VibeBuilders.ai Logo
VibeBuilders.ai

Done

Explore resources related to done to help implement AI solutions for your business.

My AI tools system to get things done 5x faster, after trying 100+ AI tools
reddit
LLM Vibe Score0
Human Vibe Score1
looking-everywhereThis week

My AI tools system to get things done 5x faster, after trying 100+ AI tools

Sorry for the long post, but I just had to share this with you all. After starting my own business, I realized I needed to get more work done and take my productivity to the next level. A few days ago, I asked people in this community to recommend AI tools, and that kicked off my journey to include as many AI apps in my system as possible. In my quest, I've tried over 100 AI tools to find the best ones. It wasn't easy, but thanks to the awesome suggestions from this community, I finally nailed down a setup that works for me. I am in search of more fun tools, so please share if you have some suggestions. So here's the breakdown of my whole system, totaling $194 per month: Content Creation: Text ($20): I use ChatGPT for brainstorming, content creation, marketing, and even legal work. I've been going back to it more often after their O1-preview. Video ($20): Captions Ai is my go-to for video editing. I mainly use self-recorded videos and auto-edit them with this app. Graphics ($14): I mix Gamma and Canva. I've got Gamma's Plus subscription and Canva's Pro subscription. I start by prompting my requirements in Gamma and then edit them later in Canva. Plus, Canva's templates are super handy for other stuff. Productivity: FastTrackr AI ($20): This AI assistant helps me manage emails, reply to them, set up meetings, prepare for them, transcribe notes on my phone, and even do basic research when I'm on WhatsApp. I'm thinking of upgrading to their Pro plan to add other emails. ARC Browser + Perplexity ($0): I snagged a 6-month deal for Perplexity Pro, which will cost $20 later on, including $5 credit for API. Sana AI ($0): This one's amazing for meeting assistance. I love how it understands context and key action items. Not sure when they'll start charging, but I can't recommend it enough. Wispr Flow ($15): Lets me use my voice to command apps. It's amazing how accurately it picks up complex names. Might save some cash if I switch to the annual plan. Sales and Marketing: Lead Enrichment ($67): I'm using Clay and share it with a friend to cut costs. People say there are other options, but this one's the best despite the learning curve. Instantly AI($37): I've tried other tools for cold emails, but Instantly's warm-up feature is top-notch. For other tasks like social media automation and trigger-based automations, I use a mix of Make and Perplexity APIs ($11). Total Cost: $194 per month. I know hiring someone could help me get more done, but I'm thinking of bringing someone onboard with this system already in place. That way, a new hire could potentially lead to 2x or 3x the work output. Thanks for reading through this! Hope this helps anyone looking to boost their productivity with AI tools. Feel free to ask me anything or share your own experiences! Couldn't add links as this gets flagged by mods.

I’m AI/ML product manager. What I would have done differently on Day 1 if I knew what I know today
reddit
LLM Vibe Score0
Human Vibe Score0
bendee983This week

I’m AI/ML product manager. What I would have done differently on Day 1 if I knew what I know today

I’m a software engineer and product manager, and I’ve working with and studying machine learning models for several years. But nothing has taught me more than applying ML in real-world projects. Here are some of top product management lessons I learned from applying ML: Work backwards: In essence, creating ML products and features is no different than other products. Don’t jump into Jupyter notebooks and data analysis before you talk to the key stakeholders. Establish deployment goals (how ML will affect your operations), prediction goals (what exactly the model should predict), and evaluation metrics (metrics that matter and required level of accuracy) before gathering data and exploring models.  Bridge the tech/business gap in your organization: Business professionals don’t know enough about the intricacies of machine learning, and ML professionals don’t know about the practical needs of businesses. Educate your business team on the basics of ML and create joint teams of data scientists and business analysts to define and measure goals and progress of ML projects. ML projects are more likely to fail when business and data science teams work in silos. Adjust your priorities at different stages of the project: In the early stages of your ML project, aim for speed. Choose the solution that validates/rejects your hypotheses the fastest, whether it’s an API, a pre-trained model, or even a non-ML solution (always consider non-ML solutions). In the more advanced stages of the project, look for ways to optimize your solution (increase accuracy and speed, reduce costs, increase flexibility). There is a lot more to share, but these are some of the top experiences that would have made my life a lot easier if I had known them before diving into applied ML.  What is your experience?

How To Learn About AI Agents (A Road Map From Someone Who's Done It)
reddit
LLM Vibe Score0
Human Vibe Score0.882
laddermanUSThis week

How To Learn About AI Agents (A Road Map From Someone Who's Done It)

If you are a newb to AI Agents, welcome, I love newbies and this fledgling industry needs you! You've hear all about AI Agents and you want some of that action right?  You might even feel like this is a watershed moment in tech, remember how it felt when the internet became 'a thing'?  When apps were all the rage?  You missed that boat right?   Well you may have missed that boat, but I can promise you one thing..... THIS BOAT IS BIGGER !  So if you are reading this you are getting in just at the right time.  Let me answer some quick questions before we go much further: Q: Am I too late already to learn about AI agents? A: Heck no, you are literally getting in at the beginning, call yourself and 'early adopter' and pin a badge on your chest! Q: Don't I need a degree or a college education to learn this stuff?  I can only just about work out how my smart TV works! A: NO you do not.  Of course if you have a degree in a computer science area then it does help because you have covered all of the fundamentals in depth... However 100000% you do not need a degree or college education to learn AI Agents.  Q: Where the heck do I even start though?  Its like sooooooo confusing A: You start right here my friend, and yeh I know its confusing, but chill, im going to try and guide you as best i can. Q: Wait i can't code, I can barely write my name, can I still do this? A: The simple answer is YES you can. However it is great to learn some basics of python.  I say his because there are some fabulous nocode tools like n8n that allow you to build agents without having to learn how to code...... Having said that, at the very least understanding the basics is highly preferable. That being said, if you can't be bothered or are totally freaked about by looking at some code, the simple answer is YES YOU CAN DO THIS. Q: I got like no money, can I still learn? A: YES 100% absolutely.  There are free options to learn about AI agents and there are paid options to fast track you.  But defiantly you do not need to spend crap loads of cash on learning this.  So who am I anyway? (lets get some context)  I am an AI Engineer and I own and run my own AI Consultancy business where I design, build and deploy AI agents and AI automations.  I do also run a small academy where I teach this stuff, but I am not self promoting or posting links in this post because im not spamming this group.  If you want links send me a DM or something and I can forward them to you.  Alright so on to the good stuff, you're a newb, you've already read a 100 posts and are now totally confused and every day you consume about 26 hours of youtube videos on AI agents.....I get you, we've all been there.  So here is my 'Worth Its Weight In Gold' road map on what to do: \[1\]  First of all you need learn some fundamental concepts.  Whilst you can defiantly jump right in start building, I strongly recommend you learn some of the basics.  Like HOW to LLMs work, what is a system prompt, what is long term memory, what is Python, who the heck is this guy named Json that everyone goes on about?  Google is your old friend who used to know everything, but you've also got your new buddy who can help you if you want to learn for FREE.  Chat GPT is an awesome resource to create your own mini learning courses to understand the basics. Start with a prompt such as: "I want to learn about AI agents but this dude on reddit said I need to know the fundamentals to this ai tech, write for me a short course on Json so I can learn all about it. Im a beginner so keep the content easy for me to understand. I want to also learn some code so give me code samples and explain it like a 10 year old" If you want some actual structured course material on the fundamentals, like what the Terminal is and how to use it, and how LLMs work, just hit me, Im not going to spam this post with a hundred links. \[2\] Alright so let's assume you got some of the fundamentals down.  Now what? Well now you really have 2 options.  You either start to pick up some proper learning content (short courses) to deep dive further and really learn about agents or you can skip that sh\*t and start building!  Honestly my advice is to seek out some short courses on agents, Hugging Face have an awesome free course on agents and DeepLearningAI also have numerous free courses. Both are really excellent places to start.  If you want a proper list of these with links, let me know.  If you want to jump in because you already know it all, then learn the n8n platform!   And no im not a share holder and n8n are not paying me to say this.  I can code, im an AI Engineer and I use n8n sometimes.   N8N is a nocode platform that gives you a drag and drop interface to build automations and agents.  Its very versatile and you can self host it.  Its also reasonably easy to actually deploy a workflow in the cloud so it can be used by an actual paying customer.  Please understand that i literally get hate mail from devs and experienced AI enthusiasts for recommending no code platforms like n8n.  So im risking my mental wellbeing for you!!!    \[3\] Keep building!   ((WTF THAT'S IT?????))  Yep. the more you build the more you will learn.  Learn by doing my young Jedi learner.  I would call myself pretty experienced in building AI Agents, and I only know a tiny proportion of this tech.  But I learn but building projects and writing about AI Agents.  The more you build the more you will learn.  There are more intermediate courses you can take at this point as well if you really want to deep dive (I was forced to - send help) and I would recommend you do if you like short courses because if you want to do well then you do need to understand not just the underlying tech but also more advanced concepts like Vector Databases and how to implement long term memory.  Where to next? Well if you want to get some recommended links just DM me or leave a comment and I will DM you, as i said im not writing this with the intention of spamming the crap out of the group. So its up to you.  Im also happy to chew the fat if you wanna chat, so hit me up.  I can't always reply immediately because im in a weird time zone, but I promise I will reply if you have any questions. THE LAST WORD (Warning - Im going to motivate the crap out of you now) Please listen to me:  YOU CAN DO THIS.  I don't care what background you have, what education you have, what language you speak or what country you are from..... I believe in you and anyway can do this.  All you need is determination, some motivation to want to learn and a computer (last one is essential really, the other 2 are optional!) But seriously you can do it and its totally worth it.  You are getting in right at the beginning of the gold rush, and yeh I believe that.   AI Agents are going to be HUGE. I believe this will be the new internet gold rush.

MVP + AI/ML Implementation/Integration - Done for you SaaS
reddit
LLM Vibe Score0
Human Vibe Score1
rikksamThis week

MVP + AI/ML Implementation/Integration - Done for you SaaS

In today’s fast-paced world, businesses need to stay ahead of the curve. Leveraging AI, ML, and Cloud technologies isn't just an option—it's a necessity. We specialize in providing cutting-edge AI/ML solutions and Cloud services that empower businesses to innovate, automate, and scale like never before. Why AI and ML Matter Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing industries by enabling systems to learn, adapt, and improve over time. Whether it's predicting customer behavior, automating tasks, or enhancing decision-making, AI and ML open up a world of possibilities. Key Benefits of AI and ML: Enhanced Decision-Making: Harness predictive analytics to make data-driven decisions. Automation: Streamline operations with intelligent automation. Personalization: Deliver tailored experiences to your customers, increasing engagement and loyalty. Efficiency: Reduce costs and time through optimized processes. How Cloud Services Drive Innovation The Cloud is the backbone of modern business infrastructure. It allows companies to be more agile, scalable, and resilient. With Cloud computing, businesses can access powerful tools and resources on-demand, without the need for significant upfront investment. Advantages of Cloud Services: Scalability: Easily scale up or down based on your business needs. Cost Efficiency: Pay only for the resources you use, minimizing overhead. Security: Benefit from the highest standards of data security and compliance. Flexibility: Access your applications and data from anywhere, anytime. Our Services We offer comprehensive services to help you harness the full potential of AI, ML, and Cloud technologies: AI and ML Solutions: We design and deploy custom AI/ML models that solve your specific business challenges. From natural language processing (NLP) to computer vision, we cover all aspects of AI/ML. Cloud Integration: We help you migrate to the Cloud, ensuring a smooth transition with minimal disruption. Whether it’s AWS, Azure, or Google Cloud, our experts have you covered. Data Analytics: Transform your data into actionable insights with advanced analytics tools and platforms. Custom Software Development: We build robust, scalable applications that integrate AI/ML capabilities and leverage the Cloud. DevOps: Automate your development pipeline and ensure continuous integration and delivery with our DevOps expertise. Why Choose Us? Expert Team: Our team of experienced professionals is well-versed in AI/ML, Cloud computing, and data analytics. End-to-End Solutions: From ideation to deployment, we offer full-cycle development services. Tailored Approach: We understand that every business is unique. We provide customized solutions that align with your specific goals. Proven Track Record: We’ve helped numerous businesses across industries to innovate and grow. Success Stories Retail Industry: Implemented an AI-driven recommendation engine that increased sales by 30%. Healthcare Sector: Developed an ML-based diagnostic tool that improved accuracy by 20%. Finance: Integrated Cloud-based AI solutions that reduced operational costs by 25%.

Is SaaS Done?
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Salad709This week

Is SaaS Done?

Other day I was talking to one of the leaders in Office, He said "SAAS IS DY!NG THANKS TO AI". I found this fascinating & started digging on this, I was already part of communities like Build in Public, NoCode Builders & Others. I think he was right. I saw a significant raise in the AI Tools, what other call it 'AI Wrapper Startups' I explored many tools, then I realise why don't we capitalise this opportunity. I found out it is the marketers who needs to be aware of these & if you don't embrace these tools you will end up losing to someone with minimum experience with marketing but good hands on experience with the tools. If these tools keep up the same phase then you have both challenges & opportunities which I've listed it down in the post pros & cons. I think we need to embrace these tools are else we will be left behind. All these things are about marketers but what about the people who want to become solopreneurs or people like Pieter Levels who just want to create something useful get money either by selling or running multiple projects at once. Whatever I've studied & learnt. I came up with something called "The SaaS Marketing Innovation Cycle". The SaaS Marketing Innovation Cycle : Will have six easy steps. Empowering with No-code : Decide what is the problem you are planing to solve & understand which is No-code tool can help you with solution. Some tools will have steep learning curve, become expert on those tools. Integrate Automation AI : This is very crucial for your tool & make sure you have build a tool which will integrates easily with most of the platforms. Build Custom Solution : Right now the whole industry of Micro SaaS stands on building custom solutions, catering your audience is the best way to go for it. Launching MVPs : Because you have no-code tools it is easier to deploy MVPs than ever before & you can build multiple tools at once. Adapt & Grow : This is about the business take feedback from customer add new feature remove few yada yada. Leverage the Growth : Here it is important you have learn to build communities out these tools. if you come up with any new ideas there is always a group of people, who will be able adapt & give you the feedback to improve. Conclusion : Either build something or adapt something quicker when that has built. What do you think Folks ??

Is SaaS Done?
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Salad709This week

Is SaaS Done?

Other day I was talking to one of the leaders in Office, He said "SAAS IS DY!NG THANKS TO AI". I found this fascinating & started digging on this, I was already part of communities like Build in Public, NoCode Builders & Others. I think he was right. I saw a significant raise in the AI Tools, what other call it 'AI Wrapper Startups' I explored many tools, then I realise why don't we capitalise this opportunity. I found out it is the marketers who needs to be aware of these & if you don't embrace these tools you will end up losing to someone with minimum experience with marketing but good hands on experience with the tools. If these tools keep up the same phase then you have both challenges & opportunities which I've listed it down in the post pros & cons. I think we need to embrace these tools are else we will be left behind. All these things are about marketers but what about the people who want to become solopreneurs or people like Pieter Levels who just want to create something useful get money either by selling or running multiple projects at once. Whatever I've studied & learnt. I came up with something called "The SaaS Marketing Innovation Cycle". The SaaS Marketing Innovation Cycle : Will have six easy steps. Empowering with No-code : Decide what is the problem you are planing to solve & understand which is No-code tool can help you with solution. Some tools will have steep learning curve, become expert on those tools. Integrate Automation AI : This is very crucial for your tool & make sure you have build a tool which will integrates easily with most of the platforms. Build Custom Solution : Right now the whole industry of Micro SaaS stands on building custom solutions, catering your audience is the best way to go for it. Launching MVPs : Because you have no-code tools it is easier to deploy MVPs than ever before & you can build multiple tools at once. Adapt & Grow : This is about the business take feedback from customer add new feature remove few yada yada. Leverage the Growth : Here it is important you have learn to build communities out these tools. if you come up with any new ideas there is always a group of people, who will be able adapt & give you the feedback to improve. Conclusion : Either build something or adapt something quicker when that has built. What do you think Folks ??

Is SaaS Done?
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Salad709This week

Is SaaS Done?

Other day I was talking to one of the leaders in Office, He said "SAAS IS DY!NG THANKS TO AI". I found this fascinating & started digging on this, I was already part of communities like Build in Public, NoCode Builders & Others. I think he was right. I saw a significant raise in the AI Tools, what other call it 'AI Wrapper Startups' I explored many tools, then I realise why don't we capitalise this opportunity. I found out it is the marketers who needs to be aware of these & if you don't embrace these tools you will end up losing to someone with minimum experience with marketing but good hands on experience with the tools. If these tools keep up the same phase then you have both challenges & opportunities which I've listed it down in the post pros & cons. I think we need to embrace these tools are else we will be left behind. All these things are about marketers but what about the people who want to become solopreneurs or people like Pieter Levels who just want to create something useful get money either by selling or running multiple projects at once. Whatever I've studied & learnt. I came up with something called "The SaaS Marketing Innovation Cycle". The SaaS Marketing Innovation Cycle : Will have six easy steps. Empowering with No-code : Decide what is the problem you are planing to solve & understand which is No-code tool can help you with solution. Some tools will have steep learning curve, become expert on those tools. Integrate Automation AI : This is very crucial for your tool & make sure you have build a tool which will integrates easily with most of the platforms. Build Custom Solution : Right now the whole industry of Micro SaaS stands on building custom solutions, catering your audience is the best way to go for it. Launching MVPs : Because you have no-code tools it is easier to deploy MVPs than ever before & you can build multiple tools at once. Adapt & Grow : This is about the business take feedback from customer add new feature remove few yada yada. Leverage the Growth : Here it is important you have learn to build communities out these tools. if you come up with any new ideas there is always a group of people, who will be able adapt & give you the feedback to improve. Conclusion : Either build something or adapt something quicker when that has built. What do you think Folks ??

Technical founders - is "bulling" your way through learning right for a startup? [I will not promote]
reddit
LLM Vibe Score0
Human Vibe Score0
JustZed32This week

Technical founders - is "bulling" your way through learning right for a startup? [I will not promote]

Sup, This is a question for technical founders. \--a little backstory-- I am starting a company in AI field that creates something nobody has ever done before. 7 months in. \--- How most software companies are created - you have an improvement idea, then you have a thousand or so problems to solve to make that improvement happen, and for each one that you don't know, you go to Stackoverflow or ChatGPT to look for solutions for that problem. Which involves next-to-no upfront preparation because for vast majority of traditional software you can solve it on-the-go - "traditional" software is very easy compared to, say, mechanical, pharma or AI engineering. However, for more advanced disciplines - can you just "Google" it on-the-go? I'm a solo founder, and 8 months in, creating a foundational model, BECAUSE I did not know things upfront, I've wasted at least 3 months doing something which was mostly technically unviable in the first place. Out of 14000 lines of code that I've done (including tests), I had to scrap 10000 recently. Imagine the scale of it. Obviously I didn't even know how ML works when I've started. Major fuck-up. How do you operate in industries which you've done before? How do you determine that it's time to start creating you big technological leaps instead of continuing to learn? Cheers. Edit: No need to push me on business topics. I know how to create value very well. It's only a tech question, and I'm only asking because - well - to deliver my value, I need to do a lot of novel tech.

Hot Take: Not all your startups need AI forced into them
reddit
LLM Vibe Score0
Human Vibe Score1
bitorsicThis week

Hot Take: Not all your startups need AI forced into them

I'm a final year Computer Engineering student, hence applying for jobs all around. There's this particular trend I've noticed with startups that are coming up these days. That is, even for the absolute basic stuff they'll use 'AI', and they'll think they built something 'revolutionary'. No. You're breaking your product in ways you don't realise. An example, that even some well established companies are guilty of: AI Chatbots You absolutely don't need them and it's an entire gimmick. If you really wanna implement a chatbot, connect the user to an actual person on your end, which I think is not possible if you're at a 'startup' stage. You'll need employees who can handle user queries in real time. If the user really is stuck let them use the 'Contact Us' page. A really close relative of mine is very vocal about the frustration he faces whenever he tries to use the AI Chatbot on any well known e-com website. The only case for AI Chatbot that makes sense is when it's directing the customer to an actual customer support rep if none of the AI's solutions is working for the customer. Even then, implementing a search page for FAQ is extremely easy and user friendly. Another example: AI Interviewer I recently interviewed for a startup, and their whole interviewing process was AI'zed?!?! No real person at the other end, I was answering to their questions which were in video format. They even had a 'mascot' / 'AI interviewer' avatar designed by an AI (AI-ception???). This mascot just text-to-speech'ed all the questions for me to rewind and hear what I missed again. And I had to record video and audio to answer these questions on their platform itself. The entire interview process just could've been a questionnaire, or if you're really concerned on the integrity of the interviewee, just take a few minutes out of your oh-so-busy schedule as a startup owner. Atleast for hiring employees who would make the most impact on your product going ahead. I say the most impact, because (atleast as a developer) the work done by these employees would define how robust your product is, and/or how easily other features can be integrated into the codebase. Trust me, refactoring code later on would only cost you time and money. These resources would rather be more useful in other departments of your startup. The only use case for an AI Interviewer I see is for preparing for an actual interview, provided that feedback is given to the user at the earliest, which you don't need to worry about as a startup owner. So yeah, you're probably better off without integrating AI in your product. Thank you for reading. TLDR; The title; I know AI is the new thing and gets everyone drooling and all, but for the love of God, just focus on what your startup does best and put real people behind it; Integrating AI without human intervention is as good as a broken product; Do your hiring yourself, or through real people, emphasizing on the fact that the people you hire at an early stage will define your growth ahead;

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

I just had my best month after 18 months as a solopreneur
reddit
LLM Vibe Score0
Human Vibe Score0.778
stepitup9600This week

I just had my best month after 18 months as a solopreneur

Last month I reached important milestones both financially (60+ sales) and in terms of my personal brand (2.500+ new followers) But the most important part is that it has reinforced a belief in myself: it is possible, as long as I keep going, improving, learning and iterating. For the last year and a half, I've been grinding and launching project after project. But there was always something wrong: Product didn't solve a real problem Bad marketing (very often lol) Target market had low purchasing power Super-competitive niche (usually b2c) It's difficult to have failure after failure and keep going on. At times it would feel like everyone was making money, except for me. I was hacking on my projects every single day before and after my 9-5 and had mostly given up all my free time for this. But results were far from being what I wanted. So I would doubt myself all the time. One thing I had going for me is that I really enjoy building things - so that helped me a lot in staying consistent. I always knew this was a long-term thing and that I'd probably have to fail again and again before seeing some success. But even so, it was really hard to keep up the spirits at all time, especially after working so hard for so long. I wasn't going to give up but I also knew that continuing like this would lead nowhere. So I decided that for my next project I would do 2 things: 1) prioritize marketing and 2) build something strategic 1) Prioritize marketing I decided I was going to put in the same amount of effort into marketing as I put into building. Usually my time would be split 90% coding - 10% marketing. Now, for the first time ever it's probably 65% coding - 35% marketing. I organized myself and made an entire gameplan for it. This forced me to learn a lot about: Video editing Cold emails Copywriting Running ads Short-form content There are a lot of items I still need to execute on - but at least I have a good idea of how to approach most things. 2) Build something strategic I had to build something that I would be able to use even if nobody else did. For the last year and a half I had been building AI apps and my plan was to continue doing that. So I decided to leverage that and thought about how I could build something that would give me an unfair advantage + have a compounding effect over the long term: a) Unfair advantage Having AI demo apps that cover all type of AI functionalities would make my life easier & would allow me to ship new apps quickly, regardless of the required model/functionality So even if nobody bought this - I'd have built something really useful for myself & would have a slight edge over other people b) Compound over the long term Building "AnotherWrapper' (my new project) would have a good synergy with my future projects: It would allow me to build new projects faster While building new projects, I'd learn new things, which I would then be able to implement into AnotherWrapper and improve the product that way A win-win. Closing thoughts I did not expect things to go this well - it's been an amazing month and I'm truly grateful to everyone that has been supporting me. But at the end of the day, there is still a lot of work to be done. The initial 'hype' & effects from some viral tweets are starting to wear off. I still don't have a reliable distribution channel that guarantees me traffic. So I need to figure that out. I think the product has a lot of potential - it has been well received and has been a success so far, but my distribution is still lacking. The good thing is that I now have some extra cash to spend on things like ads, influencers, freelancers etc. So it opens some new doors that were previously closed! I also have some other projects down the pipeline which are coming soon. Will keep you guys updated!

New to Startups; Where do I start?
reddit
LLM Vibe Score0
Human Vibe Score1
SupermarketNew5003This week

New to Startups; Where do I start?

I have an idea for an specialized AI based software system in a particular market that I think, if done well, could be a very helpful and lucrative software/AI (both for its owners as well as its users). It hasn't been properly implemented into any form that I or my associates have been able to find and I believe that now is the perfect time to start its development. I'm an entrepreneur, have started several successful companies over the years and am well experienced in all things business. But, none of my companies have involved creating a brand new product or would fall into the "Startup" category. It's a whole new world to me. That being said, I'm not sure what the proper steps are to make this idea come to fruition and am hoping for a point in the right direction. How do people usually go from idea to launch? I imagine there are 2 distinct things I need right now, funding for the project and a partner to help create the software. Step 1 would be the partner. For this partner, I'm not sure where to start to find this person. I'd imagine I need someone that's experienced in machine learning, AI engineering, software development, programming, etc. Or a combination of people with those skills. Since none of my companies are startup or tech based, I don't have connections to anyone with those skills. If I go around looking for a partner with those skills, I'll surely need to explain my idea to them and will need to be able to protect my idea before hand. Do I copyright it? Make them sign an NDA? What's common business practice? Where do I go to look for a partner with those skills? For funding, I can fund the initial stages of the project for a handful of months. From there, I'd like to find some kind of investment. But that sounds like a bridge to cross when I get further down that road. Looking forward to starting down this road and hopefully making something that benefits and pushes forward this new world of AI!

