behind having technical ability. This cohort is huge (millions, if the number of people in this sub is any indication). This post is aimed at them (you?). If you are part of this cohort, what is holding you back from launching a new product for near-zero cost? What is too complicated, too expensive, too unknown for you to be able to build your new/current business at maximum speed? I look forward to seeing the replies, I hope some insights shared can help the community, and be a catalyst for more tools to enable non-technical founders to launch. I will now share some of how I am testing, launching, and selling as a one-man-show. This will be a little bit technical, but if the output of any layer of my stack is something you want, please comment because maybe someone will build a cheap way of accessing it without needing to manage the code yourself. \#1 BOTS I cannot overstate how much leverage bots have created for me. I run all of my bots locally and interface with with via Telegram. Bots do things like: \- watch social media pages, forums, subreddits, etc related to my customers and notify me of what is going on, and suggest SEO blog posts that could be published to capture traffic related to the topic. with a single message, my bot will generate a blog post, send it to me for review, apply edits i suggest, and then publish it live, all from within telegram \- pay attention to all my key metrics/analytics, and attempt to find insights/corrolations (ex. there is a lot of traffic on this page, blog post, video, etc. here's why, and how we can take advantage of it to drive business goals) \- repurposing content. i have dozens of social media profiles that are 100% run by bots, they are all related to my customer niches and will do things like post news, snippets from my blogs, interact with human creators in the niche, etc. this builds my audience automatically which I can then advertise to/try to convert into paying customers, since they are interested in the things my bot is posting and become followers, it's like automated qualified lead gen 24/7 across every social platform and every niche I care about. you may be thinking by now that this post is made by a bot, but you will have to trust me that this is 100% hand-written by my sleep-deprived brain. let's continue: \#2 replacing every SaaS with a shitty version of it designed for what i need out of it it's absurd that we pay ten's of dollars per seat per month for basic digital functions like chat (slack), CRM (active camppaign, sales force, hubspot, etc), email stuff (mailchip, etc), link sharing (linktree, etc), website builders (wix, squarespace, etc), etc. all of these SaaS tools are overpriced and overbuilt. I believe many of them are going to be caught in the innovators dilemma and will go to 0. I don't use any of these anymore, I build and self-host my own shitty version of each of them that does only what i need out of the tool. for example, my CRM doesn't have a fancy drag and drop email builder and 10000 3rd party plugins, because i dont need any of that shit I just need to segment and communicate with my customers. if i need more features, i can generate them on the fly. \#3 working alone I have worked with cofounders in the past, raised money from investors, hired consultants, burned money and time, suffered sleepless nights from stress caused by other people not delivering, trying to convince others they are wrong, or they are pushing the company off a cliff, waste waste waste. no more of that. In the new age of entrepreneurship, the BUILDER (you and I) are the ones creating the value, and AI empowers us to do it alone. this might seem daunting, but there is no business problem that can't be solved with a detailed discussion sesh with chatgpt, no facts that can't be found with perplexity, and no task that can't be automated with claude. there is no need for anymore swamp creatures. you are the start and the end point, you don't need to rely on anyone else for anything. this may sound ignorant, but this is the conclusion I have come to believe, and it continues to be proven every day my businesses progress with me being the only human involved. This is getting quite long so I'll cut it here. I look forward to hearing about how you are operating in this new era and hopefully getting inspired/learning some new ideas to add to my current stack.

We create AI software and provide AI automation for companies. Here is a list of the best AI tools for sales IMHO
reddit
LLM Vibe Score0
Human Vibe Score1
IntellectualAINCThis week

We create AI software and provide AI automation for companies. Here is a list of the best AI tools for sales IMHO

Here are some AI tools that are useful for sales. I tried to touch as many different parts of the sales process so the tools are all quite different but all useful for sales. I tried to include some of the best and underrated AI tools. Most of them are free so check them out if you want. I did not include ChatGPT as it can basically be used for anything with the right prompts. So these tools will be more research-oriented. A quick disclaimer – I work for the company Idealink where we create custom ChatGPT for businesses and other AI products. Apollo AI Seamless AI CoPilot AI Lavender AI Regie AI Gemini Plusdocs Make Midjourney Fireflies AI Apollo AI - Find potential customers Apollo is a platform for sales and business development. It offers a range of tools to find and engage with ideal customers. The platform has an extensive B2B database and features that streamline the sales process from prospecting to closing deals. Key Features: Extensive B2B Database: Apollo boasts a large, accurate database of over 275 million contacts, providing a wealth of potential leads and opportunities for sales teams. Data Enrichment and Lead Insights: The platform offers data enrichment capabilities, ensuring CRM systems are continuously updated with detailed and actionable lead information. AI-Driven Sales Engagement: Apollo's AI technology assists in crafting effective communication and prioritizing high-value leads, enhancing the overall sales engagement process. Comprehensive Sales Tools: The platform provides an integrated suite of tools for email, call, and social media engagement, combined with analytics and automation features to streamline the sales cycle. Tailored Solutions for Teams: Apollo offers customized solutions for different team types, including sales and business development, founders, and marketing teams, addressing specific needs and goals. Seamless AI - Sale process made easier Seamless.AI is an innovative B2B sales lead generation solution that allows sales teams to efficiently connect with their ideal customers. The platform's features provide accurate and up-to-date contact information and integrate easily with existing sales and marketing tools. Key Features: Real-Time Search Engine: Seamless.AI uses AI to scour the web in real time, ensuring the contact information for sales leads is current and accurate. Comprehensive Integration: Easily integrates with popular CRMs and sales tools like Salesforce, HubSpot, and LinkedIn Sales Navigator, enhancing productivity and eliminating manual data entry. Chrome Extension: Enhances web browsing experience for sales teams, allowing them to build lead lists directly from their browser. Pitch Intelligence and Writer: Tools for crafting effective sales messages and marketing content, personalized for each potential customer. Data Enrichment and Autopilot: Keeps customer data current and automates lead-building, supporting consistent lead generation. Buyer Intent Data and Job Changes: Offers insights into potential customers' buying intentions and keeps track of significant job changes within key accounts. CoPilot AI - Helps sales reps manage leads CoPilot AI is an advanced AI-powered sales support platform designed for B2B sales teams and agencies to drive consistent revenue growth. The tool focuses on using LinkedIn for sales prospecting, engagement, and conversion. Key Features: LinkedIn Lead Generation: Targets and automates outreach to high-intent LinkedIn leads, enhancing efficiency and scalability in lead generation. Personalized Messaging Automation: Facilitates sending of personalized, one-click messages at scale, maintaining a human touch in digital interactions. Sales Conversion Insights: Offers tools to understand and adapt to prospects' communication styles, improving the likelihood of conversion. Sales Process Optimization: Provides analytics to evaluate and refine sales strategies, identifying opportunities for improvement in the sales funnel. Industry Versatility: Adapts to diverse industries, offering tailored solutions for B2B sales, marketing, HR, and financial services sectors. Collaborative Team Tools: Enables team synchronization and collaboration, boosting productivity and synergy in sales teams Lavender AI - Email AI assistant Lavender AI is an AI-powered email tool that helps users write better emails. It provides real-time feedback and personalized suggestions to optimize email communication efficiency. Key Features: Email Coaching and Scoring: Lavender evaluates emails using AI and a vast database of email interactions, offering a score and tips for improvement. It identifies factors that might reduce the likelihood of receiving a reply, helping users refine their email content. Personalization Assistant: This feature integrates prospect data directly into the user's email platform, suggesting personalization strategies based on recipient data and personality insights to foster deeper connections. Adaptive Improvement: Lavender's scoring and recommendations evolve in real-time with changing email behaviors and practices, thanks to its generative AI and extensive data analysis, ensuring users always follow the best practices. Data-Driven Managerial Insights: The platform provides managers with valuable insights derived from actual email interactions, aiding them in coaching their teams more effectively based on real performance and communication trends. Broad Integration Capability: Lavender integrates with various email and sales platforms including Gmail, Outlook, and others, making it versatile for different user preferences and workflows. Regie AI - Great for business intelligence Regie.ai simplifies the sales prospecting process for businesses, using GenAI and automation to improve interactions with prospects. The platform offers tools like Auto-Pilot for automatic prospecting and meeting scheduling, Co-Pilot for sales rep support, and integrations with various CRM and sales engagement platforms. It also includes a Chrome Extension and CMS for content management and customization. Key Features: Automated Prospecting with Auto-Pilot: Regie.ai's Auto-Pilot feature autonomously prospects and schedules meetings, using Generative AI for Sales Agents to enhance outbound sales efforts. Audience Discovery and Content Generation: The platform identifies target accounts not in the CRM, generating relevant, on-brand content for each message, thus ensuring efficiency in list building and message personalization. Outbound Prioritization and Dynamic Engagement: It utilizes engagement and intent data to prioritize outreach to in-market prospects and adjust engagement strategies based on buyer responsiveness. Full Funnel Brand Protection and Analytics: Regie.ai ensures consistent use of marketing-approved language in all sales outreach and provides insights into campaign and document performance, thereby safeguarding brand integrity throughout the sales funnel. Gemini - AI powered conversational platform Gemini is a large language model chatbot developed by Google AI. It can generate text, translate languages, write different creative text formats, and answer your questions in an informative way. It is still under development but has learned to perform many kinds of tasks. Key features: Generate different creative text formats of text content (poems, code, scripts, musical pieces, email, letters, etc.) Answer your questions in an informative way, even if they are open ended, challenging, or strange. Translate languages Follow your instructions and complete your requests thoughtfully. Plusdocs (Plus AI) - AI tool for presentations Plus AI is a versatile tool that helps improve presentations and integrates with Slides in a simple and intuitive way. It simplifies slide creation and customization by converting text into slides and utilizing AI for various languages. Key Features: Text-to-Slide Conversion: Plus AI excels in transforming textual content into visually appealing slides, streamlining the presentation creation process. Multilingual AI Support: The tool is equipped to handle various languages, making it adaptable for a global user base. Professional Design Options: Users have access to professionally designed slide layouts, enabling the creation of polished presentations with ease. Customization and AI Design: Plus AI allows for extensive customization, including the use of AI for designing and editing slides, ensuring unique and personalized presentations. Live Snapshots and Templates: The tool offers live snapshots for real-time updates and a wide range of templates for quick and effective slide creation. Make - AI automation Make is a powerful visual platform that allows users to build and automate tasks, workflows, apps, and systems. It offers an intuitive, no-code interface that empowers users across various business functions to design and implement complex processes without the need for developer resources. Key Features: No-Code Visual Workflow Builder: Make's core feature is its user-friendly interface that allows for the creation of intricate workflows without coding expertise, making it accessible to a wide range of users. Extensive App Integration: The platform boasts compatibility with over 1000 apps, facilitating seamless connections and data sharing across diverse tools and systems. Custom Automation Solutions: Make enables personalized automation strategies, fitting various business needs from marketing automation to IT workflow control. Template Library: Users can jumpstart their automation projects with a vast collection of pre-built templates, which are customizable to fit specific workflow requirements. Enterprise-Level Solutions: Make offers advanced options for larger organizations, including enhanced security, single sign-on, custom functions, and dedicated support. Midjourney - Making sales content Midjourney is an AI-based image generation tool that changes the way we visualise and create digital art. It offers a lot of artistic possibilities, allowing users to create stunning images from text prompts. This innovative service caters to artists, designers, and anyone seeking to bring their creative visions to life. Key Features: Advanced AI Image Generation: Midjourney's core strength lies in its powerful AI algorithms, which interpret text prompts to generate detailed, high-quality images. This feature allows users to explore an endless array of visual concepts and styles. User-driven Customization: The tool offers significant control over the image creation process, enabling users to guide the AI with specific instructions, ensuring that the final output aligns closely with their vision. Diverse Artistic Styles: Midjourney can mimic various artistic styles, from classical to contemporary, providing users with a wide range of aesthetic options for their creations. Collaboration and Community Features: The platform fosters a community of users who can share, critique, and collaborate on artistic projects, enriching the creative experience. Fireflies AI - Sales meeting assistant Fireflies.ai is a powerful tool for improving team productivity and efficiency in managing meetings and voice conversations. It offers a range of features to simplify the process of capturing, organizing, and analyzing meeting content. Key Features: Automatic Meeting Transcription: Fireflies.ai can transcribe meetings held on various video-conferencing platforms and dialers. The tool captures both video and audio, providing transcripts quickly and efficiently. AI-Powered Search and Summarization: It allows users to review long meetings in a fraction of the time, highlighting key action items, tasks, and questions. Users can filter and focus on specific topics discussed in meetings. Improved Collaboration: The tool enables adding comments, pins, and reactions to specific conversation parts. Users can create and share soundbites and integrate meeting notes with popular collaboration apps such as Slack, Notion, and Asana. Conversation Intelligence: Fireflies.ai offers insights into meetings by tracking metrics like speaker talk time and sentiment. It helps in coaching team members and improving performance in sales, recruiting, and other internal processes. Workflow Automation: The AI assistant from Fireflies.ai can log call notes and activities in CRMs, create tasks through voice commands, and share meeting recaps instantly across various platforms. Comprehensive Knowledge Base: It compiles all voice conversations into an easily accessible and updatable knowledge base, with features to organize meetings into channels and set custom privacy controls. I’ll keep updating this little guide, so add your comments and I’ll try to add more tools. This is all just a personal opinion, so it’s completely cool if you disagree with it. Btw here is the link to the full blog post about all the AI tools in a bit more depth.

This founder was about to shut down his startup and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What else have you seen grow that fast?
reddit
LLM Vibe Score0
Human Vibe Score1
CountryPitifulThis week

This founder was about to shut down his startup and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What else have you seen grow that fast?

I heard that Jasper scaled to $45m ARR in 12 months...with a team of 8. For context, they are one of the fastest-growing companies ever. Grew from $0 to $45m ARR in 12 months (then raised $125m at a $1.5b valuation). As a fellow founder, their story is really inspiring to me (curious about what others think): In December 2020, Dave Rogenmoser and his co-founders were on the brink of shutting down their business. They'd spent 3+ years building a conversion optimization software called Proof...and it was flatlining. A few weeks prior they had to make the painful decision to let go of half their team. Competition and churn had completely eroded growth. Things were painful. 8 years of work left them with a string of startups that never quite made it: 2 failed software businesses (couldn't make money*) A SMB marketing agency (maxed out at $25k/mo*) An online course company (hard to get big*) The Pivot: In January 2021, they had an idea to use Chat GPT-3, the generative AI model released 6 months earlier, to write high-converting Facebook ads. Within 30 days, they launched the business. With the skeleton crew remaining from the last startup, they scaled the business to $45m ARR and 70,000+ customers without hiring a single new person. Soon after, they raised $125m at a $1.5b valuation. Dave Rogenmoser, CEO at Jasper, had some great one-liners in a few podcasts I listened to on the business. Here are some of his learnings: Right Skill, Wrong Vehicle: He spent 8 years building marketing businesses which gave this team the knowledge and confidence to spend $1m/mo on sales and marketing to scale the business to $45m ARR in year 1. Launch Fast & Iterate Quickly: The team agreed that if the business didn't work in 30 days, they'd shut it down. Dave says, "If you have been working on a problem for more than 18 months and haven't found Product market fit (PMF), odds are you won't...Make the hard pivot."* Ride A Big Wave: Generative AI technology is a new technology that is changing the way we work. But it's not just text. It's images, voice, etc. Identify new customer segments (e.g., Municipalities, Banks, Lawyers, etc.), learn their problems, and apply this novel technology to solve them. What other businesses have you seen scale like this? I've never seen a SaaS business grow that fast. I meet interesting founders 2x per week and share the learnings here.

This founder was about to shut down his business and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What other businesses can scale like this?
reddit
LLM Vibe Score0
Human Vibe Score1
CountryPitifulThis week

This founder was about to shut down his business and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What other businesses can scale like this?

I heard that Jasper scaled to $45m ARR in 12 months...with a team of 8. For context, they are one of the fastest-growing companies ever. Grew from $0 to $45m ARR in 12 months (then raised $125m at a $1.5b valuation). As a fellow founder, their story is really inspiring to me (curious about what others think): In December 2020, Dave Rogenmoser and his co-founders were on the brink of shutting down their business. They'd spent 3+ years building a conversion optimization software called Proof...and it was flatlining. A few weeks prior they had to make the painful decision to let go of half their team. Competition and churn had completely eroded growth. Things were painful. 8 years of work left them with a string of startups that never quite made it: 2 failed software businesses (couldn't make money*) A SMB marketing agency (maxed out at $25k/mo*) An online course company (hard to get big*) The Pivot: In January 2021, they had an idea to use Chat GPT-3, the generative AI model released 6 months earlier, to write high-converting Facebook ads. Within 30 days, they launched the business. With the skeleton crew remaining from the last startup, they scaled the business to $45m ARR and 70,000+ customers without hiring a single new person. Soon after, they raised $125m at a $1.5b valuation. Dave Rogenmoser, CEO at Jasper, had some great one-liners in a few podcasts I listened to on the business. Here are some of his learnings: Right Skill, Wrong Vehicle: He spent 8 years building marketing businesses which gave this team the knowledge and confidence to spend $1m/mo on sales and marketing to scale the business to $45m ARR in year 1. Launch Fast & Iterate Quickly: The team agreed that if the business didn't work in 30 days, they'd shut it down. Dave says, "If you have been working on a problem for more than 18 months and haven't found Product market fit (PMF), odds are you won't...Make the hard pivot."* Ride A Big Wave: Generative AI technology is a new technology that is changing the way we work. But it's not just text. It's images, voice, etc. Identify new customer segments (e.g., Municipalities, Banks, Lawyers, etc.), learn their problems, and apply this novel technology to solve them. What other businesses have you seen scale like this? I've never seen a SaaS business grow that fast. I meet interesting founders 2x per week and share the learnings here.

Looking for a Developer Co-Founder to Build an AI-Powered Film Budgeting Tool
reddit
LLM Vibe Score0
Human Vibe Score1
Boring_Elephant2767This week

Looking for a Developer Co-Founder to Build an AI-Powered Film Budgeting Tool

Hey everyone, I’m a seasoned producer/line producer with over 10 years in the film industry, specializing in budgeting and production strategy for films, commercials, and music videos. I’ve built over 150 budgets for projects ranging from indie features to large-scale commercials and have worked with major artists, brands, and studios. I’m looking for a developer or AI/ML engineer interested in co-founding a startup with me to build an AI-powered budgeting tool for the film industry. The Problem Creating a budget for a film, music video, or commercial is time-consuming and expensive (typically $3K–$5K per budget for films). Filmmakers, studios, agencies, and managers need a faster, more cost-effective way to estimate production costs without hiring a full-time producer for every project. The Solution The goal is to develop an AI-assisted budgeting tool that takes in scripts, creative decks, or project briefs and outputs a preliminary budget & production schedule. The vision is a hybrid service: • AI-powered script/deck breakdown to extract production elements • Smart reasoning based on real industry budgets • Producer oversight for accuracy before sending budgets to users • Flexible pricing model (lower cost than hiring a full-time producer) What I Bring to the Table Deep industry knowledge – I know how to build accurate budgets & schedules for any type of project. Proven demand – I already have early adopters in indie film, production companies, and agencies. Strong network – I work with studios, reps, and filmmakers who would use this tool. A unique approach – I haven’t seen an AI budgeting tool that truly understands production costs based on creative elements. What I’m Looking For I need a developer partner with experience in AI, automation, and/or SaaS development who can help build this. Ideally, someone interested in co-founding (equity-based, not just a freelance gig). If you have experience with GPT, machine learning, NLP, or building interactive SaaS products, that’s a plus. I’m keeping this low-key for now while I figure out the best path forward. If you’re interested, let’s chat! Even if you’re not a developer but have advice or ideas, I’d love to hear your thoughts. Drop a comment or DM me if this sounds interesting!

No-code platform for Creating AI Chatbots
reddit
LLM Vibe Score0
Human Vibe Score0
ANICKINTHEUNIVERSEThis week

No-code platform for Creating AI Chatbots

Hey everyone! I've got an idea that I'm really excited about and I thought I’d share it with this community to get some feedback. I've been thinking about how chatbots are becoming increasingly popular, but the process of fine tuning and managing them can be a real hassle. The idea I am proposing is a no-code interface for creating and managing chatbots using the GPT-3 API. Think about it, imagine having the ability to create and customize your own chatbot in minutes, without any coding required. You could easily embed it into your Notion page or website and use it to provide better support or answer questions for customers. And if you're a solopreneur looking to sell access to your chatbot, this platform could be especially helpful for that This is just an idea for now, but I'm hoping to gauge interest and see if there's enough demand for such a product. Whether you're a solopreneur, a small business owner, or just someone who's curious about chatbots, your input is valuable to me. So what do you think? Would you be interested in using a no-code interface for creating and managing chatbots with GPT-3 API? Let me know in the comments and I'll keep you updated on the progress. And if you're interested in being a customer, co-founder, or just want early access, PM me your email with the word ‘Chatbot’ and I’ll make sure to keep you updated if this ever exists. Thanks for your time and I can't wait to hear from you!

Interview with founder of ReadyPlayerMe (raised $70M+ from a16z)
reddit
LLM Vibe Score0
Human Vibe Score1
Due_Cryptographer461This week

Interview with founder of ReadyPlayerMe (raised $70M+ from a16z)

Thanks to everyone who replied to my previous post with the questions you had for Rainer, I added some of them into this interview. I’m Nikita of Databas3 , and that’s my first interview in a series where I’m learning more about the journey of the best tech and web3 founders. Would appreciate your feedback and suggestions for the next guest! Nikita: Let’s begin with a brief introduction. Can you share a bit about yourself and how the business started? Rainer: I’m Rainer, the CTO of ReadyPlayerMe. Our journey began in 2013 with four co-founders. Over the years, our focus has shifted mainly around our product’s evolution, but our core idea always revolved around virtual actors or virtual people. Our initial venture was into hardware. We created the first full-body scanner in the Nordics, a significant step in photogrammetry. This led us to develop the Luna Scanner, a three-meter tall structure designed to capture facial features and likenesses. When Facebook acquired Oculus in 2014, we foresaw the potential of VR and virtual worlds, especially in social experiences. Nikita: Interesting. How did you move on from there? Rainer: Recognizing the limitations of hardware, we transitioned into software. Our early scanner designs had limitations in scalability. For example, our three-meter tall scanner wasn’t a feasible solution for scanning millions of people. So, we leveraged the datasets from our initial projects and designed a mobile version, making facial scanning as easy as using your phone. Around 2015, this was a new territory, as facial scanning wasn’t a mainstream application. Nikita: What were the early applications of these scanned models? Rainer: In the beginning, we focused on 3D printed figurines from full-body scans. However, as we shifted to facial scanning, we licensed our technology to gaming companies, collaborating with giants like Wargaming and Tencent. We even ventured into virtual fittings with H&M. Each collaboration was custom-tailored, blending our technology with their systems. This model made us cash flow positive. Nikita: So this was the beginning of your foray into the gaming industry? Rainer: Precisely. The demand from gaming companies was substantial. As we built custom solutions for these enterprises, we saw a bigger potential. While our cash flow was positive, we realized the challenge of scaling through exclusive enterprise deals. We envisioned our avatar creation tech reaching indie games and beyond. Nikita: And that led to the birth of ReadyPlayerMe? Rainer: Exactly. Once we understood our market direction, we quickly developed the first iteration of ReadyPlayerMe as a web-based experience, emphasizing easy integration for game developers. The initial version was a character builder, allowing users to personalize their avatars, which many adopted for their social media profiles. Our goal was to create avatars that users could connect with and use across various platforms. Instead of licensing our technology, we offered it for free to everyone. As ReadyPlayerMe gained traction, especially in VR applications, we secured funding to further our mission. Nikita: Your growth seems swift and organic. Were there any challenges? Rainer: Our focus on easy integration significantly fueled our adoption. Pairing that with personalized avatars resonated well with our audience. But like any venture, we’ve faced our share of challenges and have always aimed to evolve and better our offerings. The rapid growth in Web3 projects and virtual worlds made personalization and customization more important. With the NFT boom, you could add utility by allowing access to selected collections. This played into web-based games and metaverse applications. The shift towards Web3 and personalization provided a significant tailwind for us. Many used our characters as profile pictures on social media. Nikita: I’ve heard from other founders that a16z really values viral marketing. Was this one reason they wanted to invest in your project? How was the process with them? Rainer: When a16z reached out, it felt like a natural fit. We wanted investors who understood the gaming space. Our main market is Web3, but we’re exploring the top games market. Their expertise in gaming was invaluable. They’ve been very supportive throughout. We were fortunate to be on their radar. Nikita: So your early growth and organic traction played a role in attracting investors? Rainer: Definitely. Early product growth and the potential future trajectory were essential in our discussions. Nikita: As the CTO, you must have faced challenges. Can you speak about the tech side and its evolution? Rainer: The early version of our platform was built by in-house engineers. As we grew, we had to adapt to increasing complexities and ensure we had the right team to execute our vision. My role often shifted between product management and tech, depending on the need. Nikita: It sounds like the startup environment remains strong within your company. Rainer: Absolutely. We’re all committed, hands-on, and working towards building the best product. Nikita: You mentioned the team earlier. How many people are in your team now? Rainer: We have 70 people, with about half in product and engineering. Nikita: And did you hire the tech team? Rainer: We brought on a head of engineering at the beginning of this year. He’s been instrumental in scaling the engineering organization, from increasing the headcount to refining engineering processes. We’ve recently reorganized into domain-specific teams. As the team grows, regular reorganization ensures we focus on delivering specific customer value. Every stage requires attention to the team’s composition to ensure efficient delivery. Nikita: Any advice for founders just starting with their first startup? Rainer: Focus on customer value, no matter how niche it might seem initially. Begin with a specific problem and solution, then expand from there. You don’t need a massive project right away. Begin small, prove the concept, and scale from there. Nikita: You’ve mentioned your love for books and podcasts. Any recommendations? Rainer: For startups, “High Growth Handbook” and “Lean Startup” are must-reads. “Working Backwards” offers insights into Amazon’s customer-centric approach. For podcasts, I listen to “Rework,” “Lenny’s Podcast,” and “Huberman Lab.” Nikita: All of us have some side project ideas from time to time. How do you handle these when managing a big project? Rainer: Over the years, I’ve built various side projects. Some are small applications to solve immediate problems, like a menu bar app for AirPods which made it to No. 1 on Product Hunt, and was nominated for Golden Kitty Award. I sometimes delve into 3D and AI, merging them for technical demos. I keep a list of ideas and pick from them as the urge arises. Nikita: Any final thoughts or advice? Rainer: As you scale, do so with clarity. Avoid scaling just for external appeal. Always hire when there’s genuine need, not just for the sake of expansion. It helps in staying lean and focused.

Dev with AI and No-code Experience - Social Startup
reddit
LLM Vibe Score0
Human Vibe Score0
CraftBrewskiThis week

Dev with AI and No-code Experience - Social Startup

Hi fellow startup folks! I am actively seeking an AI-learned, no-code web/app co-founder to support a social startup. Target market is very active on a few different platforms, where they glean a bit of knowledge and support. The problem (opportunity) that I have identified for this group is to build a single platform that will provide them with 100% of the support and experience that they currently crave from multiple, unrelated platforms. My research has shown that this group will easily understand our product offering and should / may be easy to convert. Initial goal is to build and release an MVP and start sharing it with the target market. The MVP will be bulit via a no-code application. Our product will pull APIs from a few trusted data-centric and market-related sources and roll those into a social format that will be fun and interactive. Lots of other cool things, too, but to be discussed later. It will be somewhat similar to the CodeMap . io concept, but with a social/interactive focus. CodeMap is built on Bubble (no-code). A little about me: I live in Denver, Colorado. Married with three dogs. 20+ year Operations and Program Management experience in aerospace (satellites) and renewables (hydropower). I have started a few businesses over the years - some profitable, some not - ranging from e-commerce, affiliate marketing, SaaS, etc. I solely built each of the businesses, but have leaned that I’m better at the Operations and execution side of business, rather than being in the weeds with programming (mainly because I’m not a programmer!). I’m looking forward to (hopefully) interacting with some of you on this project! Cheers!

Founder Pitch: AI Agent for Simplifying Public Cloud Management
reddit
LLM Vibe Score0
Human Vibe Score1
rasvi786This week

Founder Pitch: AI Agent for Simplifying Public Cloud Management

Video to understand : https://youtu.be/9ocUjlUrU\w?si=S0ETDbKSdJqlVDyg Are You Ready to Redefine Cloud Management with AI? Imagine an intelligent AI agent that transforms the complexity of managing public cloud infrastructure into simple, natural language commands. No more navigating through endless configurations or deciphering technical documentation—our AI agent is here to revolutionize the way organizations interact with cloud platforms. About the Project We’re building an AI-powered agent designed to handle public cloud management tasks seamlessly. Whether you’re setting up your organization’s cloud foundation or deploying complex workloads, this AI agent makes it as easy as having a conversation. What Can the AI Agent Do? Cloud Foundation Setup: Example: “Please set up a cloud foundation blueprint for my organization on Google Cloud.”* The AI agent will ask key questions (e.g., organization ID) and guide you through authentication. Once authorized, it sets up the foundation using GCP APIs. Workload Deployment: Example: “Spin up a GKE cluster for me.”* The agent will ask for necessary details (e.g., number of nodes, VPC info), authenticate, and deploy the cluster in minutes. Security and Compliance Validation: Example: “Validate my organization’s cloud setup and check for security vulnerabilities.”* The agent audits your setup, identifies potential risks, and provides actionable insights. Current Progress We’ve developed a working prototype that integrates with major cloud providers like Google Cloud. The AI agent can already: Authenticate with cloud APIs Execute foundational tasks such as setting up organizations and spinning up clusters Perform initial security validations Who I’m Looking For I’m searching for a co-founder with enterprise sales experience and a strategic vision to grow our user base. You will be instrumental in helping us: Build relationships with companies willing to pilot our product Develop go-to-market strategies for enterprise adoption Identify opportunities for partnerships with cloud service providers Your Role As a co-founder, you’ll lead efforts to: Secure Pilot Programs: Identify and onboard enterprises for product trials to gather feedback and refine the solution. Drive Growth: Develop scalable strategies to grow our user base across industries. Market Positioning: Work with me to define our unique value proposition and establish thought leadership in the cloud management space. My Background I bring over a decade of experience in tech, with a strong focus on software engineering and infrastructure. My contributions so far include: Developing the core AI engine and cloud integrations Designing workflows that simplify complex cloud tasks Why Join This Project? Revolutionize Cloud Management: Be part of a project that will redefine how organizations interact with public clouds. Tackle Challenging Problems: Work at the cutting edge of AI and cloud computing. High Growth Potential: Join an industry projected to grow exponentially as enterprises embrace AI-driven automation. Build a Company from Scratch: Shape the product, team, and culture as we grow together. What’s Next? Our immediate priorities include: Expanding the AI agent’s capabilities to support multi-cloud setups. Conducting pilot programs with enterprise clients. Iterating on the product based on real-world feedback. What We Need to Succeed Expertise in enterprise sales and partnerships A deep understanding of enterprise challenges and cloud adoption trends A shared passion for leveraging AI to solve complex problems Let’s work together to build the future of cloud management. If you’re excited about this vision and bring the expertise we need, I’d love to connect and discuss how we can take this project to the next level.

Looking for a co-founder for a B2B AI startup. I have a development team and funds for at least a year of operations.
reddit
LLM Vibe Score0
Human Vibe Score0.5
cheech123456This week

Looking for a co-founder for a B2B AI startup. I have a development team and funds for at least a year of operations.

Hello, As the title said I'm looking for a co-founder. I built with my team a few ventures that generate revenues but I don't believe that any of them has a future. I have 15 years of experience in Software Engineering and AI. Worked in various industries, but always in data-driven applications. I spent the last 3 years as an entrepreneur and raised successfully money from VCs. &#x200B; A few preconceptions I have: \- B2C is extremely hard. Very quickly you realize that you need to spend all your resources on marketing. \- B2B is extremely hard - but for different reasons. Sales cycles take months. If you want to reach serious buyers and decision-makers, you need to have an amazing network. Even then, companies will prioritize 90% of the time to do things internally rather than paying for anything. \- I hate when people say that "ideas are garbage", and I think that execution is overhyped. Execution is a matter of finding the right people, and paying them (I am confident to say that I can guarantee good execution). Ideas are not garbage, ideas need validation, and garbage "entrepreneurs" are too lazy to validate anything. &#x200B; Your ideal profile: \- You have a great idea, something that has been brewing for some time but you lack resources or technical experience to execute by yourself. \- You have domain expertise, experience, and a network. If we build an MVP in 3 months, you can get 20 interviews with industry people to validate the solution. Once the MVP is built you can put it in front of another 40 people. \- You are a product person. \- You can do efficient sales calls. (Bonus: You are a sales person) If you are an ideal profile, please reach out.

Founder Pitch: AI Agent for Simplifying Public Cloud Management
reddit
LLM Vibe Score0
Human Vibe Score1
rasvi786This week

Founder Pitch: AI Agent for Simplifying Public Cloud Management

Video to understand : https://youtu.be/9ocUjlUrU\w?si=S0ETDbKSdJqlVDyg Are You Ready to Redefine Cloud Management with AI? Imagine an intelligent AI agent that transforms the complexity of managing public cloud infrastructure into simple, natural language commands. No more navigating through endless configurations or deciphering technical documentation—our AI agent is here to revolutionize the way organizations interact with cloud platforms. About the Project We’re building an AI-powered agent designed to handle public cloud management tasks seamlessly. Whether you’re setting up your organization’s cloud foundation or deploying complex workloads, this AI agent makes it as easy as having a conversation. What Can the AI Agent Do? Cloud Foundation Setup: Example: “Please set up a cloud foundation blueprint for my organization on Google Cloud.”* The AI agent will ask key questions (e.g., organization ID) and guide you through authentication. Once authorized, it sets up the foundation using GCP APIs. Workload Deployment: Example: “Spin up a GKE cluster for me.”* The agent will ask for necessary details (e.g., number of nodes, VPC info), authenticate, and deploy the cluster in minutes. Security and Compliance Validation: Example: “Validate my organization’s cloud setup and check for security vulnerabilities.”* The agent audits your setup, identifies potential risks, and provides actionable insights. Current Progress We’ve developed a working prototype that integrates with major cloud providers like Google Cloud. The AI agent can already: Authenticate with cloud APIs Execute foundational tasks such as setting up organizations and spinning up clusters Perform initial security validations Who I’m Looking For I’m searching for a co-founder with enterprise sales experience and a strategic vision to grow our user base. You will be instrumental in helping us: Build relationships with companies willing to pilot our product Develop go-to-market strategies for enterprise adoption Identify opportunities for partnerships with cloud service providers Your Role As a co-founder, you’ll lead efforts to: Secure Pilot Programs: Identify and onboard enterprises for product trials to gather feedback and refine the solution. Drive Growth: Develop scalable strategies to grow our user base across industries. Market Positioning: Work with me to define our unique value proposition and establish thought leadership in the cloud management space. My Background I bring over a decade of experience in tech, with a strong focus on software engineering and infrastructure. My contributions so far include: Developing the core AI engine and cloud integrations Designing workflows that simplify complex cloud tasks Why Join This Project? Revolutionize Cloud Management: Be part of a project that will redefine how organizations interact with public clouds. Tackle Challenging Problems: Work at the cutting edge of AI and cloud computing. High Growth Potential: Join an industry projected to grow exponentially as enterprises embrace AI-driven automation. Build a Company from Scratch: Shape the product, team, and culture as we grow together. What’s Next? Our immediate priorities include: Expanding the AI agent’s capabilities to support multi-cloud setups. Conducting pilot programs with enterprise clients. Iterating on the product based on real-world feedback. What We Need to Succeed Expertise in enterprise sales and partnerships A deep understanding of enterprise challenges and cloud adoption trends A shared passion for leveraging AI to solve complex problems Let’s work together to build the future of cloud management. If you’re excited about this vision and bring the expertise we need, I’d love to connect and discuss how we can take this project to the next level.

Looking for a Business Partner for an AI Stock recommendation SaaS
reddit
LLM Vibe Score0
Human Vibe Score1
armaan-devThis week

Looking for a Business Partner for an AI Stock recommendation SaaS

Hey everyone, I’m a 15-year-old full-stack developer, currently building StockWise, a startup focused on AI-driven stock market insights and analytics. I can handle all engineering, backend, frontend, and AI-related work—but I need a business partner who can take care of the marketing, sales, and user acquisition side of things. So this SaaS is currently in development. Also this I believe this can be both b2c and b2b. Like for b2c - it's the website included, with the recommendations, for individual users, for b2b - we can provide API's. Here is the classic workflow : \-> You can give your preferences, such as your monthly investment capital, if you're expecting short term or long term, and also if there are any specific areas you are more interested like AI, hydrogen fuel related, ev, compaines. \-> Then with this data, we recommend you stocks to buy, analyzing your preferences, looking at market, researching, looking into company's stock history, background, product \-> You will also have a chatbot like interface you can talk to about anything, and it will be personalized \-> Also you can add your portfolio here, and you can get insights based on the market data \-> Also there can be a weekly newsletter, too, if you subscribe to it. I'm much more of a builder, likes to build stuff, is good at it, but not good at the business side of things, that's why I'm really looking for a business partner. If you’re interested in joining as a co-founder or business partner, drop a comment or DM me!, Thanks a lot, Armaan

I built an AI Agent in 43 min to automate my workflows (Zero Coding)
youtube
LLM Vibe Score0.459
Human Vibe Score0.88
Greg IsenbergJan 31, 2025

I built an AI Agent in 43 min to automate my workflows (Zero Coding)

In this episode, Max Brodeur-Urbas, Gumloop's CEO, where we dive deep into how to build AI agents and how to automate any workflow. We cover various use cases, from automated sales outreach to content generation. Max shows us how Gumloop makes complex automations accessible to everyone by having user-friendly UI/UX, intuitive workflow buildouts, and easy custom integration creation. Timestamps: 00:00 - Intro 02:29 - Gumloop Workflow Overview 05:00 - Example: Lead Automation Workflow 10:23 - Templates for Workflows 12:21 - Example: YouTube to Blog Post Automation Workflow 21:03 - Gumloop Interfaces Demonstration 21:40 - Example: Media Ad Library Analyzer Automation Workflow 24:38 - Using Gumloop for SaaS Products 26:25 - Example: Analyze Daily Calendar Automation Workflow 27:47 - Output of Media Ad Library Analyzer Automation Workflow 28:43 - Cost of Running Gumloop 30:34 - Custom Node Builder Demonstration 34:18 - Gumloop Chrome Extension 37:06 - Final thoughts on business automation Gumloop Templates: https://www.gumloop.com/templates Key Points: • Demonstration of Gumloop's automation platform for building AI-powered workflows • Showcase of features including custom nodes, Chrome extension, and interface builder • Real-world examples of automated processes for sales, recruitment, and content generation • Discussion of practical business applications and cost-effectiveness of automation: Key Features Demonstrated: • Visual workflow builder • AI-powered content generation • Custom integration creation • Chrome extension functionality • Interface builder for non-technical users • Webhook integration capabilities 1) Gumloop is a visual workflow builder that lets you create powerful AI automations by connecting "nodes" - think Zapier meets ChatGPT, but WAY more powerful. Key features that stood out: 2) SUBFLOWS: Create reusable workflow components Build once, use everywhere Share with team members Perfect for complex operations Makes scaling easier 3) The YouTube Blog Post Generator is INSANE: Takes any YT video link Extracts transcript Generates TLDR summary Creates full blog post Adds video embed Posts to CMS Cost? About $1.62 per post 4) Competitor Ad Analysis automation: Scrapes competitor FB/IG ads Uses Gemini to analyze videos/images Generates strategy insights Sends beautiful email reports Runs on schedule Save 40+ hours/month 5) Custom Node Builder = game changer Create your own integrations No coding required AI helps write the code Share with your team Endless possibilities 6) Chrome Extension feature: Turn any workflow into a 1-click tool Works on any webpage Perfect for LinkedIn outreach Data enrichment Email automation 7) Why this matters: Most companies (even $1B+ ones) are still doing things manually that could be automated. The competitive advantage isn't just having AI - it's automating your workflows at scale. 8) Pricing & Getting Started: Free to try No CC required 1000 free credits with tutorial Build custom workflows Join their community Notable Quotes: "If you can list it as a list of steps, like for an intern, you would hand off a little sticky note being like, you do these 15 things in a row and that's the entire workflow, then you can 100% automate it." - Max "Being in business is a game of unfair advantages... And that means it's always about how do you save time as founders and executive teams." - Greg LCA helps Fortune 500s and fast-growing startups build their future - from Warner Music to Fortnite to Dropbox. We turn 'what if' into reality with AI, apps, and next-gen products https://latecheckout.agency/ BoringAds — ads agency that will build you profitable ad campaigns http://boringads.com/ BoringMarketing — SEO agency and tools to get your organic customers http://boringmarketing.com/ Startup Empire - a membership for builders who want to build cash-flowing businesses https://www.startupempire.co FIND ME ON SOCIAL X/Twitter: https://twitter.com/gregisenberg Instagram: https://instagram.com/gregisenberg/ LinkedIn: https://www.linkedin.com/in/gisenberg/ FIND MAX ON SOCIAL Gumloop: https://www.gumloop.com X/Twitter: https://x.com/maxbrodeururbas?lang=en LinkedIn: https://www.linkedin.com/in/max-brodeur-urbas-1a4b25172/

internet-tools-collection
github
LLM Vibe Score0.236
Human Vibe Score0.009333333333333334
bogdanmosicaJan 23, 2025