Hot Take: Not all your startups need AI forced into them
reddit
LLM Vibe Score0
Human Vibe Score1
bitorsicThis week

Hot Take: Not all your startups need AI forced into them

I'm a final year Computer Engineering student, hence applying for jobs all around. There's this particular trend I've noticed with startups that are coming up these days. That is, even for the absolute basic stuff they'll use 'AI', and they'll think they built something 'revolutionary'. No. You're breaking your product in ways you don't realise. An example, that even some well established companies are guilty of: AI Chatbots You absolutely don't need them and it's an entire gimmick. If you really wanna implement a chatbot, connect the user to an actual person on your end, which I think is not possible if you're at a 'startup' stage. You'll need employees who can handle user queries in real time. If the user really is stuck let them use the 'Contact Us' page. A really close relative of mine is very vocal about the frustration he faces whenever he tries to use the AI Chatbot on any well known e-com website. The only case for AI Chatbot that makes sense is when it's directing the customer to an actual customer support rep if none of the AI's solutions is working for the customer. Even then, implementing a search page for FAQ is extremely easy and user friendly. Another example: AI Interviewer I recently interviewed for a startup, and their whole interviewing process was AI'zed?!?! No real person at the other end, I was answering to their questions which were in video format. They even had a 'mascot' / 'AI interviewer' avatar designed by an AI (AI-ception???). This mascot just text-to-speech'ed all the questions for me to rewind and hear what I missed again. And I had to record video and audio to answer these questions on their platform itself. The entire interview process just could've been a questionnaire, or if you're really concerned on the integrity of the interviewee, just take a few minutes out of your oh-so-busy schedule as a startup owner. Atleast for hiring employees who would make the most impact on your product going ahead. I say the most impact, because (atleast as a developer) the work done by these employees would define how robust your product is, and/or how easily other features can be integrated into the codebase. Trust me, refactoring code later on would only cost you time and money. These resources would rather be more useful in other departments of your startup. The only use case for an AI Interviewer I see is for preparing for an actual interview, provided that feedback is given to the user at the earliest, which you don't need to worry about as a startup owner. So yeah, you're probably better off without integrating AI in your product. Thank you for reading. TLDR; The title; I know AI is the new thing and gets everyone drooling and all, but for the love of God, just focus on what your startup does best and put real people behind it; Integrating AI without human intervention is as good as a broken product; Do your hiring yourself, or through real people, emphasizing on the fact that the people you hire at an early stage will define your growth ahead;

Content aggregation that acts as a middleman for content discovery via third-party marketplace & revenue sharing (i will not promote but I'm looking for fellow researchers)
reddit
LLM Vibe Score0
Human Vibe Score1
colbyn-wadmanThis week

Content aggregation that acts as a middleman for content discovery via third-party marketplace & revenue sharing (i will not promote but I'm looking for fellow researchers)

High level I’m considering a content aggregation business model, but one that acts as an open marketplace where third party devs and where world class data scientists compete to build the best recommenders for different use cases. (E.g. the incentives can be ad revenue sharing or subscription based for niche professional markets.) The idea is to facilitate more bottom up innovation from third party data scientists. The platform itself just acts as the middleman. (Also something that strips out original ads and makes it easy to skip paid sponsorship sections would be great.)  I’ve seen startups building web crawlers and content aggregation systems for other AI startups. My proposal is better in the sense that third party devs are instead responsible for implementing whatever questionable hacks are necessarily to scrape platforms that don’t necessarily want to be scraped.  Personally, I’m more concerned about getting the right information than ever before, to this end I can’t rely on platform specific recommenders. The solution is more bottom up innovation in content promotion. More generally, if you’re also concerned about consuming game changing information that’s too easily missed: we need a platform that incentivizes bottom up innovation of content promotion. What we need is a platform that functions like a marketplace where third party devs and where world class data scientists compete to build the best recommenders for different use cases. Here’s some elevator pitches I’m considering:  Did you know that the magic behind YouTube is its recommendation engine? Now, imagine an open platform where independent engines compete to deliver the most personalized content feed—from news to local events—directly to you. Interested in rethinking how we find content? “In today’s fragmented digital landscape, a single platform no longer holds sway over content discovery. The Network Effect is dead: audiences are more mobile than ever; and big tech killed it. In such a fragmented landscape we’re building a bottom-up, decentralized marketplace for recommendation engines—a solution that taps into diverse revenue streams through subscriptions, ad revenue, and affiliate partnerships. Invest in the future of personalized content aggregation.” “Are you a developer passionate about algorithms and content discovery? Our open marketplace lets you build and monetize your own recommendation engine, competing to deliver the most engaging, personalized feeds. Join a revolution where your innovation can directly shape how the world finds content.” “Are you tired of being told what to watch or read by one mysterious algorithm? Imagine taking control—choosing from a marketplace of smart recommendation engines that curate content just for you. It’s a revolution in content discovery where you hold the power.” (As a Utahn this one is interesting because even mormons are talking about the dangers of “doom scrolling” though it’s seldom discussed in society at large.) As far as simple hooks I’m considering:  One platform to rule them all and in the darkness bind them.  Choose how you discover—content recommenders that work for you.  The area where recommender engines battle to win your feed. Request I would love to start prototyping this idea and see what else I can uncover from such preliminary research. But I want to get a couple other likeminded individuals onboard.  I'm the best when it comes to iOS/macOS development, but there's tons of backend work that needs to be done which I wouldn’t have the time for if i'm focused on the native clients. Who am I 'ideally' looking for?  I’ve heard of weird stats to the effect that if you scale up a population to billions of people, the number of life overlaps starts skyrocketing. Not just physical lookalikes, but people with eerily similar life paths, personalities, habits, and even thoughts — without ever knowing each other. Where are my clones? Such is whom I’m looking for in an ideal world.  Take a hunch  People nowadays have no concept of going out on a limb, taking a ‘hunch’, and backing their instincts. Everything has to be calculated, proven, and guaranteed before they make a move. In contrast consider the success of the Chinese DeepSeek project: According to Asianometry’s YouTube video on DeepSeek, their “memory-saving multi-head latent architecture” (whatever that means, just quoting the name) came about from a researchers ‘hunch’, which the company bet big on and the result was drastically improved performance on low end hardware…  Here in the west the idea of betting on a hunch is inconceivable. We have no balls to chase long term insights. My own instincts when it comes to software is such because I’ve wasted too much of my life on small scale projects. All I’m trying to do is attempt a more scaled up experiment based on some hunches with me and a few other likeminded individuals.  Just as the early oil prospectors didn’t have precise maps—just intuition and test drills. They had to drill, analyze the pressure, and adjust. The best oil fields weren’t found by foresight alone, but by adaptive exploration. The startup space itself is liken to the first prospectors who got the gold nuggets lying in the riverbed. In such an environment moving first has its advantages but nowadays I wish I could have all those shitty ‘engineers’ sent to their maker.  Today the reality is such that you’ve got to dig deep—where vast stores of wealth can be found—or go home, and those who dig into the depths cannot use mere forethought, for what lies beneath cannot be seen by the mind’s eye.  I will not promote but I'm looking for fellow research oriented minds.

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

AI will obsolete most young vertical SAAS startups, I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
Few_Incident4781This week

AI will obsolete most young vertical SAAS startups, I will not promote

This is an unpopular opinion, but living in New York City and working with a ton of vertical SaaS startups, meaning basically database wrapper startups that engineer workflows for specific industries and specific users, what they built was at one point in time kind of innovative, or their edge was the fact that they built these like very specific workflows. And so a lot of venture capital and seed funding has gone into these types of startups. But with AI, those database wrapper startups are basically obsolete. I personally feel like all of these companies are going to have to shift like quickly to AI or watch all of their edge and what value they bring to the table absolutely evaporate. It's something that I feel like it's not currently being priced in and no one really knows how to price, but it's going to be really interesting to watch as more software becomes generated and workflows get generated. I’m not saying these companies are worth nothing, but their products need to be completely redone EDIT: for people not understanding: The UX is completely different from traditional vertical saas. Also in real world scenarios, AI does not call the same APIs as the front end. The data handling and validation is different. It’s 50% rebuild. Then add in the technical debt, the fact that they might need a different tech stack to build agents correctly, different experience in their engineers. the power struggles that occur inside companies that need a huge change like this could tank the whole thing alone. It can be done, but these companies are vulnerable. The edge they have is working with existing customers to get it right. But they basically blew millions on a tech implementation that’s not as relevant going forwards. Investors maybe better served putting money into a fresh cap table

Is my idea + progress good enough to raise pre-seed round? CRM for construction niches. Non-tech founder.
reddit
LLM Vibe Score0
Human Vibe Score1
GPT-RexThis week

Is my idea + progress good enough to raise pre-seed round? CRM for construction niches. Non-tech founder.

Is my startup idea and progress good enough to raise a pre-seed round? It’s a CRM with meaningful AI integrations for specific type of B2B construction companies. I only want to continue at my current pace if it’s realistic to start raising within the next 2 weeks. At first, I thought it was fine because simple companies still get on Y-comb such as hammr and Relate CRM , but now I’m not sure. Would love to get the community’s thoughts on this. I’ve been working on this for about a week. &#x200B; Key Highlights (You can skip to longer section below) Product is CRM for B2B construction companies. The previous tech company I worked at used an in-house built CRM for their workflow, and I’m creating that solution and applying it to B2B construction companies that have similar workflows. No competitors I’ve found. I’m uniquely positioned to spearhead: B2B SaaS/tech sales + expertise in construction I’m a non-tech sales founder with experience in UI/UX. Will bring on CTO co-founder once I start raising as that would entice better talent Progress + Traction $400 MRR in pre-sales, can get to \~$800-1000 EOM Validated through customer interviews Created some Figma frames, product overview, user journeys, business plan Made a simple but meaningful AI tool that will be available to those that sign up for waitlist. Did this with GitHub + ChatGPT Landing page website going up this week followed by PPC campaign, email marketing, and outreach. My GF works in enterprise sales and she’ll help me generate more leads. &#x200B; Long Version Background B2B SaaS/Tech sales. I worked at enterprise company as an Account Executive where I worked with funded startups and their development, UI/UX, and Product management teams. I have a general knowledge in all these - my best being UI/UX design as I can work with Figma well Domain expertise: my family has had a construction company since I was young. I have a large network because of this. Problem At my previous company, we had a custom in-house built CRM for our workflow. It worked okay, despite being maintained by multiple engineers costing hundreds of thousands a year. I’m creating a CRM that solves that, and applying it to construction industries that can make use of it. I have a great network here which makes it easy for me get sales quickly. Vision Building this CRM for construction niche will allow us to generate MRR fast. We will be first movers in bringing meaningful AI tools to construction, which is generating significant interest. This gives us the opportunity to build the foundational technology that can be adapted to a wider audience such as my previous company and others - think researchers, consultants, etc. Traction + Current Progress (1 week) Validated idea through user interviews and pre-sales. Currently have $400 MRR in pre-sales. I expect $800-1000 in a month if I continue at my pace. This is from doing typical B2B sales. I’ve set up a CRM for this. Created product overview, user journeys, wireframes and some Figma frames, business plan Created a simple but meaningful AI tool for the niche which will be available to those that sign up for the waitlist. Created with GitHub + ChatGPT Completing landing page website this week. Will start PPC ads (I’m experienced in this) after that to generate sign-ups. I’ll also start email marketing from lists I’ve scraped. Team Solo-founder, will bring on CTO co-founder once I start raising funds. I have promising candidates, but feel that I need to raise funds to really entice a good co-founder. I’m uniquely positioned to head this product; B2B sales having worked with many CRMs + construction expertise and network. That said, I’ve never actually done anything that* impressive besides being an AE at a known enterprise techy company (but not FAANG level). &#x200B; I want to acknowledge that my progress might sound more impressive than it is - it's still just a CRM after all, and I'm non-technical. Should I keep going? Advice? I also have a great offer to lead sales at a profitable startup, but I could always do both if it was worth it. I’m feeling really uncertain for some reason :/ maybe it’s just burnout.

Non-technical founders with experienced outside vendor — ok?
reddit
LLM Vibe Score0
Human Vibe Score0
Secure-Proof-4872This week

Non-technical founders with experienced outside vendor — ok?

I’m a non-technical cofounder of early stage startup. (“Non-technical” but I’ve developed multimedia courseware and led teams in the past (LMS, edu content, no code). My question: how crucial is it that my other biz founder and I have a technical co-founder for our data- and AI-driven product rather than use an experienced vendor whose team has been doing machine learning and AI for 10 years? During our manual work as consultants we have identified a problem in a niche market that can be solved via a combo of hard-to-gather data and AI (and other market-specific stuff that that we will train our LLM on). We’ve done market research, designed and validated the solution with potential customers in numerous interviews via click-through prototypes/wireframes, quantified TAM, SAM, SOM, written biz plan, etc. We have deep experience in our market having proven expertise over years. But as we’ve been learning about fundraising (we hope to begin a seed round in early 2025) we continually hear about the importance of technical cofounder. We get it— but our product will only be half-developed by a technical dev team. The other aspect to the product is: gathering hard to find data, and figuring out relationships in the data — that we will do via mapping work with a cohort with unique expertise in our niche market. Also our outside vendor is very reputable with years’ experience in AI and machine learning prior to the latest gen-AI craze — he’s not a newbie and has an established dev team. And our platform is not a consumer product but a more complicated SaaS product. Like, you can’t just code it by yourself. Sure, in the long run we can hire/bring everything in house, but would investors shy away from working with us if our short-term dev effort does not have a “technical” co-founder? Thanks for your thoughts.

Competing with much bigger companies that have lame products? How do I market and carve out a niche? (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
YoKevinTrueThis week

Competing with much bigger companies that have lame products? How do I market and carve out a niche? (I will not promote)

I've been working on a product for the last few months that competes with CapCut, Adobe Premier, Veed, Descript, DaVinci Resolve, etc. Basically, it's a fancy video editor. (no link and I will not promote but just some background context) I'm very technical and started creating videos for TikTok but really wanted to take my game to the next level. My channel sort of blew up on me in the first month and I was able to get 2M views and 10k followers. My initial thinking was that I was going to use AI to make video editing fancy/faster and sort of have this as a "script" that I used personally. Basically, give myself a serious competitive advantage. However, it sort of spiraled out of control! What started off as a weekend project, turned into 2 weekends, which turned into about 2 months of continuous hacking. If I'm going to spend a significant amount of time on this, I might as well try to productize it and try to at least make enough money that I break even on my time. The thing I'm worried about, in the back of my mind, is that if I shop this, that my competitors, with their signifiant resources, could clone what I'm doing quickly. However, at the same time, why haven't they done so already? I mean maybe I have a better understanding of the market than they do because they don't actually use their products. I know that sounds like a bit of a cop out in a way but there are plenty of entrepreneurs who have started companies and crushed it just because they were heads down and focused. Another problem I face, is that I think VCs may not be super excited about this because it's B2C-ish and it's not in a super exciting space. Maybe you could say it's in the AI video space, and they're excited about AI video, but it's just an AI video editor, not fully creating AI videos from scratch like SORA. I think since I blew up my TikTok feed before, that I could do it again, and if I get 2M views, and I have a outro on my video, that I could start to convert some of these as customers. Especially, if I started to create videos for creators which is more focused on the target market. So without funding, can I really tackle these existing competitors? PS. "I will not promote" but I have to talk about this somewhat abstractly but I won't link to anything.

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

10y of product development, 2 bankruptcies, and 1 Exit — what next? [Extended Story]
reddit
LLM Vibe Score0
Human Vibe Score1
Slight-Explanation29This week

10y of product development, 2 bankruptcies, and 1 Exit — what next? [Extended Story]

10 years of obsessive pursuit from the bottom to impressive product-market fit and exit. Bootstrapping tech products as Software Developer and 3x Startup Founder (2 bankruptcies and 1 exit). Hi everyone, your motivation has inspired me to delve deeper into my story. So, as promised to some of you, I've expanded on it a bit more, along with my brief reflections. There are many founders, product creators, and proactive individuals, I’ve read many of your crazy stories and lessons so I decided to share mine and the lessons I learned from the bottom to impressive product-market fit and exit. I've spent almost the past 10 years building tech products as a Corporate Team Leader, Senior Software Developer, Online Course Creator, Programming Tutor, Head of Development/CTO, and 3x Startup Founder (2 bankruptcies, and 1 exit). And what next? good question... A brief summary of my journey: Chapter 1: Software Developer / Team Leader / Senior Software Developer I’ve always wanted to create products that win over users’ hearts, carry value, and influence users. Ever since my school days, I’ve loved the tech part of building digital products. At the beginning of school, I started hosting servers for games, blogs and internet forums, and other things that did not require much programming knowledge. My classmates and later even over 100 people played on servers that I hosted on my home PC. Later, as the only person in school, I passed the final exam in computer science. During my computer science studies, I started my first job as a software developer. It was crazy, I was spending 200–300 hours a month in the office attending also to daily classes. Yes, I didn’t have a life, but it truly was the fulfillment of my dreams. I was able to earn good money doing what I love, and I devoted fully myself to it. My key to effectively studying IT and growing my knowledge at rocket speed was learning day by day reading guides, building products to the portfolio, watching youtube channels and attending conferences, and even watching them online, even if I didn’t understand everything at the beginning. In one year we’ve been to every possible event within 400km. We were building healthcare products that were actually used in hospitals and medical facilities. It was a beautiful adventure and tons of knowledge I took from this place. That time I built my first product teams, hired many great people, and over the years became a senior developer and team leader. Even I convinced my study mates to apply to this company and we studied together and worked as well. Finally, there were 4 of us, when I left a friend of mine took over my position and still works there. If you’re reading this, I’m sending you a flood of love and appreciation. I joined as the 8th person, and after around 4 years, when I left hungry for change, there were already over 30 of us, now around 100. It was a good time, greetings to everyone. I finished my Master’s and Engineering degrees in Computer Science, and it was time for changes. Chapter 2: 1st time as a Co-founder — Marketplace In the meantime, there was also my first startup (a marketplace) with four of my friends. We all worked on the product, each of us spent thousands of hours, after hours, entire weekends… and I think finally over a year of work. As you might guess, we lacked the most important things: sales, marketing, and product-market fit. We thought users think like us. We all also worked commercially, so the work went very smoothly, but we didn’t know what we should do next with it… Finally, we didn’t have any customers, but you know what, I don’t regret it, a lot of learning things which I used many times later. The first attempts at validating the idea with the market and business activities. In the end, the product was Airbnb-sized. Landing pages, listings, user panels, customer panels, admin site, notifications, caches, queues, load balancing, and much more. We wanted to publish the fully ready product to the market. It was a marketplace, so if you can guess, we had to attract both sides to be valuable. “Marketplace” — You can imagine something like Uber, if you don’t have passengers it was difficult to convince taxi drivers, if you don’t have a large number of taxi drivers you cannot attract passengers. After a year of development, we were overloaded, and without business, marketing, sales knowledge, and budget. Chapter 3: Corp Team Lead / Programming Tutor / Programming Architecture Workshop Leader Working in a corporation, a totally different environment, an international fintech, another learning experience, large products, and workmates who were waiting for 5 pm to finish — it wasn’t for me. Very slow product development, huge hierarchy, being an ant at the bottom, and low impact on the final product. At that time I understood that being a software developer is not anything special and I compared my work to factory worker. Sorry for that. High rates have been pumped only by high demand. Friends of mine from another industry do more difficult things and have a bigger responsibility for lower rates. That’s how the market works. This lower responsibility time allowed for building the first online course after hours, my own course platform, individual teaching newbies programming, and my first huge success — my first B2C customers, and B2B clients for workshops. I pivoted to full focus on sales, marketing, funnels, advertisements, demand, understanding the market, etc. It was 10x easier than startups but allowed me to learn and validate my conceptions and ideas on an easier market and showed me that it’s much easier to locate their problem/need/want and create a service/product that responds to it than to convince people of your innovative ideas. It’s just supply and demand, such a simple and basic statement, in reality, is very deep and difficult to understand without personal experience. If you’re inexperienced and you think you understand, you don’t. To this day, I love to analyze this catchword in relation to various industries / services / products and rediscover it again and again... While writing this sentence, I’m wondering if I’m not obsessed. Chapter 4: Next try — 2nd time as a founder — Edtech Drawing upon my experiences in selling services, offering trainings, and teaching programming, I wanted to broaden my horizons, delve into various fields of knowledge, involve more teachers, and so on. We started with simple services in different fields of knowledge, mainly relying on teaching in the local area (without online lessons). As I had already gathered some knowledge and experience in marketing and sales, things were going well and were moving in the right direction. The number of teachers in various fields was growing, as was the number of students. I don’t remember the exact statistics anymore, but it was another significant achievement that brought me a lot of satisfaction and new experiences. As you know, I’m a technology lover and couldn’t bear to look at manual processes — I wanted to automate everything: lessons, payments, invoices, customer service, etc. That’s when I hired our first developers (if you’re reading this, I’m sending you a flood of love — we spent a lot of time together and I remember it as a very fruitful and great year) and we began the process of tool and automation development. After a year we had really extended tools for students, teachers, franchise owners, etc. We had really big goals, we wanted to climb higher and higher. Maybe I wouldn’t even fully call it Startup, as the client was paying for the lessons, not for the software. But it gave us positive income, bootstrap financing, and tool development for services provided. Scaling this model was not as costless as SaaS because customer satisfaction was mainly on the side of the teacher, not the quality of the product (software). Finally, we grew to nearly 10 people and dozens of teachers, with zero external funding, and almost $50k monthly revenue. We worked very hard, day and night, and by November 2019, we were packed with clients to the brim. And as you know, that’s when the pandemic hit. It turned everything upside down by 180 degrees. Probably no one was ready for it. With a drastic drop in revenues, society started to save. Tired from the previous months, we had to work even harder. We had to reduce the team, change the model, and save what we had built. We stopped the tool’s development and sales, and with the developers, we started supporting other product teams to not fire them in difficult times. The tool worked passively for the next two years, reducing incomes month by month. With a smaller team providing programming services, we had full stability and earned more than relying only on educational services. At the peak of the pandemic, I promised myself that it was the last digital product I built… Never say never… Chapter 5: Time for fintech — Senior Software Developer / Team Lead / Head of Development I worked for small startups and companies. Building products from scratch, having a significant impact on the product, and complete fulfillment. Thousands of hours and sacrifices. This article mainly talks about startups that I built, so I don’t want to list all the companies, products, and applications that I supported as a technology consultant. These were mainly start-ups with a couple of people up to around 100 people on board. Some of the products were just a rescue mission, others were building an entire tech team. I was fully involved in all of them with the hope that we would work together for a long time, but I wasn’t the only one who made mistakes when looking for a product-market fit. One thing I fully understood: You can’t spend 8–15 hours a day writing code, managing a tech team, and still be able to help build an audience. In marketing and sales, you need to be rested and very creative to bring results and achieve further results and goals. If you have too many responsibilities related to technology, it becomes ineffective. I noticed that when I have more free time, more time to think, and more time to bounce the ball against the wall, I come up with really working marketing/sales strategies and solutions. It’s impossible when you are focused on code all day. You must know that this chapter of my life was long and has continued until now. Chapter 6: 3rd time as a founder — sold Never say never… right?\\ It was a time when the crypto market was really high and it was really trending topic. You know that I love technology right? So I cannot miss the blockchain world. I had experience in blockchain topics by learning on my own and from startups where I worked before. I was involved in crypto communities and I noticed a “starving crowd”. People who did things manually and earned money(crypto) on it.I found potential for building a small product that solves a technological problem. I said a few years before that I don’t want to start from scratch. I decided to share my observations and possibilities with my good friend. He said, “If you gonna built it, I’m in”. I couldn’t stop thinking about it. I had thought and planned every aspect of marketing and sales. And you know what. On this huge mindmap “product” was only one block. 90% of the mindmap was focused on marketing and sales. Now, writing this article, I understood what path I went from my first startup to this one. In the first (described earlier) 90% was the product, but in the last one 90% was sales and marketing. Many years later, I did this approach automatically. What has changed in my head over the years and so many mistakes? At that time, the company for which I provided services was acquired. The next day I got a thank you for my hard work and all my accounts were blocked. Life… I was shocked. We were simply replaced by their trusted technology managers. They wanted to get full control. They acted a bit unkindly, but I knew that they had all my knowledge about the product in the documentation, because I’m used to drawing everything so that in the moment of my weakness (illness, whatever) the team could handle it. That’s what solid leaders do, right? After a time, I know that these are normal procedures in financial companies, the point is that under the influence of emotions, do not do anything inappropriate. I quickly forgot about it, that I was brutally fired. All that mattered was to bring my plan to life. And it has been started, 15–20 hours a day every day. You have to believe me, getting back into the game was incredibly satisfying for me. I didn’t even know that I would be so excited. Then we also noticed that someone was starting to think about the same product as me. So the race began a game against time and the market. I assume that if you have reached this point, you are interested in product-market fit, marketing, and sales, so let me explain my assumptions to you: Product: A very very small tool that allowed you to automate proper tracking and creation of on-chain transactions. Literally, the whole app for the user was located on only three subpages. Starving Crowd: We tapped into an underserved market. The crypto market primarily operates via communities on platforms like Discord, Reddit, Twitter, Telegram, and so on. Therefore, our main strategy was directly communicating with users and demonstrating our tool. This was essentially “free marketing” (excluding the time we invested), as we did not need to invest in ads, promotional materials, or convince people about the efficacy of our tool. The community could directly observe on-chain transactions executed by our algorithms, which were processed at an exceptionally fast rate. This was something they couldn’t accomplish manually, so whenever someone conducted transactions using our algorithm, it was immediately noticeable and stirred a curiosity within the community (how did they do that!). Tests: I conducted the initial tests of the application on myself — we had already invested significantly in developing the product, but I preferred risking my own resources over that of the users. I provided the tool access to my wallet, containing 0.3ETH, and went to sleep. Upon waking up, I discovered that the transactions were successful and my wallet had grown to 0.99ETH. My excitement knew no bounds, it felt like a windfall. But, of course, there was a fair chance I could have lost it too. It worked. As we progressed, some users achieved higher results, but it largely hinged on the parameters set by them. As you can surmise, the strategy was simple — buy low, sell high. There was considerable risk involved. Churn: For those versed in marketing, the significance of repeat visitors cannot be overstated. Access to our tool was granted only after email verification and a special technique that I’d prefer to keep confidential. And this was all provided for free. While we had zero followers on social media, we saw an explosion in our email subscriber base and amassed a substantial number of users and advocates. Revenue Generation: Our product quickly gained popularity as we were effectively helping users earn — an undeniable value proposition. Now, it was time to capitalize on our efforts. We introduced a subscription model charging $300 per week or $1,000 per month — seemingly high rates, but the demand was so intense that it wasn’t an issue. Being a subscriber meant you were prioritized in the queue, ensuring you were among the first to reap benefits — thus adding more “value”. Marketing: The quality of our product and its ability to continually engage users contributed to it achieving what can best be described as viral. It was both a source of pride and astonishment to witness users sharing charts and analyses derived from our tool in forum discussions. They weren’t actively promoting our product but rather using screenshots from our application to illustrate certain aspects of the crypto world. By that stage, we had already assembled a team to assist with marketing, and programming, and to provide round-the-clock helpdesk support. Unforgettable Time: Despite the hype, my focus remained steadfast on monitoring our servers, their capacity, and speed. Considering we had only been on the market for a few weeks, we were yet to implement alerts, server scaling, etc. Our active user base spanned from Japan to the West Coast of the United States. Primarily, our application was used daily during the evenings, but considering the variety of time zones, the only time I could afford to sleep was during the evening hours in Far Eastern Europe, where we had the least users. However, someone always needed to be on guard, and as such, my phone was constantly by my side. After all, we couldn’t afford to let our users down. We found ourselves working 20 hours a day, catering to thousands of users, enduring physical fatigue, engaging in talks with VCs, and participating in conferences. Sudden Downturn: Our pinnacle was abruptly interrupted by the war in Ukraine (next macroeconomic shot straight in the face, lucky guy), a precipitous drop in cryptocurrency value, and swiftly emerging competition. By this time, there were 5–8 comparable tools had infiltrated the market. It was a challenging period as we continually stumbled upon new rivals. They immediately embarked on swift fundraising endeavors — a strategy we overlooked, which in retrospect was a mistake. Although our product was superior, the competitors’ rapid advancement and our insufficient funds for expeditious scaling posed significant challenges. Nonetheless, we made a good decision. We sold the product (exit) to competitors. The revenue from “exit” compensated for all the losses, leaving us with enough rest. We were a small team without substantial budgets for rapid development, and the risk of forming new teams without money to survive for more than 1–2 months was irresponsible. You have to believe me that this decision consumed us sleepless nights. Finally, we sold it. They turned off our app but took algorithms and users. Whether you believe it or not, after several months of toiling day and night, experiencing burnout, growing weary of the topic, and gaining an extra 15 kg in weight, we finally found our freedom… The exit wasn’t incredibly profitable, but we knew they had outdone us. The exit covered all our expenses and granted us a well-deserved rest for the subsequent quarter. It was an insane ride. Despite the uncertainty, stress, struggles, and sleepless nights, the story and experience will remain etched in my memory for the rest of my life. Swift Takeaways: Comprehending User Needs: Do you fully understand the product-market fit? Is your offering just an accessory or does it truly satisfy the user’s needs? The Power of Viral Marketing: Take inspiration from giants like Snapchat, ChatGPT, and Clubhouse. While your product might not attain the same scale (but remember, never say never…), the closer your concept is to theirs, the easier your journey will be. If your user is motivated to text a friend saying, “Hey, check out how cool this is” (like sharing ChatGPT), then you’re on the best track. Really. Even if it doesn’t seem immediately evident, there could be a way to incorporate this into your product. Keep looking until you find it. Niche targeting — the more specific and tailored your product is to a certain audience, the easier your journey will be People love buying from people — establishing a personal brand and associating yourself with the product can make things easier. Value: Seek to understand why users engage with your product and keep returning. The more specific and critical the issue you’re aiming to solve, the easier your path will be. Consider your offerings in terms of products and services and focus on sales and marketing, regardless of personal sentiments. These are just a few points, I plan to elaborate on all of them in a separate article. Many products undergo years of development in search of market fit, refining the user experience, and more. And guess what? There’s absolutely nothing wrong with that. Each product and market follows its own rules. Many startups have extensive histories before they finally make their mark (for instance, OpenAI). This entire journey spanned maybe 6–8 months. I grasped and capitalized on the opportunity, but we understood from the start that establishing a startup carried a significant risk, and our crypto product was 10 times riskier. Was it worth it? Given my passion for product development — absolutely. Was it profitable? — No, considering the hours spent — we lose. Did it provide a stable, problem-free life — nope. Did this entire adventure offer a wealth of happiness, joy, and unforgettable experiences — definitely yes. One thing is certain — we’ve amassed substantial experience and it’s not over yet :) So, what lies ahead? Chapter 7: Reverting to the contractor, developing a product for a crypto StartupReturning to the past, we continue our journey… I had invested substantial time and passion into the tech rescue mission product. I came on board as the technical Team Leader of a startup that had garnered over $20M in seed round funding, affiliated with the realm of cryptocurrencies. The investors were individuals with extensive backgrounds in the crypto world. My role was primarily technical, and there was an abundance of work to tackle. I was fully immersed, and genuinely devoted to the role. I was striving for excellence, knowing that if we secured another round of financing, the startup would accelerate rapidly. As for the product and marketing, I was more of an observer. After all, there were marketing professionals with decades of experience on board. These were individuals recruited from large crypto-related firms. I had faith in them, kept an eye on their actions, and focused on my own responsibilities. However, the reality was far from satisfactory. On the last day, the principal investor for the Series A round withdrew. The board made the tough decision to shut down. It was a period of intense observation and gaining experience in product management. This was a very brief summary of the last 10 years. And what next? (Last) Chapter 8: To be announced — Product Owner / Product Consultant / Strategist / CTO After spending countless hours and days deliberating my next steps, one thing is clear: My aspiration is to continue traversing the path of software product development, with the hopeful anticipation that one day, I might ride the crest of the next big wave and ascend to the prestigious status of a unicorn company. I find myself drawn to the process of building products, exploring product-market fit, strategizing, engaging in software development, seeking out new opportunities, networking, attending conferences, and continuously challenging myself by understanding the market and its competitive landscape. Product Owner / Product Consultant / CTO / COO: I’m not entirely sure how to categorize this role, as I anticipate that it will largely depend on the product to which I will commit myself fully. My idea is to find one startup/company that wants to build a product / or already has a product, want to speed up, or simply doesn’t know what’s next. Alternatively, I could be a part of an established company with a rich business history, which intends to invest in digitization and technological advancements. The goal would be to enrich their customer experience by offering complementary digital products Rather than initiating a new venture from ground zero with the same team, I am receptive to new challenges. I am confident that my past experiences will prove highly beneficial for the founders of promising, burgeoning startups that already possess a product, or are in the initial phases of development. ‘Consultant’ — I reckon we interpret this term differently. My aim is to be completely absorbed in a single product, crafting funnels, niches, strategies, and all that is necessary to repeatedly achieve the ‘product-market fit’ and significant revenue. To me, ‘consultant’ resonates more akin to freelancing than being an employee. My current goal is to kickstart as a consultant and aide, dealing with facilitating startups in their journey from point A to B. Here are two theoretical scenarios to illustrate my approach: Scenario 1: (Starting from point A) You have a product but struggle with marketing, adoption, software, strategy, sales, fundraising, or something else. I conduct an analysis and develop a strategy to reach point B. I take on the “dirty work” and implement necessary changes, including potential pivots or shifts (going all-in) to guide the product to point B. The goal is to reach point B, which could involve achieving a higher valuation, expanding the user base, increasing sales, or generating monthly revenue, among other metrics. Scenario 2: (Starting from point A) You have a plan or idea but face challenges with marketing, adoption, strategy, software, sales, fundraising, or something else. I analyze the situation and devise a strategy to reach point B. I tackle the necessary tasks, build the team, and overcome obstacles to propel the product to point B. I have come across the view that finding the elusive product-market fit is the job of the founder, and it’s hard for me to disagree. However, I believe that my support and experiences can help save money, many failures, and most importantly, time. I have spent a great deal of time learning from my mistakes, enduring failure after failure, and even had no one to ask for support or opinion, which is why I offer my help. Saving even a couple of years, realistically speaking, seems like a value I’m eager to provide… I invite you to share your thoughts and insights on these scenarios :) Closing Remarks: I appreciate your time and effort in reaching this point. This has been my journey, and I wouldn’t change it for the world. I had an extraordinary adventure, and now I’m ready for the next exciting battle with the market and new software products. While my entire narrative is centered around startups, especially the ones I personally built, I’m planning to share more insights drawn from all of my experiences, not just those as a co-founder. If you’re currently developing your product or even just considering the idea, I urge you to reach out to me. Perhaps together, we can create something monumental :) Thank you for your time and insights. I eagerly look forward to engaging in discussions and hearing your viewpoints. Please remember to like and subscribe. Nothing motivates to write more than positive feedback :) Matt.

Selling equity - what’s next?
reddit
LLM Vibe Score0
Human Vibe Score0
found_it_online_01This week

Selling equity - what’s next?

Hey all, Seeking some guidance / advice as I plan my exit from a marketing agency I helped grow to $5M Long story short, I was hired part time to build their digital marketing department that sat at around 40k annual agency revenue. Since then I’ve become a minority equity partner, and at one point the agency was above $5M in gross agency revenue. The digital department that I run had up to 13 FTE employees at one point And digital revenue accounted for 60% of all agency revenue for the last 3-4 years. So, why am I leaving? Things are groovy, right? Well, we have dropped from $5M to now $3M this year and we’ll be lucky to hit that. As a minority equity party it’s been hard to watch leadership continue to disregard our agency as a digital agency. They don’t want to niche down, and they don’t want to identify as a digital agency, but instead by a full service “strategic agency”. Clients have felt our lack of expertise and direction, so they leave for someone who is an expert in xyz platform or industry. I no longer see their vision, and so I’m planning a sale of my equity and looking for new venture opportunities. While I am perfectly capable of running Google ads and Facebook ads campaigns, and as an accomplished SEO I know how to rank sites, and still find it fun. But I’m not interested in the labor arbitrage model of agency work anymore. I’d rather build a portfolio of in-house properties or digital assets where I have more control. Lately my obsession has been using AI and zapier to automate business processes, documentation, project management etc. Agency life has also exposed me to a lot of industries and business models, which I am always fascinated by. Eventually I will launch my own business, but I’m supporting my partner while they finish school. So I’m a single income household.. Therefore a W2 would be ideal but I’m open to contract work. So my question is- what positions or roles would I fill? I’ve done my share of research but this community has always given me new things to consider. Any feedback or questions are welcomed.

Why you should consider using small open source fine-tuned models
reddit
LLM Vibe Score0
Human Vibe Score0.929
hamada0001This week

Why you should consider using small open source fine-tuned models

Context I want to start off by giving some context on what fine-tuning is, why it's useful and who it would be useful for: What is fine-tuning? When controlling the output of an LLM there are, broadly, three levels. Prompt engineering, RAG and fine-tuning. Most of you are likely familiar with the first two. Prompt engineering is when you try to optimize the prompt to get the model to do what you want better. RAG (retrieval augmented generation) is when you first do a search on some data (usually stored in a vector database which allows you to search by similarity), then you insert the results into the prompt so that the model can use that context to more accurately answer any questions. It's like letting the LLM access external information right before answering, using that additional context to improve its response Fine-tuning is when you want to fundamentally teach a model something new or teach it to behave in a particular way. You would provide the model with high quality data (i.e. inputs and outputs) which it will train on. Why is it useful? At the moment, many of you use the largest and best LLMs because they give the best results. However, for a lot of use cases you are likely using a sledgehammer for a small nail. Does it do a great job? Damn yeah! Well... why not use a smaller hammer? Because it might miss or hit your finger. The solution shouldn't be to use a sledgehammer, but rather to learn how to use a smaller hammer properly so you never miss! That's exactly what fine-tuning a smaller model is like. Once you fine-tune it on a specific task with good high quality data, it can surpass even the best models at that specific task. It'll be 10x cheaper to run, much faster and, if you use an open source model, you'll own the model (no vendor lock-in!). If you run a SaaS and your biggest expense is AI costs then you should definitely consider fine-tuning. It'll take some time to set up but it'll be well worth it in the medium/long term (a bit like SEO). You can always resort to the best models for more complex tasks. How to fine-tune? I'm going to give you a breakdown of the process from beginning to end. You do need to be (a bit) technical in order to do this. Getting the data Let's suppose we want to fine-tune a model to make high-quality SEO content. At the moment, you might be using a large sophisticated prompt or using multiple large LLMs to write different parts or utilizing RAG. This is all slow and expensive but might be giving you great results. Our goal is to replace this with a fine-tuned model that is great at one thing: writing high-quality SEO content quickly at a much lower cost. The first step is gathering the appropriate data. If you want the model to write 3 or 4 paragraphs based on a prompt that contains the topic and a few keywords, then your data should match that. There are a few way you can do this: You can manually gather high-quality SEO content. You'd write the prompt and the response that the model should give. You can use a larger more powerful LLM to generate the content for you (also known as synthetic data). It'll be expensive but remember that it'll be a larger one-off cost to get the data. If you already have a pipeline that works great then you can use the prompts and the generated content that you already have from that pipeline. You can buy a high-quality dataset or get someone to make it for you. The data is the most important part of this process. Remember, garbage in garbage out. Your data needs to have a good variety and should not contain any bad examples. You should aim for around 1000 examples. The more the better! The actual fine-tuning. At this stage you are now ready to choose a model and setup the fine-tuning. If you are unsure I'd stick to the Llama 3.1 family of models. They are great and reliable. There are three models: 8b, 70b and 405b. Depending on the complexity of the task you should select an appropriate size. However, to really reap the cost saving benefits and the speed you should try to stick with the 8b model or the the 70b model if the 8b is not good enough. For our SEO example, let's use the 8b model. Important note on selecting a model: You might see multiple models with the 8b flag. You might see 4bit-bnb or instruct. The instruct version of the models have basically been trained to be chatbots. So if you want to keep the chatbot-like instruction-following functionality then you should use the instruct version as the base. The non-instruct version simply generates text. It won't 'act' like a chatbot which is better for use cases like creative writing. The 4bit-bnb means that the model has been 'quantized'. Basically it has been made 4x smaller (the original is in 16 bits) so that it is faster to download and faster to fine-tune. This slightly reduces the accuracy of the model but it's usually fine for most use cases :) Fine-tuning should be done on a good GPU. CPU aren't good enough. So you can't spin up a droplet on digital ocean and use that. You'll specifically need to spin up a GPU. One website that I think is great is Runpod .io (I am not affiliated with them). You simply pay for the GPU by the hour. If you want the training to be fast you can use the H100, if you want something cheaper but slower you can use the A40. Although the A40 won't be good enough to run the 70b parameter model. For the 405b model you'll need multiple H100s but let's leave that for more advanced use cases. Once you've spun up your H100 and ssh-ed into it. I would recommend using the unsloth open source library to do the fine-tuning. They have great docs and good boilerplate code. You want to train using a method called QLoRA. This won't train the entire model but only "part of it". I don't want to get into the technical details as t3hat isn't important but essentially it's a very efficient and effective way of fine-tuning models. When fine-tuning you can provide something called a 'validation set'. As your model is training it will be tested against the 'validation set' to see how well it's doing. You'll get an 'eval loss' which basically means how well is your model doing when compared with the unseen validation data. If you have 1000 training examples I'd recommend taking out 100-200 so it can act as the validation set. Your model may start off with an eval loss of 1.1 and by the end of the training (e.g. 3 epochs - the number of epochs is the number of times your model will be trained on the entire dataset. It's like reading a book more than once so you can understand it better. Usually 3-5 epochs is enough) the eval loss would drop to 0.6 or 0.7 which means your model has made great progress in learning your dataset! You don't want it to be too low as that means it is literally memorizing which isn't good. Post fine-tuning You'll want to save the model with the best eval loss. You actually won't have the whole model, just something called the "QLoRA adapters". These are basically like the new neurons that contain the "understanding" of the data you trained the model on. You can combine these with the base model (using unsloth again) to prompt the model. You can also (and I recommend this) convert the model to GGUF format (using unsloth again). This basically packages the QLoRA adapters and model together into an optimized format so you can easily and efficiently run it and prompt it (using unsloth again... lol). I would then recommend running some evaluations on the new model. You can do this by simply prompting the new model and a more powerful model (or using your old pipeline) and then asking a powerful model e.g. Claude to judge which is better. If your model consistently does better then you've hit a winner! You can then use runpod again to deploy the model to their serverless AI endpoint so you only pay when it's actually being inferenced. (Again, I'm not affiliated with them) I hope this was useful and you at least got a good idea of what fine-tuning is and how you might go about doing it. By the way, I've just launched a website where you can easily fine-tune Llama 3.1 models. I'm actually hoping to eventually automate this entire process as I believe small fine-tuned models will be much more common in the future. If you want more info, feel free to DM me :)

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

Serious B2B businesses will not try to create a solution using AI - This is why. [i will not promote]
reddit
LLM Vibe Score0
Human Vibe Score1
consultaliThis week

Serious B2B businesses will not try to create a solution using AI - This is why. [i will not promote]

After architecting and developing multiple B2B SaaS platforms and resolving countless challenges, here's why I don't think a proper B2B solution can be developed using AI. You must have senior tech-folks in your teams - even if you choose to leverage AI for expediting some code generation. This isn't theory - this is battle-tested reality. You can use this as a template if you're building one. Core Considerations: Multi-Tenancy Foundation (B2B) Proper tenant isolation at every layer (data, compute, networking) Flexible deployment models (pooled vs. silo) based on customer tier Tenant-aware everything (logging, metrics, tracing) Identity & Security (B2B/Standalone) Enterprise-grade authentication, often with SSO support Role-based access control (RBAC) at tenant level (may need dynamic policy generation for resource access) Audit trails for all system actions (specially if you're in a regulated domain) Client/Tenant Management (B2B) Self-service onboarding with admin approval workflows Automated tenant provisioning/deprovisioning Tenant-specific configurations and customizations Cross-tenant analytics and administration Operational Excellence (B2B/Standalone) Zero-downtime deployments (helps with canary releases) Tenant-isolated debugging capabilities Resource quotas and throttling by tenant tier Automated backup and disaster recovery per tenant Scalability Architecture (B2B) Independent scaling of tenant workloads Resource isolation for "noisy neighbor" prevention Tier-based performance guarantees (SLAs) Dynamic resource allocation Each of these topics can be as complicated as you can think of - depends on the solution you're building. I have seen many seasoned architects and developers struggle also because of their "single-tenant" mindset. Here are some common pitfalls to avoid (B2B/Standalone): Standalone - mindset in database design Hard-coded configurations Lack of context in logging/monitoring Insufficient tenant isolation in shared services (B2B) Missing tenant-aware cost allocation (B2B) You need people great with infrastructure as well. They need to consider: Tenant-aware routing (API Gateway or whatever you're using) Code with isolation when/if required Data storage with proper partitioning Shared services vs. dedicated services strategy There are a number of common problems I have seen people often make. Often it's because of a pressure from high above. But every architectural decision must considered in terms of the solution you're building. In many cases, security cannot be bolted on later, observability must be tenant-aware from day one, operations must scale. This is just the foundation. Your actual business logic sits ON TOP of all this. Now, would you think these can be done by AI? I'll be waiting for that day. :-)

Looking for an accountability partner as a solo founder. [I will not promote]
reddit
LLM Vibe Score0
Human Vibe Score1
EquivalentDecent5582This week

Looking for an accountability partner as a solo founder. [I will not promote]

Hello! I am a technical founder focused on using AI solutions to drive automation. Recently had a co-founder split after working together for a couple month. We had a very good traction but I made a decision to leave because I believed we didn't have a solid foundational relationship that can be sustained for a long time. Had more of a co-worker style relationship. Took on the short-term pain to set myself up for a long term success. He was the one leading the sales and relation with the businesses, so we decided he will be leading the company moving forward and we split on very good terms. Back in the gulag now and starting from scratch. Took three days to reset and recover. When I tried to get back at things yesterday, my brain wasn't just having it. My stress activation got so high, i did like 4 wim hof breathing sessions and a 10 mile run to relieve the stress buildup. There is something about uncertainty and working without a lack of clear path that is super hard to process especially when you are solo. Currently I am working through my previous idea backlogs that I have built up and re-starting previous conversations. But my brain isn't giving me the dopamine hit from driving toward action as much as I used to. So any work that i do feels like a slogging through mud. I am looking to experiment with having an accountability partner, to make the initial ramp up easier. Thinking of doing the elon musk style "What have you done this week?" report that we can do to drive accountability and give that extra motivation. If you're navigating similar challenges as a solo founder and believe mutual accountability could accelerate our progress and growth, I'd love to connect. Let's help each other build momentum and stay motivated—drop a comment or DM if interested! I will not promote

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote )
I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
vishwa1238This week

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote ) I will not promote

I will not promote I don’t even know where to start, but I just feel completely stuck right now. I’m 20 years oldI don’t even know where to start, but I just feel completely stuck right now. I’m 20 years old, have been grinding non-stop for months, and it feels like I have nothing to show for it. I built an AI agent that automates workflows for businesses. I can build tech, but I can’t sell. That’s been my biggest realization recently—I thought building would be enough, but it’s not. I need customers, I need a co-founder, I need to figure out the business side… and I have no idea how. I applied to YC, IVI at ISB, and EF, met a lot of insanely smart people—some were impressed with me and my work, but they were wiser, more experienced, and honestly, just better at all of this than I am. It made me realize how much I don’t know. I got rejected from YC & IVI. 💔 YC didn’t even give much feedback—just a standard rejection. 💔 IVI told me: “You're too young, you need more experience, and you should work with a team before trying to start something.” That hit me hard. I had already been struggling to find a co-founder, and this just made me wonder if I even belong in this space yet. The Frustrating Part? I KNOW my tool Has a Unique Edge. I’m not just another AI automation tool—I know my tool has a strong USP that competitors lack. It has the potential to be an AI employee for businesses, not just another workflow tool. But I still haven’t built the “perfect product” I originally envisioned. And that’s what’s eating at me. I see what it COULD be, but I haven’t made it happen yet. At the same time, the competition in the AI agent space is exploding. YC-backed companies are working on AI agent startups. OpenAI is making huge progress with Operator. Competitors are moving fast, while I feel stuck. I’ve delayed development because I’m unsure whether to double down, pivot, or just move on entirely. Where I’m Stuck Right Now 🔹 Do I keep pushing and try to crack sales somehow? 🔹 Do I join a startup as a founding engineer to get experience, make connections, and learn sales before trying again? 🔹 Do I move to Bangalore, meet founders, and figure out what’s next? 🔹 Do I pivot to something nicher instead of competing in the AI agent race? If so, how do I even find a niche worth pursuing? 🔹 Do I even belong in startups? Or am I just forcing something that’s not working? I feel stuck in a weird middle zone where I’m not a beginner, but I’m also not successful. I’ve done enough to see what’s possible, but not enough to make it real. Every rejection makes me question if I’m even on the right path. I don’t know if I’m posting this for advice or just to get it out of my system. Maybe both. Has anyone else felt like this before? If you’ve been in this situation—how did you figure out whether to keep going or move on? TL;DR: I’m 20, built an AI agent for automating workflows, got rejected from YC & IVI, met insanely smart and experienced people, realized I can build tech but can’t sell, struggling to find a co-founder, AI agent competition is growing, delaying development, confused about the future—don’t know whether to double down, pivot, or move on. The frustrating part? I\ know I have a unique edge that others lack, but I still haven’t built the perfect product I originally envisioned.* edit: removed the tool's name

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
GummyBear8659This week

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)

Hey everyone! Long-time lurker, first-time founder here. I’m reaching out to get feedback on a recent startup experience—what went wrong, what I could have done better, and how I should approach future opportunities. The Background There were three founders in this venture: • Founder A (CEO, 50%) – The product/growth guy who identified the problem space. • Founder B (Me, CTO, 37.5%) – A software engineer with a software dev shop and multiple clients. I wanted to diversify into building my own products but am not inherently a “product person.” • Founder C (COO, 12.5%) – Brought into the mix by Founder A, with the goal of leveraging his network for traction once the product was built. The idea was to create Product X, a solution targeting the SMB space while competitors were moving upmarket. It wasn’t revolutionary—more of a strategic market play. The Initial Plan & My Role • Founder A would define and prioritize product specs, guiding what needed to be built. • I (Founder B) didn’t have time to code myself, so I allocated engineers from my dev shop (which I personally paid for). My stake was adjusted from 32.5% to 37.5% to reflect this contribution. • Founder C was more of an observer early on, planning to help with traction once we had a product ready. We agreed on a 1-year cliff and a 4-year vesting schedule for equity. Where Things Started to Go Wrong • Lack of a Clear Product Roadmap – Founder A was very focused on getting something built fast, but we never signed off on a structured roadmap or milestones. I underestimated the complexity of what was actually needed for customer conversations. • Engineering Expectations vs. Reality – The team (one part-time lead + two full-time juniors from my dev shop) faced early feedback that development was too slow. In response, I ramped up the lead to full-time and added a part-time PM. But Founder A continued pushing for speed, despite real hurdles (OAuth integrations, etc.). • Shifting MVP Goalposts – Midway, Founder A concluded that an MVP wouldn’t cut it—we needed a more complete product to be competitive. This meant more engineering, more delays, and more of my own money spent on development. The Breaking Point Near the 1-year vesting mark, we had an opportunity: a paying client willing to fund an app. I didn’t have devs on the bench, so I asked Founder A to hold off our project briefly while I hired more engineers to avoid stalling either effort. This was the final straw. Founder A (with Founder C somewhat aligned) decided the arrangement wasn’t working—citing past disagreements and the “slowness” issue. The decision was made to end the partnership. Now, Founder A, as majority holder, is requesting a full handover of the code, Founder C is indifferent, and all engineering costs I covered are essentially lost. Key Takeaways (So Far) Crystal-Clear Agreements Upfront – A formalized product roadmap and timeline should’ve been locked in from day one. Business Needs > Engineering Standards – I wanted to build something solid and scalable, but in an early-stage startup, speed to market is king. This was before AI tools became mainstream, so our approach wasn’t as optimized. Don’t Overextend Without Protection – I personally financed all engineering, but without clear safeguards, that investment became a sunk cost. Expenses Must Be Distributed – I was solely covering engineering salaries, which created an imbalance in financial risk. Future partnerships should ensure costs are shared proportionally, rather than one person shouldering the burden. Where I Need Advice Looking back, I want to improve as an engineer, CEO, and co-founder. • What should I have done differently in structuring this partnership? • How do you balance engineering quality with the startup need for speed? • As a dev shop owner, how can I better navigate equity deals where I’m also bringing in engineering resources? I really appreciate everyone who went through this long post and provide any insights from founders, engineers, or anyone who has been in a similar situation. Thanks for reading! ===================================================================== For readers who might be thinking what set this type of expectation? Because I had a dev shop and I thought my co-founders will be understanding of my business circumstance and I was a bit trigger to build a product with a C-exec team, I gave the impression of "unlimited" engineering which I later realized down the line that it was not feasible for me. Something I learned that I have to be more careful with and set expectations accordingly from the very beginning. And from the feedback of the commenters here, I am much more aware what I should offer and how to set expectations, esp. in the early stages of execution. So thank you all! 🙏🏾 EDIT: I would like to thank everyone who contributed to this thread. You not only helped me but future founders who are considering to get into the startup scene!

Hot Take: Not all your startups need AI forced into them
reddit
LLM Vibe Score0
Human Vibe Score1
bitorsicThis week

Hot Take: Not all your startups need AI forced into them

I'm a final year Computer Engineering student, hence applying for jobs all around. There's this particular trend I've noticed with startups that are coming up these days. That is, even for the absolute basic stuff they'll use 'AI', and they'll think they built something 'revolutionary'. No. You're breaking your product in ways you don't realise. An example, that even some well established companies are guilty of: AI Chatbots You absolutely don't need them and it's an entire gimmick. If you really wanna implement a chatbot, connect the user to an actual person on your end, which I think is not possible if you're at a 'startup' stage. You'll need employees who can handle user queries in real time. If the user really is stuck let them use the 'Contact Us' page. A really close relative of mine is very vocal about the frustration he faces whenever he tries to use the AI Chatbot on any well known e-com website. The only case for AI Chatbot that makes sense is when it's directing the customer to an actual customer support rep if none of the AI's solutions is working for the customer. Even then, implementing a search page for FAQ is extremely easy and user friendly. Another example: AI Interviewer I recently interviewed for a startup, and their whole interviewing process was AI'zed?!?! No real person at the other end, I was answering to their questions which were in video format. They even had a 'mascot' / 'AI interviewer' avatar designed by an AI (AI-ception???). This mascot just text-to-speech'ed all the questions for me to rewind and hear what I missed again. And I had to record video and audio to answer these questions on their platform itself. The entire interview process just could've been a questionnaire, or if you're really concerned on the integrity of the interviewee, just take a few minutes out of your oh-so-busy schedule as a startup owner. Atleast for hiring employees who would make the most impact on your product going ahead. I say the most impact, because (atleast as a developer) the work done by these employees would define how robust your product is, and/or how easily other features can be integrated into the codebase. Trust me, refactoring code later on would only cost you time and money. These resources would rather be more useful in other departments of your startup. The only use case for an AI Interviewer I see is for preparing for an actual interview, provided that feedback is given to the user at the earliest, which you don't need to worry about as a startup owner. So yeah, you're probably better off without integrating AI in your product. Thank you for reading. TLDR; The title; I know AI is the new thing and gets everyone drooling and all, but for the love of God, just focus on what your startup does best and put real people behind it; Integrating AI without human intervention is as good as a broken product; Do your hiring yourself, or through real people, emphasizing on the fact that the people you hire at an early stage will define your growth ahead;

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
GummyBear8659This week

What I Learned from a Failed Startup: Seeking Advice on Engineering, Co-Founder Agreements & Execution (i will not promote)

Hey everyone! Long-time lurker, first-time founder here. I’m reaching out to get feedback on a recent startup experience—what went wrong, what I could have done better, and how I should approach future opportunities. The Background There were three founders in this venture: • Founder A (CEO, 50%) – The product/growth guy who identified the problem space. • Founder B (Me, CTO, 37.5%) – A software engineer with a software dev shop and multiple clients. I wanted to diversify into building my own products but am not inherently a “product person.” • Founder C (COO, 12.5%) – Brought into the mix by Founder A, with the goal of leveraging his network for traction once the product was built. The idea was to create Product X, a solution targeting the SMB space while competitors were moving upmarket. It wasn’t revolutionary—more of a strategic market play. The Initial Plan & My Role • Founder A would define and prioritize product specs, guiding what needed to be built. • I (Founder B) didn’t have time to code myself, so I allocated engineers from my dev shop (which I personally paid for). My stake was adjusted from 32.5% to 37.5% to reflect this contribution. • Founder C was more of an observer early on, planning to help with traction once we had a product ready. We agreed on a 1-year cliff and a 4-year vesting schedule for equity. Where Things Started to Go Wrong • Lack of a Clear Product Roadmap – Founder A was very focused on getting something built fast, but we never signed off on a structured roadmap or milestones. I underestimated the complexity of what was actually needed for customer conversations. • Engineering Expectations vs. Reality – The team (one part-time lead + two full-time juniors from my dev shop) faced early feedback that development was too slow. In response, I ramped up the lead to full-time and added a part-time PM. But Founder A continued pushing for speed, despite real hurdles (OAuth integrations, etc.). • Shifting MVP Goalposts – Midway, Founder A concluded that an MVP wouldn’t cut it—we needed a more complete product to be competitive. This meant more engineering, more delays, and more of my own money spent on development. The Breaking Point Near the 1-year vesting mark, we had an opportunity: a paying client willing to fund an app. I didn’t have devs on the bench, so I asked Founder A to hold off our project briefly while I hired more engineers to avoid stalling either effort. This was the final straw. Founder A (with Founder C somewhat aligned) decided the arrangement wasn’t working—citing past disagreements and the “slowness” issue. The decision was made to end the partnership. Now, Founder A, as majority holder, is requesting a full handover of the code, Founder C is indifferent, and all engineering costs I covered are essentially lost. Key Takeaways (So Far) Crystal-Clear Agreements Upfront – A formalized product roadmap and timeline should’ve been locked in from day one. Business Needs > Engineering Standards – I wanted to build something solid and scalable, but in an early-stage startup, speed to market is king. This was before AI tools became mainstream, so our approach wasn’t as optimized. Don’t Overextend Without Protection – I personally financed all engineering, but without clear safeguards, that investment became a sunk cost. Expenses Must Be Distributed – I was solely covering engineering salaries, which created an imbalance in financial risk. Future partnerships should ensure costs are shared proportionally, rather than one person shouldering the burden. Where I Need Advice Looking back, I want to improve as an engineer, CEO, and co-founder. • What should I have done differently in structuring this partnership? • How do you balance engineering quality with the startup need for speed? • As a dev shop owner, how can I better navigate equity deals where I’m also bringing in engineering resources? I really appreciate everyone who went through this long post and provide any insights from founders, engineers, or anyone who has been in a similar situation. Thanks for reading! ===================================================================== For readers who might be thinking what set this type of expectation? Because I had a dev shop and I thought my co-founders will be understanding of my business circumstance and I was a bit trigger to build a product with a C-exec team, I gave the impression of "unlimited" engineering which I later realized down the line that it was not feasible for me. Something I learned that I have to be more careful with and set expectations accordingly from the very beginning. And from the feedback of the commenters here, I am much more aware what I should offer and how to set expectations, esp. in the early stages of execution. So thank you all! 🙏🏾 EDIT: I would like to thank everyone who contributed to this thread. You not only helped me but future founders who are considering to get into the startup scene!