internet-tools-collection

Internet Tools Collection A collection of tools, website and AI for entrepreneurs, web designers, programmers and for everyone else. Content by category Artificial Intelligence Developers Design Entrepreneur Video Editing Stock videos Stock Photos Stock music Search Engine Optimization Blog Posts Resume Interviews No code website builder No code game builder Side Hustle Browser Extensions Other Students Artificial Intelligence Jasper - The Best AI Writing Assistant [](https://www.jasper.ai/) Create content 5x faster with artificial intelligence. Jasper is the highest quality AI copywriting tool with over 3,000 5-star reviews. Best for writing blog posts, social media content, and marketing copy. AutoDraw [](https://www.autodraw.com/) Fast drawing for everyone. AutoDraw pairs machine learning with drawings from talented artists to help you draw stuff fast. Rytr - Best AI Writer, Content Generator & Writing Assistant [](https://rytr.me/) Rytr is an AI writing assistant that helps you create high-quality content, in just a few seconds, at a fraction of the cost! Neevo - Neevo [](https://www.neevo.ai/) Kinetix Tech [](https://kinetix.tech/) Kinetix is a no-code 3D creation tool powered by Artificial Intelligence. The web-based platform leverages AI motion capture to convert a video into a 3D animation and lets you customize your avatars and environments. We make 3D animation accessible to every creator so they can create engaging stories. LALAL.AI: 100% AI-Powered Vocal and Instrumental Tracks Remover [](https://www.lalal.ai/) Split vocal and instrumental tracks quickly and accurately with LALAL.AI. Upload any audio file and receive high-quality extracted tracks in a few seconds. Copy.ai: Write better marketing copy and content with AI [](https://www.copy.ai/) Get great copy that sells. Copy.ai is an AI-powered copywriter that generates high-quality copy for your business. Get started for free, no credit card required! Marketing simplified! OpenAI [](https://openai.com/) OpenAI is an AI research and deployment company. Our mission is to ensure that artificial general intelligence benefits all of humanity. DALL·E 2 [](https://openai.com/dall-e-2/) DALL·E 2 is a new AI system that can create realistic images and art from a description in natural language. Steve.ai - World’s fastest way to create Videos [](https://www.steve.ai/) Steve.AI is an online Video making software that helps anyone to create Videos and animations in seconds. Octie.ai - Your A.I. ecommerce marketing assistant [](https://octie.ai/) Write emails, product descriptions, and more, with A.I. Created by Octane AI. hypnogram.xyz [](https://hypnogram.xyz/) Generate images from text descriptions using AI FakeYou. Deep Fake Text to Speech. [](https://fakeyou.com/) FakeYou is a text to speech wonderland where all of your dreams come true. Craiyon, formerly DALL-E mini [](https://www.craiyon.com/) Craiyon, formerly DALL-E mini, is an AI model that can draw images from any text prompt! Deck Rocks - Create Pictch Decks [](https://www.deck.rocks/) Writely | Using AI to Improve Your Writing [](https://www.writelyai.com/) Making the art of writing accessible to all Writesonic AI Writer - Best AI Writing Assistant [](https://writesonic.com/) Writesonic is an AI writer that's been trained on top-performing SEO content, high-performing ads, and converting sales copy to help you supercharge your writing and marketing efforts. Smart Copy - AI Copywriting Assistant | Unbounce [](https://unbounce.com/product/smart-copy/) Generate creative AI copy on-the-spot across your favourite tools Synthesia | #1 AI Video Generation Platform [](https://www.synthesia.io/) Create AI videos by simply typing in text. Easy to use, cheap and scalable. Make engaging videos with human presenters — directly from your browser. Free demo. NVIDIA Canvas: Turn Simple Brushstrokes into Realistic Images [](https://www.nvidia.com/en-us/studio/canvas/) Create backgrounds quickly, or speed up your concept exploration so you can spend more time visualizing ideas with the help of NVIDIA Canvas. Hotpot.ai - Hotpot.ai [](https://hotpot.ai/) Hotpot.ai makes graphic design and image editing easy. AI tools allow experts and non-designers to automate tedious tasks while attractive, easy-to-edit templates allow anyone to create device mockups, social media posts, marketing images, app icons, and other work graphics. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Search listening tool for market, customer & content research - AnswerThePublic [](https://answerthepublic.com/) Use our free tool to get instant, raw search insights, direct from the minds of your customers. Upgrade to a paid plan to monitor for new ways that people talk & ask questions about your brand, product or topic. Topic Mojo [](https://topicmojo.com/) Discover unique & newest queries around any topic and find what your customers are searching for. Pulling data from 50+ sources to enhance your topic research. AI Image Enlarger | Enlarge Image Without Losing Quality! [](https://imglarger.com/) AI Image Enlarger is a FREE online image enlarger that could upscale and enhance small images automatically. Make jpg/png pictures big without losing quality. Midjourney [](https://www.midjourney.com/app/) Kaedim - AI for turning 2D images to 3D models [](https://www.kaedim3d.com/webapp) AI for turning 2D images, sketches and photos to 3D models in seconds. Overdub: Ultra realistic text to speech voice cloning - Descript [](https://www.descript.com/overdub) Create a text to speech model of your voice. Try a live demo. Getting Started [](https://magenta.tensorflow.org/get-started) Resources to learn about Magenta Photosonic AI Art Generator | Create Unique Images with AI [](https://photosonic.writesonic.com/) Transform your imagination into stunning digital art with Photosonic - the AI art generator. With its creative suggestions, this Writesonic's AI image generator can help unleash your inner artist and share your creations with the world. Image Computer [](https://image.computer/) Most downloaded Instagram Captions App (+more creator tools) [](https://captionplus.app/) Join 3 Million+ Instagram Creators who use CaptionPlus to find Instagram Captions, Hashtags, Feed Planning, Reel Ideas, IG Story Design and more. Writecream - Best AI Writer & Content Generator - Writecream [](https://www.writecream.com/) Sentence Rewriter is a free tool to reword a sentence, paragraph and even entire essays in a short amount of time. Hypotenuse AI: AI Writing Assistant and Text Generator [](https://www.hypotenuse.ai/) Turn a few keywords into original, insightful articles, product descriptions and social media copy with AI copywriting—all in just minutes. Try it free today. Text to Speach Listnr: Generate realistic Text to Speech voiceovers in seconds [](https://www.listnr.tech/) AI Voiceover Generator with over 600+ voiceovers in 80+ languages, go from Text to Voice in seconds. Get started for Free! Free Text to Speech: Online, App, Software, Commercial license with Natural Sounding Voices. [](https://www.naturalreaders.com/) Free text to speech online app with natural voices, convert text to audio and mp3, for personal and commercial use Developers OverAPI.com | Collecting all the cheat sheets [](https://overapi.com/) OverAPI.com is a site collecting all the cheatsheets,all! Search Engine For Devs [](https://you.com/) Spline - Design tool for 3D web browser experiences [](https://spline.design/) Create web-based 3D browser experiences Image to HTML CSS converter. Convert image to HTML CSS with AI: Fronty [](https://fronty.com/) Fronty - Image to HTML CSS code converter. Convert image to HTML powered by AI. Sketchfab - The best 3D viewer on the web [](https://sketchfab.com/) With a community of over one million creators, we are the world’s largest platform to publish, share, and discover 3D content on web, mobile, AR, and VR. Railway [](https://railway.app/) Railway is an infrastructure platform where you can provision infrastructure, develop with that infrastructure locally, and then deploy to the cloud. JSON Crack - Crack your data into pieces [](https://jsoncrack.com/) Simple visualization tool for your JSON data. No forced structure, paste your JSON and view it instantly. Locofy.ai - ship your products 3-4x faster — with low code [](https://www.locofy.ai/) Turn your designs into production-ready frontend code for mobile apps and web. Ship products 3-4x faster with your existing design tools, tech stacks & workflows. Oh Shit, Git!?! [](https://ohshitgit.com/) Carbon | Create and share beautiful images of your source code [](https://carbon.now.sh/) Carbon is the easiest way to create and share beautiful images of your source code. GPRM : GitHub Profile ReadMe Maker [](https://gprm.itsvg.in/) Best Profile Generator, Create your perfect GitHub Profile ReadMe in the best possible way. Lots of features and tools included, all for free ! HubSpot | Software, Tools, and Resources to Help Your Business Grow Better [](https://www.hubspot.com/) HubSpot’s integrated CRM platform contains the marketing, sales, service, operations, and website-building software you need to grow your business. QuickRef.ME - Quick Reference Cheat Sheet [](https://quickref.me/) Share quick reference and cheat sheet for developers massCode | A free and open source code snippets manager for developers [](https://masscode.io/) Code snippets manager for developers, developed using web technologies. Snyk | Developer security | Develop fast. Stay secure. [](https://snyk.io/) Snyk helps software-driven businesses develop fast and stay secure. Continuously find and fix vulnerabilities for npm, Maven, NuGet, RubyGems, PyPI and more. Developer Roadmaps [](https://roadmap.sh/) Community driven roadmaps, articles, guides, quizzes, tips and resources for developers to learn from, identify their career paths, know what they don't know, find out the knowledge gaps, learn and improve. CSS Generators Get Waves – Create SVG waves for your next design [](https://getwaves.io/) A free SVG wave generator to make unique SVG waves for your next web design. Choose a curve, adjust complexity, randomize! Box Shadows [](https://box-shadow.dev/) Tridiv | CSS 3D Editor [](http://tridiv.com/) Tridiv is a web-based editor for creating 3D shapes in CSS Glassmorphism CSS Generator - Glass UI [](https://ui.glass/generator/) Generate CSS and HTML components using the glassmorphism design specifications based on the Glass UI library. Blobmaker - Make organic SVG shapes for your next design [](https://www.blobmaker.app/) Make organic SVG shapes for your next design. Modify the complexity, contrast, and color, to generate unique SVG blobs every time. Keyframes.app [](https://keyframes.app/) cssFilters.co - Custom and Instagram like photo filters for CSS [](https://www.cssfilters.co/) Visual playground for generating CSS for custom and Instagram like photo filters. Experiment with your own uploaded photo or select one from the Unsplash collection. CSS Animations Animista - CSS Animations on Demand [](https://animista.net/) Animista is a CSS animation library and a place where you can play with a collection of ready-made CSS animations and download only those you will use. Build Internal apps Superblocks | Save 100s of developer hours on internal tools [](https://www.superblocks.com/) Superblocks is the fast, easy and secure way for developers to build custom internal tools fast. Connect your databases & APIs. Drag and drop UI components. Extend with Python or Javascript. Deploy in 1-click. Secure and Monitor using your favorite tools Budibase | Build internal tools in minutes, the easy way [](https://budibase.com/) Budibase is a modern, open source low-code platform for building modern internal applications in minutes. Retool | Build internal tools, remarkably fast. [](https://retool.com/) Retool is the fast way to build internal tools. Drag-and-drop our building blocks and connect them to your databases and APIs to build your own tools, instantly. Connects with Postgres, REST APIs, GraphQL, Firebase, Google Sheets, and more. Built by developers, for developers. Trusted by startups and Fortune 500s. Sign up for free. GitHub Repositories GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? [](https://github.com/vasanthk/how-web-works) What happens behind the scenes when we type www.google.com in a browser? - GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. [](https://github.com/kamranahmedse/developer-roadmap) Interactive roadmaps, guides and other educational content to help developers grow in their careers. - GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. [](https://github.com/apptension/developer-handbook) An opinionated guide on how to become a professional Web/Mobile App Developer. - GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. ProfileMe.dev | Create an amazing GitHub profile in minutes [](https://www.profileme.dev/) ProfileMe.dev | Create an amazing GitHub profile in minutes GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. [](https://github.com/Kristories/awesome-guidelines) A curated list of high quality coding style conventions and standards. - GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. GitHub - tiimgreen/github-cheat-sheet: A list of cool features of Git and GitHub. [](https://github.com/tiimgreen/github-cheat-sheet) A list of cool features of Git and GitHub. Contribute to tiimgreen/github-cheat-sheet development by creating an account on GitHub. GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer [](https://github.com/andreasbm/web-skills) A visual overview of useful skills to learn as a web developer - GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers [](https://github.com/Ebazhanov/linkedin-skill-assessments-quizzes) Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers - GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers Blockchain/Crypto Dashboards [](https://dune.com/) Blockchain ecosystem analytics by and for the community. Explore and share data from Ethereum, xDai, Polygon, Optimism, BSC and Solana for free. Introduction - The Anchor Book v0.24.0 [](https://book.anchor-lang.com/introduction/introduction.html) Crypto & Fiat Exchange Super App | Trade, Save & Spend | hi [](https://hi.com/) Buy, Trade, Send and Earn Crypto & Fiat. Deposit Bitcoin, ETH, USDT and other cryptos and start earning. Get the hi Debit Card and Multi-Currency IBAN Account. Moralis Web3 - Enterprise-Grade Web3 APIs [](https://moralis.io/) Bridge the development gap between Web2 and Web3 with Moralis’ powerful Web3 APIs. Mirror [](https://mirror.xyz/) Built on web3 for web3, Mirror’s robust publishing platform pushes the boundaries of writing online—whether it’s the next big white paper or a weekly community update. Makerdao [](https://blog.makerdao.com/) Sholi — software for Investors & Traders / Sholi MetriX [](https://sholi.io/) Sholi — software for Investors & Traders / Sholi MetriX Stock Trading Quiver Quantitative [](https://www.quiverquant.com/) Quiver Quantitative Chart Prime - The only tool you'll need for trading assets across all markets [](https://chartprime.com/) ChartPrime offers a toolkit that will take your trading game to the next level. Visit our site for a full rundown of features and helpful tutorials. Learning Hacker Rank [](https://www.hackerrank.com/) Coderbyte | Code Screening, Challenges, & Interview Prep [](https://coderbyte.com/) Improve your coding skills with our library of 300+ challenges and prepare for coding interviews with content from leading technology companies. Competitive Programming | Participate & Learn | CodeChef [](https://www.codechef.com/) Learn competitive programming with the help of CodeChef's coding competitions. Take part in these online coding contests to level up your skills Learn to Code - for Free | Codecademy [](https://www.codecademy.com/) Learn the technical skills to get the job you want. Join over 50 million people choosing Codecademy to start a new career (or advance in their current one). Free Code Camp [](https://www.freecodecamp.org/) Learn to Code — For Free Sololearn: Learn to Code [](https://www.sololearn.com/home) Join Now to learn the basics or advance your existing skills Mimo: The coding app you need to learn to code! Python, HTML, JavaScript [](https://getmimo.com/) Join more than 17 million learners worldwide. Learn to code for free. Learn Python, JavaScript, CSS, SQL, HTML, and more with our free code learning app. Free for developers [](https://free-for.dev/#/) Your Career in Web Development Starts Here | The Odin Project [](https://www.theodinproject.com/) The Odin Project empowers aspiring web developers to learn together for free Code Learning Games CheckiO - coding games and programming challenges for beginner and advanced [](https://checkio.org/) CheckiO - coding websites and programming games. Improve your coding skills by solving coding challenges and exercises online with your friends in a fun way. Exchanges experience with other users online through fun coding activities Coding for Kids | Game-Based Programming | CodeMonkey [](https://www.codemonkey.com/) CodeMonkey is a leading coding for kids program. Through its award-winning courses, millions of students learn how to code in real programming languages. Coding Games and Programming Challenges to Code Better [](https://www.codingame.com/) CodinGame is a challenge-based training platform for programmers where you can play with the hottest programming topics. Solve games, code AI bots, learn from your peers, have fun. Learn VIM while playing a game - VIM Adventures [](https://vim-adventures.com/) VIM Adventures is an online game based on VIM's keyboard shortcuts. It's the "Zelda meets text editing" game. So come have some fun and learn some VIM! CodeCombat - Coding games to learn Python and JavaScript [](https://codecombat.com/) Learn typed code through a programming game. Learn Python, JavaScript, and HTML as you solve puzzles and learn to make your own coding games and websites. Design Useberry - Codeless prototype analytics [](https://www.useberry.com/) User testing feedback & rich insights in minutes, not months! Figma: the collaborative interface design tool. [](https://www.figma.com/) Build better products as a team. Design, prototype, and gather feedback all in one place with Figma. Dribbble - Discover the World’s Top Designers & Creative Professionals [](https://dribbble.com/) Find Top Designers & Creative Professionals on Dribbble. We are where designers gain inspiration, feedback, community, and jobs. Your best resource to discover and connect with designers worldwide. Photopea | Online Photo Editor [](https://www.photopea.com/) Photopea Online Photo Editor lets you edit photos, apply effects, filters, add text, crop or resize pictures. Do Online Photo Editing in your browser for free! Toools.design – An archive of 1000+ Design Resources [](https://www.toools.design/) A growing archive of over a thousand design resources, weekly updated for the community. Discover highly useful design tools you never thought existed. All Online Tools in One Box | 10015 Tools [](https://10015.io/) All online tools you need in one box for free. Build anything online with “all-in-one toolbox”. All tools are easy-to-use, blazing fast & free. Phase - Digital Design Reinvented| Phase [](https://phase.com/) Design and prototype websites and apps visually and intuitively, in a new powerful product reworked for the digital age. Animated Backgrounds [](https://animatedbackgrounds.me/) A Collection of 30+ animated backgrounds for websites and blogs.With Animated Backgrounds, set a simple, elegant background animations on your websites and blogs. Trianglify.io · Low Poly Pattern Generator [](https://trianglify.io/) Trianglify.io is a tool for generating low poly triangle patterns that can be used as wallpapers and website assets. Cool Backgrounds [](https://coolbackgrounds.io/) Explore a beautifully curated selection of cool backgrounds that you can add to blogs, websites, or as desktop and phone wallpapers. SVG Repo - Free SVG Vectors and Icons [](https://www.svgrepo.com/) Free Vectors and Icons in SVG format. ✅ Download free mono or multi color vectors for commercial use. Search in 300.000+ Free SVG Vectors and Icons. Microcopy - Short copy text for your website. [](https://www.microcopy.me/) Search micro UX copy text: slogans, headlines, notifications, CTA, error messages, email, account preferences, and much more. 3D icons and icon paks - Free3Dicon [](https://free3dicon.com/) All 3D icons you need in one place. This is a collection of free, beautiful, trending 3D icons, that you can use in any project. Love 3D Icon [](https://free3dicons.com/) Downloads free 3D icons GIMP - GNU Image Manipulation Program [](https://www.gimp.org/) GIMP - The GNU Image Manipulation Program: The Free and Open Source Image Editor blender.org - Home of the Blender project - Free and Open 3D Creation Software [](https://www.blender.org/) The Freedom to Create 3D Design Software | 3D Modeling on the Web | SketchUp [](https://www.sketchup.com/) SketchUp is a premier 3D design software that truly makes 3D modeling for everyone, with a simple to learn yet robust toolset that empowers you to create whatever you can imagine. Free Logo Maker - Create a Logo in Seconds - Shopify [](https://www.shopify.com/tools/logo-maker) Free logo maker tool to generate custom design logos in seconds. This logo creator is built for entrepreneurs on the go with hundreds of templates, free vectors, fonts and icons to design your own logo. The easiest way to create business logos online. All your design tools in one place | Renderforest [](https://www.renderforest.com/) Time to get your brand noticed. Create professional videos, logos, mockups, websites, and graphics — all in one place. Get started now! Prompt Hero [](https://prompthero.com/) Type Scale - A Visual Calculator [](https://type-scale.com/) Preview and choose the right type scale for your project. Experiment with font size, scale and different webfonts. DreamFusion: Text-to-3D using 2D Diffusion [](https://dreamfusion3d.github.io/) DreamFusion: Text-to-3D using 2D Diffusion, 2022. The branding style guidelines documents archive [](https://brandingstyleguides.com/) Welcome to the brand design manual documents directory. Search over our worldwide style assets handpicked collection, access to PDF documents for inspiration. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Readymag—a design tool to create websites without coding [](https://readymag.com/) Meet the most elegant, simple and powerful web-tool for designing websites, presentations, portfolios and all kinds of digital publications. ffflux: Online SVG Fluid Gradient Background Generator | fffuel [](https://fffuel.co/ffflux/) SVG generator to make fluid gradient backgrounds that feel organic and motion-like. Perfect to add a feeling of motion and fluidity to your web designs. Generate unique SVG design assets | Haikei [](https://haikei.app/) A web-based design tool to generate unique SVG design assets for websites, social media, blog posts, desktop and mobile wallpapers, posters, and more! Our generators let you discover, customize, randomize, and export generative SVG design assets ready to use with your favorite design tools. UI/UX - Inspirational Free Website Builder Software | 10,000+ Free Templates [](https://nicepage.com/) Nicepage is your website builder software breaking limitations common for website builders with revolutionary freehand positioning. 7000+ Free Templates. Easy Drag-n-Drop. No coding. Mobile-friendly. Clean HTML. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Pika – Create beautiful mockups from screenshots [](https://pika.style/) Quickly create beautiful website and device mockup from screenshot. Pika lets you capture website screenshots form URL, add device and browser frames, customize background and more LiveTerm [](https://liveterm.vercel.app/) Minimal Gallery – Web design inspiration [](https://minimal.gallery/) For the love of beautiful, clean and functional websites. Awwwards - Website Awards - Best Web Design Trends [](https://www.awwwards.com/) Awwwards are the Website Awards that recognize and promote the talent and effort of the best developers, designers and web agencies in the world. Design Systems For Figma [](https://www.designsystemsforfigma.com/) A collection of Design Systems for Figma from all over the globe. Superside: Design At Scale For Ambitious Brands [](https://www.superside.com/) We are an always-on design company. Get a team of dedicated designers, speedy turnarounds, magical creative collaboration tech and the top 1% of global talent. UXArchive - Made by Waldo [](https://uxarchive.com/) UXArchive the world's largest library of mobile user flows. Be inspired to design the best user experiences. Search by Muzli [](https://search.muz.li/) Search, discover, test and create beautiful color palettes for your projects Siteinspire | Web Design Inspiration [](https://www.siteinspire.com/) SAVEE [](https://savee.it/) The best way to save and share inspiration. A little corner of the internet to find good landing page copywriting examples [](https://greatlandingpagecopy.com/) A little corner of the internet to find great landing page copywriting examples. The Best Landing Page Examples For Design Inspiration - SaaS Landing Page [](https://saaslandingpage.com/) SaaS Landing Page showcases the best landing page examples created by top-class SaaS companies. Get ideas and inspirations for your next design project. Websites Free templates Premium Bootstrap Themes and Templates: Download @ Creative Tim [](https://www.creative-tim.com/) UI Kits, Templates and Dashboards built on top of Bootstrap, Vue.js, React, Angular, Node.js and Laravel. Join over 2,014,387+ creatives to access all our products! Free Bootstrap Themes, Templates, Snippets, and Guides - Start Bootstrap [](https://startbootstrap.com/) Start Bootstrap develops free to download, open source Bootstrap 5 themes, templates, and snippets and creates guides and tutorials to help you learn more about designing and developing with Bootstrap. Free Website Templates [](https://freewebsitetemplates.com/) Get your free website templates here and use them on your website without needing to link back to us. One Page Love - One Page Website Inspiration and Templates [](https://onepagelove.com/) One Page Love is a One Page website design gallery showcasing the best Single Page websites, templates and resources. Free CSS | 3400 Free Website Templates, CSS Templates and Open Source Templates [](https://www.free-css.com/) Free CSS has 3400 free website templates, all templates are free CSS templates, open source templates or creative commons templates. Free Bootstrap Themes and Website Templates | BootstrapMade [](https://bootstrapmade.com/) At BootstrapMade, we create beautiful website templates and bootstrap themes using Bootstrap, the most popular HTML, CSS and JavaScript framework. Free and Premium Bootstrap Themes, Templates by Themesberg [](https://themesberg.com/) Free and Premium Bootstrap themes, templates, admin dashboards and UI kits used by over 38820 web developers and software companies HTML, Vue.js and React templates for startup landing pages - Cruip [](https://cruip.com/) Cruip is a gallery of premium and free HTML, Vue.js and React templates for startups and SaaS. Free Website Templates Download | WordPress Themes - W3Layouts [](https://w3layouts.com/) Want to download free website templates? W3Layouts WordPress themes and website templates are built with responsive web design techniques. Download now! Free HTML Landing Page Templates and UI Kits | UIdeck [](https://uideck.com/) Free HTML Landing Page Templates, Bootstrap Themes, React Templates, HTML Templates, Tailwind Templates, and UI Kits. Create Online Graphics Snappa - Quick & Easy Graphic Design Software [](https://snappa.com/) Snappa makes it easy to create any type of online graphic. Create & publish images for social media, blogs, ads, and more! Canva [](https://www.canva.com/) Polotno Studio - Make graphical designs [](https://studio.polotno.com) Free online design editor. Create images for social media, youtube previews, facebook covers Free Logo Maker: Design Custom Logos | Adobe Express [](https://www.adobe.com/express/create/logo) The Adobe Express logo maker is instant, intuitive, and intelligent. Use it to generate a wide range of possibilities for your own logo. Photo Editor: Fotor – Free Online Photo Editing & Image Editor [](https://www.fotor.com/) Fotor's online photo editor helps you edit photos with free online photo editing tools. Crop photos, resize images, and add effects/filters, text, and graphics in just a few clicks. Photoshop online has never been easier with Fotor's free online photo editor. VistaCreate – Free Graphic Design Software with 70,000+ Free Templates [](https://create.vista.com/) Looking for free graphic design software? Easily create professional designs with VistaCreate, a free design tool with powerful features and 50K+ ready-made templates Draw Freely | Inkscape [](https://inkscape.org/) Inkscape is professional quality vector graphics software which runs on Linux, Mac OS X and Windows desktop computers. Visual & Video Maker Trusted By 11 Million Users - Piktochart [](https://piktochart.com/) With Piktochart, you can create professional-looking infographics, flyers, posters, charts, videos, and more. No design experience needed. Start for free. The Web's Favorite Online Graphic Design Tool | Stencil [](https://getstencil.com/) Stencil is a fantastically easy-to-use online graphic design tool and image editor built for business owners, social media marketers, and bloggers. Pablo by Buffer - Design engaging images for your social media posts in under 30 seconds [](https://pablo.buffer.com/) Buffer makes it super easy to share any page you're reading. Keep your Buffer topped up and we automagically share them for you through the day. Free Online Graphic Design Software | Create stunning designs in seconds. [](https://desygner.com/) Easy drag and drop graphic design tool for anyone to use with 1000's of ready made templates. Create & print professional business cards, flyers, social posts and more. Color Pallet Color Palettes for Designers and Artists - Color Hunt [](https://colorhunt.co/) Discover the newest hand-picked color palettes of Color Hunt. Get color inspiration for your design and art projects. Coolors - The super fast color palettes generator! [](https://coolors.co/) Generate or browse beautiful color combinations for your designs. Get color palette inspiration from nature - colorpalettes.earth [](https://colorpalettes.earth/) Color palettes inspired by beautiful nature photos Color Palette Generator - Create Beautiful Color Schemes [](https://colors.muz.li/) Search, discover, test and create beautiful color palettes for your projects A Most Useful Color Picker | 0to255 [](https://0to255.com/) Find lighter and darker colors based on any color. Discover why over two million people have used 0to255 to choose colors for their website, logo, room interior, and print design projects. Colour Contrast Checker [](https://colourcontrast.cc/) Check the contrast between different colour combinations against WCAG standards Fonts Google Fonts [](https://fonts.google.com/) Making the web more beautiful, fast, and open through great typography Fonts In Use – Type at work in the real world. [](https://fontsinuse.com/) A searchable archive of typographic design, indexed by typeface, format, and topic. Wordmark - Helps you choose fonts! [](https://wordmark.it/) Wordmark helps you choose fonts by quickly displaying your text with your fonts. OH no Type Company [](https://ohnotype.co/) OH no Type Co. Retail and custom typefaces. Life’s a thrill, fonts are chill! Illustrations Illustrations | unDraw [](https://undraw.co/illustrations) The design project with open-source illustrations for any idea you can imagine and create. Create beautiful websites, products and applications with your color, for free. Design Junction [](https://designjunction.xyz/) Design Junction is a one-stop resource library for Designers and Creatives with curated list of best resources handpicked from around the web Humaaans: Mix-&-Match illustration library [](https://www.humaaans.com/) Mix-&-match illustrations of people with a design library for InVIsion Studio and Sketch. Stubborn - Free Illustrations Generator [](https://stubborn.fun/) Free illustrations generator for Figma and Sketch. Get the opportunity to design your characters using symbols and styles. Open Peeps, Hand-Drawn Illustration Library [](https://www.openpeeps.com/) Open Peeps is a hand-drawn illustration library to create scenes of people. You can use them in product illustration, marketing, comics, product states, user flows, personas, storyboarding, quinceañera invitations, or whatever you want! ⠀ Reshot | Free icons & illustrations [](https://www.reshot.com/) Design freely with instant downloads of curated SVG icons and vector illustrations. All free with commercial licensing. No attribution required. Blush: Illustrations for everyone [](https://blush.design/) Blush makes it easy to add free illustrations to your designs. Play with fully customizable graphics made by artists across the globe. Mockups Angle 4 - 5000+ Device Mockups for Figma, Sketch and XD [](https://angle.sh/) Vector mockups for iPhone, iPad, Android and Mac devices, including the new iPhone 13, Pro, Pro Max and Mini. Perfect for presenting your apps. Huge library of components, compositions, wallpapers and plugins made for Figma, Sketch and XD. Make Mockups, Logos, Videos and Designs in Seconds [](https://placeit.net/) Get unlimited downloads on all our 100K templates! You can make a logo, video, mockup, flyer, business card and social media image in seconds right from your browser. Free and premium tools for graphic designers | Lstore Graphics [](https://www.ls.graphics/) Free and premium mockups, UI/UX tools, scene creators for busy designers Logo Design & Brand Identity Platform for Entrepreneurs | Looka [](https://looka.com/) Logojoy is now Looka! Design a Logo, make a website, and create a Brand Identity you’ll love with the power of Artificial Intelligence. 100% free to use. Create stunning product mockups easily and online - Smartmockups [](https://smartmockups.com/) Smartmockups enables you to create stunning high-resolution mockups right inside your browser within one interface across multiple devices. Previewed - Free mockup generator for your app [](https://previewed.app/) Join Previewed to create stunning 3D image shots and animations for your app. Choose from hundreds of ready made mockups, or create your own. Free Design Software - Graphic Online Maker - Glorify [](https://www.glorify.com/) Create professional and high converting social media posts, ads, infographics, presentations, and more with Glorify, a free design software & graphic maker. Other BuiltWith Technology Lookup [](https://builtwith.com/) Web technology information profiler tool. Find out what a website is built with. Compress JPEG Images Online [](https://compressjpeg.com/) Compress JPEG images and photos for displaying on web pages, sharing on social networks or sending by email. PhotoRoom - Remove Background and Create Product Pictures [](https://www.photoroom.com/) Create product and portrait pictures using only your phone. Remove background, change background and showcase products. Magic Eraser - Remove unwanted things from images in seconds [](https://www.magiceraser.io/) Magic Eraser - Use AI to remove unwanted things from images in seconds. Upload an image, mark the bit you need removed, download the fixed up image. Compressor.io - optimize and compress JPEG photos and PNG images [](https://compressor.io/) Optimize and compress JPEG, PNG, SVG, GIF and WEBP images online. Compress, resize and rename your photos for free. Remove Video Background – Unscreen [](https://www.unscreen.com/) Remove the background of any video - 100% automatically, online & free! Goodbye Greenscreen. Hello Unscreen. Noun Project: Free Icons & Stock Photos for Everything [](https://thenounproject.com/) Noun Project features the most diverse collection of icons and stock photos ever. Download SVG and PNG. Browse over 5 million art-quality icons and photos. Design Principles [](https://principles.design/) An Open Source collection of Design Principles and methods Shapefest™ - A massive library of free 3D shapes [](https://www.shapefest.com/) A massive free library of beautifully rendered 3D shapes. 160,000+ high resolution PNG images in one cohesive library. Learning UX Degreeless.design - Everything I Learned in Design School [](https://degreeless.design/) This is a list of everything I've found useful in my journey of learning design, and an ongoing list of things I think you should read. For budding UX, UI, Interaction, or whatever other title designers. UX Tools | Practical UX skills and tools [](https://uxtools.co/) Lessons and resources from two full-time product designers. Built For Mars [](https://builtformars.com/) On a mission to help the world build better user experiences by demystifying UX. Thousands of hours of research packed into UX case studies. Case Study Club – Curated UX Case Study Gallery [](https://www.casestudy.club/) Case Study Club is the biggest curated gallery of the best UI/UX design case studies. Get inspired by industry-leading designers, openly sharing their UX process. The Guide to Design [](https://start.uxdesign.cc/) A self-guided class to help you get started in UX and answer key questions about craft, design, and career Uxcel - Where design careers are built [](https://app.uxcel.com/explore) Available on any device anywhere in the world, Uxcel is the best way to improve and learn UX design online in just 5 minutes per day. UI & UX Design Tips by Jim Raptis. [](https://www.uidesign.tips/) Learn UI & UX Design with practical byte-sized tips and in-depth articles from Jim Raptis. Entrepreneur Instant Username Search [](https://instantusername.com/#/) Instant Username Search checks out if your username is available on more than 100 social media sites. Results appear instantly as you type. Flourish | Data Visualization & Storytelling [](https://flourish.studio/) Beautiful, easy data visualization and storytelling PiPiADS - #1 TikTok Ads Spy Tool [](https://www.pipiads.com/) PiPiADS is the best tiktok ads spy tool .We provide tiktok advertising,advertising on tiktok,tiktok ads examples,tiktok ads library,tiktok ads best practices,so you can understand the tiktok ads cost and master the tiktok ads 2021 and tiktok ads manager. Minea - The best adspy for product search in ecommerce and dropshipping [](https://en.minea.com/) Minea is the ultimate e-commerce product search tool. Minea tracks all ads on all networks. Facebook Ads, influencer product placements, Snapspy, all networks are tracked. Stop paying adspy 149€ for one network and discover Minea. AdSpy [](https://adspy.com/) Google Trends [](https://trends.google.com/) ScoreApp: Advanced Quiz Funnel Marketing | Make a Quiz Today [](https://www.scoreapp.com/) ScoreApp makes quiz funnel marketing easy, so you can attract relevant warm leads, insightful data and increase your sales. Try for free today Mailmodo - Send Interactive Emails That Drive Conversions [](https://www.mailmodo.com/) Use Mailmodo to create and send interactive emails your customers love. Drive conversions and get better email ROI. Sign up for a free trial now. 185 Top E-Commerce Sites Ranked by User Experience Performance – Baymard Institute [](https://baymard.com/ux-benchmark) See the ranked UX performance of the 185 largest e-commerce sites in the US and Europe. The chart summarizes 50,000+ UX performance ratings. Metricool - Analyze, manage and measure your digital content [](https://metricool.com/) Social media scheduling, web analytics, link in bio and reporting. Metricool is free per live for one brand. START HERE Visualping: #1 Website change detection, monitoring and alerts [](https://visualping.io/) More than 1.5 millions users monitor changes in websites with Visualping, the No1 website change detection, website checker, webpage change monitoring and webpage change detection tool. Gumroad – Sell what you know and see what sticks [](https://gumroad.com/) Gumroad is a powerful, but simple, e-commerce platform. We make it easy to earn your first dollar online by selling digital products, memberships and more. Product Hunt – The best new products in tech. [](https://www.producthunt.com/) Product Hunt is a curation of the best new products, every day. Discover the latest mobile apps, websites, and technology products that everyone's talking about. 12ft Ladder [](https://12ft.io/) Show me a 10ft paywall, I’ll show you a 12ft ladder. namecheckr | Social and Domain Name Availability Search For Brand Professionals [](https://www.namecheckr.com/) Social and Domain Name Availability Search For Brand Professionals Excel AI Formula Generator - Excelformulabot.com [](https://excelformulabot.com/) Transform your text instructions into Excel formulas in seconds with the help of AI. Z-Library [](https://z-lib.org/) Global Print On Demand Platform | Gelato [](https://www.gelato.com/) Create and sell custom products online. With local production in 33 countries, easy integration, and 24/7 customer support, Gelato is an all-in-one platform. Freecycle: Front Door [](https://freecycle.org/) Free eBooks | Project Gutenberg [](https://www.gutenberg.org/) Project Gutenberg is a library of free eBooks. Convertio — File Converter [](https://convertio.co/) Convertio - Easy tool to convert files online. More than 309 different document, image, spreadsheet, ebook, archive, presentation, audio and video formats supported. Namechk [](https://namechk.com/) Crazy Egg Website — Optimization | Heatmaps, Recordings, Surveys & A/B Testing [](https://www.crazyegg.com/) Use Crazy Egg to see what's hot and what's not, and to know what your web visitors are doing with tools, such as heatmaps, recordings, surveys, A/B testing & more. Ifttt [](https://ifttt.com/) Also Asked [](https://alsoasked.com/) Business Name Generator - Easily create Brandable Business Names - Namelix [](https://namelix.com/) Namelix uses artificial intelligence to create a short, brandable business name. Search for domain availability, and instantly generate a logo for your new business Merch Informer [](https://merchinformer.com/) Headline Generator [](https://www.title-generator.com/) Title Generator: create 700 headlines with ONE CLICK: Content Ideas + Catchy Headlines + Ad Campaign E-mail Subject Lines + Emotional Titles. Simple - Efficient - One Click Make [](https://www.make.com/en) Create and add calculator widgets to your website | CALCONIC_ [](https://www.calconic.com/) Web calculator builder empowers you to choose from a pre-made templates or build your own calculator widgets from a scratch without any need of programming knowledge Boost Your Views And Subscribers On YouTube - vidIQ [](https://vidiq.com/) vidIQ helps you acquire the tools and knowledge needed to grow your audience faster on YouTube and beyond. Learn More Last Pass [](https://www.lastpass.com/) Starter Story: Learn How People Are Starting Successful Businesses [](https://www.starterstory.com/) Starter Story interviews successful entrepreneurs and shares the stories behind their businesses. In each interview, we ask how they got started, how they grew, and how they run their business today. How To Say No [](https://www.starterstory.com/how-to-say-no) Saying no is hard, but it's also essential for your sanity. Here are some templates for how to say no - so you can take back your life. Think with Google - Discover Marketing Research & Digital Trends [](https://www.thinkwithgoogle.com/) Uncover the latest marketing research and digital trends with data reports, guides, infographics, and articles from Think with Google. ClickUp™ | One app to replace them all [](https://clickup.com/) Our mission is to make the world more productive. To do this, we built one app to replace them all - Tasks, Docs, Goals, and Chat. The Manual [](https://manual.withcompound.com/) Wealth-planning resources for founders and startup employees Software for Amazon FBA Sellers & Walmart Sellers | Helium 10 [](https://www.helium10.com/) If you're looking for the best software for Amazon FBA & Walmart sellers on the market, check out Helium 10's capabilities online today! Buffer: All-you-need social media toolkit for small businesses [](https://buffer.com/) Use Buffer to manage your social media so that you have more time for your business. Join 160,000+ small businesses today. CPGD — The Consumer Packaged Goods Directory [](https://www.cpgd.xyz/) The Consumer Packaged Goods Directory is a platform to discover new brands and resources. We share weekly trends in our newsletter and partner with services to provide vetted, recommended platforms for our Directory brands. Jungle Scout [](https://www.junglescout.com/) BuzzSumo | The World's #1 Content Marketing Platform [](https://buzzsumo.com/) BuzzSumo powers the strategies of 500k+ marketers, with content marketing data on 8b articles, 42m websites, 300t engagements, 500k journalists & 492m questions. Login - Capital [](https://app.capital.xyz/) Raise, hold, spend, and send funds — all in one place. Marketing Pictory – Video Marketing Made Easy - Pictory.ai [](https://pictory.ai/) Pictory's powerful AI enables you to create and edit professional quality videos using text, no technical skills required or software to download. Tolstoy | Communicate with interactive videos [](https://www.gotolstoy.com/) Start having face-to-face conversations with your customers. Create Email Marketing Your Audience Will Love - MailerLite [](https://www.mailerlite.com/) Email marketing tools to grow your audience faster and drive revenue smarter. Get free access to premium features with a 30-day trial! Sign up now! Hypefury - Schedule & Automate Social Media Marketing [](https://hypefury.com/) Save time on social media while creating more value, and growing your audience faster. Schedule & automate your social media experience! Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Online Email & Lead Scraper | Klean Leads [](https://www.kleanleads.com/) Klean Leads is an online email scraper & email address finder. Use it to book more appointments, get more replies, and close more sales. PhantomBuster [](https://phantombuster.com/) Call to Action Examples - 300+ CTA Phrases [](https://ctaexamples.com/) See the best CTA example in every situation covered by the library of 300+ CTA goals. Use the examples to create your own CTAs in minutes. Creative Center: one-stop creative solution for TikTok [](https://ads.tiktok.com/business/creativecenter/pc/en?from=001010) Come to get your next great idea for TikTok. Here you can find the best performing ads, viral videos, and trending hashtags across regions and verticals. Groove.cm GrooveFunnels, GrooveMail with CRM and Digital Marketing Automation Platform - Groove.cm with GrooveFunnels, GroovePages, GrooveKart [](https://groove.cm/) Groove is a website creator, page builder, sales funnel maker, membership site platform, email autoresponder, blog tool, shopping cart system, ecommerce store solution, affiliate manager, video marketing software and more apps to help build your online business. SurveyMonkey: The World’s Most Popular Free Online Survey Tool [](https://www.surveymonkey.com/) Use SurveyMonkey to drive your business forward by using our free online survey tool to capture the voices and opinions of the people who matter most to you. Video Maker | Create Videos Online | Promo.com [](https://promo.com/) Free customizable video maker to help boost your business. Video creator for ads, social media, product and explainer videos, and for anything else you need! beehiiv — The newsletter platform built for growth [](https://www.beehiiv.com/) Access the best tools available in email, helping your newsletter scale and monetize like never before. GetResponse | Professional Email Marketing for Everyone [](https://www.getresponse.com/) No matter your level of expertise, we have a solution for you. At GetResponse, it's email marketing done right. Start your free account today! Search Email Newsletter Archives : Email Tuna [](https://emailtuna.com/) Explore newsletters without subscribing. Get email design ideas, discount coupon codes and exclusive newsletters deals. Database of email newsletters archived from all over the internet. Other Tools Simplescraper — Scrape Websites and turn them into APIs [](https://simplescraper.io/) Web scraping made easy — a powerful and free Chrome extension for scraping websites in your browser, automated in the cloud, or via API. No code required. Exploding Topics - Discover the hottest new trends. [](https://explodingtopics.com/) See new market opportunities, trending topics, emerging technology, hot startups and more on Exploding Topics. Scribe | Visual step-by-step guides [](https://scribehow.com/) By capturing your process while you work, Scribe automatically generates a visual guide, ready to share with the click of a button. Get It Free – The internet's BEST place to find free stuff! [](https://getitfree.us/) The internet's BEST place to find free stuff! Inflact by Ingramer – Marketing toolkit for Instagram [](https://inflact.com/) Sell on Instagram, build your audience, curate content with the right set of tools. Free Online Form Builder & Form Creator | Jotform [](https://www.jotform.com/) We believe the right form makes all the difference. Go from busywork to less work with powerful forms that use conditional logic, accept payments, generate reports, and automate workflows. Manage Your Team’s Projects From Anywhere | Trello [](https://trello.com/en) Trello is the ultimate project management tool. Start up a board in seconds, automate tedious tasks, and collaborate anywhere, even on mobile. TikTok hashtag generator - tiktokhashtags.com [](https://tiktokhashtags.com/) Find out which are the best hashtags for your TikTok post. Create Infographics, Reports and Maps - Infogram [](https://infogram.com/) Infogram is an easy to use infographic and chart maker. Create and share beautiful infographics, online reports, and interactive maps. Make your own here. Confetto - Create Instagram content in minutes [](https://www.confet.to/) Confetto is an all-in-one social media marketing tool built for SMBs and Social Media Managers. Confetto helps you create high-quality content for your audience that maximizes your reach and engagement on social media. Design, copy-write, plan and schedule content all in one place. Find email addresses in seconds • Hunter (Email Hunter) [](https://hunter.io/) Hunter is the leading solution to find and verify professional email addresses. Start using Hunter and connect with the people that matter for your business. PlayPhrase.me: Site for cinema archaeologists. [](https://playphrase.me/) Travel and explore the world of cinema. Largest collection of video quotes from movies on the web. #1 Free SEO Tools → SEO Review Tools [](https://www.seoreviewtools.com/) SEO Review Tools: 42+ Free Online SEO Tools build with ❤! → Rank checker → Domain Authority Checker → Keyword Tool → Backlink Checker Podcastle: Seamless Podcast Recording & Editing [](https://podcastle.ai/) Podcastle is the simplest way to create professional-quality podcasts. Record, edit, transcribe, and export your content with the power of AI, in an intuitive web-based platform. Save Ads from TikTok & Facebook Ad Library - Foreplay [](https://www.foreplay.co/) The best way to save ads from TikTok Creative Center and Facebook Ad Library, Organize them into boards and share ad inspiration with your team. Supercharge your creative strategy. SiteRight - Automate Your Business [](https://www.siteright.co/) SiteRight combines the abilities of multiple online resources into a single dashboard allowing you to have full control over how you manage your business. Diffchecker - Compare text online to find the difference between two text files [](https://www.diffchecker.com/) Diffchecker will compare text to find the difference between two text files. Just paste your files and click Find Difference! Yout.com [](https://yout.com/) Yout.com allows you to record videos from YouTube, FaceBook, SoundCloud, VK and others too many formats with clipping. Intuitively easy to use, with Yout the Internet DVR, with a bit of extra. AI Content Generation | Competitor Analysis - Predis.ai [](https://predis.ai/) Predis helps brands and influencers communicate better on social media by providing AI-powered content strategy analysis, content and hashtag recommendations. Castr | #1 Live Video Streaming Solution With Video Hosting [](https://castr.io/) Castr is a live video streaming solution platform that delivers enterprise-grade live videos globally with CDN. Live event streaming, video hosting, pre-recorded live, multi stream – all in one place using Castr. Headliner - Promote your podcast, radio show or blog with video [](https://www.headliner.app/) Easily create videos to promote your podcast, radio show or blog. Share to Instagram, Facebook, Twitter, YouTube, Linkedin and anywhere video lives Create Presentations, Infographics, Design & Video | Visme [](https://www.visme.co/) Create professional presentations, interactive infographics, beautiful design and engaging videos, all in one place. Start using Visme today. Designrr - Create eBooks, Kindle books, Leadmagnets, Flipbooks and Blog posts from your content in 2 minutes [](https://designrr.io/) Upload any web page, MS Word, Video, Podcast or YouTube and it will create a stunning ebook and convert it to pdf, epub, Kindle or Flipbook. Quick and Easy to use. Full Training, 24x7 Support and Facebook Group Included. SwipeWell | Swipe File Software [](https://www.swipewell.app/) The only Chrome extension dedicated to helping you save, organize, and reference marketing examples (so you never feel stumped). Tango | Create how-to guides, in seconds [](https://www.tango.us/) Tango takes the pain out of documenting processes by automatically generating how-to guides while you work. Empower your team to do their best work. Ad Creative Bank [](https://www.theadcreativebank.com/) Get inspired by ads from across industries, learn new best practices, and start thinking creatively about your brand’s digital creative. Signature Hound • Free Email Signature and Template Generator [](https://signaturehound.com/) Our email signature generator is free and easy to use. Our customizable templates work with Gmail, Outlook, Office 365, Apple Mail and more. Organize All Of Your Marketing In One Place - CoSchedule [](https://coschedule.com/) Get more done in less time with the only work management software for marketers. B Ok - Books [](https://b-ok.xyz/categories) OmmWriter [](https://ommwriter.com/) Ommwriter Rebrandly | Custom URL Shortener, Branded Link Management, API [](https://www.rebrandly.com/) URL Shortener with custom domains. Shorten, brand and track URLs with the industry-leading link management platform. Free to try. API, Short URL, Custom Domains. Common Tools [](https://www.commontools.org/) Book Bolt [](https://bookbolt.io/) Zazzle [](https://www.zazzle.com/) InspiroBot [](https://inspirobot.me/) Download Free Cheat Sheets or Create Your Own! - Cheatography.com: Cheat Sheets For Every Occasion [](https://cheatography.com/) Find thousands of incredible, original programming cheat sheets, all free to download. No Code Chatbot Platform | Free Chatbot Platform | WotNot [](https://wotnot.io/) WotNot is the best no code chatbot platform to build AI bot easily without coding. Deploy bots and live chat on the Website, Messenger, WhatsApp, and more. SpyFu - Competitor Keyword Research Tools for Google Ads PPC & SEO [](https://www.spyfu.com/) Systeme.io - The only tool you need to launch your online business [](https://systeme.io/) Systeme.io has all the tools you need to grow your online business. Click here to create your FREE account! Productivity Temp Mail [](https://temp-mail.org/en/) The Visual Collaboration Platform for Every Team | Miro [](https://miro.com/) Scalable, secure, cross-device and enterprise-ready team collaboration whiteboard for distributed teams. Join 35M+ users from around the world. Grammarly: Free Online Writing Assistant [](https://www.grammarly.com/) Millions trust Grammarly’s free writing app to make their online writing clear and effective. Getting started is simple — download Grammarly’s extension today. Rize · Maximize Your Productivity [](https://rize.io/) Rize is a smart time tracker that improves your focus and helps you build better work habits. Motion | Manage calendars, meetings, projects & tasks in one app [](https://www.usemotion.com/) Automatically prioritize tasks, schedule meetings, and resolve calendar conflicts. Used by over 10k CEOs and professionals to improve focus, get more done, and streamline workday. Notion – One workspace. Every team. [](https://www.notion.so/) We’re more than a doc. Or a table. Customize Notion to work the way you do. Loom: Async Video Messaging for Work | Loom [](https://www.loom.com/) Record your screen, share your thoughts, and get things done faster with async video. Zapier | Automation that moves you forward [](https://zapier.com/) Workflow automation for everyone. Zapier automates your work across 5,000+ app integrations, so you can focus on what matters. Rows — The spreadsheet with superpowers [](https://rows.com/) Combine the power of a spreadsheet with built-in integrations from your business apps. Automate workflows and build tools that make work simpler. Free Online Form Builder | Tally [](https://tally.so/) Tally is the simplest way to create free forms & surveys. Create any type of form in seconds, without knowing how to code, and for free. Highbrow | Learn Something New Every Day. Join for Free! [](https://gohighbrow.com/) Highbrow helps you learn something new every day with 5-minute lessons delivered to your inbox every morning. Join over 400,000 lifelong learners today! Slick Write | Check your grammar. Proofread online. [](https://www.slickwrite.com/#!home) Slick Write is a powerful, FREE application that makes it easy to check your writing for grammar errors, potential stylistic mistakes, and other features of interest. Whether you're a blogger, novelist, SEO professional, or student writing an essay for school, Slick Write can help take your writing to the next level. Reverso [](https://www.reverso.net) Hemingway Editor [](https://hemingwayapp.com/) Web Apps by 123apps - Edit, Convert, Create [](https://123apps.com/) Splitbee – Your all-in-one analytics and conversion platform [](https://splitbee.io/) Track and optimize your online business with Splitbee. Analytics, Funnels, Automations, A/B Testing and more. PDF Tools Free PDF, Video, Image & Other Online Tools - TinyWow [](https://tinywow.com/) Smallpdf.com - A Free Solution to all your PDF Problems [](https://smallpdf.com/) Smallpdf - the platform that makes it super easy to convert and edit all your PDF files. Solving all your PDF problems in one place - and yes, free. Sejda helps with your PDF tasks [](https://www.sejda.com/) Sejda helps with your PDF tasks. Quick and simple online service, no installation required! Split, merge or convert PDF to images, alternate mix or split scans and many other. iLovePDF | Online PDF tools for PDF lovers [](https://www.ilovepdf.com/) iLovePDF is an online service to work with PDF files completely free and easy to use. Merge PDF, split PDF, compress PDF, office to PDF, PDF to JPG and more! Text rewrite QuillBot [](https://quillbot.com/) Pre Post SEO : Online SEO Tools [](https://www.prepostseo.com/) Free Online SEO Tools: plagiarism checker, grammar checker, image compressor, website seo checker, article rewriter, back link checker Wordtune | Your personal writing assistant & editor [](https://www.wordtune.com/) Wordtune is the ultimate AI writing tool that rewrites, rephrases, and rewords your writing! Trusted by over 1,000,000 users, Wordtune strengthens articles, academic papers, essays, emails and any other online content. Aliexpress alternatives CJdropshipping - Dropshipping from Worldwide to Worldwide! [](https://cjdropshipping.com/) China's reliable eCommerce dropshipping fulfillment supplier, helps small businesses ship worldwide, dropship and fulfillment services that are friendly to start-ups and small businesses, Shopify dropshipping. SaleHoo [](https://www.salehoo.com/) Alibaba.com: Manufacturers, Suppliers, Exporters & Importers from the world's largest online B2B marketplace [](https://www.alibaba.com/) Find quality Manufacturers, Suppliers, Exporters, Importers, Buyers, Wholesalers, Products and Trade Leads from our award-winning International Trade Site. Import & Export on alibaba.com Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Best dropshipping supplier to the US [](https://www.usadrop.com/) THE ONLY AMERICAN-MADE FULFILLMENT CENTER IN CHINA. Our knowledge of the Worldwide dropshipping market and the Chinese Supply-Chain can't be beat! 阿里1688 [](https://www.1688.com/) 阿里巴巴(1688.com)是全球企业间(B2B)电子商务的著名品牌,为数千万网商提供海量商机信息和便捷安全的在线交易市场,也是商人们以商会友、真实互动的社区平台。目前1688.com已覆盖原材料、工业品、服装服饰、家居百货、小商品等12个行业大类,提供从原料--生产--加工--现货等一系列的供应产品和服务 Dropshipping Tools Oberlo | Where Self Made is Made [](https://www.oberlo.com/) Start selling online now with Shopify. All the videos, podcasts, ebooks, and dropshipping tools you'll need to build your online empire. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. SMSBump | SMS Marketing E-Commerce App for Shopify [](https://smsbump.com/) SMSBump is an SMS marketing & automation app for Shopify. Segment customers, recover orders, send campaign text messages with a 35%+ click through rate. AfterShip: The #1 Shipment Tracking Platform [](https://www.aftership.com/) Order status lookup, branded tracking page, and multi-carrier tracking API for eCommerce. Supports USPS, FedEx, UPS, and 900+ carriers worldwide. #1 Dropshipping App | Zendrop [](https://zendrop.com/) Start and scale your own dropshipping business with Zendrop. Sell and easily fulfill your orders with the fastest shipping in the industry. Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Video Editing Jitter • The simplest motion design tool on the web. [](https://jitter.video/) Animate your designs easily. Export your creations as videos or GIFs. All in your browser. DaVinci Resolve 18 | Blackmagic Design [](https://www.blackmagicdesign.com/products/davinciresolve) Professional video editing, color correction, visual effects and audio post production all in a single application. Free and paid versions for Mac, Windows and Linux. Online Video Editor | Video Creator | InVideo [](https://invideo.io/) InVideo's Online Video Editor Helps You Make Professional Videos From Premium Templates, Images, And Music. All your video needs in one place | Clipchamp [](https://clipchamp.com/) Fast-forward your creations with our video editing platform. Start with a video template or record your webcam or screen. Get the pro look with filters, transitions, text and more. Then, export in minutes and share in an instant. Descript | All-in-one audio/video editing, as easy as a doc. [](https://www.descript.com/) Record, transcribe, edit, mix, collaborate, and master your audio and video with Descript. Download for free →. Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. Panzoid [](https://panzoid.com/) Powerful, free online apps and community for creating beautiful custom content. Google Web Designer - Home [](https://webdesigner.withgoogle.com/) Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. ClipDrop [](https://clipdrop.co/) Create professional visuals without a photo studio CapCut [](https://www.capcut.com/) CapCut is an all-in-one online video editing software which makes creation, upload & share easier, with frame by frame track editor, cloud drive etc. VEED - Online Video Editor - Video Editing Made Simple [](https://www.veed.io/) Make stunning videos with a single click. Cut, trim, crop, add subtitles and more. Online, no account needed. Try it now, free. VEED Free Video Maker | Create & Edit Your Videos Easily - Animoto [](https://animoto.com/k/welcome) Create, edit, and share videos with our online video maker. Combine your photos, video clips, and music to make quality videos in minutes. Get started free! Runway - Online Video Editor | Everything you need to make content, fast. [](https://runwayml.com/) Discover advanced video editing capabilities to take your creations to the next level. CreatorKit - A.I. video creator for marketers [](https://creatorkit.com/) Create videos with just one click, using our A.I. video editor purpose built for marketers. Create scroll stopping videos, Instagram stories, Ads, Reels, and TikTok videos. Pixar in a Box | Computing | Khan Academy [](https://www.khanacademy.org/computing/pixar) 3D Video Motions Plask - AI Motion Capture and 3D Animation Tool [](https://plask.ai/) Plask is an all-in-one browser-based AI motion capture tool and animation editor that anybody can use, from motion designers to every day content creators. Captions Captions [](https://www.getcaptions.app/) Say hello to Captions, the only camera and editing app that automatically transcribes, captions and clips your talking videos for you. Stock videos Pexels [](https://www.pexels.com/) Pixabay [](https://pixabay.com/) Mixkit - Awesome free assets for your next video project [](https://mixkit.co/) Download Free Stock Video Footage, Stock Music & Premiere Pro Templates for your next video editing project. All assets can be downloaded for free! Free Stock Video Footage HD 4K Download Royalty-Free Clips [](https://www.videvo.net/) Download free stock video footage with over 300,000 video clips in 4K and HD. We also offer a wide selection of music and sound effect files with over 180,000 clips available. Click here to download royalty-free licensing videos, motion graphics, music and sound effects from Videvo today. Free Stock Video Footage HD Royalty-Free Videos Download [](https://mazwai.com/) Download free stock video footage with clips available in HD. Click here to download royalty-free licensing videos from Mazwai now. Royalty Free Stock Video Footage Clips | Vidsplay.com [](https://www.vidsplay.com/) Royalty Free Stock Video Footage Clips Free Stock Video Footage, Royalty Free Videos for Download [](https://coverr.co/) Download royalty free (for personal and commercial use), unique and beautiful video footage for your website or any project. No attribution required. Stock Photos Beautiful Free Images & Pictures | Unsplash [](https://unsplash.com/) Beautiful, free images and photos that you can download and use for any project. Better than any royalty free or stock photos. When we share, everyone wins - Creative Commons [](https://creativecommons.org/) Creative Commons licenses are 20! Honoring 20 years of open sharing using CC licenses, join us in 2022 to celebrate Better Sharing — advancing universal access to knowledge and culture, and fostering creativity, innovation, and collaboration. Help us reach our goal of raising $15 million for a future of Better Sharing.  20 Years of Better … Read More "When we share, everyone wins" Food Pictures • Foodiesfeed • Free Food Photos [](https://www.foodiesfeed.com/) Download 2000+ food pictures ⋆ The best free food photos for commercial use ⋆ CC0 license Free Stock Photos and Images for Websites & Commercial Use [](https://burst.shopify.com/) Browse thousands of beautiful copyright-free images. All our pictures are free to download for personal and commercial use, no attribution required. EyeEm | Authentic Stock Photography and Royalty-Free Images [](https://www.eyeem.com/) Explore high-quality, royalty-free stock photos for commercial use. License individual images or save money with our flexible subscription and image pack plans. picjumbo: Free Stock Photos [](https://picjumbo.com/) Free stock photos and images for your projects and websites.️ Beautiful 100% free high-resolution stock images with no watermark. Free Stock Photos, Images, and Vectors [](https://www.stockvault.net/) 139.738 free stock photos, textures, backgrounds and graphics for your next project. No attribution required. Free Stock Photos, PNGs, Templates & Mockups | rawpixel [](https://www.rawpixel.com/) Free images, PNGs, stickers, backgrounds, wallpapers, graphic templates and PSD mockups. All safe to use with commercial licenses. Free Commercial Stock Photos & Royalty Free Images | PikWizard [](https://pikwizard.com/) Free images, videos & free stock photos. Unlimited downloads ✓ Royalty-free Images ✓Copyright-free for commercial use ✓ No Attribution Required Design Bundles [](https://designbundles.net/) Stock music Royalty Free Music for video creators | Epidemic Sound [](https://www.epidemicsound.com/) Download premium Royalty free Music and SFX! Our free trial gives you access to over 35,000 tracks and 90,000 sound effects for video, streaming and more! Royalty-Free Music & SFX for Video Creators | Artlist [](https://artlist.io/) Explore the ultimate royalty-free music & sound effects catalogs for unlimited use in YouTube videos, social media & films created by inspiring indie artists worldwide. The go-to music licensing choice for all creators Royalty Free Audio Tracks - Envato Elements [](https://elements.envato.com/audio) Download Royalty Free Stock Audio Tracks for your next project from Envato Elements. Premium, High Quality handpicked Audio files ideal for any genre. License popular music for videos • Lickd [](https://lickd.co/) The only place you can license popular music for videos. Access 1M+ mainstream tracks, plus high-quality stock music for content creators NCS (NoCopyrightSounds) - free music for content creators [](https://ncs.io/) NCS is a Record Label dedicated to giving a platform to the next generation of Artists in electronic music, representing genres from house to dubstep via trap, drum & bass, electro pop and more. Search Engine Optimization Keyword Tool For Monthly Search Volume, CPC & Competition [](https://keywordseverywhere.com/) Keywords Everywhere is a browser add-on for Chrome & Firefox that shows search volume, CPC & competition on multiple websites. Semrush - Online Marketing Can Be Easy [](https://www.semrush.com/) Turn the algorithm into a friend. Make your business visible online with 55+ tools for SEO, PPC, content, social media, competitive research, and more. DuckDuckGo — Privacy, simplified. [](https://duckduckgo.com/) The Internet privacy company that empowers you to seamlessly take control of your personal information online, without any tradeoffs. SEO Software for 360° Analysis of Your Website [](https://seranking.com/) Leading SEO software for business owners, agencies, and SEO specialists. Track your rankings, monitor competitors, spot technical errors, and more. Skyrocket your organic traffic with Surfer [](https://surferseo.com/) Use Surfer to research, write, optimize, and audit! Everything you need to create a comprehensive content strategy that yields real results is right here. Ahrefs - SEO Tools & Resources To Grow Your Search Traffic [](https://ahrefs.com/) You don't have to be an SEO pro to rank higher and get more traffic. Join Ahrefs – we're a powerful but easy to learn SEO toolset with a passionate community. Neon Tools [](https://neontools.io/) Google Index Search [](https://lumpysoft.com/) Google Index Search SEO Backlink Checker & Link Building Toolset | Majestic.com [](https://majestic.com/) Develop backlink strategies with our Link Intelligence data, build the strongest SEO backlink campaigns to drive organic traffic and boost your rankings today. PageOptimizer Pro [](https://pageoptimizer.pro/) Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page Workshops With Kyle Roof POP Chrome Extension Guide Tutorial Videos Frequently Asked Questions Best Practices Login Cancel Anytime Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page… Keyword Chef - Keywords for Publishers [](https://keywordchef.com/) Rank Insanely Fast for Keywords Your Competition Can’t Find “Every long-tail keyword I find ends up ranking within a day” – Dane Eyerly, Owner at TextGoods.com Keyword Chef automatically finds and filters keywords for you. Real-time SERP analysis lets you find keywords nearly guaranteed to rank. Try for free → Let’s face it, most keyword tools ... Read more Notifier - Social Listening for Social Media and More! [](https://notifier.so/) Track keywords. Market your product for free. Drive the conversation. Easy. Free Trial. No obligation ever. Simple. Fast. Trusted by Top Companies. Free Keyword Research Tool from Wordtracker [](https://www.wordtracker.com/) The best FREE alternative to the Keyword Planner. Use Wordtracker to reveal 1000s of profitable longtail keywords with up to 10,000 results per search Blog Posts The 60 Hottest Front-end Tools of 2021 | CSS-Tricks - CSS-Tricks [](https://css-tricks.com/hottest-front-end-tools-in-2021/) A complete list of the most popular front-end tools in 2021, according to the Web Tools Weekly newsletter. See which resources made the list. Resume ResumeGlow - AI Powered Resume Builder [](https://resumeglow.com/) Get hired fast with a resume that grabs attention. Designed by a team of HR experts and typographers. Customizable templates with more than a million possible Create Your Job-winning Resume - (Free) Resume maker · Resume.io [](https://resume.io/) Free online resume maker, allows you to create a perfect Resume or Cover Letter in 5 minutes. See how easy it is to write a professional resume - apply for jobs today! Rezi - The Leading AI-Powered Free Resume Builder [](https://www.rezi.ai/) Rezi’s award-winning AI-powered resume builder is trusted by hundreds of thousands of job seekers. Create your perfect resume in minutes with Rezi. Create a Perfect Resume | Free Resume Builder | Resumaker.ai [](https://resumaker.ai/) Create your professional resume with this online resume maker. Choose a designer-made template and grab any employer attention in seconds. Trusted AI Resume Maker Helps You Get Hired Fast [](https://skillroads.com/) Reach a 96.4% success rate in the job hunt race with the best resume creator. Our innovative technologies and 24/7 support help you to become a perfect candidate for any job. Do not lose your chance to become the One. Kickresume | Best Online Resume & Cover Letter Builder [](https://www.kickresume.com/) Create your best resume yet. Online resume and cover letter builder used by 1,300,000 job seekers worldwide. Professional templates approved by recruiters. ResumeMaker.Online | Create a Professional Resume for Free [](https://www.resumemaker.online/) Save time with the easiest-to-use Resume Maker Online. Create an effective resume in just minutes and land your dream job. No Sign-up required, start now! Interviews Interview Warmup - Grow with Google [](https://grow.google/certificates/interview-warmup/) A quick way to prepare for your next interview. Practice key questions, get insights about your answers, and get more comfortable interviewing. No code website builder Carrd - Simple, free, fully responsive one-page sites for pretty much anything [](https://carrd.co/) A free platform for building simple, fully responsive one-page sites for pretty much anything. Webflow: Create a custom website | No-code website builder [](https://webflow.com/) Create professional, custom websites in a completely visual canvas with no code. Learn how to create a website by trying Webflow for free! Google Sites: Sign-in [](https://sites.google.com/) FlutterFlow - Build beautiful, modern apps incredibly fast! [](https://flutterflow.io/) FlutterFlow lets you build apps incredibly fast in your browser. Build fully functional apps with Firebase integration, API support, animations, and more. Export your code or even easier deploy directly to the app stores! Free Website Builder: Build a Free Website or Online Store | Weebly [](https://www.weebly.com/) Weebly’s free website builder makes it easy to create a website, blog, or online store. Find customizable templates, domains, and easy-to-use tools for any type of business website. Glide • No Code App Builder • Nocode Application Development [](https://www.glideapps.com/) Create the apps your business needs, without coding, waiting or overpaying. Get started for free and build an app today Adalo - Build Your Own No Code App [](https://www.adalo.com/) Adalo makes creating apps as easy as putting together a slide deck. Turn your idea into a real native app — no code needed! Siter.io - The collaborative web design tool, no-code website builder [](https://siter.io/) Siter.io is a visual website builder for designers. Prototype, design, and create responsive websites in the browser. Work together with your team in one place. Elementor: #1 Free WordPress Website Builder | Elementor.com [](https://elementor.com/) Elementor is the platform web creators choose to build professional WordPress websites, grow their skills, and build their business. Start for free today! No code app builder | Bravo Studio [](https://www.bravostudio.app/) Your no-code mobile app builder for iOS and Android. Create MVP’s, validate ideas and publish on App Store and Google Play Store. Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Free Website Builder | Create a Free Website | Wix.com [](https://www.wix.com/) Create a website with Wix’s robust website builder. With 900+ strategically designed templates and advanced SEO and marketing tools, build your brand online today. Free responsive Emails & Landing Pages drag-and-drop Editor | BEE [](https://beefree.io/) Free responsive emails and landing pages editor. With BEE drag-and-drop builders embedded in many software applications you can start designing now! Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Ownit Connected Checkout [](https://www.ownit.co/) Ownit Connected Checkout Bookmark.com | No-code Website Builder to Start Your Business [](https://www.bookmark.com/) Our AI powered platform ensures your business is future proof. Try Bookmark for free. The best way to build web apps without code | Bubble [](https://bubble.io/) Bubble introduces a new way to build software. It’s a no-code tool that lets you build SaaS platforms, marketplaces and CRMs without code. Bubble hosts all web apps on its cloud platform. Responsive Web Design | Website Creation | Editor X [](https://www.editorx.com/) Experience the future of website design with responsive layouts, CSS precision and smooth drag and drop. Create a Website for Free. Tilda Website Builder [](https://tilda.cc/) Create a website, online store, landing page with Tilda intuitive website builder. Build your site from hundreds of pre-designed templates and publish it today. No code required. No-code headless commerce and websites | Unstack Inc. [](https://www.unstack.com/) Deploy high performance eCommerce storefronts and websites without the engineering overhead using Unstack's no-code CMS Best Drag-and-Drop Website Builder | Jemi [](https://jemi.so/) The modern website builder for creatives, entrepreneurs, and dreamers. Build a beautiful link in bio site, portfolio, or landing page in minutes. No-code website builder that works like Notion [](https://popsy.co/) Create a beautiful no-code website in minutes. Popsy works just like Notion but is built from the ground up for building websites. Choose a free template. Edit content just like in Notion. Customize styles without code. Free Notion icons and illustrations. Unbounce - The Landing Page Builder & Platform [](https://unbounce.com/) Grow your relevance, leads, and sales with Unbounce. Use Unbounce to easily create and optimize landing pages for your small business and boost conversions with AI insights. Low-code Front-end Design & Development Platform | TeleportHQ [](https://teleporthq.io/) Front-end development platform, with a visual builder and headless content modelling capabilities. Static website creation, and UI development tools. Other tools used in no code website MemberSpace - Turn any part of your website into members-only with just a few clicks [](https://www.memberspace.com/) Create memberships on your website for anything you want like courses, video tutorials, member directories, and more while having 100% control over look & feel. Triggre | The number one true no-code platform to run your business [](https://www.triggre.com/) The best no-code platform to create highly advanced business applications in hours, without programming. Try it now for free! No code game builder Welcome to Buildbox [](https://signup.buildbox.com/) Welcome to Buildbox Flowlab Game Creator - Make games online [](https://flowlab.io/) Flowlab is an online game creator. Make your own games to share with friends. Make 2D Games With GameMaker | Free Video Game Maker [](https://gamemaker.io/) Make a game with GameMaker, the best free video game engine. Perfect for beginners and professionals. Learn to build your own 2D games with our simple tutorials. Side Hustle Side Hustle Stack [](https://sidehustlestack.co/) Side Hustle Stack is a resource for finding platform-based work, ranging from gig work and side hustles to platforms that help you start a small business that can grow. Fiverr [](https://www.fiverr.com/) Remotasks: Work From Home, Online Bootcamp Training [](https://www.remotasks.com/en) Make money doing tasks. Start earning today! Free bootcamp training offered online. Sign up for a free Remotasks account and work from home. Earn up to $200/month. Transcribe Speech to Text | Rev [](https://www.rev.com/) Transcribe Speech to Text with Rev. Reach your audience with clear and accurate captions, transcripts, and subtitles. AI Training Data and other Data Management Services [](https://www.clickworker.com/) AI training data, SEO texts, web research, tagging, surveys and more - Use the crowdsourcing principle with the power of >4.5M Clickworkers. Automate your Busy Work - Byron People-Powered Assistants [](https://www.hibyron.com/) Byron is an on demand US based virtual assistant platform that gives individuals and teams the ability to quickly outsource their non-essential tasks. Jobs Websites - Remote Latest Crypto Jobs, Web3 Jobs and Blockchain Jobs in the leading tech companies. [](https://cryptojobslist.com/) New Cryptocurrency Jobs, Web3 Jobs and Blockchain Jobs on CryptoJobsList — the leading site to find and post jobs. Connect with companies hiring in a few clicks and begin your next experience in the industry. Updated daily. Remote Jobs: Design, Marketing, Programming, Writing & More [](https://justremote.co/) Discover Remote Jobs from around the world. Give up the commute, work remotely and do what you love, daily, from anywhere. Find your perfect remote development, design, sales or marketing job today. Remote Ok [](https://remoteok.com/) Hire Freelancers & Remote Workers For Free [](https://talent.hubstaff.com/) Find and hire the highest quality freelancers from around the world - for free. Choose from thousands of developers, digital marketers, creatives and more. We Work Remotely: Remote jobs in design, programming, marketing and more [](https://weworkremotely.com/) Find the most qualified people in the most unexpected places: Hire remote! We Work Remotely is the best place to find and list remote jobs that aren't restricted by commutes or a particular geographic area. Browse thousands of remote work jobs today. Angel [](https://angel.co/) Remote Work: Jobs, Companies & Virtual Teams - Remote.co [](https://remote.co/) Remote.co is the definitive remote work job board for online job seekers and companies hiring. Start your remote job search here! FlexJobs: Best Remote Jobs, Work from Home Jobs, Online Jobs & More [](https://www.flexjobs.com/) The #1 job search site for hand-screened flexible and remote jobs (work from home jobs) since 2007. Plus get resume, coaching and career help. Join today! Remote jobs remotefront.io [](https://remotefront.io/) All remote jobs at remotefront.io Daily Virtual Events Helping You Grow Professionally [](https://powertofly.com/) PowerToFly is where you receive expert career advice, free video training, coaching and exclusive access to jobs and events at top companies. Best Remote and Work from Home Jobs - Virtual Vocations [](https://www.virtualvocations.com/) Best work from home jobs and remote jobs in over 50 categories for professionals, digital nomads, telecommuting workers and entry level jobseekers. Education, healthcare, medical, customer support and tech job openings. Remote Jobs | Working Nomads [](https://www.workingnomads.com/jobs) Remote jobs for digital working nomads. Start your telecommuting career and work remotely from home or places around the world. Job Search, Companies Hiring Near Me, and Advice | The Muse [](https://www.themuse.com/) Find jobs at the best companies hiring near you and get free career advice. Startupers [](https://www.startupers.com/) NoDesk - Where Everyone Works Remote [](https://nodesk.co/) Browse and apply to the best new remote jobs at leading remote companies and startups for free. Join hundreds of companies that use NoDesk to build their remote teams. Browser Extensions Blackbox - Select. Copy. Paste & Search - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/blackbox-select-copy-past/mcgbeeipkmelnpldkobichboakdfaeon) Fastest Way to Copy Text from Videos & Images Octotree - GitHub code tree - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/octotree-github-code-tree/bkhaagjahfmjljalopjnoealnfndnagc) GitHub on steroids WhatFont - Chrome Web Store [](https://chrome.google.com/webstore/detail/whatfont/jabopobgcpjmedljpbcaablpmlmfcogm?hl=en) The easiest way to identify fonts on web pages. Window Resizer - Chrome Web Store [](https://chrome.google.com/webstore/detail/window-resizer/kkelicaakdanhinjdeammmilcgefonfh?hl=en) Resize the browser window to emulate various screen resolutions. Amino: CSS Editor - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/amino-css-editor/pbcpfbcibpcbfbmddogfhcijfpboeaaf) Live CSS Editor. Write custom CSS for any website and see your changes in real time. Checkbot: SEO, Web Speed & Security Tester 🚀 - Chrome Web Store [](https://chrome.google.com/webstore/detail/checkbot-seo-web-speed-se/dagohlmlhagincbfilmkadjgmdnkjinl?hl=en) Test SEO/speed/security of 100s of pages in a click! Check broken links, HTML/JavaScript/CSS, URL redirects, duplicate titles... Honey: Automatic Coupons & Rewards - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/honey-automatic-coupons-r/bmnlcjabgnpnenekpadlanbbkooimhnj) Save money and earn rewards when you shop online. Tango: screenshots, training, & documentation - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/tango-screenshots-trainin/lggdbpblkekjjbobadliahffoaobaknh) Automatically create beautiful step-by-step guides with screenshots, in seconds. No code browser automation | axiom.ai [](https://axiom.ai/) Build browser bots quickly, without code. Automate website actions and repetitive tasks using just your browser, on any website or web app. No Code Browser extensions builder Bildr - Visual Web Development in your Browser [](https://www.bildr.com/) Visually build SaaS products, Chrome extensions, and web3 dApps Other Repurposing content for social media the easy way » Repurpose.io [](https://repurpose.io/) Repurposing content for social media made easy. Automatically repurpose YouTube, TikTok, Lives, Podcasts, and Zoom calls. Try it for FREE. Smart Serials: Your serial numbers database [](https://smartserials.com/) This is your main source of free serial numbers, unlock keys in a clean environment safe to browse by all ages. Old versions of Windows, Mac and Linux Software, Apps & Abandonware Games - Download at OldVersion.com [](http://www.oldversion.com/) Online Room Planner - Design Your Room [](http://www.planyourroom.com/) Planyourroom.com is a wonderful website to redesign each room in your house by picking out perfect furniture options to fit your unique space. BoredHumans.com - Fun AI Programs You Can Use Online [](https://boredhumans.com/) Fun AI programs you can use online. AI games, fake people, computer generated art, machine learning demos, and more. BNProject | Home [](https://buynothingproject.org/) Open Source Alternatives to Proprietary Software [](https://www.opensourcealternative.to/) Discover 400+ popular open source alternatives to proprietary SaaS. URL Shortener - Short URLs & Custom Free Link Shortener | Bitly [](https://bitly.com/) Bitly’s Connections Platform is more than a free URL shortener, with robust link management software, advanced QR Code features, and a Link-in-bio solution. TinEye Reverse Image Search [](https://tineye.com/) Good Books | Books recommended by successful people [](https://www.goodbooks.io/) Looking for the best books to read in 2022? Discover the best book recommendations from the world's most successful, influential and interesting people. Directory - Website Recommendations [](https://tokapps.com/directory/) 0 TRIED & TESTED WEBSITES LISTED Insanely Useful Websites A combination of useful websites for businesses, freelancers, DIYers, and individuals in a centralised area.All websites have been tried and tested. Filter Websites Audio Business Tools Copywriting Design Entertainment Graphics Guides Health Marketing PC Resources Savings SEO Software Travel Video Apply filter Watch Anime Online, Free Anime Streaming Online on Zoro.to Anime Website [](https://zoro.to/) Zoro is a Free anime streaming website which you can watch English Subbed and Dubbed Anime online with No Account and Daily update. WATCH NOW! Animated Drawings [](https://sketch.metademolab.com/) Bring children's drawings to life, by animating characters to move around! Alternativeto [](https://alternativeto.net/) Chatroulette [](https://chatroulette.com/) Random meetings around the world Tiktok Downloader - Download Video tiktok Without Watermark - SnapTik [](https://snaptik.app/en) TikTok Video Downloader - SnapTik.App is one of the best free Download video Tiktok No Watermark tool available online. You can download TikTok video from any device you have. Imgflip - Create and Share Awesome Images [](https://imgflip.com/) Flip through memes, gifs, and other funny images. Make your own images with our Meme Generator or Animated GIF Maker. Fake Text Message | Make Fake Text Conversation [](https://ifaketextmessage.com/) Fake Text Message is a tool to create a Fake Text Conversation and a Fake iMessage. ✂Templatemaker ︎ [](https://www.templatemaker.nl/en/) Omni Calculator [](https://www.omnicalculator.com/) Omni Calculator solves 2960 problems anywhere from finance and business to health. It’s so fast and easy you won’t want to do the math again! Watch Movies Online Free | Watch Series HD Free [](https://hdtoday.tv/) Free Access to the Biggest library of HD Movies and HD Series online - NO ADS - No Account Required - Fast Free Streaming Students Answers - The Most Trusted Place for Answering Life's Questions [](https://www.answers.com/) Answers is the place to go to get the answers you need and to ask the questions you want Wolfram|Alpha: Computational Intelligence [](https://www.wolframalpha.com/) Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, engineering, mathematics, linguistics, sports, finance, music… Online Math Tools - Simple, free and easy to use math utilities [](https://onlinemathtools.com/) World's simplest collection of useful mathematics utilities. Generate number sequences, draw fractals, do quick matrix and numerical calculations and more! edX | Free Online Courses by Harvard, MIT, & more | edX [](https://www.edx.org/) Access 2000 free online courses from 140 leading institutions worldwide. Gain new skills and earn a certificate of completion. Join today. Sci-Hub [](https://sci-hub.hkvisa.net/) Sci-Hub,mg.scihub.ltd,sci-hub.tw,The project is supported by user donations. Imagine the world with free access to knowledge for everyone ‐ a world without any paywalls. DigitalDefynd - Find the Best + Free Courses Online [](https://digitaldefynd.com/) 4 Million+ Learners | 96,000+ Courses | 45,000+ Free Courses | 1200+ Free Certificates Learn Anything [](https://learn-anything.xyz/) Search Interactive Mind Maps to learn anything HubSpot Academy - Homepage [](https://academy.hubspot.com/) HubSpot Academy is the worldwide leader in inbound marketing, sales, and customer service/support training.

How To Service Your First AI Automation Agency Client In 2024 (Make.com)
youtube
LLM Vibe Score0.368
Human Vibe Score0.48
Nick SaraevAug 13, 2024

How To Service Your First AI Automation Agency Client In 2024 (Make.com)

GET THE FREE GAMMA + TEMPLATES HERE 🙏 https://gamma.app/docs/How-to-Successfully-Service-Your-First-Automation-Client-in-2024-3xpyq1tyhppm1jv JOIN MY AUTOMATION COMMUNITY & GET YOUR FIRST CUSTOMER, GUARANTEED 👑 https://www.skool.com/makerschool/about SUMMARY ⤵️ Complete guide on servicing your first AI automation agency client in 2024. I run you through the workflow from end-to-end, including pre-project, kickoff, onboarding, progress updates, delivery emails, and upsells. WHAT TO WATCH NEXT 🍿 How I Hit $25K/Mo Selling Automation: https://youtube.com/watch?v=T7qAiuWDwLw My $21K/Mo Make.com Proposal System: https://youtube.com/watch?v=UVLeX600irk Generate Content Automatically With AI: https://youtube.com/watch?v=P2Y_DVW1TSQ MY SOFTWARE, TOOLS, & DEALS (some of these give me kickbacks—thank you!) 🚀 INSTANTLY: https://link.nicksaraev.com/instantly-short 📧 ANYMAIL FINDER: https://link.nicksaraev.com/amf-short 👻 PHANTOMBUSTER: https://link.nicksaraev.com/pb-short ✅ CLICKUP: https://link.nicksaraev.com/clickup-short 📈 RIZE: https://link.nicksaraev.com/rize-short (use promo code NICK for addn 25% off) WHAT TO WATCH NEXT 🍿 HOW I HIT $25K/MO SELLING AUTOMATION: https://youtube.com/watch?v=T7qAiuWDwLw MY $21K/MO MAKE.COM PROPOSAL SYSTEM: https://youtube.com/watch?v=UVLeX600irk GENERATE CONTENT AUTOMATICALLY WITH AI: https://youtube.com/watch?v=P2Y_DVW1TSQ FOLLOW ME ✍🏻 My content writing agency: https://1secondcopy.com 🦾 My automation agency: https://leftclick.ai 🕊️ My Twitter/X: https://twitter.com/nicksaraev 🤙 My blog (followed by the founder of HubSpot!): https://nicksaraev.com WHY ME? If this is your first watch—hi, I’m Nick! TLDR: I spent five years building automated businesses with Make.com (most notably 1SecondCopy, a content company that hit 7 figures). Today a lot of people talk about automation, but I’ve noticed that very few have practical, real world success making money with it. So this channel is me chiming in and showing you what real systems that make real revenue look like! Hopefully I can help you improve your business, and in doing so, the rest of your life :-) Please like, subscribe, and leave me a comment if you have a specific request! Thanks. Timestamps 0:00 Introduction to Servicing Your Automation Client 0:39 The Importance of Client Retention 2:03 Understanding Your Role as a Service Provider 2:54 The Significance of Client Acquisition Time 8:06 Setting Expectations with the Client 14:53 Implementing a Structured Onboarding Process 16:11 Testing the Flow of the Project 18:18 Delivering Progress Updates to Clients 19:13 Utilizing Templates for Project Efficiency 22:32 Utilizing Project Update and Delivery Templates 25:46 Enhancing Client Relationships with Delivery Templates 28:12 Importance of Service in Service Provider Role

AI Agents Explained: A Comprehensive Guide for Beginners
youtube
LLM Vibe Score0.383
Human Vibe Score0.68
AI Alfie Apr 29, 2024

AI Agents Explained: A Comprehensive Guide for Beginners

AI Agents Explained: A Comprehensive Guide for Beginners by Alfie Marsh Co-Founder & CEO of https://www.toolflow.ai/ (0:00) Introduction to AI Agents (0:23) What is an AI Agent? (0:49) How AI Agents Differ from Traditional Software (1:36) AI Agents vs Large Language Models (LLMs) (2:50) How AI Agents Work (3:16) Component 1: Planning (3:47) Component 2: Interacting with Tools (4:10) Component 3: Memory and External Knowledge (5:07) Component 4: Executing Actions (5:39) Risks and Future of AI Agents (6:30) Conclusion In this video, Alfie Marsh, Co-Founder & CEO of Toolflow.ai, unpacks the world of AI agents and explains how they are evolving to become an integral part of our lives. Discover what AI agents are, how they differ from traditional automations and other large language models (LLMs) like GPT, Claude, and Gemini, and explore real-world examples of AI agents in action. Learn about the key components that make up AI agents, including their ability to plan, interact with tools, store memory, access external knowledge, and execute actions autonomously. Alfie also discusses the potential risks and the future of AI agents as they become more sophisticated with advancements in language models like GPT-4 and beyond. Whether you're interested in building AI agents, understanding how they work, or exploring no-code solutions and tutorials, this video provides a comprehensive overview of AI agents and their growing importance in our lives and careers.

How I'd Learn AI in 2025 (if I could start over)
youtube
LLM Vibe Score0.406
Human Vibe Score0.92
Dave EbbelaarAug 4, 2023

How I'd Learn AI in 2025 (if I could start over)

Here's the roadmap that I would follow to learn artificial intelligence (AI). 📚 Get the FREE roadmap here ➡️ https://bit.ly/data-alchemy Already got tech skills and want to start as a freelancer? 🛠️ Let me show you how: https://www.datalumina.com/data-freelancer?utmsource=youtube&utmmedium=video&utmcampaign=youtubevideotraffic&utmcontent=How%20I%27d%20Learn%20AI%20in%202024%20%28if%20I%20could%20start%20over%29 ⏱️ Timestamps 00:00 Introduction 00:34 Why learn AI? 01:28 Code vs. Low/No-code approach 02:27 Misunderstandings about AI 03:27 Ask yourself this question 04:19 What makes this approach different 05:42 Step 1: Set up your environment 06:54 Step 2: Learn Python and key libraries 08:02 Step 3: Learn Git and GitHub Basics 08:35 Step 4: Work on projects and portfolio 13:12 Step 5: Specialize and share knowledge 14:31 Step 6: Continue to learn and upskill 15:39 Step 7: Monetize your skills 16:53: What is Data Alchemy? 🛠️ Explore ProjectPro https://bit.ly/3q837w8 👋🏻 About Me Hey there! I'm Dave, an AI Engineer and the founder of Datalumina, where our mission is to facilitate entrepreneurial and technological proficiency in professionals and businesses. Through my videos here on this channel, my posts on LinkedIn, and courses on Skool, I share practical strategies and tools to navigate the complexities of data, artificial intelligence, and entrepreneurship. ✔️ How I manage my business and dev projects https://try.web.clickup.com/datalumina 📥 Datalumina's Newsletter https://www.datalumina.com/newsletter #ai #roadmap #datalumina 📌 Video Description In this video, Dave shares a comprehensive and actionable roadmap for anyone looking to start their journey into the exciting world of artificial intelligence (AI) in 2024. Whether you're a complete beginner or someone looking to pivot your career towards AI, this video lays out a step-by-step guide that demystifies the process of learning AI from the ground up. Dave highlights the significance of AI in today's tech landscape and addresses common misconceptions that newcomers might have. With a focus on practical learning, the video emphasizes the importance of choosing between a code-centric or a low/no-code approach, making AI accessible to a broader audience. Dave's unique approach involves asking a critical question that shapes the learning path, ensuring that viewers embark on a journey tailored to their goals and interests. The roadmap detailed in the video covers essential steps such as setting up your learning environment, mastering Python and key libraries crucial for AI, understanding the basics of Git and GitHub, and the importance of working on projects to build a strong portfolio. Dave also talks about the importance of specialization and the continuous process of learning and upskilling in fields like generative AI, large language models, chatbots, and machine learning. Furthermore, Dave shares insights on how to monetize your AI skills, turning your passion into a profession. The video concludes with an introduction to Data Alchemy, a concept that encapsulates the transformative power of AI knowledge. For those eager to dive into the AI world, Dave offers a free roadmap accessible through the link provided in the video description. This invaluable resource serves as a compass for navigating the complexities of AI learning, making it an essential watch for anyone interested in artificial intelligence, machine learning, and related technologies.

Acquired our first 10 customer for Trustty Reporter - an AI first Business Intelligence Platform.
reddit
LLM Vibe Score0
Human Vibe Score1
Longjumping-Buddy501This week

Acquired our first 10 customer for Trustty Reporter - an AI first Business Intelligence Platform.

Hi All, My co founder and I have built Trustty Reporter (www.trusttyreporter.com).  We spent the last couple of months working on launch our AI powered BI platform and gain our first 10 users. We wanted to reach out the community to get your feedback on the platform and how we can take it to the next level. Below is a brief introduction of the platform: Trustty Reporter – your AI-first business intelligence partner that transforms data into actionable insights in minutes! Imagine turning complex data and documents into easy-to-understand reports with clear recommendations, all at the click of a button. No more BI complexities—Trustty Reporter makes business insights accessible to everyone, from business owners to CXOs. Here’s Why You’ll Love Trustty Reporter: Instant Insight Generation – Convert raw data into insights in just 5-15 minutes. No expertise needed! Easy Reporting Access – Persistent reports that let you track, compare, and build strategies over time. Tailored Solutions for Business Problems – Just describe your challenge, and Trustty Reporter delivers custom insights. Interactive Reports – Dive deeper with a chat interface that offers further clarification and recommendations. By now you would have realized that this aces any traditional BI tools. That aside, it’s better than the likes of ChatGPT and Claude since you don’t have to supply multiple prompts to get context specific insights catering to your business! File Requirements: For Excel files with multiple sheets/tabs: Please save each sheet as a separate file Upload them as individual files for processing File Format: The first row must contain your column headers Remove any empty rows above the headers https://preview.redd.it/olmk6lfmwuzd1.png?width=3024&format=png&auto=webp&s=aa2bbc8edb4a299dbeee67b692cd4acf1704c2be

From research paper to a tech startup - help!
reddit
LLM Vibe Score0
Human Vibe Score1
More_MousseThis week

From research paper to a tech startup - help!

Hi! I'm a CS master student that loves being creative. I’ve always wanted to start a business. I have gotten offers to join other startups when I took my bachelors, but personally I never believed in the startups, so I’ve always ended up politely declining on any startup offers. But my master thesis idea is very intriguing. However, I still feel very lost. I can’t even think of any good company names, or where I would even find enthusiastic co founders.  My master thesis as an AI startup with large potential. As of today, I have not started on the product itself. I will write a paper on the product, and finish the thesis in August 2026. My supervisor suggested that this is a good startup idea, and has a large market potential. I want to try. I’ve written about my goals, milestones, and some questions. Feel free to help me in any way, by answering my questions below. Goal:  Learn about startups and non-technical part of it (business, finance, sales, etc) (I'm clueless here) Build the business part time Try and fail Milestones Complete my paper on the product Create MVP for customers to test Validate idea and check market Find company name, acquire domain and launch SaaS  Get feedback, do networking and improve the product Join a Startup Lab and find Cofounders. The following roles would need to be filled  CEO (Me, Vision and tech expert) COO (Business strategy, operations, and scaling.),  CMO (marketing and sales responsible, working to acquire new business) CPO (Product design, user experience, and frontend development)  Formally create the company, divide shares, hold weekend work meeting, pick company name (again) Goal: create product for an industry (the product can be tailored to different industries) and get the first clients. Work that needs to be done: Tech: Create the product for the industry  COO: pitching competitions, define the sales pitch, and how to price the product CMO: find out how marketing should be done, and what companies to contact for demo CMO: design company logo, design web page for business usage, create front page of the website  Growth + Profits Questions Between now, and until I have the working demo, what should I do with my time? I have courses where I learn technical skills for the company. It does not make sense to create the website for the product, when I don't know how the user would interact with the product.  Should I start the company even before the product is made? (While I'm a student and working on the paper) How can I acquire non-technical skills for running a business? I prefer reading books. How can I learn about software companies (practical skills)? For example: How to lower hosting costs?  How to price a product for customers and a product for business? (Software contracts) How to guarantee  privacy when it comes to business documents?  I’m planning on searching for co-founders, after I have validated the idea myself. Should I instead find co founders before I have even created the product? (with no guarantee that there would even be a product?) Should I try to make the product without co-founders? (This is my first startup, so it might tank within the first few months) Any experience with starting a software business while working full time? Thank you for all the help!

I fell into the builder's trap and need help getting out
reddit
LLM Vibe Score0
Human Vibe Score1
stellarcitizenThis week

I fell into the builder's trap and need help getting out

Hi r/startups, First-time technical founder here. Two years ago, I decided to leave the 9-5 grind and build something meaningful. Now, I have (what I believe is) a brilliant technical solution but no clear business case. I’m seeking a cofounder with product and marketing expertise to help pivot my project into a viable business - or start a new one. Details below. About Me 36yo, born in Berlin and moved to San Francisco 8 years ago Master's in Software Engineering with 15 years of experience Worked with early-stage startups in Berlin and a venture studio in SF Spent the past years leading a team of 12 shipping enterprise software The tech I've built An AI engine that makes it easy for developers to automate their workflows. It works with code, issues, PRs and integrates with 3rd party systems like error trackers, wikis, ticketing systems, etc. It takes natural language instructions, fulfills them autonomously and responds with a result. The functionality is served as a platform, with an API and an SDK. On top of it, I've built a CLI and a web application with productivity tools for developers. Who and what I'm looking for My main goal is to leave my current job and build a company around a problem that matters to me, ideally with considerable equity. I’m looking for: A cofounder with product and marketing expertise who sees potential in my tech and can help turn it into a successful business—or someone with a strong business case who needs a technical founder. Mentorship from someone experienced in dev tool startups or as a successful solo founder. I’d love to learn from your journey and would be happy to offer my technical expertise or collaborate on projects in return. Happy to answer any questions or provide more details. Cheers!

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

Anyone finding that they just don't NEED to add more Employees anymore? (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score0.6
wilschroterThis week

Anyone finding that they just don't NEED to add more Employees anymore? (I will not promote)

A friend of mine who was looking for work asked me if we were hiring and I responded "You know, it's weird but all of our growth goals don't seem to map back to hiring people anymore." This isn't about the economy or growth goals. It's a really fascinating shift in focus and costs for startups. My gut reaction is that I HATE the idea of not creating more jobs. In my career I've hired thousands of people, and I've always prided myself on job creation. We just sold a company that employed 200 people last year, and I'm proud of the work we were able to create. What's interesting is that I simply don't feel like we NEED to like we used to. As we're looking at all of our growth goals, for the first time I'm not assigning FTEs to them. Nearly everything we're doing is actually reducing the need for more humans, not adding them - and we're not even trying to reduce the need. Obviously the timing of AI has had a major impact. Product - Our team is shipping more code than ever before, and even our designers who have never touched code are shipping final code. If we doubled the size of the team, it would make no difference (this is a big deal considering the historical cost here). Marketing - So many aspects of our marketing are getting automated and streamlined, to the point where even a single FTE can create a massive amount of reach across channels. Support - Our Success team is able to effectively respond to tickets in a fraction of the time, which essentially doubles their capacity without adding any more staff. Management - With less staff we need less managers, which are a big expense, but it also means reporting and decisions are more streamlined, which is a positive. But it also means those positions simply don't get created like they used to. I think this is a big deal for the younger startups because it translates into needing less capital (or none!) which provides for more ownership and agency. Clearly we still need some folks to build out the core team, but that's very different than a massive staffing line item. Anyone else here finding the same trend? Opposite? I don't have a strong opinion either way, but I'd love to hear how other Founders are processing this.

Zero To One [Book Review]
reddit
LLM Vibe Score0
Human Vibe Score0.5
AlmostARockstarThis week

Zero To One [Book Review]

If you don't feel like reading - check out the video here ##Introduction The more I read into Peter Thiel's background, the more ridiculous it seems.. He’s been involved in controversies over: Racism, Sexism, and, [Radical Right wing libertarianism.] (https://www.bloomberg.com/news/articles/2016-07-21/the-strange-politics-of-peter-thiel-trump-s-most-unlikely-supporter) He’s built a tech company that helps the NSA spy on the world. He supported Donald Trumps presidential campaign. He’s funding research on immortality And to top it off, he helped bankrupt online media company and blog network Gawker by funding Hulk Hogan’s sex tape lawsuit - after a report of his rumoured Homosexuality rattled his chain… Zero to One clearly reflects his unique attitude and doesn't pull any punches with a genuinely interesting point of view, that has clearly worked in the past, to the tune of almost 3 billion USD. But at times, his infatuation with the All American attitude is a little much…and, quite frankly, he’s not the kind of guy I could sit and have a pint with…without grinding my teeth anyway. The content is adapted from Blake Masters' lecture notes from Thiel's 2012 Stanford Course. This definitely helped keep the book concise and fast paced, at least compared to other books I’ve reviewed. The type of content is also quite varied, with a good spread from completely abstract theories — like the Technology vs. Globalisation concept, where the book get's it's title — to practical examples such as the analysis of personalities in chapter 14, "The Founders Paradox" covering Elvis Presley, Sean Parker, Lady Gaga and Bill Gates to name a few. ###Pros Monopolies To most people a monopoly is a negative thing. But while perfect competition can drive down costs and benefit the consumer - competition is bad for business. In fact, in Thiel's opinion, every startup should aim to be a monopoly or, as he puts it: Monopoly is the condition of every successful business. I like his honesty about it. While I’m not sure about the morality of encouraging monopolies at a large scale, I can see the benefit of thinking that way when developing a startup. When you're small, you can’t afford to compete. The best way to avoid competition is to build something nobody can compete with. The concept is summed up nicely at the end of chapter 3: Tolstoy opens Anna Karenina by observing: ‘All happy families are alike; each unhappy family is unhappy in its own way.’ Business is the opposite. All happy companies are different: each one earns a monopoly by solving a unique problem. All failed companies are the same: they failed to escape competition. Pareto The Pareto Law, which you might remember as the 80/20 rule in Tim Ferris’ The Four Hour Work Week, is often used synonymously with the power law of distribution, and shows up everywhere. Thiel refers to it in his section on The Power Law of Venture Capital. If Tim Ferris recommends identifying and removing the 20% of things that take 80% of your effort - Thiel recommends finding the 20% of investments that make 80% of your return. Anything else is a waste. Soberingly, he also suggests that the Pareto Law means: ...you should not necessarily start your own company, even if you are extraordinarily talented. But to me this seems more like a venture capitalists problem, than an entrepreneurs problem - Personally, I believe there’s far more benefit in starting up your own company that purely profit. ###Cons Man and machine? Content-wise, there is very little to dislike in this book. As long as you accept that the book is written specifically for startups - where anything short of exponential growth is considered a failure - it’s exceptionally on point. However, there are a couple sections dotted throughout the book where opinion and wild speculation began to creep in. Chapter 12 is a good example of this entitled: Man and Machine. It’s a short chapter, 12 pages in total, and Thiel essentially preaches and speculates about the impact of better technology and strong AI. I like to dog ear pages with interesting or useful content so I can come back later, but this entire chapter remains untouched. America, fuck yeah! It would be really difficult for a personality as pungent as Theil's to go entirely unnoticed in a book like this, and indeed it breaks through every now and then. I only had a feint idea of Thiel's personality before I read the book, but having read up on his background, I’m actually surprised the book achieves such a neutral, if pragmatic, tone. Pretty early on in the book however, we are introduced to Thiel's concept of Economic Optimism and quite frankly the whole of chapter 6 should have been printed on star spangled, red white and blue pages. I’m not necessarily against the egotistic American spirit but when Thiel writes, in relation to European Pessimism: the US treasury prints ‘in god we trust’ on the dollar; the ECB might as well print ‘kick the can down the road’ on the euro I can smell the bacon double cheese burgers, with those tiny little American flags from here. Ooh Rah! ###TL;DR (a.k.a: Conclusion) Overall, however, I really did enjoy this book and I can see myself coming back to it. Peter Thiel IS controversial, but he has also been undeniably successful with a career punctuated by bold business decisions. The ideas in the book reflect this mind set well. Yes, he backed Trump, be he also (sadly) backed the winner.

So, you want to be a CEO?
reddit
LLM Vibe Score0
Human Vibe Score1
avtgesThis week

So, you want to be a CEO?

I used to post here occasionally with business advice. But it turns out most of you in this sub have a dream, but seemingly no execution. You want to be rich sure, but without understanding what it takes to be a founder, run a startup, create a team around an idea and a strategy, and push them to their limits without burning them out, to win in a market that's never heard of you - not to mention the pressures on your personal life. So, I'm going to post a new game called, "So, You Want to Be A CEO?" The game: Each week I will post a reasonably complex challenge that a startup founder has to overcome, between inception of the company until it goes bust or series A. You respond with your best course of action - that is, what would you do in the situation provided? YOU DON’T HAVE TO DO THE WORK! The rules: One response per person Your upvotes are your score for the week I will track them in the OP Scores are calculated on the Friday of that week You must answer the prompt completely, if you don't you lose half your points earned that week. ChatGPT is allowed, but it may not provide sufficient advice to win the game Prompt 1: "Boomerang" You are an HR executive turned entrepreneur. You have identified a significant issue: professionals over the age of 55 are struggling to re-enter the workforce and you also believe corporations are missing out on a wealth of institutional knowledge in retirement. You believe you can help solve this problem by creating Boomerang, a platform dedicated to empowering these individuals and corporate partners by connecting them with the best candidates aged 55 and older. Objective: Your goal is to validate your concept, develop a Minimum Viable Product (MVP), and balance your personal responsibilities while laying the foundation for Boomerang’s success. This Week's Key Challenges and Decisions: Market Research Challenge 1: You need to validate the market need for Boomerang. This involves understanding the pain points of older job seekers and potential employers. This will take 4 days (non-sequential) How do you get started? Developing an MVP Challenge 2: With limited resources, you need to create an MVP that effectively demonstrates Boomerang’s value. This will take 2 days. Can be combined with other challenges. How do you get started? Dealing with Personal Health Issues Challenge 3: Your doctor mentioned your bloodwork is irregular, but can't pinpoint the cause. They recommend you see a specialist before Friday. This will take 1 day. Give it a shot! There's no right answer, just answer what your plan to do and try to optimize the use of your time to the best of your ability. EDIT: Scoreboard (I realize now the top post generally gets the most upvotes, so I may change the points system): u/conscious_border3019 - 22 u/inBoulderForSummer - 4 u/that_whey-or-the-lee - 3 u/AgencySaas - 3 u/Gold-Ad-8211 - 2 u/93024662 - 2 u/DeusExBam - 2 u/njm19920 - 2 u/SilentEconomist9265 - 2 u/ai_servant - 2 u/Background-Term2759 - 2 u/Insane_squirrel - 2 u/kiss_thechef - 2 u/codeyman2 - 2 u/Xentoxus - 2 u/LongComplex4395 - 2

Behind the scene : fundraising pre-seed of an AI startup
reddit
LLM Vibe Score0
Human Vibe Score1
Consistent-Wafer7325This week

Behind the scene : fundraising pre-seed of an AI startup

A bit of feedback from our journey at our AI startup. We started prototyping stuff around agentic AI last winter with very cool underlying tech research based on some academic papers (I can send you links if you're interested in LLM orchestration). I'm a serial entrepreneur with 2x exits, nothing went fancy but enough to keep going into the next topic. This time, running an AI project has been a bit different and unique due to the huge interest around the topic. Here are a few insights. Jan \~ Mar: Research Nothing was serious, just a side project with a friend on weekends (the guy became our lead SWE). Market was promising and we had the convinction that our tech can be game changer in computer systems workflows. March \~ April: Market Waking Up Devin published their pre-seed $20m fundraising led by Founders Fund; they paved the market with legitimacy. I decided to launch some coffee meetings with a few angels in my network. Interest confirmed. Back to work on some more serious early prototyping; hard work started here. April \~ May: YC S24 (Fail) Pumped up by our prospective angels and the market waking up on the agentic topic, I applied to YC as a solo founder (was still looking for funds and co-founders). Eventually got rejected (no co-founder and not US-based). May \~ July: VC Dance (Momentum 1) Almost randomly at the same time we got rejected from YC, I got introduced to key members of the VC community by one of our prospective angels. Interest went crazy... tons of calls. Brace yourself here, we probably met 30\~40 funds (+ angels). Got strong interests from 4\~5 of them (3 to 5 meetings each), ultimately closed 1 and some interests which might convert later in the next stage. The legend of AI being hype is true. Majority of our calls went only by word of mouth, lots of inbounds, people even not having the deck would book us a call in the next 48h after saying hi. Also lots of "tourists," just looking because of AI but with no strong opinion on the subject to move further. The hearsay about 90% rejection is true. You'll have a lot of nos, ending some days exhausted and unmotivated. End July: Closing, the Hard Part The VC roadshow is kind of an art you need to master. You need to keep momentum high enough and looking over-subscribed. Good pre-seed VC deals are over-competitive, and good funds only focus on them; they will have opportunities to catch up on lost chances at the seed stage later. We succeeded (arduously) to close our 18\~24mo budget with 1 VC, a few angels, and some state-guaranteed debt. Cash in bank just on time for payday in August (don't under-estimate time of processing) Now: Launching and Prepping the Seed Round We're now in our first weeks of go-to-market with a lot of uncertainty but a very ambitious plan ahead. The good part of having met TONS of VCs during the pre-seed roadshow is that we met probably our future lead investors in these. What would look like a loss of time in the initial pre-seed VC meetings has been finally very prolific, helping us to refine our strategy, assessing more in-depth the market (investors have a lot of insights, they meet a lot of people... that's their full-time job). We now have clear milestones and are heading to raise our seed round by end of year/Q1 if stars stay aligned :) Don't give up, the show must go on.

No revenue for 6 months, then signed $10k MRR in 2 weeks with a new strategy. Here’s what I changed.
reddit
LLM Vibe Score0
Human Vibe Score0.6
xoyourwifeThis week

No revenue for 6 months, then signed $10k MRR in 2 weeks with a new strategy. Here’s what I changed.

This is my first company so I made A LOT of mistakes when starting out. I'll explain everything I did that worked so you don't have to waste your time either. For context, I built a SaaS tool that helps companies scale their new client outreach 10x (at human quality with AI) so they can secure more sales meetings. Pricing I started out pricing it way too low (1/10 as much as competitors) so that it'd be easier to get customers in the beginning. This is a HUGE mistake and wasted me a bunch of time. First, this low pricing meant that I was unable to pay for the tools I needed to make sure my product could be great. I was forced to use low-quality databases, AI models, sending infrastructure -- you name it. Second, my customers were less invested in the product, and I received less input from them to make the product better. None ended up converting from my free trial because my product sucked, and I couldn't even get good feedback from them. I decided to price my product much higher, which allowed me to use best-in class tools to make my product actually work well. Outreach Approach The only issue is that it's a lot harder to get people to pay $500/month than $50/month. I watched every single video on the internet about cold email for getting B2B clients and built up an outbound MACHINE for sending thousands of emails a day. I tried all the top recommended sales email formats and tricks (intro, painpoint, testimonial, CTA, etc). Nothing. I could send 1k emails and get a few out of office responses and a handful of 'F off' responses. I felt bad and decided I couldn't just spam the entire world and expect to make any progress. I decided I needed to take a step back and learn from people who'd succeeded before in sales. I started manually emailing CEOs/founders that fit my customer profile with personal messages asking for feedback on my product -- not even trying to sell them anything. Suddenly I was getting 4-6 meetings a day and just trying to learn from them (turns out people love helping others). And without even prompting, many of them said 'hey, I actually could use this for my own sales' and asked how they could start trying it out. That week I signed 5 clients between $500-$4k/month (depending how many contacts they want to reach). I then taught my product to do outreach the same way I did that worked (include company signals, make sure the person is a great match with web research, and DONT TALK SALESY). Now, 6 of my first 10 clients (still figuring out who it works for, lol) have converted from the free trial and successfully used it to book sales meetings. I'm definitely still learning, but this one change in my sales approach changed everything for me, so I wanted to share. If anyone has any other tips/advice that changed their business's sales, would love to hear!