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote )
I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
vishwa1238This week

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote ) I will not promote

I will not promote I don’t even know where to start, but I just feel completely stuck right now. I’m 20 years oldI don’t even know where to start, but I just feel completely stuck right now. I’m 20 years old, have been grinding non-stop for months, and it feels like I have nothing to show for it. I built an AI agent that automates workflows for businesses. I can build tech, but I can’t sell. That’s been my biggest realization recently—I thought building would be enough, but it’s not. I need customers, I need a co-founder, I need to figure out the business side… and I have no idea how. I applied to YC, IVI at ISB, and EF, met a lot of insanely smart people—some were impressed with me and my work, but they were wiser, more experienced, and honestly, just better at all of this than I am. It made me realize how much I don’t know. I got rejected from YC & IVI. 💔 YC didn’t even give much feedback—just a standard rejection. 💔 IVI told me: “You're too young, you need more experience, and you should work with a team before trying to start something.” That hit me hard. I had already been struggling to find a co-founder, and this just made me wonder if I even belong in this space yet. The Frustrating Part? I KNOW my tool Has a Unique Edge. I’m not just another AI automation tool—I know my tool has a strong USP that competitors lack. It has the potential to be an AI employee for businesses, not just another workflow tool. But I still haven’t built the “perfect product” I originally envisioned. And that’s what’s eating at me. I see what it COULD be, but I haven’t made it happen yet. At the same time, the competition in the AI agent space is exploding. YC-backed companies are working on AI agent startups. OpenAI is making huge progress with Operator. Competitors are moving fast, while I feel stuck. I’ve delayed development because I’m unsure whether to double down, pivot, or just move on entirely. Where I’m Stuck Right Now 🔹 Do I keep pushing and try to crack sales somehow? 🔹 Do I join a startup as a founding engineer to get experience, make connections, and learn sales before trying again? 🔹 Do I move to Bangalore, meet founders, and figure out what’s next? 🔹 Do I pivot to something nicher instead of competing in the AI agent race? If so, how do I even find a niche worth pursuing? 🔹 Do I even belong in startups? Or am I just forcing something that’s not working? I feel stuck in a weird middle zone where I’m not a beginner, but I’m also not successful. I’ve done enough to see what’s possible, but not enough to make it real. Every rejection makes me question if I’m even on the right path. I don’t know if I’m posting this for advice or just to get it out of my system. Maybe both. Has anyone else felt like this before? If you’ve been in this situation—how did you figure out whether to keep going or move on? TL;DR: I’m 20, built an AI agent for automating workflows, got rejected from YC & IVI, met insanely smart and experienced people, realized I can build tech but can’t sell, struggling to find a co-founder, AI agent competition is growing, delaying development, confused about the future—don’t know whether to double down, pivot, or move on. The frustrating part? I\ know I have a unique edge that others lack, but I still haven’t built the perfect product I originally envisioned.* edit: removed the tool's name

Good at coding, bad at marketing. Summary
reddit
LLM Vibe Score0
Human Vibe Score0.4
Official-DATSThis week

Good at coding, bad at marketing. Summary

Hello. I posted a question on what to do if you are good at coding but bad at marketing four days ago, and I received so many responses and tips. The original post is here. I was really glad and excited to read comments. To return the favor to the community and add some more value, I’ve summarized all the comments I got on the original post. Here are they, with my personal comments on some of the advice I got. You’ll never believe it, but the most common advice was to learn. Really, the first and only thing you should start with if you’re bad at marketing is learning. Yet learning could be different. I highlighted 5 main areas. Educate yourself on general questions. Learn more about some basics. For example, start by finding out what the 4P’s of marketing are, and afterward, you’ll inevitably run into YouTube videos, seminars, Udemy courses, or any other resource that resonates with you on some ideas/avenues you could pursue. Read books and watch videos. There are tons of books on marketing and sales. People shared in the comments books by Dan Kennedy and “Cashvertising”, written by Drew Eric Whitman. (I’ve never heard of them, but already ordered on Amazon). For sales, the most common idea was to start with YouTube videos. For example, Alex Hormozi videos and Startup school delivered by Ycombinator videos. Check out Indie Hackers and scrutinize it for a piece of good advice from developers in the same situation. Also, there was advice to follow up and read some guy on Twitter. (Don't want to get unfairly banned from here, so won't post it) Educate yourself and hire a professional or find a co-founder to help you: Hire a seasoned marketer in this field to help you out. He will help you achieve cost-efficient scales. But it could be a real problem to find the right person. Marketing agencies are expensive. Try to look on LinkedIn or among your acquaintances. Look for professionals with credentials or extensive experience. Seek marketing referrals from startups of a similar size/industry. If you don't have those, try to bring a trusted/experienced marketer friend into the intro meetings to help assess whether the service provider knows what they are doing. Talented freelancers can often get the job done for less than hiring an entire agency. Look for a co-founder who is savvy in marketing, passionate, and ready to work hard towards mutual success. Educate and DIY Being the face of your business is way better than having faceless communication. The startup checklist is made based on the comments is next: At least have your product defined. Define your target audience. Set up the goals you want to achieve. Make domain expertise and understand the market and the direction of its development. The next stage is answering tricky questions: Have you created a business model? How do you plan to compete? What’s your unique selling point? How much do you plan to budget for marketing? Are you planning to work alone, or will you need other devs? Then you start thinking about clients… You need the exposure to truly understand the customer's pain points and build a product that they love. You need to think about how your clients would think, and you should tailor each step you take for them. Get feedback from your early users if you already have a product. Interview your potential customers to learn how they buy. This will help you narrow your choice of marketing channels. Get your product or service used by several startups and help them achieve their goals. Endorsements are very valuable marketing assets. You need a landing to validate your value proposition and start sending traffic, or you can run meta instant form campaigns... It would depend on the category of your startup. You need a benchmark of the competition's ads both in Meta and Google, blog posts, domain authority, their landing page, and average search volumes. Do affiliate marketing for your product since it's an effective strategy. Educate and use AI tools for dealing with marketing. Build an LLM-based product to automate marketing. (Sounds like an idea for a startup, right?) Learn following ChatGPT advice. In 1–3 months, you will be another updated person. Look at marketowl, an AI marketing department for startups and microbusinesses that have no budget or time to do marketing. It will automate the basic tasks your business needs, but it doesn't require your marketing expertise. Check out AI tools that are delivering very good marketing content (gocharlie, jasper, copyai). Educate yourself and run socials Start a blog or YouTube channel where you can share your expertise in coding or anything else you are good at and how your product simplifies life. Engage with your audience on social media platforms like Instagram and LinkedIn, where you can showcase your industry knowledge. Start a page on Twitter and an account on Reddit. Follow and read subreddits and pages where your potential customers are. Learn the pain from the inside. Do not simply promote, people will lose interest immediately. Start by taking focused time to create informational content, so people will eventually be naturally intrigued by what you do and want to support you when they start to “know” you. Educate your potential users about the value of your product. Create content based on what ideal customers are asking at the various stages of marketing. e.g., if they are at the beginning of the process, they may use basic language; if they are further down the process, maybe they’ll be specific. Try to get on podcasts and build as many social links as you can. In other words, don’t live in a shell! Post regularly, and eventually you’ll find sites or people that are willing to promote for you. I omitted here all personal help offers and newsletters, however you could find them in the original post. Hope that will be helpful!

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

Restarting My Agency / Compared To Full Time Corporate
reddit
LLM Vibe Score0
Human Vibe Score1
nomadpaddyThis week

Restarting My Agency / Compared To Full Time Corporate

I’m currently thinking about going back to consulting / agency work compared to my current tech job I have. Over a year ago I signed this tech client and they wanted more and more from me which ended up becoming a full time role. At the time, the challenge excited me as it was working on a very large project on a global scale, competing with some of the biggest brands in the world. I was making good money before working in my agency and consulting with lots of different brands on their paid media, websites and e-commerce. I have a healthy package where I’m at at the moment but want more. Working with different clients always created curiosity, no day was the same and that what I loved about it. So now I’m considering going to back to starting the business and working with clients again. My question is: What do businesses ACTUALLY want? Everyone wants great roas and an amazing site but what are core things people are looking for in a growth partner / agency? I’m thinking of relaunching with three pillars in mind: Digital (Paid Media, Lead Gen, Web Dev) AI implementation as a lot of businesses don’t know how to leverage AI completely for cost saving and efficiencies. Content (Video, SEO, Content Writing) for modern day ranking I’m currently rebuilding my pitch deck and thought I would ask the question here before I go back to my network and start opening up conversations again. Would love to hear people’s thoughts in addition to anyone that’s done the same?

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?
reddit
LLM Vibe Score0
Human Vibe Score-0.333
12131415161718190This week

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?

I have a roster of a few home service companies (plumbers, roofers, landscapers, etc.) that I do freelance marketing for. Lately, the owners I work with have developed a serious case of AI shiny object syndrome. They’re bombarding me with links to scammy IG ads for “game-changing” AI tools they think will save their businesses overnight. Even talking about replacing their CSRs with "virtual agents". This will obviously lead to some terrible customer experiences, but all they can see is dollar signs at the prospect of laying off that part of their labor force. If I keep pushing back and pointing out how short sighted some of these ideas are, they’ll eventually find someone else that will implement them. So, I’m trying to get out in front of this a little bit and find any AI tools that don’t suck—something I can pitch back to them that’s actually useful and not just a fancy new way to ruin their customer experience. Then when they brag to their other buddies in the trades about how "cutting edge" their business is, it will be in part because of me, not in spite of me. Any suggestions for AI tools that: Help small service businesses without completely alienating their customers? Automate repetitive tasks in a way that doesn’t scream “this was done by a robot”? Aren’t just some scammy overpriced subscription service with a flashy demo? If you’ve actually used something that works, I’d love to hear about it. Honestly, the bar is low. Just help me stop these guys from accidentally burning their businesses down with bad AI ideas.

Aspiring AI Consultant seeking advice & connections in Healthcare to get started
reddit
LLM Vibe Score0
Human Vibe Score1
Codename___47This week

Aspiring AI Consultant seeking advice & connections in Healthcare to get started

I’m an aspiring entrepreneur with a background in software engineering with 3 years of experience consulting for a medical device OEM. I’ve recently decided to venture out and start my own AI consultancy/integration services business, with an initial focus on non-clinical use cases in healthcare (e.g., workflow automation, predictive analytics, etc.). So far, I’ve done my research and have identified a few good potential use-cases, but I’m currently stuck because: I don’t have any direct connections with people who work in a healthcare setting. I’m unsure about the best next steps to validate my ideas and move forward. I’m reaching out here to seek guidance on how to proceed. Specifically: Are there any healthcare professionals here who could share insights into day-to-day challenges and workflows in non-clinical settings? What are the biggest operational pain points you face that could potentially benefit from automation or AI solutions? (Forget about the AI part—just think about tools or capabilities that could make your life easier.) If you’ve been in a similar position starting a business, how did you connect with potential clients or validate your ideas? I’d also love to hear from anyone who has tried offering AI consultancy or similar services, especially in healthcare. This is a genuine attempt to learn and grow, and I’m open to any advice, feedback, or even collaborations. If you’re in healthcare or know someone who might be able to help, I’d be incredibly grateful if you could point me in the right direction.

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

Looking to streamline and update family business
reddit
LLM Vibe Score0
Human Vibe Score1
JohACNHThis week

Looking to streamline and update family business

Hey r/smallbusiness, I’ve been working at my family’s business for six years now—joined right after college—and I’ve realized that we’re long overdue for an overhaul. I handle advertising sales, and while the business itself is solid, the way we operate is extremely outdated. Without revealing too much, we print about 180 publications, and businesses pay to have their ads featured. As a sales rep, my job includes: Renewing current advertisers Finding new customers and making sales Collecting artwork for ads Gathering billing info Laying out the ad grid with all advertisers The Problem: Everything is still done with pen and paper. We use carbon copy paper to record business details, billing info, and ad costs. One copy goes to the graphic designers, the other to billing. The billing team manually enters everything into QuickBooks, prints invoices, stuffs envelopes, and mails them out. We recently got new software that lets us send invoices via email and text through QuickBooks, which is a step in the right direction, but it’s just a small fix to a much bigger problem. What I Want to Change: Move everything onto an app or website—no more paper. Digitally layout the ad grid instead of doing it manually. (For graphics team) Collect billing info online instead of writing it down. (Obviously to get paid faster and reduce wasted labor) Automate renewal emails instead of calling every single customer. (Save time) Find more efficient ways to generate leads for new business. (Work smarter not harder) Honestly, the company still runs like my grandma set it up in the '90s, and it’s overwhelming trying to figure out where to start. If anyone has been through something similar or has advice on modernizing a business, I’d love to hear your thoughts! Happy to provide more details if needed. I’ve explored some CRMs and AI tools, but I’m sure someone here has better insights or more experience with this than I do. There are other parts of the business that need improvement, but I believe this would be a big step in the right direction. Thanks in advance!

ChatGPT for business automation (incredible new AI)
reddit
LLM Vibe Score0
Human Vibe Score1
MalachiianThis week

ChatGPT for business automation (incredible new AI)

Hey fellow small business owners! I'm curious to know how you would use ChatGPT or other AI automation tools to improve your business. For those who are not aware, recently a new chat AI was made available to the public by OpenAI, called ChatGPT. (same company that did Dall-E) In a tweet Elon Musk wrote that "ChatGPT is scary good. We are not far from dangerously strong AI." It allows anyone (regardless of tech skill) to simply type commands and it will spit out answers. It can also create actual working code. For example most tasks you do in a browser can be automated with a Python script, but it takes time and coding knowledge to create. With ChatGPT you can just tell it what you want and it will create the code! The impact for businesses is insane: 1) Your entire customer service can be easily replaced by chat bots and probably soon by AI that can speak over the phone (google showcased this in 2018, it already exists). 2) you can have the AI automate your sales process, creating a 1-on-1 conversations, at scale. It can probably also improve and optimize it's closing rate over time as it learns more about your customers. 3) It can be used to train your staff. It's really good for 1on1 instruction and teaching because it will go a the students pace and answer questions (compare that to the usual PowerPoint presentation people use) 4) Since it can create code to automate most tasks a human can do in a browser, you can create for example bots that take customer orders and automatically import them to whatever shipping system you use, send customers tracking info etc. (a lot of this stuff is done with software and APIs, but now anyone can create their own, custom solutions) I feel like we hit an inflection point in 2022 with AI and now we are beginning to see some really useful stuff coming out. Am I crazy or are we about to see a massive shift in how we do things?

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?
reddit
LLM Vibe Score0
Human Vibe Score-0.333
12131415161718190This week

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?

I have a roster of a few home service companies (plumbers, roofers, landscapers, etc.) that I do freelance marketing for. Lately, the owners I work with have developed a serious case of AI shiny object syndrome. They’re bombarding me with links to scammy IG ads for “game-changing” AI tools they think will save their businesses overnight. Even talking about replacing their CSRs with "virtual agents". This will obviously lead to some terrible customer experiences, but all they can see is dollar signs at the prospect of laying off that part of their labor force. If I keep pushing back and pointing out how short sighted some of these ideas are, they’ll eventually find someone else that will implement them. So, I’m trying to get out in front of this a little bit and find any AI tools that don’t suck—something I can pitch back to them that’s actually useful and not just a fancy new way to ruin their customer experience. Then when they brag to their other buddies in the trades about how "cutting edge" their business is, it will be in part because of me, not in spite of me. Any suggestions for AI tools that: Help small service businesses without completely alienating their customers? Automate repetitive tasks in a way that doesn’t scream “this was done by a robot”? Aren’t just some scammy overpriced subscription service with a flashy demo? If you’ve actually used something that works, I’d love to hear about it. Honestly, the bar is low. Just help me stop these guys from accidentally burning their businesses down with bad AI ideas.

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?
reddit
LLM Vibe Score0
Human Vibe Score-0.333
12131415161718190This week

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?

I have a roster of a few home service companies (plumbers, roofers, landscapers, etc.) that I do freelance marketing for. Lately, the owners I work with have developed a serious case of AI shiny object syndrome. They’re bombarding me with links to scammy IG ads for “game-changing” AI tools they think will save their businesses overnight. Even talking about replacing their CSRs with "virtual agents". This will obviously lead to some terrible customer experiences, but all they can see is dollar signs at the prospect of laying off that part of their labor force. If I keep pushing back and pointing out how short sighted some of these ideas are, they’ll eventually find someone else that will implement them. So, I’m trying to get out in front of this a little bit and find any AI tools that don’t suck—something I can pitch back to them that’s actually useful and not just a fancy new way to ruin their customer experience. Then when they brag to their other buddies in the trades about how "cutting edge" their business is, it will be in part because of me, not in spite of me. Any suggestions for AI tools that: Help small service businesses without completely alienating their customers? Automate repetitive tasks in a way that doesn’t scream “this was done by a robot”? Aren’t just some scammy overpriced subscription service with a flashy demo? If you’ve actually used something that works, I’d love to hear about it. Honestly, the bar is low. Just help me stop these guys from accidentally burning their businesses down with bad AI ideas.

ChatGPT for business automation (incredible new AI)
reddit
LLM Vibe Score0
Human Vibe Score1
MalachiianThis week

ChatGPT for business automation (incredible new AI)

Hey fellow small business owners! I'm curious to know how you would use ChatGPT or other AI automation tools to improve your business. For those who are not aware, recently a new chat AI was made available to the public by OpenAI, called ChatGPT. (same company that did Dall-E) In a tweet Elon Musk wrote that "ChatGPT is scary good. We are not far from dangerously strong AI." It allows anyone (regardless of tech skill) to simply type commands and it will spit out answers. It can also create actual working code. For example most tasks you do in a browser can be automated with a Python script, but it takes time and coding knowledge to create. With ChatGPT you can just tell it what you want and it will create the code! The impact for businesses is insane: 1) Your entire customer service can be easily replaced by chat bots and probably soon by AI that can speak over the phone (google showcased this in 2018, it already exists). 2) you can have the AI automate your sales process, creating a 1-on-1 conversations, at scale. It can probably also improve and optimize it's closing rate over time as it learns more about your customers. 3) It can be used to train your staff. It's really good for 1on1 instruction and teaching because it will go a the students pace and answer questions (compare that to the usual PowerPoint presentation people use) 4) Since it can create code to automate most tasks a human can do in a browser, you can create for example bots that take customer orders and automatically import them to whatever shipping system you use, send customers tracking info etc. (a lot of this stuff is done with software and APIs, but now anyone can create their own, custom solutions) I feel like we hit an inflection point in 2022 with AI and now we are beginning to see some really useful stuff coming out. Am I crazy or are we about to see a massive shift in how we do things?

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?
reddit
LLM Vibe Score0
Human Vibe Score-0.333
12131415161718190This week

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?

I have a roster of a few home service companies (plumbers, roofers, landscapers, etc.) that I do freelance marketing for. Lately, the owners I work with have developed a serious case of AI shiny object syndrome. They’re bombarding me with links to scammy IG ads for “game-changing” AI tools they think will save their businesses overnight. Even talking about replacing their CSRs with "virtual agents". This will obviously lead to some terrible customer experiences, but all they can see is dollar signs at the prospect of laying off that part of their labor force. If I keep pushing back and pointing out how short sighted some of these ideas are, they’ll eventually find someone else that will implement them. So, I’m trying to get out in front of this a little bit and find any AI tools that don’t suck—something I can pitch back to them that’s actually useful and not just a fancy new way to ruin their customer experience. Then when they brag to their other buddies in the trades about how "cutting edge" their business is, it will be in part because of me, not in spite of me. Any suggestions for AI tools that: Help small service businesses without completely alienating their customers? Automate repetitive tasks in a way that doesn’t scream “this was done by a robot”? Aren’t just some scammy overpriced subscription service with a flashy demo? If you’ve actually used something that works, I’d love to hear about it. Honestly, the bar is low. Just help me stop these guys from accidentally burning their businesses down with bad AI ideas.

Sophomore computer science student, looking at ISLP vs ESL vs mlcourse.ai
reddit
LLM Vibe Score0
Human Vibe Score1
OneTrueDuceThis week

Sophomore computer science student, looking at ISLP vs ESL vs mlcourse.ai

For background, I am currently a computer science sophomore, with intermediate skills in Python and C++. I have taken university courses on data structure and algorithms, calc 1-3, linear algebra, and an introductory stat course (which covered confidence interval, Z and T sample test, and hypothesis testing). I also have read up to Chapter 5 of the MML book and am currently self-studying probability theory (through STAT 110 video and textbook by Joe Blitzstein). I have done a few beginner ML projects with Tensorflow and scikit-learn, but most of the work is in EDA and feature engineering, while the ML model is just a black box that I plug and chug. So now, I want to learn how to implement ML models from scratch. I've been skimming over ISLP, which many people online recommended, but it seems that while it talks about mathematical equations used, I don't really get to implement it; as the labs are a lot of importing an already implemented model then plug and chug. So now, I am looking at ESL, which I believe is the more detailed and mathematically rigorous version of ISL. However, there aren't any labs or code along to ease beginners in (which I somewhat understand given the intended audience of the book). Another option I am looking at is mlcourse.ai, which seems to cover mathematics and has some lab/code along for it. But it doesn't seem to span as many subjects as ESL does. Given these options, I am unsure of which one to pick, should I first finish my self-study on probability theory and then Chapters 6-8 of MML? Then should I do ISLP first or just get into ESL? Or maybe I should do mlcourse.ai first then into ESL? Or should I just do the ML course/book along with the maths? In addition, there is also the data science + feature engineering stuff which I wonder if I should study more about. Sorry if this seems like a mess, there are just so many things to ML that I am kinda overwhelmed.

Neural Networks you can try to implement from scratch (for beginners)
reddit
LLM Vibe Score0
Human Vibe Score1
axetobe_MLThis week

Neural Networks you can try to implement from scratch (for beginners)

I was reading a tweet talking about how useful it is to implement neural networks from scratch. How it allowed for a greater understanding of the topic. The author said he found it more useful than other people explaining the concept to him. While I disagree with the author’s opinion that it stops the need for explanations. It certainly does help the understanding of one’s model. I recommend giving it a go. In the blog post, I will suggest which models you should try to implement from scratch using NumPy or your favourite library. Also, I will link to some accompanying resources. Simple Feedforward Network This is the most famous example because it’s so simple. But allows you to learn so much. I heard about this idea from Andrew Trask. It also helped me think about implementing networks from scratch in general. In the Feedforward network, you will be using NumPy. As you won't need Pytorch or TensorFlow. To do the heavy-lifting for complex calculations. You can simply create a Numpy Array for training and testing data. You can also create a nonlinear function using Numpy. Then work out the error rate between the layer’s guess and real data. Resource for this task: https://iamtrask.github.io/2015/07/12/basic-python-network/ Follow this tutorial. It does a much better job of explaining how to do this in NumPy. With code examples to follow. Feedforward Network with Gradient Descent This is an extension of the network above. In this network, we allow the model to optimise its weights. This can also be done in NumPy. Resource for this task: https://iamtrask.github.io/2015/07/27/python-network-part2/ A follow-on from the previous article. Pytorch version of Perceptrons and Multi-layered Perceptrons. Here will go up a level by using a library. Examples I'm using will be done in Pytorch. But you can use whatever library you prefer. When implementing these networks, you learn how much a library does the work for you. Recourses for the task: https://medium.com/@tomgrek/building-your-first-neural-net-from-scratch-with-pytorch-56b0e9c84d54 https://becominghuman.ai/pytorch-from-first-principles-part-ii-d37529c57a62 K Means Clustering Yes, this does not count as a neural network. But a traditional machine learning algorithm is still very useful. As this is non deep learning algorithm it should be easier to understand. This can be done just using NumPy or Pandas depending on the implementation. Recourse for this task: https://www.machinelearningplus.com/predictive-modeling/k-means-clustering/ http://madhugnadig.com/articles/machine-learning/2017/03/04/implementing-k-means-clustering-from-scratch-in-python.html https://gdcoder.com/implementation-of-k-means-from-scratch-in-python-9-lines/ There are quite a few choices to choose from. So pick whatever implementation helps you understand the concepts better. These networks or models should be simple enough that you won't get lost trying to implement them. But still, help learn a few stuff along the way. \- If you found this post useful, then check out my mailing list where I write more stuff like this.

Starting with Deep Learning in 2025 - Suggestion
reddit
LLM Vibe Score0
Human Vibe Score0
oba2311This week

Starting with Deep Learning in 2025 - Suggestion

I'm aware this has been asked many times here. so I'm not here to ask for a general advice - I've done some homework. My questions is - what do you think about this curriculum I put together (research + GPT)? Context: \- I'm a product manger with technical background and want to get back to a more technical depth. \- BSc in stats, familiar with all basic ML concepts, some maths (linear algebra etc), python. Basically, I got the basics covered a while ago so I'm looking to go back into the basics and I can learn and relearn anything I might need to with the internet. My focus is on getting hands on feel on where AI and deep learning is at in 2025, and understand the "under the hood" of key models used and LLMs specifically. Veterans - whats missing? what's redundant? Thanks so much! 🙏🏻 PS - hoping others will find this useful, you very well might too! |Week/Day|Goals|Resource|Activity| |:-|:-|:-|:-| |Week 1|Foundations of AI and Deep Learning||| |Day 1-2|Learn AI terminology and applications|DeepLearning.AI's "AI for Everyone"|Complete Module 1. Understand basic AI concepts and its applications.| |Day 3-5|Explore deep learning fundamentals|Fast.ai's Practical Deep Learning for Coders (2024)|Watch first 2 lessons. Code an image classifier as your first DL project.| |Day 6-7|Familiarize with ML/LLM terminology|Hugging Face Machine Learning Glossary|Study glossary terms and review foundational ML/LLM concepts.| |Week 2|Practical Deep Learning||| |Day 8-10|Build with PyTorch basics|PyTorch Beginner Tutorials|Complete the 60-minute blitz and create a simple neural network.| |Day 11-12|Explore more projects|Fast.ai Lesson 3|Implement a project such as text classification or tabular data analysis.| |Day 13-14|Fine-tune pre-trained models|Hugging Face Tutorials|Learn and apply fine-tuning techniques for a pre-trained model on a simple dataset.| |Week 3|Understanding LLMs||| |Day 15-17|Learn GPT architecture basics|OpenAI Documentation|Explore GPT architecture and experiment with OpenAI API Playground.| |Day 18-19|Understand tokenization and transformers|Hugging Face NLP Course|Complete the tokenization and transformers sections of the course.| |Day 20-21|Build LLM-based projects|TensorFlow NLP Tutorials|Create a text generator or summarizer using LLM techniques.| |Week 4|Advanced Concepts and Applications||| |Day 22-24|Review cutting-edge LLM research|Stanford's CRFM|Read recent LLM-related research and discuss its product management implications.| |Day 25-27|Apply knowledge to real-world projects|Kaggle|Select a dataset and build an NLP project using Hugging Face tools.| |Day 28-30|Explore advanced API use cases|OpenAI Cookbook and Forums|Experiment with advanced OpenAI API scenarios and engage in discussions to solidify knowledge.|

Study Plan for Learning Data Science Over the Next 12 Months [D]
reddit
LLM Vibe Score0
Human Vibe Score1
daniel-dataThis week

Study Plan for Learning Data Science Over the Next 12 Months [D]

In this thread, I address a study plan for 2021. In case you're interested, I wrote a whole article about this topic: Study Plan for Learning Data Science Over the Next 12 Months Let me know your thoughts on this. &#x200B; https://preview.redd.it/emg20nzhet661.png?width=1170&format=png&auto=webp&s=cf09e4dc5e82ba2fd7b57c706ba2873be57fe8de We are ending 2020 and it is time to make plans for next year, and one of the most important plans and questions we must ask is what do we want to study?, what do we want to enhance?, what changes do we want to make?, and what is the direction we are going to take (or continue) in our professional careers?. Many of you will be starting on the road to becoming a data scientist, in fact you may be evaluating it, since you have heard a lot about it, but you have some doubts, for example about the amount of job offers that may exist in this area, doubts about the technology itself, and about the path you should follow, considering the wide range of options to learn. I’m a believer that we should learn from various sources, from various mentors, and from various formats. By sources I mean the various virtual platforms and face-to-face options that exist to study. By mentors I mean that it is always a good idea to learn from different points of view and learning from different teachers/mentors, and by formats I mean the choices between books, videos, classes, and other formats where the information is contained. When we extract information from all these sources we reinforce the knowledge learned, but we always need a guide, and this post aims to give you some practical insights and strategies in this regard. To decide on sources, mentors and formats it is up to you to choose. It depends on your preferences and ease of learning: for example, some people are better at learning from books, while others prefer to learn from videos. Some prefer to study on platforms that are practical (following online code), and others prefer traditional platforms: like those at universities (Master’s Degree, PHDs or MOOCs). Others prefer to pay for quality content, while others prefer to look only for free material. That’s why I won’t give a specific recommendation in this post, but I’ll give you the whole picture: a study plan. To start you should consider the time you’ll spend studying and the depth of learning you want to achieve, because if you find yourself without a job you could be available full time to study, which is a huge advantage. On the other hand, if you are working, you’ll have less time and you’ll have to discipline yourself to be able to have the time available in the evenings, mornings or weekends. Ultimately, the important thing is to meet the goal of learning and perhaps dedicating your career to this exciting area! We will divide the year into quarters as follows First Quarter: Learning the Basics Second Quarter: Upgrading the Level: Intermediate Knowledge Third Quarter: A Real World Project — A Full-stack Project Fourth Quarter: Seeking Opportunities While Maintaining Practice First Quarter: Learning the Basics &#x200B; https://preview.redd.it/u7t9bthket661.png?width=998&format=png&auto=webp&s=4ad29cb43618e7acf793259243aa5a60a8535f0a If you want to be more rigorous you can have start and end dates for this period of study of the bases. It could be something like: From January 1 to March 30, 2021 as deadline. During this period you will study the following: A programming language that you can apply to data science: Python or R. We recommend Python due to the simple fact that approximately 80% of data science job offers ask for knowledge in Python. That same percentage is maintained with respect to the real projects you will find implemented in production. And we add the fact that Python is multipurpose, so you won’t “waste” your time if at some point you decide to focus on web development, for example, or desktop development. This would be the first topic to study in the first months of the year. Familiarize yourself with statistics and mathematics. There is a big debate in the data science community about whether we need this foundation or not. I will write a post later on about this, but the reality is that you DO need it, but ONLY the basics (at least in the beginning). And I want to clarify this point before continuing. We could say that data science is divided in two big fields: Research on one side and putting Machine Learning algorithms into production on the other side. If you later decide to focus on Research then you are going to need mathematics and statistics in depth (very in depth). If you are going to go for the practical part, the libraries will help you deal with most of it, under the hood. It should be noted that most job offers are in the practical part. For both cases, and in this first stage you will only need the basics of: Statistics (with Python and NumPy) Descriptive statistics Inferential Statistics Hypothesis testing Probability Mathematics (with Python and NumPy) Linear Algebra (For example: SVD) Multivariate Calculus Calculus (For example: gradient descent) Note: We recommend that you study Python first before seeing statistics and mathematics, because the challenge is to implement these statistical and mathematical bases with Python. Don’t look for theoretical tutorials that show only slides or statistical and/or mathematical examples in Excel/Matlab/Octave/SAS and other different to Python or R, it gets very boring and impractical! You should choose a course, program or book that teaches these concepts in a practical way and using Python. Remember that Python is what we finally use, so you need to choose well. This advice is key so you don’t give up on this part, as it will be the most dense and difficult. If you have these basics in the first three months, you will be ready to make a leap in your learning for the next three months. Second Quarter: Upgrading the Level: Intermediate Knowledge &#x200B; https://preview.redd.it/y1y55vynet661.png?width=669&format=png&auto=webp&s=bd3e12bb112943025c39a8975faf4d64514df275 If you want to be more rigorous you can have start and end dates for this period of study at the intermediate level. It could be something like: From April 1 to June 30, 2021 as deadline. Now that you have a good foundation in programming, statistics and mathematics, it is time to move forward and learn about the great advantages that Python has for applying data analysis. For this stage you will be focused on: Data science Python stack Python has the following libraries that you should study, know and practice at this stage Pandas: for working with tabular data and make in-depth analysis Matplotlib and Seaborn: for data visualization Pandas is the in-facto library for data analysis, it is one of the most important (if not the most important) and powerful tools you should know and master during your career as a data scientist. Pandas will make it much easier for you to manipulate, cleanse and organize your data. Feature Engineering Many times people don’t go deep into Feature Engineering, but if you want to have Machine Learning models that make good predictions and improve your scores, spending some time on this subject is invaluable! Feature engineering is the process of using domain knowledge to extract features from raw data using data mining techniques. These features can be used to improve the performance of machine learning algorithms. Feature engineering can be considered as applied machine learning itself. To achieve the goal of good feature engineering you must know the different techniques that exist, so it is a good idea to at least study the main ones. Basic Models of Machine Learning At the end of this stage you will start with the study of Machine Learning. This is perhaps the most awaited moment! This is where you start to learn about the different algorithms you can use, which particular problems you can solve and how you can apply them in real life. The Python library we recommend you to start experimenting with ML is: scikit-learn. However it is a good idea that you can find tutorials where they explain the implementation of the algorithms (at least the simplest ones) from scratch with Python, since the library could be a “Black Box” and you might not understand what is happening under the hood. If you learn how to implement them with Python, you can have a more solid foundation. If you implement the algorithms with Python (without a library), you will put into practice everything seen in the statistics, mathematics and Pandas part. These are some recommendations of the algorithms that you should at least know in this initial stage Supervised learning Simple Linear Regression Multiple Linear Regression K-nearest neighbors (KNN) Logistic Regression Decision Trees Random Forest Unsupervised Learning K-Means PCA Bonus: if you have the time and you are within the time ranges, you can study these others Gradient Boosting Algorithms GBM XGBoost LightGBM CatBoost Note: do not spend more than the 3 months stipulated for this stage. Because you will be falling behind and not complying with the study plan. We all have shortcomings at this stage, it is normal, go ahead and then you can resume some concepts that did not understand in detail. The important thing is to have the basic knowledge and move forward! If at least you succeed to study the mentioned algorithms of supervised and unsupervised learning, you will have a very clear idea of what you will be able to do in the future. So don’t worry about covering everything, remember that it is a process, and ideally you should have some clearly established times so that you don’t get frustrated and feel you are advancing. So far, here comes your “theoretical” study of the basics of data science. Now we’ll continue with the practical part! Third Quarter: A Real World Project — A Full-stack Project &#x200B; https://preview.redd.it/vrn783vqet661.png?width=678&format=png&auto=webp&s=664061b3d33b34979b74b10b9f8a3d0f7b8b99ee If you want to be more rigorous you can have start and end dates for this period of study at the intermediate level. It could be something like: From July 1 to September 30, 2021 as deadline. Now that you have a good foundation in programming, statistics, mathematics, data analysis and machine learning algorithms, it is time to move forward and put into practice all this knowledge. Many of these suggestions may sound out of the box, but believe me they will make a big difference in your career as a data scientist. The first thing is to create your web presence: Create a Github (or GitLab) account, and learn Git*. Being able to manage different versions of your code is important, you should have version control over them, not to mention that having an active Github account is very valuable in demonstrating your true skills. On Github, you can also set up your Jupyter Notebooks and make them public, so you can show off your skills as well. This is mine for example: https://github.com/danielmoralesp Learn the basics of web programming*. The advantage is that you already have Python as a skill, so you can learn Flask to create a simple web page. Or you can use a template engine like Github Pages, Ghost or Wordpress itself and create your online portfolio. Buy a domain with your name*. Something like myname.com, myname.co, myname.dev, etc. This is invaluable so you can have your CV online and update it with your projects. There you can make a big difference, showing your projects, your Jupyter Notebooks and showing that you have the practical skills to execute projects in this area. There are many front-end templates for you to purchase for free or for payment, and give it a more personalized and pleasant look. Don’t use free sub-domains of Wordpress, Github or Wix, it looks very unprofessional, make your own. Here is mine for example: https://www.danielmorales.dev/ Choose a project you are passionate about and create a Machine Learning model around it. The final goal of this third quarter is to create ONE project, that you are passionate about, and that is UNIQUE among others. It turns out that there are many typical projects in the community, such as predicting the Titanic Survivors, or predicting the price of Houses in Boston. Those kinds of projects are good for learning, but not for showing off as your UNIQUE projects. If you are passionate about sports, try predicting the soccer results of your local league. If you are passionate about finance, try predicting your country’s stock market prices. If you are passionate about marketing, try to find someone who has an e-commerce and implement a product recommendation algorithm and upload it to production. If you are passionate about business: make a predictor of the best business ideas for 2021 :) As you can see, you are limited by your passions and your imagination. In fact, those are the two keys for you to do this project: Passion and Imagination. However don’t expect to make money from it, you are in a learning stage, you need that algorithm to be deployed in production, make an API in Flask with it, and explain in your website how you did it and how people can access it. This is the moment to shine, and at the same time it’s the moment of the greatest learning. You will most likely face obstacles, if your algorithm gives 60% of Accuracy after a huge optimization effort, it doesn’t matter, finish the whole process, deploy it to production, try to get a friend or family member to use it, and that will be the goal achieved for this stage: Make a Full-stack Machine Learning project. By full-stack I mean that you did all the following steps: You got the data from somewhere (scrapping, open data or API) You did a data analysis You cleaned and transformed the data You created Machine Learning Models You deployed the best model to production for other people to use. This does not mean that this whole process is what you will always do in your daily job, but it does mean that you will know every part of the pipeline that is needed for a data science project for a company. You will have a unique perspective! Fourth Quarter: Seeking Opportunities While Maintaining Practice &#x200B; https://preview.redd.it/qd0osystet661.png?width=1056&format=png&auto=webp&s=2da456b15985b2793041256f5e45bca99a23b51a If you want to be more rigorous you can have start and end dates for this period of study at the final level. It could be something like: From October 1 to December 31, 2021 as deadline. Now you have theoretical and practical knowledge. You have implemented a model in production. The next step depends on you and your personality. Let’s say you are an entrepreneur, and you have the vision to create something new from something you discovered or saw an opportunity to do business with this discipline, so it’s time to start planning how to do it. If that’s the case, obviously this post won’t cover that process, but you should know what the steps might be (or start figuring them out). But if you are one of those who want to get a job as a data scientist, here is my advice. Getting a job as a data scientist “You’re not going to get a job as fast as you think, if you keep thinking the same way”.Author It turns out that all people who start out as data scientists imagine themselves working for the big companies in their country or region. Or even remote. It turns out that if you aspire to work for a large company like data scientist you will be frustrated by the years of experience they ask for (3 or more years) and the skills they request. Large companies don’t hire Juniors (or very few do), precisely because they are already large companies. They have the financial muscle to demand experience and skills and can pay a commensurate salary (although this is not always the case). The point is that if you focus there you’re going to get frustrated! Here we must return to the following advise: “You need creativity to get a job in data science”. Like everything else in life we have to start at different steps, in this case, from the beginning. Here are the scenarios If you are working in a company and in a non-engineering role you must demonstrate your new skills to the company you are working for*. If you are working in the customer service area, you should apply it to your work, and do for example, detailed analysis of your calls, conversion rates, store data and make predictions about it! If you can have data from your colleagues, you could try to predict their sales! This may sound funny, but it’s about how creatively you can apply data science to your current work and how to show your bosses how valuable it is and EVANGELIZE them about the benefits of implementation. You’ll be noticed and they could certainly create a new data related department or job. And you already have the knowledge and experience. The key word here is Evangelize. Many companies and entrepreneurs are just beginning to see the power of this discipline, and it is your task to nurture that reality. If you are working in an area related to engineering, but that is not data science*. Here the same applies as the previous example, but you have some advantages, and that is that you could access the company’s data, and you could use it for the benefit of the company, making analyses and/or predictions about it, and again EVANGELIZING your bosses your new skills and the benefits of data science. If you are unemployed (or do not want, or do not feel comfortable following the two examples above)*, you can start looking outside, and what I recommend is that you look for technology companies and / or startups where they are just forming the first teams and are paying some salary, or even have options shares of the company. Obviously here the salaries will not be exorbitant, and the working hours could be longer, but remember that you are in the learning and practice stage (just in the first step), so you can not demand too much, you must land your expectations and fit that reality, and stop pretending to be paid $ 10,000 a month at this stage. But, depending of your country $1.000 USD could be something very interesting to start this new career. Remember, you are a Junior at this stage. The conclusion is: don’t waste your time looking at and/or applying to offers from big companies, because you will get frustrated. Be creative, and look for opportunities in smaller or newly created companies. Learning never stops While you are in that process of looking for a job or an opportunity, which could take half of your time (50% looking for opportunities, 50% staying in practice), you have to keep learning, you should advance to concepts such as Deep Learning, Data Engineer or other topics that you feel were left loose from the past stages or focus on the topics that you are passionate about within this group of disciplines in data science. At the same time you can choose a second project, and spend some time running it from end-to-end, and thus increase your portfolio and your experience. If this is the case, try to find a completely different project: if the first one was done with Machine Learning, let this second one be done with Deep learning. If the first one was deployed to a web page, that this second one is deployed to a mobile platform. Remember, creativity is the key! Conclusion We are at an ideal time to plan for 2021, and if this is the path you want to take, start looking for the platforms and media you want to study on. Get to work and don’t miss this opportunity to become a data scientist in 2021! Note: we are building a private community in Slack of data scientist, if you want to join us write to the email: support@datasource.ai I hope you enjoyed this reading! you can follow me on twitter or linkedin Thank you for reading!

MMML | Deploy HuggingFace training model rapidly based on MetaSpore
reddit
LLM Vibe Score0
Human Vibe Score1
qazmkoppThis week

MMML | Deploy HuggingFace training model rapidly based on MetaSpore

A few days ago, HuggingFace announced a $100 million Series C funding round, which was big news in open source machine learning and could be a sign of where the industry is headed. Two days before the HuggingFace funding announcement, open-source machine learning platform MetaSpore released a demo based on the HuggingFace Rapid deployment pre-training model. As deep learning technology makes innovative breakthroughs in computer vision, natural language processing, speech understanding, and other fields, more and more unstructured data are perceived, understood, and processed by machines. These advances are mainly due to the powerful learning ability of deep learning. Through pre-training of deep models on massive data, the models can capture the internal data patterns, thus helping many downstream tasks. With the industry and academia investing more and more energy in the research of pre-training technology, the distribution warehouses of pre-training models such as HuggingFace and Timm have emerged one after another. The open-source community release pre-training significant model dividends at an unprecedented speed. In recent years, the data form of machine modeling and understanding has gradually evolved from single-mode to multi-mode, and the semantic gap between different modes is being eliminated, making it possible to retrieve data across modes. Take CLIP, OpenAI’s open-source work, as an example, to pre-train the twin towers of images and texts on a dataset of 400 million pictures and texts and connect the semantics between pictures and texts. Many researchers in the academic world have been solving multimodal problems such as image generation and retrieval based on this technology. Although the frontier technology through the semantic gap between modal data, there is still a heavy and complicated model tuning, offline data processing, high performance online reasoning architecture design, heterogeneous computing, and online algorithm be born multiple processes and challenges, hindering the frontier multimodal retrieval technologies fall to the ground and pratt &whitney. DMetaSoul aims at the above technical pain points, abstracting and uniting many links such as model training optimization, online reasoning, and algorithm experiment, forming a set of solutions that can quickly apply offline pre-training model to online. This paper will introduce how to use the HuggingFace community pre-training model to conduct online reasoning and algorithm experiments based on MetaSpore technology ecology so that the benefits of the pre-training model can be fully released to the specific business or industry and small and medium-sized enterprises. And we will give the text search text and text search graph two multimodal retrieval demonstration examples for your reference. Multimodal semantic retrieval The sample architecture of multimodal retrieval is as follows: Our multimodal retrieval system supports both text search and text search application scenarios, including offline processing, model reasoning, online services, and other core modules: https://preview.redd.it/mdyyv1qmdz291.png?width=1834&format=png&auto=webp&s=e9e10710794c78c64cc05adb75db385aa53aba40 Offline processing, including offline data processing processes for different application scenarios of text search and text search, including model tuning, model export, data index database construction, data push, etc. Model inference. After the offline model training, we deployed our NLP and CV large models based on the MetaSpore Serving framework. MetaSpore Serving helps us conveniently perform online inference, elastic scheduling, load balancing, and resource scheduling in heterogeneous environments. Online services. Based on MetaSpore’s online algorithm application framework, MetaSpore has a complete set of reusable online search services, including Front-end retrieval UI, multimodal data preprocessing, vector recall and sorting algorithm, AB experimental framework, etc. MetaSpore also supports text search by text and image scene search by text and can be migrated to other application scenarios at a low cost. The HuggingFace open source community has provided several excellent baseline models for similar multimodal retrieval problems, which are often the starting point for actual optimization in the industry. MetaSpore also uses the pre-training model of the HuggingFace community in its online services of searching words by words and images by words. Searching words by words is based on the semantic similarity model of the question and answer field optimized by MetaSpore, and searching images by words is based on the community pre-training model. These community open source pre-training models are exported to the general ONNX format and loaded into MetaSpore Serving for online reasoning. The following sections will provide a detailed description of the model export and online retrieval algorithm services. The reasoning part of the model is standardized SAAS services with low coupling with the business. Interested readers can refer to my previous post: The design concept of MetaSpore, a new generation of the one-stop machine learning platform. 1.1 Offline Processing Offline processing mainly involves the export and loading of online models and index building and pushing of the document library. You can follow the step-by-step instructions below to complete the offline processing of text search and image search and see how the offline pre-training model achieves reasoning at MetaSpore. 1.1.1 Search text by text Traditional text retrieval systems are based on literal matching algorithms such as BM25. Due to users’ diverse query words, a semantic gap between query words and documents is often encountered. For example, users misspell “iPhone” as “Phone,” and search terms are incredibly long, such as “1 \~ 3 months old baby autumn small size bag pants”. Traditional text retrieval systems will use spelling correction, synonym expansion, search terms rewriting, and other means to alleviate the semantic gap but fundamentally fail to solve this problem. Only when the retrieval system fully understands users’ query terms and documents can it meet users’ retrieval demands at the semantic level. With the continuous progress of pre-training and representational learning technology, some commercial search engines continue to integrate semantic vector retrieval methods based on symbolic learning into the retrieval ecology. Semantic retrieval model This paper introduces a set of semantic vector retrieval applications. MetaSpore built a set of semantic retrieval systems based on encyclopedia question and answer data. MetaSpore adopted the Sentence-Bert model as the semantic vector representation model, which fine-tunes the twin tower BERT in supervised or unsupervised ways to make the model more suitable for retrieval tasks. The model structure is as follows: The query-Doc symmetric two-tower model is used in text search and question and answer retrieval. The vector representation of online Query and offline DOC share the same vector representation model, so it is necessary to ensure the consistency of the offline DOC library building model and online Query inference model. The case uses MetaSpore’s text representation model Sbert-Chinese-QMC-domain-V1, optimized in the open-source semantically similar data set. This model will express the question and answer data as a vector in offline database construction. The user query will be expressed as a vector by this model in online retrieval, ensuring that query-doc in the same semantic space, users’ semantic retrieval demands can be guaranteed by vector similarity metric calculation. Since the text presentation model does vector encoding for Query online, we need to export the model for use by the online service. Go to the q&A data library code directory and export the model concerning the documentation. In the script, Pytorch Tracing is used to export the model. The models are exported to the “./export “directory. The exported models are mainly ONNX models used for wired reasoning, Tokenizer, and related configuration files. The exported models are loaded into MetaSpore Serving by the online Serving system described below for model reasoning. Since the exported model will be copied to the cloud storage, you need to configure related variables in env.sh. \Build library based on text search \ The retrieval database is built on the million-level encyclopedia question and answer data set. According to the description document, you need to download the data and complete the database construction. The question and answer data will be coded as a vector by the offline model, and then the database construction data will be pushed to the service component. The whole process of database construction is described as follows: Preprocessing, converting the original data into a more general JSonline format for database construction; Build index, use the same model as online “sbert-Chinese-qmc-domain-v1” to index documents (one document object per line); Push inverted (vector) and forward (document field) data to each component server. The following is an example of the database data format. After offline database construction is completed, various data are pushed to corresponding service components, such as Milvus storing vector representation of documents and MongoDB storing summary information of documents. Online retrieval algorithm services will use these service components to obtain relevant data. 1.1.2 Search by text Text and images are easy for humans to relate semantically but difficult for machines. First of all, from the perspective of data form, the text is the discrete ID type of one-dimensional data based on words and words. At the same time, images are continuous two-dimensional or three-dimensional data. Secondly, the text is a subjective creation of human beings, and its expressive ability is vibrant, including various turning points, metaphors, and other expressions, while images are machine representations of the objective world. In short, bridging the semantic gap between text and image data is much more complex than searching text by text. The traditional text search image retrieval technology generally relies on the external text description data of the image or the nearest neighbor retrieval technology and carries out the retrieval through the image associated text, which in essence degrades the problem to text search. However, it will also face many issues, such as obtaining the associated text of pictures and whether the accuracy of text search by text is high enough. The depth model has gradually evolved from single-mode to multi-mode in recent years. Taking the open-source project of OpenAI, CLIP, as an example, train the model through the massive image and text data of the Internet and map the text and image data into the same semantic space, making it possible to implement the text and image search technology based on semantic vector. CLIP graphic model The text search pictures introduced in this paper are implemented based on semantic vector retrieval, and the CLIP pre-training model is used as the two-tower retrieval architecture. Because the CLIP model has trained the semantic alignment of the twin towers’ text and image side models on the massive graphic and text data, it is particularly suitable for the text search graph scene. Due to the different image and text data forms, the Query-Doc asymmetric twin towers model is used for text search image retrieval. The image-side model of the twin towers is used for offline database construction, and the text-side model is used for the online return. In the final online retrieval, the database data of the image side model will be searched after the text side model encodes Query, and the CLIP pre-training model guarantees the semantic correlation between images and texts. The model can draw the graphic pairs closer in vector space by pre-training on a large amount of visual data. Here we need to export the text-side model for online MetaSpore Serving inference. Since the retrieval scene is based on Chinese, the CLIP model supporting Chinese understanding is selected. The exported content includes the ONNX model used for online reasoning and Tokenizer, similar to the text search. MetaSpore Serving can load model reasoning through the exported content. Build library on Image search You need to download the Unsplash Lite library data and complete the construction according to the instructions. The whole process of database construction is described as follows: Preprocessing, specify the image directory, and then generate a more general JSOnline file for library construction; Build index, use OpenAI/Clip-Vit-BASE-Patch32 pre-training model to index the gallery, and output one document object for each line of index data; Push inverted (vector) and forward (document field) data to each component server. Like text search, after offline database construction, relevant data will be pushed to service components, called by online retrieval algorithm services to obtain relevant data. 1.2 Online Services The overall online service architecture diagram is as follows: &#x200B; https://preview.redd.it/nz8zrbbpdz291.png?width=1280&format=png&auto=webp&s=28dae7e031621bc8819519667ed03d8d085d8ace Multi-mode search online service system supports application scenarios such as text search and text search. The whole online service consists of the following parts: Query preprocessing service: encapsulate preprocessing logic (including text/image, etc.) of pre-training model, and provide services through gRPC interface; Retrieval algorithm service: the whole algorithm processing link includes AB experiment tangent flow configuration, MetaSpore Serving call, vector recall, sorting, document summary, etc.; User entry service: provides a Web UI interface for users to debug and track down problems in the retrieval service. From a user request perspective, these services form invocation dependencies from back to front, so to build up a multimodal sample, you need to run each service from front to back first. Before doing this, remember to export the offline model, put it online and build the library first. This article will introduce the various parts of the online service system and make the whole service system step by step according to the following guidance. See the ReadME at the end of this article for more details. 1.2.1 Query preprocessing service Deep learning models tend to be based on tensors, but NLP/CV models often have a preprocessing part that translates raw text and images into tensors that deep learning models can accept. For example, NLP class models often have a pre-tokenizer to transform text data of string type into discrete tensor data. CV class models also have similar processing logic to complete the cropping, scaling, transformation, and other processing of input images through preprocessing. On the one hand, considering that this part of preprocessing logic is decoupled from tensor reasoning of the depth model, on the other hand, the reason of the depth model has an independent technical system based on ONNX, so MetaSpore disassembled this part of preprocessing logic. NLP pretreatment Tokenizer has been integrated into the Query pretreatment service. MetaSpore dismantlement with a relatively general convention. Users only need to provide preprocessing logic files to realize the loading and prediction interface and export the necessary data and configuration files loaded into the preprocessing service. Subsequent CV preprocessing logic will also be integrated in this manner. The preprocessing service currently provides the gRPC interface invocation externally and is dependent on the Query preprocessing (QP) module in the retrieval algorithm service. After the user request reaches the retrieval algorithm service, it will be forwarded to the service to complete the data preprocessing and continue the subsequent processing. The ReadMe provides details on how the preprocessing service is started, how the preprocessing model exported offline to cloud storage enters the service, and how to debug the service. To further improve the efficiency and stability of model reasoning, MetaSpore Serving implements a Python preprocessing submodule. So MetaSpore can provide gRPC services through user-specified preprocessor.py, complete Tokenizer or CV-related preprocessing in NLP, and translate requests into a Tensor that deep models can handle. Finally, the model inference is carried out by MetaSpore, Serving subsequent sub-modules. Presented here on the lot code: https://github.com/meta-soul/MetaSpore/compare/add\python\preprocessor 1.2.2 Retrieval algorithm services Retrieval algorithm service is the core of the whole online service system, which is responsible for the triage of experiments, the assembly of algorithm chains such as preprocessing, recall, sorting, and the invocation of dependent component services. The whole retrieval algorithm service is developed based on the Java Spring framework and supports multi-mode retrieval scenarios of text search and text search graph. Due to good internal abstraction and modular design, it has high flexibility and can be migrated to similar application scenarios at a low cost. Here’s a quick guide to configuring the environment to set up the retrieval algorithm service. See ReadME for more details: Install dependent components. Use Maven to install the online-Serving component Search for service configurations. Copy the template configuration file and replace the MongoDB, Milvus, and other configurations based on the development/production environment. Install and configure Consul. Consul allows you to synchronize the search service configuration in real-time, including cutting the flow of experiments, recall parameters, and sorting parameters. The project’s configuration file shows the current configuration parameters of text search and text search. The parameter modelName in the stage of pretreatment and recall is the corresponding model exported in offline processing. Start the service. Once the above configuration is complete, the retrieval service can be started from the entry script. Once the service is started, you can test it! For example, for a user with userId=10 who wants to query “How to renew ID card,” access the text search service. 1.2.3 User Entry Service Considering that the retrieval algorithm service is in the form of the API interface, it is difficult to locate and trace the problem, especially for the text search image scene can intuitively display the retrieval results to facilitate the iterative optimization of the retrieval algorithm. This paper provides a lightweight Web UI interface for text search and image search, a search input box, and results in a display page for users. Developed by Flask, the service can be easily integrated with other retrieval applications. The service calls the retrieval algorithm service and displays the returned results on the page. It’s also easy to install and start the service. Once you’re done, go to http://127.0.0.1:8090 to see if the search UI service is working correctly. See the ReadME at the end of this article for details. Multimodal system demonstration The multimodal retrieval service can be started when offline processing and online service environment configuration have been completed following the above instructions. Examples of textual searches are shown below. Enter the entry of the text search map application, enter “cat” first, and you can see that the first three digits of the returned result are cats: https://preview.redd.it/d7syq47rdz291.png?width=1280&format=png&auto=webp&s=b43df9abd380b7d9a52e3045dd787f4feeb69635 If you add a color constraint to “cat” to retrieve “black cat,” you can see that it does return a black cat: &#x200B; https://preview.redd.it/aa7pxx8tdz291.png?width=1280&format=png&auto=webp&s=e3727c29d1bde6eea2e1cccf6c46d3cae3f4750e Further, strengthen the constraint on the search term, change it to “black cat on the bed,” and return results containing pictures of a black cat climbing on the bed: &#x200B; https://preview.redd.it/2mw4qpjudz291.png?width=1280&format=png&auto=webp&s=1cf1db667892b9b3a40451993680fbd6980b5520 The cat can still be found through the text search system after the color and scene modification in the above example. Conclusion The cutting-edge pre-training technology can bridge the semantic gap between different modes, and the HuggingFace community can greatly reduce the cost for developers to use the pre-training model. Combined with the technological ecology of MetaSpore online reasoning and online microservices provided by DMetaSpore, the pre-training model is no longer mere offline dabbling. Instead, it can truly achieve end-to-end implementation from cutting-edge technology to industrial scenarios, fully releasing the dividends of the pre-training large model. In the future, DMetaSoul will continue to improve and optimize the MetaSpore technology ecosystem: More automated and wider access to HuggingFace community ecology. MetaSpore will soon release a common model rollout mechanism to make HuggingFace ecologically accessible and will later integrate preprocessing services into online services. Multi-mode retrieval offline algorithm optimization. For multimodal retrieval scenarios, MetaSpore will continuously iteratively optimize offline algorithm components, including text recall/sort model, graphic recall/sort model, etc., to improve the accuracy and efficiency of the retrieval algorithm. For related code and reference documentation in this article, please visit: https://github.com/meta-soul/MetaSpore/tree/main/demo/multimodal/online Some images source: https://github.com/openai/CLIP/raw/main/CLIP.png https://www.sbert.net/examples/training/sts/README.html

AI Noob where to start?
reddit
LLM Vibe Score0
Human Vibe Score1
alin_imThis week

AI Noob where to start?

Hello, TL;DR: Where do I get started with AI from an ICT engineer POV? I find the subject complex and vague, and I have no idea where to start. A little bit about myself, I am a telecoms engineer with 7 years of experience in networking, servers (virtualisation and containers), Audio-visual and industrial/home automations and CAD, but I am more specialised in the first 4 layers of the OSI model with a little experience in Python, YAML and Ansible (nowhere near a software engineer, but decent enough to make simple automations work if needed). I am starting to have clients that ask questions about AI and its use for their business, and I am not confident in answering them. Where should I start? My only knowledge about AI was gathered from a course I have done “AI Infrastructure and Operations Fundamentals” from Nvidia and the fact that Lamma is an open-source model from Meta (which I absolutely adore the idea of local open-source AI). I am do not think I want to be an AI developer and pivot, but more like how AI can enhance my current skill set. I want to understand what the technical requirements are, technical terminology, how the different models can be used for different purposes (text, images, etc.). From a HW perspective, I am long overdue for a workstation upgrade (currently i7 9^(th) Gen, RTX 2060 Super 8Gb VRAM, 16Gb DDR4 RAM) I use my workstation as a homelab and for CAD and gaming. My hope is that by the time intel 15^(th) gen and Nvidia 5000 will be released, I will have some kind of idea of what I want to do with it from an AI perspective. I have seen a lot of knowledgeable people in this subreddit and wanted to know what it was their journey and how did they get started? What do you recommend (courses, books, HW/SW, etc.)?

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?
reddit
LLM Vibe Score0
Human Vibe Score1
Prudent_Ad_3114This week

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?

Ok... So look... This one is pretty crazy... I'm building an Ai Interface that knows me better than I know myself - Check, lots of people have this, either in reality with employees and family members, or with ai intelligence. But it doesn't just know Me... It knows how to talk with Me. It understands my language, because I've trained it to. I've also trained it to translate that to all my clients and HumanAgents, soon to become RobotAgents... The RESULT: I can literally just spend 1-18 hours talking to it, and things get DONE. Most of that time, I just say EXECUTE, or ENGAGE, or DRAFT, or DISPATCH. I feel like a secret agent communicating in codes with his agency 😂 Not great for the paranoiac in me, but it's easy to get that part under control, ya'll. It's like having a team of 10,000 people, all available 24/7, all perfectly synchronised to each other's communication styles, preferences and ultimately: WHAT DO YOU NEED ME TO DO. At the end of the it all, having run my single COMMAND through a thousand of those people, a Document is prepared that outlines the next 3 stages of the plan, along with instructions to the whole team for how to ENACT it. Sounds rather grand and wonderful... Even when I simply use it to help me come up with a filing system for my creative work... \\\\\\\\\\\\\\\\\\\\\\ Here's my current VISION, why I'm doing this AND why I'm doing it publicly despite it being top secret. VISION To create an army of User-Owned and Operated "AiSuperAgencies" which gather intelligence on the user, securely file and analyse it, and then construct a sub-army of agents and tools that work together to produce the desired output, for any Function in the Personal and Professional Lives of EVERYONE, EVERYWHERE, in 3-5 Years. To start, I'm building it for me and the 5-10 cleaners who've made it to Level 1 in my access system. They were sick of toxic employers, tyrannical agencies and greedy customers. They gathered around us (many came in, many went out, few stayed, took about a year for our core team of 3 Level 2 Cleaners. My goal has always been to never employ anyone. Just me, my Partner and the Cleaners. All Shared Owners in the system for delivering the right cleaner to the right house in our town, at the right time and without any dramas or arguments... I have a personal talent for resolving disputes, which has made working for and buying from my business a mostly enjoyable and upbeat experience, with a touch of mystery and a feeling that you're part of something big! It is a business that ran on Me. I put in my time, every day, building automated tool after automated tool. Hiring a contractor to do a job, scratching my head when it didn't add enough value to pay for itself, then just doing it myself again. I wanted to solve that problem. I'm trusting that the few who hear about it who actually see the potential, will just come join us, no dramas, just cool people partnering up! And those that don't, won't. No one could steal it, because it's Mine, and I'll just change the keys anyway loser! Enjoy digging through my past, you lunatic! I'm out here living Now. Anyways... It's lonely around here. I have a cleaning business that I run from my laptop, which means I can live anywhere, but I still had this big problem of time... NOT ENOUGH Oh Wait. It's Here.