From “Green” to “Smart” – Tom Gorski’s Word of Advice
reddit
LLM Vibe Score0
Human Vibe Score1
DanielleHarrison1This week

From “Green” to “Smart” – Tom Gorski’s Word of Advice

Sharing this interview with entrepreneur Tom Gorski. I think it contains a few nice tips for beginner entrepreneurs. What is the problem with the term “Green?” what are the top 3 mistakes entrepreneurs make that can prevent them from enjoying the sweet taste of success? And what should young entrepreneurs always keep in mind? Continuing our expert interview series, we asked entrepreneur Tom Gorski to share some of his secrets to success with us. Gorski is the CEO and Co-Founder at SaaSGenius.com, and an Inbound Marketer & Growth Hacker at InboundWay.com. His career spans over 12 years of developing and implementing online marketing, SEO and conversion optimization campaigns. He defines his biggest accomplishment to date as “achieving 4500% growth for one of my clients over a three­year period.” logo-saasgenius Q: It’s no secret that the SaaS market is saturated, as new companies are having very hard time acquiring, retaining and monetizing users. In your view – what are the top 3 mistakes SaaS companies make? What are some key differentiators you recognize in a successful product? A: Mistake No. 1: Product-market fit is not good enough There are a number of reasons for this, including the fact that inertia, incumbency and bureaucracy are all working against you. For emerging companies, this means finding a way to be exponentially better with fewer resources. As a result, focus is key. Mistake No. 2: Not Specializing Your Sales Roles When you specialize your sales people, you allow them to focus, which creates greater output form your sales team. Mistake No. 3: You Need a Niche To be able to market and sell well, you need to have a niche. The world is noisy and messy, and you’ll struggle if you don’t have a sharp, direct message. When you try to speak to everyone, no one can hear you. Q: Which innovative trends do you recognize in the high tech world nowadays? A: “Green” was a mega trend of the last decade and while it will continue to be very important, there will be a shift towards “smart” solutions, which are intelligent, connected and have the ability to sense, report, and take the right action. Smart solutions will be everywhere around us from smart clothing, phones, to smart homes and smart cities. Q: What is the most significant advice you can give young entrepreneurs? A: Being very successful means learning from those who have already achieved success. Having a mentor is an amazing blessing to an entrepreneur, but not everyone can find one in person. My advice is to work smarter, not harder. This is the most non-intuitive observation I will probably make. If you want to compete in the arena, hard work isn’t enough. And judging yourself on how hard you work, rather than how smart you work can be fatal. Q: We are flooded with buzzwords lately – VR / AI / Bots… where do you think the software world is heading? A: AI and bots are a very hot topic in 2016 and it’s sometimes hard to distinguish the real potential behind the hype. My point of view is that, like with many things, there’s no revolution but evolution. It’s unrealistic to think that AI can become mainstream in SaaS products without proper AI infrastructure. SaaS delivery will significantly outpace traditional software product delivery, growing nearly five times faster than the traditional software market and will become a significant growth driver for all functional software markets. By 2019, the SaaS software model will account for $1 of every $4 spent on software. Q: Let us in on some of your secrets… where do you look for innovation? For inspiration and revolutionary ideas? A: Ideas for new startups often begin with a real problem that needs to be solved. And they don’t come while you’re sitting around sipping coffee and contemplating life. They tend to reveal themselves while you’re at work on something else. Start with brainstorming with problems that you are personally invested in. Building a business is hard and takes the kind of relentless dedication that comes from personal passion. Perhaps the greatest factor that determines whether or not an entrepreneur will be successful isn’t the business idea itself, but rather the entrepreneur’s willingness to try to turn the idea into reality. Great ideas are abundant, but it’s what we decide to do with them that counts. Original post: http://saasaddict.walkme.com/from-green-to-smart-tom-gorskis-words-of-advice/

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

Lessons from 139 YC AI startups (S23)
reddit
LLM Vibe Score0
Human Vibe Score0.333
minophenThis week

Lessons from 139 YC AI startups (S23)

YC's Demo Day was last week, and with it comes another deluge of AI companies. A record-breaking 139 startups were in some way related to AI or ML - up from 112 in the last batch. Here are 5 of my biggest takeaways: AI is (still) eating the world. It's remarkable how diverse the industries are - over two dozen verticals were represented, from materials science to social media to security. However, the top four categories were: AI Ops: Tooling and platforms to help companies deploy working AI models. We'll discuss more below, but AI Ops has become a huge category, primarily focused on LLMs and taming them for production use cases. Developer Tools: Apps, plugins, and SDKs making it easier to write code. There were plenty of examples of integrating third-party data, auto-generating code/tests, and working with agents/chatbots to build and debug code. Healthcare + Biotech: It seems like healthcare has a lot of room for automation, with companies working on note-taking, billing, training, and prescribing. And on the biotech side, there are some seriously cool companies building autonomous surgery robots and at-home cancer detection. Finance + Payments: Startups targeting banks, fintechs, and compliance departments. This was a wide range of companies, from automated collections to AI due diligence to "Copilot for bankers." Those four areas covered over half of the startups. The first two make sense: YC has always filtered for technical founders, and many are using AI to do what they know - improve the software developer workflow. But it's interesting to see healthcare and finance not far behind. Previously, I wrote: Large enterprises, healthcare, and government are not going to send sensitive data to OpenAI. This leaves a gap for startups to build on-premise, compliant \[LLMs\] for these verticals. And we're now seeing exactly that - LLMs focused on healthcare and finance and AI Ops companies targeting on-prem use cases. It also helps that one of the major selling points of generative AI right now is cost-cutting - an enticing use case for healthcare and finance. Copilots are king. In the last batch, a lot of startups positioned themselves as "ChatGPT for X," with a consumer focus. It seems the current trend, though, is "Copilot for X" - B2B AI assistants to help you do everything from KYC checks to corporate event planning to chip design to negotiate contracts. Nearly two dozen companies were working on some sort of artificial companion for businesses - and a couple for consumers. It's more evidence for the argument that AI will not outright replace workers - instead, existing workers will collaborate with AI to be more productive. And as AI becomes more mainstream, this trend of making specialized tools for specific industries or tasks will only grow. That being said - a Bing-style AI that lives in a sidebar and is only accessible via chat probably isn't the most useful form factor for AI. But until OpenAI, Microsoft, and Google change their approach (or until another company steps up), we'll probably see many more Copilots. AI Ops is becoming a key sector. "AI Ops" has been a term for only a few years. "LLM Ops" has existed for barely a year. And yet, so many companies are focused on training, fine-tuning, deploying, hosting, and post-processing LLMs it's quickly becoming a critical piece of the AI space. It's a vast industry that's sprung up seemingly overnight, and it was pretty interesting to see some of the problems being solved at the bleeding edge. For example: Adding context to language models with as few as ten samples. Pausing and moving training runs in real-time. Managing training data ownership and permissions. Faster vector databases. Fine-tuning models with synthetic data. But as much ~~hype~~ enthusiasm and opportunity as there might be, the size of the AI Ops space also shows how much work is needed to really productionalize LLMs and other models. There are still many open questions about reliability, privacy, observability, usability, and safety when it comes to using LLMs in the wild. Who owns the model? Does it matter? Nine months ago, anyone building an LLM company was doing one of three things: Training their own model from scratch. Fine-tuning a version of GPT-3. Building a wrapper around ChatGPT. Thanks to Meta, the open-source community, and the legions of competitors trying to catch up to OpenAI, there are now dozens of ways to integrate LLMs. However, I found it interesting how few B2B companies mentioned whether or not they trained their own model. If I had to guess, I'd say many are using ChatGPT or a fine-tuned version of Llama 2. But it raises an interesting question - if the AI provides value, does it matter if it's "just" ChatGPT behind the scenes? And once ChatGPT becomes fine-tuneable, when (if ever) will startups decide to ditch OpenAI and use their own model instead? "AI" isn't a silver bullet. At the end of the day, perhaps the biggest lesson is that "AI" isn't a magical cure-all - you still need to build a defensible company. At the beginning of the post-ChatGPT hype wave, it seemed like you just had to say "we're adding AI" to raise your next round or boost your stock price. But competition is extremely fierce. Even within this batch, there were multiple companies with nearly identical pitches, including: Solving customer support tickets. Negotiating sales contracts. Writing drafts of legal documents. Building no-code LLM workflows. On-prem LLM deployment. Automating trust and safety moderation. As it turns out, AI can be a competitive advantage, but it can't make up for a bad business. The most interesting (and likely valuable) companies are the ones that take boring industries and find non-obvious use cases for AI. In those cases, the key is having a team that can effectively distribute a product to users, with or without AI. Where we’re headed I'll be honest - 139 companies is a lot. In reviewing them all, there were points where it just felt completely overwhelming. But after taking a step back, seeing them all together paints an incredibly vivid picture of the current AI landscape: one that is diverse, rapidly evolving, and increasingly integrated into professional and personal tasks. These startups aren't just building AI for the sake of technology or academic research, but are trying to address real-world problems. Technology is always a double-edged sword - and some of the startups felt a little too dystopian for my taste - but I'm still hopeful about AI's ability to improve productivity and the human experience.

So, you want to be a CEO?
reddit
LLM Vibe Score0
Human Vibe Score1
avtgesThis week

So, you want to be a CEO?

I used to post here occasionally with business advice. But it turns out most of you in this sub have a dream, but seemingly no execution. You want to be rich sure, but without understanding what it takes to be a founder, run a startup, create a team around an idea and a strategy, and push them to their limits without burning them out, to win in a market that's never heard of you - not to mention the pressures on your personal life. So, I'm going to post a new game called, "So, You Want to Be A CEO?" The game: Each week I will post a reasonably complex challenge that a startup founder has to overcome, between inception of the company until it goes bust or series A. You respond with your best course of action - that is, what would you do in the situation provided? YOU DON’T HAVE TO DO THE WORK! The rules: One response per person Your upvotes are your score for the week I will track them in the OP Scores are calculated on the Friday of that week You must answer the prompt completely, if you don't you lose half your points earned that week. ChatGPT is allowed, but it may not provide sufficient advice to win the game Prompt 1: "Boomerang" You are an HR executive turned entrepreneur. You have identified a significant issue: professionals over the age of 55 are struggling to re-enter the workforce and you also believe corporations are missing out on a wealth of institutional knowledge in retirement. You believe you can help solve this problem by creating Boomerang, a platform dedicated to empowering these individuals and corporate partners by connecting them with the best candidates aged 55 and older. Objective: Your goal is to validate your concept, develop a Minimum Viable Product (MVP), and balance your personal responsibilities while laying the foundation for Boomerang’s success. This Week's Key Challenges and Decisions: Market Research Challenge 1: You need to validate the market need for Boomerang. This involves understanding the pain points of older job seekers and potential employers. This will take 4 days (non-sequential) How do you get started? Developing an MVP Challenge 2: With limited resources, you need to create an MVP that effectively demonstrates Boomerang’s value. This will take 2 days. Can be combined with other challenges. How do you get started? Dealing with Personal Health Issues Challenge 3: Your doctor mentioned your bloodwork is irregular, but can't pinpoint the cause. They recommend you see a specialist before Friday. This will take 1 day. Give it a shot! There's no right answer, just answer what your plan to do and try to optimize the use of your time to the best of your ability. EDIT: Scoreboard (I realize now the top post generally gets the most upvotes, so I may change the points system): u/conscious_border3019 - 22 u/inBoulderForSummer - 4 u/that_whey-or-the-lee - 3 u/AgencySaas - 3 u/Gold-Ad-8211 - 2 u/93024662 - 2 u/DeusExBam - 2 u/njm19920 - 2 u/SilentEconomist9265 - 2 u/ai_servant - 2 u/Background-Term2759 - 2 u/Insane_squirrel - 2 u/kiss_thechef - 2 u/codeyman2 - 2 u/Xentoxus - 2 u/LongComplex4395 - 2

16 years old and thinking about creating a startup
reddit
LLM Vibe Score0
Human Vibe Score1
NCS001This week

16 years old and thinking about creating a startup

Hi to everyone, this is my first post on Reddit and r/Startups. Sorry in advance if there is any mistake. I'm 16 years old, and I'm already planning to create my startup. Growing up in the digital age has given me both inspiration and doubts. On one side, you hear advice like, “You need connections with powerful people to succeed.” On the other, there are stories of founders coming from poverty and now leading billion-dollar companies.That really sucks. I'm here because I believe this community offers honest and grounded insights. So you can analyze, I leave you my goals. I accept all the advice you have. I’ll finish high school in two years while using my free time to learn about AI, programming, agile methods, and business basics. After that, I plan to pursue a Systems Engineering degree, even though I’ve debated skipping university. My older siblings convinced me it’s worth it for the professional and technical foundation. During college, I aim to freelance, save money, and build connections with entrepreneurs and developers. Beyond that, my 15-year plan includes working in tech companies to gain experience, creating an MVP for my startup, and securing funding through investors or incubators. I want to solve real-world problems using tools that feel future-proof. While I sometimes feel behind, I’m determined to catch up and take advantage of the opportunities ahead. I know the startup journey is uncertain—like a vulnerable animal facing competition, funding issues, and market challenges. But I’m ready to adapt as my vision evolves. Like for example the time. Obviously I would like to keep it exactly but you never know what can happen along the way. I’d love to hear your thoughts or advice. Thanks in advance, and I apologize if anything is unclear

Why raise in 2025? - I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
Able_Swimming_4909This week

Why raise in 2025? - I will not promote

I will not promote Lately, I've been thinking about how AI tools are completely reshaping what it means to bootstrap a startup. It honestly feels like we're living through a golden age for entrepreneurs where you don't necessarily need venture capital to build something big or meaningful. At my company, we're a small team of just four people, bootstrapping our AI-focused startup. Thanks to AI-powered tools, we're able to keep our burn rate ridiculously low, quickly test new ideas, and scale our operations way faster than we ever expected. It’s honestly pretty incredible how accessible advanced technology has become, even compared to just a few years ago. Of course, bootstrapping definitely comes with its own share of headaches. For example, we've noticed that funded startups get significantly better access to cloud credits, advertising budgets, and enterprise-level tools. We do have access to some discounts and free resources, but it rarely compares to what funded startups enjoy. This can feel frustrating, especially when you know you're competing directly with businesses that have those extra advantages. Visibility is another major challenge we've noticed. Without big funding announcements or a well-connected investor backing us, getting attention from media or even early adopters can be tough. It's just harder to make a splash without someone else's endorsement. We've had to accept and work around creatively. That said, there's something genuinely empowering about staying bootstrapped, prioritizing profitability, and maintaining control over our vision. After speaking with several investors, we've become aware of how investors can significantly influence or even redirect the trajectory of a business. We've heard stories where investors gained enough leverage to replace the original founders or have killed perfectly profitable businesses that were not growing "fast enough", which certainly gave us pause. They can definitely be helpful but giving the control over the future of my business to someone else would definitely make me feel anxious. At this time, we simply don't feel raising external capital aligns with our current goals, but we're also aware that this could change in the future. For now, maintaining autonomy and staying close to our original vision remains a priority. I'm curious to hear from others here who've been through this. Have you successfully bootstrapped an AI a tech business? What obstacles did you encounter, and how did you overcome them? EDIT: To give you a bit of perspective, my company is a B2B SaaS in the finance industry based in Europe. We have received VC funding in the past but it was an exceptionally good deal and we don't plan to raise in the near future even-thought it may change if we see the need to help us scale. We have also raised a significant amount in soft funding. Right now, we are growing on our revenues, and we plan to continue this trajectory. Recently, one of our developers left, and although we are a small team, we noticed that it had little to no impact on our productivity.

Behind the scene : fundraising pre-seed of an AI startup
reddit
LLM Vibe Score0
Human Vibe Score1
Consistent-Wafer7325This week

Behind the scene : fundraising pre-seed of an AI startup

A bit of feedback from our journey at our AI startup. We started prototyping stuff around agentic AI last winter with very cool underlying tech research based on some academic papers (I can send you links if you're interested in LLM orchestration). I'm a serial entrepreneur with 2x exits, nothing went fancy but enough to keep going into the next topic. This time, running an AI project has been a bit different and unique due to the huge interest around the topic. Here are a few insights. Jan \~ Mar: Research Nothing was serious, just a side project with a friend on weekends (the guy became our lead SWE). Market was promising and we had the convinction that our tech can be game changer in computer systems workflows. March \~ April: Market Waking Up Devin published their pre-seed $20m fundraising led by Founders Fund; they paved the market with legitimacy. I decided to launch some coffee meetings with a few angels in my network. Interest confirmed. Back to work on some more serious early prototyping; hard work started here. April \~ May: YC S24 (Fail) Pumped up by our prospective angels and the market waking up on the agentic topic, I applied to YC as a solo founder (was still looking for funds and co-founders). Eventually got rejected (no co-founder and not US-based). May \~ July: VC Dance (Momentum 1) Almost randomly at the same time we got rejected from YC, I got introduced to key members of the VC community by one of our prospective angels. Interest went crazy... tons of calls. Brace yourself here, we probably met 30\~40 funds (+ angels). Got strong interests from 4\~5 of them (3 to 5 meetings each), ultimately closed 1 and some interests which might convert later in the next stage. The legend of AI being hype is true. Majority of our calls went only by word of mouth, lots of inbounds, people even not having the deck would book us a call in the next 48h after saying hi. Also lots of "tourists," just looking because of AI but with no strong opinion on the subject to move further. The hearsay about 90% rejection is true. You'll have a lot of nos, ending some days exhausted and unmotivated. End July: Closing, the Hard Part The VC roadshow is kind of an art you need to master. You need to keep momentum high enough and looking over-subscribed. Good pre-seed VC deals are over-competitive, and good funds only focus on them; they will have opportunities to catch up on lost chances at the seed stage later. We succeeded (arduously) to close our 18\~24mo budget with 1 VC, a few angels, and some state-guaranteed debt. Cash in bank just on time for payday in August (don't under-estimate time of processing) Now: Launching and Prepping the Seed Round We're now in our first weeks of go-to-market with a lot of uncertainty but a very ambitious plan ahead. The good part of having met TONS of VCs during the pre-seed roadshow is that we met probably our future lead investors in these. What would look like a loss of time in the initial pre-seed VC meetings has been finally very prolific, helping us to refine our strategy, assessing more in-depth the market (investors have a lot of insights, they meet a lot of people... that's their full-time job). We now have clear milestones and are heading to raise our seed round by end of year/Q1 if stars stay aligned :) Don't give up, the show must go on.

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

10y of product development, 2 bankruptcies, and 1 Exit — what next? [Extended Story]
reddit
LLM Vibe Score0
Human Vibe Score1
Slight-Explanation29This week

10y of product development, 2 bankruptcies, and 1 Exit — what next? [Extended Story]

10 years of obsessive pursuit from the bottom to impressive product-market fit and exit. Bootstrapping tech products as Software Developer and 3x Startup Founder (2 bankruptcies and 1 exit). Hi everyone, your motivation has inspired me to delve deeper into my story. So, as promised to some of you, I've expanded on it a bit more, along with my brief reflections. There are many founders, product creators, and proactive individuals, I’ve read many of your crazy stories and lessons so I decided to share mine and the lessons I learned from the bottom to impressive product-market fit and exit. I've spent almost the past 10 years building tech products as a Corporate Team Leader, Senior Software Developer, Online Course Creator, Programming Tutor, Head of Development/CTO, and 3x Startup Founder (2 bankruptcies, and 1 exit). And what next? good question... A brief summary of my journey: Chapter 1: Software Developer / Team Leader / Senior Software Developer I’ve always wanted to create products that win over users’ hearts, carry value, and influence users. Ever since my school days, I’ve loved the tech part of building digital products. At the beginning of school, I started hosting servers for games, blogs and internet forums, and other things that did not require much programming knowledge. My classmates and later even over 100 people played on servers that I hosted on my home PC. Later, as the only person in school, I passed the final exam in computer science. During my computer science studies, I started my first job as a software developer. It was crazy, I was spending 200–300 hours a month in the office attending also to daily classes. Yes, I didn’t have a life, but it truly was the fulfillment of my dreams. I was able to earn good money doing what I love, and I devoted fully myself to it. My key to effectively studying IT and growing my knowledge at rocket speed was learning day by day reading guides, building products to the portfolio, watching youtube channels and attending conferences, and even watching them online, even if I didn’t understand everything at the beginning. In one year we’ve been to every possible event within 400km. We were building healthcare products that were actually used in hospitals and medical facilities. It was a beautiful adventure and tons of knowledge I took from this place. That time I built my first product teams, hired many great people, and over the years became a senior developer and team leader. Even I convinced my study mates to apply to this company and we studied together and worked as well. Finally, there were 4 of us, when I left a friend of mine took over my position and still works there. If you’re reading this, I’m sending you a flood of love and appreciation. I joined as the 8th person, and after around 4 years, when I left hungry for change, there were already over 30 of us, now around 100. It was a good time, greetings to everyone. I finished my Master’s and Engineering degrees in Computer Science, and it was time for changes. Chapter 2: 1st time as a Co-founder — Marketplace In the meantime, there was also my first startup (a marketplace) with four of my friends. We all worked on the product, each of us spent thousands of hours, after hours, entire weekends… and I think finally over a year of work. As you might guess, we lacked the most important things: sales, marketing, and product-market fit. We thought users think like us. We all also worked commercially, so the work went very smoothly, but we didn’t know what we should do next with it… Finally, we didn’t have any customers, but you know what, I don’t regret it, a lot of learning things which I used many times later. The first attempts at validating the idea with the market and business activities. In the end, the product was Airbnb-sized. Landing pages, listings, user panels, customer panels, admin site, notifications, caches, queues, load balancing, and much more. We wanted to publish the fully ready product to the market. It was a marketplace, so if you can guess, we had to attract both sides to be valuable. “Marketplace” — You can imagine something like Uber, if you don’t have passengers it was difficult to convince taxi drivers, if you don’t have a large number of taxi drivers you cannot attract passengers. After a year of development, we were overloaded, and without business, marketing, sales knowledge, and budget. Chapter 3: Corp Team Lead / Programming Tutor / Programming Architecture Workshop Leader Working in a corporation, a totally different environment, an international fintech, another learning experience, large products, and workmates who were waiting for 5 pm to finish — it wasn’t for me. Very slow product development, huge hierarchy, being an ant at the bottom, and low impact on the final product. At that time I understood that being a software developer is not anything special and I compared my work to factory worker. Sorry for that. High rates have been pumped only by high demand. Friends of mine from another industry do more difficult things and have a bigger responsibility for lower rates. That’s how the market works. This lower responsibility time allowed for building the first online course after hours, my own course platform, individual teaching newbies programming, and my first huge success — my first B2C customers, and B2B clients for workshops. I pivoted to full focus on sales, marketing, funnels, advertisements, demand, understanding the market, etc. It was 10x easier than startups but allowed me to learn and validate my conceptions and ideas on an easier market and showed me that it’s much easier to locate their problem/need/want and create a service/product that responds to it than to convince people of your innovative ideas. It’s just supply and demand, such a simple and basic statement, in reality, is very deep and difficult to understand without personal experience. If you’re inexperienced and you think you understand, you don’t. To this day, I love to analyze this catchword in relation to various industries / services / products and rediscover it again and again... While writing this sentence, I’m wondering if I’m not obsessed. Chapter 4: Next try — 2nd time as a founder — Edtech Drawing upon my experiences in selling services, offering trainings, and teaching programming, I wanted to broaden my horizons, delve into various fields of knowledge, involve more teachers, and so on. We started with simple services in different fields of knowledge, mainly relying on teaching in the local area (without online lessons). As I had already gathered some knowledge and experience in marketing and sales, things were going well and were moving in the right direction. The number of teachers in various fields was growing, as was the number of students. I don’t remember the exact statistics anymore, but it was another significant achievement that brought me a lot of satisfaction and new experiences. As you know, I’m a technology lover and couldn’t bear to look at manual processes — I wanted to automate everything: lessons, payments, invoices, customer service, etc. That’s when I hired our first developers (if you’re reading this, I’m sending you a flood of love — we spent a lot of time together and I remember it as a very fruitful and great year) and we began the process of tool and automation development. After a year we had really extended tools for students, teachers, franchise owners, etc. We had really big goals, we wanted to climb higher and higher. Maybe I wouldn’t even fully call it Startup, as the client was paying for the lessons, not for the software. But it gave us positive income, bootstrap financing, and tool development for services provided. Scaling this model was not as costless as SaaS because customer satisfaction was mainly on the side of the teacher, not the quality of the product (software). Finally, we grew to nearly 10 people and dozens of teachers, with zero external funding, and almost $50k monthly revenue. We worked very hard, day and night, and by November 2019, we were packed with clients to the brim. And as you know, that’s when the pandemic hit. It turned everything upside down by 180 degrees. Probably no one was ready for it. With a drastic drop in revenues, society started to save. Tired from the previous months, we had to work even harder. We had to reduce the team, change the model, and save what we had built. We stopped the tool’s development and sales, and with the developers, we started supporting other product teams to not fire them in difficult times. The tool worked passively for the next two years, reducing incomes month by month. With a smaller team providing programming services, we had full stability and earned more than relying only on educational services. At the peak of the pandemic, I promised myself that it was the last digital product I built… Never say never… Chapter 5: Time for fintech — Senior Software Developer / Team Lead / Head of Development I worked for small startups and companies. Building products from scratch, having a significant impact on the product, and complete fulfillment. Thousands of hours and sacrifices. This article mainly talks about startups that I built, so I don’t want to list all the companies, products, and applications that I supported as a technology consultant. These were mainly start-ups with a couple of people up to around 100 people on board. Some of the products were just a rescue mission, others were building an entire tech team. I was fully involved in all of them with the hope that we would work together for a long time, but I wasn’t the only one who made mistakes when looking for a product-market fit. One thing I fully understood: You can’t spend 8–15 hours a day writing code, managing a tech team, and still be able to help build an audience. In marketing and sales, you need to be rested and very creative to bring results and achieve further results and goals. If you have too many responsibilities related to technology, it becomes ineffective. I noticed that when I have more free time, more time to think, and more time to bounce the ball against the wall, I come up with really working marketing/sales strategies and solutions. It’s impossible when you are focused on code all day. You must know that this chapter of my life was long and has continued until now. Chapter 6: 3rd time as a founder — sold Never say never… right?\\ It was a time when the crypto market was really high and it was really trending topic. You know that I love technology right? So I cannot miss the blockchain world. I had experience in blockchain topics by learning on my own and from startups where I worked before. I was involved in crypto communities and I noticed a “starving crowd”. People who did things manually and earned money(crypto) on it.I found potential for building a small product that solves a technological problem. I said a few years before that I don’t want to start from scratch. I decided to share my observations and possibilities with my good friend. He said, “If you gonna built it, I’m in”. I couldn’t stop thinking about it. I had thought and planned every aspect of marketing and sales. And you know what. On this huge mindmap “product” was only one block. 90% of the mindmap was focused on marketing and sales. Now, writing this article, I understood what path I went from my first startup to this one. In the first (described earlier) 90% was the product, but in the last one 90% was sales and marketing. Many years later, I did this approach automatically. What has changed in my head over the years and so many mistakes? At that time, the company for which I provided services was acquired. The next day I got a thank you for my hard work and all my accounts were blocked. Life… I was shocked. We were simply replaced by their trusted technology managers. They wanted to get full control. They acted a bit unkindly, but I knew that they had all my knowledge about the product in the documentation, because I’m used to drawing everything so that in the moment of my weakness (illness, whatever) the team could handle it. That’s what solid leaders do, right? After a time, I know that these are normal procedures in financial companies, the point is that under the influence of emotions, do not do anything inappropriate. I quickly forgot about it, that I was brutally fired. All that mattered was to bring my plan to life. And it has been started, 15–20 hours a day every day. You have to believe me, getting back into the game was incredibly satisfying for me. I didn’t even know that I would be so excited. Then we also noticed that someone was starting to think about the same product as me. So the race began a game against time and the market. I assume that if you have reached this point, you are interested in product-market fit, marketing, and sales, so let me explain my assumptions to you: Product: A very very small tool that allowed you to automate proper tracking and creation of on-chain transactions. Literally, the whole app for the user was located on only three subpages. Starving Crowd: We tapped into an underserved market. The crypto market primarily operates via communities on platforms like Discord, Reddit, Twitter, Telegram, and so on. Therefore, our main strategy was directly communicating with users and demonstrating our tool. This was essentially “free marketing” (excluding the time we invested), as we did not need to invest in ads, promotional materials, or convince people about the efficacy of our tool. The community could directly observe on-chain transactions executed by our algorithms, which were processed at an exceptionally fast rate. This was something they couldn’t accomplish manually, so whenever someone conducted transactions using our algorithm, it was immediately noticeable and stirred a curiosity within the community (how did they do that!). Tests: I conducted the initial tests of the application on myself — we had already invested significantly in developing the product, but I preferred risking my own resources over that of the users. I provided the tool access to my wallet, containing 0.3ETH, and went to sleep. Upon waking up, I discovered that the transactions were successful and my wallet had grown to 0.99ETH. My excitement knew no bounds, it felt like a windfall. But, of course, there was a fair chance I could have lost it too. It worked. As we progressed, some users achieved higher results, but it largely hinged on the parameters set by them. As you can surmise, the strategy was simple — buy low, sell high. There was considerable risk involved. Churn: For those versed in marketing, the significance of repeat visitors cannot be overstated. Access to our tool was granted only after email verification and a special technique that I’d prefer to keep confidential. And this was all provided for free. While we had zero followers on social media, we saw an explosion in our email subscriber base and amassed a substantial number of users and advocates. Revenue Generation: Our product quickly gained popularity as we were effectively helping users earn — an undeniable value proposition. Now, it was time to capitalize on our efforts. We introduced a subscription model charging $300 per week or $1,000 per month — seemingly high rates, but the demand was so intense that it wasn’t an issue. Being a subscriber meant you were prioritized in the queue, ensuring you were among the first to reap benefits — thus adding more “value”. Marketing: The quality of our product and its ability to continually engage users contributed to it achieving what can best be described as viral. It was both a source of pride and astonishment to witness users sharing charts and analyses derived from our tool in forum discussions. They weren’t actively promoting our product but rather using screenshots from our application to illustrate certain aspects of the crypto world. By that stage, we had already assembled a team to assist with marketing, and programming, and to provide round-the-clock helpdesk support. Unforgettable Time: Despite the hype, my focus remained steadfast on monitoring our servers, their capacity, and speed. Considering we had only been on the market for a few weeks, we were yet to implement alerts, server scaling, etc. Our active user base spanned from Japan to the West Coast of the United States. Primarily, our application was used daily during the evenings, but considering the variety of time zones, the only time I could afford to sleep was during the evening hours in Far Eastern Europe, where we had the least users. However, someone always needed to be on guard, and as such, my phone was constantly by my side. After all, we couldn’t afford to let our users down. We found ourselves working 20 hours a day, catering to thousands of users, enduring physical fatigue, engaging in talks with VCs, and participating in conferences. Sudden Downturn: Our pinnacle was abruptly interrupted by the war in Ukraine (next macroeconomic shot straight in the face, lucky guy), a precipitous drop in cryptocurrency value, and swiftly emerging competition. By this time, there were 5–8 comparable tools had infiltrated the market. It was a challenging period as we continually stumbled upon new rivals. They immediately embarked on swift fundraising endeavors — a strategy we overlooked, which in retrospect was a mistake. Although our product was superior, the competitors’ rapid advancement and our insufficient funds for expeditious scaling posed significant challenges. Nonetheless, we made a good decision. We sold the product (exit) to competitors. The revenue from “exit” compensated for all the losses, leaving us with enough rest. We were a small team without substantial budgets for rapid development, and the risk of forming new teams without money to survive for more than 1–2 months was irresponsible. You have to believe me that this decision consumed us sleepless nights. Finally, we sold it. They turned off our app but took algorithms and users. Whether you believe it or not, after several months of toiling day and night, experiencing burnout, growing weary of the topic, and gaining an extra 15 kg in weight, we finally found our freedom… The exit wasn’t incredibly profitable, but we knew they had outdone us. The exit covered all our expenses and granted us a well-deserved rest for the subsequent quarter. It was an insane ride. Despite the uncertainty, stress, struggles, and sleepless nights, the story and experience will remain etched in my memory for the rest of my life. Swift Takeaways: Comprehending User Needs: Do you fully understand the product-market fit? Is your offering just an accessory or does it truly satisfy the user’s needs? The Power of Viral Marketing: Take inspiration from giants like Snapchat, ChatGPT, and Clubhouse. While your product might not attain the same scale (but remember, never say never…), the closer your concept is to theirs, the easier your journey will be. If your user is motivated to text a friend saying, “Hey, check out how cool this is” (like sharing ChatGPT), then you’re on the best track. Really. Even if it doesn’t seem immediately evident, there could be a way to incorporate this into your product. Keep looking until you find it. Niche targeting — the more specific and tailored your product is to a certain audience, the easier your journey will be People love buying from people — establishing a personal brand and associating yourself with the product can make things easier. Value: Seek to understand why users engage with your product and keep returning. The more specific and critical the issue you’re aiming to solve, the easier your path will be. Consider your offerings in terms of products and services and focus on sales and marketing, regardless of personal sentiments. These are just a few points, I plan to elaborate on all of them in a separate article. Many products undergo years of development in search of market fit, refining the user experience, and more. And guess what? There’s absolutely nothing wrong with that. Each product and market follows its own rules. Many startups have extensive histories before they finally make their mark (for instance, OpenAI). This entire journey spanned maybe 6–8 months. I grasped and capitalized on the opportunity, but we understood from the start that establishing a startup carried a significant risk, and our crypto product was 10 times riskier. Was it worth it? Given my passion for product development — absolutely. Was it profitable? — No, considering the hours spent — we lose. Did it provide a stable, problem-free life — nope. Did this entire adventure offer a wealth of happiness, joy, and unforgettable experiences — definitely yes. One thing is certain — we’ve amassed substantial experience and it’s not over yet :) So, what lies ahead? Chapter 7: Reverting to the contractor, developing a product for a crypto StartupReturning to the past, we continue our journey… I had invested substantial time and passion into the tech rescue mission product. I came on board as the technical Team Leader of a startup that had garnered over $20M in seed round funding, affiliated with the realm of cryptocurrencies. The investors were individuals with extensive backgrounds in the crypto world. My role was primarily technical, and there was an abundance of work to tackle. I was fully immersed, and genuinely devoted to the role. I was striving for excellence, knowing that if we secured another round of financing, the startup would accelerate rapidly. As for the product and marketing, I was more of an observer. After all, there were marketing professionals with decades of experience on board. These were individuals recruited from large crypto-related firms. I had faith in them, kept an eye on their actions, and focused on my own responsibilities. However, the reality was far from satisfactory. On the last day, the principal investor for the Series A round withdrew. The board made the tough decision to shut down. It was a period of intense observation and gaining experience in product management. This was a very brief summary of the last 10 years. And what next? (Last) Chapter 8: To be announced — Product Owner / Product Consultant / Strategist / CTO After spending countless hours and days deliberating my next steps, one thing is clear: My aspiration is to continue traversing the path of software product development, with the hopeful anticipation that one day, I might ride the crest of the next big wave and ascend to the prestigious status of a unicorn company. I find myself drawn to the process of building products, exploring product-market fit, strategizing, engaging in software development, seeking out new opportunities, networking, attending conferences, and continuously challenging myself by understanding the market and its competitive landscape. Product Owner / Product Consultant / CTO / COO: I’m not entirely sure how to categorize this role, as I anticipate that it will largely depend on the product to which I will commit myself fully. My idea is to find one startup/company that wants to build a product / or already has a product, want to speed up, or simply doesn’t know what’s next. Alternatively, I could be a part of an established company with a rich business history, which intends to invest in digitization and technological advancements. The goal would be to enrich their customer experience by offering complementary digital products Rather than initiating a new venture from ground zero with the same team, I am receptive to new challenges. I am confident that my past experiences will prove highly beneficial for the founders of promising, burgeoning startups that already possess a product, or are in the initial phases of development. ‘Consultant’ — I reckon we interpret this term differently. My aim is to be completely absorbed in a single product, crafting funnels, niches, strategies, and all that is necessary to repeatedly achieve the ‘product-market fit’ and significant revenue. To me, ‘consultant’ resonates more akin to freelancing than being an employee. My current goal is to kickstart as a consultant and aide, dealing with facilitating startups in their journey from point A to B. Here are two theoretical scenarios to illustrate my approach: Scenario 1: (Starting from point A) You have a product but struggle with marketing, adoption, software, strategy, sales, fundraising, or something else. I conduct an analysis and develop a strategy to reach point B. I take on the “dirty work” and implement necessary changes, including potential pivots or shifts (going all-in) to guide the product to point B. The goal is to reach point B, which could involve achieving a higher valuation, expanding the user base, increasing sales, or generating monthly revenue, among other metrics. Scenario 2: (Starting from point A) You have a plan or idea but face challenges with marketing, adoption, strategy, software, sales, fundraising, or something else. I analyze the situation and devise a strategy to reach point B. I tackle the necessary tasks, build the team, and overcome obstacles to propel the product to point B. I have come across the view that finding the elusive product-market fit is the job of the founder, and it’s hard for me to disagree. However, I believe that my support and experiences can help save money, many failures, and most importantly, time. I have spent a great deal of time learning from my mistakes, enduring failure after failure, and even had no one to ask for support or opinion, which is why I offer my help. Saving even a couple of years, realistically speaking, seems like a value I’m eager to provide… I invite you to share your thoughts and insights on these scenarios :) Closing Remarks: I appreciate your time and effort in reaching this point. This has been my journey, and I wouldn’t change it for the world. I had an extraordinary adventure, and now I’m ready for the next exciting battle with the market and new software products. While my entire narrative is centered around startups, especially the ones I personally built, I’m planning to share more insights drawn from all of my experiences, not just those as a co-founder. If you’re currently developing your product or even just considering the idea, I urge you to reach out to me. Perhaps together, we can create something monumental :) Thank you for your time and insights. I eagerly look forward to engaging in discussions and hearing your viewpoints. Please remember to like and subscribe. Nothing motivates to write more than positive feedback :) Matt.

36 startup ideas found by analyzing podcasts (problem, solution & source episode)
reddit
LLM Vibe Score0
Human Vibe Score1
joepigeonThis week

36 startup ideas found by analyzing podcasts (problem, solution & source episode)

Hey, I've been a bit of a podcast nerd for a long time. Around a year ago I began experimenting with transcription of podcasts for a SaaS I was running. I realized pretty quickly that there's a lot of knowledge and value in podcast discussions that is for all intents and purposes entirely unsearchable or discoverable to most people. I ended up stopping work on that SaaS product (party for lack of product/market fit, and partly because podcasting was far more interesting), and focusing on the podcast technology full-time instead. I'm a long-time lurker and poster of r/startups and thought this would make for some interesting content and inspiration for folks. Given I'm in this space, have millions of transcripts, and transcribe thousands daily... I've been exploring fun ways to expose some of the interesting knowledge and conversations taking place that utilize our own data/API. I'm a big fan of the usual startup podcasts (My First Million, Greg Isenberg, etc. etc.) and so I built an automation that turns all of the startup ideas discussed into a weekly email digest. I always struggle to listen to as many episodes as I'd actually like to, so I thought I'd summarise the stuff I care about instead (startup opportunities being discussed). I thought it would be interesting to post some of the ideas extracted so far. They range from being completely whacky and blue sky, to pretty boring but realistic. A word of warning before anyone complains – this is a big mixture of tech, ai, non-tech, local services, etc. ideas: Some of the ideas are completely mundane, but realistic (e.g. local window cleaning service) Some of the ideas are completely insane, blue sky, but sound super interesting Here's the latest 36 ideas: |Idea Name|Problem|Solution|Source| |:-|:-|:-|:-| |SalesForce-as-a-Service - White Label Enterprise Sales Teams|White-label enterprise sales teams for B2B SaaS. Companies need sales but can't hire/train. Recruit retail sellers, train for tech, charge 30% of deals closed.|Create a white-label enterprise sales team by recruiting natural salespeople from retail and direct sales backgrounds (e.g. mall kiosks, cutco knives). Train them specifically in B2B SaaS sales techniques and processes. Offer this trained sales force to tech companies on a contract basis.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |TechButler - Mobile Device Maintenance Service|Mobile tech maintenance service. Clean/optimize devices, improve WiFi, basic support. $100/visit to homes. Target affluent neighborhoods.|Mobile tech support service providing in-home device cleaning, optimization, and setup. Focus on common issues like WiFi improvement, device maintenance, and basic tech support.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |MemoryBox - At-Home Video Digitization Service|Door-to-door VHS conversion service. Parents have boxes of old tapes. Pick up, digitize, deliver. $30/tape with minimum order. Going extinct.|Door-to-door VHS to digital conversion service that handles everything from pickup to digital delivery. Make it extremely convenient for customers to preserve their memories.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |Elite Match Ventures - Success-Based Luxury Matchmaking|High-end matchmaking for 50M+ net worth individuals. Only charge $1M+ when they get married. No upfront fees. Extensive vetting process.|Premium matchmaking service exclusively for ultra-high net worth individuals with a pure contingency fee model - only get paid ($1M+) upon successful marriage. Focus on quality over quantity with extensive vetting and personalized matching.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |LocalHost - Simple Small Business Websites|Simple WordPress sites for local businesses. $50/month includes hosting, updates, security. Target restaurants and shops. Recurring revenue play.|Simplified web hosting and WordPress management service targeting local small businesses. Focus on basic sites with standard templates, ongoing maintenance, and reliable support for a fixed monthly fee.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |VoiceJournal AI - Voice-First Smart Journaling|Voice-to-text journaling app with AI insights. 8,100 monthly searches. $15/month subscription. Partners with journaling YouTubers.|AI-powered journaling app that combines voice recording, transcription, and intelligent insights. Users can speak their thoughts, which are automatically transcribed and analyzed for patterns, emotions, and actionable insights.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |AIGenAds - AI-Generated UGC Content Platform|AI platform turning product briefs into UGC-style video ads. Brands spending $500/video for human creators. Generate 100 variations for $99/month.|AI platform that generates UGC-style video ads using AI avatars and scripting. System would allow rapid generation of multiple ad variations at a fraction of the cost. Platform would use existing AI avatar technology combined with script generation to create authentic-looking testimonial-style content.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |InfographAI - Automated Infographic Generation Platform|AI turning blog posts into branded infographics. Marketers spending hours on design. $99/month unlimited generation.|AI-powered platform that automatically converts blog posts and articles into visually appealing infographics. System would analyze content, extract key points, and generate professional designs using predefined templates and brand colors.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |KidFinance - Children's Financial Education Entertainment|Children's media franchise teaching financial literacy. Former preschool teacher creating 'Dora for money'. Books, videos, merchandise potential.|Character-driven financial education content for kids, including books, videos, and potentially TV show. Focus on making money concepts fun and memorable.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |FinanceTasker - Daily Financial Task Challenge|Free 30-day financial challenge with daily action items. People overwhelmed by money management. Makes $500k/year through books, speaking, and premium membership.|A free 30-day financial challenge delivering one simple, actionable task per day via email. Each task includes detailed scripts and instructions. Participants join a Facebook community for support and accountability. The program focuses on quick wins to build momentum. Automated delivery allows scaling.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |FinanceAcademy - Expert Financial Training Platform|Premium financial education platform. $13/month for expert-led courses and live Q&As. 4000+ members generating $40k+/month.|Premium membership site with expert-led courses, live Q&As, and community support. Focus on specific topics like real estate investing, business creation, and advanced money management.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |SecurityFirst Compliance - Real Security + Compliance Platform|Security-first compliance platform built by hackers. Companies spending $50k+ on fake security. Making $7M/year showing why current solutions don't work.|A compliance platform built by security experts that combines mandatory compliance requirements with real security measures. The solution includes hands-on security testing, expert guidance, and a focus on actual threat prevention rather than just documentation. It merges traditional compliance workflows with practical security implementations.|In the Pit with Cody Schneider| |LinkedInbound - Automated Professional Visibility Engine|LinkedIn automation for inbound job offers. Professionals spending hours on manual outreach. $99/month per job seeker.|Automated system for creating visibility and generating inbound interest on LinkedIn through coordinated profile viewing and engagement. Uses multiple accounts to create visibility patterns that trigger curiosity and inbound messages.|In the Pit with Cody Schneider| |ConvoTracker - Community Discussion Monitoring Platform|Community discussion monitoring across Reddit, Twitter, HN. Companies missing sales opportunities. $499/month per brand tracked.|Comprehensive monitoring system that tracks competitor mentions and industry discussions across multiple platforms (Reddit, Twitter, Hacker News, etc.) with automated alerts and engagement suggestions.|In the Pit with Cody Schneider| |ContentAds Pro - Smart Display Ad Implementation|Display ad implementation service for content creators. Bloggers losing thousands in ad revenue monthly. Makes $3-5k per site setup plus ongoing optimization fees.|Implementation of professional display advertising through networks like Mediavine that specialize in optimizing ad placement and revenue while maintaining user experience. Include features like turning off ads for email subscribers and careful placement to minimize impact on core metrics.|The Side Hustle Show - "636: Is Business Coaching Worth It? A Look Inside the last 12 months of Side Hustle Nation"| |MoneyAppReviews - Professional Side Hustle App Testing|Professional testing service for money-making apps. People wasting time on low-paying apps. Makes $20k/month from affiliate commissions and ads.|Professional app testing service that systematically reviews money-making apps and creates detailed, honest reviews including actual earnings data, time investment, and practical tips.|The Side Hustle Show - "636: Is Business Coaching Worth It? A Look Inside the last 12 months of Side Hustle Nation"| |LightPro - Holiday Light Installation Service|Professional Christmas light installation service. Homeowners afraid of ladders. $500-2000 per house plus storage.|Professional Christmas light installation service targeting residential and commercial properties. Full-service offering including design, installation, maintenance, removal and storage. Focus on safety and premium aesthetic results.|The Side Hustle Show - "639: 30 Ways to Make Extra Money for the Holidays"| |FocusMatch - Research Participant Marketplace|Marketplace connecting companies to paid research participants. Companies spending weeks finding people. $50-150/hour per study.|Online platform connecting companies directly with paid research participants. Participants create detailed profiles and get matched to relevant studies. Companies get faster access to their target demographic while participants earn money sharing opinions.|The Side Hustle Show - "639: 30 Ways to Make Extra Money for the Holidays"| |SolarShine Pro - Specialized Solar Panel Cleaning Service|Solar panel cleaning service using specialized equipment. Panels lose 50% efficiency when dirty. $650 per job, automated scheduling generates $18k/month from repeat customers.|Professional solar panel cleaning service using specialized deionized water system and European cleaning equipment. Includes automated 6-month scheduling, professional liability coverage, and warranty-safe cleaning processes. Service is bundled with inspection and performance monitoring.|The UpFlip Podcast - "156. $18K/Month with This ONE Service — Niche Business Idea"| |ExteriorCare Complete - One-Stop Exterior Maintenance Service|One-stop exterior home cleaning service (solar, windows, gutters, bird proofing). Automated scheduling. $650 average ticket. 60% repeat customers on 6-month contracts.|All-in-one exterior cleaning service offering comprehensive maintenance packages including solar, windows, gutters, roof cleaning and bird proofing. Single point of contact, consistent quality, and automated scheduling for all services.|The UpFlip Podcast - "156. $18K/Month with This ONE Service — Niche Business Idea"| |ContentMorph - Automated Cross-Platform Content Adaptation|AI platform converting blog posts into platform-optimized social content. Marketing teams spending 5hrs/post on manual adaptation. $199/mo per brand with 50% margins.|An AI-powered platform that automatically transforms long-form content (blog posts, podcasts, videos) into platform-specific formats (Instagram reels, TikToks, tweets). The system would preserve brand voice while optimizing for each platform's unique requirements and best practices.|Entrepreneurs on Fire - "Digital Threads: The Entrepreneur Playbook for Digital-First Marketing with Neal Schaffer"| |MarketerMatch - Verified Digital Marketing Talent Marketplace|Marketplace for pre-vetted digital marketing specialists. Entrepreneurs spending 15hrs/week on marketing tasks. Platform takes 15% commission averaging $900/month per active client.|A specialized marketplace exclusively for digital marketing professionals, pre-vetted for specific skills (video editing, social media, SEO, etc.). Platform includes skill verification, portfolio review, and specialization matching.|Entrepreneurs on Fire - "Digital Threads: The Entrepreneur Playbook for Digital-First Marketing with Neal Schaffer"| |Tiger Window Cleaning - Premium Local Window Service|Local window cleaning service targeting homeowners. Traditional companies charging 2x market rate. Making $10k/month from $200 initial investment.|Local window cleaning service combining competitive pricing ($5/pane), excellent customer service, and quality guarantees. Uses modern tools like water-fed poles for efficiency. Implements systematic approach to customer communication and follow-up.|The Side Hustle Show - "630: How this College Student’s Side Hustle Brings in $10k a Month"| |RealViz3D - Real Estate Visualization Platform|3D visualization service turning architectural plans into photorealistic renderings for real estate agents. Agents struggling with unbuilt property sales. Making $30-40k/year per operator.|Professional 3D modeling and rendering service that creates photorealistic visualizations of properties before they're built or renovated. The service transforms architectural plans into immersive 3D representations that show lighting, textures, and realistic details. This helps potential buyers fully understand and connect with the space before it physically exists.|Side Hustle School - "#2861 - TBT: An Architect’s Side Hustle in 3D Real Estate Modeling"| |Somewhere - Global Talent Marketplace|Platform connecting US companies with vetted overseas talent. Tech roles costing $150k locally filled for 50% less. Grew from $15M to $52M valuation in 9 months.|Platform connecting US companies with pre-vetted overseas talent at significantly lower rates while maintaining high quality. Handles payments, contracts, and quality assurance to remove friction from global hiring.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |GymLaunch - Rapid Gym Turnaround Service|Consultants flying to struggling gyms to implement proven member acquisition systems. Gym owners lacking sales expertise. Made $100k in first 21 days.|Expert consultants fly in to implement proven member acquisition systems, train staff, and rapidly fill gyms with new members. The service combines sales training, marketing automation, and proven conversion tactics to transform struggling gyms into profitable businesses within weeks.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |PublishPlus - Publishing Backend Monetization|Backend monetization system for publishing companies. One-time customers becoming recurring revenue. Grew business from $2M to $110M revenue.|Add complementary backend products and services to increase customer lifetime value. Develop software tools and additional services that natural extend from initial publishing product. Focus on high-margin recurring revenue streams.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |WelcomeBot - Automated Employee Onboarding Platform|Automated employee welcome platform. HR teams struggling with consistent onboarding. $99/month per 100 employees.|An automated onboarding platform that creates personalized welcome experiences through pre-recorded video messages, scheduled check-ins, and automated swag delivery. The platform would ensure consistent high-quality onboarding regardless of timing or location.|Entrepreneurs on Fire - "Free Training on Building Systems and Processes to Scale Your Business with Chris Ronzio: An EOFire Classic from 2021"| |ProcessBrain - Business Knowledge Documentation Platform|SaaS platform turning tribal knowledge into documented processes. Business owners spending hours training new hires. $199/month per company.|A software platform that makes it easy to document and delegate business processes and procedures. The platform would include templates, guided documentation flows, and tools to easily share and update procedures. It would help businesses create a comprehensive playbook of their operations.|Entrepreneurs on Fire - "Free Training on Building Systems and Processes to Scale Your Business with Chris Ronzio: An EOFire Classic from 2021"| |TradeMatch - Modern Manufacturing Job Marketplace|Modern job board making manufacturing sexy again. Factory jobs paying $40/hr but can't recruit. $500 per successful referral.|A specialized job marketplace and recruitment platform focused exclusively on modern manufacturing and trade jobs. The platform would combine TikTok-style content marketing, referral programs, and modern UX to make manufacturing jobs appealing to Gen Z and young workers. Would leverage existing $500 referral fees and industry demand.|My First Million - "He Sold His Company For $15M, Then Got A Job At McDonald’s"| |GroundLevel - Executive Immersion Program|Structured program putting CEOs in front-line jobs. Executives disconnected from workers. $25k per placement.|A structured program that places executives and founders in front-line jobs (retail, warehouse, service) for 2-4 weeks with documentation and learning framework. Similar to Scott Heiferman's McDonald's experience but productized.|My First Million - "He Sold His Company For $15M, Then Got A Job At McDonald’s"| |OneStepAhead - Micro-Mentorship Marketplace|Marketplace for 30-min mentorship calls with people one step ahead. Professionals seeking specific guidance. Takes 15% of session fees.|MicroMentor Marketplace - Platform connecting people with mentors who are just one step ahead in their journey for focused, affordable micro-mentorship sessions.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |VulnerableLeader - Leadership Authenticity Training Platform|Leadership vulnerability training platform. Leaders struggling with authentic communication. $2k/month per company subscription.|Leadership Vulnerability Platform - A digital training platform combining assessment tools, guided exercises, and peer support to help leaders develop authentic communication skills. The platform would include real-world scenarios, video coaching, and measurable metrics for tracking leadership growth through vulnerability.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |NetworkAI - Smart Network Intelligence Platform|AI analyzing your network to find hidden valuable connections. Professionals missing opportunities in existing contacts. $49/month per user.|AI Network Navigator - Smart tool that analyzes your professional network across platforms, identifies valuable hidden connections, and suggests specific actionable ways to leverage relationships for mutual benefit.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |Porch Pumpkins - Seasonal Decoration Service|Full-service porch pumpkin decoration. Homeowners spend $300-1350 per season. One operator making $1M in 8 weeks seasonal revenue.|Full-service seasonal porch decoration service focused on autumn/Halloween, including design, installation, maintenance, and removal. Offering premium curated pumpkin arrangements with various package tiers.|My First Million - "The guy who gets paid $80K/yr to do nothing"| |Silent Companion - Professional Presence Service|Professional silent companions for lonely people. Huge problem in Japan/globally. $68/session, $80k/year per companion. Non-sexual, just presence.|A professional companion service where individuals can rent a non-judgmental, quiet presence for various activities. The companion provides silent company without the pressure of conversation or social performance. They accompany clients to events, meals, or just sit quietly together.|My First Million - "The guy who gets paid $80K/yr to do nothing"| Hope this is useful. If anyone would like to ensure I include any particular podcasts or episodes etc. in future posts, very happy to do so. I'll generally send \~5 ideas per week in a short weekly digest format (you can see the format I'd usually use in here: podcastmarketwatch.beehiiv.com). I find it mindblowing that the latest models with large context windows make it even possible to analyze full transcripts at such scale. It's a very exciting time we're living through! Would love some feedback on this stuff, happy to iterate and improve the analysis/ideas... or create a new newsletter on a different topic if anyone would like. Cheers!

A Structured Approach to Ideation and Validation (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

A Structured Approach to Ideation and Validation (I will not promote)

Hi all, I used to work in VC and wanted to share some startup knowledge and insights from startup founders I know. Recently, I interviewed a friend of mine who built an AI Robotics startup ("Hivebotics") that creates automated toilet-cleaning robots. I can't post the full article because of Reddit's word limit, so I'll be posting it in sections here instead. This first section of the transcript goes through his approach to ideation and validation. Enjoy and let me know what you think! (I will not promote) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ (1) Ideation and Validation Problem-Market-Solution Framework I like to think of startup ideation and validation using this framework: Problem– What exactly are you solving? Observation– How you identify a problem to work on User Research– How you further understand that problem Market– Is there a large enough market for solving this problem? Size– How many people experience this same problem? Demand– How many of those people are willing to pay for the solution? Solution– Your answer to the problem Desirability– Whether people actually want your solution Feasibility– Whether building the solution is practical and realistic Viability– Whether your solution can generate revenue Problem You always need to start problem-first, which is something that was really drilled into me during my time at Stanford. Too often, founders rush to build solutions first—apps or products they find exciting—without confirming whether there's any real demand for it. The first step is always to identify a specific problem, then further understand its scale, urgency and further details by talking to potential users. Observation– To find problems, observation is key. People may not even realise the inefficiencies in their processes until you point them out. That’s why interviews and field research are so important. There are problems all around us, so it's simply a matter of going out, paying attention and being attuned to them as they occur. User Research– To further understand the problem, conducting user research by interviewing potential customers is essential. Personally, I like to use the "Mom Test" when I conduct interviews to avoid biased and generic feedback. Don’t just ask theoretical questions and avoid being too specific—observe how your potential users work, ask about pain points, and use broad, open-ended questions to ensure you aren't leading them to a specific answer. Market Once you've found an actual problem and talked to enough potential users to really understand its specific pain points, the next step is to determine the market size and demand for a solution. Size– Determining the market size is essential because it determines whether or not it's commercially worthwhile to pursue the problem and develop a solution for it. You need to determine if there are enough potential customers out there experiencing this problem to gauge the market size. There's no secret strategy for this; you have to interview as many potential users as possible to confirm that it's a widespread problem in the industry. Demand– Make sure that you're working on a problem that people will gladly pay to have solved. Even if the problem is large enough, you have to make sure it's painful enough to warrant a paid solution. If many people experience the same problem, but aren't willing to pay for a solution, then you don't have a market and should look for a different problem to validate. Another way of looking at it is that your true market size is the number of potential customers actually willing to pay* for the solution to the problem, not the number of people simply experiencing the same problem. Solution When validating a potential solution to the problem, I would look at the 3 factors of desirability, feasibility and viability. Desirability– the degree to which a solution appeals to people and fulfills their wants and needs. Without strong desirability, even the most technically advanced or economically practical product is unlikely to succeed. The best way to test this is to secure financial commitments early on during the proof-of-concept stage. Most people are polite, so they may simply tell you that your startup's product is good even if it's not. However, if they're actually willing to pay for the solution, this is actual evidence of your product's desirability. Don't just ask people if they would pay for it; actually see whether they will pay for it. Feasibility– whether a product can be built using existing technical capabilities. A lack of feasibility makes it challenging or impossible to develop the product, no matter how appealing it might be to users or how promising its financial prospects are. This is just a matter of conducting initial research and actually trying to build a prototype, which will inform you whether the fully-realised product is truly feasible. Viability– the product's ability to generate sustainable financial returns. Without financial viability, the business supporting the product cannot endure, even if the product is highly appealing to users and technically achievable. Here, you need to look at your unit economics, development costs and other expenses to determine the viability of your solution. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Hope you enjoyed reading this; let me know your honest thoughts in the comments and I'll try to improve how I interview founders based on those!

Online Reputation AI - Startup got stuck
reddit
LLM Vibe Score0
Human Vibe Score0.6
kyr0x0This week

Online Reputation AI - Startup got stuck

Hi, I‘m one of 3 co-founders of a startup that built an AI-driven SaaS and App product this year. We‘re coming from an SaaS background, two of us senior developers (in the 3% of highest earning freelancers in Germany) and expert in our fields. The third is a seasoned sales strategist. We have a minor 4th co-founder (legal advisor). The company is self-funded, no investors. Our tech is owned by us, built by us and the product was already operational after a few months. We basically solve three data science/NLP issues in a generalized way: understand customer feedback to improve your business. Analyzes online review with context and explains it with a drill down, aggregation, charts (AI insights, timeframe reports); evidence driven, agentic LLM and ETL processes drive this. respond to customer feedback, half-automated, human in the loop, but AI supported. In the tone of your brand, any language. And context-aware, with your customer support signature etc. competitor analysis. Because we do 1 for you, we can do 1. for all of your competitors and compare the results, yielding insights like „oh, this happens to everyone in November to December, so I should focus on something else“ — etc. Now, after a huge sales effort we got only one paying customer. This customer is petty happy with the product. They tell us that they use our product daily, it‘s better than all the other solutions out there (better than TrustYou, etc.) However, after cold calling/emailing hundreds of leads, we almost always hear that „what we have is good enough“. Or that they don‘t have budget. I‘m the introverted tech part of the startup. I‘m good with algorithms. Give me any tech issue and I will solve it for you quickly and efficiently. I make stuff work. But with my startups I never had commercial luck. People always tell me about my stellar potential, because I can build things almost nobody else can. I come from a poor families background, worked my way up the very hard way. I just love tech and programming. I wrote a book for O’Reilly once. I‘m not doing bad economically, but I‘m probably not the best sales person. After founding a few startups with amazing tech, people using the products and loving them, but no commercial success, I truly question myself and if I‘m just unlucky with the fact that I‘m located in Europe, targeting the wrong industries, or are just unlucky somehow? I won‘t blame my co-founders here. They definitely did the best they could. I‘m just a bit resignated. I recently thought about valuing my own lifetime more and only building software for myself anymore. Basically not focusing on what problems other people face and trying to solve them, but solely focusing on what I enjoy doing most — e.g. coding algorithms for a music visualizer. Because in the end, my time is my most valuable resource. If I waste any second on something that isn‘t contributing to „my life“ and how I define success, then it would be a rather stupid deed? I don‘t want to derail too much here. I‘m confused and seeking for advice. Burn me if you like, but please be aware that you are talking to a broadly educated nerd.

I will not promote — just need advice from fellow startup entrepreneurs
reddit
LLM Vibe Score0
Human Vibe Score1
Forward_Tackle_6487This week

I will not promote — just need advice from fellow startup entrepreneurs

Hey everyone, I’m now based in the San Francisco Bay Area. I’m starting a development agency to help early-stage startups and small businesses turn ideas into real products. Whether it’s building an MVP, scaling an existing app, or providing a dedicated offshore team — that’s the direction I’m heading. Quick background on me: I work with: • Frontend: React.js, Next.js, React Native • Backend: Node.js, Express, Supabase, Firebase • Databases: MongoDB, PostgreSQL • AI/API Integrations: OpenAI and others • DevOps/Automation: n8n, serverless tools, cloud platforms I’ve built and designed dozens of products, and now I have a small but strong team of 5 devs/designers in India. We can scale fast and deliver at Indian pricing — but that’s not my pitch here. I’m not here to promote. I’m genuinely looking for feedback and ideas from others doing similar things. If you’re running a dev agency, working with offshore teams, or supporting early-stage founders, I’d love to know: • What’s working for you in terms of client acquisition? • How are you building trust in the early stages? • Are there any strategies or lessons you wish you knew when starting? Also, if this aligns with something you’re building and you’re open to collaboration, I’m all ears. Let’s connect and share what’s working. Appreciate any thoughts, and happy to answer any questions too!

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote )
I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
vishwa1238This week

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote ) I will not promote

I will not promote I don’t even know where to start, but I just feel completely stuck right now. I’m 20 years oldI don’t even know where to start, but I just feel completely stuck right now. I’m 20 years old, have been grinding non-stop for months, and it feels like I have nothing to show for it. I built an AI agent that automates workflows for businesses. I can build tech, but I can’t sell. That’s been my biggest realization recently—I thought building would be enough, but it’s not. I need customers, I need a co-founder, I need to figure out the business side… and I have no idea how. I applied to YC, IVI at ISB, and EF, met a lot of insanely smart people—some were impressed with me and my work, but they were wiser, more experienced, and honestly, just better at all of this than I am. It made me realize how much I don’t know. I got rejected from YC & IVI. 💔 YC didn’t even give much feedback—just a standard rejection. 💔 IVI told me: “You're too young, you need more experience, and you should work with a team before trying to start something.” That hit me hard. I had already been struggling to find a co-founder, and this just made me wonder if I even belong in this space yet. The Frustrating Part? I KNOW my tool Has a Unique Edge. I’m not just another AI automation tool—I know my tool has a strong USP that competitors lack. It has the potential to be an AI employee for businesses, not just another workflow tool. But I still haven’t built the “perfect product” I originally envisioned. And that’s what’s eating at me. I see what it COULD be, but I haven’t made it happen yet. At the same time, the competition in the AI agent space is exploding. YC-backed companies are working on AI agent startups. OpenAI is making huge progress with Operator. Competitors are moving fast, while I feel stuck. I’ve delayed development because I’m unsure whether to double down, pivot, or just move on entirely. Where I’m Stuck Right Now 🔹 Do I keep pushing and try to crack sales somehow? 🔹 Do I join a startup as a founding engineer to get experience, make connections, and learn sales before trying again? 🔹 Do I move to Bangalore, meet founders, and figure out what’s next? 🔹 Do I pivot to something nicher instead of competing in the AI agent race? If so, how do I even find a niche worth pursuing? 🔹 Do I even belong in startups? Or am I just forcing something that’s not working? I feel stuck in a weird middle zone where I’m not a beginner, but I’m also not successful. I’ve done enough to see what’s possible, but not enough to make it real. Every rejection makes me question if I’m even on the right path. I don’t know if I’m posting this for advice or just to get it out of my system. Maybe both. Has anyone else felt like this before? If you’ve been in this situation—how did you figure out whether to keep going or move on? TL;DR: I’m 20, built an AI agent for automating workflows, got rejected from YC & IVI, met insanely smart and experienced people, realized I can build tech but can’t sell, struggling to find a co-founder, AI agent competition is growing, delaying development, confused about the future—don’t know whether to double down, pivot, or move on. The frustrating part? I\ know I have a unique edge that others lack, but I still haven’t built the perfect product I originally envisioned.* edit: removed the tool's name

I fell into the builder's trap and need help getting out
reddit
LLM Vibe Score0
Human Vibe Score1
stellarcitizenThis week

I fell into the builder's trap and need help getting out

Hi r/startups, First-time technical founder here. Two years ago, I decided to leave the 9-5 grind and build something meaningful. Now, I have (what I believe is) a brilliant technical solution but no clear business case. I’m seeking a cofounder with product and marketing expertise to help pivot my project into a viable business - or start a new one. Details below. About Me 36yo, born in Berlin and moved to San Francisco 8 years ago Master's in Software Engineering with 15 years of experience Worked with early-stage startups in Berlin and a venture studio in SF Spent the past years leading a team of 12 shipping enterprise software The tech I've built An AI engine that makes it easy for developers to automate their workflows. It works with code, issues, PRs and integrates with 3rd party systems like error trackers, wikis, ticketing systems, etc. It takes natural language instructions, fulfills them autonomously and responds with a result. The functionality is served as a platform, with an API and an SDK. On top of it, I've built a CLI and a web application with productivity tools for developers. Who and what I'm looking for My main goal is to leave my current job and build a company around a problem that matters to me, ideally with considerable equity. I’m looking for: A cofounder with product and marketing expertise who sees potential in my tech and can help turn it into a successful business—or someone with a strong business case who needs a technical founder. Mentorship from someone experienced in dev tool startups or as a successful solo founder. I’d love to learn from your journey and would be happy to offer my technical expertise or collaborate on projects in return. Happy to answer any questions or provide more details. Cheers!

I fell into the builder's trap and need help getting out
reddit
LLM Vibe Score0
Human Vibe Score1
stellarcitizenThis week

I fell into the builder's trap and need help getting out

Hi r/startups, First-time technical founder here. Two years ago, I decided to leave the 9-5 grind and build something meaningful. Now, I have (what I believe is) a brilliant technical solution but no clear business case. I’m seeking a cofounder with product and marketing expertise to help pivot my project into a viable business - or start a new one. Details below. About Me 36yo, born in Berlin and moved to San Francisco 8 years ago Master's in Software Engineering with 15 years of experience Worked with early-stage startups in Berlin and a venture studio in SF Spent the past years leading a team of 12 shipping enterprise software The tech I've built An AI engine that makes it easy for developers to automate their workflows. It works with code, issues, PRs and integrates with 3rd party systems like error trackers, wikis, ticketing systems, etc. It takes natural language instructions, fulfills them autonomously and responds with a result. The functionality is served as a platform, with an API and an SDK. On top of it, I've built a CLI and a web application with productivity tools for developers. Who and what I'm looking for My main goal is to leave my current job and build a company around a problem that matters to me, ideally with considerable equity. I’m looking for: A cofounder with product and marketing expertise who sees potential in my tech and can help turn it into a successful business—or someone with a strong business case who needs a technical founder. Mentorship from someone experienced in dev tool startups or as a successful solo founder. I’d love to learn from your journey and would be happy to offer my technical expertise or collaborate on projects in return. Happy to answer any questions or provide more details. Cheers!

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

We received 25k investment offer, need advice [I will not promote]
reddit
LLM Vibe Score0
Human Vibe Score1
Agreeable_Ad6424This week

We received 25k investment offer, need advice [I will not promote]

We received a $25k for 2.5% on a convertible note offer from a US based investor. The note matures in 18 months with an interest rate of 5%, but the investor said they can extend it further. It’s an AI SaaS in graphic design. We have been bootstrapping till now, and we feel that this money could help us hire better engineers and marketeers, we want to grow it to a good revenue, but don't see it becoming a billion dollar startup as such. Our initial plans were to build it like an indie-hacker, grow it a decent revenue and sell it to someone who can take better care of it. We built it as a side project with full time jobs. We already have decent traction with 10k+ signups and $600+ in revenue per month with <100 dollars spent on marketing. But our AI model costs are high, 0.2 USD per user that we onboard and provide free credits. But we as founders are more interested in another idea that we have been thinking about and see a bigger potential + founder market fit in. The current product is good, and we can foresee that with better hiring and marketing, we can grow our revenue to about 10-20k a month, like a regular online business. What should we do? We don't want to simply let go of the product because it's not that it doesn't work, it's just that we as founders are better fit for something else. We can't sell it yet as the revenue isn't too high and we haven't even incorporated. Is it okay if we think of growing it to 10-20k+ a month and then intend to sell it to someone who can take better care of it? Should we take the investment in such a case, given this investment is definitely gonna help us grow? Process of incorporation will also help us in selling this business later I think?

I fell into the builder's trap and need help getting out
reddit
LLM Vibe Score0
Human Vibe Score1
stellarcitizenThis week

I fell into the builder's trap and need help getting out

Hi r/startups, First-time technical founder here. Two years ago, I decided to leave the 9-5 grind and build something meaningful. Now, I have (what I believe is) a brilliant technical solution but no clear business case. I’m seeking a cofounder with product and marketing expertise to help pivot my project into a viable business - or start a new one. Details below. About Me 36yo, born in Berlin and moved to San Francisco 8 years ago Master's in Software Engineering with 15 years of experience Worked with early-stage startups in Berlin and a venture studio in SF Spent the past years leading a team of 12 shipping enterprise software The tech I've built An AI engine that makes it easy for developers to automate their workflows. It works with code, issues, PRs and integrates with 3rd party systems like error trackers, wikis, ticketing systems, etc. It takes natural language instructions, fulfills them autonomously and responds with a result. The functionality is served as a platform, with an API and an SDK. On top of it, I've built a CLI and a web application with productivity tools for developers. Who and what I'm looking for My main goal is to leave my current job and build a company around a problem that matters to me, ideally with considerable equity. I’m looking for: A cofounder with product and marketing expertise who sees potential in my tech and can help turn it into a successful business—or someone with a strong business case who needs a technical founder. Mentorship from someone experienced in dev tool startups or as a successful solo founder. I’d love to learn from your journey and would be happy to offer my technical expertise or collaborate on projects in return. Happy to answer any questions or provide more details. Cheers!

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote )
I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
vishwa1238This week

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote ) I will not promote

I will not promote I don’t even know where to start, but I just feel completely stuck right now. I’m 20 years oldI don’t even know where to start, but I just feel completely stuck right now. I’m 20 years old, have been grinding non-stop for months, and it feels like I have nothing to show for it. I built an AI agent that automates workflows for businesses. I can build tech, but I can’t sell. That’s been my biggest realization recently—I thought building would be enough, but it’s not. I need customers, I need a co-founder, I need to figure out the business side… and I have no idea how. I applied to YC, IVI at ISB, and EF, met a lot of insanely smart people—some were impressed with me and my work, but they were wiser, more experienced, and honestly, just better at all of this than I am. It made me realize how much I don’t know. I got rejected from YC & IVI. 💔 YC didn’t even give much feedback—just a standard rejection. 💔 IVI told me: “You're too young, you need more experience, and you should work with a team before trying to start something.” That hit me hard. I had already been struggling to find a co-founder, and this just made me wonder if I even belong in this space yet. The Frustrating Part? I KNOW my tool Has a Unique Edge. I’m not just another AI automation tool—I know my tool has a strong USP that competitors lack. It has the potential to be an AI employee for businesses, not just another workflow tool. But I still haven’t built the “perfect product” I originally envisioned. And that’s what’s eating at me. I see what it COULD be, but I haven’t made it happen yet. At the same time, the competition in the AI agent space is exploding. YC-backed companies are working on AI agent startups. OpenAI is making huge progress with Operator. Competitors are moving fast, while I feel stuck. I’ve delayed development because I’m unsure whether to double down, pivot, or just move on entirely. Where I’m Stuck Right Now 🔹 Do I keep pushing and try to crack sales somehow? 🔹 Do I join a startup as a founding engineer to get experience, make connections, and learn sales before trying again? 🔹 Do I move to Bangalore, meet founders, and figure out what’s next? 🔹 Do I pivot to something nicher instead of competing in the AI agent race? If so, how do I even find a niche worth pursuing? 🔹 Do I even belong in startups? Or am I just forcing something that’s not working? I feel stuck in a weird middle zone where I’m not a beginner, but I’m also not successful. I’ve done enough to see what’s possible, but not enough to make it real. Every rejection makes me question if I’m even on the right path. I don’t know if I’m posting this for advice or just to get it out of my system. Maybe both. Has anyone else felt like this before? If you’ve been in this situation—how did you figure out whether to keep going or move on? TL;DR: I’m 20, built an AI agent for automating workflows, got rejected from YC & IVI, met insanely smart and experienced people, realized I can build tech but can’t sell, struggling to find a co-founder, AI agent competition is growing, delaying development, confused about the future—don’t know whether to double down, pivot, or move on. The frustrating part? I\ know I have a unique edge that others lack, but I still haven’t built the perfect product I originally envisioned.* edit: removed the tool's name

Should we give up?
reddit
LLM Vibe Score0
Human Vibe Score1
mind4waveThis week

Should we give up?

I'm currently very demotivated because we're working on our SaaS startup since 1,5 years and we still haven't found active users, let alone a customer. We're building an AI-first tool that automates user research analysis. We've released two MVPs so far and are planning to build a third. People respond well to outreach (5-7% book a demo from those who received a first message) but then they fail to use it. We are talking with users a lot so we are aware of the problems, and we might be able to solve them if we continue building and testing. I find it hard though to solve these problems efficiently, because there are no similar established AI-first products on the market and it feels like we have to create a new UX standard. Some problems might be very hard to be solved, e.g. there are high cost of switching products for many of our potential users. Also, my time is limited, as I recently (5 months ago) became a mother. I can only work 30 hours per week. It's a competitive area we're in and our competitors have gradually developed into the same direction and it's getting harder to position ourselves. Also, GPTs might soon be able to do what we're doing - for free. I feel like AI tools are generally expected by many to be free. The price we're expecting to be able to bill is getting lower and lower and our finance plan is already looking tight. However, there are adjacent audiences which we could target as well, but none of us knows them. Is it normal as a founder to struggle so much at the beginning? I've read that it took established SaaS 2,5 years on average from founding to first revenue. We haven't founded so far so you could say we're not behind \sarcasm\ Shall we keep pushing? My tech co-founder is optimistic and thinks this is where the wheat is separated from the chaff. We're currently supported financially by a government fund so we haven't spent much private money. However, I feel like my career outlook gets worse with each day that I unsuccessfully try to raise this startup.

Month 2 of building my startup after being laid off - $200 in revenue and 4 (actual) paying customers
reddit
LLM Vibe Score0
Human Vibe Score1
WhosAfraidOf_138This week

Month 2 of building my startup after being laid off - $200 in revenue and 4 (actual) paying customers

In September 2024, I got laid off from my Silicon Valley job. It fucking sucked. I took a day to be sad, then got to work - I'm not one to wallow, I prefer action. Updated my resume, hit up my network, started interviewing. During this time, I had a realization - I'm tired of depending on a single income stream. I needed to diversify. Then it hit me: I literally work with RAG (retrieval augmented generation) in AI. Why not use this knowledge to help small businesses reduce their customer service load and boost sales? One month later, Answer HQ 0.5 (the MVP) was in the hands of our first users (shoutout to these alpha testers - their feedback shaped everything). By month 2, Answer HQ 1.0 launched with four paying customers, and growing. You're probably thinking - great, another chatbot. Yes, Answer HQ is a chatbot at its core. But here's the difference: it actually works. Our paying customers are seeing real results in reducing support load, plus it has something unique - it actively drives sales by turning customer questions into conversions. How? The AI doesn't just answer questions, it naturally recommends relevant products and content (blogs, social media, etc). Since I'm targeting small business owners (who usually aren't tech wizards) and early startups, Answer HQ had to be dead simple to set up. Here's my onboarding process - just 4 steps. I've checked out competitors like Intercom and Crisp, and I can say this: if my non-tech fiancée can set up an assistant on her blog in minutes, anyone can. Key learnings so far: Building in public is powerful. I shared my journey on Threads and X, and the support for a solo founder has been amazing. AI dev tools (Cursor, Claude Sonnet 3.5) have made MVP development incredibly accessible. You can get a working prototype frontend ready in days. I don't see how traditional no-code tools can survive in this age. But.. for a production-ready product? You still need dev skills and background. Example: I use Redis for super-fast loading of configs and themes. An AI won't suggest this optimization unless you know to ask for it. Another example: Cursor + Sonnet 3.5 struggles with code bases with many files and dependencies. It will change things you don't want it to change. Unless you can read code + understand it + know what needs to be changed and not changed, you'll easily run into upper limits of what prompting alone can do. I never mention "artificial intelligence" "AI" "machine learning" or any of these buzzwords once in my copy in my landing page, docs, product, etc. There is no point. Your customers do not care that something has AI in it. AI is not the product. Solving their pain points and problems is the product. AI is simply a tool of many tools like databases, APIs, caching, system design, etc. Early on, I personally onboarded every user through video calls. Time-consuming? Yes. But it helped me deeply understand their pain points and needs. I wasn't selling tech - I was showing them solutions to their problems. Tech stack: NextJS/React/Tailwind/shadcn frontend, Python FastAPI backend. Using Supabase Postgres, Upstash Redis, and Pinecone for different data needs. Hosted on Vercel and Render.com. Customer growth: Started with one alpha tester who saw such great results (especially in driving e-commerce sales) that he insisted on paying for a full year to keep me motivated. This led to two monthly customers, then a fourth annual customer after I raised prices. My advisor actually pushed me to raise prices again, saying I was undercharging for the value provided. I have settled on my final pricing now. I am learning so much. Traditionally, I have a software development and product management background. I am weak in sales and marketing. Building that app, designing the architecture, talking to customers, etc, these are all my strong suits. I enjoy doing it too. But now I need to improve on my ability to market the startup and really start learning things like SEO, content marketing, cold outreach, etc. I enjoying learning new skills. Happy to answer any questions about the journey so far!