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?
reddit
LLM Vibe Score0
Human Vibe Score1
Prudent_Ad_3114This week

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?

Ok... So look... This one is pretty crazy... I'm building an Ai Interface that knows me better than I know myself - Check, lots of people have this, either in reality with employees and family members, or with ai intelligence. But it doesn't just know Me... It knows how to talk with Me. It understands my language, because I've trained it to. I've also trained it to translate that to all my clients and HumanAgents, soon to become RobotAgents... The RESULT: I can literally just spend 1-18 hours talking to it, and things get DONE. Most of that time, I just say EXECUTE, or ENGAGE, or DRAFT, or DISPATCH. I feel like a secret agent communicating in codes with his agency 😂 Not great for the paranoiac in me, but it's easy to get that part under control, ya'll. It's like having a team of 10,000 people, all available 24/7, all perfectly synchronised to each other's communication styles, preferences and ultimately: WHAT DO YOU NEED ME TO DO. At the end of the it all, having run my single COMMAND through a thousand of those people, a Document is prepared that outlines the next 3 stages of the plan, along with instructions to the whole team for how to ENACT it. Sounds rather grand and wonderful... Even when I simply use it to help me come up with a filing system for my creative work... \\\\\\\\\\\\\\\\\\\\\\ Here's my current VISION, why I'm doing this AND why I'm doing it publicly despite it being top secret. VISION To create an army of User-Owned and Operated "AiSuperAgencies" which gather intelligence on the user, securely file and analyse it, and then construct a sub-army of agents and tools that work together to produce the desired output, for any Function in the Personal and Professional Lives of EVERYONE, EVERYWHERE, in 3-5 Years. To start, I'm building it for me and the 5-10 cleaners who've made it to Level 1 in my access system. They were sick of toxic employers, tyrannical agencies and greedy customers. They gathered around us (many came in, many went out, few stayed, took about a year for our core team of 3 Level 2 Cleaners. My goal has always been to never employ anyone. Just me, my Partner and the Cleaners. All Shared Owners in the system for delivering the right cleaner to the right house in our town, at the right time and without any dramas or arguments... I have a personal talent for resolving disputes, which has made working for and buying from my business a mostly enjoyable and upbeat experience, with a touch of mystery and a feeling that you're part of something big! It is a business that ran on Me. I put in my time, every day, building automated tool after automated tool. Hiring a contractor to do a job, scratching my head when it didn't add enough value to pay for itself, then just doing it myself again. I wanted to solve that problem. I'm trusting that the few who hear about it who actually see the potential, will just come join us, no dramas, just cool people partnering up! And those that don't, won't. No one could steal it, because it's Mine, and I'll just change the keys anyway loser! Enjoy digging through my past, you lunatic! I'm out here living Now. Anyways... It's lonely around here. I have a cleaning business that I run from my laptop, which means I can live anywhere, but I still had this big problem of time... NOT ENOUGH Oh Wait. It's Here.

Built a Free AI Fitness Planner - From Passion to Product with No Traditional Coding
reddit
LLM Vibe Score0
Human Vibe Score1
jhojnac2This week

Built a Free AI Fitness Planner - From Passion to Product with No Traditional Coding

I posted this in r/entrepreneur as well but figured this is a great place too. I am looking to get your thoughts on this project and maybe some ideas as well. I wanted to share my journey of creating a free ai-powered workout planning tool with bolt. new and very minimal coding skills. It has taken me probably 4 days in total to complete and get to a point I am happy with. Many improvements coming but want to get it out there for some feedback and testing. I have been going to the gym for years and at this point my routines have gotten stale. I end up doing the same sets of exercises and repetitions over and over. I figured why not let chat gpt or some AI software help me develop or at least recommend different exercises. I was then was recommended youtube videos on creating your own web application without any coding. I will say it does take some coding knowledge, not that I am editing it myself, but I know what its trying to do and can prompt it correctly. I am still struggling with some things like integrating stripe for subscriptions so I only have it set up for donations currently. I dont mind it being free as I would like everyone the opportunity to help develop their own workouts. current cost breakdown to create: bolt. new credits - $100/month (gonna drop to the $20 now that its complete) supabase database - $35/month netlify domain - $11.99/year If anyone is interested or has questions feel free to let me know. It is called fitfocuscalendar. com this can all be done even cheaper using their free options but might take a lot more time depending on the complexity of the application as there are not a lot of free credits to code with each month and the supabase free database plan it pretty limited on size. title was AI generated.

I got 400+ new customers in first 48 hours after launch!!!!
reddit
LLM Vibe Score0
Human Vibe Score0.333
iamjasonlevinThis week

I got 400+ new customers in first 48 hours after launch!!!!

Yesterday I launched my new software and got 400+ customers in 48 hours. I'm gonna break down the product and my launch strategy. What is it? Remember when Elon was taking over Twitter and he emailed the CEO of Twitter Parag Agrawal saying “What did you get done this week?” Well I turned this idea into a software lol. A couple months ago, I had a realization while talking with some friends: I love asking ChatGPT for business advice, but I never remember to actually do it. Now what if there was a pro-active AI business coach that checked in on me every week? Something to keep me accountable and track my progress building my empire. It could have a database where I could see my progress every single week!!! And what if this AI business coach was a simple email that says “What did you get done this week?” So I built this: Elon Email. A weekly 1-on-1 with Elon Musk Every Sunday night for the last month, I’ve been getting a weekly email from Elon Musk saying “What did you get done this week?” I take a few minutes to write back with everything I got done that week: new revenue metrics, a list of the new features I shipped, new employees onboarded, number of workouts, exciting calls and collaboration opportunities, etc. Then an AI trained on Elon would give me tailored advice all in my email. And here's the best part. Rather than a nice friendly soft-spoken AI, I prompted the AI to be as savage and ruthless as Elon with its business advice. And it actually worked. One user said "it's like a slap in the face". I knew with 2025 New Years resolutions coming, I needed to launch it ASAP so I pushed through an all-nighter on Friday and got it launched today. Launch strategy: \> Focus on X (fka Twitter) as main source. I have 31,000 followers on X from the last few years building startups, so I posted my launch this morning there. X is Elon's social media network now so I didn't waste time on other platforms. I basically didn't look up from my phone for like 12 hours (my wife was pissed at me because we're technically on vacation but yolo) and I commented, engaged, and DMed with everyone I could. It paid off with 50,000+ views on the post and nearly 300 likes so far. \> Purposely exclude people. Yes, I know this sounds weird, but you need to purposely exclude some people to focus on the people who will actually use your product. I know a lot of people hate Elon and will hate me for making this. I don't care. I only care about the people who will actually use it aka my customers. The same thing with making it a "savage AI". I know there will be some people who prefer a nice friendly soft AI, but that's not my customer base. The internet is big enough you can find your customer base but you've gotta be willing to exclude some people to speak to the right people! \> Free tier. The weekly Elon email and AI reply is free. I also have a paid tier for a daily email and database access. I know I'm technically losing money on API fees for the free email and AI requests, but it's a loss leader, the costs are actually quite minimal since it's only 1 API request/week, and some % will convert and already have. Doing free was worth it to give people a chance to try it. I hope this helps with your next launch!!!

My Marketing App made $10,000 in 2024. Here is how I target to make $100,000 in 2025:
reddit
LLM Vibe Score0
Human Vibe Score1
MonkDiThis week

My Marketing App made $10,000 in 2024. Here is how I target to make $100,000 in 2025:

You totally get me, I think. It’s a bizarre feeling when you build something, and people appreciate it and are even ready to pay! Pleasant though) In early 2024 my mate and I created a marketing tool that generates ads, content and strategy blocks with a click – Aiter.io. Users can just insert a URL, hit the button and everything is ready. TBH, I built this tool because I’m too lazy to chat with ChatGPT) https://preview.redd.it/ew2kud7ceyde1.png?width=1140&format=png&auto=webp&s=f3fe5b67075858cea3d52278e8063113efa3b97e In 2024 we made $10,000, here is what worked for us: AI directories. Still is the best channel of traffic and clients for us. We listed on TAAFT and other directories scrape TAAFT, so, eventually, we became listed on all major ones. I wrote a Reddit post earlier that explained this process in detail. Email marketing. Gosh, I thought it was dead – I have never been so wrong! We set up automatic emails that share marketing insights and they have a \~25% open rate + consistently convert people. It works great. Product marketing. Having a free version really helps with word-of-mouth and leads, which can be converted via email. Also, we consistently worked on product improvement. I’d say, that our free updates give people a feeling that the devs care about their stuff that’s why they are more confident investing in it. Google Ads. TBH, we had a shitty landing page all the time because were busy with the product. So, Google Ads didn’t work well for us. But we’ve launched the 2.0 version which has a better landing page, and will try it again. Influencers. Worked well for us, but we didn’t pay a dime for this. They just found our tool on directories and created videos about Aiter, so it was a sporadic marketing channel for us. We hope to change it in 2025. We see that our product works and attracts the audience, so we want to deliver and get more in 2025. Here is the plan: Product: add ad banners and video generation. So far, we generate only text data and it’s not so valuable in the time of ChatGPT and Claude. But to generate a high-quality ad banner is still challenging, so we put this on our roadmap. Another feature – one-click market analysis to get marketing insights. Become a TOP50 tool on TAAFT. We’ve become a top tool in our category (content generation) but will need to promote our profile on the profile far more aggressively to get into TOP50 Email marketing. We are fools because we almost didn’t have product emails that explain how it works. Will fix it. Also, we are considering participating more in paid newsletters, like collaborating with Substack influencers. Youtube marketing. Search for low-tail marketing keywords on YouTube and create videos on them, placing my product in them. Blog. Our new platform is Webflow which gives a lot of flexibility in terms of blogging. So, we will repeat the YouTube strategy with blogging. Paid marketing. With an updated landing page, we hope that paid campaigns will work better. We plan to launch campaigns that target different jobs to be done and customer objections to find the right message. Product Management. For 2025, our two key product metrics are retention and product activation rate. For this, we plan to simplify onboarding and make it simpler as well as conduct a lot of in-depth interviews to understand how we can retain users better. Funding. All of this exciting stuff requires money, so we are in the process of securing funding (fingers crossed). Having an indie project is exciting and invigorating. With all these activities, I hope we will achieve the goal of $100,000 in 2025. And what are your goals and marketing steps for 2025? Or maybe you could share some exciting marketing ideas I overlooked?

I retired at 32 from my side project. Here's the path I took.
reddit
LLM Vibe Score0
Human Vibe Score1
inputoriginThis week

I retired at 32 from my side project. Here's the path I took.

EDIT 2: Thanks for the award kind stranger! I've stopped responding to reddit comments for this post. I'm adding an FAQ to the original post based on the most common high quality questions. If you have a question that you're dying to know the answer to and that only I can help you with (vs. Google, ChatGPT, etc.), DM me. EDIT: I love how controversial this post has become (50% upvote rate), and only in this subreddit (vs. other subreddits that I posted the same content in). I trust that the open-minded half of you will find something useful in this post and my other posts and comments. I retired at 32 years old, in large part thanks to a B2C SaaS app that I developed on my own. Now, I don't have to work in order to cover my living expenses, and wouldn't have to work for quite a while. In other words, I can finally sip mai tais at the beach. I've condensed how I got there into this post. First, a super simplified timeline of events, followed by some critical details. Timeline 2013 Graduated college in the US 2013 Started first corporate job 2013 Started side project (B2C app) that would eventually lead to my retirement 2020 Started charging for use of my B2C app (was free, became freemium) 2021 Quit my last corporate job 2022 Retired: time freedom attained Details First, some summary statistics of my path to retirement: 9 years: time between graduating college and my retirement. 8 years: total length of my career where I worked at some corporate day job. 7 years: time it took my B2C app to make its first revenue dollar 2 years: time between my first dollar of SaaS revenue and my retirement. "Something something overnight success a decade in the making". I got extremely lucky on my path to retirement, both in terms of the business environment I was in and who I am as a person. I'd also like to think that some of the conscious decisions I made along the way contributed to my early retirement. Lucky Breaks Was born in the US middle class. Had a natural affinity for computer programming and entrepreneurial mindset (initiative, resourcefulness, pragmatism, courage, growth mindset). Had opportunities to develop these mindsets throughout life. Got into a good college which gave me the credentials to get high paying corporate jobs. Was early to a platform that saw large adoption (see "barnacle on whale" strategy). Business niche is shareworthy: my SaaS received free media. Business niche is relatively stable, and small enough to not be competitive. "Skillful" Decisions I decided to spend the nights and weekends of my early career working on side projects in the hopes that one would hit. I also worked a day job to support myself and build my savings. My launch funnel over roughly 7 years of working on side projects: Countless side projects prototyped. 5 side projects publically launched. 2 side projects made > $0. 1 side project ended up becoming the SaaS that would help me retire. At my corporate day jobs, I optimized for learning and work-life balance. My learning usually stalled after a year or two at one company, so I’d quit and find another job. I invested (and continute to do so) in physical and mental wellbeing via regular workouts, meditation, journaling, traveling, and good food. My fulfilling non-work-life re-energized me for my work-life, and my work-life supported my non-work-life: a virtuous cycle. I automated the most time-consuming aspects of my business (outside of product development). Nowadays, I take long vacations and work at most 20 hours a week / a three-day work week . I decided to keep my business entirely owned and operated by me. It's the best fit for my work-style (high autonomy, deep focus, fast decision-making) and need to have full creative freedom and control. I dated and married a very supportive and inspiring partner. I try not to succumb to outrageous lifestyle creep, which keeps my living expenses low and drastically extends my burn-rate. Prescription To share some aphorisms I’ve leaned with the wantrepreneurs or those who want to follow a similar path: Maximize your at bats, because you only need one hit. Bias towards action. Launch quickly. Get your ideas out into the real world for feedback. Perfect is the enemy of good. If you keep swinging and improving, you'll hit the ball eventually. Keep the big picture in mind. You don't necessarily need a home-run to be happy: a base hit will often do the job. Think about what matters most to you in life: is it a lot of money or status? Or is it something more satisfying, and often just as if not more attainable, like freedom, loving relationships, or fulfillment? Is what you’re doing now a good way to get what you want? Or is there a better way? At more of a micro-level of "keep the big picture in mind", I often see talented wantrepreneurs get stuck in the weeds of lower-level optimizations, usually around technical design choices. They forget (or maybe subconsciously avoid) the higher-level and more important questions of customer development, user experience, and distribution. For example: “Are you solving a real problem?” or “Did you launch an MVP and what did your users think?” Adopt a growth mindset. Believe that you are capable of learning whatever you need to learn in order to do what you want to do. The pain of regret is worse than the pain of failure. I’ve noticed that fear of failure is the greatest thing holding people back from taking action towards their dreams. Unless failure means death in your case, a debilitating fear of failure is a surmountable mental block. You miss 100% of the shots you don't take. When all is said and done, we often regret the things we didn't do in life than the things we did. There’s more to life than just work. Blasphemous (at least among my social circle)! But the reality is that many of the dying regret having worked too much in their lives. As Miss Frizzle from The Magic Schoolbus says: "Take chances, make mistakes, get messy!" Original post

I made a bunch of side projects over the last 9 months, and even accrued 500+ accounts and some donations!
reddit
LLM Vibe Score0
Human Vibe Score1
firebird8541154This week

I made a bunch of side projects over the last 9 months, and even accrued 500+ accounts and some donations!

I just stumbled upon this subreddit and have a bunch of fun projects I'd like to present, any thoughts/feedback/criticism, etc. all welcome. So, first things first, a little about me, I work full time in an unrelated job, but have picked up full stack and mobile programming. I have two roommates who help a bit in their own way, one is a server expert and happened to have a server in our apartment basement, and the other is my brother and he picked up some frontend programming. We're all avid cyclists and decided to start building about 9 months ago. Our first idea was https://sherpa-map.com a SPA website allowing users to create cycling routes, send them to their Garmin devices, download them as GPX files, etc. This site uses the open-source software Graphhopper on the backend which I've augmented to send back surface type information. This site has a loooonnnggg list of features, from the simple, like a live weather radar, to the extreme like this functionality: &#x200B; AI surface classification This video demonstrates the ability to classify road surface types in real time using high-resolution satellite imagery of road portions with unknown surface types! I trained a Pytorch resnet 50 model with tuned hyperparameters and 10 epochs on 200,000 satellite images of roads with known surface types! (We host a OSM Postgres server with coordinates of roads and their associated surface types, I made a script to pull images of said roads for training). I built the model into a secondary backend written in flask and piped the images being used back through live web sockets to my node.js backend to the person who is logged in! &#x200B; Okay, on to the next side project, a cycling physics simulator! https://sherpa-map.com/cycling-route-calculator.html Cycling Physics Simulation This site lets users enter information about their bike setup, upload or use a preset route, and enter in their physical information to see how different changes in their setup might affect how fast they will be throughout a course! It can also pull complex weather information throughout the course and give a full suite of nutrition details! &#x200B; Okay, Next project! The Activity Racer! https://sherpa-map.com/activity-racer.html Activity Racer This site lets users upload their own or competitors' GPX activity files and line them up against each other at any point in an event, to see who was faster where! It's great if you've done the same even year after year with differing setups, allowing you to get insights as to which might have done better at what point. &#x200B; Okay, final project, this one's pretty half-baked as I'm still in the process of implementing so many other things, a podcast creation app! (I was bored and just started working on this a week or so ago, for no good reason). Currently, this one lives on https://sherpa-map.com/podcast.html This podcasting web app creates a peer to peer to peer... mesh network using webRTC so, small groups can communicate with the highest level of fidelity both in audio and video! Simply enter a room name and have other users enter the room name as well and they're connected! I've already used tensorflow.js AI to allow a blur background option, similar to MS Teams, whereby bodypix classifier AI picks out the person and I use a blur on a JS canvas behind them. I also went a little bit off the deep end and managed to implement the RNNoise background noise suppressor on the frontend, it's written in C, but I was able to use Windows Subsystem for Linux + emscrption to compile it in just the right way, with exposed malloc and free and a JS wrapper to use on the frontend in WASM. I actually use WASM (typically Rust) in many fun ways throughout all of these projects. I'm also in the middle of recreating the first site in React-Native + Maplibre for IOS and Android as individual APPs. In addition, I'm also working on the integration of my main site into a different project for a different group. So, I have a fun collection of side projects with slightly different GUIs, across different platforms with no coherent landing page as of yet but I've been having a blaaaast putting them together. As a final note, I even have a bit of an easter egg in the automated email system I use for account verifications and password resets do\not\reply@sherpa-map.com I hooked it up to ChatGPT API and told it it is a disgruntled worker whose sole task in life is to watch a do\not\reply email box and respond sarcastic/snarky to anyone who dares send a message to it, if AI comes for humanity, I bet I'll be on a list for this one lol.

Day 1 of my BIP for my AdonisJS Boilerplate (turbosaas) [Built in public]
reddit
LLM Vibe Score0
Human Vibe Score0.5
Ok_Bread_6005This week

Day 1 of my BIP for my AdonisJS Boilerplate (turbosaas) [Built in public]

Hello everyone, here is day 1 (not really, I started a bit earlier) of my project: A boilerplate using AdonisJS, Inertia What technologies are used/present? AdonisJS Inertia Stripe OpenAI TailwindCSS Vite (React) Why? Firstly, I want to save time when launching my projects, and I think you do too, so I've included as many relevant features as possible. I'm tired of seeing attitudes like 'develop your SaaS in 1 hour and produce terrible code!' The purpose of this codebase is to provide the highest quality code possible and to maintain that standard throughout the development process. You might spend an extra 20 minutes doing things right, but you'll save 2 hours on refactoring. And no, you won't have to pay for updates. (WTF by the way?) Why these technologies? I've seen a lot of NextJS for boilerplates, and I've also used NextJS before, but I quickly abandoned it. It quickly becomes a mess You lose track of what is what, and start doing anything Every update breaks your application Whereas with AdonisJS, life is beautiful. There are plenty of community packages already available, and everything you need is here. What am I offering? Authentication: Social authentication, OTP, Magic Links, and credentials, along with complete account management features like password recovery. Payment & Mailing Integration: Seamless integration from start to finish, with multiple options to choose from. Detailed Documentation: Thorough explanations of every aspect, covering even the smallest, potentially confusing details in the code. Maintainable & Scalable Code: Organized by features, allowing you to easily drag and drop features to extend functionality. Developer Tools: Handy commands for generating new features and automatically adding necessary imports; a complete config to enable/disable a feature in less than 10 seconds... Pre-made Pages: Ready-to-use pages such as an admin dashboard for tasks like automatically updating products on Stripe. Extensive Component Library: A variety of components to streamline development. I've designed this boilerplate to be as developer-friendly and robust as possible, aiming to support maintainability and scalability from the get-go. Summary of today and previous days Day 2 Stripe is a nightmare to set up if you've never done it before, it quickly becomes tedious. But I've finally finished setting everything up: one-time payments, subscriptions, and subscription updates. It was complicated. Today I finally implemented the 'forgot password' option, and I've completed all the authentication by adding magic links (working with OTP). I also set up automatic deployment with GitHub Actions, and everything works well. The build runs with the action to ensure everything goes smoothly, then using SSH, I pull the project, build it, and launch it. Tomorrow: What I want to do tomorrow Tomorrow, I want to create the blog, because yes, I want to include a blog as well, and especially complete it as soon as possible so it can be available on turbosaas(dot)dev, and write my build in public. It will probably use markdown. Thank you for reading this short build in public, you can also check out how it's going on turbosaas(dot)dev.

Just completed a new type of language learning website - read popular stories scaled to different reading levels
reddit
LLM Vibe Score0
Human Vibe Score1
creedaaronThis week

Just completed a new type of language learning website - read popular stories scaled to different reading levels

As a language learner and software developer, I bootstrapped my project superlang.com over the past year working on the side. There is a mobile friendly web app now, and iOS/Android apps coming in a few months. A year ago I discovered the concept of "comprehensible input" as a way to help me learn German. Even if it's not a silver bullet, it sounded pretty great. Rather than drilling vocab or looking at grammar charts, I could "just read" and acquire the language. I picked up some fairy tales in German, and stories like Alice in Wonderland. Unfortunately, I couldn't really read them. I had to stop every sentence to look up words and try and decipher sentence constructions. Then I turned to some purpose built simple stories for German beginners. But there was a different problem... these were not really stories with any real plot. I could only read so many "Hans goes to the market" type stories before losing interest. My idea was to try to get the best of both worlds somehow. What if I could take a real story, say Alice in Wonderland (or even War and Peace), and dial the difficulty down to my level without losing the plotline. That way, beginners can start right away with something basically comprehensible. Then, you could also re-read the same story at increasing difficulty levels as you gain confidence. As a cherry on top, more illustrations would help with comprehension so each page could have a picture. Is it revolutionary? Maybe, maybe not. I am building off a well established idea of "graded readers" which are simplified stories meant for learning languages. And there are somewhat similar ideas out there now that AI is good at simplifying text, but none that really take this idea where it needs to be with many preloaded stories, multiple difficulty levels, high quality human verified text, and all the bells and whistles. I spent a year building Superlang and it is ready to put out there. Some quick notes: There are 3 languages so far, intended for native English speakers: German, French, and Spanish There are 3 difficulty levels you can set on each story: beginner (roughly A1-A2), intermediate (roughly A2-B1), and advanced (the same level as the original story, but typically B2+) There is premium version as producing the content was somewhat expensive. You can still do a lot of reading on the free version. I have done no marketing yet, except for this post :) The implementation is a combination of AI, and human proofreading and reviewing. In particular, the simplification of stories is very heavily AI driven. The illustrations for each page are AI as well. For translation, as many of you may be aware new LLM models are typically better than Google translate, but still far from perfect. I am very much a proponent of keeping real people in the loop, and so I have real people proofread the translations. That's why there are only about 700 pages of content so far and not tens of thousands. Let me know what you think, and if you find it helpful! Alice in Wonderland - beginner level German Romeo and Juliet - beginner level Spanish

I made a super niche app for sailors and scaled it to 500k downloads
reddit
LLM Vibe Score0
Human Vibe Score0.5
TechPrimoThis week

I made a super niche app for sailors and scaled it to 500k downloads

I started developing this app in 2016, and it was my first app ever. I already had several years of programming experience. Since I was studying maritime navigation, I came up with the idea of creating a maritime app to help students with various nautical calculations and learn maritime regulations. Although I had no experience in mobile app development, I chose the Ionic framework and started development gradually. First Version The first version took me about four months to develop because I literally had to learn everything from scratch: how to develop mobile apps, how to publish them, and everything needed to enable downloads on the app stores. Many of you might recognize me from my story about developing Sintelly and its late monetization. I made the same mistake with this maritime app. At that time, in my country, there was no possibility of earning through in-app purchases, only through ad displays. Since the app was predominantly downloaded in countries like India, the Philippines, and Indonesia, the ad revenue was quite low, and after some time, I removed the ads. Abandonment and Realization As I started developing other apps, this one fell into obscurity. I even just remembered that I needed to renew the domain, which resulted in losing it. The domain buyer tried to sell it back to me for years for $20k, which was absurd. All this led me to rebrand and start working on this app again. Interestingly, during these 8 years, the app never showed a declining trend in installations or active users. I'll share some numbers to give you insight: Total installations (Android + iOS): 501,000 Active installations (Android): 48,000 Monthly active users: 20,000 Average rating: Android 4.8, iOS 4.7 When I considered these numbers, I realized they weren't bad at all and that I was far ahead of most competitors. This led to my decision to rebrand and create a new website. I quickly built the website using WordPress and published lots of existing content from the app. What surprises me is that today, after a year and a half, the website has about 8-10k monthly organic visits. Choosing a Direction Based on all this, I decided it was time to create a Premium version and start selling the app. Since I've been working with AI for many years (which I've written about here), I started thinking about using AI to help seafarers speed up some of their tasks. This led to the idea of creating a multi-agent system equipped with numerous tools to help seafarers. I developed various agents with functionalities, including retrieving maritime weather information, locating and tracking ships, doing various nautical calculations, calculating the shortest maritime routes and unit conversions, and learning about all courses and maritime regulations. All this required considerable work, but thanks to tools like Cursor and Claude, I implemented it in less than four weeks. Last week, I published this new version and started selling subscriptions, and I can already boast that I've earned slightly over $100. This isn't much, but I'm happy to see my first app generating some income, which I always thought impossible. Along this journey, I learned many lessons, and the most important one is to never give up or write off a product. With a little effort, everything can be brought back to life and secure at least some passive income, enough for your morning coffee. Additionally, I learned how to develop mobile apps, which has shaped my career since then. If it weren't for this app, I probably would never have become a developer. I have numerous plans for what to add next and how to improve. I'll base everything on AI features and push the app in that direction.

Finally launched my own app in the app store!
reddit
LLM Vibe Score0
Human Vibe Score0.429
ranftThis week

Finally launched my own app in the app store!

After reading on the sidelines here for about a year I just launched Kalo. My app is the 100th million ai powered calorie-counting app, hahaha. I know I know. Here it comes: Kalo Screenshots Despite being in a crowded space, Kalo has some caveats I am a bit proud of: \- I am a daily user of my app. Everything that bugs me will be gone ASAP. \- I have already lost 10kg with Kalo. I can't do any sports due to an energy-debilitating sickness (hello my me/cfs friends 👋), so this is huge. \- I HATE nudging. Hence, Kalo has no streaks, no notifications to rip off your valuable time. It’s just a tool to track calories and learn to get a feel for it. \- Ease of daily use and doing anything so it doesn't feel like a grind is Kalo's mission. I already implemented a lot of ways to quickly access tracking and leaving the app. \- Next feature will be tracking your own progress with some proper research based analytics is the one next step, that Im working on. \- Data: Minimal footprint as possible. Anything is currently saved only on the device, especially all health data. Check Kalo out here: https://apps.apple.com/de/app/kalo/id6739449751?l=en-GB Tech used to make it possible: There are some terrific security functions in here, and a robust paywall integration, both of which I could never have done without the MVP help of \- Claude and GPT \- Claude's Project function was basically my base project folder here. Claude is perfect when it comes to traditional features. Anything more recent than iOS14 can become a very difficult endeavour \- GPT 4o was great for error logging overview and general sorting measures. Claude's message restriction could be fended of many times here. \- GPT 1o became available more recently and its coding is a lot more robust than 4o. This helped me to not clog Claude with tedious bug fixing. Also it helped when Claude ran away in terrible directions Pre knowledge: I was a digital product designer way back, so I know a thing or two about making things easier to use, especially when it comes to the ease of daily use. Marketing: Will be my biggest focus now. I am quite shit at it, which means It can only get better. It's gonna be some rough weather to get eyes on my app. If anyone thinks they can help or knows how to, any tips are appreciated. Thats it for now. I'll try and keep you updated. I am happy. Let's see if this app will make me happy on a nicer bed, or a jet ski. Again, happy to get your impression of Kalo: https://apps.apple.com/de/app/kalo/id6739449751?l=en-GB

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I very rarely have stuff to post on Reddit, but I share how my project is going on, just random stuff, and memes on X. In case few might want to keep up 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2B products beats building B2C products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

How I Implemented OpenAI's API In My First SaaS! DebateTrend!
reddit
LLM Vibe Score0
Human Vibe Score1
GerGetoThis week

How I Implemented OpenAI's API In My First SaaS! DebateTrend!