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

Seeking Your Feedback: SeedHustle and Your Small Business Journey✨
reddit
LLM Vibe Score0
Human Vibe Score1
EntryElectronicThis week

Seeking Your Feedback: SeedHustle and Your Small Business Journey✨

Hello, everyone, I'm one of the co-founder of SeedHustle, and I wanted to have an authentic discussion with you about our recent developments. SeedHustle is a project dear to us, with the aim of simplifying the often complex process of connecting startups with venture capitalists. 🌟 Why did we embark on this journey? Well, we've been in your shoes, experiencing the frustration of the never-ending search for the right VC partner and the challenges of establishing meaningful connections. This shared experience led to the creation of (https://seedhustle.ai/ ) . So, what's the deal with SeedHustle? It's our effort to streamline the process of finding the ideal VC match. You provide us with your company details, and our AI system goes to work, suggesting potential VCs and explaining why they might be a good fit based on their past investments and backgrounds. We also provide real-time data on their funds. We're currently in the private beta phase and want to extend an invitation to join our Discord community. It's a space where founders can share their stories and possibly make introductions to VCs. As founders who thrive on AI challenges, we believe this could be a game-changer. 👂 I'm here to have an open dialogue. Is there anything you'd like to discuss? Whether it's SeedHustle, our journey, or your own small business experiences, we're all ears. Here are a few conversation starters: \-Does SeedHustle align with your small business journey? \-Do you have any suggestions for how we can improve our platform? \-Is there anything about what we're doing that's unclear or not quite resonating with you? Your feedback is incredibly valuable to us, so please feel free to reach out. Thank you for being a part of this journey, and we hope to see you in our Discord community for a chat! 😊🚀

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

I’ve Tested All the Image Generation Tools for My Small Business
reddit
LLM Vibe Score0
Human Vibe Score0.6
astronautlyraThis week

I’ve Tested All the Image Generation Tools for My Small Business

Personally I hate paying for subscriptions unless it was absolutely necessary. Given that I don't have the budget to hire a graphic designer I started playing with all the new Generative AI tools and these are the ones I've narrowed it down to that have made the most impact. I posted this breakdown on r/AIforBusinessFounders but will share it here as well. Hope this compilation helps a fellow entrepreneur. If you’ve been exploring AI tools for generating images, you’ve probably come across big names like DALL·E, Adobe Photoshop, and MidJourney (finally moved off the dreadful Discord prompting thankfully!)  While they each have their strengths, they also have their quirks. Here’s the breakdown: DALL·E by OpenAI Pros: It’s integrated directly into ChatGPT, so if you’re already on a paid plan, you’re good to go—no extra fees. It's also embedded in Canva which is convenient if you’re designing social media posts or quick mockups. Cons: The image quality isn’t amazing. It often looks a bit flat or off, but I think where I struggle is you only get one output per generation, so there’s not much variety. Adobe Photoshop Pros: If you’re already using Photoshop, this is a nice addition. It lets you partially generate images within your edits, which can be handy for things like background replacements. When it comes to generating full images though, I find this tool really struggles. Cons: The image quality still has room for improvement—hands and fingers, in particular, are a consistent issue. Plus, you need an Adobe Creative Cloud subscription to access it. MidJourney Pros: Hands down, this tool produces the best-quality images. You get multiple outputs per prompt, and what really sets it apart is the ability to refine your favorite image. You can subtly tweak or drastically change it, depending on your needs. It previously only operated on Discord but it now has migrated to it's own platform so that's been a huge pro for me. Cons: It’s not cheap—MidJourney requires its own paid membership and comes with limited tokens, so you’ll need to budget your usage. The biggest con for me in the past was that you had to prompt in a Discord channel but now that it has own platform, it's no longer an issue. After putting all three to the test, my personal favorite is MidJourney. If image quality and creative control are your priorities, it’s hard to beat. That said, DALL·E and Adobe are solid options if you’re already using their platforms and want to save money. Are there any hidden gems I might have missed? If so let me know, I'd love to give them a try.

80+ Social Media Updates Related to Business Marketing That Occurred in last 5 months
reddit
LLM Vibe Score0
Human Vibe Score0.333
lazymentorsThis week

80+ Social Media Updates Related to Business Marketing That Occurred in last 5 months

Tiktok expanded its caption limits from 100 to 500 Characters. Reddit Updates Search tools, Now you can search User Comments. “Comment search is here”. Pinterest Announces New Partnership with WooCommerce to Expand Product Listings. Google’s launched ‘multisearch’ feature that lets you search using text and image at the same time. Etsy sellers went on strike after platform increases transaction fees. Reddit launched $1 million fund to support various projects going on platform. Instagram is updating its ranking algorithm to put more focus on Original Content LinkedIn Added New tools In creator mode: improved content analytics and Updates profile video Options. Tiktok launched its own gif library “Effect House”. Instagram Updates Reels editing tools adding reordering clips feature. Google Search got a new label to direct people to original news sources YouTube launches new Profile Rings for Stories and Live. Snapchat launched YouTube Link stickers to make video sharing easier! Messenger adds new shortcuts, including a slack like @everyone feature. Pinterest Expands it’s Creator funds program to help more Underrepresented creators. Reddit brings back r/place after 5 years. Google Adds New Seller Performance Badges, New Pricing Insights for eCommerce Brands. Meta and Google agrees to New Data Transfer agreement to keep Instagram and Facebook running in EU. Twitter tests New Interactive Ad types to boost its promotional Appeal. Instagram removed In-stream Ads from its Advertising Options. Tiktok launched new program “CAP” to help creative agencies reach its audience. Twitch shuts down its desktop app. Meta launched the ability to add “share to Reels” feature to third Party Apps. TikTok Adds New ‘Background Player’ Option for Live-Streams. Twitter rolls out ALT badge and improved image description. Fast, A Checkout Startup with $15 billion valuation shuts down after spending all the funds raised in 2021. Wordpress announced new pricing with more traffic and storage limits after receiving backlash from the community. Sales force upgrades marketing field services and sales tools with AI. Dropbox shop launches in open beta to allow creators to sell digital content. Tiktok is the most downloaded app in Quarter 1 of 2022. WhatsApp announced launch of ‘Communities’ - more structured group chats with admin controls. Tiktok expands testing a private dislike button for comments. Twitter acquired “Openback” A notification app to improve timeline and relevance of push notifications YouTube and Tiktok added New options for Automated Captions, Improving Accessibility. A new social media App “Be Real” is trending across the internet grabbing Gen-Zs attention to try the app. WhatsApp got permission to expand payment services to its Indian user base of 100 Million. YouTube Shorts now allows creators to splice in long-form videos. You can use long form video audios and clips for YT shorts. New Snapchat feature ‘Dynamic Stories’ uses a publisher’s RSS feed to automatically create Stories posts. Zoom launches AI-powered features aimed at sales teams. Tiktok started testing who viewed your profile feature. Ogilvy Announced they will no longer work with who edit their bodies and faces for ads. If you don’t know “Oglivy” is the most successful advertising agency of the decade. YouTube Launches New ‘Search Insights’ for all creators. Snapchat Added 13 million new users in Q1 2022 more than both Twitter and Facebook. Google is Introduced new options to reject tracking cookies in Europe after receiving fines from violating EU data laws. Sony & Microsoft are planning to integrate Ads into their gaming platforms Xbox and PlayStation. YouTube Adds new Shorts Shelf to Trending Tab to show Top Shorts in an alternative section. Instagram started testing a reels template feature which enables creators to copy formats from other reels. Google Tests “What People Are Saying” Search Results. Twitter Launches New Test of Promotions for Third Party Tools Within the App. Instagram is changing how hashtags work by experimenting removing Recents tab from hashtags section. Google Adds New Publisher Verification Badges to Extension Listings in the Google Web Store Amazon AWS launches $30M accelerator program aimed at minority founders. Meta launched more fundraising options for Instagram Reels in 30 countries. Brave Search and DuckDuckGo will no longer support Google AMP due to privacy issues. Instagram is working on a pinned post feature and will officially launch in next few months. Meta: You can now add Music to your Facebook comments Twitter tests new closed caption button to switch on captions in Video Clip Elon Musk Bought Twitter $44 Billion and Company is set to go private. Google now lets you request the removal of personal contact information from search results YouTube reveals that Ads between YT Shorts are being tested with selective brands. LinkedInis rolling out a new website link feature. Google Reduces Visibility Of Business Edits With Color Changes To Profile Updates. Instagram expands testing of 90 second Reels. Microsoft Advertising now offers incentive features like cash-back and adding stock images from your website. Facebook & Pinterest are growing again despite all the hype around slow growth of both platform in last quarter. Google Added 9 new Ad policies to prevent misleading ads taking place. Tiktok Introduces Third-party cookies to its Pixel. (like Facebook Pixel) Twitter reportedly overcounted number of daily active users for last 3 years. Google launched Media CDN to compete on content delivery. YouTube expands Thank You Monetisation tool to all eligible creators. Twitch is looking to expand their cut from streamers earnings from 30 to 50% and also thinks of boosting Ads. Snapchat launches a $230 flying drone camera and new e-commerce integrations in Snap Summit 2022. YouTube Expands its ‘Pre-Publish Checks’ Tool to the Mobile App Google Search Console’s URL parameter tool is officially removed for a time period. Twitter creators can now get paid through Cryptocurrency on Twitter with Stripe. Jellysmack- One of the Influencer marketing agency acquires YouTube analytics tool Google & Microsoft Ads brought more revenue in last quarter- 22% Gains! WhatsApp is working on a paid subscription for multi-phone and tablet chatting. Instagram users now spend 20% of their time in the reels section. Google tests new Color for clicked search results by you. Now Clicked results are in Purple. Twitter: Elon plans to remove employees and focus more on influencers for twitter’s growth + new monetisation ideas were shared. YouTube revenue falls as more users spend time on shorts tab than consuming long form content. Drop 👋 to receive June Updates!

Advice Needed
reddit
LLM Vibe Score0
Human Vibe Score1
Suspicious_Dig_3849This week

Advice Needed

Hey everyone, I’ve been diving into Artificial Intelligence, Machine Learning, and Deep Learning recently, but I find myself a little confused about how to approach the learning process effectively. My goal isn’t just to secure a job but to actually build cool AI products or startups—something innovative and impactful, like what companies such as OpenAI, Anthropic, or ElevenLabs are doing. I often see founders or engineers building incredible AI-driven startups, and I can’t help but wonder: • What kind of learning path did these people follow? • Surely they didn’t just stick to basic Udemy or YouTube courses that most people use for job prep. • What resources or approaches do serious AI practitioners use? I’ve heard that implementing research papers is a great way to gain a deep, intuitive understanding of AI concepts. But as someone who is still a beginner, I’m unsure how to start implementing papers without feeling overwhelmed. Here’s what I’m hoping to get clarity on: Where should I begin as a complete beginner? What resources, projects, or habits would you recommend to build solid fundamentals in AI/ML? How do I progress from beginner to a level where I can implement research papers? Are there intermediate steps I need to take before diving into papers? What would the ideal roadmap look like for someone who wants to build startups in AI? If you’re an AI practitioner, researcher, or startup founder, I’d love to hear about your experiences and learning pathways. What worked for you? What didn’t? Any advice or resources would be immensely appreciated. I’m ready to put in the hard work, I just want to make sure I’m moving in the right direction. Thanks in advance! Looking forward to learning from this community.

Month of August in AI
reddit
LLM Vibe Score0
Human Vibe Score1
Difficult-Race-1188This week

Month of August in AI

🔍 Inside this Issue: 🤖 Latest Breakthroughs: This month it’s all about Agents, LangChain RAG, and LLMs evaluation challenges.* 🌐 AI Monthly News: Discover how these stories are revolutionizing industries and impacting everyday life: EU AI Act, California’s Controversial SB1047 AI regulation act, Drama at OpenAI, and possible funding at OpenAI by Nvidia and Apple.* 📚 Editor’s Special: This covers the interesting talks, lectures, and articles we came across recently. Follow me on Twitter and LinkedIn at RealAIGuys and AIGuysEditor to get insight on new AI developments. Please don't forget to subscribe to our Newsletter: https://medium.com/aiguys/newsletter Latest Breakthroughs Are Agents just simple rules? Are Agents just enhanced reasoning? The answer is yes and no. Yes, in the sense that agents have simple rules and can sometimes enhance reasoning capabilities compared to a single prompt. But No in the sense that agents can have a much more diverse functionality like using specific tools, summarizing, or even following a particular style. In this blog, we look into how to set up these agents in a hierarchal manner just like running a small team of Authors, researchers, and supervisors. How To Build Hierarchical Multi-Agent Systems? TextGrad. It is a powerful framework performing automatic “differentiation” via text. It backpropagates textual feedback provided by LLMs to improve individual components of a compound AI system. In this framework, LLMs provide rich, general, natural language suggestions to optimize variables in computation graphs, ranging from code snippets to molecular structures. TextGrad showed effectiveness and generality across various applications, from question-answering and molecule optimization to radiotherapy treatment planning. TextGrad: Improving Prompting Using AutoGrad The addition of RAG to LLMs was an excellent idea. It helped the LLMs to become more specific and individualized. Adding new components to any system leads to more interactions and its own sets of problems. Adding RAG to LLMs leads to several problems such as how to retrieve the best content, what type of prompt to write, and many more. In this blog, we are going to combine the LangChain RAG with DSPy. We deep dive into how to evaluate the RAG pipeline quantitatively using RAGAs and how to create a system where instead of manually tweaking prompts, we let the system figure out the best prompt. How To Build LangChain RAG With DSPy? As the field of natural language processing (NLP) advances, the evaluation of large language models (LLMs) like GPT-4 becomes increasingly important and complex. Traditional metrics such as accuracy are often inadequate for assessing these models’ performance because they fail to capture the nuances of human language. In this article, we will explore why evaluating LLMs is challenging and discuss effective methods like BLEU and ROUGE for a more comprehensive evaluation. The Challenges of Evaluating Large Language Models AI Monthly News AI Act enters into force On 1 August 2024, the European Artificial Intelligence Act (AI Act) enters into force. The Act aims to foster responsible artificial intelligence development and deployment in the EU. The AI Act introduces a uniform framework across all EU countries, based on a forward-looking definition of AI and a risk-based approach: Minimal risk: most AI systems such as spam filters and AI-enabled video games face no obligation under the AI Act, but companies can voluntarily adopt additional codes of conduct. Specific transparency risk: systems like chatbots must clearly inform users that they are interacting with a machine, while certain AI-generated content must be labelled as such. High risk: high-risk AI systems such as AI-based medical software or AI systems used for recruitment must comply with strict requirements, including risk-mitigation systems, high-quality of data sets, clear user information, human oversight, etc. Unacceptable risk: for example, AI systems that allow “social scoring” by governments or companies are considered a clear threat to people’s fundamental rights and are therefore banned. EU announcement: Click here https://preview.redd.it/nwyzfzgm4cmd1.png?width=828&format=png&auto=webp&s=c873db37ca0dadd5b510bea70ac9f633b96aaea4 California AI bill SB-1047 sparks fierce debate, Senator likens it to ‘Jets vs. Sharks’ feud Key Aspects of SB-1047: Regulation Scope: Targets “frontier” AI models, defined by their immense computational training requirements (over 10²⁶ operations) or significant financial investment (>$100 million). Compliance Requirements: Developers must implement safety protocols, including the ability to immediately shut down, cybersecurity measures, and risk assessments, before model deployment. Whistleblower Protections: Encourages reporting of non-compliance or risks by offering protection against retaliation. Safety Incident Reporting: Mandates reporting AI safety incidents within 72 hours to a newly established Frontier Model Division. Certification: Developers need to certify compliance, potentially under penalty of perjury in earlier drafts, though amendments might have altered this. Pros: Safety First: Prioritizes the prevention of catastrophic harms by enforcing rigorous safety standards, potentially safeguarding against AI misuse or malfunction. Incentivizes Responsible Development: By setting high standards for AI model training, the company encourages developers to think critically about the implications of their creations. Public Trust: Enhances public confidence in AI by ensuring transparency and accountability in the development process. Cons: Innovation Stagnation: Critics argue it might stifle innovation, especially in open-source AI, due to the high costs and regulatory burdens of compliance. Ambiguity: Some definitions and requirements might be too specific or broad, leading to legal challenges or unintended consequences. Global Competitiveness: There’s concern that such regulations could push AI development outside California or the U.S., benefiting other nations without similar restrictions. Implementation Challenges: The practicalities of enforcing such regulations, especially the “positive safety determination,” could be complex and contentious. News Article: Click here Open Letter: Click here https://preview.redd.it/ib96d7nk4cmd1.png?width=828&format=png&auto=webp&s=0ed5913b5dae72e203c8592393e469d9130ed689 MORE OpenAI drama OpenAI co-founder John Schulman has left the company to join rival AI startup Anthropic, while OpenAI president and co-founder Greg Brockman is taking an extended leave until the end of the year. Schulman, who played a key role in creating the AI-powered chatbot platform ChatGPT and led OpenAI’s alignment science efforts, stated his move was driven by a desire to focus more on AI alignment and hands-on technical work. Peter Deng, a product manager who joined OpenAI last year, has also left the company. With these departures, only three of OpenAI’s original 11 founders remain: CEO Sam Altman, Brockman, and Wojciech Zaremba, lead of language and code generation. News Article: Click here https://preview.redd.it/0vdjc18j4cmd1.png?width=828&format=png&auto=webp&s=e9de604c26aed3e47b50df3bdf114ef61f967080 Apple and Nvidia may invest in OpenAI Apple, which is planning to integrate ChatGPT into iOS, is in talks to invest. Soon after, Bloomberg also reported that Apple is in talks but added that Nvidia “has discussed” joining the funding round as well. The round is reportedly being led by Thrive Capital and would value OpenAI at more than $100 billion. News Article: Click here https://preview.redd.it/ude6jguh4cmd1.png?width=828&format=png&auto=webp&s=3603cbca0dbb1be3e6d0efcf06c3a698428bbdd6 Editor’s Special The AI Bubble: Will It Burst, and What Comes After?: Click here Eric Schmidt Full Controversial Interview on AI Revolution (Former Google CEO): Click here AI isn’t gonna keep improving Click here General Intelligence: Define it, measure it, build it: Click here

GPT Weekly - 19the June Edition - OpenAI's function calling, Meta's free LLM, EU Regulation and more.
reddit
LLM Vibe Score0
Human Vibe Score0.714
level6-killjoyThis week

GPT Weekly - 19the June Edition - OpenAI's function calling, Meta's free LLM, EU Regulation and more.

This is a recap covering the major news from last week. 🔥Top 3 news - OpenAI’s updates, Meta’s upcoming free LLM and EU Regulation 🗞️Interesting reads include PSA about protecting your keys, The GPT ouroboros, Reddit - OpenAI’s moat, and more.. 🧑‍🎓Learning includes a Step-by-step guide from a non-technical founder who launched his MVP, Chatbot for your Gdrive and more 🔥Top 3 AI news in the past week OpenAI: New Pricing, Models, & Functions OpenAI has been on a roll. Last week we saw the release of OpenAI best practice on using GPT. This week we saw some amazing updates. Three major buckets were: First, the price decreases for both embeddings and GPT-3.5 tokens. Second, new models for gpt-4 and gpt-3.5. A new longer context model for gpt-3.5. Third, a new function calling capability. Why is it important? Previously, the output from OpenAI was all text. So, calling an external API from GPT was quite difficult. You had to parse the text data and things were often incorrect. Langchain created the Agents and Tools feature to tackle this problem. It was still unreliable and prone to issues. Now you get native support to generate a fixed format output. You can use the output to generate functional calls and also pass functions which need to be called. For example, if your app has multiple API endpoints then you can use GPT to generate the API calls with parameters. You can also pass the endpoints as function calls to ensure the correct function is executed. This functionality can further be used to generate structured data (JSON) out of GPT. So, you can generate data from GPT and load it into your backend. What’s next? This functionality allows turning natural language responses into structured data. This can be used to create “intelligent” backends using LLMs. We might see implementations in no-code tools to allow more robust and natural-language tools for non-technical folks. The structured data process goes both ways. You can also feed structured data into GPT for better responses. This feature also has its share of issues. Function calling suffers from the same prompt injection issues. Malicious actors can pass malicious code in function or the responses. For example, creation of queries using functions might contain malicious code to delete data. Without proper user validation this code will be executed automatically and delete data. So, using LLM as the back-end layer needs proper security implementation. Meta's LLM: Commercial Use Ahead Llama has been a boon for the open source community. Many of the open source models rely on Llama. The issue is that Llama is research-only and cannot be used commercially. So, no one can use it to build any product. Meta is now working on the next version of the model. This model will be available for commercial use. This is in stark contrast to both OpenAI and Google. Both safe-guarde their models and make it available through API. Why is it important? Certain industries cannot use LLM APIs because of strict restrictions on data privacy. These companies would want to run their own instance of a foundational model. A commercially available foundational model is also going to help people who want to keep their “API call” costs next to 0. A commercially available free-for-all model will also help push the open source community further. Just like Llama. What’s next? Sam Altman has said OpenAI didn’t release GPT-3 as open-source because they didn’t think people would be able to run it. Now OpenAI is working on an open-source model. This is going to be weaker than GPT-4. Let the battle of LLMs begin. EU's Proposed Legislation and Its Impact on AI Usage The EU parliament voted to move ahead with the E.U. AI Act. This act aims to ensure consumer protection against the dangers of AI. Why is it important? OpenAI and Sam Altman want regulations for models. They have proposed a IAEA-type of agency to stop the proliferation of LLM models. As per OpenAI, all models should be regulated and monitored. The suggestion of a license based regulation has led to significant backlash. Many people have called it “regulatory capture” - with the aim of shutting down competing LLMs. Licensing based regulations might not really be effective. The EU is approaching regulation from a different angle. It doesn’t focus on how models are developed. Rather focuses on how AI will/can be used. They have broken down use cases into 4 categories - unacceptable (prohibited), high, medium and low risk. For example, Building a Pre-Crime software,on%20crimes%20not%20yet%20committed.) to predict crimes? Building a Social credit system? Unacceptable. Using tools to influence elections or recommendation algorithms? High (Highly regulated). Using generative AI tools to create text or images on news sites? Medium (Add label that the content is AI generated) AI providers also need to disclose their training source. To me this sounds like good legislation. What do you guys think? But, OpenAI has warned that EU regulations might force them to pull out completely. What’s next? The disclosure requirements might help various publishing companies. AI and media companies are in talks to pay for training data. Google has been leading the charge. Additionally, OpenAI and Deepmind will open their models for safety and research purposes to the UK government. 🗞️10 AI news highlights and interesting reads PSA: If you are using Repl to write code, you might want to check your OpenAI API keys. If you have left them embedded then people can pirate and steal the keys. LLMs rely on human annotation or human feedback to learn. And one way to generate human annotation is crowdsourcing. But what if the crowdsource human annotators use LLMs? Research shows 33-46% workers used LLMs. So, basically we go from Human -> AI -> Human -> AI. The AI ouroboros. Researchers also say generated data to train models might cause serious issue. All the talks about moats \- Reddit might be OpenAI’s \future\ moat. Given the amount of complaints about how Google search experience has deteriorated during the blackout, this might be true? Doctors are using ChatGPT but not to diagnose.Rather to be more empathetic. We discussed this just a month ago. And guess where the data for this study came from? Reddit AskDocs. Moat FTW?! Beatles to make a comeback…using Generative AI. SnapFusion - Text to Image diffusion on mobile phones. Large context lengths are important for better GPT experience. The secret sauce for 100k context length. There is a lot of bad AI research out there. Some border on snake oil. Most AI “research” should be double checked and challenged. A new research on huggingface said that GPT-4 can ace MIT curriculum. Now someone is replicating the results and say that GPT-4 can’t beat MIT. Are we seeing peak AI? Especially when people from Deepmind and Meta are involved? Mistral AI raised $113 million in seed round with no product. Some might say this funding is for the team and the team is really solid. The issue though is whether the valuation is justified when OpenAI and Google already have a head start. The AI Hype Wall of Shame. \- Collection of articles which mislead people about AI in various aspects. 🧑‍🎓3 Learning Resources Building and Launching a company using GPT-4 with prompts. (The author didn’t know how to code but created and launched the MVP in a month). Chatbot for your Gdrive - https://www.haihai.ai/gpt-gdrive/ Building ChatGPT plugin using Supabase - https://supabase.com/blog/building-chatgpt-plugins-template That’s it folks. Thank you for reading and have a great week ahead. If you are interested in a focused weekly recap delivered to your inbox on Mondays you can subscribe here. It is FREE!

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I very rarely have stuff to post on Reddit, but I share how my project is going on, just random stuff, and memes on X. In case few might want to keep up 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2B products beats building B2C products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

What are Boilerplates?
reddit
LLM Vibe Score0
Human Vibe Score1
Inner_Lengthiness697This week

What are Boilerplates?

What are Boilerplates? Boilerplate originally referred to the rolled steel used to make boilers for steam engines in the 19th century. Over time, the term evolved to describe any standardized piece of text or code that can be reused without significant changes. Interest in SaaS has been on the rise, and many more people now want to build products. However, building products from scratch takes a lot of time, and it can be extremely frustrating. Enter SaaS Boilerplates With the standardization of stacks and basic systems that govern SaaS tools, it has become evident that there was a need, and the time was ripe for SaaS Boilerplates. SaaS Boilerplates come with landing pages, website components, authentication modules, payment modules, and various other standard features that can save developers a significant amount of time and cost. The market is flooded with Boilerplates for various tech stacks, such as NextJS, Laravel, Swift, NuxtJS, and so forth. Pros and Cons of Boilerplates Pros Save a significant amount of time and money Reduce frustration for developers as the redundant tasks are taken care of Boilerplates often follow best practices For anywhere between $49 and $299, they provide terrific value for those looking to build something very quickly Most importantly, Boilerplates also enable aspiring founders and builders with limited technical resources or abilities to ship their products faster and more cheaply. They are beacons of hope for non-technical founders looking to build a product quickly. Cons Limited flexibility May become outdated fairly quickly Setting them up still requires time Similar landing pages and design themes can make the product look like a clone Marc Lou’s Shipfast For most of us, Marc Lou popularized the idea of SaaS Boilerplate. Marc Lou launched Shipfast in August 2023. He had built 27 projects prior to this and Shipfast was nothing but all his basic code organised properly. At that time, there were no solid NextJS boilerplates, and Shipfast just took off. He got traction via Product Hunt, Twitter and Hacker News and soon Shipfast went viral. Shipfast now generates $130K/mo, just 9 months after its launch. Marc has been building Shipfast in public, which has led to a lot of interest in SaaS Boilerplates. The market is now flooded with boilerplates for every major tech stack. Marc reaped the benefits of the first mover’s advantage as well as the social proof via his Shipfast community. I don’t think any other boilerplates are as successful as Shipfast, but there are quite a few good ones out there. Shipixen* has grossed over $20K in the 5 months Makerkit* does \~$3500/mo Moreover, there are many open-source boilerplates available for popular stacks such as NextJS. The Evolution of Boilerplates Boilerplates are quickly turning into no-code/low-code code generation tools. For instance, Shipixen allows you to generate custom code for landing pages, waitlist pages and blogs using a simple User Interface. Boilerplates are perfectly posied to sit between code and no-code. Allow the flexibility of code with the interface of a no-code tool — that will be the core value proposition of SaaS boilerplates. Should you build a Boilerplate? Well, the market is flooded, but I believe there’s still an opportunity to leverage boilerplates. You can build boilerplates for certain types of apps or tools, such as Chrome extensions Boilerplates can act as a great lead funnel for building out a great productized services business No-code/low-code code generation boilerplates can become a big thing if you can help build complex tools Niche tech stack boilerplates may still be lucrative Known strategies for successfully building a boilerplate 👇🏻 Shipfast thrives because of social proof and community SaaSRock generates most of its traffic from its Gumroad listings and blogs Usenextbase and Shipixen are being built in public Many boilerplates start with waitlists They have a very clear value proposition around saving time and cost Design & No-Code Boilerplates Here is the corrected version with improved grammar and clarity: While SaaS (code) boilerplates have become fairly popular, other types of boilerplates are emerging in the market, such as design boilerplates and no-code boilerplates. To be honest, design boilerplates have been around for a while. You will find numerous landing page packs, component libraries, and so forth. Makers are now building kits that leverage standard libraries and technologies such as Tailwind CSS, Daisy UI, and more. Nick Buzz from the famous baked.design has this *50 Landing Page Design Kit* in Tailwind CSS & Figma which is wildly popular. Lastly, there is a trend of no-code boilerplates as well. Mohit is building a Bubble Boilerplate for the popular no-code platform — Bubble. All in all, I think that people want to build products and build them fast. Boilerplates help them save a significant amount of time and cost. More importantly, boilerplates are impulse purchases for people who have not shipped but who want to ship. Introducing BuilderKit.ai We have been building AI SaaS tools for quite a while now. 10+ products across text, image, speech, RAG — we have built em all. We figured that it seems easy but actually building these so called AI Wrappers can be time consuming and frustrating — there is a lot of nuance to it. So we built BuidlerKit.ai — a NextJS SaaS Boilerpalte It takes care of everything from landing pages, authentication, dashboarding, emails, SEO to payments — everything that you need to build your tool. It also comes with 8+ production-ready apps. Moreover, the BuilderKit community is an exclusive community of AI SaaS builders (Pro Only Access) The Pre Orders are now live at https://www.builderkit.ai (First 100 Customers get $100 Off — I think we have already done \~20 odd orders since the announcement yesterday, Grab your seat asap!) Starter Plan $49, Pro Plan @ $99

Introducing Vest: Your AI-Powered Due Diligence Partner - Looking for feedback!
reddit
LLM Vibe Score0
Human Vibe Score1
nervousslinkyThis week

Introducing Vest: Your AI-Powered Due Diligence Partner - Looking for feedback!

TLDR; We are introducing Vest, an AI powered due-diligence and stock recommendation platform. We have bootstrapped ourselves so far and are wanting to get as much feedback from Reddit as we can to see where we can improve, but also what we are doing right. So please have a look around, give us feedback and if you like it, feel free to use it. Hi Reddit, My name is Drian and I'm one of the founders of Vest. We believe we are crafting something special at Vest and we want to get the word out and gather as much feedback as possible! Our major goal at Vest is to help new retail investors make sense of the investment landscape and get AI powered assistance, or even help experienced investors get confirmation of their potential moves. Overall, we want people to start their journey to financial freedom and not be daunted by the complexity of it. So how do we do this? Vest is a user-friendly service that harnesses fundamental metrics, social and news sentiment, and technical analysis, that we feed into some advanced AI models to generate clear buy, sell, or hold signals for US-based (for now!) stocks, offering our users transparent due-diligence for confident investing. The service is currently free with no ads - however, at some point we do plan on adding a paid tier. What's included: &#x200B; Financial Metrics. Our financial metrics take all the potentially complex mathematical equations and present the fundamentals of a company to users in a simple 1 pager, with a score displaying if the metric is positive for a stock. We also provide publicly available analyst ratings from investment banks as well as price targets they have set. News Sentiment. We take publications about a specific stock from new articles, journals and socials and give these all a rating to determine if social sentiment is positive around a stock or not. Each article and its rating is visible to our users through through our dashboard. AI assisted Stock Signals. We have developed an algorithm to take all the metrics, sentiment and technical analysis we collate and analyze this with historic performance data for every stock to attempt to figure out if a stock is undervalued (great time to buy) or overvalued (great time to sell). 155 US stock tickers and counting. We currently have trained our models for around 155 US based stocks on the NASDAQ and NYSE exchanges. As we get more funding/runway we do plan on adding more, with the eventual goal to expand to more exchanges, countries and securities. Knowledge base and community. Our knowledge base & community contains explanations and articles for all metrics and the other good stuff behind Vest. We don’t want to just tell users what to do, but to also assist in their financial education. We hope our knowledge base can also become a thriving community where users can interact with us and each, ask questions around investing and keep gaining knowledge. Is it 100% accurate? Absolutely not. While we do a pretty great job at tracking and surfacing signals, we are not presenting a fool-proof, silver bullet with a guarantee here - rather a starting point for users to make more informed decisions, find potential new investment opportunities and hopefully learn about investing as they do so. We encourage our users to do their own research and due-diligence and not just take our signals as gospel - we know each and every person has a different risk appetite and goals, and we encourage you to use Vest in a way that fits with your own financial goals and risk appetite. We also display our win rates, average returns, and comparisons with buy and hold for each stock - and we are transparent about it when we’ve fallen short. Next steps: &#x200B; Hope over to vestapp.ai and sign-up From the dashboard, play around, inspect our stock information and add some stocks to your watchlist. If you like what you see, and you’ve done your homework - use your favourite brokerage account to make an investment and watch Vest for changes in a stocks signals. If you don’t have one, we have a pop-up when you click buy/sell on any given stock with some non-affiliated brokerage options for the US, Australia and New Zealand - we don’t get a kickback from these brokerages, they are just what we’ve personally been using. FEEDBACK - We’re just getting started and we know the value of a fresh pair of eyes - our current mission is to get as much feedback as possible - anything you think of please send it through here or on the dedicated feedback form on our website in the sidebar on the left. Features we’re working on We're quietly thrilled about the direction Vest is headed, and we want to give you a sneak peek of what's in store for the next couple of quarters. Some of these may roll out as premium features, but we're diligently fine-tuning the details. Here's what you can expect: &#x200B; Insider Trading Insights: Get daily reports on major stock moves by whales and company insiders. Institutional Holders: We're adding daily reports on institutional holders, keeping you informed about their moves. Lobbying Activity: We're actively working on daily updates about lobbying activities, so you can stay informed. Government Contracts Data: We'll provide a quarterly snapshot of government contract values for the companies you're tracking. US Congress Stock Activity: Keep an eye on daily trading actions of House and Senate members. Daily Summaries & Signal Alerts: We're currently hard at work on this feature. Soon, receive daily email summaries covering signals, watchlist updates, and key news. Personalized Risk Management: Tailor signals to match your unique risk management strategy. Your investments, your way. AI Assistant: Our LLM integration is almost ready, allowing you to ask it straightforward questions about particular securities in plain English. It will provide you with real-time context on fundamentals, news, and all the metrics and data points we monitor.

Running and selling multiple side projects alongside a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
leanpreneur1This week

Running and selling multiple side projects alongside a 9-5

My current side project started 56 days ago when I started writing 1,000 words per day. My core businesses are an agency and job board, and I just needed a creative outlet. The likes of Chris Guillebeau and Nathan Barry attribute their progression to writing so I thought I’d see if it might do the same for me. At first I was just vomiting words onto the screen, I made a blog and wrote mainly technical guides related to my skills. Over time I realised I was writing more and more about running a business as a solopreneur, or lean operator. There is tons of content out there giving you the Birds Eye of going from 0 to £10m. Inspiring stuff, but I think there is a void in real content, explaining the nuts and bolts of the how.  What is the day-to-day like for the solopreneurs who make a good living and have plenty of free time? That’s what I’m striving for anyway. I’m not talking about the 7-figure outliers. Or the ones teaching you to make content so you can have a business teaching others how to make content, and so on. I’m also sick of the ‘I made $X in 5 minutes and how you can too’  So, I started chatting to people in my network who run lean businesses and/or side hustles. I ask them a bit about their journey and ask them to teach something - how they operate, or a skill/process/system/tool that other people like you/me will find useful. One of my first chats was with Sam Dickie, who runs multiple side projects so thought I’d share here, see if others find it useful and get some feedback. I’ve removed all links as I’ve never posted on Reddit before so conscious of not being promotional, I’m posting this stuff to a tiny email list of friends with no upsells. Just finding my feet on whether others find it useful or not: — Sam is a serial entrepreneur who builds projects in his spare time whilst working a 9-5. He’s scaled and sold multiple ventures and currently runs one of the best newsletters out there for builders and entrepreneurs. Building audience through newsletters has always been a cornerstone strategy for him, so, along with sharing his advice on solopreneurism, he’s also generously shared his lean newsletter writing process. About Sam Sam is a Senior Product Manager who has spent the last 15 years working in the tech sector after starting his career as a town planner. In addition to his job he spends some of his spare time building side projects. These have included a 3D printing startup, a tech directory, a newsletter, a beta product directory, and consultancy. Sam is the epitome of making a success out of following your interest and curiosity. It’s clear he enjoys his business ventures and builds in a risk-free way.   It’s often touted by business gurus to avoid building around your interests, but Sam bucks the trend successfully. I think he’s someone who has already found his 1,000 true fans.  Descending rabbit holes, Sam’s journey of invention and curation 3D printing Sam’s first foray into launching a startup was with Fiilo, a 3D printing business. This was at the height of the 3D printing craze and he self-admits that he used the launch as an excuse to buy a 3D printer. He ended up with two and launching a product called GrowGo. GrowGo is a sustainable 3D-printed product that turns any bottle into somewhere that you can grow plants and herbs. He eventually sold this business and the printers, making around £10k. Along the way, he was exposed to various business tasks, including building a website in Weebly, the biggest nocode website builder of the time, and built an API that enabled print on demand for his product. NoCode.Tech The experiences of building as someone non-technical led to numerous friends asking how he built all of this tech. Back then, nocode wasn’t popular, and it had almost zero search volume, so Sam created a basic directory. A quick landing page on Weebly with a basic value prop, a short explanation and a list of the tools he had used before. It hit the top spot on Product Hunt, and he landed 2,000 subscribers in the first 48 hours. But, he hadn’t built it at this point, so he set about getting to work. He built the directory and list to 30,000 subs and monetised the site through advertising. At its peak with Sam, it was receiving about £2,000 per month in ad revenue. He was still working his 9-5 at this point, so thought it might be a good time to exit. The site was still growing, but it was becoming anxiety inducing whilst he was still working full-time. So, he ended up selling the site and making friend’s with the buyer. Fast forwarding a bit, Nocode.tech was eventually acquired by Stackr, a nocode app. Sam was working for their competitor at the time and ended up being offered a job by his friend who acquired the site. All of this from a side project in his area of passion. Creator Club After selling the directory, Sam lost his outlet for sharing his tools and learnings.  Being fascinated with curation and loving sifting through for nuggets, he invested more time into his personal website and launched Creator Club newsletter. Sam writes monthly and currently has over 8,000 subs. It’s one of the few newsletters that I let bypass my email filters and land in my main inbox. Life as a Part-Time Multipreneur Side Hustler If it’s not obvious already Sam is a curiosity led business creator. He’s found that the products without a revenue focus or intention have ironically outperformed those created for the sole purpose of creating money. He enjoys working on his side hustles. He could have run the Nocode.Tech for 10 more years and wouldn’t have tired of it as it’s a byproduct of his interest. For this reason, he has also created the Beta Directory, simply because he loves unearthing early-stage products. He admits he gets the fear when he thinks about quitting his 9-5, although he suspects if he devoted the same energy to one of his projects it could replace his income (no doubts from me here). This same fear means that he can run his ventures with less fear. This way, he can experiment with freedom and isn’t risking the ranch with a young family to consider. For example, recently he stopped paid sponsors on his newsletter as it was more stress than the value of the income to him. Sam divides his time on evenings and weekends (unequally) between the following: Creator Club Validation Co Beta directory Consultancy The pure side hustle status magnifies the need to run lean, let’s jump into his process…. Sam’s lean newsletter curation and creation process Starting out publishing his personal newsletter Going against his expertise, Sam originally over-engineered his process.  He curated with Feedly and tried to automate the full writing process with Zapier. The trouble is that there are too many points of failure which can lead the whole  chain to break down, and you spend more time fixing the system. For a 200 subscriber newsletter, he needed to pare things back. His set-up now Sam scaled back and now simple builds automations when he needs them. He keeps the process simple, right down to the design and any welcome automations. Keeping things real We touched on the trend that keeping things raw is better. Content has come full circle with the advent of AI. Everything looks too perfect and consequently, people’s tastes are changing. Sam mentioned watermarks that show content isn’t AI written, and we referenced content such as Greg Isenberg’s sketches, and Chris Donnelly’s image posts. \\Step by Step Process:\\ Using Stoop Inbox to manage sources Curation with Pocket Managing content with Airtable and Zapier Using Bearly to summarise Substack for writing Monitoring content sources Sam uses Stoop Inbox, an RSS curation tool, to manage his content sources. It gives him a dedicated email address for newsletters and he follows an Inbox Zero methodology. He checks in daily in Stoop, and on X, Reddit and IndieHackers. With X, he just uses the standard interface but has been careful to curate his feed, sometimes adding in extra notifications to hear from interesting people. Highlighting content When curating links, Sam uses Arc browser and the Pocket extension to save links. It’s super simple and lightweight. He creates tags which trigger an automation that curates the link to Airtable. If you watch the video, here’s a shoutout to Alice, the AI interface I use which has recently featured on Product Hunt. It’s a fantastic tool with bags of potential to enhance a solopreneur’s life. Ranking and sorting content He sends the links indexed using Pocket to a basic Airtable base via Zapier. From there, he grades the content and sets aside some time to read it in more depth. Pocket pulls through the title, metadata, and URL link. Review Sam does this manually but has used a tool as a shortcut for digesting long form content — Bearly.ai. Bearly.ai was created by Trung Phan and linking back to raw content, Trung is 1/3 of the hosts on the Not Investment Advice podcast. Its irreverent style and thumbnail are an example of a successful podcast that doesn’t over polish. Writing it all up Being a huge Notion fan (check out the free templates on his site), Sam originally used Notion for writing and linked it into Revue. When Elon sunsetted Revue, he switched to Substack. He loves the Substack interface so drafts in Substack based on a duplication of last month’s edition. Before publishing, Sam runs through a 10-point Notion checklist, which he shared with me. Parting Advice Keep your tool stack as lean as possible. Avoid tool switching to the shiny new object. Getting launched quickly is key. Don’t think that you have to be everywhere for distribution, Sam sticks with what he knows on X and LinkedIn. Overall, he advises just keeping things simple and therefore minimising risk. Resources He says they’re cliche, but I don’t agree; they’re timeless. Paul Graham of Y Combinator is someone Sam recommends following. He doesn’t write much, which is great as Sam gets anxiety when someone good often writes and he can’t keep up with the writing. His content is well thought out and distills complex concepts in entrepreneurship and startups. In addition, Sam loves Naval Ravikant’s approach. He mentions checking out the Almanac of Naval Ravikant for collected wisdom. Follow Sam’s Journey Again, not going to link here but you can find Sam’s stuff easily enough if you want to. His personal website is beautiful and contains loads of free downloads. He has also curated personal websites he admires if you need some inspiration. Sam is a super nice guy so reach out to him, I did before I started my personal blog recently, and he gave me some great advice. Also, worth keeping an eye on Validation Co, where he aims to help early-stage makers and creators validate their ideas. He’s building super slow — trying to enjoy the process without unachievable deadlines. Maintaining his stamina and passion. Amazing, I hope he writes more about that soon! -- That’s my second shot at an interview, hope you enjoyed it and found something useful in it. I’m talking to a marketplace founder who spends 2–3 hours per month his project, a multiple job board owner with a 9-5 and a leading book designer next. As this is my side project, should I keep going?

Launch your landing page and marketing website faster even if you aren't a designer
reddit
LLM Vibe Score0
Human Vibe Score1
dansmogThis week

Launch your landing page and marketing website faster even if you aren't a designer

As a frontend engineer  who is also good with UI/UX design,  aside from building dashboard and web apps all the time, one other thing I get to build is a landing page or marketing website to sell the product we are building. And just like dashboards, there are lots of repeatable sections in marketing website, just the uniqueness of designs. I find myself always building marketing websites from scratch always, which led me to building astrolandingpage.com , with my years of experience designing and building landing pages, I thought, this is good for me to do. to help me Save time and cut cost Launch early and validate my idea faster Launch beautiful landing page even if you are not a designer With copies that helps you converts, as each templates comes with examples copies and how to write them Although, I’ve been scared to launch this, because I think people might judge me, I probably wont make any sale, all because of how AI is turning out to be. With astrolandingpage, either you are a developer, a non technical person, a freelancer, an agency, a startup founder, you can launch beautiful and modern designs full fledge template in 20 minutes You get to pick from lots of templates and also UI components that you can copy and paste without the need to redesign  I believe this would be of great value to you and also I want to have fun building this. check it our here Astrolandingpage wesbite

Just reached 300 users in 3 months!!!
reddit
LLM Vibe Score0
Human Vibe Score1
w-elm_This week

Just reached 300 users in 3 months!!!

Just reached 300 users after 3 months live!!! My co-founder has been posting a bit here and always got some strong support and he suggested I share my side of things so here it is: How it started I co-founded AirMedia almost a year ago and we both didn’t know much about design/marketing/coding (just studied programming during my 6-month exchange period. The quickest way to get started seemed to get a no-code product that we could put in front of users and get feedback. My co-founder then started learning about bubble and we put together a basic platform to show users. I was working on a custom-code database in the meantime and decided after month 2 that we wanted to get something better I.e. AI would be interacting with the UI and had to do everything custom-code for it. We’re now month 3 and started from scratch again. While I was working on the code, we started talking to some potential users and selling lifetime deals to validate the idea (this is where I would start if I had to do it over again). Well I progressively found out it was more complicated than expected and we only released our first beta product last August (6 months later) Some challenges pre-launch: Getting the Meta/LinkedIn permissions for scheduling took around 1 month As the whole process took more time than expected, the waitlist of 300 that we managed to put together only converted by 10% (into free users). Please don’t make our mistakes and always keep your waitlist updated on what’s going on. Some challenges post-launch: Getting the right feedback and how to prioritise Getting users Monetising (yes - we’re bootstrapped) To get the best feedback we implemented some tracking (according to GDPR of course) on the platform and implemented Microsoft Clarity. The latter is a game-changer, if you have a SaaS and don’t use it you’re missing out. I wasn’t really into getting users as my co-founder handled that but it’s mainly manual and personalised LinkedIn outreach at the beginning and Reddit sharing about the progress, answering questions and getting some feedback at the same time. To monetise we realised we’re too common and there are 100+ other nice schedulers around so we’re now focusing on cracking the content creation side of AI (to be released next week 👀) as there’s much less competitors and it seems like that’s our users want. In the meantime of growing the company, we had to find a way to pay the bills as it’s two of us living together. So my co-founder started using the bubble skills gained and doing some freelance. He did around 7 platforms the last 6 months and we’re now just launching a bubble agency as a part of the main company to get your idea of a SaaS done in 30 days. That’s QuickMVP. It seemed like the right move to help other people (I met many non-technical founder looking for someone to bring their idea to life that didn’t cost $10k and was reliable) and include the AirMedia subscription in the package so let’s see how this next step plays out. Thanks for reading until here :)

I Launched a Side Project That People Love, But Scaling It Is Brutal
reddit
LLM Vibe Score0
Human Vibe Score1
ImLiterallyFakeThis week

I Launched a Side Project That People Love, But Scaling It Is Brutal

I Built a Side Project with Great Engagement—But It’s Still Not Making Money Six months ago, I started a side project in the consumer AI space: opencharacter.org. It’s been a grind, but I’ve built something people actually love—high retention, strong engagement, and users spending a ton of time on the platform. By all product metrics, it’s a success. But financially? It’s not quite there yet. The biggest challenge hasn’t been technical, managing infrastructure, or even dealing with a community. It’s distribution. Getting people to actually find and use your side project at scale is insanely hard. What’s Worked Reddit – Thoughtful, non-spammy comments in relevant threads drove early users. Instagram – Short-form videos brought in surprising traction. Paid ads – Somewhat effective, but tough to balance customer acquisition costs and revenue. What Hasn’t (Yet) TikTok – Dozens of videos later, still struggling to make it a reliable growth channel. Discord – Great for engagement, but not a strong acquisition channel. Recently, I brought on a co-founder who has done over 100 million views on Instagram Reels in under two years, so I’m hopeful we can crack the growth formula. Because without a scalable system for getting users, even a great side project won’t reach its potential. If I could start over, I’d think much more about distribution before building. Would love to hear from others—how do you drive growth for your side project?

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I very rarely have stuff to post on Reddit, but I share how my project is going on, just random stuff, and memes on X. In case few might want to keep up 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2B products beats building B2C products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

I built an app to find who’s interested in your app by monitoring social media
reddit
LLM Vibe Score0
Human Vibe Score0.857
lmcaraigThis week

I built an app to find who’s interested in your app by monitoring social media

Hi everyone! I hope you’re all doing great folks! I’d love to know your thoughts about what I’ve been working on recently! 🙏 If you’re busy or wanna see the app scroll to the bottom to see the video demo, otherwise, continue reading. Very brief presentation of myself first: I’m Marvin, and I live in Florence, Italy, 👋 This year I decided to go all-in on solopreneurship, I’ve been in tech as Software Engineer first, and then in Engineering Leadership for 10+ years, I’ve always worked in startups, except for last year, when I was the Director of Engineering at the Linux Foundation. Follow me on X or subscribe to my newsletter if you’re curious about this journey. The vision Most founders start building digital startups because they love crafting and being impactful by helping other people or companies. First-time founders then face reality when they realize that nailing distribution is key. All other founders already learned this, most likely the hard way. The outcome is the same: a great product will unlikely succeed without great distribution. Letting people know about your product should be easier and not an unfair advantage. The following meme is so true, but also quite sad. I wanna help this to change by easing the marketing and distribution part. https://preview.redd.it/g52pz46upqtd1.png?width=679&format=png&auto=webp&s=cf8398a3592f25c05c396bb2ff5d028331a36315 The story behind Distribution is a huge space: lead generation, demand generation, content marketing, social media marketing, cold outreach, etc. I cannot solve everything altogether. A few months ago I was checking the traffic to a job board I own (NextCommit). That's when I noticed that the “baseline” traffic increased by almost 10x. 🤯 I started investigating why. I realized that the monthly traffic from Reddit increased from 10-ish to 350+. Yeah, the job board doesn’t get much traffic in total, but this was an interesting finding. After digging more, it seems that all that increase came from a single Reddit comment: https://www.reddit.com/r/remotework/comments/1crwcei/comment/l5fb1yy/ This is the moment when I realized two things: It’s cool that someone quoted it! Engaging with people on Reddit, even just through comments, can be VERY powerful. And this was just one single comment! https://preview.redd.it/nhxcv4h2qqtd1.png?width=1192&format=png&auto=webp&s=d31905f56ae59426108ddbb61f2d6b668eedf27a Some weeks later I started noticing a few apps like ReplyGuy. These were automatically engaging with Reddit posts identified through keywords. I decided to sign up for the free plan of ReplyGuy to know more, but many things didn’t convince me: One of the keywords I used for my job board was “remote” and that caused a lot of false positives, The generated replies were good as a kickstart, but most of the time they needed to be tuned to sound more like me. The latter is expected. In the end, the platform doesn’t know me, doesn’t know my opinions, doesn’t know my story, etc.. The only valuable feature left for me was identifying the posts, but that also didn’t work well for me due to false positives. I ended up using it after only 15 minutes. I’m not saying they did a poor job, but it was not working well for me. In the end, the product got quite some traction, so it helped confirm there’s interest in that kind of tool. What bothered me was the combination of auto-replies that felt non-authentic. It’s not that I’m against bots, automation is becoming more common, and people are getting used to it. But in this context, I believe bots should act as an extension of ourselves, enhancing our interactions rather than just generating generic responses (like tools such as HeyGen, Synthesia, PhotoAI). I’m not there yet with my app, but a lot can be done. I'd love to reach the point where a user feels confident to automate the replies because they sound as written by themselves. I then decided to start from the same space, helping engage with Reddit posts, for these reasons: I experienced myself that it can be impactful, It aligns with my vision to ease distribution, Some competitors validated that there’s interest in this specific feature and I could use it as a starting point, I’m confident I can provide a better experience even with what I already have. The current state The product currently enables you to: Create multiple projects and assign keywords, Find the posts that are relevant for engagement using a fuzzy match of keywords and post-filtered using AI to avoid false positives, Provide an analysis of each post to assess the best way to engage, Generate a helpful reply that you’d need to review and post. So currently the product is more on the demand gen side, but this is just the beginning. I’m speaking with people from Marketing, Sales, RevOps, and Growth agencies to better understand their lives, struggles, and pain points. This will help me ensure that I build a product that enables them to help users find the products they need. I’m currently looking for up to 10 people to join the closed beta for free. If you’re interested in joining or to get notified once generally available you can do it here! https://tally.so/r/3XYbj4 After the closed beta, I will start onboarding people in batches. This will let me gather feedback, iterate, and provide a great experience to everyone aligned with my vision. I’m not going to add auto-reply unless the conditions I explained above are met or someone convinces me there’s a good reason for doing so. Each batch will probably get bigger with an increasing price until I’m confident about making it generally available. The next steps The next steps will depend on the feedback I get from the customers and the learnings from the discovery calls I’m having. I will talk about future developments in another update, but I have some ideas already. Check out the demo video below, and I'd love to hear your thoughts! ❤️ Oh and BTW, the app is called HaveYouHeard! https://reddit.com/link/1fzsnrd/video/34lat9snpqtd1/player This is the link to Loom in case the upload doesn't work: https://www.loom.com/share/460c4033b1f94e3bb5e1d081a05eedfd

We've built an AI-powered business building platform, and we're looking for entrepreneurs to try out the MVP!
reddit
LLM Vibe Score0
Human Vibe Score1
UltraIngoThis week

We've built an AI-powered business building platform, and we're looking for entrepreneurs to try out the MVP!

Hey r/sideproject! I'm Felix, co-founder of Buildpad, and we're excited to share our latest project with you. https://reddit.com/link/1eve8n4/video/ahktfda2bgjd1/player Buildpad is an AI-powered (Claude Sonnet 3.5) business-building platform that guides entrepreneurs through every step of creating and growing a business. Here's what makes it unique: Idea validation: Leverage Reddit's API to get real-world data on your ideas through posts, comments and discussions. Structured process: Follow a clear roadmap from idea validation to launch and beyond. Team collaboration: Work with co-founders, all assisted by the same AI. Central context bank: Our AI remembers everything about your project for consistent, informed guidance. We're solving the common problem of entrepreneurs not knowing what to do next, especially during idea generation and validation phases. With Buildpad, you can validate your ideas by searching for relevant keywords across Reddit, helping you understand if people are actually experiencing the problems you're aiming to solve. We're in the MVP stage and looking for early adopters to test the platform and provide feedback. We'd love to hear from you: Does this solution resonate with your entrepreneurial challenges? What features would you find most valuable in a tool like this? Any thoughts or concerns about using AI for startup guidance? If you're interested in trying out Buildpad or have any questions, please comment below or DM me. Thanks for checking it out! buildpad.io

I built an AI social monitoring that looks for relevant posts, not just keywords
reddit
LLM Vibe Score0
Human Vibe Score1
Chunky_CheezeThis week

I built an AI social monitoring that looks for relevant posts, not just keywords

Hey everyone! I've been working on a side project that I'm excited to share with you all—it's called BillyBuzz What is BillyBuzz? BillyBuzz is an AI-powered social monitoring tool that helps businesses spot and analyze relevant conversations on social media platforms, starting with Reddit. It surfaces the most promising leads directly to your Slack channels, email, or Discord, so you don't have to spend hours scrolling through threads. Why I Built It I was spending a ton of time searching for relevant posts in niche subreddits for another product I was working to get off the ground. It was not only time-consuming but also distracting (you know how easy it is to fall into a Reddit rabbit hole). I couldn't find any existing tool that did more than basic keyword searches—which wasn't enough, especially if your brand name has multiple meanings (like "Apple"). So, I decided to build BillyBuzz. It uses AI to understand your business, products, target audience, and value proposition, alongside specific keywords you might want to include. This way, it finds posts where you can genuinely contribute by introducing your product. I used BillyBuzz for a previous product launch and managed to grow it to over $80k/month in volume within about 3 months, purely through Reddit engagement. How It Works Add Information About Your Business: Input details about your business and products. Select Subreddits to Monitor: Choose the subreddits relevant to your niche. Receive Timely Alerts: Get notified via Slack, email, or Discord when relevant posts are identified. Features AI-Powered Relevancy Scoring: Goes beyond keywords by understanding the context to identify truly relevant opportunities. Subreddit Tracking: Monitor specific subreddits with AI-recommended keywords tailored to your company's needs. Real-Time Alerts: Checks for new relevant conversations every 15 minutes, so you can engage at the perfect time. Automated Categorization (Coming Soon): The AI will categorize conversations into topics like competitors, customer complaints, and more. Who It's For BillyBuzz is designed for startup founders, growth marketers, and small business owners who are tech-savvy and focused on scaling their operations. If you're looking to save time and engage more effectively with your target audience on social media, this might be up your alley. Looking for Feedback I'm sharing this here because I'd love to get your thoughts, feedback, or any suggestions you might have. If you're interested in checking it out, you can find more info here: https://billybuzz.com. Feel free to ask me anything or share your experiences with similar challenges!

[N] Netflix and European Space Agency no longer working with Siraj Raval
reddit
LLM Vibe Score0
Human Vibe Score0
inarrearsThis week

[N] Netflix and European Space Agency no longer working with Siraj Raval

According to article in The Register: A Netflix spokesperson confirmed to The Register it wasn’t working with Raval, and the ESA has cancelled the whole workshop altogether. “The situation is as it is. The workshop is cancelled, and that’s all,” Guillaume Belanger, an astrophysicist and the INTEGRAL Science Operations Coordinator at the ESA, told The Register on Monday. Raval isn’t about to quit his work any time soon, however. He promised students who graduated from his course that they would be referred to recruiters at Nvidia, Intel, Google and Amazon for engineering positions, or matched with a startup co-founder or a consulting client. In an unlisted YouTube video recorded live for his students discussing week eight of his course, and seen by El Reg, he read out a question posed to him: “Will your referrals hold any value now?” “Um, yeah they’re going to hold value. I don’t see why they wouldn’t. I mean, yes, some people on Twitter were angry but that has nothing to do with… I mean… I’ve also had tons of support, you know. I’ve had tons of support from people, who, uh, you know, support me, who work at these companies. He continues to justify his actions: “Public figures called me in private to remind me that this happens. You know, people make mistakes. You just have to keep going. They’re basically just telling me to not to stop. Of course, you make mistakes but you just keep going,” he claimed. When The Register asked Raval for comment, he responded: I've hardly taken any time off to relax since I first started my YouTube channel almost four years ago. And despite the enormous amount of work it takes to release two high quality videos a week for my audience, I progressively started to take on multiple other projects simultaneously by myself – a book, a docu-series, podcasts, YouTube videos, the course, the school of AI. Basically, these past few weeks, I've been experiencing a burnout unlike anything I've felt before. As a result, all of my output has been subpar. I made the [neural qubits] video and paper in one week. I remember wishing I had three to six months to really dive into quantum machine-learning and make something awesome, but telling myself I couldn't take that long as it would hinder my other projects. I plagiarized large chunks of the paper to meet my self-imposed one-week deadline. The associated video with animations took a lot more work to make. I didn't expect the paper to be cited as serious research, I considered it an additional reading resource for people who enjoyed the associated video to learn more about quantum machine learning. If I had a second chance, I'd definitely take way more time to write the paper, and in my own words. I've given refunds to every student who's asked so far, and the majority of students are still enrolled in the course. There are many happy students, they're just not as vocal on social media. We're on week 8 of 10 of my course, fully committed to student success. “And, no, I haven't plagiarized research for any other paper,” he added. https://www.theregister.co.uk/2019/10/14/ravelaiyoutube/

looking for ML aficionado in London for great chats and maybe a startup
reddit
LLM Vibe Score0
Human Vibe Score0.333
MLstartupLondonThis week

looking for ML aficionado in London for great chats and maybe a startup

TL;DR? Here's the gist: Me: 3 startups under my belt. Started as a programmer, then trainer, then entrepreneur, now CTO & Board member for a leading customer insight company part of large bank. Large system and infrastructure specialist. Extensive & practical experience in raising funds and successfully managing both startup and established businesses. Fascinated by the power of data. Can't imagine myself spending the rest of my life being a cog in the machine. You: Machine learning specialist, programmer, analyst, understands how to navigate and crunch large datasets, from BI to predictive analytics. Interested in implementing applications from fraud detection to margin improvements through better clustering regardless of industry. Fascinated by the power of data. Can't imagine himself spending the rest of his or her life being a cog in the machine. The startup: The core idea it to build platforms and systems around the progressively larger datasets held by various sized companies, helping them solve big issues - cost reduction, profitability and reducing risk. I’m an infrastructure and software specialist and have access to 1) systems, 2) datasets 3) extensive practical in certain industry segments, namely web-scale companies and tier 1 retailers. This project is in the very early planning stages. I'm looking forward to discuss the form it could take with like-minded individuals but with complementary skills sets, namely: predictive analytics & AI as it applies to machine learning on large datasets. Want more specifics ideas? I have plenty of these, but I’m sure you do to, so let’s meet face to face and discuss them. Ultimately the goal is to crystallize on a specific concept, develop together a minimum viable product and get the company bootstrapped or angel-funded (something I also have plenty of experience with), all via a lean startup model. My philosophy on startups: Startups built in one’s free time often fail because they drag on, ending up as little more than side projects you can’t quite get rid of (due to co-founder guilt, or perhaps the little money they bring in every month). The core idea for this project is based on lean, that is, to launch a minimum viable product as early as possible. Getting feedback. Measuring results (important!). Pivot if it’s not working. This helps tremendously in staying motivated, limits the dreaded paralyzing fear of failure, and more importantly, keep the time from inception to first client/funding to a minimum. If it sounds interesting please message me and we can exchange contact details! Worst that can happen is we have a great chat!

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

[D] Why is the AI Hype Absolutely Bonkers
reddit
LLM Vibe Score0
Human Vibe Score1
good_riceThis week

[D] Why is the AI Hype Absolutely Bonkers

Edit 2: Both the repo and the post were deleted. Redacting identifying information as the author has appeared to make rectifications, and it’d be pretty damaging if this is what came up when googling their name / GitHub (hopefully they’ve learned a career lesson and can move on). TL;DR: A PhD candidate claimed to have achieved 97% accuracy for coronavirus from chest x-rays. Their post gathered thousands of reactions, and the candidate was quick to recruit branding, marketing, frontend, and backend developers for the project. Heaps of praise all around. He listed himself as a Director of XXXX (redacted), the new name for his project. The accuracy was based on a training dataset of ~30 images of lesion / healthy lungs, sharing of data between test / train / validation, and code to train ResNet50 from a PyTorch tutorial. Nonetheless, thousands of reactions and praise from the “AI | Data Science | Entrepreneur” community. Original Post: I saw this post circulating on LinkedIn: https://www.linkedin.com/posts/activity-6645711949554425856-9Dhm Here, a PhD candidate claims to achieve great performance with “ARTIFICIAL INTELLIGENCE” to predict coronavirus, asks for more help, and garners tens of thousands of views. The repo housing this ARTIFICIAL INTELLIGENCE solution already has a backend, front end, branding, a README translated in 6 languages, and a call to spread the word for this wonderful technology. Surely, I thought, this researcher has some great and novel tech for all of this hype? I mean dear god, we have branding, and the author has listed himself as the founder of an organization based on this project. Anything with this much attention, with dozens of “AI | Data Scientist | Entrepreneur” members of LinkedIn praising it, must have some great merit, right? Lo and behold, we have ResNet50, from torchvision.models import resnet50, with its linear layer replaced. We have a training dataset of 30 images. This should’ve taken at MAX 3 hours to put together - 1 hour for following a tutorial, and 2 for obfuscating the training with unnecessary code. I genuinely don’t know what to think other than this is bonkers. I hope I’m wrong, and there’s some secret model this author is hiding? If so, I’ll delete this post, but I looked through the repo and (REPO link redacted) that’s all I could find. I’m at a loss for thoughts. Can someone explain why this stuff trends on LinkedIn, gets thousands of views and reactions, and gets loads of praise from “expert data scientists”? It’s almost offensive to people who are like ... actually working to treat coronavirus and develop real solutions. It also seriously turns me off from pursuing an MS in CV as opposed to CS. Edit: It turns out there were duplicate images between test / val / training, as if ResNet50 on 30 images wasn’t enough already. He’s also posted an update signed as “Director of XXXX (redacted)”. This seems like a straight up sleazy way to capitalize on the pandemic by advertising himself to be the head of a made up organization, pulling resources away from real biomedical researchers.

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!
reddit
LLM Vibe Score0
Human Vibe Score1
regalalgorithmThis week

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!

Hi there, just sharing the latest edition of our AI news digest newsletter! We're just a couple of AI grad students doing this for fun, so hope the self promotion is not too annoying (also, welcome feedback). See it below, and feel free to subscribe. Mini Briefs Robotics, AI, and Cloud Computing Combine to Supercharge Chemical and Drug Synthesis IBM recently demoed a complex system for chemical testing and drug synthesis. The system has an AI component that predicts the results of chemical reactions, and a fully automated robotic experiment setup that runs chemical tests 24/7. Users can access the remote robotics lab online, and IBM can also install the system on-premise. With these tools working together, IBM is hoping to reduce typical drug discovery and verification time by half. AI researchers use heartbeat detection to identify deepfake videos Researchers from multiple groups are tackling the challenge of detecting deepfake videos by analyzing the apparent heartbeat of the people depicted in the video. This is possible, because a person’s blood flow changes their skin color ever so slightly, and this change is often detectable via a process called photoplethysmography (PPG). Because deepfakes are not currently optimizing to generate realisitic heartbeats, temporal or spatial anomalies in PPG signals allow resesarchers to detect deepfakes with a 97% accuracy. Advances & Business This AI Expert From Senegal Is Helping Showcase Africans In STEM \- Adji Bousso Dieng will be Princeton’s School of Engineering’s first Black female faculty. Google’s AI-powered flood alerts now cover all of India and parts of Bangladesh \- India, the world’s second most populated nation, sees more than 20% of the global flood-related fatalities each year as overrun riverbanks sweep tens of thousands of homes with them. Two years ago, Google volunteered to help. Finding magnetic eruptions in space with an AI assistant \- MMS look for explosive reconnection events as it flies through the magnetopause - the boundary region where Earth’s magnetic butts up against the solar wind that flows throughout the solar system. This know-it-all AI learns by reading the entire web nonstop \- Diffbot is building the biggest-ever knowledge graph by applying image recognition and natural-language processing to billions of web pages. Bosch and Ford will test autonomous parking in Detroit \- Ford, Bosch, and Dan Gilbert’s real estate firm Bedrock today detailed an autonomous parking pilot scheduled to launch in September at The Assembly, a mixed-used building in Detroit’s Corktown neighborhood. Create your own moody quarantine music with Google’s AI \- Lo-Fi Player, the latest project out of Google Magenta, lets you mix tunes with the help of machine learning by interacting with a virtual room. Apple launches AI/ML residency program to attract niche experts \- As Apple’s artificial language and machine learning initiatives continue to expand, its interest in attracting talent has grown - a theme that’s barely under the surface of the company’s occasionally updated Machine Learning Research blog. Dusty Robotics CEO Tessa Lau Discusses Robotics Start-Ups and Autonomous Robots for Construction \- Tessa Lau is Founder/CEO at Dusty Robotics, whose mission is to increase construction industry productivity by introducing robotic automation on the jobsite. Concerns & Hype Google Offers to Help Others With the Tricky Ethics of AI \- Companies pay cloud computing providers like Amazon, Microsoft, and Google big money to avoid operating their own digital infrastructure. The Peace Dividends Of The Autonomous Vehicle Wars \- The rapid growth of the mobile market in the late 2000s and early 2010s led to a burst of technological progress. Ethics must be part of the development process’ \- The increasing use of AI (artificial intelligence) in the development of new medical technologies demands greater attention to ethical aspects. Analysis & Policy China’s new AI trade rules could hamper a TikTok sale \- TikTok’s attempt to sell itself and avert a possible US ban may run into some complications. The Wall Street Journal reports that China has unveiled new restrictions on AI technology exports that could affect TikTok. Podcast Check out our weekly podcast covering these stories! Website | RSS | iTunes | Spotify | YouTube

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!
reddit
LLM Vibe Score0
Human Vibe Score1
regalalgorithmThis week

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!

Hi there, just sharing the latest edition of our AI news digest newsletter! We're just a couple of AI grad students doing this for fun, so hope the self promotion is not too annoying (also, welcome feedback). See it below, and feel free to subscribe. Mini Briefs Robotics, AI, and Cloud Computing Combine to Supercharge Chemical and Drug Synthesis IBM recently demoed a complex system for chemical testing and drug synthesis. The system has an AI component that predicts the results of chemical reactions, and a fully automated robotic experiment setup that runs chemical tests 24/7. Users can access the remote robotics lab online, and IBM can also install the system on-premise. With these tools working together, IBM is hoping to reduce typical drug discovery and verification time by half. AI researchers use heartbeat detection to identify deepfake videos Researchers from multiple groups are tackling the challenge of detecting deepfake videos by analyzing the apparent heartbeat of the people depicted in the video. This is possible, because a person’s blood flow changes their skin color ever so slightly, and this change is often detectable via a process called photoplethysmography (PPG). Because deepfakes are not currently optimizing to generate realisitic heartbeats, temporal or spatial anomalies in PPG signals allow resesarchers to detect deepfakes with a 97% accuracy. Advances & Business This AI Expert From Senegal Is Helping Showcase Africans In STEM \- Adji Bousso Dieng will be Princeton’s School of Engineering’s first Black female faculty. Google’s AI-powered flood alerts now cover all of India and parts of Bangladesh \- India, the world’s second most populated nation, sees more than 20% of the global flood-related fatalities each year as overrun riverbanks sweep tens of thousands of homes with them. Two years ago, Google volunteered to help. Finding magnetic eruptions in space with an AI assistant \- MMS look for explosive reconnection events as it flies through the magnetopause - the boundary region where Earth’s magnetic butts up against the solar wind that flows throughout the solar system. This know-it-all AI learns by reading the entire web nonstop \- Diffbot is building the biggest-ever knowledge graph by applying image recognition and natural-language processing to billions of web pages. Bosch and Ford will test autonomous parking in Detroit \- Ford, Bosch, and Dan Gilbert’s real estate firm Bedrock today detailed an autonomous parking pilot scheduled to launch in September at The Assembly, a mixed-used building in Detroit’s Corktown neighborhood. Create your own moody quarantine music with Google’s AI \- Lo-Fi Player, the latest project out of Google Magenta, lets you mix tunes with the help of machine learning by interacting with a virtual room. Apple launches AI/ML residency program to attract niche experts \- As Apple’s artificial language and machine learning initiatives continue to expand, its interest in attracting talent has grown - a theme that’s barely under the surface of the company’s occasionally updated Machine Learning Research blog. Dusty Robotics CEO Tessa Lau Discusses Robotics Start-Ups and Autonomous Robots for Construction \- Tessa Lau is Founder/CEO at Dusty Robotics, whose mission is to increase construction industry productivity by introducing robotic automation on the jobsite. Concerns & Hype Google Offers to Help Others With the Tricky Ethics of AI \- Companies pay cloud computing providers like Amazon, Microsoft, and Google big money to avoid operating their own digital infrastructure. The Peace Dividends Of The Autonomous Vehicle Wars \- The rapid growth of the mobile market in the late 2000s and early 2010s led to a burst of technological progress. Ethics must be part of the development process’ \- The increasing use of AI (artificial intelligence) in the development of new medical technologies demands greater attention to ethical aspects. Analysis & Policy China’s new AI trade rules could hamper a TikTok sale \- TikTok’s attempt to sell itself and avert a possible US ban may run into some complications. The Wall Street Journal reports that China has unveiled new restrictions on AI technology exports that could affect TikTok. Podcast Check out our weekly podcast covering these stories! Website | RSS | iTunes | Spotify | YouTube

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!
reddit
LLM Vibe Score0
Human Vibe Score1
regalalgorithmThis week

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!

Hi there, just sharing the latest edition of our AI news digest newsletter! We're just a couple of AI grad students doing this for fun, so hope the self promotion is not too annoying (also, welcome feedback). See it below, and feel free to subscribe. Mini Briefs Robotics, AI, and Cloud Computing Combine to Supercharge Chemical and Drug Synthesis IBM recently demoed a complex system for chemical testing and drug synthesis. The system has an AI component that predicts the results of chemical reactions, and a fully automated robotic experiment setup that runs chemical tests 24/7. Users can access the remote robotics lab online, and IBM can also install the system on-premise. With these tools working together, IBM is hoping to reduce typical drug discovery and verification time by half. AI researchers use heartbeat detection to identify deepfake videos Researchers from multiple groups are tackling the challenge of detecting deepfake videos by analyzing the apparent heartbeat of the people depicted in the video. This is possible, because a person’s blood flow changes their skin color ever so slightly, and this change is often detectable via a process called photoplethysmography (PPG). Because deepfakes are not currently optimizing to generate realisitic heartbeats, temporal or spatial anomalies in PPG signals allow resesarchers to detect deepfakes with a 97% accuracy. Advances & Business This AI Expert From Senegal Is Helping Showcase Africans In STEM \- Adji Bousso Dieng will be Princeton’s School of Engineering’s first Black female faculty. Google’s AI-powered flood alerts now cover all of India and parts of Bangladesh \- India, the world’s second most populated nation, sees more than 20% of the global flood-related fatalities each year as overrun riverbanks sweep tens of thousands of homes with them. Two years ago, Google volunteered to help. Finding magnetic eruptions in space with an AI assistant \- MMS look for explosive reconnection events as it flies through the magnetopause - the boundary region where Earth’s magnetic butts up against the solar wind that flows throughout the solar system. This know-it-all AI learns by reading the entire web nonstop \- Diffbot is building the biggest-ever knowledge graph by applying image recognition and natural-language processing to billions of web pages. Bosch and Ford will test autonomous parking in Detroit \- Ford, Bosch, and Dan Gilbert’s real estate firm Bedrock today detailed an autonomous parking pilot scheduled to launch in September at The Assembly, a mixed-used building in Detroit’s Corktown neighborhood. Create your own moody quarantine music with Google’s AI \- Lo-Fi Player, the latest project out of Google Magenta, lets you mix tunes with the help of machine learning by interacting with a virtual room. Apple launches AI/ML residency program to attract niche experts \- As Apple’s artificial language and machine learning initiatives continue to expand, its interest in attracting talent has grown - a theme that’s barely under the surface of the company’s occasionally updated Machine Learning Research blog. Dusty Robotics CEO Tessa Lau Discusses Robotics Start-Ups and Autonomous Robots for Construction \- Tessa Lau is Founder/CEO at Dusty Robotics, whose mission is to increase construction industry productivity by introducing robotic automation on the jobsite. Concerns & Hype Google Offers to Help Others With the Tricky Ethics of AI \- Companies pay cloud computing providers like Amazon, Microsoft, and Google big money to avoid operating their own digital infrastructure. The Peace Dividends Of The Autonomous Vehicle Wars \- The rapid growth of the mobile market in the late 2000s and early 2010s led to a burst of technological progress. Ethics must be part of the development process’ \- The increasing use of AI (artificial intelligence) in the development of new medical technologies demands greater attention to ethical aspects. Analysis & Policy China’s new AI trade rules could hamper a TikTok sale \- TikTok’s attempt to sell itself and avert a possible US ban may run into some complications. The Wall Street Journal reports that China has unveiled new restrictions on AI technology exports that could affect TikTok. Podcast Check out our weekly podcast covering these stories! Website | RSS | iTunes | Spotify | YouTube

Is being a solopreneur really that fatal?
reddit
LLM Vibe Score0
Human Vibe Score1
Upbeat_Challenge5460This week

Is being a solopreneur really that fatal?

Okay, so I need to get something off my chest... People love to say that solopreneurship is a death sentence. That if you can’t find a cofounder, you’ll never build a team, never scale, never succeed. But I wonder about the other side of the coin—something that, browsing here and in other subs, doesn’t seem to get nearly as much attention—how fatal cofounder conflicts can be. I’ve personally seen three startups fail before even getting to an MVP because of cofounder issues. One of them was a company I was briefly a cofounder for. The other two are startups coworkers were previous cofounders for that fell apart before they even got to an MVP. In each case, it wasn’t lack of funding or product-market fit that killed them—it was the people. Yet, somehow, the startup world keeps pushing the idea that finding a cofounder is the most important thing you can do. But here’s the thing: if you can’t find a cofounder, that doesn’t mean you can’t build a business. It doesn’t even mean you can’t build a team. With the tools available today (no-code, AI, fractional hiring), a single person can get an MVP off the ground, validate demand, and take those first steps without needing to rush into a partnership with someone they barely know. And also—I wonder how many people actually succeed with a cofounder they met casually at a networking event or online? People talk about the risks of going solo, but not enough about the risks of tying your company’s future to someone you just met. (If you’re going to have a cofounder, IMO it should be someone you trust deeply, someone whose skills and working style you know complement yours—not just someone you brought on because startup X/YouTube told you to.). At the end of the day, I honestly think it’s about the product. If you can build something valuable and find market fit—whether solo or with a team—you’ll have the leverage to hire, partner, and grow. That’s what actually matters. That said—I know how incredibly hard it is to be a solopreneur—and not to have someone along the journey with you who can take half of the emotional and psychological burden, in addition to the actual work... What do you think? Any thoughts here appreciated.

If only someone told me this before my first startup
reddit
LLM Vibe Score0
Human Vibe Score0.625
johnrushxThis week

If only someone told me this before my first startup

If only someone told me this before my first startup: Validate idea first. I wasted a decade building stuff nobody needed. Incubators and VCs served to me as a validation, but I was so wrong. Kill my EGO. It’s not about me, but the user. I must want what the user wants, not what I want. My taste isn't important. The user has expectations, and I must fulfill them. Don’t chaise investors. Chase users, and then investors will be chasing me. I've never had more incoming interest from VC than now when I'm the least interested in them. Never hire managers. Only hire doers until PMF. So many people know how to manage people and so few can actually get sh\*t done barehand. Landing page is the least important thing in a startup. Pick a simple template, edit texts with a no-code website builder in less than an hour and that's it! At the early stage, I win traffic outside of my website, people are already interested, so don't make them search for the signup button among the texts! Focus on conversion optimization only when the traffic is consistent. Keep it to one page. Nobody gonna browse this website. Hire only fullstack devs. There is nothing less productive in this world than a team of developers for an early-stage product. One full stack dev building the whole product. That’s it. Chase global market from day 1. If the product and marketing are good, it will work on the global market too, if it’s bad, it won’t work on the local market too. So better go global from day 1, so that if it works, the upside is 100x bigger. I launched all startups for the Norwegian market, hoping we will scale to international at some point. I wish I launched to international from day 1 as I do now. The size of the market is 10000x bigger. I can validate and grow products in days, not in years as it used to be. Do SEO from day 2. As early as I can. I ignored this for 14 years. It’s my biggest regret. It takes just 5 minutes to get it done on my landing page. I go to Google Keyword Planner, enter a few keywords around my product, sort them by traffic, filter out high competition kws, pick the top 10, and place them natively on my home page and meta tags. Add one blog article every week. Either manually or by paying for an AI blogging tool. Sell features, before building them. Ask existing users if they want this feature. I run DMs with 10-20 users every day, where I chat about all my ideas and features I wanna add. I clearly see what resonates with me most and only go build those. If I don't have followers, try HN, Reddit, or just search on X for posts and ask it in the replies. People are helpful, they will reply if the question is easy to understand. Hire only people I would wanna hug. My cofounder, an old Danish man said this to me in 2015. And it was a big shift. I realized that if I don’t wanna hug the person, it means I dislike them on a chemical/animal level. Even if I can’t say why, but that’s the fact. Sooner or later, we would have a conflict and eventually break up. It takes up to 10 years to build a startup, make sure I do it with people I have this connection with. Invest all money into my startups and friends. Not crypt0, not stockmarket, not properties. I did some math, if I kept investing all my money into all my friends’ startups, that would be about 70 investments. 3 of them turned into unicorns eventually. Even 1 would have made the bank. Since 2022, I have invested all my money into my products, friends, and network. If I don't have friends who do startups, invest it in myself. Post on Twitter daily. I started posting here in March last year. It’s my primary source of new connections and growth. I could have started it earlier, I don't know why I didn't. Don’t work/partner with corporates. Corporations always seem like an amazing opportunity. They’re big and rich, they promise huge stuff, millions of users, etc. But every single time none of this happens. Because I talk to a regular employees there. They waste my time, destroy focus, shift priorities, and eventually bring in no users/money. Don’t get ever distracted by hype e.g. crypt0. I lost 1.5 years of my life this way. I met the worst people along the way. Fricks, scammers, thieves. Some of my close friends turned into thieves along the way, just because it was so common in that space. I wish this didn’t happen to me. I wish I was stronger and stayed on my mission. Don’t build consumer apps. Only b2b. Consumer apps are so hard, like a lottery. It’s just 0.00001% who make it big. The rest don’t. Even if I got many users, then there is a monetization challenge. I’ve spent 4 years in consumer apps and regret it. Don’t hold on bad project for too long, max 1 year. Some projects just don’t work. In most cases, it’s either the idea that’s so wrong that I can’t even pivot it or it’s a team that is good one by one but can’t make it as a team. Don’t drag this out for years. Tech conferences are a waste of time. They cost money, take energy, and time and I never really meet anyone there. Most people there are the “good” employees of corporations who were sent there as a perk for being loyal to the corporation. Very few fellow makers. Scrum is a Scam. For small teams and bootstrapped teams. If I had a team that had to be nagged every morning with questions as if they were children in kindergarten, then things would eventually fail. The only good stuff I managed to do happened with people who were grownups and could manage their stuff on their own. We would just do everything over chat as a sync on goals and plans. Outsource nothing at all until PMF. In a startup, almost everything needs to be done in a slightly different way, more creative, and more integrated into the vision. When outsourcing, the external members get no love and no case for the product. It’s just yet another assignment in their boring job. Instead of coming up with great ideas for my project they will be just focusing on ramping up their skills to get a promotion or a better job offer. Bootstrap. I spent way too much time raising money. I raised more than 10 times, preseed, seeded, and series A. But each time it was a 3-9 month project, meetings every week, and lots of destruction. I could afford to bootstrap, but I still went the VC-funded way, I don’t know why. To be honest, I didn’t know bootstrapping was a thing I could do or anyone does. It may take a decade. When I was 20, I was convinced it takes a few years to build and succeed with a startup. So I kept pushing my plans forward, to do it once I exited. Family, kids. I wish I married earlier. I wish I had kids earlier. No Free Tier. I'd launch a tool with a free tier, and it'd get sign-ups, but very few would convert. I'd treat free sign-ups as KPIs and run on it for years. I'd brag about signups and visitors. I'd even raise VC money with these stats. But eventually, I would fail to reach PMF. Because my main feedback would come from free users and the product turned into a perfect free product. Once I switched to "paid only" until I validated the product, things went really well. Free and paid users often need different products. Don't fall into this trap as I did. Being To Cheap. I always started by checking all competitors and setting the lowest price. I thought this would be one of the key advantages of my product. But no, I was wrong. The audience on $5 and $50 are totally different. $5: pain in the \*ss, never happy, never recommend me to a friend, leave in 4 months. $50: polite, give genuine feedback, happy, share with friends, become my big fan if I solve their request. I will fail. When I started my first startup. I thought if I did everything right, it would work out. But it turned out that almost every startup fails. I wish I knew that and I tried to fail faster, to get to the second iteration, then to the third, and keep going on, until I either find out nothing works or make it work. Use boilerplates. I wasted years of dev time and millions of VC money to pay for basic things. To build yet another sidebar, yet another dashboard, and payment integration... I had too much pride, I couldn't see myself taking someone else code as a basis for my product. I wanted it to be 100% mine, original, from scratch. Because my product seems special to me. Spend more time with Family & Friends. I missed the weddings of all my best friends and family. I was so busy. I thought if I didn't do it on time, the world would end. Looking back today, it was so wrong. I meet my friends and can't share those memories with them, which makes me very sad. I realized now, that spending 10% of my time with family and friends would practically make no negative impact on my startups. Build Products For Audiences I Love. I never thought of this. I'd often build products either for corporates, consumers, or for developers. It turns out I have no love for all 3. But I deeply love indie founders. Because they are risk-takers and partly kids in their hearts. Once I switched the focus to indie makers on my products, my level of joy increased by 100x for me. Ignore Badges and Awards I was chasing those awards just like everyone else. Going to ceremonies, signing up for events and stuff. I've won tons of awards, but none of those were eventually useful to my business. I better focused on my business and users. Write Every Single Day. When I was a kid, I loved writing stories. In school, they would give an assignment, and I'd often write a long story for it, however, the teacher would put an F on it. The reason was simple, I had an issue with the direction of the letters and the sequence of letters in the words. I still have it, it's just the Grammarly app helping me to correct these issues. So the teacher would fail my stories because almost every sentence had a spelling mistake that I couldn't even see. It made me think I'm made at writing. So I stopped, for 15 years. But I kept telling stories all these years. Recently I realized that in any group, the setup ends up turning into me telling stories to everyone. So I tried it all again, here on X 10 months ago. I love it, the process, the feedback from people. I write every day. I wish I had done it all these years. The End. \ this is an updated version of my post on the same topic from 2 months ago. I've edited some of the points and added 9 new ones.* \\ This is not advice, it's my self-reflection that might help you avoid same mistakes if you think those were mistakes

Raised $450k for my startup, here are the lessons I've learned along the way
reddit
LLM Vibe Score0
Human Vibe Score1
marin_smiljanicThis week

Raised $450k for my startup, here are the lessons I've learned along the way

2021 has been a pretty amazing year for Omnisearch. Having started initial work on Omnisearch at the end of 2020, we entered the new year with a working MVP yet no revenue, no significant partnerships, and no funding. Fast forward to the end of 2021, and we now have fantastic revenue growth, a partnership with a public company, and a far more powerful, complete and polished product. But one milestone really changed Omnisearch’s trajectory: our $450,000 USD pre-seed round by GoAhead Ventures. In this post I want to share the story of how it came about and offer a couple of takeaways to keep in mind when preparing for fundraising. &#x200B; The story Contrary to most advice, my co-founder Matej and I didn’t allocate a specific time to switch to “fundraising mode” but rather talked to investors on an ongoing basis. It was a bit of a distraction from working on the product, but on the positive side we were able to constantly get feedback on the idea, pitch, go-to-market strategy and hiring, as well as hearing investors’ major concerns sooner rather than later. That being said, our six-month long fundraising efforts weren’t yielding results - we talked to about twenty investors, mostly angels or smaller funds, with no success. The feedback was generally of the “too early for us” variety (since we were still pre-revenue), with additional questions about our go-to-market strategy and ideal customer persona. The introduction to our eventual investors, California-based GoAhead Ventures, came through a friend who had pitched them previously. We wrote a simple blurb and sent our pitch deck. We then went through GoAhead’s hyper-efficient screening process, consisting of a 30-minute call, a recorded three-minute pitch, and filling out a simple Google doc. Throughout the whole process, the GoAhead team left an awesome impression thanks to their knowledge of enterprise software and their responsiveness. They ended up investing and the whole deal was closed within two weeks, which is super fast even by Silicon Valley standards. While our fundraising experience is a single data point and your case might be different, here are the key takeaways from our journey. &#x200B; Perseverance wins: Like I said above, we talked to about twenty investors before we closed our round. Getting a series of “no”s sucks, but we took the feedback seriously and tried to prepare better for questions that caught us off guard. But we persevered, keeping in mind that from a bird’s eye perspective it’s an amazing time to be building startups and raising funds. Focus on traction: Sounds pretty obvious, right? The truth is, though, that even a small amount of revenue is infinitely better than none at all. One of the major differences between our eventual successful investor pitch and the earlier ones was that we had actual paying customers, though our MRR was low. This allows you to talk about customers in the present tense, showing there’s actual demand for your product and making the use cases more tangible. And ideally, highlight a couple of customer testimonials to boost your credibility. Have a demo ready: In Omnisearch’s case, the demo was oftentimes the best received part of the pitch or call. We’d show investors the live demo, and for bonus points even asked them to choose a video from YouTube and then try searching through it. This always had a “wow” effect on prospective investors and made the subsequent conversation more exciting and positive. Accelerators: Accelerators like Y Combinator or Techstars can add enormous value to a startup, especially in the early stages. And while it’s a great idea to apply, don’t rely on them too heavily. Applications happen only a few times a year, and you should have a foolproof fundraising plan in case you don’t get in. In our case, we just constantly looked for investors who were interested in our space (defined as enterprise SaaS more broadly), using LinkedIn, AngelList, and intros from our own network. Practice the pitch ad nauseam: Pitching is tough to get right even for seasoned pros, so it pays to practice as often as possible. We took every opportunity to perfect the pitch: attending meetups and giving the thirty-second elevator pitch to other attendees over beer and pizza, participating in startup competitions, going to conferences and exhibiting at our own booth, attending pre-accelerator programs, and pitching to friends who are in the startup world. Show an understanding of the competition: Frankly, this was one of the strongest parts of our pitch and investor conversations. If you’re in a similar space to ours, Gartner Magic Quadrants and Forrester Waves are an awesome resource, as well as sites like AlternativeTo or Capterra and G2. By thoroughly studying these resources we gained a great understanding of the industry landscape and were able to articulate our differentiation more clearly and succinctly. Presenting this visually in a coordinate system or a feature grid is, from our experience, even more effective. Remember it’s just the beginning! Getting your first round of funding is just the beginning of the journey, so it’s important to avoid euphoria and get back to building and selling the product as soon as possible. While securing funding enables you to scale the team, and is a particular relief if the founders had worked without a salary, the end goal is still to build a big, profitable, and overall awesome startup.

Turning a Social Media Agency into $1.5 Million in Revenue
reddit
LLM Vibe Score0
Human Vibe Score1
FounderFolksThis week

Turning a Social Media Agency into $1.5 Million in Revenue

Steffie here from Founder Folks, with a recent interview I did with Jason Yormark from Socialistics. Here is his story how he started and grew his social media agency. Name: Jason Yormark Company: Socialistics Employee Size: 10 Revenue: $1,500,000/year Year Founded: 2018 Website: www.socialistics.com Technology Tools: ClickUp, Slack, KumoSpace, Google Workspace, Shift, Zapier, Klayvio, Zoom, Gusto, Calendly, Pipedrive Introduction: I am the founder of Socialistics (www.socialistics.com), a leading social media agency that helps businesses turn their social media efforts into real measurable results. I am a 20+ year marketing veteran whose prior work has included launching and managing social media efforts for Microsoft Advertising, Office for Mac, the Air Force, and Habitat for Humanity. I have been recognized as a top B2B social media influencer and thought leader on multiple lists and publications including Forbes, ranking #30 on their 2012 list. I've recently published the book Anti-Agency: A Realistic Path to a $1,000,000 Business, and host the Anti Agency podcast where I share stories of doing business differently. You can learn more about me at www.jasonyormark.com. The Inspiration To Become An Entrepreneur: I’ve been involved with social media marketing since 2007, and have pretty much carved my career out of that. It was a natural progression for me to transition into starting a social media agency. From Idea to Reality: For me realistically, I had to side hustle something long enough to build it up to a point that I could take the leap and risks going full time on my own. For these reasons, I built the company and brand on the side putting out content regularly, and taking on side hustle projects to build out my portfolio and reputation. This went on for about 18 months at which point I had reached the breaking point of my frustrations of working for someone else, and felt I was ready to take the leap since I had the wheels in motion. While balancing a full-time job, I made sure not to overdo it. My main focus was on building out the website/brand and putting out content regularly to gain some traction and work towards some search visibility. I only took on 1-2 clients at a time to make sure I could still meet their needs while balancing a full time job. Attracting Customers: Initially I tapped into my existing network to get my first few clients. Then it was a mix of trade shows, networking events, and throwing a bit of money at paid directories and paid media. This is really a long game. You have to plant seeds over time with people and nurture those relationships over time. A combination of being helpful, likable and a good resource for folks will position you to make asks in the future. If people respect and like you, it makes it much easier to approach for opportunities when the time comes. Overcoming Challenges in Starting the Business: Plenty. Learning when to say no, only hiring the very best, and ultimately the realization that owning a marketing agency is going to have hills and valleys no matter what you do. Costs and Revenue: My largest expense by FAR is personnel, comprising between 50-60% of the business’ expenses, and justifiably so. It’s a people business. Our revenue doubled from the years 2018 through 2021, and we’ve seen between 10-20% growth year over year. A Day in the Life: I’ve successfully removed myself from the day to day of the business and that’s by design. I have a tremendous team, and a rock start Director of Operations who runs the agency day to day. It frees me up to pursue other opportunities, and to mentor, speak and write more. It also allows me to evangelize the book I wrote detailing my journey to a $1M business titled: Anti-Agency: A Realistic Path To A $1,000,000 Business (www.antiagencybook.com). Staying Ahead in a Changing Landscape: You really have to stay on top of technology trends. AI is a huge impact on marketing these days, so making sure we are up to speed on that, and not abusing it or relying on it too much. You also have to embrace that technology and not hide the fact that it’s used. Non-marketers still don’t and can’t do the work regardless of how much AI can help, so we just need to be transparent and smart on how we integrate it, but the fact is, technology will never replace creativity. As an agency, it’s imperative that we operationally allow our account managers to have bandwidth to be creative for clients all the time. It’s how we keep clients and buck the trend of companies changing agencies every year or two. The Vision for Socialistics: Continuing to evolve to cater to our clients through learning, education, and staying on top of the latest tools and technologies. Attracting bigger and more exciting clients, and providing life changing employment opportunities.

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist
reddit
LLM Vibe Score0
Human Vibe Score1
deadcoder0904This week

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist

Silicon Valley wants you to believe that their unicorn startups succeeded doing things legally. But that couldn't be far from truth. For starters, Airbnb used multiple Gmail accounts to spam Craigslist. "They posted unrealistically (fake) cheap rentals of beautiful apartments in places where normal rent should be 10x more. Once people replied, they auto-responded that the unit has been rented, but they should be looking for another unit on AirBnB." The Game of Blackhat is a cat-and-mouse game. You need a lot of guardrails to protect yourself from people using your Social Site by spamming their products. Craigslist is a team of 30 people. There's stuff AI can automate now with such a small team but back then, it wasn't possible. Airbnb used Craigslist as its playground to spam Craigslist visitors to grow their supply-side. In a 2-sided marketplace, growing both supply and demand is very important. And both must grow at the same time for the marketplace to work. A Blackhat Marketer created a new test site to get vacation rental owners to sign-up so that he can test his Airbnb theory. He grabbed their real email-addresses (not Craigslist anonymous addresses) via Craigslist by specifically targeting those who were advertising their vacation rentals on Craigslist. He skipped over the other categories that were directly related to AirBnB's business model because they didn't fit with the test site he built. Once he got 1000+ sign-ups, he then took it upon himself to post it to the advertising section on Craigslist. The email said this: I am emailing you because you have one of the nicest listings on Craigslist in Idaho and I want to recommend you feature it (for free) on one of the largest Idaho housing sites on the web, Airbnb. The site already has 3,000,000 pages views a month. Check it out here to list now: airbnb(dot)com Sarah Surpisingly, all emails were by ladies. He did the same in Week 2 and Week 3 to test if it wasn't a one-time thing. Surely, it wasn't a fluke. After posting 4 ads on Craigslist in 3 weeks, he received 5 identical emails from 2 ladies who were raving fans of AirBnB and spent their days emailing Craigslist advertisers. This is one of the greatest blackhat strategies used in the real world to build a billion-dollar marketplace by growing the supply-side with pure blackhat. These strategies are not mentioned in Press Interviews, Media, or any Founder stories but this is probably the most important piece of the puzzle. Without it, Airbnb probably wouldn't have survived. "Some very famous investors have alluded to the fact that they look for a dangerous streak in the entrepreneurs they invest in…and while those investors will never come out and tell you what they mean, this kind of thing is probably what they mean." It definitely violates CAN-SPAM act. Some comments from Hacker News: "CAN-SPAM, sending from a fake address (illegal headers). CA has a specific law that pre-empts CAN-SPAM that definitely makes this illegal if sent from CA." But I guess it worked in Airbnb's favour lol as they were never caught or fined until after. "It's commercial email 100%. Probably a fake sender name (illegal), against gmail ToS, against CL ToS and no unsubscribe link and no one even subscribed in the first place. 100% against CAN-SPAM." Thanks for reading. If you'd like to learn more blackhat tactics like this, check this site which is a growth hacking newsletter with real-world blackhat examples. PS: Actual emails & screenshots from the Airbnb x Craigslist spam can be found here.

Beginner to the 1st sale: my journey building an AI for social media marketers
reddit
LLM Vibe Score0
Human Vibe Score1
Current-Payment-5403This week

Beginner to the 1st sale: my journey building an AI for social media marketers

Hey everyone! Here’s my journey building an AI for social media marketers all the way up until my first pre-launch sale, hope that could help some of you: My background: studied maths at uni before dropping out to have some startup experiences. Always been drawn to building new things so I reckoned I would have some proper SaaS experiences and see how VC-funded startups are doing it before launching my own.  I’ve always leaned towards taking more risks in my life so leaving my FT job to launch my company wasn’t a big deal for me (+ I’m 22 so still have time to fail over and over). When I left my job, I started reading a lot about UI/UX, no-code tools, marketing, sales and every tool a worthwhile entrepreneur needs to learn about. Given the complexity of the project I set out to achieve, I asked a more technical friend to join as a cofounder and that's when AirMedia was born. We now use bubble for landing page as I had to learn it and custom-code stack for our platform.  Here's our goal: streamlining social media marketing using AI. I see this technology has only being at the premises of what it will be able to achieve in the near-future. We want to make the experience dynamic i.e. all happens from a discussion and you see the posts being analysed from there as well as the creation process - all from within the chat. Fast forward a few weeks ago, we finished developing the first version of our tool that early users describe as a "neat piece of tech" - just this comment alone can keep me going for months :) Being bootstrapped until now, I decided to sell lifetime deals for the users in the waitlist that want to get the tool in priority as well as secure their spot for life. We've had the first sale the first day we made that public ! Now what you all are looking for: How ?  Here was my process starting to market the platform: I need a high-converting landing page so I reckoned which companies out there have the most data and knows what convert and what doesn’t: Unbounce. Took their landing page and adapted it to my value proposition and my ICP.  The ICP has been defined from day 1 and although I’m no one to provide any advice, I strongly believe the ICP has to be defined from day 1 (even before deciding the name of the company). It helps a lot when the customer is you and you’ve had this work experience that helps you identify the problems your users encounter. Started activating the network, posting on Instagram and LinkedIn about what we've built (I've worked in many SaaS start-ups in the past so I have to admit that's a bit of a cheat code). Cold outreach from Sales NAV to our ICP, been growing the waitlist in parallel of building the tool for months now so email marketings with drip sequences and sharing dev updates to build the trust along the way (after all we're making that tool for our users - they should be the first aware about what we're building). I also came across some Whatsapp groups with an awesome community that welcomed our platform with excitement.) The landing page funnel is the following: Landing page -> register waitlist -> upsell page -> confirmation. I've made several landing pages e.g. for marketing agencies, for real estate agents, for marketing director in several different industries. The goal now is just testing out the profiles and who does it resonate the most with. Another growth hack that got us 40+ people on the waitlist: I identified some Instagram posts from competitors where their CTA was "comment AI" and I'll send you our tool and they got over 2k people commenting. Needless to say, I messaged every single user to check out our tool and see if it could help them. (Now that i think about it, the 2% conversion rate there is not great - especially considering the manual labour and the time put behind it). We’ve now got over 400 people on the waitlist so I guess we’re doing something right but we’ll keep pushing as the goal is to sell these lifetime deals to have a strong community to get started. (Also prevents us from going to VCs and I can keep my time focussing exclusively on our users - I’m not into boardroom politics, just wanna build something useful for marketers). Now I’m still in the process of testing out different marketing strategies while developing and refining our platform to make it next level on launch day. Amongst those:  LinkedIn Sales Nav outreach (first sale came from there) Product Hunt Highly personalised cold emails (there I’m thinking of doing 20 emails a day with a personalised landing page to each of those highly relevant marketers). Never seen that and I think this could impress prospects but not sure it’s worth it time / conversion wise. Make content to could go viral (at least 75 videos) that I’m posting throughout several social media accounts such as airmedia\\, airmedia\reels, airmedia\ai (you get the hack) always redirecting to the main page both in the profile description and tagging the main account. I have no idea how this will work so will certainly update some of you that would like to know the results. Will do the same across Facebook, TikTok, Youtube Shorts etc… I’m just looking for a high potential of virality there. This strategy is mainly used to grow personal brands but never seen it applied to companies. Good old cold calling Reddit (wanna keep it transparent ;) ) I’m alone to execute all these strategies + working in parallel to refine the product upon user’s feedback I’m not sure I can do more than that for now. Let me know if you have any feedback/ideas/ tasks I could implement.  I could also make another post about the proper product building process as this post was about the marketing. No I certainly haven’t accomplished anything that puts me in a position to provide advices but I reckon I’m on my way to learn more and more. Would be glad if this post could help some of you.  And of course as one of these marketing channels is Reddit I’ll post the link below for the entrepreneurs that want to streamline their social media or support us. Hope I was able to provide enough value in this post for you to consider :) https://airmedia.uk/

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade
reddit
LLM Vibe Score0
Human Vibe Score0.333
Alarming_Management3This week

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade

Hi there, I’ve been running a software development and design agency for the last 10 years, mainly focusing on building custom solutions for businesses and SaaS. For the last 2 years, I’ve consistently recommended that clients use AI technologies, especially for social media and content creation to generate traffic. Funny enough, I wasn’t practicing what I preached. Most of my client projects came from platforms like Upwork and word-of-mouth referrals from clients or people from networking events. Background I started my journey in 2014, switching from an employee to a freelancer. Within the first 10 months, my initial projects grew beyond what I could handle alone, prompting me to hire additional developers. This shift turned my role from a full-stack developer to a team lead and developer. Over the years, my focus has been a blend of tech and product. About five years ago, I realized the importance of design, leading me to adding designers to the agency to provide full-cycle service development—from product ideation and design to development, testing, launch, and support. I still continue to set up dedicated teams for some clients, maintaining a strong technical role as a tech lead, solution architect, and head product designer. To enhance my skills, I even completed UI/UX design courses to offer better product solutions. Despite these changes, building products has always been the easy part. The challenge was ensuring these client products didn’t end up in the graveyard due to poor product-market fit, often caused by inadequate marketing and sales strategies but more often just absence of them. (we are talking about startup and first time founders here 🙂 ) My Journey and Observations Advising Clients: I often found myself advising clients on increasing traffic for their SaaS products and crafting strategic marketing plans. Learning: I’ve gained most of my knowledge from consuming internet materials, courses, and blog posts and learning from successful client project launches. Realization: Despite giving this advice, I wasn’t applying these strategies to my own business, leading to low visits to my agency’s website. Initial Solution: Hiring a Marketer Hiring: I brought in a marketer with a solid background in content creating and interview video editing from an educational organization. Goal: The aim was to increase website visits through a comprehensive marketing strategy. Outcome: Although the content produced was high-quality and useful for pitching services, it didn’t lead to significant traffic increases. Issue: The marketer focused more on content creation rather than distribution channels, which limited effectiveness. Shift to AI-Driven Strategy Experiment: I decided to try using AI for content creation and distribution, which aligns with my agency’s specialization in design-driven development and AI integrations. Implementation plan: I will be generating all content with minimal edits using AI and implementing a strategic backlinking approach. Backlinking Strategy Initial Plan: I initially thought of hiring a specialist for backlinks. Realization: The costs and profiles of freelancers didn’t seem promising. Solution: I found AI-driven services for backlinks, which seem more efficient and cost-effective. Plan: My plan is to use these tools for programmatic SEO-driven AI-generated articles and third-party backlinking services over the next two to three months. Current Approach Management: This approach can be managed and executed by 1 person and monitored weekly, reducing human error and optimizing efficiency. I will start it myself and then replace myself with an editor with managing skills. Reflection: It’s a bit ironic and funny that it took me 10 years to start implementing these strategies in my own agency business, but I now feel more confident with AI and automation in place. Why Increase Website Visitors? You might ask, why do I want to increase the number of visitors to the site, and how can I ensure these visitors will be qualified? Hands-On Experience: To gain hands-on experience and perform this exercise effectively. Introduce Packaged Services: I want to introduce a set of low-cost packaged services tailored for non-technical people who want to build things for themselves - the DIY kits for non-technical folks. These services will provide a foundational template for them to build upon on top of existing established solutions such as Wix, Square Why am I Posting and Sharing Here? You might also wonder, why am I posting it here and sharing this? Well, I'm doing this more for myself. Most of my career, the things I’ve done have been behind the curtains. With this small project, I want to make it public to see the reaction of the community. Perhaps there will be good and smart suggestions offered, and maybe some insights or highlights of tools I wasn’t aware of or didn’t consider. I’ll keep sharing updates on this journey of website promotion, marketing, and SEO. My current goal is to reach 2,000 visits per month, which is a modest start. Looking forward to any thoughts or advice from this community! Disclaimer: This content was not generated by AI, but it was edited by it 😛

New Entrepreneur Looking to Learn
reddit
LLM Vibe Score0
Human Vibe Score1
jlimbsThis week

New Entrepreneur Looking to Learn

Hi all, long-time lurker, and first-time poster. About six weeks ago, I left my full-time career in tech to dive headfirst into launching an AI-focused startup. It’s my first time as a founder (well, co-founder), and the journey already feels exhilarating and terrifying at the same time! I’ve got a tech team onboard, and we are starting to build out our platform. To make sure I'm building the right thing, it's a top priority for me to connect with our target audience of small business owners for discovery conversations. I’m eager to learn about: How (and if) you’re currently using AI in your business. What kind of value/impact does AI need to deliver for you to be willing to use it in your business. What challenges or blockers do you perceive around implementing AI solutions. I’m open to speaking with US-based business owners with companies ranging from 5-50 employees or so, and am particularly interested if you are non-technical. If you’re willing to share your experience, I’d love to chat for 15-30 minutes. Feel free to comment here or DM me if you’re interested—your insights (and trolling) would mean the world as I navigate this journey. Thanks in advance! P.S. - I know I'm being a little cagey about the details of what my start-up is doing. While I don't think we have the most innovative idea in the world, I'd prefer to hold off on posting details publicly. This isn't a backdoor sales call, I'm just looking to ask questions and learn.

B2B Marketers: What’s Your #1 Tip for Selling SaaS to Other Businesses? (Building a Tool for Shopify SEO)
reddit
LLM Vibe Score0
Human Vibe Score1
iammanmanthemanThis week

B2B Marketers: What’s Your #1 Tip for Selling SaaS to Other Businesses? (Building a Tool for Shopify SEO)

Hi everyone! I’m part of a team building an AI-powered SEO tool specifically for Shopify stores (think automated technical fixes, predictive keyword optimization, etc.). We’re in the early stages and want to learn from seasoned B2B marketers: We’re struggling with: How to position a technical SaaS product to non-technical Shopify merchants. Cutting through the noise in a crowded SEO tools market. Building trust quickly with time-strapped business owners. Questions for B2B Marketing Pros: What’s the biggest mistake you made when marketing a SaaS product to businesses? What’s one underrated tactic that’s worked wonders for B2B lead gen? How do you prove ROI to skeptical buyers? (Especially for something abstract like SEO.) What’s your go-to channel for cold outreach that doesn’t feel spammy? What’s a hidden psychological trigger that works in B2B sales? What’s the best way to leverage case studies/testimonials when you’re just starting out? What’s one thing most founders waste money on in B2B marketing? For Those Who’ve Sold to Shopify Merchants: What’s their biggest pain point when evaluating tools? What type of content (webinars, blogs, demos) convinces them to buy? The Deal: We’ll compile all advice into a guide and credit contributors. If you're willing to have a virtual coffee chat, please reach out to us, we are always willing to listen to your wisdom!

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade
reddit
LLM Vibe Score0
Human Vibe Score0.333
Alarming_Management3This week

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade

Hi there, I’ve been running a software development and design agency for the last 10 years, mainly focusing on building custom solutions for businesses and SaaS. For the last 2 years, I’ve consistently recommended that clients use AI technologies, especially for social media and content creation to generate traffic. Funny enough, I wasn’t practicing what I preached. Most of my client projects came from platforms like Upwork and word-of-mouth referrals from clients or people from networking events. Background I started my journey in 2014, switching from an employee to a freelancer. Within the first 10 months, my initial projects grew beyond what I could handle alone, prompting me to hire additional developers. This shift turned my role from a full-stack developer to a team lead and developer. Over the years, my focus has been a blend of tech and product. About five years ago, I realized the importance of design, leading me to adding designers to the agency to provide full-cycle service development—from product ideation and design to development, testing, launch, and support. I still continue to set up dedicated teams for some clients, maintaining a strong technical role as a tech lead, solution architect, and head product designer. To enhance my skills, I even completed UI/UX design courses to offer better product solutions. Despite these changes, building products has always been the easy part. The challenge was ensuring these client products didn’t end up in the graveyard due to poor product-market fit, often caused by inadequate marketing and sales strategies but more often just absence of them. (we are talking about startup and first time founders here 🙂 ) My Journey and Observations Advising Clients: I often found myself advising clients on increasing traffic for their SaaS products and crafting strategic marketing plans. Learning: I’ve gained most of my knowledge from consuming internet materials, courses, and blog posts and learning from successful client project launches. Realization: Despite giving this advice, I wasn’t applying these strategies to my own business, leading to low visits to my agency’s website. Initial Solution: Hiring a Marketer Hiring: I brought in a marketer with a solid background in content creating and interview video editing from an educational organization. Goal: The aim was to increase website visits through a comprehensive marketing strategy. Outcome: Although the content produced was high-quality and useful for pitching services, it didn’t lead to significant traffic increases. Issue: The marketer focused more on content creation rather than distribution channels, which limited effectiveness. Shift to AI-Driven Strategy Experiment: I decided to try using AI for content creation and distribution, which aligns with my agency’s specialization in design-driven development and AI integrations. Implementation plan: I will be generating all content with minimal edits using AI and implementing a strategic backlinking approach. Backlinking Strategy Initial Plan: I initially thought of hiring a specialist for backlinks. Realization: The costs and profiles of freelancers didn’t seem promising. Solution: I found AI-driven services for backlinks, which seem more efficient and cost-effective. Plan: My plan is to use these tools for programmatic SEO-driven AI-generated articles and third-party backlinking services over the next two to three months. Current Approach Management: This approach can be managed and executed by 1 person and monitored weekly, reducing human error and optimizing efficiency. I will start it myself and then replace myself with an editor with managing skills. Reflection: It’s a bit ironic and funny that it took me 10 years to start implementing these strategies in my own agency business, but I now feel more confident with AI and automation in place. Why Increase Website Visitors? You might ask, why do I want to increase the number of visitors to the site, and how can I ensure these visitors will be qualified? Hands-On Experience: To gain hands-on experience and perform this exercise effectively. Introduce Packaged Services: I want to introduce a set of low-cost packaged services tailored for non-technical people who want to build things for themselves - the DIY kits for non-technical folks. These services will provide a foundational template for them to build upon on top of existing established solutions such as Wix, Square Why am I Posting and Sharing Here? You might also wonder, why am I posting it here and sharing this? Well, I'm doing this more for myself. Most of my career, the things I’ve done have been behind the curtains. With this small project, I want to make it public to see the reaction of the community. Perhaps there will be good and smart suggestions offered, and maybe some insights or highlights of tools I wasn’t aware of or didn’t consider. I’ll keep sharing updates on this journey of website promotion, marketing, and SEO. My current goal is to reach 2,000 visits per month, which is a modest start. Looking forward to any thoughts or advice from this community! Disclaimer: This content was not generated by AI, but it was edited by it 😛

Struggling to launch your startup because of tech barriers? I want to help build your MVP—free.
reddit
LLM Vibe Score0
Human Vibe Score1
ClmntrgThis week

Struggling to launch your startup because of tech barriers? I want to help build your MVP—free.

Hey fellow entrepreneurs, I've been noticing a common struggle—so many great startup ideas never get off the ground because of technical roadblocks. Finding a technical co-founder is tough, hiring devs is expensive, and learning to code takes time most founders don’t have. I’m working on a tool that helps non-technical founders turn their ideas into real, functional web apps using AI. But instead of building in isolation, I want to test it in real startup conditions—which means helping actual entrepreneurs like you bring their MVPs to life. Here’s the deal: I’ll build an MVP for free—no catch, no hidden agenda. I just want to test my platform with real use cases and learn from your feedback. If you’ve been sitting on an idea but haven’t executed because of technical hurdles, I’d love to try building a first version for you. Drop your idea below in this format: What’s your project about? (e.g., “a platform connecting indie artists with brands”) What are the key features? (e.g., “artist profiles, project bidding, contract management”) I’ll pick some of the most popular ideas and try to generate an MVP using my tool. Whether or not it works perfectly, we’ll both learn something valuable—and hopefully, you’ll have a solid starting point to iterate on. Looking forward to hearing your ideas! Let’s see what we can build together. — Clément

10 Side Projects in 10 Years: Lessons from Failures and a $700 Exit
reddit
LLM Vibe Score0
Human Vibe Score1
TheValueProviderThis week

10 Side Projects in 10 Years: Lessons from Failures and a $700 Exit

Hey folks, I'm sharing my journey so far in case it can help others. Entrepreneurship can sometimes be demotivating. In my case, I've always been involved in side projects and what I've realized is that every time you crash a project, the next one makes it a bit further. So this is a long-term game and consistency ends up paying off The $1 Android Game (2015, age 18) What Happened: 500 downloads, 1€ in ad revenue Ugly UI, performance issues Key Lessons: Don’t be afraid of launching. Delaying for “perfection” is often a sign that you fear being ignored. I was trying to perfect every aspect of the game. In reality, I was delaying the launch because I feared no one would download the app. Commit to the project or kill it. At some point, this project was no longer fun (it was just about fixing device responsiveness). Most importantly, I wasn't learning anything new so I moved to smth else. The Forex Bot Regret (2016, age 19) What Happened: Lost months identifying inexistent chart patterns Created a Trading bot that was never profitable Key Lessons: Day trading’s real winners are usually brokers. There are plenty of guys selling a bot or systems that are not making money trading, why would they sell a “money-printing machine” otherwise... Develop an unfair advantage. With these projects, I developed a strong coding foundation that gave me an edge when dealing with non-technical business people. Invest countless hours to create a skills gap between you and others, one that becomes increasingly difficult for them to close (coding, public speaking, networking, etc.) The $700 Instagram Exit (2018, age 21) What Happened: Grew a motivational account to 60k followers Sold it for $700 90% of followers were in low-income countries (hard to monetize) Key Lessons: Follower quality > quantity. I focused on growth and ended up with an audience I couldn’t truly define. If brands don’t see value, you won’t generate revenue. Also, if you do not know who you are creating content for, you'll end up demotivated and stop posting. Great 3rd party product + domain authority = Affiliate marketing works. In this case, I could easily promote an IG growing service because my 50k+ followers conveyed trust. Most importantly, the service I was promoting worked amazingly. The Illegal Amazon Review Marketplace (2020, age 23) What Happened: Sellers were reimbursing buyers for positive reviews Built a WordPress marketplace to facilitate “free products for reviews” Realized it violated Amazon’s terms Key Lessons: Check for “red flags” when doing idea assessment. There will always be red and orange flags. It’s about learning to differentiate between them (e.g. illegality, 100% dependence on a platform, etc.) If there’s competition, it’s good, if they are making money it’s even better. I was thrilled when I saw no competition for my “unique idea”. Later, I discovered the obvious reason. Copying a “Proven” Business Model (2020, age 23) What Happened: Tried recreating an Instagram “comment for comment” growth tool Instagram changed the algorithm and killed the growth strategy that the product used. Key Lessons: Do not build a business that depends 100% on another business, it is too risky. Mr. Musk can increase Twitter on API pricing to $42,000 monthly without notice and Tik Tok can be banned in the US. Due to the IG algorithm change, we had built a product that was not useful, and worse, now we had no idea how to grow an IG account. Consider future project synergies before selling. I regret having sold the 60k follower IG account since it could have saved me a lot of time when convincing users to try the service. NFT Marathon Medals (2021, age 24) What Happened: Created NFT race medals Sold 20 for 5€ each, but spent 95% of meetings explaining “what is an NFT?” Key Lessons: Market timing is crucial. As with every new technology, it is only useful as long as society is ready to adopt it. No matter how promising the tech is in the eyes of SV, society will end up dictating its success (blockchain, AI, etc). In this case, the runner community was not ready to adopt blockchain (it is not even prepared today). Race organizers did not know what they were selling, and runners did not know what they were buying. The 30-day rule in Fanatical Prospecting. Do not stop prospecting. I did prospecting and closed deals 3 months after the outbound efforts. Then I was busy executing the projects and had no clients once the projects were finished. AI Portal & Co-Founder Misalignment (2023, age 26) What Happened: Built a portal for SMEs to find AI use cases Co-founders disagreed on vision and execution Platform still gets \~1 new user/day Key Lessons: Define roles and equity clearly. Our biggest strength ended up killing us. Both founders had strong strategic skills and we were constantly arguing about decisions. NextJS + Vercel + Supabase: Great stack to create a SaaS MVP. (but do not use AI with frameworks unless you know how they work conceptually) SEO is king. One of our users creates a use case on “Changing Song Lyrics with AI.” Not being our target use case, it brings 90% of our traffic. Building an AI Tool & Getting Ghosted (2024, age 27) What Happened: SEO agency wanted to automate rewriting product descriptions Built it in 3 weeks, but the client vanished Key Lessons: Validate manually first. Don’t code a full-blown solution for a problem you haven’t tested in real-world workflows. I kept rewriting code only to throw it away. Jumping straight into building a solution ended up costing more time than it saved. Use templates, no-code, and open-source for prototyping. In my case, using a Next.js template saved me about four weeks of development only to hit the same dead end, but much faster. Fall in love with your ICP or walk away. I realized I didn’t enjoy working with SEO agencies. Looking back, I should have been honest with myself and admitted that I wasn’t motivated enough by this type of customer. Ignoring Code Perfection Doubled Traffic (2025, age 28) What Happened: Partnered with an ex-colleague to build an AI agents directory Focused on content & marketing, not endless bug fixes Traffic soared organically Key Lessons: Measure the impact of your actions and double down on what works. We set up an analytics system with PostHog and found wild imbalances (e.g. 1 post about frameworks outperformed 20 promotional posts). You have to start somewhere. For us, the AI agents directory is much more than just a standalone site, it's a strategic project that will allow us to discover new products, gain domain authority, and boost other projects. It builds the path for bigger opportunities. Less coding, more traction. Every day I have to fight against myself not to code “indispensable features”. Surprisingly, the directory keeps gaining consistent traffic despite being far from perfect Quitting My Job & Looking Ahead (2025, age 28) What Happened: Left full-time work to go all-in Plan to build vertical AI agents that handle entire business workflows (support, marketing, sales) Key Lessons: Bet on yourself. The opportunity cost of staying in my full-time job outweighed the benefits. It might be your case too I hope this post helps anyone struggling with their project and inspires those considering quitting their full-time job to take the leap with confidence.

I Watched My Startup Slowly Dying Over Two Years: Mistakes and Lessons Learned
reddit
LLM Vibe Score0
Human Vibe Score0.429
Personal-Expression3This week

I Watched My Startup Slowly Dying Over Two Years: Mistakes and Lessons Learned

If you are tired of reading successful stories, you may want to listen to my almost failure story. Last year in April, I went full-time on my startup. Nearly two years later, I’ve seen my product gradually dying. I want to share some of the key mistakes I made and the lessons I’ve taken from them so you don't have to go through them. Some mistakes were very obvious in hindsight; others, I’m still not sure if they were mistakes or just bad luck. I’d love to hear your thoughts and advice as well. Background I built an English-learning app, with both web and mobile versions. The idea came from recognizing how expensive it is to hire an English tutor in most countries, especially for practicing speaking skills. With the rise of AI, I saw an opportunity in the education space. My target market was Japan, though I later added support for multiple languages and picked up some users from Indonesia and some Latin American countries too. Most of my users came from influencer marketing on Twitter. The MVP for the web version launched in Japan and got great feedback. People were reposting it on Twitter, and growth was at its peak in the first few weeks. After verifying the requirement with the MVP, I decided to focus on the mobile app to boost user retention, but for various reasons, the mobile version didn’t launch until December 2023— 8 months after the web version. Most of this year has been spent iterating on the mobile app, but it didn’t make much of an impact in the end. Key Events and Lessons Learned Here are some takeaways: Find co-founders as committed as you are I started with two co-founders—both were tech people and working Part-Time. After the web version launched, one dropped out due to family issues. Unfortunately, we didn’t set clear rules for equity allocation, so even after leaving, they still retained part of the equity. The other co-founder also effectively dropped out this year, contributing only minor fixes here and there. So If you’re starting a company with co-founders, make sure they’re as committed as you are. Otherwise, you might be better off going solo. I ended up teaching myself programming with AI tools, starting with Flutter and eventually handling both front-end and back-end work using Windsurf. With dev tools getting more advanced, being a solo developer is becoming a more viable option. Also, have crystal-clear rules for equity—especially around what happens if someone leaves. Outsourcing Pitfalls Outsourcing development was one of my biggest mistakes. I initially hired a former colleague from India to build the app. He dragged the project on for two months with endless excuses, and the final output was unusable. Then I hired a company, but they didn’t have enough skilled Flutter developers. The company’s owner scrambled to find people, which led to rushed work and poor-quality code which took a lot of time revising myself. Outsourcing is a minefield. If you must do it, break the project into small tasks, set clear milestones, and review progress frequently. Catching issues early can save you time and money. Otherwise, you’re often better off learning the tools yourself—modern dev tools are surprisingly beginner-friendly. Trust, but Verify I have a bad habit of trusting people too easily. I don’t like spending time double-checking things, so I tend to assume people will do what they say they’ll do. This mindset is dangerous in a startup. For example, if I had set up milestones and regularly verified the progress of my first outsourced project, I would’ve realized something was wrong within two weeks instead of two months. That would’ve saved me a lot of time and frustration. Like what I mentioned above, set up systems to verify their work—milestones, deliverables, etc.—to minimize risk. Avoid red ocean if you are small My team was tiny (or non-existent, depending on how you see it), with no technical edge. Yet, I chose to enter Japan’s English-learning market, which is incredibly competitive. It’s a red ocean, dominated by big players who’ve been in the game for years. Initially, my product’s AI-powered speaking practice and automatic grammar correction stood out, but within months, competitors rolled out similar features. Looking back, I should’ve gone all-in on marketing during the initial hype and focused on rapidly launching the mobile app. But hindsight is 20/20. 'Understanding your user' helps but what if it's not what you want? I thought I was pretty good at collecting user feedback. I added feedback buttons everywhere in the app and made changes based on what users said. But most of these changes were incremental improvements—not the kind of big updates that spark excitement. Also, my primary users were from Japan and Indonesia, but I’m neither Japanese nor Indonesian. That made it hard to connect with users on social media in an authentic way. And in my opinion, AI translations can only go so far—they lack the human touch and cultural nuance that builds trust. But honestly I'm not sure if the thought is correct to assume that they will not get touched if they recognize you are a foreigner...... Many of my Japanese users were working professionals preparing for the TOEIC exam. I didn’t design any features specifically for that; instead, I aimed to build a general-purpose English-learning tool since I dream to expand it to other markets someday. While there’s nothing wrong with this idealistic approach, it didn’t give users enough reasons to pay for the app. Should You Go Full-Time? From what I read, a lot of successful indie developers started part-time, building traction before quitting their jobs. But for me, I jumped straight into full-time mode, which worked for my lifestyle but might’ve hurt my productivity. I value work-life balance and refused to sacrifice everything for the startup. The reason I chose to leave the corp is I want to escape the 996 toxic working environment in China's internet companies. So even during my most stressful periods, I made time to watch TV with my partner and take weekends off. Anyways, if you’re also building something or thinking about starting a business, I hope my story helps. If I have other thoughts later, I will add them too. Appreciate any advice.

101 best SEO tips to help you drive traffic in 2k21
reddit
LLM Vibe Score0
Human Vibe Score0.543
DrJigsawThis week

101 best SEO tips to help you drive traffic in 2k21

Hey guys! I don't have to tell you how SEO can be good for your business - you can drive leads to your SaaS on autopilot, drive traffic to your store/gym/bar/whatever, etc. The thing with SEO, though, is that most SEO tips on the internet are just not that good. Most of the said tips: Are way too simple & basic (“add meta descriptions to your images”*) Are not impactful. Sure, adding that meta tag to an image is important, but that’s not what’s going to drive traffic to your website Don’t talk much about SEO strategy (which is ultimately the most important thing for SEO). Sure, on-page SEO is great, but you sure as hell won't drive much traffic if you can't hire the right writers to scale your content. And to drive serious SEO traffic, you'll need a LOT more than that. Over the past few years, my and my co-founder have helped grow websites to over 200k+ monthly traffic (check out our older Reddit post if you want to learn more about us, our process, and what we do), and we compiled all our most important SEO tips and tricks, as well as case studies, research, and experiments from the web, into this article. Hope you like it ;) If you think we missed something super important, let us know and we'll add it to the list. And btw, we also published this article on our own blog with images, smart filters, and all that good stuff. If you want to check it out, click here. That said, grab some coffee (or beer) & let's dive in - this is going to be a long one. SEO Strategy Tips Tip #1. A Lot of SEO Tips On The Internet Are NOT Necessarily Factual A lot of the SEO content you’ll read on the internet will be based on personal experiences and hearsay. Unfortunately, Google is a bit vague about SEO advice, so you have to rely more on experiments conducted by SEO pros in the community. So, sometimes, a lot of this information is questionable, wrong, or simply based on inaccurate data.  What we’re getting at here is, whenever you hear some new SEO advice, take it with a grain of salt. Google it to double-check other sources, and really understand what this SEO advice is based on (instead of just taking it at face value). Tip #2. SEO Takes Time - Get Used to It Any way you spin it, SEO takes time.  It can take around 6 months to 2 years (depending on the competition in your niche) before you start seeing some serious results.  So, don’t get disappointed if you don’t see any results within 3 months of publishing content. Tip #3. SEO Isn’t The Best Channel for Everyone That said, if you need results for your business tomorrow, you might want to reconsider SEO altogether.  If you just started your business, for example, and are trying to get to break-even ASAP, SEO is a bad idea - you’ll quit before you even start seeing any results.  If that’s the case, focus on other marketing channels that can have faster results like content marketing, PPC, outreach, etc. Tip #4. Use PPC to Validate Keywords Not sure if SEO is right for your business? Do this: set up Google Search ads for the most high-intent keywords in your niche. See how well the traffic converts and then decide if it’s worthwhile to focus on SEO (and rank on these keywords organically). Tip #5. Use GSC to See If SEO Is Working While it takes a while to see SEO results, it IS possible to see if you’re going in the right direction. On a monthly basis, you can use Search Console to check if your articles are indexed by Google and if their average position is improving over time. Tip #6. Publish a TON of Content The more content you publish on your blog, the better. We recommend a minimum of 10,000 words per month and optimally 20,000 - 30,000 (especially if your website is fresh). If an agency offers you the typical “4 500-word articles per month” deal, stay away. No one’s ever gotten results in SEO with short, once-per-week articles. Tip #7. Upgrade Your Writers Got a writer that’s performing well? Hire them as an editor and get them to oversee content operations / edit other writers’ content. Then, upgrade your best editor to Head of Content and get them to manage the entire editor / writer ops. Tip #8. Use Backlink Data to Prioritize Content When doing keyword research, gather the backlink data of the top 3 ranking articles and add it to your sheet. Then, use this data to help you prioritize which keywords to focus on first. We usually prioritize keywords that have lower competition, high traffic, and a medium to high buyer intent. Tip #9. Conduct In-Depth Keyword Research Make your initial keyword research as comprehensive as possible. This will give you a much more realistic view of your niche and allow you to prioritize content the right way. We usually aim for 100 to 300 keywords (depending on the niche) for the initial keyword research when we start working with a client. Tip #10. Start With Competitive Analysis Start every keyword research with competitive analysis. Extract the keywords your top 3 competitors are ranking on.  Then, use them as inspiration and build upon it. Use tools like UberSuggest to help generate new keyword ideas. Tip #11. Get SEMrush of Ahrefs You NEED SEMrush or Ahrefs, there’s no doubt about it. While they might seem expensive at a glance (99 USD per month billed annually), they’re going to save you a lot of manpower doing menial SEO tasks. Tip #12. Don’t Overdo It With SEO Tools Don’t overdo it with SEO tools. There are hundreds of those out there, and if you’re the type that’s into SaaS, you might be tempted to play around with dozens at a time. And yes, to be fair, most of these tools ARE helpful one way or another. To effectively do organic SEO, though, you don’t really need that many tools. In most cases, you just need the following: SEMrush/Ahrefs Screaming Frog RankMath/Yoast SEO Whichever outreach tool you prefer (our favorite is snov.io). Tip #13. Try Some of the Optional Tools In addition to the tools we mentioned before, you can also try the following 2 which are pretty useful & popular in the SEO community: Surfer SEO - helps with on-page SEO and creating content briefs for writers. ClusterAI - tool that helps simplify keyword research & save time. Tip #14. Constantly Source Writers Want to take your content production to the next level? You’ll need to hire more writers.  There is, however, one thing that makes this really, really difficult: 95 - 99% of writers applying for your gigs won’t be relevant. Up to 80% will be awful at writing, and the remainder just won’t be relevant for your niche. So, in order to scale your writing team, we recommend sourcing constantly, and not just once every few months. Tip #15. Create a Process for Writer Filtering As we just mentioned, when sourcing writers, you’ll be getting a ton of applicants, but most won’t be qualified. Fun fact \- every single time we post a job ad on ProBlogger, we get around 300 - 500 applications (most of which are totally not relevant). Trust us, you don’t want to spend your time going through such a huge list and checking out the writer samples. So, instead, we recommend you do this: Hire a virtual assistant to own the process of evaluating and short-listing writers. Create a process for evaluating writers. We recommend evaluating writers by: Level of English. If their samples aren’t fluent, they’re not relevant. Quality of Samples. Are the samples engaging / long-form content, or are they boring 500-word copy-pastes? Technical Knowledge. Has the writer written about a hard-to-explain topic before? Anyone can write about simple topics like traveling - you want to look for someone who knows how to research a new topic and explain it in a simple and easy to read way. If someone’s written about how to create a perfect cover letter, they can probably write about traveling, but the opposite isn’t true. The VA constantly evaluates new applicants and forwards the relevant ones to the editor. The editor goes through the short-listed writers and gives them trial tasks and hires the ones that perform well. Tip #16. Use The Right Websites to Source Writers “Is UpWork any good?” This question pops up on social media time and time again. If you ask us, no, UpWork is not good at all. Of course, there are qualified writers there (just like anywhere else), but from our experience, those writers are few and far in-between. Instead, here are some of our favorite ways to source writers: Cult of Copy Job Board ProBlogger Headhunting on LinkedIn If you really want to use UpWork, use it for headhunting (instead of posting a job ad) Tip #17. Hire Writers the Right Way If you want to seriously scale your content production, hire your writers full-time. This (especially) makes sense if you’re a content marketing agency that creates a TON of content for clients all the time. If you’re doing SEO just for your own blog, though, it usually makes more sense to use freelancers. Tip #18. Topic Authority Matters Google keeps your website's authoritativeness in mind. Meaning, if you have 100 articles on digital marketing, you’re probably more of an authority on the topic than someone that has just 10. Hence, Google is a lot more likely to reward you with better rankings. This is also partially why content volume really matters: the more frequently you publish content, the sooner Google will view you as an authority. Tip #19. Focus on One Niche at a Time Let’s say your blog covers the following topics: sales, accounting, and business management.  You’re more likely to rank if you have 30 articles on a single topic (e.g. accounting) than if you have 10 articles on each. So, we recommend you double-down on one niche instead of spreading your content team thin with different topics. Tip #20. Don’t Fret on the Details While technical SEO is important, you shouldn’t get too hung up on it.  Sure, there are thousands of technical tips you can find on the internet, and most of them DO matter. The truth, though, is that Google won’t punish you just because your website doesn’t load in 3 milliseconds or there’s a meta description missing on a single page. Especially if you have SEO fundamentals done right: Get your website to run as fast as possible. Create a ton of good SEO content. Get backlinks for your website on a regular basis. You’ll still rank, even if your website isn’t 100% optimized. Tip #21. Do Yourself a Favor and Hire a VA There are a TON of boring SEO tasks that your team should really not be wasting time with. So, hire a full-time VA to help with all that. Some tasks you want to outsource include gathering contacts to reach out to for link-building, uploading articles on WordPress, etc. Tip #22. Google Isn’t Everything While Google IS the dominant search engine in most parts of the world, there ARE countries with other popular search engines.  If you want to improve your SEO in China, for example, you should be more concerned with ranking on Baidu. Targeting Russia? Focus on Yandex. Tip #23. No, Voice Search is Still Not Relevant Voice search is not and will not be relevant (no matter what sensationalist articles might say). It’s just too impractical for most search queries to use voice (as opposed to traditional search). Tip #24. SEO Is Not Dead SEO is not dead and will still be relevant decades down the line. Every year, there’s a sensationalist article talking about this.  Ignore those. Tip #25. Doing Local SEO? Focus on Service Pages If you’re doing local SEO, focus on creating service-based landing pages instead of content.  E.g. if you’re an accounting firm based in Boston, you can make a landing page about /accounting-firm-boston/, /tax-accounting-boston/, /cpa-boston/, and so on. Thing is, you don’t really need to rank on global search terms - you just won’t get leads from there. Even if you ranked on the term “financial accounting,” it wouldn’t really matter for your bottom line that much. Tip #26. Learn More on Local SEO Speaking of local SEO, we definitely don’t do the topic justice in this guide. There’s a lot more you need to know to do local SEO effectively and some of it goes against the general SEO advice we talk about in this article (e.g. you don't necessarily need blog content for local SEO). We're going to publish an article on that soon enough, so if you want to check it out, DM me and I'll hit you up when it's up. Tip #27. Avoid Vanity Metrics Don’t get side-tracked by vanity metrics.  At the end of the day, you should care about how your traffic impacts your bottom line. Fat graphs and lots of traffic are nice and all, but none of it matters if the traffic doesn’t have the right search intent to convert to your product/service. Tip #28. Struggling With SEO? Hire an Expert Failing to make SEO work for your business? When in doubt, hire an organic SEO consultant or an SEO agency.  The #1 benefit of hiring an SEO agency or consultant is that they’ve been there and done that - more than once. They might be able to catch issues an inexperienced SEO can’t. Tip #29. Engage With the Community Need a couple of SEO questions answered?  SEO pros are super helpful & easy to reach! Join these Facebook groups and ask your question - you’ll get about a dozen helpful answers! SEO Signals Lab SEO & Content Marketing The Proper SEO Group. Tip #30. Stay Up to Date With SEO Trends SEO is always changing - Google is constantly pumping out new updates that have a significant impact on how the game is played.  Make sure to stay up to date with the latest SEO trends and Google updates by following the Google Search Central blog. Tip #31. Increase Organic CTR With PPC Want to get the most out of your rankings? Run PPC ads for your best keywords. Googlers who first see your ad are more likely to click your organic listing. Content & On-Page SEO Tips Tip #32. Create 50% Longer Content On average, we recommend you create an article that’s around 50% longer than the best article ranking on the keyword.  One small exception, though, is if you’re in a super competitive niche and all top-ranking articles are already as comprehensive as they can be. For example, in the VPN niche, all articles ranking for the keyword “best VPN” are around 10,000 - 11,000 words long. And that’s the optimal word count - even if you go beyond, you won’t be able to deliver that much value for the reader to make it worth the effort of creating the content. Tip #33. Longer Is Not Always Better Sometimes, a short-form article can get the job done much better.  For example, let’s say you’re targeting the keyword “how to tie a tie.”  The reader expects a short and simple guide, something under 500 words, and not “The Ultimate Guide to Tie Tying for 2021 \[11 Best Tips and Tricks\]” Tip #34. SEO is Not Just About Written Content Written content is not always best. Sometimes, videos can perform significantly better. E.g. If the Googler is looking to learn how to get a deadlift form right, they’re most likely going to be looking for a video. Tip #35. Don’t Forget to Follow Basic Optimization Tips For all your web pages (articles included), follow basic SEO optimization tips. E.g. include the keyword in the URL, use the right headings etc.  Just use RankMath or YoastSEO for this and you’re in the clear! Tip #36. Hire Specialized Writers When hiring content writers, try to look for ones that specialize in creating SEO content.  There are a LOT of writers on the internet, plenty of which are really good.  However, if they haven’t written SEO content before, chances are, they won’t do that good of a job. Tip #37. Use Content Outlines Speaking of writers - when working with writers, create a content outline that summarizes what the article should be about and what kind of topics it needs to cover instead of giving them a keyword and asking them to “knock themselves out.”   This makes it a lot more likely for the writer to create something that ranks. When creating content outlines, we recommend you include the following information: Target keyword Related keywords that should be mentioned in the article Article structure - which headings should the writer use? In what order? Article title Tip #38. Find Writers With Niche Knowledge Try to find a SEO content writer with some experience or past knowledge about your niche. Otherwise, they’re going to take around a month or two to become an expert. Alternatively, if you’re having difficulty finding a writer with niche knowledge, try to find someone with experience in technical or hard to explain topics. Writers who’ve written about cybersecurity in the past, for example, are a lot more likely to successfully cover other complicated topics (as opposed to, for example, a food or travel blogger). Tip #39. Keep Your Audience’s Knowledge in Mind When creating SEO content, always keep your audience’s knowledge in mind. If you’re writing about advanced finance, for example, you don’t need to teach your reader what an income statement is. If you’re writing about income statements, on the other hand, you’d want to start from the very barebone basics. Tip #40. Write for Your Audience If your readers are suit-and-tie lawyers, they’re going to expect professionally written content. 20-something hipsters? You can get away with throwing a Rick and Morty reference here and there. Tip #41. Use Grammarly Trust us, it’ll seriously make your life easier! Keep in mind, though, that the app is not a replacement for a professional editor. Tip #42. Use Hemingway Online content should be very easy to read & follow for everyone, whether they’re a senior profession with a Ph.D. or a college kid looking to learn a new topic. As such, your content should be written in a simple manner - and that’s where Hemingway comes in. It helps you keep your blog content simple. Tip #43. Create Compelling Headlines Want to drive clicks to your articles? You’ll need compelling headlines. Compare the two headlines below; which one would you click? 101 Productivity Tips \[To Get Things Done in 2021\] VS Productivity Tips Guide Exactly! To create clickable headlines, we recommend you include the following elements: Keyword Numbers Results Year (If Relevant) Tip #44. Nail Your Blog Content Formatting Format your blog posts well and avoid overly long walls of text. There’s a reason Backlinko content is so popular - it’s extremely easy to read and follow. Tip #45. Use Relevant Images In Your SEO Content Key here - relevant. Don’t just spray random stock photos of “office people smiling” around your posts; no one likes those.  Instead, add graphs, charts, screenshots, quote blocks, CSS boxes, and other engaging elements. Tip #46. Implement the Skyscraper Technique (The Right Way) Want to implement Backlinko’s skyscraper technique?  Keep this in mind before you do: not all content is meant to be promoted.  Pick a topic that fits the following criteria if you want the internet to care: It’s on an important topic. “Mega-Guide to SaaS Marketing” is good, “top 5 benefits of SaaS marketing” is not. You’re creating something significantly better than the original material. The internet is filled with mediocre content - strive to do better. Tip #47. Get The URL Slug Right for Seasonal Content If you want to rank on a seasonal keyword with one piece of content (e.g. you want to rank on “saas trends 2020, 2021, etc.”), don’t mention the year in the URL slug - keep it /saas-trends/ and just change the headline every year instead.  If you want to rank with separate articles, on the other hand (e.g. you publish a new trends report every year), include the year in the URL. Tip #48. Avoid content cannibalization.  Meaning, don’t write 2+ articles on one topic. This will confuse Google on which article it should rank. Tip #49. Don’t Overdo Outbound Links Don’t include too many outbound links in your content. Yes, including sources is good, but there is such a thing as overdoing it.  If your 1,000 word article has 20 outbound links, Google might consider it as spam (even if all those links are relevant). Tip #50. Consider “People Also Ask” To get the most out of SERP, you want to grab as many spots on the search result as possible, and this includes “people also ask (PAA):” Make a list of the topic’s PAA questions and ensure that your article answers them.  If you can’t fit the questions & answers within the article, though, you can also add an FAQ section at the end where you directly pose these questions and provide the answers. Tip #51. Optimize For Google Snippet Optimize your content for the Google Snippet. Check what’s currently ranking as the snippet. Then, try to do something similar (or even better) in terms of content and formatting. Tip #52. Get Inspired by Viral Content Want to create content that gets insane shares & links?  Reverse-engineer what has worked in the past. Look up content in your niche that went viral on Reddit, Hacker News, Facebook groups, Buzzsumo, etc. and create something similar, but significantly better. Tip #53. Avoid AI Content Tools No, robots can’t write SEO content.  If you’ve seen any of those “AI generated content tools,” you should know to stay away. The only thing those tools are (currently) good for is creating news content. Tip #54. Avoid Bad Content You will never, ever, ever rank with one 500-word article per week.  There are some SEO agencies (even the more reputable ones) that offer this as part of their service. Trust us, this is a waste of time. Tip #55. Update Your Content Regularly Check your top-performing articles annually and see if there’s anything you can do to improve them.  When most companies finally get the #1 ranking for a keyword, they leave the article alone and never touch it again… ...Until they get outranked, of course, by someone who one-upped their original article. Want to prevent this from happening? Analyze your top-performing content once a year and improve it when possible. Tip #56. Experiment With CTR Do your articles have low CTR? Experiment with different headlines and see if you can improve it.  Keep in mind, though, that what a “good CTR” is really depends on the keyword.  In some cases, the first ranking will drive 50% of the traffic. In others, it’s going to be less than 15%. Link-Building Tips Tip #57. Yes, Links Matter. Here’s What You Need to Know “Do I need backlinks to rank?” is probably one of the most common SEO questions.  The answer to the question (alongside all other SEO-related questions) is that it depends on the niche.  If your competitors don’t have a lot of backlinks, chances are, you can rank solely by creating superior content. If you’re in an extremely competitive niche (e.g. VPN, insurance, etc.), though, everyone has amazing, quality content - that’s just the baseline.  What sets top-ranking content apart from the rest is backlinks. Tip #58. Sometimes, You’ll Have to Pay For Links Unfortunately, in some niches, paying for links is unavoidable - e.g. gambling, CBD, and others. In such cases, you either need a hefty link-building budget, or a very creative link-building campaign (create a viral infographic, news-worthy story based on interesting data, etc.). Tip #59. Build Relationships, Not Links The very best link-building is actually relationship building.  Make a list of websites in your niche and build a relationship with them - don’t just spam them with the standard “hey, I have this amazing article, can you link to it?”.  If you spam, you risk ruining your reputation (and this is going to make further outreach much harder). Tip #60. Stick With The Classics At the end of the day, the most effective link-building tactics are the most straightforward ones:  Direct Outreach Broken Link-Building Guest Posting Skyscraper Technique Creating Viral Content Guestposting With Infographics Tip #61. Give, Don’t Just Take! If you’re doing link-building outreach, don’t just ask for links - give something in return.  This will significantly improve the reply rate from your outreach email. If you own a SaaS tool, for example, you can offer the bloggers you’re reaching out to free access to your software. Or, alternatively, if you’re doing a lot of guest posting, you can offer the website owner a link from the guest post in exchange for the link to your website. Tip #62. Avoid Link Resellers That guy DMing you on LinkedIn, trying to sell you links from a Google Sheet?  Don’t fall for it - most of those links are PBNs and are likely to backfire on you. Tip #63. Avoid Fiverr Like The Plague Speaking of spammy links, don’t touch anything that’s sold on Fiverr - pretty much all of the links there are useless. Tip #64. Focus on Quality Links Not all links are created equal. A link is of higher quality if it’s linked from a page that: Is NOT a PBN. Doesn’t have a lot of outbound links. If the page links to 20 other websites, each of them gets less link juice. Has a lot of (quality) backlinks. Is part of a website with a high domain authority. Is about a topic relevant to the page it’s linking to. If your article about pets has a link from an accounting blog, Google will consider it a bit suspicious. Tip #65. Data-Backed Content Just Works Data-backed content can get insane results for link-building.  For example, OKCupid used to publish interesting data & research based on how people interacted with their platform and it never failed to go viral. Each of their reports ended up being covered by dozens of news media (which got them a ton of easy links). Tip #66. Be Creative - SEO Is Marketing, After All Be novel & creative with your link-building initiatives.  Here’s the thing: the very best link-builders are not going to write about the tactics they’re using.  If they did, you’d see half the internet using the exact same tactic as them in less than a week! Which, as you can guess, would make the tactic cliche and significantly less effective. In order to get superior results with your link-building, you’ll need to be creative - think about how you can make your outreach different from what everyone does. Experiment it, measure it, and improve it till it works! Tip #67. Try HARO HARO, or Help a Reporter Out, is a platform that matches journalists with sources. You get an email every day with journalists looking for experts in specific niches, and if you pitch them right, they might feature you in their article or link to your website. Tip #68. No-Follow Links Aren’t That Bad Contrary to what you might’ve heard, no-follow links are not useless. Google uses no-follow as more of a suggestion than anything else.  There have been case studies that prove Google can disregard the no-follow tag and still reward you with increased rankings. Tip #69. Start Fresh With an Expired Domain Starting a new website? It might make sense to buy an expired one with existing backlinks (that’s in a similar niche as yours). The right domain can give you a serious boost to how fast you can rank. Tip #70. Don’t Overspend on Useless Links “Rel=sponsored” links don’t pass pagerank and hence, won’t help increase your website rankings.  So, avoid buying links from media websites like Forbes, Entrepreneur, etc. Tip #71. Promote Your Content Other than link-building, focus on organic content promotion. For example, you can repost your content on Facebook groups, LinkedIn, Reddit, etc. and focus on driving traffic.  This will actually lead to you getting links, too. We got around 95 backlinks to our SEO case study article just because of our successful content promotion. Tons of people saw the article on the net, liked it, and linked to it from their website. Tip #72. Do Expert Roundups Want to build relationships with influencers in your niche, but don’t know where to start?  Create an expert roundup article. If you’re in the sales niche, for example, you can write about Top 21 Sales Influencers in 2021 and reach out to the said influencers letting them know that they got featured. Trust us, they’ll love you for this! Tip #73. .Edu Links are Overhyped .edu links are overrated. According to John Mueller, .edu domains tend to have a ton of outbound links, and as such, Google ignores a big chunk of them. Tip #74. Build Relationships With Your Customers Little-known link-building hack: if you’re a SaaS company doing SEO, you can build relationships with your customers (the ones that are in the same topical niche as you are) and help each other build links! Tip #75. Reciprocal Links Aren’t That Bad Reciprocal links are not nearly as bad as Google makes them out to be. Sure, they can be bad at scale (if trading links is all you’re doing). Exchanging a link or two with another website / blog, though, is completely harmless in 99% of cases. Tip #76. Don’t Overspam Don’t do outreach for every single post you publish - just the big ones.  Most people already don’t care about your outreach email. Chances are, they’re going to care even less if you’re asking them to link to this new amazing article you wrote (which is about the top 5 benefits of adopting a puppy). Technical SEO Tips Tip #77. Use PageSpeed Insights If your website is extremely slow, it’s definitely going to impact your rankings. Use PageSpeed Insights to see how your website is currently performing. Tip #78. Load Speed Matters While load speed doesn’t impact rankings directly, it DOES impact your user experience. Chances are, if your page takes 5 seconds to load, but your competition’s loads instantly, the average Googler will drop off and pick them over you. Tip #79. Stick to a Low Crawl Depth Crawl depth of any page on your website should be lower than 4 (meaning, any given page should be possible to reach in no more than 3 clicks from the homepage).  Tip #80. Use Next-Gen Image Formats Next-gen image formats such as JPEG 2000, JPEG XR, and WebP can be compressed a lot better than PNG or JPG. So, when possible, use next-get formats for images on your website. Tip #81. De-Index Irrelevant Pages Hide the pages you don’t want Google to index (e.g: non-public, or unimportant pages) via your Robots.txt. If you’re a SaaS, for example, this would include most of your in-app pages or your internal knowledge base pages. Tip #82. Make Your Website Mobile-Friendly Make sure that your website is mobile-friendly. Google uses “mobile-first indexing.” Meaning, unless you have a working mobile version of your website, your rankings will seriously suffer. Tip #83. Lazy-Load Images Lazy-load your images. If your pages contain a lot of images, you MUST activate lazy-loading. This allows images that are below the screen, to be loaded only once the visitor scrolls down enough to see the image. Tip #84. Enable Gzip Compression Enable Gzip compression to allow your HTML, CSS and JS files to load faster. Tip #85. Clean Up Your Code If your website loads slowly because you have 100+ external javascript files and stylesheets being requested from the server, you can try minifying, aggregating, and inlining some of those files. Tip 86. Use Rel-Canonical Have duplicate content on your website? Use rel-canonical to show Google which version is the original (and should be prioritized for search results). Tip #87. Install an SSL Certificate Not only does an SSL certificate help keep your website safe, but it’s also a direct ranking factor. Google prioritizes websites that have SSL certificates over the ones that don’t. Tip #88. Use Correct Anchor Texts for Internal Links When linking to an internal page, mention the keyword you’re trying to rank for on that page in the anchor text. This helps Google understand that the page is, indeed, about the keyword you’re associating it with. Tip #89. Use GSC to Make Sure Your Content is Interlinked Internal links can have a serious impact on your rankings. So, make sure that all your blog posts (especially the new ones) are properly linked to/from your past content.  You can check how many links any given page has via Google Search Console. Tip #90. Bounce rate is NOT a Google ranking factor. Meaning, you can still rank high-up even with a high bounce rate. Tip #91. Don’t Fret About a High Bounce Rate Speaking of the bounce rate, you’ll see that some of your web pages have a higher-than-average bounce rate (70%+).  While this can sometimes be a cause for alarm, it’s not necessarily so. Sometimes, the search intent behind a given keyword means that you WILL have a high bounce rate even if your article is the most amazing thing ever.  E.g. if it’s a recipe page, the reader gets the recipe and bounces off (since they don’t need anything else). Tip #92. Google Will Ignore Your Meta Description More often than not, Google won’t use the meta description you provide - that’s normal. It will, instead, automatically pick a part of the text that it thinks is most relevant and use it as a meta description. Despite this, you should always add a meta description to all pages. Tip #93. Disavow Spammy & PBN Links Keep track of your backlinks and disavow anything that’s obviously spammy or PBNy. In most cases, Google will ignore these links anyway. However, you never know when a competitor is deliberately targeting you with too many spammy or PBN links (which might put you at risk for being penalized). Tip #94. Use The Correct Redirect  When permanently migrating your pages, use 301 redirect to pass on the link juice from the old page to the new one. If the redirect is temporary, use a 302 redirect instead. Tip #95. When A/B Testing, Do This A/B testing two pages? Use rel-canonical to show Google which page is the original. Tip #96. Avoid Amp DON’T use Amp.  Unless you’re a media company, Amp will negatively impact your website. Tip #97. Get Your URL Slugs Right Keep your blog URLs short and to-the-point. Good Example: apollodigital.io/blog/seo-case-study Bad Example: apollodigital.io/blog/seo-case-study-2021-0-to-200,000/ Tip #98. Avoid Dates in URLs An outdated date in your URL can hurt your CTR. Readers are more likely to click / read articles published recently than the ones written years back. Tip #99. Social Signals Matter Social signals impact your Google rankings, just not in the way you think. No, your number of shares and likes does NOT impact your ranking at all.  However, if your article goes viral and people use Google to find your article, click it, and read it, then yes, it will impact your rankings.  E.g. you read our SaaS marketing guide on Facebook, then look up “SaaS marketing” on Google, click it, and read it from there. Tip #100. Audit Your Website Frequently Every other month, crawl your website with ScreamingFrog and see if you have any broken links, 404s, etc. Tip #101. Use WordPress Not sure which CMS platform to use?  99% of the time, you’re better off with WordPress.  It has a TON of plugins that will make your life easier.  Want a drag & drop builder? Use Elementor. Wix, SiteGround and similar drag & drops are bad for SEO. Tip #102. Check Rankings the Right Way When checking on how well a post is ranking on Google Search Console, make sure to check Page AND Query to get the accurate number.  If you check just the page, it’s going to give you the average ranking on all keywords the page is ranking for (which is almost always going to be useless data). Conclusion Aaand that's about it - thanks for the read! Now, let's circle back to Tip #1 for a sec. Remember when we said a big chunk of what you read on SEO is based on personal experiences, experiments, and the like? Well, the tips we've mentioned are part of OUR experience. Chances are, you've done something that might be different (or completely goes against) our advice in this article. If that's the case, we'd love it if you let us know down in the comments. If you mention something extra-spicy, we'll even include it in this article.