About Me I'm a 17 y/o aspiring solopreneur from Bulgaria! I have a passion for 3D printing, coding, video creation, and space! My Project https://debatetrend.com is a website where you can debate with AI on different topics! You can have multiple debates with different debate styles for different lengths of time! The special part is that at the end of each debate, you can have another AI look through the debate! It will give you and the AI you debated with a score from a system I call "debate score" It will also give you recommendations on where you can improve your debating skills! Quick showcase How I implemented AI - ChatGPT 4-o mini It's my first time implementing AI in a project but I think I got the hang of it relatively quickly! Here's a diagram explaining what I did Diagram of the process of debate creation. I used the assistants API from the OpenAI API. Using the threads functionality, I created a different thread operated by an assistant I had already made. When a user creates a debate my app creates a thread with custom information that was decided by the user. I save parts of the thread object in my MongoDB database which is hosted on Atlas. After that, I redirect the user to a generated page in which you can chat with the AI. I maintain the connection using Pusher which is what I use for web sockets. When a user refreshes the page the previous messages are displayed by making a call to the API with the thread id. After that, I retrieve the user messages while still allowing the user to continue the debate. This is part of what I do on the back end. Of course, I have some security measures in check but I don't know if they are enough. I chose the 4-o mini because it's still very intelligent, with a good response time, and a lot cheaper than 4-o. My Tech Stack Language: Javascript Database: MongoDB hosted on Atlas Hosting: Vercel Framework: Express Auth: PassportJs Emails: Resend Payments: Stripe Front End: TailWindCSS, some regular CSS, and DaisyUI WebSockets: Pusher, because Vercel = no sockets integrated into your web app which I found the painful way AI: OpenAI’s API ChatGPT 4-o mini Do you think I could have done anything better? I would love to hear your opinions!

What are Boilerplates?
reddit
LLM Vibe Score0
Human Vibe Score1
Inner_Lengthiness697This week

What are Boilerplates?

What are Boilerplates? Boilerplate originally referred to the rolled steel used to make boilers for steam engines in the 19th century. Over time, the term evolved to describe any standardized piece of text or code that can be reused without significant changes. Interest in SaaS has been on the rise, and many more people now want to build products. However, building products from scratch takes a lot of time, and it can be extremely frustrating. Enter SaaS Boilerplates With the standardization of stacks and basic systems that govern SaaS tools, it has become evident that there was a need, and the time was ripe for SaaS Boilerplates. SaaS Boilerplates come with landing pages, website components, authentication modules, payment modules, and various other standard features that can save developers a significant amount of time and cost. The market is flooded with Boilerplates for various tech stacks, such as NextJS, Laravel, Swift, NuxtJS, and so forth. Pros and Cons of Boilerplates Pros Save a significant amount of time and money Reduce frustration for developers as the redundant tasks are taken care of Boilerplates often follow best practices For anywhere between $49 and $299, they provide terrific value for those looking to build something very quickly Most importantly, Boilerplates also enable aspiring founders and builders with limited technical resources or abilities to ship their products faster and more cheaply. They are beacons of hope for non-technical founders looking to build a product quickly. Cons Limited flexibility May become outdated fairly quickly Setting them up still requires time Similar landing pages and design themes can make the product look like a clone Marc Lou’s Shipfast For most of us, Marc Lou popularized the idea of SaaS Boilerplate. Marc Lou launched Shipfast in August 2023. He had built 27 projects prior to this and Shipfast was nothing but all his basic code organised properly. At that time, there were no solid NextJS boilerplates, and Shipfast just took off. He got traction via Product Hunt, Twitter and Hacker News and soon Shipfast went viral. Shipfast now generates $130K/mo, just 9 months after its launch. Marc has been building Shipfast in public, which has led to a lot of interest in SaaS Boilerplates. The market is now flooded with boilerplates for every major tech stack. Marc reaped the benefits of the first mover’s advantage as well as the social proof via his Shipfast community. I don’t think any other boilerplates are as successful as Shipfast, but there are quite a few good ones out there. Shipixen* has grossed over $20K in the 5 months Makerkit* does \~$3500/mo Moreover, there are many open-source boilerplates available for popular stacks such as NextJS. The Evolution of Boilerplates Boilerplates are quickly turning into no-code/low-code code generation tools. For instance, Shipixen allows you to generate custom code for landing pages, waitlist pages and blogs using a simple User Interface. Boilerplates are perfectly posied to sit between code and no-code. Allow the flexibility of code with the interface of a no-code tool — that will be the core value proposition of SaaS boilerplates. Should you build a Boilerplate? Well, the market is flooded, but I believe there’s still an opportunity to leverage boilerplates. You can build boilerplates for certain types of apps or tools, such as Chrome extensions Boilerplates can act as a great lead funnel for building out a great productized services business No-code/low-code code generation boilerplates can become a big thing if you can help build complex tools Niche tech stack boilerplates may still be lucrative Known strategies for successfully building a boilerplate 👇🏻 Shipfast thrives because of social proof and community SaaSRock generates most of its traffic from its Gumroad listings and blogs Usenextbase and Shipixen are being built in public Many boilerplates start with waitlists They have a very clear value proposition around saving time and cost Design & No-Code Boilerplates Here is the corrected version with improved grammar and clarity: While SaaS (code) boilerplates have become fairly popular, other types of boilerplates are emerging in the market, such as design boilerplates and no-code boilerplates. To be honest, design boilerplates have been around for a while. You will find numerous landing page packs, component libraries, and so forth. Makers are now building kits that leverage standard libraries and technologies such as Tailwind CSS, Daisy UI, and more. Nick Buzz from the famous baked.design has this *50 Landing Page Design Kit* in Tailwind CSS & Figma which is wildly popular. Lastly, there is a trend of no-code boilerplates as well. Mohit is building a Bubble Boilerplate for the popular no-code platform — Bubble. All in all, I think that people want to build products and build them fast. Boilerplates help them save a significant amount of time and cost. More importantly, boilerplates are impulse purchases for people who have not shipped but who want to ship. Introducing BuilderKit.ai We have been building AI SaaS tools for quite a while now. 10+ products across text, image, speech, RAG — we have built em all. We figured that it seems easy but actually building these so called AI Wrappers can be time consuming and frustrating — there is a lot of nuance to it. So we built BuidlerKit.ai — a NextJS SaaS Boilerpalte It takes care of everything from landing pages, authentication, dashboarding, emails, SEO to payments — everything that you need to build your tool. It also comes with 8+ production-ready apps. Moreover, the BuilderKit community is an exclusive community of AI SaaS builders (Pro Only Access) The Pre Orders are now live at https://www.builderkit.ai (First 100 Customers get $100 Off — I think we have already done \~20 odd orders since the announcement yesterday, Grab your seat asap!) Starter Plan $49, Pro Plan @ $99

Introducing Vest: Your AI-Powered Due Diligence Partner - Looking for feedback!
reddit
LLM Vibe Score0
Human Vibe Score1
nervousslinkyThis week

Introducing Vest: Your AI-Powered Due Diligence Partner - Looking for feedback!

TLDR; We are introducing Vest, an AI powered due-diligence and stock recommendation platform. We have bootstrapped ourselves so far and are wanting to get as much feedback from Reddit as we can to see where we can improve, but also what we are doing right. So please have a look around, give us feedback and if you like it, feel free to use it. Hi Reddit, My name is Drian and I'm one of the founders of Vest. We believe we are crafting something special at Vest and we want to get the word out and gather as much feedback as possible! Our major goal at Vest is to help new retail investors make sense of the investment landscape and get AI powered assistance, or even help experienced investors get confirmation of their potential moves. Overall, we want people to start their journey to financial freedom and not be daunted by the complexity of it. So how do we do this? Vest is a user-friendly service that harnesses fundamental metrics, social and news sentiment, and technical analysis, that we feed into some advanced AI models to generate clear buy, sell, or hold signals for US-based (for now!) stocks, offering our users transparent due-diligence for confident investing. The service is currently free with no ads - however, at some point we do plan on adding a paid tier. What's included: &#x200B; Financial Metrics. Our financial metrics take all the potentially complex mathematical equations and present the fundamentals of a company to users in a simple 1 pager, with a score displaying if the metric is positive for a stock. We also provide publicly available analyst ratings from investment banks as well as price targets they have set. News Sentiment. We take publications about a specific stock from new articles, journals and socials and give these all a rating to determine if social sentiment is positive around a stock or not. Each article and its rating is visible to our users through through our dashboard. AI assisted Stock Signals. We have developed an algorithm to take all the metrics, sentiment and technical analysis we collate and analyze this with historic performance data for every stock to attempt to figure out if a stock is undervalued (great time to buy) or overvalued (great time to sell). 155 US stock tickers and counting. We currently have trained our models for around 155 US based stocks on the NASDAQ and NYSE exchanges. As we get more funding/runway we do plan on adding more, with the eventual goal to expand to more exchanges, countries and securities. Knowledge base and community. Our knowledge base & community contains explanations and articles for all metrics and the other good stuff behind Vest. We don’t want to just tell users what to do, but to also assist in their financial education. We hope our knowledge base can also become a thriving community where users can interact with us and each, ask questions around investing and keep gaining knowledge. Is it 100% accurate? Absolutely not. While we do a pretty great job at tracking and surfacing signals, we are not presenting a fool-proof, silver bullet with a guarantee here - rather a starting point for users to make more informed decisions, find potential new investment opportunities and hopefully learn about investing as they do so. We encourage our users to do their own research and due-diligence and not just take our signals as gospel - we know each and every person has a different risk appetite and goals, and we encourage you to use Vest in a way that fits with your own financial goals and risk appetite. We also display our win rates, average returns, and comparisons with buy and hold for each stock - and we are transparent about it when we’ve fallen short. Next steps: &#x200B; Hope over to vestapp.ai and sign-up From the dashboard, play around, inspect our stock information and add some stocks to your watchlist. If you like what you see, and you’ve done your homework - use your favourite brokerage account to make an investment and watch Vest for changes in a stocks signals. If you don’t have one, we have a pop-up when you click buy/sell on any given stock with some non-affiliated brokerage options for the US, Australia and New Zealand - we don’t get a kickback from these brokerages, they are just what we’ve personally been using. FEEDBACK - We’re just getting started and we know the value of a fresh pair of eyes - our current mission is to get as much feedback as possible - anything you think of please send it through here or on the dedicated feedback form on our website in the sidebar on the left. Features we’re working on We're quietly thrilled about the direction Vest is headed, and we want to give you a sneak peek of what's in store for the next couple of quarters. Some of these may roll out as premium features, but we're diligently fine-tuning the details. Here's what you can expect: &#x200B; Insider Trading Insights: Get daily reports on major stock moves by whales and company insiders. Institutional Holders: We're adding daily reports on institutional holders, keeping you informed about their moves. Lobbying Activity: We're actively working on daily updates about lobbying activities, so you can stay informed. Government Contracts Data: We'll provide a quarterly snapshot of government contract values for the companies you're tracking. US Congress Stock Activity: Keep an eye on daily trading actions of House and Senate members. Daily Summaries & Signal Alerts: We're currently hard at work on this feature. Soon, receive daily email summaries covering signals, watchlist updates, and key news. Personalized Risk Management: Tailor signals to match your unique risk management strategy. Your investments, your way. AI Assistant: Our LLM integration is almost ready, allowing you to ask it straightforward questions about particular securities in plain English. It will provide you with real-time context on fundamentals, news, and all the metrics and data points we monitor.

How I Built a $6k/mo Business with Cold Email
reddit
LLM Vibe Score0
Human Vibe Score1
Afraid-Astronomer130This week

How I Built a $6k/mo Business with Cold Email

I scaled my SaaS to a $6k/mo business in under 6 months completely using cold email. However, the biggest takeaway for me is not a business that’s potentially worth 6-figure. It’s having a glance at the power of cold emails in the age of AI. It’s a rapidly evolving yet highly-effective channel, but no one talks about how to do it properly. Below is the what I needed 3 years ago, when I was stuck with 40 free users on my first app. An app I spent 2 years building into the void. Entrepreneurship is lonely. Especially when you are just starting out. Launching a startup feel like shouting into the dark. You pour your heart out. You think you have the next big idea, but no one cares. You write tweets, write blogs, build features, add tests. You talk to some lukewarm leads on Twitter. You do your big launch on Product Hunt. You might even get your first few sales. But after that, crickets... Then, you try every distribution channel out there. SEO Influencers Facebook ads Affiliates Newsletters Social media PPC Tiktok Press releases The reality is, none of them are that effective for early-stage startups. Because, let's face it, when you're just getting started, you have no clue what your customers truly desire. Without understanding their needs, you cannot create a product that resonates with them. It's as simple as that. So what’s the best distribution channel when you are doing a cold start? Cold emails. I know what you're thinking, but give me 10 seconds to change your mind: When I first heard about cold emailing I was like: “Hell no! I’m a developer, ain’t no way I’m talking to strangers.” That all changed on Jan 1st 2024, when I actually started sending cold emails to grow. Over the period of 6 months, I got over 1,700 users to sign up for my SaaS and grew it to a $6k/mo rapidly growing business. All from cold emails. Mastering Cold Emails = Your Superpower I might not recommend cold emails 3 years ago, but in 2024, I'd go all in with it. It used to be an expensive marketing channel bootstrapped startups can’t afford. You need to hire many assistants, build a list, research the leads, find emails, manage the mailboxes, email the leads, reply to emails, do meetings. follow up, get rejected... You had to hire at least 5 people just to get the ball rolling. The problem? Managing people sucks, and it doesn’t scale. That all changed with AI. Today, GPT-4 outperforms most human assistants. You can build an army of intelligent agents to help you complete tasks that’d previously be impossible without human input. Things that’d take a team of 10 assistants a week can now be done in 30 minutes with AI, at far superior quality with less headaches. You can throw 5000 names with website url at this pipeline and you’ll automatically have 5000 personalized emails ready to fire in 30 minutes. How amazing is that? Beyond being extremely accessible to developers who are already proficient in AI, cold email's got 3 superpowers that no other distribution channels can offer. Superpower 1/3 : You start a conversation with every single user. Every. Single. User. Let that sink in. This is incredibly powerful in the early stages, as it helps you establish rapport, bounce ideas off one another, offer 1:1 support, understand their needs, build personal relationships, and ultimately convert users into long-term fans of your product. From talking to 1000 users at the early stage, I had 20 users asking me to get on a call every week. If they are ready to buy, I do a sales call. If they are not sure, I do a user research call. At one point I even had to limit the number of calls I took to avoid burnout. The depth of the understanding of my customers’ needs is unparalleled. Using this insight, I refined the product to precisely cater to their requirements. Superpower 2/3 : You choose exactly who you talk to Unlike other distribution channels where you at best pick what someone's searching for, with cold emails, you have 100% control over who you talk to. Their company Job title Seniority level Number of employees Technology stack Growth rate Funding stage Product offerings Competitive landscape Social activity (Marital status - well, technically you can, but maybe not this one…) You can dial in this targeting to match your ICP exactly. The result is super low CAC and ultra high conversion rate. For example, My competitors are paying $10 per click for the keyword "HARO agency". I pay $0.19 per email sent, and $1.92 per signup At around $500 LTV, you can see how the first means a non-viable business. And the second means a cash-generating engine. Superpower 3/3 : Complete stealth mode Unlike other channels where competitors can easily reverse engineer or even abuse your marketing strategies, cold email operates in complete stealth mode. Every aspect is concealed from end to end: Your target audience Lead generation methods Number of leads targeted Email content Sales funnel This secrecy explains why there isn't much discussion about it online. Everyone is too focused on keeping their strategies close and reaping the rewards. That's precisely why I've chosen to share my insights on leveraging cold email to grow a successful SaaS business. More founders need to harness this channel to its fullest potential. In addition, I've more or less reached every user within my Total Addressable Market (TAM). So, if any competitor is reading this, don't bother trying to replicate it. The majority of potential users for this AI product are already onboard. To recap, the three superpowers of cold emails: You start a conversation with every single user → Accelerate to PMF You choose exactly who you talk to → Super-low CAC Complete stealth mode → Doesn’t attract competition By combining the three superpowers I helped my SaaS reach product-marketing-fit quickly and scale it to $6k per month while staying fully bootstrapped. I don't believe this was a coincidence. It's a replicable strategy for any startup. The blueprint is actually straightforward: Engage with a handful of customers Validate the idea Engage with numerous customers Scale to $5k/mo and beyond More early-stage founders should leverage cold emails for validation, and as their first distribution channel. And what would it do for you? Update: lots of DM asking about more specifics so I wrote about it here. https://coldstartblueprint.com/p/ai-agent-email-list-building

I Launched a Side Project That People Love, But Scaling It Is Brutal
reddit
LLM Vibe Score0
Human Vibe Score1
ImLiterallyFakeThis week

I Launched a Side Project That People Love, But Scaling It Is Brutal

I Built a Side Project with Great Engagement—But It’s Still Not Making Money Six months ago, I started a side project in the consumer AI space: opencharacter.org. It’s been a grind, but I’ve built something people actually love—high retention, strong engagement, and users spending a ton of time on the platform. By all product metrics, it’s a success. But financially? It’s not quite there yet. The biggest challenge hasn’t been technical, managing infrastructure, or even dealing with a community. It’s distribution. Getting people to actually find and use your side project at scale is insanely hard. What’s Worked Reddit – Thoughtful, non-spammy comments in relevant threads drove early users. Instagram – Short-form videos brought in surprising traction. Paid ads – Somewhat effective, but tough to balance customer acquisition costs and revenue. What Hasn’t (Yet) TikTok – Dozens of videos later, still struggling to make it a reliable growth channel. Discord – Great for engagement, but not a strong acquisition channel. Recently, I brought on a co-founder who has done over 100 million views on Instagram Reels in under two years, so I’m hopeful we can crack the growth formula. Because without a scalable system for getting users, even a great side project won’t reach its potential. If I could start over, I’d think much more about distribution before building. Would love to hear from others—how do you drive growth for your side project?

Just reached 300 users in 3 months!!!
reddit
LLM Vibe Score0
Human Vibe Score1
w-elm_This week

Just reached 300 users in 3 months!!!

Just reached 300 users after 3 months live!!! My co-founder has been posting a bit here and always got some strong support and he suggested I share my side of things so here it is: How it started I co-founded AirMedia almost a year ago and we both didn’t know much about design/marketing/coding (just studied programming during my 6-month exchange period. The quickest way to get started seemed to get a no-code product that we could put in front of users and get feedback. My co-founder then started learning about bubble and we put together a basic platform to show users. I was working on a custom-code database in the meantime and decided after month 2 that we wanted to get something better I.e. AI would be interacting with the UI and had to do everything custom-code for it. We’re now month 3 and started from scratch again. While I was working on the code, we started talking to some potential users and selling lifetime deals to validate the idea (this is where I would start if I had to do it over again). Well I progressively found out it was more complicated than expected and we only released our first beta product last August (6 months later) Some challenges pre-launch: Getting the Meta/LinkedIn permissions for scheduling took around 1 month As the whole process took more time than expected, the waitlist of 300 that we managed to put together only converted by 10% (into free users). Please don’t make our mistakes and always keep your waitlist updated on what’s going on. Some challenges post-launch: Getting the right feedback and how to prioritise Getting users Monetising (yes - we’re bootstrapped) To get the best feedback we implemented some tracking (according to GDPR of course) on the platform and implemented Microsoft Clarity. The latter is a game-changer, if you have a SaaS and don’t use it you’re missing out. I wasn’t really into getting users as my co-founder handled that but it’s mainly manual and personalised LinkedIn outreach at the beginning and Reddit sharing about the progress, answering questions and getting some feedback at the same time. To monetise we realised we’re too common and there are 100+ other nice schedulers around so we’re now focusing on cracking the content creation side of AI (to be released next week 👀) as there’s much less competitors and it seems like that’s our users want. In the meantime of growing the company, we had to find a way to pay the bills as it’s two of us living together. So my co-founder started using the bubble skills gained and doing some freelance. He did around 7 platforms the last 6 months and we’re now just launching a bubble agency as a part of the main company to get your idea of a SaaS done in 30 days. That’s QuickMVP. It seemed like the right move to help other people (I met many non-technical founder looking for someone to bring their idea to life that didn’t cost $10k and was reliable) and include the AirMedia subscription in the package so let’s see how this next step plays out. Thanks for reading until here :)

Things I did to promote my product, and how they turned out
reddit
LLM Vibe Score0
Human Vibe Score1
laike9mThis week

Things I did to promote my product, and how they turned out

(I will share more updates in the future, you can find me on Twitter and/or Mastodon) Ask any ten indie developers about the toughest part of their job, and nine will likely say "marketing." I recently got a taste of this firsthand when I launched Xylect. Here's a rundown of my promotional attempts - hopefully, my experiences can help fellow developers out there. Podcast Community (✅ Success) I kicked things off by promoting Xylect in my podcast listener group. It wasn't a blockbuster, but I managed to sell a few copies and got some invaluable feedback from friends. Shoutout to those early supporters! Reddit r/macapps (✅ Success) Having had some luck promoting open-source projects on Reddit before, I decided to make r/macapps my first stop in the English-speaking world. I made an app to help you automate boring tasks with one click This post turned out to be a hit! I sold about ten copies and got a ton of useful feedback. Users pointed out compatibility issues with PopClip and suggested improvements for the website. One Italian user even requested localization, which I happily added. https://preview.redd.it/y4fuwh6hleqd1.png?width=959&format=png&auto=webp&s=7bb1b68cbf8a4f94998999e0832b9b7bd85bac67 https://preview.redd.it/8uu4cmyhleqd1.png?width=683&format=png&auto=webp&s=8f1744636aee8074b0e7491a334ef06076b143b0 I also got an intriguing email from a French user - more on that later. More Reddit Posts (❌ Failure) Riding high on my r/macapps success, I branched out to r/SideProject, r/Entrepreneur, and r/indiehackers. These subreddits frown upon direct self-promotion, so I took a softer approach with an article: The unexpected emotional cost of being an indiehacker While the article was heartfelt, it fell flat. Across all three posts, I got a grand total of three comments - two of which were complaints about the font size on mobile. Needless to say, I didn't sell a single copy. Hacker News (❌ Failure) As one of the tech world's major forums, I had to give Hacker News a shot. I wasn't too optimistic, given my past experiences there. Posting on HN feels like a mix of luck and dark magic. As expected, my post vanished without a trace - no comments, no sales. I might give it another go someday. If you're curious, you can check out my previous HN submissions. Tools Directory Websites (❌ Failure) These sites have a simple premise: you list your app, they display it. Seemed like an easy way to get some backlinks, right? Well, I learned the hard way that it's not that simple. I stumbled upon a Reddit post where someone claimed to have made a killing with their directory site in just a few days. The catch? Each listing cost $19. The site had a handful of apps listed, so I thought, "Why not? Early bird gets the worm." I paid up and listed Xylect. Spoiler alert: all I got was $19 poorer 🥲 Lesson learned: These directory sites won't magically sell your product. At best, they're just glorified backlinks. There might be some value in paid promotions on these platforms, but I can't speak to that from experience. V2EX (❌ Failure) After striking out in the English-speaking world, I turned my attention to the Chinese market, starting with V2EX (think of it as China's hybrid of HN and Reddit). This turned out to be my most unexpected flop. Here's the post: [\[Launch Discount\] Mac's most powerful AI search (Perplexity + Wikipedia + Google), boost your efficiency tenfold with one click. No API key required, no prompt needed, no token limit 🔥 - V2EX](https://www.v2ex.com/t/1064930?p=1#reply36) I'd seen decent engagement on other promo posts, so I had high hopes. I posted late at night (US time) and went to bed dreaming of waking up to a flood of comments. Reality check: The next morning, I had exactly one reply - from Kilerd, a loyal podcast listener showing some love. I was baffled. After re-reading my post, I realized I'd missed a crucial element: promo codes. A quick scan of popular posts confirmed my suspicion. Nearly every successful promo post was offering codes, and most comments were just base64-encoded email addresses. Talk about a facepalm moment. I scrambled to add a note about an upcoming free trial and invited users to drop their emails. This got the ball rolling with some code requests, but by then, the damage was done. The post fizzled out, and I didn't sell a single copy 🫠 A French Friend's Newsletter (✅ Success) At this point, my promotional efforts were looking pretty grim. My sales chart had a depressing stretch of flatline. But then, a glimmer of hope appeared in my inbox. Remember that French user I mentioned earlier? He ran a newsletter called vvmac and offered to feature Xylect if I added French support and sent him a free license. It was an offer I couldn't refuse. What followed was a crash course in French localization (thank you, Claude!) and the start of an incredible partnership. This guy was the most thorough beta tester I've ever encountered. We exchanged over sixty emails, covering everything from translations to UI tweaks to bug fixes. His response time was lightning-fast - I'd fix a bug, and five minutes later, he'd confirm it was sorted. The result? A much-improved Xylect and a glowing feature in his newsletter. https://preview.redd.it/ylcq2wxoleqd1.png?width=991&format=png&auto=webp&s=ee395110f50417d5c7f61318f27bf3dc30247809 I'm still in awe of his dedication. He single-handedly transformed Xylect from a buggy mess into a polished product. I'll be forever grateful for his help. The newsletter feature led to a few more sales, but honestly, that felt like a bonus at that point. Influencers (❌ Failure) I knew from the start that to really make waves, I'd need influencer backing. So, I added a note offering free licenses to content creators willing to collaborate. https://preview.redd.it/tyb2m1rqleqd1.png?width=799&format=png&auto=webp&s=56eabf126e772515322595613c546e6ba69fb431 I did get one taker: Hey, I'll be honest, I am not a huge content creator but I think I put a lot of effort in evaluating and figuring out which apps work... So I was wondering if I could get a license in case you are willing to share it. Thank you for considering. Have a great weekend. But I knew I needed to aim higher. With the new French localization, I thought I'd try my luck with some French-speaking Mac YouTubers. I crafted emails highlighting how Xylect could help their French audience with English content. https://preview.redd.it/07oqzemrleqd1.png?width=542&format=png&auto=webp&s=3d160c1d149f28e9029816a277c6ab2496fcd57e After days of silence, I got one reply. It was... not what I was hoping for: Hi, Thank you for your proposal. I can help you to promote your service on Tiktok, Instagram et YouTube, with unique short video. Price for this project is 3500€. Unless I've completely lost my marbles, there's no way I'm dropping 3500€ on promotion. Sure, given their follower count (YouTube: 348K, TikTok: 2.7M, Instagram: 400K), it's not an outrageous ask. For some products, it might even be worth it. But for Xylect? No way. I also reached out to a Chinese influencer on Xiaohongshu, but they weren't interested. Back to the drawing board. Conclusion If you've made it this far, you've probably realized this isn't exactly a success story. My search for effective promotional channels came up largely empty-handed. I'd naively thought that my success with open-source projects would translate seamlessly to the indie dev world. Boy, was I wrong. As I mentioned in my previous article, open-source projects create a dynamic where users feel indebted to developers for their free labor. But in the commercial world of indie development, that dynamic completely flips. While this experience was often frustrating, it was also enlightening - which was kind of the point. As my first foray into indie development, my main goal was to learn the ropes and understand the process. Making money would've been nice, sure, but it wasn't my primary focus. Thanks for sticking with me through this post. I will share more updates in the future, you can follow me on  Twitter and/or Mastodon.