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist
reddit
LLM Vibe Score0
Human Vibe Score1
deadcoder0904This week

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist

Silicon Valley wants you to believe that their unicorn startups succeeded doing things legally. But that couldn't be far from truth. For starters, Airbnb used multiple Gmail accounts to spam Craigslist. "They posted unrealistically (fake) cheap rentals of beautiful apartments in places where normal rent should be 10x more. Once people replied, they auto-responded that the unit has been rented, but they should be looking for another unit on AirBnB." The Game of Blackhat is a cat-and-mouse game. You need a lot of guardrails to protect yourself from people using your Social Site by spamming their products. Craigslist is a team of 30 people. There's stuff AI can automate now with such a small team but back then, it wasn't possible. Airbnb used Craigslist as its playground to spam Craigslist visitors to grow their supply-side. In a 2-sided marketplace, growing both supply and demand is very important. And both must grow at the same time for the marketplace to work. A Blackhat Marketer created a new test site to get vacation rental owners to sign-up so that he can test his Airbnb theory. He grabbed their real email-addresses (not Craigslist anonymous addresses) via Craigslist by specifically targeting those who were advertising their vacation rentals on Craigslist. He skipped over the other categories that were directly related to AirBnB's business model because they didn't fit with the test site he built. Once he got 1000+ sign-ups, he then took it upon himself to post it to the advertising section on Craigslist. The email said this: I am emailing you because you have one of the nicest listings on Craigslist in Idaho and I want to recommend you feature it (for free) on one of the largest Idaho housing sites on the web, Airbnb. The site already has 3,000,000 pages views a month. Check it out here to list now: airbnb(dot)com Sarah Surpisingly, all emails were by ladies. He did the same in Week 2 and Week 3 to test if it wasn't a one-time thing. Surely, it wasn't a fluke. After posting 4 ads on Craigslist in 3 weeks, he received 5 identical emails from 2 ladies who were raving fans of AirBnB and spent their days emailing Craigslist advertisers. This is one of the greatest blackhat strategies used in the real world to build a billion-dollar marketplace by growing the supply-side with pure blackhat. These strategies are not mentioned in Press Interviews, Media, or any Founder stories but this is probably the most important piece of the puzzle. Without it, Airbnb probably wouldn't have survived. "Some very famous investors have alluded to the fact that they look for a dangerous streak in the entrepreneurs they invest in…and while those investors will never come out and tell you what they mean, this kind of thing is probably what they mean." It definitely violates CAN-SPAM act. Some comments from Hacker News: "CAN-SPAM, sending from a fake address (illegal headers). CA has a specific law that pre-empts CAN-SPAM that definitely makes this illegal if sent from CA." But I guess it worked in Airbnb's favour lol as they were never caught or fined until after. "It's commercial email 100%. Probably a fake sender name (illegal), against gmail ToS, against CL ToS and no unsubscribe link and no one even subscribed in the first place. 100% against CAN-SPAM." Thanks for reading. If you'd like to learn more blackhat tactics like this, check this site which is a growth hacking newsletter with real-world blackhat examples. PS: Actual emails & screenshots from the Airbnb x Craigslist spam can be found here.

I have reviewed over 900+ AI Tools for my directory. Here are some of the best ones I have seen for entrepreneurs and startups.
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I have reviewed over 900+ AI Tools for my directory. Here are some of the best ones I have seen for entrepreneurs and startups.

As one of the co-founders at AI Scout, a platform for AI discovery, I've had the privilege (and challenge) of reviewing over 900 AI tools submitted to our directory. I've filtered these down to some of the top AI tools that I believe could bring value to startups and entrepreneurs. It's worth noting that while these tools are great right out the box, the power of AI is truly realized when these tools are used in tandem and strategically aligned with your business needs. The challenge most people face is not about the lack of AI tools available, but the difficulty in finding the right one that fits their specific needs and workflows. Without further ado, here's my top pick of AI tools you should consider looking into if you are an entrepreneur or run a startup. Chatbase - Custom ChatGPT (Trained on Your Own Data) Taking a step up from traditional support bots, Chatbase combines the power of GPT and your own knowledge base. The result is a ChatGPT-like chatbot that is trained on your own websites and documents. You can embed the chatbot into your own website via an iframe or script in the header of your website code. They also have an API you can take advantage of. We use this personally at AI Scout for ScoutBud (AI assistant to find AI tools), which we trained based on our directory site. It would also work great if you have extensive documentation, papers, etc. that you want to quickly reference by simply asking a chatbot for the info you need instead of having to go through dozens of PDFs. Reply - AI-Powered Sales Engagement Platform Great AI tool to manage your entire sales engagement cycle. They have a large database with about a dozen filters to discover optimal B2B leads. From here, you can use their GPT integration to generate cold emails as well as handle responses and meeting scheduling. What I like personally about Reply are the endless integrations available, including Gmail, Outlook, Zoho, and major social platforms such as Twitter and LinkedIn. Instapage - AI Landing Page Generation, Testing, and Personalization This AI tool allows users to generate content variations for landing pages including headlines, paragraphs, and CTAs based on the target audience. You can also conduct A/B testing for more effective and efficient campaigns. Paired with hundreds of professional and cutomizable layouts, Instapage is definitely something I would recommend for entrepreneurs who want to get a high-converting landing page set up quickly and effectively. SaneBox - AI Emails Management If you feel overwhelmed by the sheer volume of emails you receive like myself and many entrepreneurs, this could be something for you. SaneBox’s AI identifies important emails and declutters your inbox, helping you to stay focused on what truly matters. SocialBee - AI Social Media Manager Think of SocialBee as your all-in-one social media command center, powered by AI. You can manage multiple social media accounts from one platform and generate captions with AI as well. SocialBee not only allows you to schedule posts but also helps you analyze growth and engagement with detailed reports. Works well with all social media platforms, including Facebook, Twitter, Instagram, and Linkedin. I believe they also have integrations for TikTok and YouTube, although I haven't tried these personally. MeetGeek - AI Meeting Assistant Lifesaver if you attend a lot of meetings or calls. Great for transcribing, summarizing, and sharing key insights from meetings. The AI also creates meeting highlights, which I've personally fouund quite useful if you ever need to get a very quick and dirty overview of what happened in a call. It also provides analysis (including sentiment evaluation) for meetings. Taskade - AI Productivity Tool for Task Management An all-in-one AI productivity tool. Multiple AI features available, including a chatbot, writing assistant, and workflow creator. It's a great all-around tool for real-time collaboration and efficient task management. Scribe AI (ScribeHow) - AI Documentation Generator Great for any SaaS applications where you need to create resources/documentations/guides for your app. You simply record your process and Scribe generates a written guide for you. Remember, while AI is an excellent assistant, it's also just a tool. The ultimate success of your venture depends on how effectively you leverage these tools. Happy experimenting!

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist
reddit
LLM Vibe Score0
Human Vibe Score1
deadcoder0904This week

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist

Silicon Valley wants you to believe that their unicorn startups succeeded doing things legally. But that couldn't be far from truth. For starters, Airbnb used multiple Gmail accounts to spam Craigslist. "They posted unrealistically (fake) cheap rentals of beautiful apartments in places where normal rent should be 10x more. Once people replied, they auto-responded that the unit has been rented, but they should be looking for another unit on AirBnB." The Game of Blackhat is a cat-and-mouse game. You need a lot of guardrails to protect yourself from people using your Social Site by spamming their products. Craigslist is a team of 30 people. There's stuff AI can automate now with such a small team but back then, it wasn't possible. Airbnb used Craigslist as its playground to spam Craigslist visitors to grow their supply-side. In a 2-sided marketplace, growing both supply and demand is very important. And both must grow at the same time for the marketplace to work. A Blackhat Marketer created a new test site to get vacation rental owners to sign-up so that he can test his Airbnb theory. He grabbed their real email-addresses (not Craigslist anonymous addresses) via Craigslist by specifically targeting those who were advertising their vacation rentals on Craigslist. He skipped over the other categories that were directly related to AirBnB's business model because they didn't fit with the test site he built. Once he got 1000+ sign-ups, he then took it upon himself to post it to the advertising section on Craigslist. The email said this: I am emailing you because you have one of the nicest listings on Craigslist in Idaho and I want to recommend you feature it (for free) on one of the largest Idaho housing sites on the web, Airbnb. The site already has 3,000,000 pages views a month. Check it out here to list now: airbnb(dot)com Sarah Surpisingly, all emails were by ladies. He did the same in Week 2 and Week 3 to test if it wasn't a one-time thing. Surely, it wasn't a fluke. After posting 4 ads on Craigslist in 3 weeks, he received 5 identical emails from 2 ladies who were raving fans of AirBnB and spent their days emailing Craigslist advertisers. This is one of the greatest blackhat strategies used in the real world to build a billion-dollar marketplace by growing the supply-side with pure blackhat. These strategies are not mentioned in Press Interviews, Media, or any Founder stories but this is probably the most important piece of the puzzle. Without it, Airbnb probably wouldn't have survived. "Some very famous investors have alluded to the fact that they look for a dangerous streak in the entrepreneurs they invest in…and while those investors will never come out and tell you what they mean, this kind of thing is probably what they mean." It definitely violates CAN-SPAM act. Some comments from Hacker News: "CAN-SPAM, sending from a fake address (illegal headers). CA has a specific law that pre-empts CAN-SPAM that definitely makes this illegal if sent from CA." But I guess it worked in Airbnb's favour lol as they were never caught or fined until after. "It's commercial email 100%. Probably a fake sender name (illegal), against gmail ToS, against CL ToS and no unsubscribe link and no one even subscribed in the first place. 100% against CAN-SPAM." Thanks for reading. If you'd like to learn more blackhat tactics like this, check this site which is a growth hacking newsletter with real-world blackhat examples. PS: Actual emails & screenshots from the Airbnb x Craigslist spam can be found here.

I’m building a “DesignPickle” for all things Funnels. Would love your feedback...
reddit
LLM Vibe Score0
Human Vibe Score0.846
Gluteous_MaximusThis week

I’m building a “DesignPickle” for all things Funnels. Would love your feedback...

Hey Entrepreneurs, Early next year I’m rolling out a productized service business along the lines of Design Pickle, but instead of design assets, we create on-demand marketing assets: Things like landing pages, lead magnets, email campaigns, etc. This is NOT an agency with client engagements, etc.  It is an on-demand, menu-item style fulfillment platform where we do a few predefined things really, really well, and as much as possible try to reduce the complexity (and required customer inputs) so that creating your next killer Funnel is as easy as ordering dinner on Skip the Dishes. Below I’ve laid out our current thinking (we’re still distilling this into a deck), just so you have the full context.  And at the end, I pose 5 feedback questions. So if this “deck” seems interesting to you, then I’d love to get your feedback at the end 🙂 Thanks! And here goes... \--- The current elevator pitch:  We will research your business, your market and your competitors to develop a killer Lead Magnet, Landing Page, Ad Creatives and a 30-Day Email Drip campaign designed to turn your traffic into a rabid, lifelong buyer tribe (that you can email for years... like having your own, on-demand cash printer).  The overall thesis:  While AI is getting continually better at creating things like one-off graphics, article content, and so on - we do not think it can deeply understand market psychology, what keeps your customers up at night, or the underlying emotions that drive purchase decisions at the individual level, for your specific offer(s). Moreover, it’s also this psychological aspect of marketing where most businesses simply do not have the talent, resources or frankly the experience to create high-performing funnels themselves, regardless of how much "automation" they might have at their fingertips. And that’s because this is where you need to know who your customer really is, and what they’re actually buying (hint: not your features). Few marketers focus on these fundamentals, let alone understand the selling process. This is also why tools like ClickFunnels, HighLevel, LeadPages, etc. while very helpful, can only help with the logistics of selling. It’s still on each business to figure out how to actually tell their story, capture demand, and sell effectively. This is why a productized service that nails market research, competitor analysis & world-class copywriting that can actually turn cold traffic into lifelong customers is going to be a no-brainer for a business that’s currently struggling to actually get a steady flow of online sales. This is not something we see AI replacing effectively, any time soon. Current gaps & unknowns:  At a top level, I’m not overly worried about validation or viability; there are several existing competitors, and obviously the automation platforms have substantial customer bases (ClickFunnels etc). There will be a certain cohort that will want experts to do the actual thinking for them, storytelling, etc. Even if it’s a relatively small cohort, given the CLTV of a service like this, it still makes for a decent sized business. But where I’m less confident is in who our ideal customer actually is... Yes, basically every direct-response internet business needs an effective funnel that can sell. Whether you’re an Enterprise SaaS platform or a solopreneur launching your first $39 ebook, you will benefit from a killer funnel. As a “DesignPickle” type service though, here’s the challenges I see with each core customer category... B2B SaaS: While sales decisions are still emotional, it’s more about account-based considerations; people usually aren’t spending their own money, so it’s more about not looking stupid vs. gaining some benefit. Harder to systemize. Very high stakes. Consumer / SMB SaaS: While I think in general these are ideal customers, there will be resistance to leaning in hard on personality (and personal brand); founders usually want to sell at some point, so if they become the face of the platform, then boosting performance with a high-personality funnel might ironically make it a harder business to sell. SaaS founders are also generally very technical and stereotypically avoid marketing like the plague. Ecommerce: Most DTC brands think of funnels as an extension of their FB ad campaigns; few see their customers as a long-term audience that can become a significant asset. However, certain lifestyle / luxury brands might differ. Online Courses / Coaches: Of all the customer profiles, this group probably has the most appreciation for the effectiveness of marketing psychology, copywriting, etc. and would get the value prop quickly. The problem is that most won’t have the budget or traction to outsource asset creation. This is the “poorest” segment of the market. Service Businesses: Agencies, consultancies, and so on would greatly benefit from having a strong personal brand + storytelling premise (funnel). However, they’re also the worst offenders when it comes to never practicing what they preach / do for others. Client work soaks up all their resources. Local & Brick/Mortar: Generally speaking most local businesses are going to have smaller audiences (email lists under 2K subs), where funnel ops might have limited value long-term due to a lack of scale. And for larger B&M brands with franchises across various locations, you get into stakeholder friction; messaging usually gets watered down to basic corporate-speak as a result. Now, to be clear, I still see a ton of opportunity in each of those main customer categories as well, but I like to be clear-eyed about the overall resistance each niche will have - mainly because this helps to refine messaging to an ideal customer profile within them. In this case though, so far, nothing’s really jumping out at me as a clear “winner” at a category level. So far, what I’m thinking is our ICP might be situational / conditional. For example: A business has a funnel / is invested in the process, but it’s not working yet A business sees their competitor killing it with a funnel, and they’re ultra motivated to do it even better A business has one funnel that’s working awesome, and everything else they try sucks (so they can’t scale / expand) Etc. Basically, our most ideal customer might be ANY type of business who gets it, who’s tried to do this themselves, and now needs the pros to come in and fix things. \--- This is where your feedback would be incredibly valuable... First, if you’ve made it all the way down to this point - thanks for enduring my rambling mess above! But I did think the context might be helpful. Based on our overall biz plan & go-to-market considerations discussed above, if you run a business (or work with one) that might benefit from something like this, I’d love to ask a few questions... What is the nature of your business? (What do you sell)? What do you find hardest about selling to your online audience? Have you built a funnel in the past / are you running one currently? If not, what’s stopping you from building a high-performing funnel? If you had a “magic marketing lamp” where a genie could create ONE amazing marketing asset for you (eg. a killer landing page, video ad, launch strategy, etc), but you could only use it ONCE, what would you have the genie do for you? Please reply below as a comment, or DM me if you’d prefer to keep answers anonymous.  Thanks so much And again, apologies for the novel... Cheers

How Our AI Tool Helped a Small Business Save 15% on Annual Expenses
reddit
LLM Vibe Score0
Human Vibe Score1
Medical-Wait-6960This week

How Our AI Tool Helped a Small Business Save 15% on Annual Expenses

I’m the founder of a startup that built an AI-powered tool to analyze and optimize business finances, with a special focus on small and medium-sized enterprises (SMEs). After months of development and testing, I’m pumped to share our solution with you and get your feedback. Here’s what we do, how it works, and the results we’ve seen. The Problem We Solve Managing a company’s finances, especially for an SME, is often a nightmare: forgotten subscriptions, poorly negotiated supplier contracts, invoices with errors… We’ve all been there. Our tool uses AI to automate expense analysis, spot issues, and suggest practical ways to cut costs—without you having to spend hours on it. How It Works (A Bit of Tech Talk) We built our tool on a multi-agent architecture using the CREWAI framework. Here are the main AI agents we’ve got running: Expense Analyst: Digs through your invoices and categorizes your spending. Compliance Auditor: Checks for errors, fraud, or compliance hiccups. Financial Reporter: Generates clear reports with actionable recommendations. Supplier Negotiator: Hunts down cheaper supplier options using the Serper API and offers negotiation strategies. To hook up your company’s data, we use NEEDLE, a RAG (Retrieval-Augmented Generation) system that lets our agents tap into your info in real time. Everything’s locked down in an SQLite database with end-to-end encryption. Real Results We tested the tool with 10 companies, and here’s what we found: Average cost reduction of 12% in three months. Fraud detection: For example, we flagged 5 shady invoices at one company, saving them €3,000. Supplier optimization: For an SME, we found an energy supplier 20% cheaper, saving them €8,000 a year. A real-world case: A consulting firm with 50 employees ran our tool on their SaaS subscriptions. Outcome? They ditched 3 unused subscriptions, renegotiated 2 contracts, and saved 15% on their annual expenses. Challenges We Tackled No sugarcoating here—it wasn’t a walk in the park. The biggest hurdle? Data security. We’re handling sensitive stuff, so we went all in: End-to-end encryption for everything we process. GDPR compliance with strict rules. Role-based access controls to limit who sees what. Another tough one was integrating with existing systems. We’ve already got connectors for QuickBooks, Xero, and SAP, and we’re working on more. Why It’s Different Sure, there are tools like Expensify or Ramp out there, but our multi-agent approach digs deeper. We deliver super-detailed analysis and precise recommendations. And our knack for finding cheaper suppliers in real time? That’s a game-changer for quick savings.I’m the founder of a startup that built an AI-powered tool to analyze and optimize business finances, with a special focus on small and medium-sized enterprises (SMEs). After months of development and testing, I’m pumped to share our solution with you and get your feedback. Here’s what we do, how it works, and the results we’ve seen. Ask me your technical questions, share your ideas or critiques we’re here to get better! Thanks you for reading this.

Seeking Feedback on Business Idea: AI-Powered Business Partner Matching Platform
reddit
LLM Vibe Score0
Human Vibe Score1
torrentialdownpour34This week

Seeking Feedback on Business Idea: AI-Powered Business Partner Matching Platform

Hey everyone, I've been toying with an idea for a new business venture and I'd love to get some feedback and insights from this community. The Idea: I'm considering building a business platform that utilizes AI to match potential business partners. Whether you're a startup looking for a co-founder, a company seeking strategic partnerships, or an investor searching for promising ventures, this platform would help connect you with compatible partners based on your specific needs, goals, and preferences. How It Works: Users would create detailed profiles outlining their business objectives, industry expertise, skills, and what they're looking for in a partner. The AI algorithm would then analyze this data to identify compatible matches, taking into account factors like complementary skill sets, shared values, and mutual goals. The platform would provide users with a curated list of potential partners, along with insights and recommendations to facilitate meaningful connections. Key Features: Comprehensive Profiles: Users can create detailed profiles highlighting their background, experience, and what they bring to the table. AI Matching Algorithm: The platform's AI algorithm would use advanced data analysis techniques to generate accurate partner recommendations. Communication Tools: Built-in messaging and video conferencing tools would enable seamless communication between potential partners. Feedback and Ratings: Users can leave feedback and ratings for their matches, helping to build trust and credibility within the community. Resource Hub: Access to resources, articles, and guides on partnership development, negotiation strategies, and other relevant topics. Why It's Needed: Finding the right business partner can be a daunting task, often relying on personal networks or serendipitous encounters. By harnessing the power of AI, this platform aims to streamline the partner matching process, saving time and increasing the likelihood of finding compatible collaborators. Looking for Feedback: Before diving headfirst into this venture, I wanted to reach out to this community to gather some feedback: Does this idea resonate with you? Why or why not? Are there any existing platforms or services that offer similar functionalities? What features would be essential for you as a user? Any potential challenges or concerns you foresee with this concept? I'm eager to hear your thoughts and suggestions. Thanks in advance for your input!

How to get that big idea for your next business? Use trends!
reddit
LLM Vibe Score0
Human Vibe Score1
IRemember123This week

How to get that big idea for your next business? Use trends!

Hello entrepreneurs and aspiring business owners, I am Mikael and I want to share a post about how to spot business ideas. If you're wondering who the owl is, it's Agent O, my sidekick (please bear with him... or me, if you can). Let's get on to it. So, there are basically two ways of getting ideas for your new business: Find a service, product or experience that's already working. Identify and ride a trend. 🦉 : Third, have a rich relative pass you their business and sip margaritas by the sea while scrolling Reddit for the rest of your life! 🕵️ : Refrain yourself, I just got started ffs, I don't want to get banned! So, what are trends? Trends are patterns of adoption of a product, service or experience by people who want to satisfy a common need. Cool, huh? How trends start Trends emerge and evolve as temporary or permanent solutions to human needs. All products, services and experiences are the expression of human needs manifested through a perceived lack, which we humans interpret as problems. Let me make this more clear. Humans have needs: from basic (food, shelter, safety) to advanced (community, knowledge) to evolved (self actualization, spirituality) and everything in between. Don’t see this as a hierarchy, as it’s usually depicted with Maslow’s pyramid. See it as cycles with different degrees of impact on humans that vary in time and intensity. 🦉 : WHAT!?? 🕵️ : Hear me out… How Trends Affect Society Human needs are physical, emotional, intellectual and spiritual. Every day we feel the impact of those needs with different degrees of required fulfillment. You can’t go on without air for more than a few minutes. You can’t live without food and water for more than a few days. So, when it comes to the needs of the body, these have a shorter timeframe in which they need to be addressed. 🦉 : Ahh, I see what you did there… \\🕵️ \\: Thanks! But you can also live with an unfulfilled need for love or friends for a long time. You can live with a decaying health as well. And you also can live your entire life without finding out if there is a God or not. Humans perceive needs as something they lack within, which in turn is expressed as a problem on the outside. I lack food or water, this will create a problem for my survival. So I need to find food and water in my environment. This lack creates a behavior seeking a product, service or experience to fulfill that need. Makes sense? 🦉 : I just went out and got me a “Mice à la Forest” dinner! 🕵️: Bon appétit! See, Agent O fulfilled a bodily need. That’s what animals do, as they’re driven by instinct and are governed by natural laws (survive, reproduce, sleep, repeat). Humans are driven by more complex needs, as our intellect and emotions allow us to override those basic primary instincts. Why Trends Are Important What an entrepreneur does is to shift the perspective: instead of seeing a lack, he/she sees an opportunity by asking the question: how can I fulfill this need? Or, even better put: how can I help people by solving their problem? That’s the first step to solving a problem: asking a question. That is why the best products are actually problems solved by entrepreneurs who work to solve their own need for a product, service or experience. They then provide it to other people for a cost. Easy, right? That’s what entrepreneurship is: solving a problem. The bigger the problem, the bigger the impact. The bigger the impact, the higher the revenue. It’s easier to understand trends now, isn’t it? You can see that trends are nothing more than the initial adoption of a product, service or experience by a group of people who are looking for a solution to their common need. 🦉 : Did you get that from a book? 🕵️ : You snore when you sleep… ¯\\(\ツ)/\¯ 🦉 : $@#&\*! Hooman! Needs are the foundation on which the modern world is built. Once you understand needs, you fundamentally change your perception of problems into opportunities. This mental shift is the entrepreneurial mindset: where others see problems, you see solutions. Where Do Trends Start So, to recap: human needs are translated into problems. Founders understand the root of the problem (the need) and create products, services, experiences as solutions to those needs. They offer the solution to the public through startups and companies, which belong to a specific niche in a particular industry. 🦉 : Aaah, so that’s why it’s called venture capital? 🕵️ : Yeah, because you’re venturing into a new endeavor to let people know about your solution to their (and ideally your) problem. 🦉 : So if you use ads to market your venture, it’s an adventure? 🕵️ : I see what you did there… If the need behind the adoption is strong and real enough, that trend will translate into a niche within an industry. If the adoption isn’t driven by strong fundamental needs, it will turn into a fad and disappear from the perception of the public, no matter how much marketing money is thrown at it. This happens because the solution (product/service/experience) to the need didn’t create the physical, intellectual or emotional response required to create a recurring behavior around it. Remember this: Problem (why) -> Behavior (how) -> Solution (what) Understand this: there are multiple types of trends. There are product or service trends. There are industry driven trends. There are tendency driven trends, like the emergence of a new paradigm that improves a lot of industries (yes, I’m looking at you, AI). Where Do Trends Come From So now you can see that trends are patterns of adoption related to a specific human need that is addressed through one or multiple products or services. This is a bottom up direction coming from evolution. Multiple trends in different industries also emerge from a theme, which is a bigger vision of a human effort to address a high level problem. This is a top down direction, coming from implementation (by governments, different organizations or other interested parties with the power to influence changes at mass level). Conclusion Now you have a better understanding of trends by looking at them through the lens of human needs. Also, you might also understand time better because you realize that human needs have different degrees of impact in time and intensity. So you now see that trends don’t only relate to individuals, but also to groups of people, from the smallest community to countries and even global needs. That is the reason you’ll sometimes hear some say that time is a flat circle: because clothes change, but humans are quite the same. Needs don’t change a lot in time, just the way we address and solve them. Here’s an interesting game for you: take a look at some behaviors in your life. Which of them are driven by a bodily need, which by an intellectual or emotional one? Which ones are completely automated and you had no idea you were doing? How are these behaviors controlling parts of your life that you were unaware of until now? If you made it this far, thank you for taking the time to read this. I hope you enjoyed it, found it useful and entertaining. Ofc, I value your opinion and welcome it in the comments. Thank you!

How to get that big idea for your next business? Use trends!
reddit
LLM Vibe Score0
Human Vibe Score1
IRemember123This week

How to get that big idea for your next business? Use trends!

Hello entrepreneurs and aspiring business owners, I am Mikael and I want to share a post about how to spot business ideas. If you're wondering who the owl is, it's Agent O, my sidekick (please bear with him... or me, if you can). Let's get on to it. So, there are basically two ways of getting ideas for your new business: Find a service, product or experience that's already working. Identify and ride a trend. 🦉 : Third, have a rich relative pass you their business and sip margaritas by the sea while scrolling Reddit for the rest of your life! 🕵️ : Refrain yourself, I just got started ffs, I don't want to get banned! So, what are trends? Trends are patterns of adoption of a product, service or experience by people who want to satisfy a common need. Cool, huh? How trends start Trends emerge and evolve as temporary or permanent solutions to human needs. All products, services and experiences are the expression of human needs manifested through a perceived lack, which we humans interpret as problems. Let me make this more clear. Humans have needs: from basic (food, shelter, safety) to advanced (community, knowledge) to evolved (self actualization, spirituality) and everything in between. Don’t see this as a hierarchy, as it’s usually depicted with Maslow’s pyramid. See it as cycles with different degrees of impact on humans that vary in time and intensity. 🦉 : WHAT!?? 🕵️ : Hear me out… How Trends Affect Society Human needs are physical, emotional, intellectual and spiritual. Every day we feel the impact of those needs with different degrees of required fulfillment. You can’t go on without air for more than a few minutes. You can’t live without food and water for more than a few days. So, when it comes to the needs of the body, these have a shorter timeframe in which they need to be addressed. 🦉 : Ahh, I see what you did there… \\🕵️ \\: Thanks! But you can also live with an unfulfilled need for love or friends for a long time. You can live with a decaying health as well. And you also can live your entire life without finding out if there is a God or not. Humans perceive needs as something they lack within, which in turn is expressed as a problem on the outside. I lack food or water, this will create a problem for my survival. So I need to find food and water in my environment. This lack creates a behavior seeking a product, service or experience to fulfill that need. Makes sense? 🦉 : I just went out and got me a “Mice à la Forest” dinner! 🕵️: Bon appétit! See, Agent O fulfilled a bodily need. That’s what animals do, as they’re driven by instinct and are governed by natural laws (survive, reproduce, sleep, repeat). Humans are driven by more complex needs, as our intellect and emotions allow us to override those basic primary instincts. Why Trends Are Important What an entrepreneur does is to shift the perspective: instead of seeing a lack, he/she sees an opportunity by asking the question: how can I fulfill this need? Or, even better put: how can I help people by solving their problem? That’s the first step to solving a problem: asking a question. That is why the best products are actually problems solved by entrepreneurs who work to solve their own need for a product, service or experience. They then provide it to other people for a cost. Easy, right? That’s what entrepreneurship is: solving a problem. The bigger the problem, the bigger the impact. The bigger the impact, the higher the revenue. It’s easier to understand trends now, isn’t it? You can see that trends are nothing more than the initial adoption of a product, service or experience by a group of people who are looking for a solution to their common need. 🦉 : Did you get that from a book? 🕵️ : You snore when you sleep… ¯\\(\ツ)/\¯ 🦉 : $@#&\*! Hooman! Needs are the foundation on which the modern world is built. Once you understand needs, you fundamentally change your perception of problems into opportunities. This mental shift is the entrepreneurial mindset: where others see problems, you see solutions. Where Do Trends Start So, to recap: human needs are translated into problems. Founders understand the root of the problem (the need) and create products, services, experiences as solutions to those needs. They offer the solution to the public through startups and companies, which belong to a specific niche in a particular industry. 🦉 : Aaah, so that’s why it’s called venture capital? 🕵️ : Yeah, because you’re venturing into a new endeavor to let people know about your solution to their (and ideally your) problem. 🦉 : So if you use ads to market your venture, it’s an adventure? 🕵️ : I see what you did there… If the need behind the adoption is strong and real enough, that trend will translate into a niche within an industry. If the adoption isn’t driven by strong fundamental needs, it will turn into a fad and disappear from the perception of the public, no matter how much marketing money is thrown at it. This happens because the solution (product/service/experience) to the need didn’t create the physical, intellectual or emotional response required to create a recurring behavior around it. Remember this: Problem (why) -> Behavior (how) -> Solution (what) Understand this: there are multiple types of trends. There are product or service trends. There are industry driven trends. There are tendency driven trends, like the emergence of a new paradigm that improves a lot of industries (yes, I’m looking at you, AI). Where Do Trends Come From So now you can see that trends are patterns of adoption related to a specific human need that is addressed through one or multiple products or services. This is a bottom up direction coming from evolution. Multiple trends in different industries also emerge from a theme, which is a bigger vision of a human effort to address a high level problem. This is a top down direction, coming from implementation (by governments, different organizations or other interested parties with the power to influence changes at mass level). Conclusion Now you have a better understanding of trends by looking at them through the lens of human needs. Also, you might also understand time better because you realize that human needs have different degrees of impact in time and intensity. So you now see that trends don’t only relate to individuals, but also to groups of people, from the smallest community to countries and even global needs. That is the reason you’ll sometimes hear some say that time is a flat circle: because clothes change, but humans are quite the same. Needs don’t change a lot in time, just the way we address and solve them. Here’s an interesting game for you: take a look at some behaviors in your life. Which of them are driven by a bodily need, which by an intellectual or emotional one? Which ones are completely automated and you had no idea you were doing? How are these behaviors controlling parts of your life that you were unaware of until now? If you made it this far, thank you for taking the time to read this. I hope you enjoyed it, found it useful and entertaining. Ofc, I value your opinion and welcome it in the comments. Thank you!

SaaS, Agency, or job?
reddit
LLM Vibe Score0
Human Vibe Score0.818
SlowageAIThis week

SaaS, Agency, or job?

Recently, I was fired, and since I have some savings, I decided it’s finally time to start my own venture. After a couple of weeks of research and trying to figure out what I should do, here are my thoughts and some questions at the end. I’d appreciate any feedback or opinions. It’s not that I expect to wake up a multimillionaire, but I see how people make money without working the typical 9-5. Some of the worst examples are on YouTube—those agency, OFM, dropshipping hustle bros. I know it’s naive to believe all of it because they’re just selling courses, but some of them do seem to have built impressive income streams. Anyway, let’s dive into two categories and compare. Agency (providing services, development, consultation): I’ll talk about AI automation because of my background in ML Engineering and Generative AI, but this could apply to any other agency niche. It seems like a good business idea for someone who knows generative AI and can do some impressive things with LLMs, agents, etc. I even started working on it—built a website—but I stopped when I couldn’t define exactly what services to offer. I could do heavy backend tasks with infrastructure, like real machine learning and AI with fine-tuning, but I couldn’t find any examples of agencies doing this. Almost 100% of them are doing simple automations with tools like Zapier or Make. When it comes to business owners, it’s really hard to find clients in general. After reading Reddit threads, articles, and watching videos, it seems like nearly everyone struggles with client acquisition. For a one-person agency offering more complex services like real ML, it would likely be even harder to find clients, compared to big outsourcing companies with sales teams. Even without focusing on the client challenge, which is obvious in any business, looking at what successful agency owners earn, it’s usually around $100k–$200k a year. I’m not talking about the high end, just regular people. I got this information from reading, and a simple example is from interviews with people who claim to make $10k/month. But many others in these communities struggle to even reach that point. It seems like this is a difficult target for most people. SaaS: This area seems more straightforward, and with my background, it feels like a good fit. However, from reading different sources, I’ve found stories like, “It took me six months to get my first client,” or “I worked on a simple SaaS for nine months and just reached my first $1k.” There are also warnings not to believe those who claim to make $10k/month easily, and many people report struggling to grow after getting their first 10 clients. So, it’s clear to me that even with good tech skills, you’re not going to make massive amounts of money overnight, which I understand. However, with so many people becoming startup founders and indie hackers, many seem to struggle despite thinking it’s the way to go. I know both paths can potentially skyrocket, but here’s where I need help: Am I wrong about agencies? Am I wrong about SaaS? The toughest question for me: I don’t want to go back to a 9-5 job, even if I could earn $300k a year. Even if my own business takes more time and I earn less in the first few years, I still believe it will be more profitable long term, and I will be happier. So, should I pursue an agency, SaaS, or a traditional job?

activepieces
github
LLM Vibe Score0.66
Human Vibe Score1
activepiecesMar 28, 2025

activepieces

An open source replacement for Zapier Documentation 🌪️ Create a Piece 🖉 Deploy 🔥 Join Discord 🤯 Welcome to Activepieces Your friendliest open source all-in-one automation tool, designed to be extensible through a type-safe pieces framework written in Typescript. 🔥 Why Activepieces is Different: 💖 Loved by Everyone: Intuitive interface and great experience for both technical and non-technical users with a quick learning curve. 🌐 Open Ecosystem: All pieces are open source and available on npmjs.com, 60% of the pieces are contributed by the community. 🛠️ Pieces are written in Typescript: Pieces are npm packages in TypeScript, offering full customization with the best developer experience, including hot reloading for local piece development on your machine. 😎 🤖 AI-Ready: Native AI pieces let you experiment with various providers, or create your own agents using our AI SDK, and there is Copilot to help you build flows inside the builder. 🏢 Enterprise-Ready: Developers set up the tools, and anyone in the organization can use the no-code builder. Full customization from branding to control. 🔒 Secure by Design: Self-hosted and network-gapped for maximum security and control over your data. 🧠 Human in the Loop: Delay execution for a period of time or require approval. These are just pieces built on top of the piece framework, and you can build many pieces like that. 🎨 💻 Human Input Interfaces: Built-in support for human input triggers like "Chat Interface" 💬 and "Form Interface" 📝 🛠️ Builder Features: [x] Loops [x] Branches [x] Auto Retries [x] HTTP [x] Code with NPM [x] ASK AI in Code Piece (Non technical user can clean data without knowing to code) [x] Flows are fully versioned. [x] Languages Translations [x] Customizable Templates [X] 200+ Pieces, check https://www.activepieces.com/pieces We release updates frequently. Check the product changelog for the latest features. 🔌 Create Your Own Piece Activepieces supports integrations with Google Sheets, OpenAI, Discord, RSS, and over 200 other services. Check out the full list of supported integrations, which is constantly expanding thanks to our community's contributions. As an open ecosystem, all integration source code is accessible in our repository. These integrations are versioned and published directly to npmjs.com upon contribution. You can easily create your own integration using our TypeScript framework. For detailed instructions, please refer to our Contributor's Guide. License Activepieces' Community Edition is released as open source under the MIT license and enterprise features are released under Commercial License Read more about the feature comparison here https://www.activepieces.com/docs/about/editions 💭 Join Our Community 🌐 Contributions We welcome contributions big or small and in different directions. The best way to do this is to check this document and we are always up to talk on our Discord Server. 📚 Translations Not into coding but still interested in contributing? Come join our Discord and visit https://www.activepieces.com/docs/about/i18n for more information. !fr translation].data.translationProgress&url=https%3A%2F%2Fbadges.awesome-crowdin.com%2Fstats-16093902-626364-update.json) !it translation].data.translationProgress&url=https%3A%2F%2Fbadges.awesome-crowdin.com%2Fstats-16093902-626364-update.json) !de translation].data.translationProgress&url=https%3A%2F%2Fbadges.awesome-crowdin.com%2Fstats-16093902-626364-update.json) !ja translation].data.translationProgress&url=https%3A%2F%2Fbadges.awesome-crowdin.com%2Fstats-16093902-626364-update.json) !pt-BR translation].data.translationProgress&url=https%3A%2F%2Fbadges.awesome-crowdin.com%2Fstats-16093902-626364-update.json) 🦫 Contributors ShahedAlMashni🔌 AbdulTheActivePiecer🚧 Khaled Mashaly🚧 Mohammed Abu Aboud🚧 Abdulrahman Zeineddin🔌 ahmad jaber🔌 ashrafsamhouri🔌 Mohammad Abu Musa📆 Mukewa Wekalao🔌 Osama Abdallah Essa Haikal🔌 Arman🛡️ Oskar Krämer📖 Thibaut Patel🤔 🔌 Applesaucesomer🤔 crazyTweek🤔 Muhammad Tabaza🔌 Shay Punter📖 🔌 abaza738🔌 Jona Boeddinghaus🔌 fomojola💻 Alexander Storozhevsky💻 J0LGER🛡️ Patrick Veverka🐛 Berk Sümbül📖 Willian Guedes🔌 Abdullah Ranginwala💻 Dennis Tychsen🔌 MyWay🔌 Bibhuti Bhusan Panda🔌 Tarun Samanta🐛 Herman Kudria🔌 [NULL] Dev🔌 Jan Bebendorf🔌 Nilesh🔌 Vraj Gohil🔌 BastienMe🔌 Stephen Foskett📖 Nathan📖 Marcin Natanek🔌 Mark van Bellen🔌 Olivier Guzzi🔌 Osama Zakarneh🔌 phestvik🤔 Rajdeep Pal📖 Camilo Usuga🔌 Kishan Parmar📖 🔌 BBND🔌 Haseeb Rehman🔌 Rita Gorokhod🔌 Fábio Ferreira🔌 Florin Buffet📖 Drew Lewis🔌 Benjamin André-Micolon🔌 Denis Gurskij🔌 Nefer Lopez📖 fardeenpanjwani-codeglo📖 Landon Moir🔌 Diego Nijboer🔌 Tân Một Nắng🔌 Gavin Foley📖 Dennis Trautwein🐛 Andrew Rosenblatt🐛 rika🔌 Cyril Selasi🔌 Franck Nijimbere🔌 Aleksandr Denisov🔌 Reuben Swartz📖 joselupianez🔌 Awais Manzoor🐛 💻 Andrei🐛 derbbre📖 Maor Rozenfeld💻 Michael Huynh📖 Filip Dunđer💻 Don Thorp📖 Joe Workman🔌 Aykut Akgün💻 Yann Petitjean🔌 🐛 pfernandez98🔌 Daniel O.🔌 Meng-Yuan Huang📖 Leyla🐛 i-nithin🔌 la3rence🔌 Dennis Rongo🐛 🔌 Kartik Mehta📖 💻 Zakher Masri📖 💻 AbdullahBitar🔌 Mario Meyer🔌 Karim Khaleel🔌 CPonchet🐛 Olivier Sambourg🔌 Ahmad(Ed)🔌 leenmashni🔌 M Abdul Rauf📖 Vincent Barrier🔌 John💻 🔌 Joost de Valk🔌 MJ🔌 ShravanShenoy💻 Jon Kristian📖 cr0fters🐛 Bibek Timsina🐛 Viktor Szépe💻 Rendy Tan📖 🔌 Islam Abdelfattah🐛 Yoonjae Choi💻 Javier HM🔌 Mohamed Hassan🐛 Christian Schab🔌 Pratik Kinage🔌 Abdelrahman Mostafa 🔌 Hamza Zagha🐛 Lasse Schuirmann🔌 Cyril Duchon-Doris🔌 Javiink🔌 Harshit Harchani🔌 MrAkber📖 marek-slavicek🔌 hugh-codes🔌 Alex Lewis🐛 Yuanlin Lin📖 Ala Shiban📖 hamsh💻 Anne Mariel Catapang🔌 Carlo Gino Catapang🔌 Aditya Rathore🔌 coderbob2🔌 Ramy Gamal🔌 Alexandru-Dan Pop💻 Frank Micheal 🔌 Emmanuel Ferdman📖 Sany A🔌 Niels Swimberghe🐛 lostinbug🔌 gushkool🔌 Omar Sayed🔌 rSnapkoOpenOps🐛 ahronshor🔌 Cezar🐛 Shawn Lim🔌 Shawn Lim🔌 pavloDeshko🐛 abc💻 manoj kumar d🔌 Feli🔌 Miguel🔌 Instasent DEV🔌 Matthieu Lombard🔌 beyondlevi🔌 Rafal Zawadzki🔌 Simon Courtois🔌 alegria-solutions🔌 D-Rowe-FS🔌 张晟杰🔌 Ashot🔌 Amr Abu Aza🔌 John Goodliff🔌 Diwash Dev🔌 André🔌 Lou &#124; Digital Marketing🔌 Maarten Coppens🔌 Mahmoud Hamed🔌 Theo Dammaretz🔌 s31w4n📖 Abdul Rahman🔌 Kent Smith🔌 Arvind Ramesh💻 valentin-mourtialon🔌 psgpsg16🔌 Mariia Shyn🔌 Joshua Heslin🔌 Ahmad🔌 you💻 Daniel Poon💻 Kévin Yu🔌 노영은🔌 reemayoush🔌 Brice🛡️ Mg Wunna🔌 This project follows the all-contributors specification. Contributions of any kind are welcome!

n8n
github
LLM Vibe Score0.66
Human Vibe Score1
n8n-ioMar 28, 2025

n8n

!Banner image n8n - Secure Workflow Automation for Technical Teams n8n is a workflow automation platform that gives technical teams the flexibility of code with the speed of no-code. With 400+ integrations, native AI capabilities, and a fair-code license, n8n lets you build powerful automations while maintaining full control over your data and deployments. !n8n.io - Screenshot Key Capabilities Code When You Need It: Write JavaScript/Python, add npm packages, or use the visual interface AI-Native Platform: Build AI agent workflows based on LangChain with your own data and models Full Control: Self-host with our fair-code license or use our cloud offering Enterprise-Ready: Advanced permissions, SSO, and air-gapped deployments Active Community: 400+ integrations and 900+ ready-to-use templates Quick Start Try n8n instantly with npx (requires Node.js): Or deploy with Docker: Access the editor at http://localhost:5678 Resources 📚 Documentation 🔧 400+ Integrations 💡 Example Workflows 🤖 AI & LangChain Guide 👥 Community Forum 📖 Community Tutorials Support Need help? Our community forum is the place to get support and connect with other users: community.n8n.io License n8n is fair-code distributed under the Sustainable Use License and n8n Enterprise License. Source Available: Always visible source code Self-Hostable: Deploy anywhere Extensible: Add your own nodes and functionality Enterprise licenses available for additional features and support. Additional information about the license model can be found in the docs. Contributing Found a bug 🐛 or have a feature idea ✨? Check our Contributing Guide to get started. Join the Team Want to shape the future of automation? Check out our job posts and join our team! What does n8n mean? Short answer: It means "nodemation" and is pronounced as n-eight-n. Long answer: "I get that question quite often (more often than I expected) so I decided it is probably best to answer it here. While looking for a good name for the project with a free domain I realized very quickly that all the good ones I could think of were already taken. So, in the end, I chose nodemation. 'node-' in the sense that it uses a Node-View and that it uses Node.js and '-mation' for 'automation' which is what the project is supposed to help with. However, I did not like how long the name was and I could not imagine writing something that long every time in the CLI. That is when I then ended up on 'n8n'." - Jan Oberhauser, Founder and CEO, n8n.io

AITreasureBox
github
LLM Vibe Score0.447
Human Vibe Score0.1014145151561518
superiorluMar 28, 2025

AITreasureBox

AI TreasureBox English | 中文 Collect practical AI repos, tools, websites, papers and tutorials on AI. Translated from ChatGPT, picture from Midjourney. Catalog Repos Tools Websites Report&Paper Tutorials Repos updated repos and stars every 2 hours and re-ranking automatically. | No. | Repos | Description | | ----:|:-----------------------------------------|:------------------------------------------------------------------------------------------------------| | 1|🔥codecrafters-io/build-your-own-x !2025-03-28364681428|Master programming by recreating your favorite technologies from scratch.| | 2|sindresorhus/awesome !2025-03-28353614145|😎 Awesome lists about all kinds of interesting topics| | 3|public-apis/public-apis !2025-03-28334299125|A collective list of free APIs| | 4|kamranahmedse/developer-roadmap !2025-03-2831269540|Interactive roadmaps, guides and other educational content to help developers grow in their careers.| | 5|vinta/awesome-python !2025-03-28238581114|A curated list of awesome Python frameworks, libraries, software and resources| | 6|practical-tutorials/project-based-learning !2025-03-28222661124|Curated list of project-based tutorials| | 7|tensorflow/tensorflow !2025-03-281888714|An Open Source Machine Learning Framework for Everyone| | 8|Significant-Gravitas/AutoGPT !2025-03-2817391338|An experimental open-source attempt to make GPT-4 fully autonomous.| | 9|jackfrued/Python-100-Days !2025-03-2816305141|Python - 100天从新手到大师| | 10|AUTOMATIC1111/stable-diffusion-webui !2025-03-2815011553|Stable Diffusion web UI| | 11|huggingface/transformers !2025-03-2814207850|🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.| | 12|ollama/ollama !2025-03-28135166151|Get up and running with Llama 2, Mistral, Gemma, and other large language models.| | 13|f/awesome-chatgpt-prompts !2025-03-2812212738 |This repo includes ChatGPT prompt curation to use ChatGPT better.| | 14|justjavac/free-programming-books-zhCN !2025-03-2811316119|📚 免费的计算机编程类中文书籍,欢迎投稿| | 15|krahets/hello-algo !2025-03-2811107930|《Hello 算法》:动画图解、一键运行的数据结构与算法教程。支持 Python, Java, C++, C, C#, JS, Go, Swift, Rust, Ruby, Kotlin, TS, Dart 代码。简体版和繁体版同步更新,English version ongoing| | 16|yt-dlp/yt-dlp !2025-03-28105801114|A feature-rich command-line audio/video downloader| | 17|langchain-ai/langchain !2025-03-2810449479|⚡ Building applications with LLMs through composability ⚡| | 18|goldbergyoni/nodebestpractices !2025-03-281021629|✅ The Node.js best practices list (July 2024)| | 19|puppeteer/puppeteer !2025-03-289018212|JavaScript API for Chrome and Firefox| | 20|pytorch/pytorch !2025-03-288833938|Tensors and Dynamic neural networks in Python with strong GPU acceleration| | 21|neovim/neovim !2025-03-288781482|Vim-fork focused on extensibility and usability| | 22|🔥🔥langgenius/dify !2025-03-2887342639 |One API for plugins and datasets, one interface for prompt engineering and visual operation, all for creating powerful AI applications.| | 23|mtdvio/every-programmer-should-know !2025-03-28867069|A collection of (mostly) technical things every software developer should know about| | 24|open-webui/open-webui !2025-03-2886025159|User-friendly WebUI for LLMs (Formerly Ollama WebUI)| | 25|ChatGPTNextWeb/NextChat !2025-03-288231521|✨ Light and Fast AI Assistant. Support: Web | | 26|supabase/supabase !2025-03-287990956|The open source Firebase alternative.| | 27|openai/whisper !2025-03-287905542|Robust Speech Recognition via Large-Scale Weak Supervision| | 28|home-assistant/core !2025-03-287773219|🏡 Open source home automation that puts local control and privacy first.| | 29|tensorflow/models !2025-03-28774694|Models and examples built with TensorFlow| | 30| ggerganov/llama.cpp !2025-03-287731836 | Port of Facebook's LLaMA model in C/C++ | | 31|3b1b/manim !2025-03-287641918|Animation engine for explanatory math videos| | 32|microsoft/generative-ai-for-beginners !2025-03-287623860|12 Lessons, Get Started Building with Generative AI 🔗 https://microsoft.github.io/generative-ai-for-beginners/| | 33|nomic-ai/gpt4all !2025-03-28729285 |gpt4all: an ecosystem of open-source chatbots trained on a massive collection of clean assistant data including code, stories and dialogue| | 34|comfyanonymous/ComfyUI !2025-03-2872635111|The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.| | 35|bregman-arie/devops-exercises !2025-03-2872225209|Linux, Jenkins, AWS, SRE, Prometheus, Docker, Python, Ansible, Git, Kubernetes, Terraform, OpenStack, SQL, NoSQL, Azure, GCP, DNS, Elastic, Network, Virtualization. DevOps Interview Questions| | 36|elastic/elasticsearch !2025-03-28721419|Free and Open, Distributed, RESTful Search Engine| | 37|🔥n8n-io/n8n !2025-03-2872093495|Free and source-available fair-code licensed workflow automation tool. Easily automate tasks across different services.| | 38|fighting41love/funNLP !2025-03-287200422|The Most Powerful NLP-Weapon Arsenal| | 39|hoppscotch/hoppscotch !2025-03-287060134|Open source API development ecosystem - https://hoppscotch.io (open-source alternative to Postman, Insomnia)| | 40|abi/screenshot-to-code !2025-03-286932817|Drop in a screenshot and convert it to clean HTML/Tailwind/JS code| | 41|binary-husky/gptacademic !2025-03-28680374|Academic Optimization of GPT| | 42|d2l-ai/d2l-zh !2025-03-286774142|Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries| | 43|josephmisiti/awesome-machine-learning !2025-03-286739215|A curated list of awesome Machine Learning frameworks, libraries and software.| | 44|grafana/grafana !2025-03-286725414|The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.| | 45|python/cpython !2025-03-286602218|The Python programming language| | 46|apache/superset !2025-03-286519020|Apache Superset is a Data Visualization and Data Exploration Platform| | 47|xtekky/gpt4free !2025-03-28639391 |decentralizing the Ai Industry, free gpt-4/3.5 scripts through several reverse engineered API's ( poe.com, phind.com, chat.openai.com etc...)| | 48|sherlock-project/sherlock !2025-03-286332536|Hunt down social media accounts by username across social networks| | 49|twitter/the-algorithm !2025-03-28630586 |Source code for Twitter's Recommendation Algorithm| | 50|keras-team/keras !2025-03-28627835|Deep Learning for humans| | 51|openai/openai-cookbook !2025-03-28625136 |Examples and guides for using the OpenAI API| | 52|immich-app/immich !2025-03-286238670|High performance self-hosted photo and video management solution.| | 53|AppFlowy-IO/AppFlowy !2025-03-286173528|Bring projects, wikis, and teams together with AI. AppFlowy is an AI collaborative workspace where you achieve more without losing control of your data. The best open source alternative to Notion.| | 54|scikit-learn/scikit-learn !2025-03-286158212|scikit-learn: machine learning in Python| | 55|binhnguyennus/awesome-scalability !2025-03-286117021|The Patterns of Scalable, Reliable, and Performant Large-Scale Systems| | 56|labmlai/annotateddeeplearningpaperimplementations !2025-03-285951726|🧑‍🏫 59 Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠| | 57|OpenInterpreter/open-interpreter !2025-03-285894710|A natural language interface for computers| | 58|lobehub/lobe-chat !2025-03-285832054|🤖 Lobe Chat - an open-source, extensible (Function Calling), high-performance chatbot framework. It supports one-click free deployment of your private ChatGPT/LLM web application.| | 59|meta-llama/llama !2025-03-28579536|Inference code for Llama models| | 60|nuxt/nuxt !2025-03-28566437|The Intuitive Vue Framework.| | 61|imartinez/privateGPT !2025-03-28555192|Interact with your documents using the power of GPT, 100% privately, no data leaks| | 62|Stirling-Tools/Stirling-PDF !2025-03-285500846|#1 Locally hosted web application that allows you to perform various operations on PDF files| | 63|PlexPt/awesome-chatgpt-prompts-zh !2025-03-285459720|ChatGPT Chinese Training Guide. Guidelines for various scenarios. Learn how to make it listen to you| | 64|dair-ai/Prompt-Engineering-Guide !2025-03-285451025 |🐙 Guides, papers, lecture, notebooks and resources for prompt engineering| | 65|ageitgey/facerecognition !2025-03-28544382|The world's simplest facial recognition api for Python and the command line| | 66|CorentinJ/Real-Time-Voice-Cloning !2025-03-285384814|Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 67|geekan/MetaGPT !2025-03-285375376|The Multi-Agent Meta Programming Framework: Given one line Requirement, return PRD, Design, Tasks, Repo | | 68|gpt-engineer-org/gpt-engineer !2025-03-285367419|Specify what you want it to build, the AI asks for clarification, and then builds it.| | 69|lencx/ChatGPT !2025-03-2853653-3|🔮 ChatGPT Desktop Application (Mac, Windows and Linux)| | 70|deepfakes/faceswap !2025-03-28535672|Deepfakes Software For All| | 71|langflow-ai/langflow !2025-03-285319584|Langflow is a low-code app builder for RAG and multi-agent AI applications. It’s Python-based and agnostic to any model, API, or database.| | 72|commaai/openpilot !2025-03-28529759|openpilot is an operating system for robotics. Currently, it upgrades the driver assistance system on 275+ supported cars.| | 73|clash-verge-rev/clash-verge-rev !2025-03-2852848124|Continuation of Clash Verge - A Clash Meta GUI based on Tauri (Windows, MacOS, Linux)| | 74|All-Hands-AI/OpenHands !2025-03-285150675|🙌 OpenHands: Code Less, Make More| | 75|xai-org/grok-1 !2025-03-28502504|Grok open release| | 76|meilisearch/meilisearch !2025-03-284999122|A lightning-fast search API that fits effortlessly into your apps, websites, and workflow| | 77|🔥browser-use/browser-use !2025-03-2849910294|Make websites accessible for AI agents| | 78|jgthms/bulma !2025-03-28496783|Modern CSS framework based on Flexbox| | 79|facebookresearch/segment-anything !2025-03-284947116|The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.| |!green-up-arrow.svg 80|hacksider/Deep-Live-Cam !2025-03-2848612146|real time face swap and one-click video deepfake with only a single image (uncensored)| |!red-down-arrow 81|mlabonne/llm-course !2025-03-284860934|Course with a roadmap and notebooks to get into Large Language Models (LLMs).| | 82|PaddlePaddle/PaddleOCR !2025-03-284785530|Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)| | 83|alist-org/alist !2025-03-284732618|🗂️A file list/WebDAV program that supports multiple storages, powered by Gin and Solidjs. / 一个支持多存储的文件列表/WebDAV程序,使用 Gin 和 Solidjs。| | 84|infiniflow/ragflow !2025-03-2847027129|RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding.| | 85|Avik-Jain/100-Days-Of-ML-Code !2025-03-284679312|100 Days of ML Coding| | 86|v2ray/v2ray-core !2025-03-28458706|A platform for building proxies to bypass network restrictions.| | 87|hiyouga/LLaMA-Factory !2025-03-284555881|Easy-to-use LLM fine-tuning framework (LLaMA, BLOOM, Mistral, Baichuan, Qwen, ChatGLM)| | 88|Asabeneh/30-Days-Of-Python !2025-03-284544930|30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace. These videos may help too: https://www.youtube.com/channel/UC7PNRuno1rzYPb1xLa4yktw| | 89|type-challenges/type-challenges !2025-03-284488511|Collection of TypeScript type challenges with online judge| | 90|lllyasviel/Fooocus !2025-03-284402716|Focus on prompting and generating| | 91|RVC-Boss/GPT-SoVITS !2025-03-284327738|1 min voice data can also be used to train a good TTS model! (few shot voice cloning)| | 92|rasbt/LLMs-from-scratch !2025-03-284320667|Implementing a ChatGPT-like LLM from scratch, step by step| | 93|oobabooga/text-generation-webui !2025-03-284302012 |A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, OPT, and GALACTICA.| | 94|vllm-project/vllm !2025-03-2842982102|A high-throughput and memory-efficient inference and serving engine for LLMs| | 95|dani-garcia/vaultwarden !2025-03-284297121|Unofficial Bitwarden compatible server written in Rust, formerly known as bitwarden_rs| | 96|microsoft/autogen !2025-03-284233049|Enable Next-Gen Large Language Model Applications. Join our Discord: https://discord.gg/pAbnFJrkgZ| | 97|jeecgboot/JeecgBoot !2025-03-284205920|🔥「企业级低代码平台」前后端分离架构SpringBoot 2.x/3.x,SpringCloud,Ant Design&Vue3,Mybatis,Shiro,JWT。强大的代码生成器让前后端代码一键生成,无需写任何代码! 引领新的开发模式OnlineCoding->代码生成->手工MERGE,帮助Java项目解决70%重复工作,让开发更关注业务,既能快速提高效率,帮助公司节省成本,同时又不失灵活性。| | 98|Mintplex-Labs/anything-llm !2025-03-284186955|A full-stack application that turns any documents into an intelligent chatbot with a sleek UI and easier way to manage your workspaces.| | 99|THUDM/ChatGLM-6B !2025-03-28410192 |ChatGLM-6B: An Open Bilingual Dialogue Language Model| | 100|hpcaitech/ColossalAI !2025-03-28406902|Making large AI models cheaper, faster and more accessible| | 101|Stability-AI/stablediffusion !2025-03-28406337|High-Resolution Image Synthesis with Latent Diffusion Models| | 102|mingrammer/diagrams !2025-03-28405063|🎨 Diagram as Code for prototyping cloud system architectures| | 103|Kong/kong !2025-03-28404616|🦍 The Cloud-Native API Gateway and AI Gateway.| | 104|getsentry/sentry !2025-03-284040913|Developer-first error tracking and performance monitoring| | 105| karpathy/nanoGPT !2025-03-284034613 |The simplest, fastest repository for training/finetuning medium-sized GPTs| | 106|fastlane/fastlane !2025-03-2840014-1|🚀 The easiest way to automate building and releasing your iOS and Android apps| | 107|psf/black !2025-03-28399765|The uncompromising Python code formatter| | 108|OpenBB-finance/OpenBBTerminal !2025-03-283972074 |Investment Research for Everyone, Anywhere.| | 109|2dust/v2rayNG !2025-03-283943415|A V2Ray client for Android, support Xray core and v2fly core| | 110|apache/airflow !2025-03-283937314|Apache Airflow - A platform to programmatically author, schedule, and monitor workflows| | 111|KRTirtho/spotube !2025-03-283902746|🎧 Open source Spotify client that doesn't require Premium nor uses Electron! Available for both desktop & mobile!| | 112|coqui-ai/TTS !2025-03-283889719 |🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production| | 113|ggerganov/whisper.cpp !2025-03-283882116|Port of OpenAI's Whisper model in C/C++| | 114|ultralytics/ultralytics !2025-03-283866951|NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite| | 115|typst/typst !2025-03-283863914|A new markup-based typesetting system that is powerful and easy to learn.| | 116|streamlit/streamlit !2025-03-283845828|Streamlit — A faster way to build and share data apps.| | 117|LC044/WeChatMsg !2025-03-283836931|提取微信聊天记录,将其导出成HTML、Word、Excel文档永久保存,对聊天记录进行分析生成年度聊天报告,用聊天数据训练专属于个人的AI聊天助手| | 118|lm-sys/FastChat !2025-03-283822112 |An open platform for training, serving, and evaluating large languages. Release repo for Vicuna and FastChat-T5.| | 119|NaiboWang/EasySpider !2025-03-283819013|A visual no-code/code-free web crawler/spider易采集:一个可视化浏览器自动化测试/数据采集/爬虫软件,可以无代码图形化的设计和执行爬虫任务。别名:ServiceWrapper面向Web应用的智能化服务封装系统。| | 120|microsoft/DeepSpeed !2025-03-283765816 |A deep learning optimization library that makes distributed training and inference easy, efficient, and effective| | 121|QuivrHQ/quivr !2025-03-28376067|Your GenAI Second Brain 🧠 A personal productivity assistant (RAG) ⚡️🤖 Chat with your docs (PDF, CSV, ...) & apps using Langchain, GPT 3.5 / 4 turbo, Private, Anthropic, VertexAI, Ollama, LLMs, that you can share with users ! Local & Private alternative to OpenAI GPTs & ChatGPT powered by retrieval-augmented generation.| | 122|freqtrade/freqtrade !2025-03-283757817 |Free, open source crypto trading bot| | 123|suno-ai/bark !2025-03-28373178 |🔊 Text-Prompted Generative Audio Model| | 124|🔥cline/cline !2025-03-2837307282|Autonomous coding agent right in your IDE, capable of creating/editing files, executing commands, and more with your permission every step of the way.| | 125|LAION-AI/Open-Assistant !2025-03-28372712 |OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so.| | 126|penpot/penpot !2025-03-283716217|Penpot: The open-source design tool for design and code collaboration| | 127|gradio-app/gradio !2025-03-283713320|Build and share delightful machine learning apps, all in Python. 🌟 Star to support our work!| | 128|FlowiseAI/Flowise !2025-03-283667135 |Drag & drop UI to build your customized LLM flow using LangchainJS| | 129|SimplifyJobs/Summer2025-Internships !2025-03-28366506|Collection of Summer 2025 tech internships!| | 130|TencentARC/GFPGAN !2025-03-28365027 |GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration.| | 131|ray-project/ray !2025-03-283626819|Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for accelerating ML workloads.| | 132|babysor/MockingBird !2025-03-28360498|🚀AI拟声: 5秒内克隆您的声音并生成任意语音内容 Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 133|unslothai/unsloth !2025-03-283603691|5X faster 50% less memory LLM finetuning| | 134|zhayujie/chatgpt-on-wechat !2025-03-283600124 |Wechat robot based on ChatGPT, which uses OpenAI api and itchat library| | 135|upscayl/upscayl !2025-03-283599824|🆙 Upscayl - Free and Open Source AI Image Upscaler for Linux, MacOS and Windows built with Linux-First philosophy.| | 136|freeCodeCamp/devdocs !2025-03-28359738|API Documentation Browser| | 137|XingangPan/DragGAN !2025-03-28359043 |Code for DragGAN (SIGGRAPH 2023)| | 138|2noise/ChatTTS !2025-03-283543922|ChatTTS is a generative speech model for daily dialogue.| | 139|google-research/google-research !2025-03-28352207 |Google Research| | 140|karanpratapsingh/system-design !2025-03-28351003|Learn how to design systems at scale and prepare for system design interviews| | 141|lapce/lapce !2025-03-28350855|Lightning-fast and Powerful Code Editor written in Rust| | 142| microsoft/TaskMatrix !2025-03-2834500-3 | Talking, Drawing and Editing with Visual Foundation Models| | 143|chatchat-space/Langchain-Chatchat !2025-03-283442020|Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain| | 144|unclecode/crawl4ai !2025-03-283434163|🔥🕷️ Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper| | 145|Bin-Huang/chatbox !2025-03-283374733 |A desktop app for GPT-4 / GPT-3.5 (OpenAI API) that supports Windows, Mac & Linux| | 146|milvus-io/milvus !2025-03-283366525 |A cloud-native vector database, storage for next generation AI applications| | 147|mendableai/firecrawl !2025-03-2833297128|🔥 Turn entire websites into LLM-ready markdown| | 148|pola-rs/polars !2025-03-283269320|Fast multi-threaded, hybrid-out-of-core query engine focussing on DataFrame front-ends| | 149|Pythagora-io/gpt-pilot !2025-03-28325321|PoC for a scalable dev tool that writes entire apps from scratch while the developer oversees the implementation| | 150|hashicorp/vault !2025-03-28320797|A tool for secrets management, encryption as a service, and privileged access management| | 151|shardeum/shardeum !2025-03-28319580|Shardeum is an EVM based autoscaling blockchain| | 152|Chanzhaoyu/chatgpt-web !2025-03-28319242 |A demonstration website built with Express and Vue3 called ChatGPT| | 153|lllyasviel/ControlNet !2025-03-283186413 |Let us control diffusion models!| | 154|google/jax !2025-03-28317727|Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more| | 155|facebookresearch/detectron2 !2025-03-28315987|Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.| | 156|myshell-ai/OpenVoice !2025-03-28315233|Instant voice cloning by MyShell| | 157|TheAlgorithms/C-Plus-Plus !2025-03-283151411|Collection of various algorithms in mathematics, machine learning, computer science and physics implemented in C++ for educational purposes.| | 158|hiroi-sora/Umi-OCR !2025-03-283138129|OCR图片转文字识别软件,完全离线。截屏/批量导入图片,支持多国语言、合并段落、竖排文字。可排除水印区域,提取干净的文本。基于 PaddleOCR 。| | 159|mudler/LocalAI !2025-03-283127815|🤖 The free, Open Source OpenAI alternative. Self-hosted, community-driven and local-first. Drop-in replacement for OpenAI running on consumer-grade hardware. No GPU required. Runs gguf, transformers, diffusers and many more models architectures. It allows to generate Text, Audio, Video, Images. Also with voice cloning capabilities.| | 160|facebookresearch/fairseq !2025-03-28312124 |Facebook AI Research Sequence-to-Sequence Toolkit written in Python.| | 161|alibaba/nacos !2025-03-28310559|an easy-to-use dynamic service discovery, configuration and service management platform for building cloud native applications.| | 162|yunjey/pytorch-tutorial !2025-03-28310326|PyTorch Tutorial for Deep Learning Researchers| | 163|v2fly/v2ray-core !2025-03-28307448|A platform for building proxies to bypass network restrictions.| | 164|mckaywrigley/chatbot-ui !2025-03-283067714|The open-source AI chat interface for everyone.| | 165|TabbyML/tabby !2025-03-28305949 |Self-hosted AI coding assistant| | 166|deepseek-ai/awesome-deepseek-integration !2025-03-283053193|| | 167|danielmiessler/fabric !2025-03-283028914|fabric is an open-source framework for augmenting humans using AI.| | 168|xinntao/Real-ESRGAN !2025-03-283026623 |Real-ESRGAN aims at developing Practical Algorithms for General Image/Video Restoration.| | 169|paul-gauthier/aider !2025-03-283014642|aider is GPT powered coding in your terminal| | 170|tatsu-lab/stanfordalpaca !2025-03-28299022 |Code and documentation to train Stanford's Alpaca models, and generate the data.| | 171|DataTalksClub/data-engineering-zoomcamp !2025-03-282971817|Free Data Engineering course!| | 172|HeyPuter/puter !2025-03-282967014|🌐 The Internet OS! Free, Open-Source, and Self-Hostable.| | 173|mli/paper-reading !2025-03-282962314|Classic Deep Learning and In-Depth Reading of New Papers Paragraph by Paragraph| | 174|linexjlin/GPTs !2025-03-28295568|leaked prompts of GPTs| | 175|s0md3v/roop !2025-03-28295286 |one-click deepfake (face swap)| | 176|JushBJJ/Mr.-Ranedeer-AI-Tutor !2025-03-2829465-1 |A GPT-4 AI Tutor Prompt for customizable personalized learning experiences.| | 177|opendatalab/MinerU !2025-03-282927074|A one-stop, open-source, high-quality data extraction tool, supports PDF/webpage/e-book extraction.一站式开源高质量数据提取工具,支持PDF/网页/多格式电子书提取。| | 178|mouredev/Hello-Python !2025-03-282920720|Curso para aprender el lenguaje de programación Python desde cero y para principiantes. 75 clases, 37 horas en vídeo, código, proyectos y grupo de chat. Fundamentos, frontend, backend, testing, IA...| | 179|Lightning-AI/pytorch-lightning !2025-03-28292039|Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes.| | 180|crewAIInc/crewAI !2025-03-282919344|Framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.| | 181|facebook/folly !2025-03-282916612|An open-source C++ library developed and used at Facebook.| | 182|google-ai-edge/mediapipe !2025-03-28291519|Cross-platform, customizable ML solutions for live and streaming media.| | 183| getcursor/cursor !2025-03-282892025 | An editor made for programming with AI| | 184|chatanywhere/GPTAPIfree !2025-03-282856424|Free ChatGPT API Key, Free ChatGPT API, supports GPT-4 API (free), ChatGPT offers a free domestic forwarding API that allows direct connections without the need for a proxy. It can be used in conjunction with software/plugins like ChatBox, significantly reducing interface usage costs. Enjoy unlimited and unrestricted chatting within China| | 185|meta-llama/llama3 !2025-03-28285552|The official Meta Llama 3 GitHub site| | 186|tinygrad/tinygrad !2025-03-282845811|You like pytorch? You like micrograd? You love tinygrad! ❤️| | 187|google-research/tuningplaybook !2025-03-282841514|A playbook for systematically maximizing the performance of deep learning models.| | 188|huggingface/diffusers !2025-03-282830222|🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.| | 189|tokio-rs/tokio !2025-03-28282408|A runtime for writing reliable asynchronous applications with Rust. Provides I/O, networking, scheduling, timers, ...| | 190|RVC-Project/Retrieval-based-Voice-Conversion-WebUI !2025-03-282823817|Voice data !2025-03-282822612|Jan is an open source alternative to ChatGPT that runs 100% offline on your computer| | 192|openai/CLIP !2025-03-282814720|CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image| | 193|🔥khoj-ai/khoj !2025-03-2828112313|Your AI second brain. A copilot to get answers to your questions, whether they be from your own notes or from the internet. Use powerful, online (e.g gpt4) or private, local (e.g mistral) LLMs. Self-host locally or use our web app. Access from Obsidian, Emacs, Desktop app, Web or Whatsapp.| | 194| acheong08/ChatGPT !2025-03-2828054-2 | Reverse engineered ChatGPT API | | 195|iperov/DeepFaceLive !2025-03-28279345 |Real-time face swap for PC streaming or video calls| | 196|eugeneyan/applied-ml !2025-03-28278471|📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production.| | 197|XTLS/Xray-core !2025-03-282778213|Xray, Penetrates Everything. Also the best v2ray-core, with XTLS support. Fully compatible configuration.| | 198|feder-cr/JobsApplierAIAgent !2025-03-282776410|AutoJobsApplierAI_Agent aims to easy job hunt process by automating the job application process. Utilizing artificial intelligence, it enables users to apply for multiple jobs in an automated and personalized way.| | 199|mindsdb/mindsdb !2025-03-282750631|The platform for customizing AI from enterprise data| | 200|DataExpert-io/data-engineer-handbook !2025-03-282721611|This is a repo with links to everything you'd ever want to learn about data engineering| | 201|exo-explore/exo !2025-03-282721633|Run your own AI cluster at home with everyday devices 📱💻 🖥️⌚| | 202|taichi-dev/taichi !2025-03-2826926-1|Productive, portable, and performant GPU programming in Python.| | 203|mem0ai/mem0 !2025-03-282689134|The memory layer for Personalized AI| | 204|svc-develop-team/so-vits-svc !2025-03-28268096 |SoftVC VITS Singing Voice Conversion| | 205|OpenBMB/ChatDev !2025-03-28265624|Create Customized Software using Natural Language Idea (through Multi-Agent Collaboration)| | 206|roboflow/supervision !2025-03-282632010|We write your reusable computer vision tools. 💜| | 207|drawdb-io/drawdb !2025-03-282626913|Free, simple, and intuitive online database design tool and SQL generator.| | 208|karpathy/llm.c !2025-03-28261633|LLM training in simple, raw C/CUDA| | 209|airbnb/lottie-ios !2025-03-28261431|An iOS library to natively render After Effects vector animations| | 210|openai/openai-python !2025-03-282607713|The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language.| | 211|academic/awesome-datascience !2025-03-28259876|📝 An awesome Data Science repository to learn and apply for real world problems.| | 212|harry0703/MoneyPrinterTurbo !2025-03-282576618|Generate short videos with one click using a large model| | 213|gabime/spdlog !2025-03-282571511|Fast C++ logging library.| | 214|ocrmypdf/OCRmyPDF !2025-03-2825674217|OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched| | 215|Vision-CAIR/MiniGPT-4 !2025-03-28256170 |Enhancing Vision-language Understanding with Advanced Large Language Models| | 216|Stability-AI/generative-models !2025-03-28255936|Generative Models by Stability AI| | 217|DS4SD/docling !2025-03-282555662|Get your docs ready for gen AI| | 218|PostHog/posthog !2025-03-282533227|🦔 PostHog provides open-source product analytics, session recording, feature flagging and A/B testing that you can self-host.| | 219|nrwl/nx !2025-03-282509612|Smart Monorepos · Fast CI| | 220|continuedev/continue !2025-03-282500737|⏩ the open-source copilot chat for software development—bring the power of ChatGPT to VS Code| | 221|opentofu/opentofu !2025-03-28247968|OpenTofu lets you declaratively manage your cloud infrastructure.| | 222|invoke-ai/InvokeAI !2025-03-28247293|InvokeAI is a leading creative engine for Stable Diffusion models, empowering professionals, artists, and enthusiasts to generate and create visual media using the latest AI-driven technologies. The solution offers an industry leading WebUI, supports terminal use through a CLI, and serves as the foundation for multiple commercial products.| | 223|deepinsight/insightface !2025-03-282471615 |State-of-the-art 2D and 3D Face Analysis Project| | 224|apache/flink !2025-03-28246865|Apache Flink| | 225|ComposioHQ/composio !2025-03-28246436|Composio equips agents with well-crafted tools empowering them to tackle complex tasks| | 226|Genesis-Embodied-AI/Genesis !2025-03-282458314|A generative world for general-purpose robotics & embodied AI learning.| | 227|stretchr/testify !2025-03-28243184|A toolkit with common assertions and mocks that plays nicely with the standard library| | 228| yetone/openai-translator !2025-03-28242921 | Browser extension and cross-platform desktop application for translation based on ChatGPT API | | 229|frappe/erpnext !2025-03-282425211|Free and Open Source Enterprise Resource Planning (ERP)| | 230|songquanpeng/one-api !2025-03-282410034|OpenAI 接口管理 & 分发系统,支持 Azure、Anthropic Claude、Google PaLM 2 & Gemini、智谱 ChatGLM、百度文心一言、讯飞星火认知、阿里通义千问、360 智脑以及腾讯混元,可用于二次分发管理 key,仅单可执行文件,已打包好 Docker 镜像,一键部署,开箱即用. OpenAI key management & redistribution system, using a single API for all LLMs, and features an English UI.| | 231| microsoft/JARVIS !2025-03-28240604 | a system to connect LLMs with ML community | | 232|google/flatbuffers !2025-03-28239965|FlatBuffers: Memory Efficient Serialization Library| | 233|microsoft/graphrag !2025-03-282398928|A modular graph-based Retrieval-Augmented Generation (RAG) system| | 234|rancher/rancher !2025-03-28239675|Complete container management platform| | 235|bazelbuild/bazel !2025-03-282384618|a fast, scalable, multi-language and extensible build system| | 236|modularml/mojo !2025-03-28238236 |The Mojo Programming Language| | 237|danny-avila/LibreChat !2025-03-282378753|Enhanced ChatGPT Clone: Features OpenAI, GPT-4 Vision, Bing, Anthropic, OpenRouter, Google Gemini, AI model switching, message search, langchain, DALL-E-3, ChatGPT Plugins, OpenAI Functions, Secure Multi-User System, Presets, completely open-source for self-hosting. More features in development| |!green-up-arrow.svg 238|🔥🔥🔥Shubhamsaboo/awesome-llm-apps !2025-03-28237391211|Collection of awesome LLM apps with RAG using OpenAI, Anthropic, Gemini and opensource models.| |!red-down-arrow 239|microsoft/semantic-kernel !2025-03-282373611|Integrate cutting-edge LLM technology quickly and easily into your apps| |!red-down-arrow 240|TheAlgorithms/Rust !2025-03-28236995|All Algorithms implemented in Rust| | 241|stanford-oval/storm !2025-03-28236326|An LLM-powered knowledge curation system that researches a topic and generates a full-length report with citations.| | 242|openai/gpt-2 !2025-03-28232483|Code for the paper "Language Models are Unsupervised Multitask Learners"| | 243|labring/FastGPT !2025-03-282319445|A platform that uses the OpenAI API to quickly build an AI knowledge base, supporting many-to-many relationships.| | 244|pathwaycom/llm-app !2025-03-2822928-10|Ready-to-run cloud templates for RAG, AI pipelines, and enterprise search with live data. 🐳Docker-friendly.⚡Always in sync with Sharepoint, Google Drive, S3, Kafka, PostgreSQL, real-time data APIs, and more.| | 245|warpdotdev/Warp !2025-03-282286825|Warp is a modern, Rust-based terminal with AI built in so you and your team can build great software, faster.| | 246|🔥agno-agi/agno !2025-03-2822833298|Agno is a lightweight library for building Multimodal Agents. It exposes LLMs as a unified API and gives them superpowers like memory, knowledge, tools and reasoning.| | 247|qdrant/qdrant !2025-03-282275214 |Qdrant - Vector Database for the next generation of AI applications. Also available in the cloud https://cloud.qdrant.io/| | 248|ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code !2025-03-282271815|500 AI Machine learning Deep learning Computer vision NLP Projects with code| | 249|stanfordnlp/dspy !2025-03-282268321|Stanford DSPy: The framework for programming—not prompting—foundation models| | 250|PaddlePaddle/Paddle !2025-03-28226246|PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)| | 251|zulip/zulip !2025-03-28225464|Zulip server and web application. Open-source team chat that helps teams stay productive and focused.| | 252|Hannibal046/Awesome-LLM !2025-03-282240721|Awesome-LLM: a curated list of Large Language Model| | 253|facefusion/facefusion !2025-03-282218812|Next generation face swapper and enhancer| | 254|Mozilla-Ocho/llamafile !2025-03-28220624|Distribute and run LLMs with a single file.| | 255|yuliskov/SmartTube !2025-03-282201614|SmartTube - an advanced player for set-top boxes and tvs running Android OS| | 256|haotian-liu/LLaVA !2025-03-282201316 |Large Language-and-Vision Assistant built towards multimodal GPT-4 level capabilities.| | 257|ashishps1/awesome-system-design-resources !2025-03-282189367|This repository contains System Design resources which are useful while preparing for interviews and learning Distributed Systems| | 258|Cinnamon/kotaemon !2025-03-28218248|An open-source RAG-based tool for chatting with your documents.| | 259|CodePhiliaX/Chat2DB !2025-03-282179757|🔥🔥🔥AI-driven database tool and SQL client, The hottest GUI client, supporting MySQL, Oracle, PostgreSQL, DB2, SQL Server, DB2, SQLite, H2, ClickHouse, and more.| | 260|blakeblackshear/frigate !2025-03-282177113|NVR with realtime local object detection for IP cameras| | 261|facebookresearch/audiocraft !2025-03-28217111|Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.| | 262|karpathy/minGPT !2025-03-28216567|A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training| | 263|grpc/grpc-go !2025-03-282159510|The Go language implementation of gRPC. HTTP/2 based RPC| | 264|HumanSignal/label-studio !2025-03-282137618|Label Studio is a multi-type data labeling and annotation tool with standardized output format| | 265|yoheinakajima/babyagi !2025-03-28212764 |uses OpenAI and Pinecone APIs to create, prioritize, and execute tasks, This is a pared-down version of the original Task-Driven Autonomous Agent| | 266|deepseek-ai/DeepSeek-Coder !2025-03-282118210|DeepSeek Coder: Let the Code Write Itself| | 267|BuilderIO/gpt-crawler !2025-03-282118010|Crawl a site to generate knowledge files to create your own custom GPT from a URL| | 268| openai/chatgpt-retrieval-plugin !2025-03-2821152-1 | Plugins are chat extensions designed specifically for language models like ChatGPT, enabling them to access up-to-date information, run computations, or interact with third-party services in response to a user's request.| | 269|microsoft/OmniParser !2025-03-282113123|A simple screen parsing tool towards pure vision based GUI agent| | 270|black-forest-labs/flux !2025-03-282107219|Official inference repo for FLUX.1 models| | 271|ItzCrazyKns/Perplexica !2025-03-282099154|Perplexica is an AI-powered search engine. It is an Open source alternative to Perplexity AI| | 272|microsoft/unilm !2025-03-28209876|Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities| | 273|Sanster/lama-cleaner !2025-03-282077614|Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.| | 274|assafelovic/gpt-researcher !2025-03-282057222|GPT based autonomous agent that does online comprehensive research on any given topic| | 275|PromtEngineer/localGPT !2025-03-28204230 |Chat with your documents on your local device using GPT models. No data leaves your device and 100% private.| | 276|elastic/kibana !2025-03-28203482|Your window into the Elastic Stack| | 277|fishaudio/fish-speech !2025-03-282033222|Brand new TTS solution| | 278|mlc-ai/mlc-llm !2025-03-282028110 |Enable everyone to develop, optimize and deploy AI models natively on everyone's devices.| | 279|deepset-ai/haystack !2025-03-282005320|🔍 Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs (GPT-4, ChatGPT and alike). Haystack offers production-ready tools to quickly build complex question answering, semantic search, text generation applications, and more.| | 280|tree-sitter/tree-sitter !2025-03-28200487|An incremental parsing system for programming tools| | 281|Anjok07/ultimatevocalremovergui !2025-03-281999811|GUI for a Vocal Remover that uses Deep Neural Networks.| | 282|guidance-ai/guidance !2025-03-28199622|A guidance language for controlling large language models.| | 283|ml-explore/mlx !2025-03-28199619|MLX: An array framework for Apple silicon| | 284|mlflow/mlflow !2025-03-281995314|Open source platform for the machine learning lifecycle| | 285|ml-tooling/best-of-ml-python !2025-03-28198631|🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.| | 286|BerriAI/litellm !2025-03-281981862|Call all LLM APIs using the OpenAI format. Use Bedrock, Azure, OpenAI, Cohere, Anthropic, Ollama, Sagemaker, HuggingFace, Replicate (100+ LLMs)| | 287|LazyVim/LazyVim !2025-03-281981320|Neovim config for the lazy| | 288|wez/wezterm !2025-03-281976018|A GPU-accelerated cross-platform terminal emulator and multiplexer written by @wez and implemented in Rust| | 289|valkey-io/valkey !2025-03-281970416|A flexible distributed key-value datastore that supports both caching and beyond caching workloads.| | 290|LiLittleCat/awesome-free-chatgpt !2025-03-28196185|🆓免费的 ChatGPT 镜像网站列表,持续更新。List of free ChatGPT mirror sites, continuously updated.| | 291|Byaidu/PDFMathTranslate !2025-03-281947645|PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/Docker| | 292|openai/swarm !2025-03-281947111|Educational framework exploring ergonomic, lightweight multi-agent orchestration. Managed by OpenAI Solution team.| | 293|HqWu-HITCS/Awesome-Chinese-LLM !2025-03-281921423|Organizing smaller, cost-effective, privately deployable open-source Chinese language models, including related datasets and tutorials| | 294|stitionai/devika !2025-03-28190903|Devika is an Agentic AI Software Engineer that can understand high-level human instructions, break them down into steps, research relevant information, and write code to achieve the given objective. Devika aims to be a competitive open-source alternative to Devin by Cognition AI.| | 295|OpenBMB/MiniCPM-o !2025-03-28190887|MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone| | 296|samber/lo !2025-03-281904815|💥 A Lodash-style Go library based on Go 1.18+ Generics (map, filter, contains, find...)| | 297|chroma-core/chroma !2025-03-281895221 |the AI-native open-source embedding database| | 298|DarkFlippers/unleashed-firmware !2025-03-28189278|Flipper Zero Unleashed Firmware| | 299|brave/brave-browser !2025-03-281892710|Brave browser for Android, iOS, Linux, macOS, Windows.| | 300| tloen/alpaca-lora !2025-03-28188641 | Instruct-tune LLaMA on consumer hardware| | 301|VinciGit00/Scrapegraph-ai !2025-03-281884618|Python scraper based on AI| | 302|gitroomhq/postiz-app !2025-03-281879110|📨 Schedule social posts, measure them, exchange with other members and get a lot of help from AI 🚀| | 303|PrefectHQ/prefect !2025-03-281878715|Prefect is a workflow orchestration tool empowering developers to build, observe, and react to data pipelines| | 304|ymcui/Chinese-LLaMA-Alpaca !2025-03-28187723 |Chinese LLaMA & Alpaca LLMs| | 305|kenjihiranabe/The-Art-of-Linear-Algebra !2025-03-28187335|Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"| | 306|joonspk-research/generativeagents !2025-03-28187288|Generative Agents: Interactive Simulacra of Human Behavior| | 307|renovatebot/renovate !2025-03-28186820|Universal dependency update tool that fits into your workflows.| | 308|gventuri/pandas-ai !2025-03-28186109 |Pandas AI is a Python library that integrates generative artificial intelligence capabilities into Pandas, making dataframes conversational| | 309|thingsboard/thingsboard !2025-03-28185184|Open-source IoT Platform - Device management, data collection, processing and visualization.| | 310|ente-io/ente !2025-03-28184722|Fully open source, End to End Encrypted alternative to Google Photos and Apple Photos| | 311|serengil/deepface !2025-03-281840113|A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python| | 312|Raphire/Win11Debloat !2025-03-281840132|A simple, easy to use PowerShell script to remove pre-installed apps from windows, disable telemetry, remove Bing from windows search as well as perform various other changes to declutter and improve your windows experience. This script works for both windows 10 and windows 11.| | 313|Avaiga/taipy !2025-03-28179235|Turns Data and AI algorithms into production-ready web applications in no time.| | 314|microsoft/qlib !2025-03-281784231|Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.| | 315|CopilotKit/CopilotKit !2025-03-281778571|Build in-app AI chatbots 🤖, and AI-powered Textareas ✨, into react web apps.| | 316|QwenLM/Qwen-7B !2025-03-281766017|The official repo of Qwen-7B (通义千问-7B) chat & pretrained large language model proposed by Alibaba Cloud.| | 317|w-okada/voice-changer !2025-03-28176078 |リアルタイムボイスチェンジャー Realtime Voice Changer| | 318|rlabbe/Kalman-and-Bayesian-Filters-in-Python !2025-03-281756011|Kalman Filter book using Jupyter Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions.| | 319|Mikubill/sd-webui-controlnet !2025-03-28174794 |WebUI extension for ControlNet| | 320|jingyaogong/minimind !2025-03-2817380116|「大模型」3小时完全从0训练26M的小参数GPT,个人显卡即可推理训练!| | 321|apify/crawlee !2025-03-28172696|Crawlee—A web scraping and browser automation library for Node.js to build reliable crawlers. In JavaScript and TypeScript. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with Puppeteer, Playwright, Cheerio, JSDOM, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 322|apple/ml-stable-diffusion !2025-03-28172395|Stable Diffusion with Core ML on Apple Silicon| | 323| transitive-bullshit/chatgpt-api !2025-03-28172095 | Node.js client for the official ChatGPT API. | | 324|teableio/teable !2025-03-281719222|✨ The Next Gen Airtable Alternative: No-Code Postgres| | 325| xx025/carrot !2025-03-28170900 | Free ChatGPT Site List | | 326|microsoft/LightGBM !2025-03-28170723|A fast, distributed, high-performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.| | 327|VikParuchuri/surya !2025-03-28169827|Accurate line-level text detection and recognition (OCR) in any language| | 328|deepseek-ai/Janus !2025-03-281692825|Janus-Series: Unified Multimodal Understanding and Generation Models| | 329|ardalis/CleanArchitecture !2025-03-28168823|Clean Architecture Solution Template: A starting point for Clean Architecture with ASP.NET Core| | 330|neondatabase/neon !2025-03-28166466|Neon: Serverless Postgres. We separated storage and compute to offer autoscaling, code-like database branching, and scale to zero.| | 331|kestra-io/kestra !2025-03-281661313|⚡ Workflow Automation Platform. Orchestrate & Schedule code in any language, run anywhere, 500+ plugins. Alternative to Zapier, Rundeck, Camunda, Airflow...| | 332|Dao-AILab/flash-attention !2025-03-281659720|Fast and memory-efficient exact attention| | 333|RPCS3/rpcs3 !2025-03-281655712|PS3 emulator/debugger| | 334|meta-llama/llama-recipes !2025-03-28165486|Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger| | 335|emilwallner/Screenshot-to-code !2025-03-28165180|A neural network that transforms a design mock-up into a static website.| | 336|datawhalechina/llm-cookbook !2025-03-281650922|面向开发者的 LLM 入门教程,吴恩达大模型系列课程中文版| | 337|e2b-dev/awesome-ai-agents !2025-03-281643923|A list of AI autonomous agents| | 338|QwenLM/Qwen2.5 !2025-03-281641114|Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.| | 339|dair-ai/ML-YouTube-Courses !2025-03-28164114|📺 Discover the latest machine learning / AI courses on YouTube.| | 340|pybind/pybind11 !2025-03-28163620|Seamless operability between C++11 and Python| | 341|graphdeco-inria/gaussian-splatting !2025-03-281627116|Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"| | 342|meta-llama/codellama !2025-03-28162531|Inference code for CodeLlama models| | 343|TransformerOptimus/SuperAGI !2025-03-28161292 | SuperAGI - A dev-first open source autonomous AI agent framework. Enabling developers to build, manage & run useful autonomous agents quickly and reliably.| | 344|microsoft/onnxruntime !2025-03-28161169|ONNX Runtime: cross-platform, high-performance ML inferencing and training accelerator| | 345|IDEA-Research/Grounded-Segment-Anything !2025-03-281601411 |Marrying Grounding DINO with Segment Anything & Stable Diffusion & BLIP - Automatically Detect, Segment and Generate Anything with Image and Text Inputs| | 346|ddbourgin/numpy-ml !2025-03-28160054|Machine learning, in numpy| | 347|eosphoros-ai/DB-GPT !2025-03-281585225|Revolutionizing Database Interactions with Private LLM Technology| | 348|Stability-AI/StableLM !2025-03-28158310 |Stability AI Language Models| | 349|openai/evals !2025-03-28157935 |Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.| | 350|THUDM/ChatGLM2-6B !2025-03-28157500|ChatGLM2-6B: An Open Bilingual Chat LLM | | 351|sunner/ChatALL !2025-03-28156761 |Concurrently chat with ChatGPT, Bing Chat, Bard, Alpaca, Vincuna, Claude, ChatGLM, MOSS, iFlytek Spark, ERNIE and more, discover the best answers| | 352|abseil/abseil-cpp !2025-03-28156656|Abseil Common Libraries (C++)| | 353|NVIDIA/open-gpu-kernel-modules !2025-03-28156531|NVIDIA Linux open GPU kernel module source| | 354|letta-ai/letta !2025-03-281563718|Letta (formerly MemGPT) is a framework for creating LLM services with memory.| | 355|typescript-eslint/typescript-eslint !2025-03-28156211|✨ Monorepo for all the tooling which enables ESLint to support TypeScript| | 356|umijs/umi !2025-03-28156211|A framework in react community ✨| | 357|AI4Finance-Foundation/FinGPT !2025-03-281561215|Data-Centric FinGPT. Open-source for open finance! Revolutionize 🔥 We'll soon release the trained model.| | 358|amplication/amplication !2025-03-28156022|🔥🔥🔥 The Only Production-Ready AI-Powered Backend Code Generation| | 359|KindXiaoming/pykan !2025-03-28155477|Kolmogorov Arnold Networks| | 360|arc53/DocsGPT !2025-03-28154900|GPT-powered chat for documentation, chat with your documents| | 361|influxdata/telegraf !2025-03-28154502|Agent for collecting, processing, aggregating, and writing metrics, logs, and other arbitrary data.| | 362|microsoft/Bringing-Old-Photos-Back-to-Life !2025-03-28154084|Bringing Old Photo Back to Life (CVPR 2020 oral)| | 363|GaiZhenbiao/ChuanhuChatGPT !2025-03-2815394-2|GUI for ChatGPT API and many LLMs. Supports agents, file-based QA, GPT finetuning and query with web search. All with a neat UI.| | 364|Zeyi-Lin/HivisionIDPhotos !2025-03-281529710|⚡️HivisionIDPhotos: a lightweight and efficient AI ID photos tools. 一个轻量级的AI证件照制作算法。| | 365| mayooear/gpt4-pdf-chatbot-langchain !2025-03-281529518 | GPT4 & LangChain Chatbot for large PDF docs | | 366|1Panel-dev/MaxKB !2025-03-2815277148|? Based on LLM large language model knowledge base Q&A system. Ready to use out of the box, supports quick integration into third-party business systems. Officially produced by 1Panel| | 367|ai16z/eliza !2025-03-281526811|Conversational Agent for Twitter and Discord| | 368|apache/arrow !2025-03-28151684|Apache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing| | 369|princeton-nlp/SWE-agent !2025-03-281516119|SWE-agent: Agent Computer Interfaces Enable Software Engineering Language Models| | 370|mlc-ai/web-llm !2025-03-281509311 |Bringing large-language models and chat to web browsers. Everything runs inside the browser with no server support.| | 371|guillaumekln/faster-whisper !2025-03-281507117 |Faster Whisper transcription with CTranslate2| | 372|overleaf/overleaf !2025-03-28150316|A web-based collaborative LaTeX editor| | 373|triton-lang/triton !2025-03-28150169|Development repository for the Triton language and compiler| | 374|soxoj/maigret !2025-03-281500410|🕵️‍♂️ Collect a dossier on a person by username from thousands of sites| | 375|alibaba/lowcode-engine !2025-03-28149841|An enterprise-class low-code technology stack with scale-out design / 一套面向扩展设计的企业级低代码技术体系| | 376|espressif/esp-idf !2025-03-28148545|Espressif IoT Development Framework. Official development framework for Espressif SoCs.| | 377|pgvector/pgvector !2025-03-281484913|Open-source vector similarity search for Postgres| | 378|datawhalechina/leedl-tutorial !2025-03-28148246|《李宏毅深度学习教程》(李宏毅老师推荐👍),PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases| | 379|xcanwin/KeepChatGPT !2025-03-28147972 |Using ChatGPT is more efficient and smoother, perfectly solving ChatGPT network errors. No longer do you need to frequently refresh the webpage, saving over 10 unnecessary steps| | 380|m-bain/whisperX !2025-03-281471313|WhisperX: Automatic Speech Recognition with Word-level Timestamps (& Diarization)| | 381|HumanAIGC/AnimateAnyone !2025-03-2814706-1|Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation| |!green-up-arrow.svg 382|naklecha/llama3-from-scratch !2025-03-281469024|llama3 implementation one matrix multiplication at a time| |!red-down-arrow 383| fauxpilot/fauxpilot !2025-03-28146871 | An open-source GitHub Copilot server | | 384|LlamaFamily/Llama-Chinese !2025-03-28145111|Llama Chinese Community, the best Chinese Llama large model, fully open source and commercially available| | 385|BradyFU/Awesome-Multimodal-Large-Language-Models !2025-03-281450121|Latest Papers and Datasets on Multimodal Large Language Models| | 386|vanna-ai/vanna !2025-03-281449819|🤖 Chat with your SQL database 📊. Accurate Text-to-SQL Generation via LLMs using RAG 🔄.| | 387|bleedline/aimoneyhunter !2025-03-28144845|AI Side Hustle Money Mega Collection: Teaching You How to Utilize AI for Various Side Projects to Earn Extra Income.| | 388|stefan-jansen/machine-learning-for-trading !2025-03-28144629|Code for Machine Learning for Algorithmic Trading, 2nd edition.| | 389|state-spaces/mamba !2025-03-28144139|Mamba: Linear-Time Sequence Modeling with Selective State Spaces| | 390|vercel/ai-chatbot !2025-03-281434614|A full-featured, hackable Next.js AI chatbot built by Vercel| | 391|steven-tey/novel !2025-03-281428410|Notion-style WYSIWYG editor with AI-powered autocompletions| | 392|unifyai/ivy !2025-03-281409348|Unified AI| | 393|chidiwilliams/buzz !2025-03-281402411 |Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.| | 394|lukas-blecher/LaTeX-OCR !2025-03-28139769|pix2tex: Using a ViT to convert images of equations into LaTeX code.| | 395|openai/tiktoken !2025-03-28139599|tiktoken is a fast BPE tokeniser for use with OpenAI's models.| | 396|nocobase/nocobase !2025-03-281391522|NocoBase is a scalability-first, open-source no-code/low-code platform for building business applications and enterprise solutions.| | 397|neonbjb/tortoise-tts !2025-03-28139010 |A multi-voice TTS system trained with an emphasis on quality| | 398|yamadashy/repomix !2025-03-281382036|📦 Repomix (formerly Repopack) is a powerful tool that packs your entire repository into a single, AI-friendly file. Perfect for when you need to feed your codebase to Large Language Models (LLMs) or other AI tools like Claude, ChatGPT, and Gemini.| | 399|adobe/react-spectrum !2025-03-28136766|A collection of libraries and tools that help you build adaptive, accessible, and robust user experiences.| | 400|THUDM/ChatGLM3 !2025-03-28136684|ChatGLM3 series: Open Bilingual Chat LLMs | | 401|NVIDIA/NeMo !2025-03-28134837|A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)| | 402|BlinkDL/RWKV-LM !2025-03-28134346 |RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it combines the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.| | 403| fuergaosi233/wechat-chatgpt !2025-03-28133330 | Use ChatGPT On Wechat via wechaty | | 404|udecode/plate !2025-03-28133325|A rich-text editor powered by AI| | 405|xenova/transformers.js !2025-03-281331219|State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!| | 406|stas00/ml-engineering !2025-03-281325615|Machine Learning Engineering Guides and Tools| | 407| wong2/chatgpt-google-extension !2025-03-2813241-1 | A browser extension that enhances search engines with ChatGPT, this repos will not be updated from 2023-02-20| | 408|mrdbourke/pytorch-deep-learning !2025-03-281317520|Materials for the Learn PyTorch for Deep Learning: Zero to Mastery course.| | 409|Koenkk/zigbee2mqtt !2025-03-28131544|Zigbee 🐝 to MQTT bridge 🌉, get rid of your proprietary Zigbee bridges 🔨| | 410|vercel-labs/ai !2025-03-281298528|Build AI-powered applications with React, Svelte, and Vue| | 411|netease-youdao/QAnything !2025-03-28129318|Question and Answer based on Anything.| | 412|huggingface/trl !2025-03-281289622|Train transformer language models with reinforcement learning.| | 413|microsoft/BitNet !2025-03-28128503|Official inference framework for 1-bit LLMs| | 414|mediar-ai/screenpipe !2025-03-281283915|24/7 local AI screen & mic recording. Build AI apps that have the full context. Works with Ollama. Alternative to Rewind.ai. Open. Secure. You own your data. Rust.| | 415|Skyvern-AI/skyvern !2025-03-281277612|Automate browser-based workflows with LLMs and Computer Vision| | 416|pytube/pytube !2025-03-28126591|A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos.| | 417|official-stockfish/Stockfish !2025-03-28126574|UCI chess engine| | 418|sgl-project/sglang !2025-03-281260143|SGLang is a structured generation language designed for large language models (LLMs). It makes your interaction with LLMs faster and more controllable.| | 419|plasma-umass/scalene !2025-03-28125535|Scalene: a high-performance, high-precision CPU, GPU, and memory profiler for Python with AI-powered optimization proposals| | 420|danswer-ai/danswer !2025-03-28125503|Ask Questions in natural language and get Answers backed by private sources. Connects to tools like Slack, GitHub, Confluence, etc.| | 421|OpenTalker/SadTalker !2025-03-28125226|[CVPR 2023] SadTalker:Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation| | 422|facebookresearch/AnimatedDrawings !2025-03-28123693 |Code to accompany "A Method for Animating Children's Drawings of the Human Figure"| | 423|activepieces/activepieces !2025-03-28123609|Your friendliest open source all-in-one automation tool ✨ Workflow automation tool 100+ integration / Enterprise automation tool / Zapier Alternative| | 424|ggerganov/ggml !2025-03-28121992 |Tensor library for machine learning| | 425|bytebase/bytebase !2025-03-28121694|World's most advanced database DevOps and CI/CD for Developer, DBA and Platform Engineering teams. The GitLab/GitHub for database DevOps.| | 426| willwulfken/MidJourney-Styles-and-Keywords-Reference !2025-03-28120971 | A reference containing Styles and Keywords that you can use with MidJourney AI| | 427|Huanshere/VideoLingo !2025-03-281207013|Netflix-level subtitle cutting, translation, alignment, and even dubbing - one-click fully automated AI video subtitle team | | 428|OpenLMLab/MOSS !2025-03-28120330 |An open-source tool-augmented conversational language model from Fudan University| | 429|llmware-ai/llmware !2025-03-281200727|Providing enterprise-grade LLM-based development framework, tools, and fine-tuned models.| | 430|PKU-YuanGroup/Open-Sora-Plan !2025-03-28119362|This project aim to reproduce Sora (Open AI T2V model), but we only have limited resource. We deeply wish the all open source community can contribute to this project.| | 431|ShishirPatil/gorilla !2025-03-28119332 |Gorilla: An API store for LLMs| | 432|NVIDIA/Megatron-LM !2025-03-281192716|Ongoing research training transformer models at scale| | 433|illacloud/illa-builder !2025-03-28119192|Create AI-Driven Apps like Assembling Blocks| | 434|marimo-team/marimo !2025-03-281191521|A reactive notebook for Python — run reproducible experiments, execute as a script, deploy as an app, and version with git.| | 435|smol-ai/developer !2025-03-28119111 | With 100k context windows on the way, it's now feasible for every dev to have their own smol developer| | 436|Lightning-AI/litgpt !2025-03-28118878|Pretrain, finetune, deploy 20+ LLMs on your own data. Uses state-of-the-art techniques: flash attention, FSDP, 4-bit, LoRA, and more.| | 437|openai/shap-e !2025-03-28118474 |Generate 3D objects conditioned on text or images| | 438|eugeneyan/open-llms !2025-03-28118451 |A list of open LLMs available for commercial use.| | 439|andrewyng/aisuite !2025-03-28118124|Simple, unified interface to multiple Generative AI providers| | 440|hajimehoshi/ebiten !2025-03-28117816|Ebitengine - A dead simple 2D game engine for Go| | 441|kgrzybek/modular-monolith-with-ddd !2025-03-28117493|Full Modular Monolith application with Domain-Driven Design approach.| | 442|h2oai/h2ogpt !2025-03-2811736-1 |Come join the movement to make the world's best open source GPT led by H2O.ai - 100% private chat and document search, no data leaks, Apache 2.0| | 443|owainlewis/awesome-artificial-intelligence !2025-03-28117332|A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers.| | 444|DataTalksClub/mlops-zoomcamp !2025-03-28116643|Free MLOps course from DataTalks.Club| | 445|Rudrabha/Wav2Lip !2025-03-281163410|This repository contains the codes of "A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild", published at ACM Multimedia 2020.| | 446|aishwaryanr/awesome-generative-ai-guide !2025-03-281152810|A one stop repository for generative AI research updates, interview resources, notebooks and much more!| | 447|karpathy/micrograd !2025-03-28115146|A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API| | 448|InstantID/InstantID !2025-03-28115111|InstantID : Zero-shot Identity-Preserving Generation in Seconds 🔥| | 449|facebookresearch/seamlesscommunication !2025-03-28114434|Foundational Models for State-of-the-Art Speech and Text Translation| | 450|anthropics/anthropic-cookbook !2025-03-281140112|A collection of notebooks/recipes showcasing some fun and effective ways of using Claude.| | 451|mastra-ai/mastra !2025-03-281139240|the TypeScript AI agent framework| | 452|NVIDIA/TensorRT !2025-03-28113864|NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.| | 453|plandex-ai/plandex !2025-03-28113645|An AI coding engine for complex tasks| | 454|RUCAIBox/LLMSurvey !2025-03-28112735 |A collection of papers and resources related to Large Language Models.| | 455|kubeshark/kubeshark !2025-03-28112711|The API traffic analyzer for Kubernetes providing real-time K8s protocol-level visibility, capturing and monitoring all traffic and payloads going in, out and across containers, pods, nodes and clusters. Inspired by Wireshark, purposely built for Kubernetes| | 456|electric-sql/pglite !2025-03-28112617|Lightweight Postgres packaged as WASM into a TypeScript library for the browser, Node.js, Bun and Deno from https://electric-sql.com| | 457|lightaime/camel !2025-03-281124441 |🐫 CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society| | 458|huggingface/lerobot !2025-03-281120184|🤗 LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch| | 459|normal-computing/outlines !2025-03-28111657|Generative Model Programming| | 460|libretro/RetroArch !2025-03-28110701|Cross-platform, sophisticated frontend for the libretro API. Licensed GPLv3.| | 461|THUDM/CogVideo !2025-03-28110599|Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023)| | 462|bentoml/OpenLLM !2025-03-28110495|An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease.| | 463|vosen/ZLUDA !2025-03-28110429|CUDA on AMD GPUs| | 464|dair-ai/ML-Papers-of-the-Week !2025-03-28110304 |🔥Highlighting the top ML papers every week.| | 465|WordPress/gutenberg !2025-03-28110212|The Block Editor project for WordPress and beyond. Plugin is available from the official repository.| | 466|microsoft/data-formulator !2025-03-281099827|🪄 Create rich visualizations with AI| | 467|LibreTranslate/LibreTranslate !2025-03-28109887|Free and Open Source Machine Translation API. Self-hosted, offline capable and easy to setup.| | 468|block/goose !2025-03-281097737|an open-source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM| | 469|getumbrel/llama-gpt !2025-03-28109553|A self-hosted, offline, ChatGPT-like chatbot. Powered by Llama 2. 100% private, with no data leaving your device.| | 470|HigherOrderCO/HVM !2025-03-28109182|A massively parallel, optimal functional runtime in Rust| | 471|databrickslabs/dolly !2025-03-2810812-3 | A large language model trained on the Databricks Machine Learning Platform| | 472|srush/GPU-Puzzles !2025-03-28108014|Solve puzzles. Learn CUDA.| | 473|Z3Prover/z3 !2025-03-28107952|The Z3 Theorem Prover| | 474|UFund-Me/Qbot !2025-03-281079313 |Qbot is an AI-oriented quantitative investment platform, which aims to realize the potential, empower AI technologies in quantitative investment| | 475|langchain-ai/langgraph !2025-03-281077336|| | 476|lz4/lz4 !2025-03-28107647|Extremely Fast Compression algorithm| | 477|magic-research/magic-animate !2025-03-28107160|MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model| | 478|PaperMC/Paper !2025-03-281071410|The most widely used, high performance Minecraft server that aims to fix gameplay and mechanics inconsistencies| | 479|getomni-ai/zerox !2025-03-281071015|Zero shot pdf OCR with gpt-4o-mini| |!green-up-arrow.svg 480|🔥NirDiamant/GenAIAgents !2025-03-2810693318|This repository provides tutorials and implementations for various Generative AI Agent techniques, from basic to advanced. It serves as a comprehensive guide for building intelligent, interactive AI systems.| |!red-down-arrow 481|Unstructured-IO/unstructured !2025-03-28106889|Open source libraries and APIs to build custom preprocessing pipelines for labeling, training, or production machine learning pipelines.| | 482|apache/thrift !2025-03-28106610|Apache Thrift| | 483| TheR1D/shellgpt !2025-03-28106097 | A command-line productivity tool powered by ChatGPT, will help you accomplish your tasks faster and more efficiently | | 484|TheRamU/Fay !2025-03-281060312 |Fay is a complete open source project that includes Fay controller and numeral models, which can be used in different applications such as virtual hosts, live promotion, numeral human interaction and so on| | 485|zyronon/douyin !2025-03-28105566|Vue3 + Pinia + Vite5 仿抖音,Vue 在移动端的最佳实践 . Imitate TikTok ,Vue Best practices on Mobile| | 486|THU-MIG/yolov10 !2025-03-28105485|YOLOv10: Real-Time End-to-End Object Detection| | 487|idootop/mi-gpt !2025-03-281052522|? Transform XiaoAi speaker into a personal voice assistant with ChatGPT and DouBao integration.| | 488|SakanaAI/AI-Scientist !2025-03-281051310|The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑‍🔬| | 489|szimek/sharedrop !2025-03-28105101|Easy P2P file transfer powered by WebRTC - inspired by Apple AirDrop| | 490|salesforce/LAVIS !2025-03-28103942 |LAVIS - A One-stop Library for Language-Vision Intelligence| | 491|aws/amazon-sagemaker-examples !2025-03-28103654|Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.| | 492|artidoro/qlora !2025-03-28103402 |QLoRA: Efficient Finetuning of Quantized LLMs| | 493|lllyasviel/stable-diffusion-webui-forge !2025-03-281029314| a platform on top of Stable Diffusion WebUI (based on Gradio) to make development easier, optimize resource management, and speed up inference| | 494|NielsRogge/Transformers-Tutorials !2025-03-28102487|This repository contains demos I made with the Transformers library by HuggingFace.| | 495|kedro-org/kedro !2025-03-28102371|Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.| | 496| chathub-dev/chathub !2025-03-28102301 | All-in-one chatbot client | | 497|microsoft/promptflow !2025-03-28101612|Build high-quality LLM apps - from prototyping, testing to production deployment and monitoring.| | 498|mistralai/mistral-src !2025-03-28101372|Reference implementation of Mistral AI 7B v0.1 model.| | 499|burn-rs/burn !2025-03-28101183|Burn - A Flexible and Comprehensive Deep Learning Framework in Rust| | 500|AIGC-Audio/AudioGPT !2025-03-28101150 |AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head| | 501|facebookresearch/dinov2 !2025-03-281011210 |PyTorch code and models for the DINOv2 self-supervised learning method.| | 502|RockChinQ/LangBot !2025-03-281008455|😎丰富生态、🧩支持扩展、🦄多模态 - 大模型原生即时通信机器人平台 🤖 | | 503|78/xiaozhi-esp32 !2025-03-281008180|Build your own AI friend| | 504|cumulo-autumn/StreamDiffusion !2025-03-28100761|StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation| | 505|DataTalksClub/machine-learning-zoomcamp !2025-03-28100664|The code from the Machine Learning Bookcamp book and a free course based on the book| | 506|nerfstudio-project/nerfstudio !2025-03-28100343|A collaboration friendly studio for NeRFs| | 507|cupy/cupy !2025-03-28100344|NumPy & SciPy for GPU| | 508|NVIDIA/TensorRT-LLM !2025-03-281000823|TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.| | 509|wasp-lang/open-saas !2025-03-2899665|A free, open-source SaaS app starter for React & Node.js with superpowers. Production-ready. Community-driven.| | 510|huggingface/text-generation-inference !2025-03-2899383|Large Language Model Text Generation Inference| | 511|jxnl/instructor !2025-03-2899224|structured outputs for llms| | 512|GoogleCloudPlatform/generative-ai !2025-03-2899086|Sample code and notebooks for Generative AI on Google Cloud| | 513|manticoresoftware/manticoresearch !2025-03-2898799|Easy to use open source fast database for search | | 514|langfuse/langfuse !2025-03-28985134|🪢 Open source LLM engineering platform. Observability, metrics, evals, prompt management, testing, prompt playground, datasets, LLM evaluations -- 🍊YC W23 🤖 integrate via Typescript, Python / Decorators, OpenAI, Langchain, LlamaIndex, Litellm, Instructor, Mistral, Perplexity, Claude, Gemini, Vertex| | 515|keephq/keep !2025-03-2897949|The open-source alert management and AIOps platform| | 516|sashabaranov/go-openai !2025-03-2897843|OpenAI ChatGPT, GPT-3, GPT-4, DALL·E, Whisper API wrapper for Go| | 517|autowarefoundation/autoware !2025-03-2897766|Autoware - the world's leading open-source software project for autonomous driving| | 518|anthropics/courses !2025-03-2897269|Anthropic's educational courses| | 519|popcorn-official/popcorn-desktop !2025-03-2896853|Popcorn Time is a multi-platform, free software BitTorrent client that includes an integrated media player ( Windows / Mac / Linux ) A Butter-Project Fork| | 520|getmaxun/maxun !2025-03-28968515|🔥 Open-source no-code web data extraction platform. Turn websites to APIs and spreadsheets with no-code robots in minutes! [In Beta]| | 521|wandb/wandb !2025-03-2896763|🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API.| | 522|karpathy/minbpe !2025-03-2895353|Minimal, clean, code for the Byte Pair Encoding (BPE) algorithm commonly used in LLM tokenization.| | 523|bigscience-workshop/petals !2025-03-2895142|🌸 Run large language models at home, BitTorrent-style. Fine-tuning and inference up to 10x faster than offloading| | 524|OthersideAI/self-operating-computer !2025-03-2894931|A framework to enable multimodal models to operate a computer.| | 525|mshumer/gpt-prompt-engineer !2025-03-2894911|| | 526| BloopAI/bloop !2025-03-2894710 | A fast code search engine written in Rust| | 527|BlinkDL/ChatRWKV !2025-03-289467-1 |ChatRWKV is like ChatGPT but powered by RWKV (100% RNN) language model, and open source.| | 528|timlrx/tailwind-nextjs-starter-blog !2025-03-2894677|This is a Next.js, Tailwind CSS blogging starter template. Comes out of the box configured with the latest technologies to make technical writing a breeze. Easily configurable and customizable. Perfect as a replacement to existing Jekyll and Hugo individual blogs.| | 529|google/benchmark !2025-03-2893634|A microbenchmark support library| | 530|facebookresearch/nougat !2025-03-2893603|Implementation of Nougat Neural Optical Understanding for Academic Documents| | 531|modelscope/facechain !2025-03-2893536|FaceChain is a deep-learning toolchain for generating your Digital-Twin.| | 532|DrewThomasson/ebook2audiobook !2025-03-2893388|Convert ebooks to audiobooks with chapters and metadata using dynamic AI models and voice cloning. Supports 1,107+ languages!| | 533|RayTracing/raytracing.github.io !2025-03-2893035|Main Web Site (Online Books)| | 534|QwenLM/Qwen2.5-VL !2025-03-28930249|Qwen2.5-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud.| | 535|WongKinYiu/yolov9 !2025-03-2892201|Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information| | 536|alibaba-damo-academy/FunASR !2025-03-28920222|A Fundamental End-to-End Speech Recognition Toolkit and Open Source SOTA Pretrained Models.| | 537|Visualize-ML/Book4Power-of-Matrix !2025-03-2891931|Book4 'Power of Matrix' | | 538|dice2o/BingGPT !2025-03-289185-1 |Desktop application of new Bing's AI-powered chat (Windows, macOS and Linux)| | 539|browserbase/stagehand !2025-03-28917621|An AI web browsing framework focused on simplicity and extensibility.| | 540|FlagOpen/FlagEmbedding !2025-03-28914111|Dense Retrieval and Retrieval-augmented LLMs| | 541|Const-me/Whisper !2025-03-2890979|High-performance GPGPU inference of OpenAI's Whisper automatic speech recognition (ASR) model| | 542|lucidrains/denoising-diffusion-pytorch !2025-03-2890942|Implementation of Denoising Diffusion Probabilistic Model in Pytorch| | 543|Chainlit/chainlit !2025-03-28904422|Build Conversational AI in minutes ⚡️| | 544|togethercomputer/OpenChatKit !2025-03-2890160 |OpenChatKit provides a powerful, open-source base to create both specialized and general purpose chatbots for various applications| | 545|Stability-AI/StableStudio !2025-03-2889631 |Community interface for generative AI| | 546|voicepaw/so-vits-svc-fork !2025-03-2889482 |so-vits-svc fork with realtime support, improved interface and more features.| | 547|pymc-devs/pymc !2025-03-2889413|Bayesian Modeling and Probabilistic Programming in Python| | 548|espnet/espnet !2025-03-2889302|End-to-End Speech Processing Toolkit| | 549|kedacore/keda !2025-03-2888991|KEDA is a Kubernetes-based Event Driven Autoscaling component. It provides event driven scale for any container running in Kubernetes| | 550|open-mmlab/Amphion !2025-03-28886911|Amphion (/æmˈfaɪən/) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.| | 551|gorse-io/gorse !2025-03-2888451|Gorse open source recommender system engine| | 552|adams549659584/go-proxy-bingai !2025-03-288768-1 |A Microsoft New Bing demo site built with Vue3 and Go, providing a consistent UI experience, supporting ChatGPT prompts, and accessible within China| | 553|open-mmlab/mmsegmentation !2025-03-2887513|OpenMMLab Semantic Segmentation Toolbox and Benchmark.| | 554|bytedance/monolith !2025-03-2887223|ByteDance's Recommendation System| | 555|LouisShark/chatgptsystemprompt !2025-03-2887216|store all agent's system prompt| | 556|brexhq/prompt-engineering !2025-03-2887080 |Tips and tricks for working with Large Language Models like OpenAI's GPT-4.| | 557|erincatto/box2d !2025-03-2886841|Box2D is a 2D physics engine for games| | 558|🔥microsoft/ai-agents-for-beginners !2025-03-288669323|10 Lessons to Get Started Building AI Agents| | 559|nashsu/FreeAskInternet !2025-03-2886102|FreeAskInternet is a completely free, private and locally running search aggregator & answer generate using LLM, without GPU needed. The user can ask a question and the system will make a multi engine search and combine the search result to the ChatGPT3.5 LLM and generate the answer based on search results.| | 560|goldmansachs/gs-quant !2025-03-2885981|Python toolkit for quantitative finance| | 561|srbhr/Resume-Matcher !2025-03-2885800|Open Source Free ATS Tool to compare Resumes with Job Descriptions and create a score to rank them.| | 562|facebookresearch/ImageBind !2025-03-2885681 |ImageBind One Embedding Space to Bind Them All| | 563|ashawkey/stable-dreamfusion !2025-03-2885481 |A pytorch implementation of text-to-3D dreamfusion, powered by stable diffusion.| | 564|meetecho/janus-gateway !2025-03-2885232|Janus WebRTC Server| | 565|google/magika !2025-03-2885003|Detect file content types with deep learning| | 566|huggingface/chat-ui !2025-03-2884871 |Open source codebase powering the HuggingChat app| | 567|EleutherAI/lm-evaluation-harness !2025-03-28843012|A framework for few-shot evaluation of autoregressive language models.| | 568|jina-ai/reader !2025-03-2884089|Convert any URL to an LLM-friendly input with a simple prefix https://r.jina.ai/| | 569|microsoft/TypeChat !2025-03-288406-1|TypeChat is a library that makes it easy to build natural language interfaces using types.| | 570|thuml/Time-Series-Library !2025-03-28839715|A Library for Advanced Deep Time Series Models.| | 571|OptimalScale/LMFlow !2025-03-2883882|An Extensible Toolkit for Finetuning and Inference of Large Foundation Models. Large Model for All.| | 572|baptisteArno/typebot.io !2025-03-2883845|💬 Typebot is a powerful chatbot builder that you can self-host.| | 573|jzhang38/TinyLlama !2025-03-2883504|The TinyLlama project is an open endeavor to pretrain a 1.1B Llama model on 3 trillion tokens.| | 574|fishaudio/Bert-VITS2 !2025-03-2883472|vits2 backbone with multilingual-bert| | 575|OpenBMB/XAgent !2025-03-2882683|An Autonomous LLM Agent for Complex Task Solving| | 576|Acly/krita-ai-diffusion !2025-03-2882387|Streamlined interface for generating images with AI in Krita. Inpaint and outpaint with optional text prompt, no tweaking required.| | 577|jasonppy/VoiceCraft !2025-03-2882151|Zero-Shot Speech Editing and Text-to-Speech in the Wild| | 578|SJTU-IPADS/PowerInfer !2025-03-2881693|High-speed Large Language Model Serving on PCs with Consumer-grade GPUs| | 579|modelscope/DiffSynth-Studio !2025-03-28814713|Enjoy the magic of Diffusion models!| | 580|o3de/o3de !2025-03-2881443|Open 3D Engine (O3DE) is an Apache 2.0-licensed multi-platform 3D engine that enables developers and content creators to build AAA games, cinema-quality 3D worlds, and high-fidelity simulations without any fees or commercial obligations.| | 581|zmh-program/chatnio !2025-03-2881325|🚀 Next Generation AI One-Stop Internationalization Solution. 🚀 下一代 AI 一站式 B/C 端解决方案,支持 OpenAI,Midjourney,Claude,讯飞星火,Stable Diffusion,DALL·E,ChatGLM,通义千问,腾讯混元,360 智脑,百川 AI,火山方舟,新必应,Gemini,Moonshot 等模型,支持对话分享,自定义预设,云端同步,模型市场,支持弹性计费和订阅计划模式,支持图片解析,支持联网搜索,支持模型缓存,丰富美观的后台管理与仪表盘数据统计。| | 582|leptonai/searchwithlepton !2025-03-2880632|Building a quick conversation-based search demo with Lepton AI.| | 583|sebastianstarke/AI4Animation !2025-03-2880620|Bringing Characters to Life with Computer Brains in Unity| | 584|wangrongding/wechat-bot !2025-03-2880528|🤖一个基于 WeChaty 结合 DeepSeek / ChatGPT / Kimi / 讯飞等Ai服务实现的微信机器人 ,可以用来帮助你自动回复微信消息,或者管理微信群/好友,检测僵尸粉等...| | 585|openvinotoolkit/openvino !2025-03-2880528|OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference| | 586|steven2358/awesome-generative-ai !2025-03-28802610|A curated list of modern Generative Artificial Intelligence projects and services| | 587|adam-maj/tiny-gpu !2025-03-2880234|A minimal GPU design in Verilog to learn how GPUs work from the ground up| | 588| anse-app/chatgpt-demo !2025-03-2880180 | A demo repo based on OpenAI API (gpt-3.5-turbo) | | 589| acheong08/EdgeGPT !2025-03-288015-1 |Reverse engineered API of Microsoft's Bing Chat | | 590|ai-collection/ai-collection !2025-03-2879994 |The Generative AI Landscape - A Collection of Awesome Generative AI Applications| | 591|GreyDGL/PentestGPT !2025-03-2879953 |A GPT-empowered penetration testing tool| | 592|delta-io/delta !2025-03-2879112|An open-source storage framework that enables building a Lakehouse architecture with compute engines including Spark, PrestoDB, Flink, Trino, and Hive and APIs| | 593|dataelement/bisheng !2025-03-2879085|Bisheng is an open LLM devops platform for next generation AI applications.| | 594|e2b-dev/e2b !2025-03-2878447 |Vercel for AI agents. We help developers to build, deploy, and monitor AI agents. Focusing on specialized AI agents that build software for you - your personal software developers.| | 595|01-ai/Yi !2025-03-2878311|A series of large language models trained from scratch by developers @01-ai| | 596|Plachtaa/VALL-E-X !2025-03-287830-1|An open source implementation of Microsoft's VALL-E X zero-shot TTS model. The demo is available at https://plachtaa.github.io| | 597|abhishekkrthakur/approachingalmost !2025-03-2878204|Approaching (Almost) Any Machine Learning Problem| | 598|pydantic/pydantic-ai !2025-03-28781041|Agent Framework / shim to use Pydantic with LLMs| | 599|rany2/edge-tts !2025-03-2877901|Use Microsoft Edge's online text-to-speech service from Python WITHOUT needing Microsoft Edge or Windows or an API key| | 600|CASIA-IVA-Lab/FastSAM !2025-03-2877881|Fast Segment Anything| | 601|netease-youdao/EmotiVoice !2025-03-2877817|EmotiVoice 😊: a Multi-Voice and Prompt-Controlled TTS Engine| | 602|lllyasviel/IC-Light !2025-03-2877804|More relighting!| | 603|kroma-network/tachyon !2025-03-287774-1|Modular ZK(Zero Knowledge) backend accelerated by GPU| | 604|deep-floyd/IF !2025-03-2877731 |A novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding| | 605|oumi-ai/oumi !2025-03-2877705|Everything you need to build state-of-the-art foundation models, end-to-end.| | 606|reorproject/reor !2025-03-2877681|AI note-taking app that runs models locally.| | 607|lightpanda-io/browser !2025-03-28775813|Lightpanda: the headless browser designed for AI and automation| | 608|xiangsx/gpt4free-ts !2025-03-287755-1|Providing a free OpenAI GPT-4 API ! This is a replication project for the typescript version of xtekky/gpt4free| | 609|IDEA-Research/GroundingDINO !2025-03-28773311|Official implementation of the paper "Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection"| | 610|bunkerity/bunkerweb !2025-03-2877326|🛡️ Make your web services secure by default !| | 611|vikhyat/moondream !2025-03-2877057|tiny vision language model| | 612|firmai/financial-machine-learning !2025-03-287703-1|A curated list of practical financial machine learning tools and applications.| | 613|n8n-io/self-hosted-ai-starter-kit !2025-03-28765121|The Self-hosted AI Starter Kit is an open-source template that quickly sets up a local AI environment. Curated by n8n, it provides essential tools for creating secure, self-hosted AI workflows.| | 614|intel-analytics/ipex-llm !2025-03-2876507|Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, Baichuan, Mixtral, Gemma, etc.) on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max). A PyTorch LLM library that seamlessly integrates with llama.cpp, HuggingFace, LangChain, LlamaIndex, DeepSpeed, vLLM, FastChat, ModelScope, etc.| | 615|jrouwe/JoltPhysics !2025-03-28764510|A multi core friendly rigid body physics and collision detection library. Written in C++. Suitable for games and VR applications. Used by Horizon Forbidden West.| | 616|THUDM/CodeGeeX2 !2025-03-2876270|CodeGeeX2: A More Powerful Multilingual Code Generation Model| | 617|meta-llama/llama-stack !2025-03-2875866|Composable building blocks to build Llama Apps| | 618|sweepai/sweep !2025-03-287530-1|Sweep is an AI junior developer| | 619|lllyasviel/Omost !2025-03-2875301|Your image is almost there!| | 620|ahmedbahaaeldin/From-0-to-Research-Scientist-resources-guide !2025-03-2875050|Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.| | 621|dair-ai/ML-Papers-Explained !2025-03-2875050|Explanation to key concepts in ML| | 622|zaidmukaddam/scira !2025-03-28750110|Scira (Formerly MiniPerplx) is a minimalistic AI-powered search engine that helps you find information on the internet. Powered by Vercel AI SDK! Search with models like Grok 2.0.| | 623|Portkey-AI/gateway !2025-03-28749416|A Blazing Fast AI Gateway. Route to 100+ LLMs with 1 fast & friendly API.| | 624|web-infra-dev/midscene !2025-03-28748729|An AI-powered automation SDK can control the page, perform assertions, and extract data in JSON format using natural language.| | 625|zilliztech/GPTCache !2025-03-2874801 |GPTCache is a library for creating semantic cache to store responses from LLM queries.| | 626|niedev/RTranslator !2025-03-2874742|RTranslator is the world's first open source real-time translation app.| |!green-up-arrow.svg 627|roboflow/notebooks !2025-03-2874666|Examples and tutorials on using SOTA computer vision models and techniques. Learn everything from old-school ResNet, through YOLO and object-detection transformers like DETR, to the latest models like Grounding DINO and SAM.| |!red-down-arrow 628|openlm-research/openllama !2025-03-2874652|OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset| | 629|LiheYoung/Depth-Anything !2025-03-2874155|Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data| | 630|enso-org/enso !2025-03-2874040|Hybrid visual and textual functional programming.| | 631|bigcode-project/starcoder !2025-03-287401-1 |Home of StarCoder: fine-tuning & inference!| | 632|git-ecosystem/git-credential-manager !2025-03-2873975|Secure, cross-platform Git credential storage with authentication to GitHub, Azure Repos, and other popular Git hosting services.| | 633|OpenGVLab/InternVL !2025-03-2873634|[CVPR 2024 Oral] InternVL Family: A Pioneering Open-Source Alternative to GPT-4V. 接近GPT-4V表现的可商用开源模型| | 634|WooooDyy/LLM-Agent-Paper-List !2025-03-2873551|The paper list of the 86-page paper "The Rise and Potential of Large Language Model Based Agents: A Survey" by Zhiheng Xi et al.| | 635|lencx/Noi !2025-03-2873157|🦄 AI + Tools + Plugins + Community| | 636|udlbook/udlbook !2025-03-2873075|Understanding Deep Learning - Simon J.D. Prince| | 637|OpenBMB/MiniCPM !2025-03-2872841|MiniCPM-2B: An end-side LLM outperforms Llama2-13B.| | 638|jaywalnut310/vits !2025-03-2872815 |VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech| | 639|xorbitsai/inference !2025-03-28727528|Replace OpenAI GPT with another LLM in your app by changing a single line of code. Xinference gives you the freedom to use any LLM you need. With Xinference, you're empowered to run inference with any open-source language models, speech recognition models, and multimodal models, whether in the cloud, on-premises, or even on your laptop.| | 640|PWhiddy/PokemonRedExperiments !2025-03-2872492|Playing Pokemon Red with Reinforcement Learning| | 641|Canner/WrenAI !2025-03-28723213|🤖 Open-source AI Agent that empowers data-driven teams to chat with their data to generate Text-to-SQL, charts, spreadsheets, reports, and BI. 📈📊📋🧑‍💻| | 642|miurla/morphic !2025-03-2872258|An AI-powered answer engine with a generative UI| | 643|ml-explore/mlx-examples !2025-03-2872168|Examples in the MLX framework| | 644|PKU-YuanGroup/ChatLaw !2025-03-2872010|Chinese Legal Large Model| | 645|NVIDIA/cutlass !2025-03-2871883|CUDA Templates for Linear Algebra Subroutines| | 646|FoundationVision/VAR !2025-03-28717444|[GPT beats diffusion🔥] [scaling laws in visual generation📈] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction"| | 647|ymcui/Chinese-LLaMA-Alpaca-2 !2025-03-2871561|Chinese LLaMA-2 & Alpaca-2 LLMs| | 648|nadermx/backgroundremover !2025-03-2871514 |Background Remover lets you Remove Background from images and video using AI with a simple command line interface that is free and open source.| | 649|onuratakan/gpt-computer-assistant !2025-03-28714514|gpt-4o for windows, macos and ubuntu| | 650|graviraja/MLOps-Basics !2025-03-2871326|| | 651|Future-House/paper-qa !2025-03-287118-1|High accuracy RAG for answering questions from scientific documents with citations| | 652|open-mmlab/mmagic !2025-03-2871102 |OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox| | 653|bhaskatripathi/pdfGPT !2025-03-2870941 |PDF GPT allows you to chat with the contents of your PDF file by using GPT capabilities. The only open source solution to turn your pdf files in a chatbot!| | 654|ollama/ollama-python !2025-03-28709117|Ollama Python library| | 655|facebookresearch/DiT !2025-03-2870376|Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"| | 656|geekyutao/Inpaint-Anything !2025-03-2870262 |Inpaint anything using Segment Anything and inpainting models.| | 657|AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-Plugin !2025-03-2870160 |A user-friendly plug-in that makes it easy to generate stable diffusion images inside Photoshop using Automatic1111-sd-webui as a backend.| | 658|apple/corenet !2025-03-2869990|CoreNet: A library for training deep neural networks| | 659|openstatusHQ/openstatus !2025-03-2869926|🏓 The open-source synthetic monitoring platform 🏓| | 660|weaviate/Verba !2025-03-2869772|Retrieval Augmented Generation (RAG) chatbot powered by Weaviate| | 661|meshery/meshery !2025-03-2869630|Meshery, the cloud native manager| | 662|OpenTalker/video-retalking !2025-03-2869530|[SIGGRAPH Asia 2022] VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild| | 663|digitalinnovationone/dio-lab-open-source !2025-03-28689013|Repositório do lab "Contribuindo em um Projeto Open Source no GitHub" da Digital Innovation One.| | 664|jianchang512/ChatTTS-ui !2025-03-2868842|一个简单的本地网页界面,直接使用ChatTTS将文字合成为语音,同时支持对外提供API接口。| | 665|patchy631/ai-engineering-hub !2025-03-28686434|In-depth tutorials on LLMs, RAGs and real-world AI agent applications.| | 666|gunnarmorling/1brc !2025-03-2868512|1️⃣🐝🏎️ The One Billion Row Challenge -- A fun exploration of how quickly 1B rows from a text file can be aggregated with Java| | 667|Azure-Samples/azure-search-openai-demo !2025-03-2868482 |A sample app for the Retrieval-Augmented Generation pattern running in Azure, using Azure Cognitive Search for retrieval and Azure OpenAI large language models to power ChatGPT-style and Q&A experiences.| | 668|mit-han-lab/streaming-llm !2025-03-2868382|Efficient Streaming Language Models with Attention Sinks| | 669|InternLM/InternLM !2025-03-2868352|InternLM has open-sourced a 7 billion parameter base model, a chat model tailored for practical scenarios and the training system.| | 670|dependency-check/DependencyCheck !2025-03-2868191|OWASP dependency-check is a software composition analysis utility that detects publicly disclosed vulnerabilities in application dependencies.| | 671|Soulter/AstrBot !2025-03-28678643|✨易上手的多平台 LLM 聊天机器人及开发框架✨。支持 QQ、QQ频道、Telegram、微信平台(Gewechat, 企业微信)、内置 Web Chat,OpenAI GPT、DeepSeek、Ollama、Llama、GLM、Gemini、OneAPI、LLMTuner,支持 LLM Agent 插件开发,可视化面板。一键部署。支持 Dify 工作流、代码执行器、Whisper 语音转文字。| | 672|react-native-webview/react-native-webview !2025-03-2867792|React Native Cross-Platform WebView| | 673|modelscope/agentscope !2025-03-28676916|Start building LLM-empowered multi-agent applications in an easier way.| | 674|mylxsw/aidea !2025-03-2867381|AIdea is a versatile app that supports GPT and domestic large language models,also supports "Stable Diffusion" text-to-image generation, image-to-image generation, SDXL 1.0, super-resolution, and image colorization| | 675|langchain-ai/ollama-deep-researcher !2025-03-28668635|Fully local web research and report writing assistant| | 676|threestudio-project/threestudio !2025-03-2866653|A unified framework for 3D content generation.| | 677|gaomingqi/Track-Anything !2025-03-2866631 |A flexible and interactive tool for video object tracking and segmentation, based on Segment Anything, XMem, and E2FGVI.| | 678|spdustin/ChatGPT-AutoExpert !2025-03-2866570|🚀🧠💬 Supercharged Custom Instructions for ChatGPT (non-coding) and ChatGPT Advanced Data Analysis (coding).| | 679|HariSekhon/DevOps-Bash-tools !2025-03-2866463|1000+ DevOps Bash Scripts - AWS, GCP, Kubernetes, Docker, CI/CD, APIs, SQL, PostgreSQL, MySQL, Hive, Impala, Kafka, Hadoop, Jenkins, GitHub, GitLab, BitBucket, Azure DevOps, TeamCity, Spotify, MP3, LDAP, Code/Build Linting, pkg mgmt for Linux, Mac, Python, Perl, Ruby, NodeJS, Golang, Advanced dotfiles: .bashrc, .vimrc, .gitconfig, .screenrc, tmux..| | 680|modelscope/swift !2025-03-28661530|ms-swift: Use PEFT or Full-parameter to finetune 200+ LLMs or 15+ MLLMs| | 681|langchain-ai/opengpts !2025-03-2866080|This is an open source effort to create a similar experience to OpenAI's GPTs and Assistants API| | 682| yihong0618/xiaogpt !2025-03-2865131 | Play ChatGPT with xiaomi ai speaker | | 683| civitai/civitai !2025-03-2865111 | Build a platform where people can share their stable diffusion models | | 684|KoljaB/RealtimeSTT !2025-03-28649513|A robust, efficient, low-latency speech-to-text library with advanced voice activity detection, wake word activation and instant transcription.| | 685|qunash/chatgpt-advanced !2025-03-2864910 | A browser extension that augments your ChatGPT prompts with web results.| | 686|Licoy/ChatGPT-Midjourney !2025-03-2864850|🎨 Own your own ChatGPT+Midjourney web service with one click| | 687|friuns2/BlackFriday-GPTs-Prompts !2025-03-2864744|List of free GPTs that doesn't require plus subscription| | 688|PixarAnimationStudios/OpenUSD !2025-03-2864700|Universal Scene Description| | 689|linyiLYi/street-fighter-ai !2025-03-2864630 |This is an AI agent for Street Fighter II Champion Edition.| | 690|run-llama/rags !2025-03-2864380|Build ChatGPT over your data, all with natural language| | 691|frdel/agent-zero !2025-03-2864154|Agent Zero AI framework| | 692|microsoft/DeepSpeedExamples !2025-03-2863911 |Example models using DeepSpeed| | 693|k8sgpt-ai/k8sgpt !2025-03-2863882|Giving Kubernetes Superpowers to everyone| | 694|open-metadata/OpenMetadata !2025-03-2863514|OpenMetadata is a unified platform for discovery, observability, and governance powered by a central metadata repository, in-depth lineage, and seamless team collaboration.| | 695|google/gemma.cpp !2025-03-2863163|lightweight, standalone C++ inference engine for Google's Gemma models.| | 696|RayVentura/ShortGPT !2025-03-286314-1|🚀🎬 ShortGPT - An experimental AI framework for automated short/video content creation. Enables creators to rapidly produce, manage, and deliver content using AI and automation.| | 697|openai/consistencymodels !2025-03-2862940 |Official repo for consistency models.| | 698|yangjianxin1/Firefly !2025-03-2862924|Firefly: Chinese conversational large language model (full-scale fine-tuning + QLoRA), supporting fine-tuning of Llma2, Llama, Baichuan, InternLM, Ziya, Bloom, and other large models| | 699|enricoros/big-AGI !2025-03-2862665|Generative AI suite powered by state-of-the-art models and providing advanced AI/AGI functions. It features AI personas, AGI functions, multi-model chats, text-to-image, voice, response streaming, code highlighting and execution, PDF import, presets for developers, much more. Deploy on-prem or in the cloud.| | 700|aptos-labs/aptos-core !2025-03-2862633|Aptos is a layer 1 blockchain built to support the widespread use of blockchain through better technology and user experience.| | 701|wenda-LLM/wenda !2025-03-286262-1 |Wenda: An LLM invocation platform. Its objective is to achieve efficient content generation tailored to specific environments while considering the limited computing resources of individuals and small businesses, as well as knowledge security and privacy concerns| | 702|Project-MONAI/MONAI !2025-03-2862603|AI Toolkit for Healthcare Imaging| | 703|HVision-NKU/StoryDiffusion !2025-03-2862470|Create Magic Story!| | 704|deepseek-ai/DeepSeek-LLM !2025-03-2862463|DeepSeek LLM: Let there be answers| | 705|Tohrusky/Final2x !2025-03-2862393|2^x Image Super-Resolution| | 706|OpenSPG/KAG !2025-03-28619611|KAG is a logical form-guided reasoning and retrieval framework based on OpenSPG engine and LLMs. It is used to build logical reasoning and factual Q&A solutions for professional domain knowledge bases. It can effectively overcome the shortcomings of the traditional RAG vector similarity calculation model.| | 707|Moonvy/OpenPromptStudio !2025-03-2861861 |AIGC Hint Word Visualization Editor| | 708|levihsu/OOTDiffusion !2025-03-2861761|Official implementation of OOTDiffusion| | 709|tmc/langchaingo !2025-03-2861729|LangChain for Go, the easiest way to write LLM-based programs in Go| | 710|vladmandic/automatic !2025-03-2861374|SD.Next: Advanced Implementation of Stable Diffusion and other Diffusion-based generative image models| | 711|clovaai/donut !2025-03-2861231 |Official Implementation of OCR-free Document Understanding Transformer (Donut) and Synthetic Document Generator (SynthDoG), ECCV 2022| | 712|Shaunwei/RealChar !2025-03-286121-1|🎙️🤖Create, Customize and Talk to your AI Character/Companion in Realtime(All in One Codebase!). Have a natural seamless conversation with AI everywhere(mobile, web and terminal) using LLM OpenAI GPT3.5/4, Anthropic Claude2, Chroma Vector DB, Whisper Speech2Text, ElevenLabs Text2Speech🎙️🤖| | 713|microsoft/TinyTroupe !2025-03-2861142|LLM-powered multiagent persona simulation for imagination enhancement and business insights.| | 714| rustformers/llm !2025-03-2861010 | Run inference for Large Language Models on CPU, with Rust| | 715|firebase/firebase-ios-sdk !2025-03-2860950|Firebase SDK for Apple App Development| | 716|vespa-engine/vespa !2025-03-2860824|The open big data serving engine. https://vespa.ai| | 717|n4ze3m/page-assist !2025-03-28607610|Use your locally running AI models to assist you in your web browsing| | 718|Dooy/chatgpt-web-midjourney-proxy !2025-03-2860646|chatgpt web, midjourney, gpts,tts, whisper 一套ui全搞定| | 719|ethereum-optimism/optimism !2025-03-2860213|Optimism is Ethereum, scaled.| | 720|sczhou/ProPainter !2025-03-2859971|[ICCV 2023] ProPainter: Improving Propagation and Transformer for Video Inpainting| | 721|MineDojo/Voyager !2025-03-2859951 |An Open-Ended Embodied Agent with Large Language Models| | 722|lavague-ai/LaVague !2025-03-2859800|Automate automation with Large Action Model framework| | 723|SevaSk/ecoute !2025-03-2859770 |Ecoute is a live transcription tool that provides real-time transcripts for both the user's microphone input (You) and the user's speakers output (Speaker) in a textbox. It also generates a suggested response using OpenAI's GPT-3.5 for the user to say based on the live transcription of the conversation.| | 724|google/mesop !2025-03-2859661|| | 725|pengxiao-song/LaWGPT !2025-03-2859542 |Repo for LaWGPT, Chinese-Llama tuned with Chinese Legal knowledge| | 726|fr0gger/Awesome-GPT-Agents !2025-03-2859434|A curated list of GPT agents for cybersecurity| | 727|google-deepmind/graphcast !2025-03-2859412|| | 728|comet-ml/opik !2025-03-28594126|Open-source end-to-end LLM Development Platform| | 729|SciPhi-AI/R2R !2025-03-28594033|A framework for rapid development and deployment of production-ready RAG systems| | 730|SkalskiP/courses !2025-03-2859272 |This repository is a curated collection of links to various courses and resources about Artificial Intelligence (AI)| | 731|QuivrHQ/MegaParse !2025-03-2859122|File Parser optimised for LLM Ingestion with no loss 🧠 Parse PDFs, Docx, PPTx in a format that is ideal for LLMs.| | 732|pytorch-labs/gpt-fast !2025-03-2858971|Simple and efficient pytorch-native transformer text generation in !2025-03-2858886|Curated list of chatgpt prompts from the top-rated GPTs in the GPTs Store. Prompt Engineering, prompt attack & prompt protect. Advanced Prompt Engineering papers.| | 734|nilsherzig/LLocalSearch !2025-03-2858852|LLocalSearch is a completely locally running search aggregator using LLM Agents. The user can ask a question and the system will use a chain of LLMs to find the answer. The user can see the progress of the agents and the final answer. No OpenAI or Google API keys are needed.| | 735|kuafuai/DevOpsGPT !2025-03-285874-2|Multi agent system for AI-driven software development. Convert natural language requirements into working software. Supports any development language and extends the existing base code.| | 736|myshell-ai/MeloTTS !2025-03-2858486|High-quality multi-lingual text-to-speech library by MyShell.ai. Support English, Spanish, French, Chinese, Japanese and Korean.| | 737|OpenGVLab/LLaMA-Adapter !2025-03-2858421 |Fine-tuning LLaMA to follow Instructions within 1 Hour and 1.2M Parameters| | 738|volcengine/verl !2025-03-28582563|veRL: Volcano Engine Reinforcement Learning for LLM| | 739|a16z-infra/companion-app !2025-03-2858171|AI companions with memory: a lightweight stack to create and host your own AI companions| | 740|HumanAIGC/OutfitAnyone !2025-03-285816-1|Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person| | 741|josStorer/RWKV-Runner !2025-03-2857472|A RWKV management and startup tool, full automation, only 8MB. And provides an interface compatible with the OpenAI API. RWKV is a large language model that is fully open source and available for commercial use.| | 742|648540858/wvp-GB28181-pro !2025-03-2857414|WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的网络视频平台,支持NAT穿透,支持海康、大华、宇视等品牌的IPC、NVR、DVR接入。支持国标级联,支持rtsp/rtmp等视频流转发到国标平台,支持rtsp/rtmp等推流转发到国标平台。| | 743|ToonCrafter/ToonCrafter !2025-03-2857345|a research paper for generative cartoon interpolation| | 744|PawanOsman/ChatGPT !2025-03-2857191|OpenAI API Free Reverse Proxy| | 745|apache/hudi !2025-03-2857091|Upserts, Deletes And Incremental Processing on Big Data.| | 746| nsarrazin/serge !2025-03-2857081 | A web interface for chatting with Alpaca through llama.cpp. Fully dockerized, with an easy to use API| | 747|homanp/superagent !2025-03-2857021|🥷 Superagent - Build, deploy, and manage LLM-powered agents| | 748|ramonvc/freegpt-webui !2025-03-2856910|GPT 3.5/4 with a Chat Web UI. No API key is required.| | 749|baichuan-inc/baichuan-7B !2025-03-2856901|A large-scale 7B pretraining language model developed by BaiChuan-Inc.| | 750|Azure/azure-sdk-for-net !2025-03-2856792|This repository is for active development of the Azure SDK for .NET. For consumers of the SDK we recommend visiting our public developer docs at https://learn.microsoft.com/dotnet/azure/ or our versioned developer docs at https://azure.github.io/azure-sdk-for-net.| | 751|mnotgod96/AppAgent !2025-03-2856643|AppAgent: Multimodal Agents as Smartphone Users, an LLM-based multimodal agent framework designed to operate smartphone apps.| | 752|microsoft/TaskWeaver !2025-03-2856243|A code-first agent framework for seamlessly planning and executing data analytics tasks.| | 753| yetone/bob-plugin-openai-translator !2025-03-285600-1 | A Bob Plugin base ChatGPT API | | 754|PrefectHQ/marvin !2025-03-2855840 |A batteries-included library for building AI-powered software| | 755|microsoft/promptbase !2025-03-2855832|All things prompt engineering| | 756|fullstackhero/dotnet-starter-kit !2025-03-2855560|Production Grade Cloud-Ready .NET 8 Starter Kit (Web API + Blazor Client) with Multitenancy Support, and Clean/Modular Architecture that saves roughly 200+ Development Hours! All Batteries Included.| | 757|deepseek-ai/DeepSeek-Coder-V2 !2025-03-2855435|DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence| | 758|aiwaves-cn/agents !2025-03-2855391|An Open-source Framework for Autonomous Language Agents| | 759|microsoft/Mastering-GitHub-Copilot-for-Paired-Programming !2025-03-2855158|A 6 Lesson course teaching everything you need to know about harnessing GitHub Copilot and an AI Paired Programing resource.| | 760|allenai/OLMo !2025-03-2854506|Modeling, training, eval, and inference code for OLMo| | 761|apify/crawlee-python !2025-03-2854493|Crawlee—A web scraping and browser automation library for Python to build reliable crawlers. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with BeautifulSoup, Playwright, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 762|k2-fsa/sherpa-onnx !2025-03-28541520|Speech-to-text, text-to-speech, and speaker recongition using next-gen Kaldi with onnxruntime without Internet connection. Support embedded systems, Android, iOS, Raspberry Pi, RISC-V, x86_64 servers, websocket server/client, C/C++, Python, Kotlin, C#, Go, NodeJS, Java, Swift| | 763|TEN-framework/TEN-Agent !2025-03-28541411|TEN Agent is a realtime conversational AI agent powered by TEN. It seamlessly integrates the OpenAI Realtime API, RTC capabilities, and advanced features like weather updates, web search, computer vision, and Retrieval-Augmented Generation (RAG).| | 764|google/gemmapytorch !2025-03-2854010|The official PyTorch implementation of Google's Gemma models| | 765|snakers4/silero-vad !2025-03-2853858|Silero VAD: pre-trained enterprise-grade Voice Activity Detector| | 766|livekit/agents !2025-03-2853836|Build real-time multimodal AI applications 🤖🎙️📹| | 767|pipecat-ai/pipecat !2025-03-28537811|Open Source framework for voice and multimodal conversational AI| | 768|EricLBuehler/mistral.rs !2025-03-28536324|Blazingly fast LLM inference.| | 769|asg017/sqlite-vec !2025-03-28535810|Work-in-progress vector search SQLite extension that runs anywhere.| | 770|albertan017/LLM4Decompile !2025-03-2853563|Reverse Engineering: Decompiling Binary Code with Large Language Models| | 771|Permify/permify !2025-03-2853235|An open-source authorization as a service inspired by Google Zanzibar, designed to build and manage fine-grained and scalable authorization systems for any application.| | 772|imoneoi/openchat !2025-03-2853171|OpenChat: Advancing Open-source Language Models with Imperfect Data| | 773|mosaicml/composer !2025-03-2853140|Train neural networks up to 7x faster| | 774|dsdanielpark/Bard-API !2025-03-285277-1 |The python package that returns a response of Google Bard through API.| | 775|lxfater/inpaint-web !2025-03-2852552|A free and open-source inpainting & image-upscaling tool powered by webgpu and wasm on the browser。| | 776|leanprover/lean4 !2025-03-2852441|Lean 4 programming language and theorem prover| | 777|AILab-CVC/YOLO-World !2025-03-2852415|Real-Time Open-Vocabulary Object Detection| | 778|openchatai/OpenChat !2025-03-2852260 |Run and create custom ChatGPT-like bots with OpenChat, embed and share these bots anywhere, the open-source chatbot console.| | 779|mufeedvh/code2prompt !2025-03-28519414|A CLI tool to convert your codebase into a single LLM prompt with source tree, prompt templating, and token counting.| | 780|biobootloader/wolverine !2025-03-2851700 |Automatically repair python scripts through GPT-4 to give them regenerative abilities.| | 781|huggingface/parler-tts !2025-03-2851671|Inference and training library for high-quality TTS models.| | 782|Akegarasu/lora-scripts !2025-03-2851308 |LoRA training scripts use kohya-ss's trainer, for diffusion model.| | 783|openchatai/OpenCopilot !2025-03-285128-3|🤖 🔥 Let your users chat with your product features and execute things by text - open source Shopify sidekick| | 784|e2b-dev/fragments !2025-03-2851228|Open-source Next.js template for building apps that are fully generated by AI. By E2B.| | 785|microsoft/SynapseML !2025-03-2851132|Simple and Distributed Machine Learning| | 786|aigc-apps/sd-webui-EasyPhoto !2025-03-285108-1|📷 EasyPhoto | | 787|ChaoningZhang/MobileSAM !2025-03-2850944|This is the official code for Faster Segment Anything (MobileSAM) project that makes SAM lightweight| | 788|huggingface/alignment-handbook !2025-03-2850932|Robust recipes for to align language models with human and AI preferences| | 789|alpkeskin/mosint !2025-03-2850920|An automated e-mail OSINT tool| | 790|TaskingAI/TaskingAI !2025-03-2850891|The open source platform for AI-native application development.| | 791|lipku/metahuman-stream !2025-03-28507615|Real time interactive streaming digital human| | 792|OpenInterpreter/01 !2025-03-2850530|The open-source language model computer| | 793|open-compass/opencompass !2025-03-28505111|OpenCompass is an LLM evaluation platform, supporting a wide range of models (InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.| | 794|xxlong0/Wonder3D !2025-03-2850491|A cross-domain diffusion model for 3D reconstruction from a single image| | 795|pytorch/torchtune !2025-03-2850342|A Native-PyTorch Library for LLM Fine-tuning| | 796|SuperDuperDB/superduperdb !2025-03-2850192|🔮 SuperDuperDB: Bring AI to your database: Integrate, train and manage any AI models and APIs directly with your database and your data.| | 797|WhiskeySockets/Baileys !2025-03-2850057|Lightweight full-featured typescript/javascript WhatsApp Web API| | 798| mpociot/chatgpt-vscode !2025-03-2849890 | A VSCode extension that allows you to use ChatGPT | | 799|OpenGVLab/DragGAN !2025-03-2849880|Unofficial Implementation of DragGAN - "Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold" (DragGAN 全功能实现,在线Demo,本地部署试用,代码、模型已全部开源,支持Windows, macOS, Linux)| | 800|microsoft/LLMLingua !2025-03-2849824|To speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.| | 801|Zipstack/unstract !2025-03-2849745|No-code LLM Platform to launch APIs and ETL Pipelines to structure unstructured documents| | 802|OpenBMB/ToolBench !2025-03-2849621|An open platform for training, serving, and evaluating large language model for tool learning.| | 803|Fanghua-Yu/SUPIR !2025-03-2849593|SUPIR aims at developing Practical Algorithms for Photo-Realistic Image Restoration In the Wild| | 804|GaiaNet-AI/gaianet-node !2025-03-2849360|Install and run your own AI agent service| | 805|qodo-ai/qodo-cover !2025-03-284922-1|Qodo-Cover: An AI-Powered Tool for Automated Test Generation and Code Coverage Enhancement! 💻🤖🧪🐞| | 806|Zejun-Yang/AniPortrait !2025-03-2849042|AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animation| | 807|lvwzhen/law-cn-ai !2025-03-2848901 |⚖️ AI Legal Assistant| | 808|developersdigest/llm-answer-engine !2025-03-2848740|Build a Perplexity-Inspired Answer Engine Using Next.js, Groq, Mixtral, Langchain, OpenAI, Brave & Serper| | 809|Plachtaa/VITS-fast-fine-tuning !2025-03-2848640|This repo is a pipeline of VITS finetuning for fast speaker adaptation TTS, and many-to-many voice conversion| | 810|espeak-ng/espeak-ng !2025-03-2848601|eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.| | 811|ant-research/CoDeF !2025-03-2848581|[CVPR'24 Highlight] Official PyTorch implementation of CoDeF: Content Deformation Fields for Temporally Consistent Video Processing| | 812|deepseek-ai/DeepSeek-V2 !2025-03-2848512|| | 813|XRPLF/rippled !2025-03-2848210|Decentralized cryptocurrency blockchain daemon implementing the XRP Ledger protocol in C++| | 814|AutoMQ/automq !2025-03-28478721|AutoMQ is a cloud-first alternative to Kafka by decoupling durability to S3 and EBS. 10x cost-effective. Autoscale in seconds. Single-digit ms latency.| | 815|AILab-CVC/VideoCrafter !2025-03-2847800|VideoCrafter1: Open Diffusion Models for High-Quality Video Generation| | 816|nautechsystems/nautilustrader !2025-03-2847702|A high-performance algorithmic trading platform and event-driven backtester| | 817|kyegomez/swarms !2025-03-2847563|The Enterprise-Grade Production-Ready Multi-Agent Orchestration Framework Join our Community: https://discord.com/servers/agora-999382051935506503| | 818|Deci-AI/super-gradients !2025-03-2847310 |Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS.| | 819|QwenLM/Qwen2.5-Coder !2025-03-2847236|Qwen2.5-Coder is the code version of Qwen2.5, the large language model series developed by Qwen team, Alibaba Cloud.| | 820|SCIR-HI/Huatuo-Llama-Med-Chinese !2025-03-2847191 |Repo for HuaTuo (华驼), Llama-7B tuned with Chinese medical knowledge| | 821|togethercomputer/RedPajama-Data !2025-03-2846841 |code for preparing large datasets for training large language models| | 822|mishushakov/llm-scraper !2025-03-2846704|Turn any webpage into structured data using LLMs| | 823|1rgs/jsonformer !2025-03-2846663 |A Bulletproof Way to Generate Structured JSON from Language Models| | 824|anti-work/shortest !2025-03-2846565|QA via natural language AI tests| | 825|dnhkng/GlaDOS !2025-03-2846510|This is the Personality Core for GLaDOS, the first steps towards a real-life implementation of the AI from the Portal series by Valve.| | 826|Nukem9/dlssg-to-fsr3 !2025-03-2846380|Adds AMD FSR3 Frame Generation to games by replacing Nvidia DLSS-G Frame Generation (nvngx_dlssg).| | 827|BuilderIO/ai-shell !2025-03-2846373 |A CLI that converts natural language to shell commands.| | 828|facebookincubator/AITemplate !2025-03-2846220 |AITemplate is a Python framework which renders neural network into high performance CUDA/HIP C++ code. Specialized for FP16 TensorCore (NVIDIA GPU) and MatrixCore (AMD GPU) inference.| | 829|terraform-aws-modules/terraform-aws-eks !2025-03-2846030|Terraform module to create AWS Elastic Kubernetes (EKS) resources 🇺🇦| | 830|timescale/pgai !2025-03-2845915|A suite of tools to develop RAG, semantic search, and other AI applications more easily with PostgreSQL| | 831|awslabs/multi-agent-orchestrator !2025-03-2845788|Flexible and powerful framework for managing multiple AI agents and handling complex conversations| | 832|sanchit-gandhi/whisper-jax !2025-03-2845771 |Optimised JAX code for OpenAI's Whisper Model, largely built on the Hugging Face Transformers Whisper implementation| | 833|NVIDIA/NeMo-Guardrails !2025-03-2845755|NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.| | 834|PathOfBuildingCommunity/PathOfBuilding !2025-03-2845480|Offline build planner for Path of Exile.| | 835|UX-Decoder/Segment-Everything-Everywhere-All-At-Once !2025-03-2845412 |Official implementation of the paper "Segment Everything Everywhere All at Once"| | 836|build-trust/ockam !2025-03-2845171|Orchestrate end-to-end encryption, cryptographic identities, mutual authentication, and authorization policies between distributed applications – at massive scale.| | 837|google-research/timesfm !2025-03-2845135|TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.| | 838|luosiallen/latent-consistency-model !2025-03-2844842|Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference| | 839|NVlabs/neuralangelo !2025-03-2844740|Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)| | 840|kyegomez/tree-of-thoughts !2025-03-2844720 |Plug in and Play Implementation of Tree of Thoughts: Deliberate Problem Solving with Large Language Models that Elevates Model Reasoning by atleast 70%| | 841|sjvasquez/handwriting-synthesis !2025-03-2844720 |Handwriting Synthesis with RNNs ✏️| | 842| madawei2699/myGPTReader !2025-03-2844420 | A slack bot that can read any webpage, ebook or document and summarize it with chatGPT | | 843|OpenBMB/AgentVerse !2025-03-2844413|🤖 AgentVerse 🪐 provides a flexible framework that simplifies the process of building custom multi-agent environments for large language models (LLMs).| | 844|argmaxinc/WhisperKit !2025-03-2844395|Swift native speech recognition on-device for iOS and macOS applications.| | 845|landing-ai/vision-agent !2025-03-2844346|Vision agent| | 846|InternLM/xtuner !2025-03-2844273|An efficient, flexible and full-featured toolkit for fine-tuning large models (InternLM, Llama, Baichuan, Qwen, ChatGLM)| | 847|google-deepmind/alphageometry !2025-03-284421-1|Solving Olympiad Geometry without Human Demonstrations| | 848|ostris/ai-toolkit !2025-03-2844093|Various AI scripts. Mostly Stable Diffusion stuff.| | 849|LLM-Red-Team/kimi-free-api !2025-03-2844004|🚀 KIMI AI 长文本大模型白嫖服务,支持高速流式输出、联网搜索、长文档解读、图像解析、多轮对话,零配置部署,多路token支持,自动清理会话痕迹。| | 850|argilla-io/argilla !2025-03-2843991|Argilla is a collaboration platform for AI engineers and domain experts that require high-quality outputs, full data ownership, and overall efficiency.| | 851|spring-projects/spring-ai !2025-03-28438419|An Application Framework for AI Engineering| | 852|alibaba-damo-academy/FunClip !2025-03-2843555|Open-source, accurate and easy-to-use video clipping tool, LLM based AI clipping intergrated | | 853|yisol/IDM-VTON !2025-03-2843541|IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild| | 854|fchollet/ARC-AGI !2025-03-2843368|The Abstraction and Reasoning Corpus| | 855|MahmoudAshraf97/whisper-diarization !2025-03-2843064|Automatic Speech Recognition with Speaker Diarization based on OpenAI Whisper| | 856|Speykious/cve-rs !2025-03-2843047|Blazingly 🔥 fast 🚀 memory vulnerabilities, written in 100% safe Rust. 🦀| | 857|Blealtan/efficient-kan !2025-03-2842770|An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN).| | 858|smol-ai/GodMode !2025-03-284249-1|AI Chat Browser: Fast, Full webapp access to ChatGPT / Claude / Bard / Bing / Llama2! I use this 20 times a day.| | 859|openai/plugins-quickstart !2025-03-284235-4 |Get a ChatGPT plugin up and running in under 5 minutes!| | 860|Doriandarko/maestro !2025-03-2842260|A framework for Claude Opus to intelligently orchestrate subagents.| | 861|philz1337x/clarity-upscaler !2025-03-2842204|Clarity-Upscaler: Reimagined image upscaling for everyone| | 862|facebookresearch/co-tracker !2025-03-2842142|CoTracker is a model for tracking any point (pixel) on a video.| | 863|xlang-ai/OpenAgents !2025-03-2842031|OpenAgents: An Open Platform for Language Agents in the Wild| | 864|alibaba/higress !2025-03-28419514|🤖 AI Gateway | | 865|ray-project/llm-numbers !2025-03-2841920 |Numbers every LLM developer should know| | 866|fudan-generative-vision/champ !2025-03-2841820|Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance| | 867|NVIDIA/garak !2025-03-2841795|the LLM vulnerability scanner| | 868|leetcode-mafia/cheetah !2025-03-2841740 |Whisper & GPT-based app for passing remote SWE interviews| | 869|ragapp/ragapp !2025-03-2841710|The easiest way to use Agentic RAG in any enterprise| | 870|collabora/WhisperSpeech !2025-03-2841692|An Open Source text-to-speech system built by inverting Whisper.| | 871|Facico/Chinese-Vicuna !2025-03-2841520 |Chinese-Vicuna: A Chinese Instruction-following LLaMA-based Model| | 872|openai/grok !2025-03-2841381|| | 873|CrazyBoyM/llama3-Chinese-chat !2025-03-2841361|Llama3 Chinese Repository with modified versions, and training and deployment resources| | 874|luban-agi/Awesome-AIGC-Tutorials !2025-03-2841301|Curated tutorials and resources for Large Language Models, AI Painting, and more.| | 875|damo-vilab/AnyDoor !2025-03-2841192|Official implementations for paper: Anydoor: zero-shot object-level image customization| | 876|raspberrypi/pico-sdk !2025-03-2841072|| | 877|mshumer/gpt-llm-trainer !2025-03-284097-1|| | 878|metavoiceio/metavoice-src !2025-03-284076-1|AI for human-level speech intelligence| | 879|intelowlproject/IntelOwl !2025-03-2840763|IntelOwl: manage your Threat Intelligence at scale| | 880|a16z-infra/ai-getting-started !2025-03-2840682|A Javascript AI getting started stack for weekend projects, including image/text models, vector stores, auth, and deployment configs| | 881|MarkFzp/mobile-aloha !2025-03-2840641|Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation| | 882| keijiro/AICommand !2025-03-2840380 | ChatGPT integration with Unity Editor | | 883|Tencent/HunyuanDiT !2025-03-2840214|Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding| | 884|hengyoush/kyanos !2025-03-2840061|Visualize the time packets spend in the kernel, watch & analyze in command line.| | 885|agiresearch/AIOS !2025-03-2840045|AIOS: LLM Agent Operating System| | 886|truefoundry/cognita !2025-03-2839773|RAG (Retrieval Augmented Generation) Framework for building modular, open source applications for production by TrueFoundry| | 887|X-PLUG/MobileAgent !2025-03-2839557|Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception| | 888|jackMort/ChatGPT.nvim !2025-03-2839231|ChatGPT Neovim Plugin: Effortless Natural Language Generation with OpenAI's ChatGPT API| | 889|microsoft/RD-Agent !2025-03-28388422|Research and development (R&D) is crucial for the enhancement of industrial productivity, especially in the AI era, where the core aspects of R&D are mainly focused on data and models. We are committed to automate these high-value generic R&D processes through our open source R&D automation tool RD-Agent, which let AI drive data-driven AI.| | 890|Significant-Gravitas/Auto-GPT-Plugins !2025-03-283882-1 |Plugins for Auto-GPT| | 891|apple/ml-mgie !2025-03-2838770|| | 892|OpenDriveLab/UniAD !2025-03-2838727|[CVPR 2023 Best Paper] Planning-oriented Autonomous Driving| | 893|llSourcell/DoctorGPT !2025-03-2838640|DoctorGPT is an LLM that can pass the US Medical Licensing Exam. It works offline, it's cross-platform, & your health data stays private.| | 894|FlagAI-Open/FlagAI !2025-03-2838601|FlagAI (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model.| | 895|krishnaik06/Roadmap-To-Learn-Generative-AI-In-2024 !2025-03-2838513|Roadmap To Learn Generative AI In 2024| | 896|SysCV/sam-hq !2025-03-2838491|Segment Anything in High Quality| | 897|google/security-research !2025-03-2838420|This project hosts security advisories and their accompanying proof-of-concepts related to research conducted at Google which impact non-Google owned code.| | 898|shroominic/codeinterpreter-api !2025-03-2838330|Open source implementation of the ChatGPT Code Interpreter 👾| | 899|Yonom/assistant-ui !2025-03-2838308|React Components for AI Chat 💬 🚀| | 900|nucleuscloud/neosync !2025-03-2838262|Open source data anonymization and synthetic data orchestration for developers. Create high fidelity synthetic data and sync it across your environments.| | 901|ravenscroftj/turbopilot !2025-03-2838230 |Turbopilot is an open source large-language-model based code completion engine that runs locally on CPU| | 902|NVlabs/Sana !2025-03-28380810|SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer| | 903|huggingface/distil-whisper !2025-03-2838061|Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.| | 904|Codium-ai/AlphaCodium !2025-03-2837971|code generation tool that surpasses most human competitors in CodeContests| | 905|fixie-ai/ultravox !2025-03-2837710|A fast multimodal LLM for real-time voice| | 906|unit-mesh/auto-dev !2025-03-28375715|🧙‍AutoDev: The AI-powered coding wizard with multilingual support 🌐, auto code generation 🏗️, and a helpful bug-slaying assistant 🐞! Customizable prompts 🎨 and a magic Auto Dev/Testing/Document/Agent feature 🧪 included! 🚀| | 907|Marker-Inc-Korea/AutoRAG !2025-03-2837432|AutoML tool for RAG| | 908|deepseek-ai/DeepSeek-VL !2025-03-283734-1|DeepSeek-VL: Towards Real-World Vision-Language Understanding| | 909|hiyouga/ChatGLM-Efficient-Tuning !2025-03-283692-1|Fine-tuning ChatGLM-6B with PEFT | | 910| Yue-Yang/ChatGPT-Siri !2025-03-2836921 | Shortcuts for Siri using ChatGPT API gpt-3.5-turbo model | | 911|0hq/WebGPT !2025-03-2836901 |Run GPT model on the browser with WebGPU. An implementation of GPT inference in less than ~2000 lines of vanilla Javascript.| | 912|cvg/LightGlue !2025-03-2836903|LightGlue: Local Feature Matching at Light Speed (ICCV 2023)| | 913|deanxv/coze-discord-proxy !2025-03-2836791|代理Discord-Bot对话Coze-Bot,实现API形式请求GPT4对话模型/微调模型| | 914|MervinPraison/PraisonAI !2025-03-2836764|PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human-agent collaboration.| | 915|Ironclad/rivet !2025-03-2836345 |The open-source visual AI programming environment and TypeScript library| | 916|BasedHardware/OpenGlass !2025-03-2835851|Turn any glasses into AI-powered smart glasses| | 917|ricklamers/gpt-code-ui !2025-03-2835840 |An open source implementation of OpenAI's ChatGPT Code interpreter| | 918|whoiskatrin/chart-gpt !2025-03-2835830 |AI tool to build charts based on text input| | 919|github/CopilotForXcode !2025-03-2835788|Xcode extension for GitHub Copilot| | 920|hemansnation/God-Level-Data-Science-ML-Full-Stack !2025-03-2835570 |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 921|pytorch/torchchat !2025-03-2835461|Run PyTorch LLMs locally on servers, desktop and mobile| | 922| Kent0n-Li/ChatDoctor !2025-03-2835451 | A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge | | 923|xtekky/chatgpt-clone !2025-03-283519-1 |ChatGPT interface with better UI| | 924|jupyterlab/jupyter-ai !2025-03-2835120|A generative AI extension for JupyterLab| | 925|pytorch/torchtitan !2025-03-2835064|A native PyTorch Library for large model training| | 926|minimaxir/simpleaichat !2025-03-2835031|Python package for easily interfacing with chat apps, with robust features and minimal code complexity.| | 927|srush/Tensor-Puzzles !2025-03-2834930|Solve puzzles. Improve your pytorch.| | 928|Helicone/helicone !2025-03-2834918|🧊 Open source LLM-Observability Platform for Developers. One-line integration for monitoring, metrics, evals, agent tracing, prompt management, playground, etc. Supports OpenAI SDK, Vercel AI SDK, Anthropic SDK, LiteLLM, LLamaIndex, LangChain, and more. 🍓 YC W23| | 929|run-llama/llama-hub !2025-03-2834740|A library of data loaders for LLMs made by the community -- to be used with LlamaIndex and/or LangChain| | 930|NExT-GPT/NExT-GPT !2025-03-2834700|Code and models for NExT-GPT: Any-to-Any Multimodal Large Language Model| | 931|souzatharsis/podcastfy !2025-03-2834661|An Open Source Python alternative to NotebookLM's podcast feature: Transforming Multimodal Content into Captivating Multilingual Audio Conversations with GenAI| | 932|Dataherald/dataherald !2025-03-2834450|Interact with your SQL database, Natural Language to SQL using LLMs| | 933|iryna-kondr/scikit-llm !2025-03-2834350 |Seamlessly integrate powerful language models like ChatGPT into scikit-learn for enhanced text analysis tasks.| | 934|Netflix/maestro !2025-03-2834230|Maestro: Netflix’s Workflow Orchestrator| | 935|CanadaHonk/porffor !2025-03-2833560|A from-scratch experimental AOT JS engine, written in JS| | 936|hustvl/Vim !2025-03-2833323|Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model| | 937|pashpashpash/vault-ai !2025-03-2833250 |OP Vault ChatGPT: Give ChatGPT long-term memory using the OP Stack (OpenAI + Pinecone Vector Database). Upload your own custom knowledge base files (PDF, txt, etc) using a simple React frontend.| | 938|tencentmusic/supersonic !2025-03-28330611|SuperSonic is the next-generation BI platform that integrates Chat BI (powered by LLM) and Headless BI (powered by semantic layer) paradigms.| | 939|billmei/every-chatgpt-gui !2025-03-2832981|Every front-end GUI client for ChatGPT| | 940|microsoft/torchgeo !2025-03-2832772|TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data| | 941|LLMBook-zh/LLMBook-zh.github.io !2025-03-28326110|《大语言模型》作者:赵鑫,李军毅,周昆,唐天一,文继荣| | 942|dvlab-research/MiniGemini !2025-03-2832601|Official implementation for Mini-Gemini| | 943|rashadphz/farfalle !2025-03-2832460|🔍 AI search engine - self-host with local or cloud LLMs| | 944|Luodian/Otter !2025-03-2832450|🦦 Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following and in-context learning ability.| | 945|AprilNEA/ChatGPT-Admin-Web !2025-03-2832370 | ChatGPT WebUI with user management and admin dashboard system| | 946|MarkFzp/act-plus-plus !2025-03-2832365|Imitation Learning algorithms with Co-traing for Mobile ALOHA: ACT, Diffusion Policy, VINN| | 947|ethen8181/machine-learning !2025-03-2832310|🌎 machine learning tutorials (mainly in Python3)| | 948|opengeos/segment-geospatial !2025-03-2832312 |A Python package for segmenting geospatial data with the Segment Anything Model (SAM)| | 949|iusztinpaul/hands-on-llms !2025-03-283225-2|🦖 𝗟𝗲𝗮𝗿𝗻 about 𝗟𝗟𝗠𝘀, 𝗟𝗟𝗠𝗢𝗽𝘀, and 𝘃𝗲𝗰𝘁𝗼𝗿 𝗗𝗕𝘀 for free by designing, training, and deploying a real-time financial advisor LLM system ~ 𝘴𝘰𝘶𝘳𝘤𝘦 𝘤𝘰𝘥𝘦 + 𝘷𝘪𝘥𝘦𝘰 & 𝘳𝘦𝘢𝘥𝘪𝘯𝘨 𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭𝘴| | 950|ToTheBeginning/PuLID !2025-03-2832221|Official code for PuLID: Pure and Lightning ID Customization via Contrastive Alignment| | 951|neo4j-labs/llm-graph-builder !2025-03-2832164|Neo4j graph construction from unstructured data using LLMs| | 952|OpenGVLab/InternGPT !2025-03-2832150 |InternGPT (iGPT) is an open source demo platform where you can easily showcase your AI models. Now it supports DragGAN, ChatGPT, ImageBind, multimodal chat like GPT-4, SAM, interactive image editing, etc. Try it at igpt.opengvlab.com (支持DragGAN、ChatGPT、ImageBind、SAM的在线Demo系统)| | 953|PKU-YuanGroup/Video-LLaVA !2025-03-2832060 |Video-LLaVA: Learning United Visual Representation by Alignment Before Projection| | 954|DataTalksClub/llm-zoomcamp !2025-03-2832030|LLM Zoomcamp - a free online course about building an AI bot that can answer questions about your knowledge base| | 955|gptscript-ai/gptscript !2025-03-2832010|Natural Language Programming| |!green-up-arrow.svg 956|isaac-sim/IsaacLab !2025-03-28320113|Unified framework for robot learning built on NVIDIA Isaac Sim| |!red-down-arrow 957|ai-boost/Awesome-GPTs !2025-03-2832003|Curated list of awesome GPTs 👍.| | 958|huggingface/safetensors !2025-03-2831901|Simple, safe way to store and distribute tensors| | 959|linyiLYi/bilibot !2025-03-2831771|A local chatbot fine-tuned by bilibili user comments.| | 960| project-baize/baize-chatbot !2025-03-283168-1 | Let ChatGPT teach your own chatbot in hours with a single GPU! | | 961|Azure-Samples/cognitive-services-speech-sdk !2025-03-2831280|Sample code for the Microsoft Cognitive Services Speech SDK| | 962|microsoft/Phi-3CookBook !2025-03-2831231|This is a Phi-3 book for getting started with Phi-3. Phi-3, a family of open AI models developed by Microsoft. Phi-3 models are the most capable and cost-effective small language models (SLMs) available, outperforming models of the same size and next size up across a variety of language, reasoning, coding, and math benchmarks.| | 963|neuralmagic/deepsparse !2025-03-2831180|Sparsity-aware deep learning inference runtime for CPUs| | 964|sugarforever/chat-ollama !2025-03-2831000|ChatOllama is an open source chatbot based on LLMs. It supports a wide range of language models, and knowledge base management.| | 965|amazon-science/chronos-forecasting !2025-03-2830974|Chronos: Pretrained (Language) Models for Probabilistic Time Series Forecasting| | 966|damo-vilab/i2vgen-xl !2025-03-2830902|Official repo for VGen: a holistic video generation ecosystem for video generation building on diffusion models| | 967|google-deepmind/gemma !2025-03-2830733|Open weights LLM from Google DeepMind.| | 968|iree-org/iree !2025-03-2830733|A retargetable MLIR-based machine learning compiler and runtime toolkit.| | 969|NVlabs/VILA !2025-03-2830724|VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)| | 970|microsoft/torchscale !2025-03-2830661|Foundation Architecture for (M)LLMs| | 971|openai/openai-realtime-console !2025-03-2830656|React app for inspecting, building and debugging with the Realtime API| | 972|daveshap/OpenAIAgentSwarm !2025-03-2830610|HAAS = Hierarchical Autonomous Agent Swarm - "Resistance is futile!"| | 973|microsoft/PromptWizard !2025-03-2830555|Task-Aware Agent-driven Prompt Optimization Framework| | 974|CVI-SZU/Linly !2025-03-2830490 |Chinese-LLaMA basic model; ChatFlow Chinese conversation model; NLP pre-training/command fine-tuning dataset| | 975|cohere-ai/cohere-toolkit !2025-03-2830130|Toolkit is a collection of prebuilt components enabling users to quickly build and deploy RAG applications.| | 976|adamcohenhillel/ADeus !2025-03-2830131|An open source AI wearable device that captures what you say and hear in the real world and then transcribes and stores it on your own server. You can then chat with Adeus using the app, and it will have all the right context about what you want to talk about - a truly personalized, personal AI.| | 977|Lightning-AI/LitServe !2025-03-2830132|Lightning-fast serving engine for AI models. Flexible. Easy. Enterprise-scale.| | 978|potpie-ai/potpie !2025-03-2829973|Prompt-To-Agent : Create custom engineering agents for your codebase| | 979|ant-design/x !2025-03-28299529|Craft AI-driven interfaces effortlessly 🤖| | 980|meta-llama/PurpleLlama !2025-03-2829832|Set of tools to assess and improve LLM security.| | 981|williamyang1991/RerenderAVideo !2025-03-2829800|[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation| | 982|baichuan-inc/Baichuan-13B !2025-03-2829790|A 13B large language model developed by Baichuan Intelligent Technology| | 983|Stability-AI/stable-audio-tools !2025-03-2829761|Generative models for conditional audio generation| | 984|li-plus/chatglm.cpp !2025-03-2829720|C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & more LLMs| | 985|NVIDIA/GenerativeAIExamples !2025-03-2829546|Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.| | 986|Josh-XT/AGiXT !2025-03-2829521 |AGiXT is a dynamic AI Automation Platform that seamlessly orchestrates instruction management and complex task execution across diverse AI providers. Combining adaptive memory, smart features, and a versatile plugin system, AGiXT delivers efficient and comprehensive AI solutions.| | 987|MrForExample/ComfyUI-3D-Pack !2025-03-2829515|An extensive node suite that enables ComfyUI to process 3D inputs (Mesh & UV Texture, etc) using cutting edge algorithms (3DGS, NeRF, etc.)| | 988|olimorris/codecompanion.nvim !2025-03-28295111|✨ AI-powered coding, seamlessly in Neovim. Supports Anthropic, Copilot, Gemini, Ollama, OpenAI and xAI LLMs| | 989|salesforce/CodeT5 !2025-03-282940-1 |Home of CodeT5: Open Code LLMs for Code Understanding and Generation| | 990|facebookresearch/ijepa !2025-03-2829391|Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."| | 991|eureka-research/Eureka !2025-03-2829351|Official Repository for "Eureka: Human-Level Reward Design via Coding Large Language Models"| | 992|NVIDIA/trt-llm-rag-windows !2025-03-282934-1|A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM| | 993|gmpetrov/databerry !2025-03-282930-1|The no-code platform for building custom LLM Agents| | 994|AI4Finance-Foundation/FinRobot !2025-03-28291946|FinRobot: An Open-Source AI Agent Platform for Financial Applications using LLMs 🚀 🚀 🚀| | 995|nus-apr/auto-code-rover !2025-03-2829013|A project structure aware autonomous software engineer aiming for autonomous program improvement| | 996|deepseek-ai/DreamCraft3D !2025-03-2828921|[ICLR 2024] Official implementation of DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior| | 997|mlabonne/llm-datasets !2025-03-2828848|High-quality datasets, tools, and concepts for LLM fine-tuning.| | 998|facebookresearch/jepa !2025-03-2828712|PyTorch code and models for V-JEPA self-supervised learning from video.| | 999|facebookresearch/habitat-sim !2025-03-2828604|A flexible, high-performance 3D simulator for Embodied AI research.| | 1000|xenova/whisper-web !2025-03-2828581|ML-powered speech recognition directly in your browser| | 1001|cvlab-columbia/zero123 !2025-03-2828530|Zero-1-to-3: Zero-shot One Image to 3D Object: https://zero123.cs.columbia.edu/| | 1002|yuruotong1/autoMate !2025-03-28285121|Like Manus, Computer Use Agent(CUA) and Omniparser, we are computer-using agents.AI-driven local automation assistant that uses natural language to make computers work by themselves| | 1003|muellerberndt/mini-agi !2025-03-282845-1 |A minimal generic autonomous agent based on GPT3.5/4. Can analyze stock prices, perform network security tests, create art, and order pizza.| | 1004|allenai/open-instruct !2025-03-2828432|| | 1005|CodingChallengesFYI/SharedSolutions !2025-03-2828360|Publicly shared solutions to Coding Challenges| | 1006|hegelai/prompttools !2025-03-2828220|Open-source tools for prompt testing and experimentation, with support for both LLMs (e.g. OpenAI, LLaMA) and vector databases (e.g. Chroma, Weaviate).| | 1007|mazzzystar/Queryable !2025-03-2828222|Run CLIP on iPhone to Search Photos.| | 1008|Doubiiu/DynamiCrafter !2025-03-2828173|DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors| | 1009|SamurAIGPT/privateGPT !2025-03-282805-1 |An app to interact privately with your documents using the power of GPT, 100% privately, no data leaks| | 1010|facebookresearch/Pearl !2025-03-2827951|A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.| | 1011|intuitem/ciso-assistant-community !2025-03-2827954|CISO Assistant is a one-stop-shop for GRC, covering Risk, AppSec and Audit Management and supporting +70 frameworks worldwide with auto-mapping: NIST CSF, ISO 27001, SOC2, CIS, PCI DSS, NIS2, CMMC, PSPF, GDPR, HIPAA, Essential Eight, NYDFS-500, DORA, NIST AI RMF, 800-53, 800-171, CyFun, CJIS, AirCyber, NCSC, ECC, SCF and so much more| | 1012|facebookresearch/audio2photoreal !2025-03-2827840|Code and dataset for photorealistic Codec Avatars driven from audio| | 1013|Azure/azure-rest-api-specs !2025-03-2827770|The source for REST API specifications for Microsoft Azure.| | 1014|SCUTlihaoyu/open-chat-video-editor !2025-03-2827690 |Open source short video automatic generation tool| | 1015|Alpha-VLLM/LLaMA2-Accessory !2025-03-2827642|An Open-source Toolkit for LLM Development| | 1016|johnma2006/mamba-minimal !2025-03-2827601|Simple, minimal implementation of the Mamba SSM in one file of PyTorch.| | 1017|nerfstudio-project/gsplat !2025-03-2827576|CUDA accelerated rasterization of gaussian splatting| | 1018|Physical-Intelligence/openpi !2025-03-28274617|| | 1019|leptonai/leptonai !2025-03-2827246|A Pythonic framework to simplify AI service building| |!green-up-arrow.svg 1020|joanrod/star-vector !2025-03-28271149|StarVector is a foundation model for SVG generation that transforms vectorization into a code generation task. Using a vision-language modeling architecture, StarVector processes both visual and textual inputs to produce high-quality SVG code with remarkable precision.| |!red-down-arrow 1021|jqnatividad/qsv !2025-03-2827092|CSVs sliced, diced & analyzed.| | 1022|FranxYao/chain-of-thought-hub !2025-03-2826991|Benchmarking large language models' complex reasoning ability with chain-of-thought prompting| | 1023|princeton-nlp/SWE-bench !2025-03-2826965|[ICLR 2024] SWE-Bench: Can Language Models Resolve Real-world Github Issues?| | 1024|elastic/otel-profiling-agent !2025-03-2826930|The production-scale datacenter profiler| | 1025|src-d/hercules !2025-03-2826900|Gaining advanced insights from Git repository history.| | 1026|lanqian528/chat2api !2025-03-2826695|A service that can convert ChatGPT on the web to OpenAI API format.| | 1027|ishan0102/vimGPT !2025-03-2826681|Browse the web with GPT-4V and Vimium| | 1028|TMElyralab/MuseV !2025-03-2826650|MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising| | 1029|georgia-tech-db/eva !2025-03-2826600 |AI-Relational Database System | | 1030|kubernetes-sigs/controller-runtime !2025-03-2826590|Repo for the controller-runtime subproject of kubebuilder (sig-apimachinery)| | 1031|gptlink/gptlink !2025-03-2826550 |Build your own free commercial ChatGPT environment in 10 minutes. The setup is simple and includes features such as user management, orders, tasks, and payments| | 1032|pytorch/executorch !2025-03-2826534|On-device AI across mobile, embedded and edge for PyTorch| | 1033|NVIDIA/nv-ingest !2025-03-2826290|NVIDIA Ingest is an early access set of microservices for parsing hundreds of thousands of complex, messy unstructured PDFs and other enterprise documents into metadata and text to embed into retrieval systems.| | 1034|SuperTux/supertux !2025-03-2826081|SuperTux source code| | 1035|abi/secret-llama !2025-03-2826050|Fully private LLM chatbot that runs entirely with a browser with no server needed. Supports Mistral and LLama 3.| | 1036|liou666/polyglot !2025-03-2825841 |Desktop AI Language Practice Application| | 1037|janhq/nitro !2025-03-2825821|A fast, lightweight, embeddable inference engine to supercharge your apps with local AI. OpenAI-compatible API| | 1038|deepseek-ai/DeepSeek-Math !2025-03-2825825|DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models| | 1039|anthropics/prompt-eng-interactive-tutorial !2025-03-2825781|Anthropic's Interactive Prompt Engineering Tutorial| | 1040|microsoft/promptbench !2025-03-2825741|A unified evaluation framework for large language models| | 1041|baaivision/Painter !2025-03-2825580 |Painter & SegGPT Series: Vision Foundation Models from BAAI| | 1042|OpenPipe/OpenPipe !2025-03-2825581|Turn expensive prompts into cheap fine-tuned models| | 1043|TracecatHQ/tracecat !2025-03-2825531|😼 The AI-native, open source alternative to Tines / Splunk SOAR.| | 1044|JoshuaC215/agent-service-toolkit !2025-03-2825528|Full toolkit for running an AI agent service built with LangGraph, FastAPI and Streamlit| | 1045|databricks/dbrx !2025-03-2825460|Code examples and resources for DBRX, a large language model developed by Databricks| | 1046|lamini-ai/lamini !2025-03-2825271 |Official repo for Lamini's data generator for generating instructions to train instruction-following LLMs| | 1047|mshumer/gpt-author !2025-03-282510-1|| | 1048|TMElyralab/MusePose !2025-03-2824971|MusePose: a Pose-Driven Image-to-Video Framework for Virtual Human Generation| | 1049|Kludex/fastapi-tips !2025-03-2824974|FastAPI Tips by The FastAPI Expert!| | 1050|openai/simple-evals !2025-03-2824813|| | 1051|iterative/datachain !2025-03-2824732|AI-data warehouse to enrich, transform and analyze data from cloud storages| | 1052|girafe-ai/ml-course !2025-03-2824703|Open Machine Learning course| | 1053|kevmo314/magic-copy !2025-03-2824620 |Magic Copy is a Chrome extension that uses Meta's Segment Anything Model to extract a foreground object from an image and copy it to the clipboard.| | 1054|Eladlev/AutoPrompt !2025-03-2824432|A framework for prompt tuning using Intent-based Prompt Calibration| | 1055|OpenBMB/CPM-Bee !2025-03-282434-1 |A bilingual large-scale model with trillions of parameters| | 1056|IDEA-Research/T-Rex !2025-03-2824310|T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy| | 1057|microsoft/genaiscript !2025-03-2824202|Automatable GenAI Scripting| | 1058|paulpierre/RasaGPT !2025-03-2824090 |💬 RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain. Built w/ Rasa, FastAPI, Langchain, LlamaIndex, SQLModel, pgvector, ngrok, telegram| | 1059|ashishpatel26/LLM-Finetuning !2025-03-2823911|LLM Finetuning with peft| | 1060|SoraWebui/SoraWebui !2025-03-2823570|SoraWebui is an open-source Sora web client, enabling users to easily create videos from text with OpenAI's Sora model.| | 1061|6drf21e/ChatTTScolab !2025-03-2823491|🚀 一键部署(含离线整合包)!基于 ChatTTS ,支持音色抽卡、长音频生成和分角色朗读。简单易用,无需复杂安装。| | 1062|Azure/PyRIT !2025-03-2823343|The Python Risk Identification Tool for generative AI (PyRIT) is an open access automation framework to empower security professionals and machine learning engineers to proactively find risks in their generative AI systems.| | 1063|tencent-ailab/V-Express !2025-03-2823201|V-Express aims to generate a talking head video under the control of a reference image, an audio, and a sequence of V-Kps images.| | 1064|THUDM/CogVLM2 !2025-03-2823170|GPT4V-level open-source multi-modal model based on Llama3-8B| | 1065|dvmazur/mixtral-offloading !2025-03-2823001|Run Mixtral-8x7B models in Colab or consumer desktops| | 1066|semanser/codel !2025-03-2822950|✨ Fully autonomous AI Agent that can perform complicated tasks and projects using terminal, browser, and editor.| | 1067|mshumer/gpt-investor !2025-03-2822590|| | 1068|aixcoder-plugin/aiXcoder-7B !2025-03-2822550|official repository of aiXcoder-7B Code Large Language Model| | 1069|Azure-Samples/graphrag-accelerator !2025-03-2822503|One-click deploy of a Knowledge Graph powered RAG (GraphRAG) in Azure| | 1070|emcf/engshell !2025-03-2821830 |An English-language shell for any OS, powered by LLMs| | 1071|hncboy/chatgpt-web-java !2025-03-2821771|ChatGPT project developed in Java, based on Spring Boot 3 and JDK 17, supports both AccessToken and ApiKey modes| | 1072|openai/consistencydecoder !2025-03-2821692|Consistency Distilled Diff VAE| | 1073|Alpha-VLLM/Lumina-T2X !2025-03-2821681|Lumina-T2X is a unified framework for Text to Any Modality Generation| | 1074|bghira/SimpleTuner !2025-03-2821612|A general fine-tuning kit geared toward Stable Diffusion 2.1, Stable Diffusion 3, DeepFloyd, and SDXL.| | 1075|JiauZhang/DragGAN !2025-03-2821530 |Implementation of DragGAN: Interactive Point-based Manipulation on the Generative Image Manifold| | 1076|cgpotts/cs224u !2025-03-2821390|Code for Stanford CS224u| | 1077|PKU-YuanGroup/MoE-LLaVA !2025-03-2821300|Mixture-of-Experts for Large Vision-Language Models| | 1078|darrenburns/elia !2025-03-2820831|A snappy, keyboard-centric terminal user interface for interacting with large language models. Chat with ChatGPT, Claude, Llama 3, Phi 3, Mistral, Gemma and more.| | 1079|ageerle/ruoyi-ai !2025-03-28207898|RuoYi AI 是一个全栈式 AI 开发平台,旨在帮助开发者快速构建和部署个性化的 AI 应用。| | 1080|NVIDIA/gpu-operator !2025-03-2820510|NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes| | 1081|BAAI-Agents/Cradle !2025-03-2820481|The Cradle framework is a first attempt at General Computer Control (GCC). Cradle supports agents to ace any computer task by enabling strong reasoning abilities, self-improvment, and skill curation, in a standardized general environment with minimal requirements.| | 1082|microsoft/aici !2025-03-2820080|AICI: Prompts as (Wasm) Programs| | 1083|PRIS-CV/DemoFusion !2025-03-2820040|Let us democratise high-resolution generation! (arXiv 2023)| | 1084|apple/axlearn !2025-03-2820012|An Extensible Deep Learning Library| | 1085|naver/mast3r !2025-03-2819685|Grounding Image Matching in 3D with MASt3R| | 1086|liltom-eth/llama2-webui !2025-03-281958-1|Run Llama 2 locally with gradio UI on GPU or CPU from anywhere (Linux/Windows/Mac). Supporting Llama-2-7B/13B/70B with 8-bit, 4-bit. Supporting GPU inference (6 GB VRAM) and CPU inference.| | 1087|GaParmar/img2img-turbo !2025-03-2819582|One-step image-to-image with Stable Diffusion turbo: sketch2image, day2night, and more| | 1088|Niek/chatgpt-web !2025-03-2819560|ChatGPT web interface using the OpenAI API| | 1089|huggingface/cookbook !2025-03-2819421|Open-source AI cookbook| | 1090|pytorch/ao !2025-03-2819241|PyTorch native quantization and sparsity for training and inference| | 1091|emcie-co/parlant !2025-03-2819053|The behavior guidance framework for customer-facing LLM agents| | 1092|ymcui/Chinese-LLaMA-Alpaca-3 !2025-03-2818980|中文羊驼大模型三期项目 (Chinese Llama-3 LLMs) developed from Meta Llama 3| | 1093|Nutlope/notesGPT !2025-03-2818811|Record voice notes & transcribe, summarize, and get tasks| | 1094|InstantStyle/InstantStyle !2025-03-2818791|InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation 🔥| | 1095|idaholab/moose !2025-03-2818771|Multiphysics Object Oriented Simulation Environment| | 1096|The-OpenROAD-Project/OpenROAD !2025-03-2818351|OpenROAD's unified application implementing an RTL-to-GDS Flow. Documentation at https://openroad.readthedocs.io/en/latest/| | 1097|alibaba/spring-ai-alibaba !2025-03-281831121|Agentic AI Framework for Java Developers| | 1098|ytongbai/LVM !2025-03-2817990|Sequential Modeling Enables Scalable Learning for Large Vision Models| | 1099|microsoft/sample-app-aoai-chatGPT !2025-03-2817981|[PREVIEW] Sample code for a simple web chat experience targeting chatGPT through AOAI.| | 1100|AI-Citizen/SolidGPT !2025-03-2817830|Chat everything with your code repository, ask repository level code questions, and discuss your requirements. AI Scan and learning your code repository, provide you code repository level answer🧱 🧱| | 1101|YangLing0818/RPG-DiffusionMaster !2025-03-2817784|Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs (PRG)| | 1102|kyegomez/BitNet !2025-03-2817710|Implementation of "BitNet: Scaling 1-bit Transformers for Large Language Models" in pytorch| | 1103|eloialonso/diamond !2025-03-2817671|DIAMOND (DIffusion As a Model Of eNvironment Dreams) is a reinforcement learning agent trained in a diffusion world model.| | 1104|flowdriveai/flowpilot !2025-03-2817250|flow-pilot is an openpilot based driver assistance system that runs on linux, windows and android powered machines.| | 1105|xlang-ai/OSWorld !2025-03-2817200|OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments| | 1106|linyiLYi/snake-ai !2025-03-2817031|An AI agent that beats the classic game "Snake".| | 1107|baaivision/Emu !2025-03-2816991|Emu Series: Generative Multimodal Models from BAAI| | 1108|kevmo314/scuda !2025-03-2816870|SCUDA is a GPU over IP bridge allowing GPUs on remote machines to be attached to CPU-only machines.| | 1109|SharifiZarchi/IntroductiontoMachineLearning !2025-03-2816701|دوره‌ی مقدمه‌ای بر یادگیری ماشین، برای دانشجویان| | 1110|google/maxtext !2025-03-2816670|A simple, performant and scalable Jax LLM!| | 1111|ml-explore/mlx-swift-examples !2025-03-2816471|Examples using MLX Swift| | 1112|unitreerobotics/unitreerlgym !2025-03-2816256|| | 1113|collabora/WhisperFusion !2025-03-2815901|WhisperFusion builds upon the capabilities of WhisperLive and WhisperSpeech to provide a seamless conversations with an AI.| | 1114|lichao-sun/Mora !2025-03-2815520|Mora: More like Sora for Generalist Video Generation| | 1115|GoogleCloudPlatform/localllm !2025-03-2815370|Run LLMs locally on Cloud Workstations| | 1116|TencentARC/BrushNet !2025-03-2815330|The official implementation of paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"| | 1117|ai-christianson/RA.Aid !2025-03-2815288|Develop software autonomously.| | 1118|stephansturges/WALDO !2025-03-2815170|Whereabouts Ascertainment for Low-lying Detectable Objects. The SOTA in FOSS AI for drones!| | 1119|skills/copilot-codespaces-vscode !2025-03-2815112|Develop with AI-powered code suggestions using GitHub Copilot and VS Code| | 1120|andrewnguonly/Lumos !2025-03-2814920|A RAG LLM co-pilot for browsing the web, powered by local LLMs| | 1121|TeamNewPipe/NewPipeExtractor !2025-03-2814811|NewPipe's core library for extracting data from streaming sites| | 1122|mhamilton723/FeatUp !2025-03-2814770|Official code for "FeatUp: A Model-Agnostic Frameworkfor Features at Any Resolution" ICLR 2024| | 1123|AnswerDotAI/fsdpqlora !2025-03-2814671|Training LLMs with QLoRA + FSDP| | 1124|jgravelle/AutoGroq !2025-03-2814330|| | 1125|OpenGenerativeAI/llm-colosseum !2025-03-2814130|Benchmark LLMs by fighting in Street Fighter 3! The new way to evaluate the quality of an LLM| | 1126|microsoft/vscode-ai-toolkit !2025-03-2814000|| | 1127|McGill-NLP/webllama !2025-03-2813930|Llama-3 agents that can browse the web by following instructions and talking to you| | 1128|lucidrains/self-rewarding-lm-pytorch !2025-03-2813760|Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI| | 1129|ishaan1013/sandbox !2025-03-2813650|A cloud-based code editing environment with an AI copilot and real-time collaboration.| | 1130|goatcorp/Dalamud !2025-03-2813275|FFXIV plugin framework and API| | 1131|Lightning-AI/lightning-thunder !2025-03-2813151|Make PyTorch models Lightning fast! Thunder is a source to source compiler for PyTorch. It enables using different hardware executors at once.| | 1132|PKU-YuanGroup/MagicTime !2025-03-2813052|MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators| | 1133|SakanaAI/evolutionary-model-merge !2025-03-2813000|Official repository of Evolutionary Optimization of Model Merging Recipes| | 1134|a-real-ai/pywinassistant !2025-03-2812950|The first open source Large Action Model generalist Artificial Narrow Intelligence that controls completely human user interfaces by only using natural language. PyWinAssistant utilizes Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models.| | 1135|TraceMachina/nativelink !2025-03-2812630|NativeLink is an open source high-performance build cache and remote execution server, compatible with Bazel, Buck2, Reclient, and other RBE-compatible build systems. It offers drastically faster builds, reduced test flakiness, and significant infrastructure cost savings.| | 1136|MLSysOps/MLE-agent !2025-03-2812500|🤖 MLE-Agent: Your intelligent companion for seamless AI engineering and research. 🔍 Integrate with arxiv and paper with code to provide better code/research plans 🧰 OpenAI, Ollama, etc supported. 🎆 Code RAG| | 1137|wpilibsuite/allwpilib !2025-03-2811610|Official Repository of WPILibJ and WPILibC| | 1138|elfvingralf/macOSpilot-ai-assistant !2025-03-2811470|Voice + Vision powered AI assistant that answers questions about any application, in context and in audio.| | 1139|langchain-ai/langchain-extract !2025-03-2811210|🦜⛏️ Did you say you like data?| | 1140|FoundationVision/GLEE !2025-03-2811120|【CVPR2024】GLEE: General Object Foundation Model for Images and Videos at Scale| | 1141|Profluent-AI/OpenCRISPR !2025-03-2810990|AI-generated gene editing systems| | 1142|zju3dv/EasyVolcap !2025-03-2810821|[SIGGRAPH Asia 2023 (Technical Communications)] EasyVolcap: Accelerating Neural Volumetric Video Research| | 1143|PaddlePaddle/PaddleHelix !2025-03-2810560|Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集| | 1144|myshell-ai/JetMoE !2025-03-289800|Reaching LLaMA2 Performance with 0.1M Dollars| | 1145|likejazz/llama3.np !2025-03-289770|llama3.np is pure NumPy implementation for Llama 3 model.| | 1146|mustafaaljadery/gemma-2B-10M !2025-03-289500|Gemma 2B with 10M context length using Infini-attention.| | 1147|HITsz-TMG/FilmAgent !2025-03-289382|Resources of our paper "FilmAgent: A Multi-Agent Framework for End-to-End Film Automation in Virtual 3D Spaces". New versions in the making!| | 1148|aws-samples/amazon-bedrock-samples !2025-03-289362|This repository contains examples for customers to get started using the Amazon Bedrock Service. This contains examples for all available foundational models| | 1149|Akkudoktor-EOS/EOS !2025-03-2893154|This repository features an Energy Optimization System (EOS) that optimizes energy distribution, usage for batteries, heat pumps& household devices. It includes predictive models for electricity prices (planned), load forecasting& dynamic optimization to maximize energy efficiency & minimize costs. Founder Dr. Andreas Schmitz (YouTube @akkudoktor)| Tip: | symbol| rule | | :----| :---- | |🔥 | 256 1k| |!green-up-arrow.svg !red-down-arrow | ranking up / down| |⭐ | on trending page today| [Back to Top] Tools | No. | Tool | Description | | ----:|:----------------------------------------------- |:------------------------------------------------------------------------------------------- | | 1 | ChatGPT | A sibling model to InstructGPT, which is trained to follow instructions in a prompt and provide a detailed response | | 2 | DALL·E 2 | Create original, realistic images and art from a text description | | 3 | Murf AI | AI enabled, real people's voices| | 4 | Midjourney | An independent research lab that produces an artificial intelligence program under the same name that creates images from textual descriptions, used in Discord | 5 | Make-A-Video | Make-A-Video is a state-of-the-art AI system that generates videos from text | | 6 | Creative Reality™ Studio by D-ID| Use generative AI to create future-facing videos| | 7 | chat.D-ID| The First App Enabling Face-to-Face Conversations with ChatGPT| | 8 | Notion AI| Access the limitless power of AI, right inside Notion. Work faster. Write better. Think bigger. | | 9 | Runway| Text to Video with Gen-2 | | 10 | Resemble AI| Resemble’s AI voice generator lets you create human–like voice overs in seconds | | 11 | Cursor| Write, edit, and chat about your code with a powerful AI | | 12 | Hugging Face| Build, train and deploy state of the art models powered by the reference open source in machine learning | | 13 | Claude | A next-generation AI assistant for your tasks, no matter the scale | | 14 | Poe| Poe lets you ask questions, get instant answers, and have back-and-forth conversations with AI. Gives access to GPT-4, gpt-3.5-turbo, Claude from Anthropic, and a variety of other bots| [Back to Top] Websites | No. | WebSite |Description | | ----:|:------------------------------------------ |:---------------------------------------------------------------------------------------- | | 1 | OpenAI | An artificial intelligence research lab | | 2 | Bard | Base Google's LaMDA chatbots and pull from internet | | 3 | ERNIE Bot | Baidu’s new generation knowledge-enhanced large language model is a new member of the Wenxin large model family | | 4 | DALL·E 2 | An AI system that can create realistic images and art from a description in natural language | | 5 | Whisper | A general-purpose speech recognition model | | 6| CivitAI| A platform that makes it easy for people to share and discover resources for creating AI art| | 7|D-ID| D-ID’s Generative AI enables users to transform any picture or video into extraordinary experiences| | 8| Nvidia eDiff-I| Text-to-Image Diffusion Models with Ensemble of Expert Denoisers | | 9| Stability AI| The world's leading open source generative AI company which opened source Stable Diffusion | | 10| Meta AI| Whether it be research, product or infrastructure development, we’re driven to innovate responsibly with AI to benefit the world | | 11| ANTHROPIC| AI research and products that put safety at the frontier | [Back to Top] Reports&Papers | No. | Report&Paper | Description | |:---- |:-------------------------------------------------------------------------------------------------------------- |:---------------------------------------------------- | | 1 | GPT-4 Technical Report | GPT-4 Technical Report | | 2 | mli/paper-reading | Deep learning classics and new papers are read carefully paragraph by paragraph. | | 3 | labmlai/annotateddeeplearningpaperimplementations| A collection of simple PyTorch implementations of neural networks and related algorithms, which are documented with explanations | | 4 | Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models | Talking, Drawing and Editing with Visual Foundation Models | | 5 | OpenAI Research | The latest research report and papers from OpenAI | | 6 | Make-A-Video: Text-to-Video Generation without Text-Video Data|Meta's Text-to-Video Generation| | 7 | eDiff-I: Text-to-Image Diffusion Models with Ensemble of Expert Denoisers| Nvidia eDiff-I - New generation of generative AI content creation tool | | 8 | Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo | 2023 GPT4All Technical Report | | 9 | Segment Anything| Meta Segment Anything | | 10 | LLaMA: Open and Efficient Foundation Language Models| LLaMA: a collection of foundation language models ranging from 7B to 65B parameters| | 11 | papers-we-love/papers-we-love |Papers from the computer science community to read and discuss| | 12 | CVPR 2023 papers |The most exciting and influential CVPR 2023 papers| [Back to Top] Tutorials | No. | Tutorial | Description| |:---- |:---------------------------------------------------------------- | --- | | 1 | Coursera - Machine Learning | The Machine Learning Specialization Course taught by Dr. Andrew Ng| | 2 | microsoft/ML-For-Beginners | 12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all| | 3 | ChatGPT Prompt Engineering for Developers | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI) will teach how to use a large language model (LLM) to quickly build new and powerful applications | | 4 | Dive into Deep Learning |Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries | | 5 | AI Expert Roadmap | Roadmap to becoming an Artificial Intelligence Expert in 2022 | | 6 | Computer Science courses |List of Computer Science courses with video lectures| | 7 | Machine Learning with Python | Machine Learning with Python Certification on freeCodeCamp| | 8 | Building Systems with the ChatGPT API | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI), you will learn how to automate complex workflows using chain calls to a large language model| | 9 | LangChain for LLM Application Development | This short course taught by Harrison Chase (Co-Founder and CEO at LangChain) and Andrew Ng. you will gain essential skills in expanding the use cases and capabilities of language models in application development using the LangChain framework| | 10 | How Diffusion Models Work | This short course taught by Sharon Zhou (CEO, Co-founder, Lamini). you will gain a deep familiarity with the diffusion process and the models which carry it out. More than simply pulling in a pre-built model or using an API, this course will teach you to build a diffusion model from scratch| | 11 | Free Programming Books For AI |📚 Freely available programming books for AI | | 12 | microsoft/AI-For-Beginners |12 Weeks, 24 Lessons, AI for All!| | 13 | hemansnation/God-Level-Data-Science-ML-Full-Stack |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 14 | datawhalechina/prompt-engineering-for-developers |Chinese version of Andrew Ng's Big Model Series Courses, including "Prompt Engineering", "Building System", and "LangChain"| | 15 | ossu/computer-science |🎓 Path to a free self-taught education in Computer Science!| | 16 | microsoft/Data-Science-For-Beginners | 10 Weeks, 20 Lessons, Data Science for All! | |17 |jwasham/coding-interview-university !2023-09-29268215336 |A complete computer science study plan to become a software engineer.| [Back to Top] Thanks If this project has been helpful to you in any way, please give it a ⭐️ by clicking on the star.

oreilly-ai-agents
github
LLM Vibe Score0.437
Human Vibe Score0.07783740211883924
sinanuozdemirMar 28, 2025

oreilly-ai-agents

!oreilly-logo AI Agents A-Z This repository contains code for the O'Reilly Live Online Training for AI Agents A-Z This course provides a comprehensive guide to understanding, implementing, and managing AI agents both at the prototype stage and in production. Attendees will start with foundational concepts and progressively delve into more advanced topics, including various frameworks like CrewAI, LangChain, and AutoGen as well as building agents from scratch using powerful prompt engineering techniques. The course emphasizes practical application, guiding participants through hands-on exercises to implement and deploy AI agents, evaluate their performance, and iterate on their designs. We will go over key aspects like cost projections, open versus closed source options, and best practices are thoroughly covered to equip attendees with the knowledge to make informed decisions in their AI projects. Setup Instructions Using Python 3.11 Virtual Environment At the time of writing, we need a Python virtual environment with Python 3.11. Option 1: Python 3.11 is Already Installed Step 1: Verify Python 3.11 Installation Step 2: Create a Virtual Environment This creates a .venv folder in your current directory. Step 3: Activate the Virtual Environment macOS/Linux: Windows: You should see (.venv) in your terminal prompt. Step 4: Verify the Python Version Step 5: Install Packages Step 6: Deactivate the Virtual Environment Option 2: Install Python 3.11 If you don’t have Python 3.11, follow the steps below for your OS. macOS (Using Homebrew) Ubuntu/Debian Windows (Using Windows Installer) Go to Python Downloads. Download the installer for Python 3.11. Run the installer and ensure "Add Python 3.11 to PATH" is checked. Verify Installation Notebooks In the activated environment, run Using 3rd party agent frameworks Intro to CrewAI - An introductory notebook for CrewAI See the streamlit directory for an example of deploying crew on a streamlit app Intro to Autogen - An introductory notebook for Microsoft's Autogen Intro to OpenAI Swarm - An introductory notebook for OpenAI's Swarm Intro to LangGraph - An introductory notebook for LangGraph Agents playing Chess - An implementation of two ReAct Agents playing Chess with each other Evaluating Agents Evaluating Agent Output with Rubrics - Exploring a rubric prompt to evaluate generative output. This notebook also notes positional biases when choosing between agent responses. Advanced - Evaluating Alignment - A longer notebook doing a much more in depth analysis on how an LLM can judge agent's responses Evaluating Tool Selection - Calculating the accuracy of tool selection between different LLMs and quantifying the positional bias present in auto-regressive LLMs. See the additions here for V3 + DeepSeek Distilled Models and here for DeepSeek R1 Building our own agents First Steps with our own Agent - Working towards building our own agent framework See Squad Goals for a very simple example of my own agent framework Intro to Squad Goals - using my own framework to do some basic tasks Multimodal Agents - Incorporating Dalle-3 to allow our squad to generate images Modern Agent Paradigms Plan & Execute Agents - Plan & Execute Agents use a planner to create multi-step plans with an LLM and an executor to complete each step by invoking tools. Reflection Agents - Reflection Agents combine a generator to perform tasks and a reflector to provide feedback and guide improvements. Instructor Sinan Ozdemir is the Founder and CTO of LoopGenius where he uses State of the art AI to help people run digital ads on Meta, Google, and more. Sinan is a former lecturer of Data Science at Johns Hopkins University and the author of multiple textbooks on data science and machine learning. Additionally, he is the founder of the recently acquired Kylie.ai, an enterprise-grade conversational AI platform with RPA capabilities. He holds a master’s degree in Pure Mathematics from Johns Hopkins University and is based in San Francisco, CA.

YT_Emerging_Technologies_Introduction_to_AI
github
LLM Vibe Score0.461
Human Vibe Score0.039054583141409485
zusmaniJan 17, 2025

YT_Emerging_Technologies_Introduction_to_AI

YouTube Channel: Emerging Technologies Playlist: Introduction to AI Instructor: Zeeshan-ul-hassan Usmani Dear Students, I have uploaded all relevant material here for your quick access and learning. I hope you will find it beneficiary Yours Truly, Zeeshan =========================================== Video title: Resources Books to Order: Artificial Intelligence by Zeeshan Usmani - https://gufhtugu.com/artificial-intelligence Artificial Intelligence by Baqir Naqvi - https://gufhtugu.com/masnoi-zahanat/ Recommended Books • Gödel, Escher, Bach : An Eternal Golden Braid by Douglas R. Hofstadter A classic, poetic, philosophical defense of AI. • Machines Who Think by Pamela McCorduck. A good review of early AI history. • Robot: Mere Machine to Transcendent Mind by Hans P. Moravec Somewhat hyped book by a CMU robotics researcher. • Flesh and Machines: How Robots Will Change Us by Rodney Allen Brooks Reasonably decent book by MIT's leading robotics researcher. • Wired for War by Peter Warren Singer Reviews growing use of robots and unmanned vehicles in warfare. • Behind Deep Blue: Building the Computer That Defeated the World Chess Champion by Feng-Hsiung Hsu Autobiographical book on the development of a history making game-playing system. Interesting personal story of the hard engineering work that went into the system, with a few interesting facts on the technical aspects. • The Age of Spiritual Machines : When Computers Exceed Human Intelligence by Ray Kurzweil A recent view by an AI entrepreneur that has content if you ignore all the hype and overly-optimistic trust that Moore's law will magically solve all of the major problems. • Hal's Legacy : 2001's Computer As Dream and Reality An interesting collection of edited articles written to celebrate the fictional birthday of a famous intelligent computer who's true birthday must unfortunately be delayed, pending AI's inevitable progress. • The Sciences of the Artificial by Herbert Simon AI as science by one of its founders. • Models of My Life by Herbert Simon. An autobiography of one of AI's founders who's intellectual contributions also include fundamental contributions to economics (for which he won the Nobel prize), cognitive psychology, and computer science (such as co-inventing the linked list in the 1950's). • Alan Turing: The Enigma by Alan Hodges. A biography of one of the founders of CS and originator of the Turing test. Also a testimony to the tragic implications of homophobia. • The Emperor's New Mind : Concerning Computers, Minds, and the Laws of Physics and Shadows of the Mind : A Search for the Missing Science of Consciousness and The Large, the Small and the Human Mind by Roger Penrose A completely bogus argument against AI by a hopelessly Platonic mathematician. The last book contains an appended article by Stephen Hawking (a colleague of Penrose's) who of course doesn't buy his bogus argument. • The Mind's New Science : A History of the Cognitive Revolution by Howard Gardner A nice history of the development of cognitive science. • How the Mind Works , The Language Instinct , and Words and Rules : The Ingredients of Language by Steven Pinker Fun reading on lots of interesting issues in modern Cognitive Science and Linguistics if you don't take his exaggerated beliefs in nativism and evolutionary psychology too seriously. • Bots : The Origin of New Species by Andrew Leonard A light, somewhat hyped book on on Internet agents, chatterbots, etc. with a few funny stories. • Mathematics: The Loss of Certainty by Morris Kline A very nice book on the failed enterprise of using logic to build a firm foundation for infallible mathematics and the role of Gödel's Incompleteness Theorem in the philosophy of mathematics. • Incompleteness: The Proof and Paradox of Kurt Gödel by Rebecca Goldstein An interesting biography of Kurt Gödel. Too bad he was such a Platonist that, unlike Turing, he did not understand the true implications of his own theorems (interesting author connection: Goldstein is Pinker's wife). Links: • AAAI AI Topics Basic info on AI from the American Association for Artificial Intelligence: http://www.aaai.org/AITopics/html/welcome.html • Loebner Prize for limited Turing test: http://www.loebner.net/Prizef/loebner-prize.html • IBM's Deep Blue Page: http://www.research.ibm.com/deepblue/ • Robocup: Robotic Soccer Competition: http://www.robocup.org/ • NY Times Article on Proof of the Robbins Theorem: http://www.nytimes.com/library/cyber/week/1210math.html • NY Times article on Bayes Nets at Microsoft Research: http://www.nytimes.com/library/tech/00/07/biztech/articles/17lab.html =========================================== Video title: Numbers Infinity Video Link - •https://www.youtube.com/watch?v=hlXHwMgS06c https://www.cbs.com/shows/numb3rs/ http://numb3rs.wolfram.com/ =========================================== Video title: 20 Hours Rule and Assisgnemnt Assignment - https://www.urdufake2020.cicling.org/ =========================================== Video title: Assignments – P1 Mostly Human - https://money.cnn.com/mostly-human =========================================== Video title: Assignments – P2 Assignment – 2 - https://replika.ai/ Assignment – 3 – Teachable Machines https://teachablemachine.withgoogle.com/ Assignment – 4 – Tensor Flow Playground https://playground.tensorflow.org Assignment – 5 – GPT-3 Paper (175B Parameters) https://debuild.co/ Assignment – 6 - Image GPT-3 https://openai.com/blog/image-gpt/ =========================================== Video title: Create your own Deep Fake 1.https://colab.research.google.com/drive/1mGg_fmvhTpvkPkclw2yKkhALVzmawfvT?usp=sharing 2.https://drive.google.com/drive/folders/1wW1bxRV2S7Ce8gc3VDTzMQABE3-WCc_Y?usp=sharing •go into you gdrive > find cloned folder and ensure that this folder must have: vox-adv-cpk.pth.tar & vox-cpk.pth.tar failes •Aliaksandr Siarohin : https://github.com/AliaksandrSiarohin/first-order-model

Workflow Automation with AI and Zapier | CXOTalk #808
youtube
LLM Vibe Score0.388
Human Vibe Score0.37
CXOTalkOct 23, 2023

Workflow Automation with AI and Zapier | CXOTalk #808

#zapier #workflowautomation #workflow #aiautomation The rising significance of enterprise AI presents a unique hurdle: seamlessly integrating AI-based business workflows into operational systems, especially for non-programmers. On CXOTalk episode 808, we explore these issues with Mike Knoop, co-founder of Zapier and the company's AI lead. The conversation with Mike covers the rationale behind integrating AI, the technological advancements AI brings to workflow automation solutions, and its broader impact on business agility. Join the CXOTalk community: www.cxotalk.com/subscribe Read the full transcript: https://www.cxotalk.com/episode/ai-workflows-in-business-a-practical-guide Key points in the discussion include: ► The potential of AI-powered automation to empower more business users with customized workflows. But governance, accuracy, and security are key challenges to consider when implementing AI workflows. ► Initial use cases include generating creative ideas, summarizing unstructured data, and making powerful business process automations easier to build for non-technical users. ► Customer service and marketing are excellent starting points for AI automation. Watch this conversation to gain practical advice on using low-code, no-code tools to automate AI in the enterprise. Mike Knoop is the co-founder and Head of Zapier AI at Zapier. Mike has a B.S. in mechanical engineering from the University of Missouri, where his research topic was focused on finite element modeling and optimization. Michael Krigsman is an industry analyst and publisher of CXOTalk. For three decades, he has advised enterprise technology companies on market messaging and positioning strategy. He has written over 1,000 blogs on leadership and digital transformation and created almost 1,000 video interviews with the world’s top business leaders on these topics. His work has been referenced in the media over 1,000 times and in over 50 books. He has presented and moderated panels at numerous industry events around the world.

The future of AI
youtube
LLM Vibe Score0.471
Human Vibe Score0.61
GaryVeeMay 9, 2023

The future of AI

When voice and ai hit scale … shits gonna get interesting… — Thanks for watching! Join My Discord!: https://www.garyvee.com/discord Check out another series on my channel: Keynotes: https://www.youtube.com/watch?v=6vCDlmhRmBo&list=PLfA33-E9P7FCEF1izpctGGoak841XYzrJ NFTs: https://www.youtube.com/watch?v=AwMJ6bScB2s&list=PLfA33-E9P7FAcvsVSFqzSuJhHu3SkW2Ma Business Meetings: https://www.youtube.com/watch?v=wILI_VV6z4Y&list=PLfA33-E9P7FCTIY62wkqZ-E1cwpc2hxBJ Gary Vaynerchuk Original Films: https://youtube.com/playlist?list=PLfA33-E9P7FAvnrOcgy4MvIcCXxoyjuku Trash Talk: https://youtube.com/playlist?list=PLfA33-E9P7FDelN4bXFgtJuczC9HHmm2- WeeklyVee: https://youtube.com/playlist?list=PLfA33-E9P7FBPjdQcF6uedz9fdk8XKn-b — Gary Vaynerchuk is a serial entrepreneur, and serves as the Chairman of VaynerX, the CEO of VaynerMedia and the Creator & CEO of VeeFriends. Gary is considered one of the leading global minds on what’s next in culture, relevance and the internet. Known as “GaryVee” he is described as one of the most forward thinkers in business – he acutely recognizes trends and patterns early to help others understand how these shifts impact markets and consumer behavior. Whether its emerging artists, esports, NFT investing or digital communications, Gary understands how to bring brand relevance to the forefront. He is a prolific angel investor with early investments in companies such as Facebook, Twitter, Tumblr, Venmo, Snapchat, Coinbase and Uber. Gary is an entrepreneur at heart — he builds businesses. Today, he helps Fortune 1000 brands leverage consumer attention through his full service advertising agency, VaynerMedia which has offices in NY, LA, London, Mexico City, LATAM and Singapore. VaynerMedia is part of the VaynerX holding company which also includes VaynerProductions, VaynerNFT, Gallery Media Group, The Sasha Group, Tracer, VaynerSpeakers, VaynerTalent, and VaynerCommerce. Gary is also the Co-Founder of VaynerSports, Resy and Empathy Wines. Gary guided both Resy and Empathy to successful exits — both were sold respectively to American Express and Constellation Brands. He’s also a Board Member at Candy Digital, Co-Founder of VCR Group, Co-Founder of ArtOfficial, and Creator & CEO of VeeFriends. Gary was recently named to the Fortune list of the Top 50 Influential people in the NFT industry. In addition to running multiple businesses, Gary documents his life daily as a CEO through his social media channels which has more than 34 million followers and garnishes over 272 million monthly impressions/views across all platforms. His podcast ‘The GaryVee Audio Experience’ ranks among the top podcasts globally. He is a five-time New York Times Best-Selling Author and one of the most highly sought after public speakers. Gary serves on the board of MikMak, Bojangles Restaurants, and Pencils of Promise. He is also a longtime Well Member of Charity:Water.

How to use AI to make extra money
youtube
LLM Vibe Score0.414
Human Vibe Score0.63
Anik SingalApr 25, 2023

How to use AI to make extra money

FREE Courses from LURN == https://www.Lurn.com/getfreecourses ============================================ How to use AI to make extra money ============================================ 👇Subscribe To The Channel By Clicking Below!👇 https://www.youtube.com/user/aniksingalcom?sub_confirmation=1 CHECK OUT THESE TOP TRENDING PLAYLISTS NOW! Fighting Entrepreneur - https://www.youtube.com/watch?v=D9nsNOu3gIE&list=PLEmF7qw7SECK1hy5U5nodHoCg7ANzXukz Master Copywriting With Anik Singal - https://www.youtube.com/watch?v=CjOAWP1DKAk&list=PLEmF7qw7SECKouq97MqF5zFi1Xb-VFyMY&index=2&t=0s Facebook Advertising Strategies - https://www.youtube.com/watch?v=BMQh6zA3HUY&list=PLEmF7qw7SECJUULNlnAGHvcegeQbIAHZp How To Become A Better Entrepreneur - https://www.youtube.com/playlist?list=PLEmF7qw7SECKVlP2eOsF_XpYBYhlTGAVU ============================================ “Lead Fighter” — That’s the title Anik Singal gives himself as a high-energy, trailblazing Entrepreneur. Anik got his start in the online scene back in 2003 from his college dorm room. Ever since then he’s gone on to build 6 successful companies, launched 22 top brands, generated over $250 Million in sales, and taught over 250,000 students worldwide - how to start, grow, and scale a successful online business. As the founder of Lurn, Inc., Anik Singal’s passion is in creating dynamic online classroom environments that teach people how to enhance their business, financial, and personal lives. Anik Singal has become a go-to authority in the areas of... ✅Digital Publishing. ✅Event-Based Marketing. ✅Product Launches. ✅Email Marketing. Anik has been voted one of the Top 3 Young Entrepreneurs by BusinessWeek Magazine. In addition, his company earned the prestigious Inc. 500 Fastest Growing Companies in America two years in a row. All of Anik’s experiences have made him the person he is today… From struggling for 18 months when he first started, then successfully building his business to over $10 Million a year. Then losing it all and falling to $1.7 Million in debt and almost declaring bankruptcy. Bouncing back and generating over $10 million in 16 months, paying back all of his debt and he hasn’t looked back since. He’s worked with and has been endorsed by some of the most influential Entrepreneurs of our time... Including Robert Kiyosaki, Les Brown, Daymond John, Bob Proctor, Grant Cardone, and many more. Anik is a dreamer. A thinker. A fighter. Most importantly, Anik is a teacher. His immediate goal is empowering 1 Million Entrepreneurs to live the life of their dreams by the end of 2019. ============================================ CONNECT WITH ANIK ON SOCIAL MEDIA YouTube: https://www.youtube.com/channel/UCinyEr-Fly9Yp1zMFxD0cQ?viewas=subscriber Anik Singal Blog: https://lurn.com/blog/ Facebook: https://www.facebook.com/aniksingal Instagram: https://www.instagram.com/anik/ LinkedIn: https://www.linkedin.com/company/lurn-inc/ Podcast: https://podcast.lurnworkshop.com iTunes: https://itunes.apple.com/us/podcast/the-fighting-entrepreneur/id1446089516?mt=2 Spotify: https://open.spotify.com/show/0HbielkIU1f88Bv4VuMHmh?si=Q1ujyoiMRF2LlHdBgTdAzw Soundcloud: https://soundcloud.com/thefightingentrepreneur Google Play: https://play.google.com/music/listen#/ps/Irckjhwglqgjnbia5t3zpyj4xcq #AnikSingal #Lurn #LurnNation ============================================ Join Lurn Nation: https://lurn.com/ Lurn is the Transformational home for modern entrepreneurs. We have 60+ training courses and programs to help you reach your business goals - join our community today!