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I very rarely have stuff to post on Reddit, but I share how my project is going on, just random stuff, and memes on X. In case few might want to keep up 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2B products beats building B2C products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

How to get your first 10 customers with cold email
reddit
LLM Vibe Score0
Human Vibe Score0.905
LieIgnorant6304This week

How to get your first 10 customers with cold email

Cold email is an insane channel for growth, especially for bootstrapped startups as it's very low cost but completely scalable. Yet there's a huge difference between blind cold emailing and crafting personalized outreach for select individuals. The latter is a legit channel which makes many businesses scale in short amounts of time (i.e. see Alex Hormozi’s ‘$100 Million Dollar Offer’). My goal here is to help other founders do what I did but quicker. So you can learn faster. And then teach me something new too. These are the step-by-step lessons I've learnt as a bootstrapped founder, showing you how to use cold email to get your first customers: Find your leads Write engaging email copy Personalize your outreach Send emails Scale up Find your leads This is a key step. Once you figure out exactly who you want to target and where to find them, you'll be printing money. There's a few different ways to go about finding valuable leads. The secret? Keep testing different approaches until you strike gold. First, dedicate some time every day to find and organise leads. Then, keep an eye on your numbers and bounce rates. If something's not working, switch it up. Stick with what's bringing in results and ditch what's not. It's all about staying flexible and learning as you go. Apollo.io is a great starting point as an effective lead source. Their tool allows you to specify filters including job titles, location, company size, industry, keywords, technologies, and revenue. Get specific with your searches to find your ideal customers. Once you have some results you can save and export them, you'll get a list of contact information including name, email, company, LinkedIn, ready to be verified and used. LinkedIn Sales Navigator is another good source. You can either do manual searches or use a scraper to automate the process. The scrapers I'd recommend checking out are FindyMail and Evaboot. As with Apollo, it's best to get very specific with your targeting so you know the prospect will be interested in your offer. BuiltWith is more expensive but ideal if you're targeting competitors. With BuiltWith you can build lists based on what technologies companies are using. For example if you're selling a Shopify app, you'd want to know websites or stores using Shopify, and reach out to them. The best lead sources will always be those that haven't been contacted a lot in the past. If you are able to find places where your target audience uniquely hangs out, and you can get their company website domains, they have the potential to be scrapped, and you have a way to personalize like "I spotted your comment on XYZ website". Once you've got your leads, keep them organized. Set up folders for different niches, countries, company sizes, so you can review what works and what doesn't. One more thing – before you start firing off emails, make sure those addresses are verified. Always use an email verifier to clean up your list and avoid bounces that may affect your sending reputation, and land you in the spam folder. I use Neverbounce for this but there are other tools available. Write engaging email copy Writing a good copy that gets replies is difficult, it changes depending on your offer/audience and nobody knows what's going to work. The best approach is to keep testing different targeting and messaging until you find what works. However, there are some key rules to stick to that I've outlined. For the subject line, keep it short and personalized. Try to write something that sparks interest, and mention the recipients name: Thought you’d like this {{first name}} {{firstName}} - quick question For the email body it's best to use a framework of personalization, offer, then call to action. Personalization is an entire subject in its own right, which I've covered below. In short, a personalized email opener is the best way to grab their attention, and let them know the email is relevant to them and to keep reading. Take it from Alex Hormozi and his $100M Offers playbook – your offer is very important to get right. Make sure your offer hits the mark for your target audience, and get as specific as possible. For example: I built a SaaS shopify app for small ecommerce businesses selling apparel that doubles your revenue in 60-days or your money back. We developed a cold email personalization tool for lead generation agencies that saves hundreds of hours, and can 3x your reply rate. Lastly, the CTA. The goal here isn't to get sign-ups directly from your first email. It's better to ask a brief question about whether the prospect would be interested in learning more. Something very low friction, that warrants a response. Some examples might include: Would you be interested in learning more about this? Can we connect a bit more on this? Mind if I send over a loom I recorded for you? Never send any links in the first email. You've reached out to this person because you have good reason to believe they'd find real value in your offer, and you want to verify if that's the case. After you get one reply, this is a great positive signal and from there you can send a link, book a call, provide a free resource, whatever makes sense based on their response. Personalize your outreach Personalization is one of the most important parts of the process to get right. Your recipient probably receives a multitude of emails every day, how can you make yours stand out, letting them know you've done your research, and that your email is relevant to them? Personalizing each email ensures you get more positive replies, and avoid spam filters, as your email is unique and hasn't been copied and pasted a million times over. The goal is to spark the recipient's interest, and let them know that you're contacting them for good reason. You might mention a recent achievement, blog post or product release that led you to reach out to the prospect specifically. For example: Your post on "Doing Nothing" gave me a good chuckle. Savvy marketing on Cadbury's part. Saw that you've been at Google for just under a year now as a new VP of sales. Spotted that you've got over 7 years of experience in the digital marketing space. Ideally you'll mention something specifically about the prospect or their company that relates to your offer. The downside to personalization is that it's hard to get right, and very time consuming at scale, but totally worth it. Full disclosure, me and my partner Igor just launched our new startup ColdClicks which uses AI to generate hyper-personalized email openers at scale. We built the tool as we were sending hundreds of emails a day, and personalizing every individual email took hours out of our day. ColdClicks automates this process, saving you time and getting you 2-3x more replies. Send emails At this stage you've decided on who you're targeting, you've mined some leads, and written copy. Now it's time to get sending. You can do this manually by copy and pasting each message, but one of the reasons cold email is so powerful is that it's scalable. When you build a process that gets customers, you'll want to send as many emails as you can to your target market. To get started quickly, you can use a mail-merge gmail tool, the best I've used is Maileteor. With Maileteor you upload your lead data to Google sheets, set-up an email template and Mailmetor will send out emails every day automatically. In your template you can define variables including name, company, and personalization to ensure your email is unique for each recipient. Alternatively, you may opt for a more comprehensive tool such as Instantly. Instantly includes unlimited email sending and accounts. There's more initial setup involved as you'll need to set-up Google workspace, buy sending domains, and warm up your email accounts, but when you become familiar with the process you can build a powerful lead generation / customer acquisition machine. Some key points to note, it's very important to warm up any new email accounts you set up. Warmup is the process of gradually establishing a positive reputation with email service providers like Gmail or Yahoo. Make sure to set up DKIM and DMARC on those new email accounts too, to maximise your chances of landing in the inbox. Scale up Once you've found a process that works, good things happen, and it becomes a numbers game. As you get replies and start to see new users signing up, you'll want to scale the process and send more emails. It's straightforward to add new sending accounts in a sending tool like Instantly, and you'll want to broaden your targeting when mining to test new markets. Unfortunately, sending more emails usually comes with a drop in reply rate as you have less time to personalize your messaging for each recipient. This is where ColdClicks shines. The tool allows you to upload thousands of leads and generate perfectly relevant email personalizations for every lead in your list, then export to your favorite sending tool. The examples I listed above in the personalization section were all generated by ColdClicks. Wrapping it up Cold email is an amazing way to validate your product and get new customers. The channel gets a bad rap, but there's a huge difference between blind cold emailing and crafting personalized outreach for individuals who will find value in your product. It's perfect for bootstrapped founders due to its affordability and scalability, and it's the driver of growth for many SaaS businesses. Time to get your first 10 customers! As you start sending, make it a habit to regularly check for new leads. Always experiment with market/messaging, track every campaign so you can learn what's working and iterate, and when you do get positive responses, reply as soon as you can!

I built an app to find who’s interested in your app by monitoring social media
reddit
LLM Vibe Score0
Human Vibe Score0.857
lmcaraigThis week

I built an app to find who’s interested in your app by monitoring social media

Hi everyone! I hope you’re all doing great folks! I’d love to know your thoughts about what I’ve been working on recently! 🙏 If you’re busy or wanna see the app scroll to the bottom to see the video demo, otherwise, continue reading. Very brief presentation of myself first: I’m Marvin, and I live in Florence, Italy, 👋 This year I decided to go all-in on solopreneurship, I’ve been in tech as Software Engineer first, and then in Engineering Leadership for 10+ years, I’ve always worked in startups, except for last year, when I was the Director of Engineering at the Linux Foundation. Follow me on X or subscribe to my newsletter if you’re curious about this journey. The vision Most founders start building digital startups because they love crafting and being impactful by helping other people or companies. First-time founders then face reality when they realize that nailing distribution is key. All other founders already learned this, most likely the hard way. The outcome is the same: a great product will unlikely succeed without great distribution. Letting people know about your product should be easier and not an unfair advantage. The following meme is so true, but also quite sad. I wanna help this to change by easing the marketing and distribution part. https://preview.redd.it/g52pz46upqtd1.png?width=679&format=png&auto=webp&s=cf8398a3592f25c05c396bb2ff5d028331a36315 The story behind Distribution is a huge space: lead generation, demand generation, content marketing, social media marketing, cold outreach, etc. I cannot solve everything altogether. A few months ago I was checking the traffic to a job board I own (NextCommit). That's when I noticed that the “baseline” traffic increased by almost 10x. 🤯 I started investigating why. I realized that the monthly traffic from Reddit increased from 10-ish to 350+. Yeah, the job board doesn’t get much traffic in total, but this was an interesting finding. After digging more, it seems that all that increase came from a single Reddit comment: https://www.reddit.com/r/remotework/comments/1crwcei/comment/l5fb1yy/ This is the moment when I realized two things: It’s cool that someone quoted it! Engaging with people on Reddit, even just through comments, can be VERY powerful. And this was just one single comment! https://preview.redd.it/nhxcv4h2qqtd1.png?width=1192&format=png&auto=webp&s=d31905f56ae59426108ddbb61f2d6b668eedf27a Some weeks later I started noticing a few apps like ReplyGuy. These were automatically engaging with Reddit posts identified through keywords. I decided to sign up for the free plan of ReplyGuy to know more, but many things didn’t convince me: One of the keywords I used for my job board was “remote” and that caused a lot of false positives, The generated replies were good as a kickstart, but most of the time they needed to be tuned to sound more like me. The latter is expected. In the end, the platform doesn’t know me, doesn’t know my opinions, doesn’t know my story, etc.. The only valuable feature left for me was identifying the posts, but that also didn’t work well for me due to false positives. I ended up using it after only 15 minutes. I’m not saying they did a poor job, but it was not working well for me. In the end, the product got quite some traction, so it helped confirm there’s interest in that kind of tool. What bothered me was the combination of auto-replies that felt non-authentic. It’s not that I’m against bots, automation is becoming more common, and people are getting used to it. But in this context, I believe bots should act as an extension of ourselves, enhancing our interactions rather than just generating generic responses (like tools such as HeyGen, Synthesia, PhotoAI). I’m not there yet with my app, but a lot can be done. I'd love to reach the point where a user feels confident to automate the replies because they sound as written by themselves. I then decided to start from the same space, helping engage with Reddit posts, for these reasons: I experienced myself that it can be impactful, It aligns with my vision to ease distribution, Some competitors validated that there’s interest in this specific feature and I could use it as a starting point, I’m confident I can provide a better experience even with what I already have. The current state The product currently enables you to: Create multiple projects and assign keywords, Find the posts that are relevant for engagement using a fuzzy match of keywords and post-filtered using AI to avoid false positives, Provide an analysis of each post to assess the best way to engage, Generate a helpful reply that you’d need to review and post. So currently the product is more on the demand gen side, but this is just the beginning. I’m speaking with people from Marketing, Sales, RevOps, and Growth agencies to better understand their lives, struggles, and pain points. This will help me ensure that I build a product that enables them to help users find the products they need. I’m currently looking for up to 10 people to join the closed beta for free. If you’re interested in joining or to get notified once generally available you can do it here! https://tally.so/r/3XYbj4 After the closed beta, I will start onboarding people in batches. This will let me gather feedback, iterate, and provide a great experience to everyone aligned with my vision. I’m not going to add auto-reply unless the conditions I explained above are met or someone convinces me there’s a good reason for doing so. Each batch will probably get bigger with an increasing price until I’m confident about making it generally available. The next steps The next steps will depend on the feedback I get from the customers and the learnings from the discovery calls I’m having. I will talk about future developments in another update, but I have some ideas already. Check out the demo video below, and I'd love to hear your thoughts! ❤️ Oh and BTW, the app is called HaveYouHeard! https://reddit.com/link/1fzsnrd/video/34lat9snpqtd1/player This is the link to Loom in case the upload doesn't work: https://www.loom.com/share/460c4033b1f94e3bb5e1d081a05eedfd

Finding domains for a business: The troubles faced and how they were solved.
reddit
LLM Vibe Score0
Human Vibe Score0.6
DrobushevskiyThis week

Finding domains for a business: The troubles faced and how they were solved.

Hey everyone! I’m sure some of you have experience searching for a domain name for your project or startup. And you know how hard it can be to find the right one. You want it to be short, memorable, SEO-friendly, free of a bad history, and relevant to your project’s meaning. As a solo entrepreneur, I’ve faced the same challenges. I tried using domain auctions and drop-catching platforms to find short and valuable domain names for my projects and for resale. But these platforms can be frustrating – there’s too much competition, bidding wars drive up prices, and waiting for a domain to become available takes forever. GoDaddy auctions can last up to 10 days, and placing a backorder doesn’t always guarantee success. This process can be stressful and time-consuming. I just wanted a way to quickly grab the right domain and start using it immediately – without all the waiting and worrying. One day, I found a great domain on Product Hunt. The product was abandoned, and the domain was available. I thought, "What if I could find more domains like this in the same niche from this site?" and "How can I automate this?” That’s how I ended up creating GoneDomains GoneDomains helps to find available domain names from popular websites like Product Hunt, Medium, Hacker News, Forbes, and others. It saves hours of searching and eliminates the stress of competing with other buyers. Recently, I added a Domain Rating (DR) metric for each domain, making it easier to find valuable domains for SEO. If you’re familiar with DR, you know that domains with high DR can boost SEO rankings. Dashboard of GoneDomains with the filter Now, I’m working on new features: A feature that shows the average price of domains across multiple sources. A tool to check how many domain extensions are already registered for a specific name. AI-powered analysis to determine a domain’s niche and keywords, plus a filter for one-, two-, or three-word domains. Today, GoneDomains has over 30,000 available domain names sourced from platforms like Product Hunt, Medium, Hacker News, Forbes, TechCrunch, and more. New domains are added daily. GoneDomains saves you from spending hours manually searching, dealing with bidding wars, waiting for auctions to end, and unnecessary stress.

I’ve built a gaming recommendation and exploration platform called Which Game Next
reddit
LLM Vibe Score0
Human Vibe Score0.714
kasperooThis week

I’ve built a gaming recommendation and exploration platform called Which Game Next

Hello there! Me and a few of my best friends are software engineers, and we’ve been working part-time on developing a side project for the past 12 months. It’s called www.whichgamenext.com, and we’ve recently launched into open beta for everyone to check out. Your feedback would be invaluable to us! Our aim has been to build a gaming recommendation engine, alongside providing market oversight for where you can legally and officially purchase or obtain modern games from multiple stores and/or subscriptions. It’s often difficult to figure out what you have access to if you only have a single specific subscription, like Game Pass PC, or if you’re only interested in games on GOG/Nintendo (what a mix!). We started by identifying the available digital stores and subscriptions and slowly compiling our database using multiple automated services to gather data on these games. Think JustWatch, but for games! One major service we’ve partnered with is IGDB, which has been supplying us with JSON data dumps that served as the initial seed for our game data. A massive thank you to them for their continued support! With the data in place, we’ve been focusing on exploring new features. So far, this has included private and public user-generated lists, personal backlog tracking, and the ability to like or dislike games. We’re now improving our recommendation engine, tackling the complexities that come with it, and having a lot of fun along the way. We’re utilising modern AI strategies and solving fascinating problems related to large-scale data aggregation. We truly can’t wait to share this fantastic work! In addition to this, you can soon expect curated collections, articles about games, and supporting links to help you make informed, unbiased purchasing decisions. Your shared data will drive the recommendations. But it doesn’t stop there—we have plenty of other features on our radar, such as importing games from your favourite stores, syncing your gameplay time, surfacing data like “How Long to Beat,” and creating new and exciting ways to interact with this growing community! This is a passion project created by a group of gamers who want to spend their time and money wisely, without purchasing biases. Since it’s a side project, we mostly work on it at night, but we’re excited to grow the community, share our vision, and, who knows, maybe one day make it our full-time job! Let’s dive into the technical details: • Monorepo architecture: This speeds up development by sharing libraries, living style guides, configs, etc. Nx.js has been brilliant, enabling us to create a dependency graph of changes and only build/deploy what’s modified in a PR. • AWS: We’re using the free tier (with a few exceptions where we pay for smaller services). Achieving self-sufficiency is critical for us. Additionally, we applied to the AWS Startup Foundation programme and received $1,000 in AWS credits, which has been incredibly helpful! • Infrastructure: Fully deployed as code with Terraform. • Backends: Built using Express and Nest.js, split into around 40 projects and counting! Each project plays a unique role in gathering and syncing game data. • Scalability: Designed from the ground up, utilising AWS Lambdas with auto-scaling and load balancing. • Databases: We use Postgres with RDS and DynamoDB for storing various data. • Frontend stack: Built with React, Next.js, Tailwind, Zustand, TanStack Query, Jest, and Storybook. • CI/CD: Managed with GitHub Actions and Amplify hooks for deploying the frontends. • Admin portal: We’ve built a bespoke CMS to control the main website. It synchronises with external services, tracks game data changes, and allows us to selectively apply ‘patches’ from sites like IGDB. The system also includes data override and rollback capabilities, ensuring we maintain control over game data. • Automation: Partially automated, so manual intervention is rarely needed. • Scraping tools: Fully integrated into the admin portal with log trail capabilities. • Cloudflare: Used for on-the-fly image transformations; we’re considering moving to it full-time as our CDN for free WebP conversions. • Authentication: Handled by Cognito, with a custom frontend built from scratch. Key learnings so far: • AWS cold starts: Not ideal! While the platform is still new, we ping endpoints to keep them responsive. This won’t be an issue once traffic increases. • Lambda memory matters: We learned the hard way that low-memory configurations can delay responses by 2-3 seconds. • DynamoDB partition keys: If not designed correctly from the start, you might have to start over (yes, we’ve been there!). • GitHub Actions: Setting up node\_modules cache reuse takes time, but it’s worth it—don’t give up! We don’t know where this project will take us yet, but it’s been a fantastic journey so far. We’ve learned a lot, explored technologies we don’t typically use in our day jobs, and built something we’re genuinely passionate about. Your feedback would mean the world to us. What do you think of what we’ve done so far? What would you like to see added? Is this a service you’d use? Do you see the value in it as we do? Thanks for reading, and we hope to see you in the comments! (or our newly created /r/whichgamenext

I retired at 32 from my side project. Here's the path I took.
reddit
LLM Vibe Score0
Human Vibe Score1
inputoriginThis week

I retired at 32 from my side project. Here's the path I took.

EDIT 2: Thanks for the award kind stranger! I've stopped responding to reddit comments for this post. I'm adding an FAQ to the original post based on the most common high quality questions. If you have a question that you're dying to know the answer to and that only I can help you with (vs. Google, ChatGPT, etc.), DM me. EDIT: I love how controversial this post has become (50% upvote rate), and only in this subreddit (vs. other subreddits that I posted the same content in). I trust that the open-minded half of you will find something useful in this post and my other posts and comments. I retired at 32 years old, in large part thanks to a B2C SaaS app that I developed on my own. Now, I don't have to work in order to cover my living expenses, and wouldn't have to work for quite a while. In other words, I can finally sip mai tais at the beach. I've condensed how I got there into this post. First, a super simplified timeline of events, followed by some critical details. Timeline 2013 Graduated college in the US 2013 Started first corporate job 2013 Started side project (B2C app) that would eventually lead to my retirement 2020 Started charging for use of my B2C app (was free, became freemium) 2021 Quit my last corporate job 2022 Retired: time freedom attained Details First, some summary statistics of my path to retirement: 9 years: time between graduating college and my retirement. 8 years: total length of my career where I worked at some corporate day job. 7 years: time it took my B2C app to make its first revenue dollar 2 years: time between my first dollar of SaaS revenue and my retirement. "Something something overnight success a decade in the making". I got extremely lucky on my path to retirement, both in terms of the business environment I was in and who I am as a person. I'd also like to think that some of the conscious decisions I made along the way contributed to my early retirement. Lucky Breaks Was born in the US middle class. Had a natural affinity for computer programming and entrepreneurial mindset (initiative, resourcefulness, pragmatism, courage, growth mindset). Had opportunities to develop these mindsets throughout life. Got into a good college which gave me the credentials to get high paying corporate jobs. Was early to a platform that saw large adoption (see "barnacle on whale" strategy). Business niche is shareworthy: my SaaS received free media. Business niche is relatively stable, and small enough to not be competitive. "Skillful" Decisions I decided to spend the nights and weekends of my early career working on side projects in the hopes that one would hit. I also worked a day job to support myself and build my savings. My launch funnel over roughly 7 years of working on side projects: Countless side projects prototyped. 5 side projects publically launched. 2 side projects made > $0. 1 side project ended up becoming the SaaS that would help me retire. At my corporate day jobs, I optimized for learning and work-life balance. My learning usually stalled after a year or two at one company, so I’d quit and find another job. I invested (and continute to do so) in physical and mental wellbeing via regular workouts, meditation, journaling, traveling, and good food. My fulfilling non-work-life re-energized me for my work-life, and my work-life supported my non-work-life: a virtuous cycle. I automated the most time-consuming aspects of my business (outside of product development). Nowadays, I take long vacations and work at most 20 hours a week / a three-day work week . I decided to keep my business entirely owned and operated by me. It's the best fit for my work-style (high autonomy, deep focus, fast decision-making) and need to have full creative freedom and control. I dated and married a very supportive and inspiring partner. I try not to succumb to outrageous lifestyle creep, which keeps my living expenses low and drastically extends my burn-rate. Prescription To share some aphorisms I’ve leaned with the wantrepreneurs or those who want to follow a similar path: Maximize your at bats, because you only need one hit. Bias towards action. Launch quickly. Get your ideas out into the real world for feedback. Perfect is the enemy of good. If you keep swinging and improving, you'll hit the ball eventually. Keep the big picture in mind. You don't necessarily need a home-run to be happy: a base hit will often do the job. Think about what matters most to you in life: is it a lot of money or status? Or is it something more satisfying, and often just as if not more attainable, like freedom, loving relationships, or fulfillment? Is what you’re doing now a good way to get what you want? Or is there a better way? At more of a micro-level of "keep the big picture in mind", I often see talented wantrepreneurs get stuck in the weeds of lower-level optimizations, usually around technical design choices. They forget (or maybe subconsciously avoid) the higher-level and more important questions of customer development, user experience, and distribution. For example: “Are you solving a real problem?” or “Did you launch an MVP and what did your users think?” Adopt a growth mindset. Believe that you are capable of learning whatever you need to learn in order to do what you want to do. The pain of regret is worse than the pain of failure. I’ve noticed that fear of failure is the greatest thing holding people back from taking action towards their dreams. Unless failure means death in your case, a debilitating fear of failure is a surmountable mental block. You miss 100% of the shots you don't take. When all is said and done, we often regret the things we didn't do in life than the things we did. There’s more to life than just work. Blasphemous (at least among my social circle)! But the reality is that many of the dying regret having worked too much in their lives. As Miss Frizzle from The Magic Schoolbus says: "Take chances, make mistakes, get messy!" Original post

I acquired a SaaS for ~5 figures to solve my content problem
reddit
LLM Vibe Score0
Human Vibe Score1
Either_Discussion635This week

I acquired a SaaS for ~5 figures to solve my content problem

In 2023 I bought a SaaS called Cuppa AI. I actually found the product on twitter, run by a very talented engineer in the UK.  I’ve spent tens of thousands of dollars on content for various media companies. In one consumer health company, it cost us around $200-$500 for each SEO optimized article. This adds up pretty quickly. Not forgetting the 20 hours of edits! This isn’t just an isolated problem for a single company. It’s industry wide and affects small business + agency owners alike. I spent over a decade in media, and have seen many agency founders complain about long lead times and high costs for low output.  This is an issue. Large swathes of would-be customers that prefer to consume content before buying are being ignored - either because it takes too long or costs too much for founders to scale this channel.   I eventually became tired of the media content game in 2022 and looked into using SaaS to solve my previous life’s challenges. I started building, acquiring and scaling a portfolio of products that I found useful in my day to day. But the content issue was still there.  So I started to look for ways to reduce the time + cost content burden for my own portfolio.   I initially discovered Cuppa using it for my own personal pains of content research, editing, publishing, and scaling. But then I saw potential. I wanted to turn it into an end to end solution for the content gap that myself and other business owners weren’t taking advantage of because of time, cost, or other priorities.  I sent a DM. Then a few calls later, I acquired it in June 2023.  I chose cuppa vs other competing products for a few reasons:  The founder gave excellent support during and post acquisition  It already had a large, loyal existing user base I’d personally used it and solved a pain with it. I saw the potential to solve many others for more people like me  The founder has put a ton of quality and care into it. There wasn’t a risk of picking up a patchy product, plus it already had great social distribution  It naturally fits my expertise from the ‘other side’. I was the original customer of it, so I knew I could evolve it with features that could create content at scale without losing the human touch  Since then we’ve added a lot of new stuff: Chat with articles Image generation for articles API keys to reduce cost Brand / persona voice custom prompts  Month on month iterative content improvement  Full stack content team that blends AI and human editors for agencies I’m still in full build mode with the team. I want to take it to a place where agencies and SMB owners can trust the AI + human content model enough to see this product as a no-brainer for their biz. I don’t believe in AI slop - there’s enough of that out there - I DO believe in using AI to do the grunt work, but to always have that human element a machine can’t quite mimic.  We have a lot more to get through, but I’m very excited about it. View of the done for you content workflow

[P] Building an Reinforcement Learning Agent to play The Legend of Zelda
reddit
LLM Vibe Score0
Human Vibe Score1
DarkAutumnThis week

[P] Building an Reinforcement Learning Agent to play The Legend of Zelda

A year go I started trying to use PPO to play the original Legend of Zelda, and I was able to train a model to beat the first boss after a few months of work. I wanted to share the project just for show and tell. I'd love to hear feedback and suggestions as this is just a hobby project. I don't do this for a living. The code for that lives in the original-design branch of my Triforce repo. I'm currently tinkering with new designs so the main branch is much less stable. Here's a video of the agent beating the first dungeon, which was trained with 5,000,000+ steps. At 38 seconds, you can see it learned that it's invulnerable at the screen edge, and it exploits that to avoid damage from a projectile. At 53 seconds it steps up to avoid damage from an unblockable projectile, even though it takes a -0.06 penalty for moving the wrong way (taking damage would be a larger penalty.) At 55 seconds it walks towards the rock projectile to block it. And so on, lots of little things the model does is easy to miss if you don't know the game inside and out. As a TLDR, here's an early version of my new (single) model. This doesn't make it quite as far, but if you watch closely it's combat is already far better, and is only trained on 320,000 steps (~6% of the steps the first model was trained on). This is pretty far along from my very first model. Original Design I got the original project working using stable-baselines's PPO and default neural network (Shared NatureCNN, I believe). SB was great to get started but ultimately stifling. In the new version of the project I've implemented PPO from scratch with torch with my own simple neural network similar to stable-baseline's default. I'm playing with all kinds of changes and designs now that I have more flexibility and control. Here is my rough original design: Overall Strategy My first pass through this project was basically "imagine playing Zelda with your older sibling telling you where to go and what to do". I give the model an objective vector which points to where I want it to go on the screen (as a bird flies, the agent still had to learn path finding to avoid damage and navigate around the map). This includes either point at the nearest enemy I want it to kill or a NSEW vector if it's supposed to move to the next room. Due a few limitations with stable-baselines (especially around action masking), I ended up training unique models for traversing the overworld vs the dungeon (since they have entirely different tilesets). I also trained a different model for when we have sword beams vs not. In the video above you can see what model is being used onscreen. In my current project I've removed this objective vector as it felt too much like cheating. Instead I give it a one-hot encoded objective (move north to the next room, pickup items, kill enemies, etc). So far it's working quite well without that crutch. The new project also does a much better job of combat even without multiple models to handle beams vs not. Observation/Action Space Image - The standard neural network had a really tough time being fed the entire screen. No amount of training seemed to help. I solved this by creating a viewport around Link that keeps him centered. This REALLY helped the model learn. I also had absolutely zero success with stacking frames to give Link a way to see enemy/projectile movement. The model simply never trained with stable-baselines when I implemented frame stacking and I never figured out why. I just added it to my current neural network and it seems to be working... Though my early experiments show that giving it 3 frames (skipping two in between, so frames curr, curr-3, curr-6) doesn't really give us that much better performance. It might if I took away some of the vectors. We'll see. Vectors - Since the model cannot see beyond its little viewport, I gave the model a vector to the closest item, enemy, and projectile onscreen. This made it so the model can shoot enemies across the room outside of its viewport. My new model gives it multiple enemies/items/projectiles and I plan to try to use an attention mechanism as part of the network to see if I can just feed it all of that data. Information - It also gets a couple of one-off datapoints like whether it currently has sword beams. The new model also gives it a "source" room (to help better understand dungeons where we have to backtrack), and a one-hot encoded objective. Action Space My original project just has a few actions, 4 for moving in the cardinal directions and 4 for attacking in each direction (I also added bombs but never spent any time training it). I had an idea to use masking to help speed up training. I.E. if link bumps into a wall, don't let him move in that direction again until he moves elsewhere, as the model would often spend an entire memory buffer running headlong straight into a wall before an update...better to do it once and get a huge negative penalty which is essentially the same result but faster. Unfortunately SB made it really annoying architecturally to pass that info down to the policy layer. I could have hacked it together, but eventually I just reimplemented PPO and my own neural network so I could properly mask actions in the new version. For example, when we start training a fresh model, it cannot attack when there aren't enemies on screen and I can disallow it from leaving certain areas. The new model actually understands splitting swinging the sword short range vs firing sword beams as two different actions, though I haven't yet had a chance to fully train with the split yet. Frameskip/Cooldowns - In the game I don't use a fixed frame skip for actions. Instead I use the internal ram state of game to know when Link is animation locked or not and only allow the agent to take actions when it's actually possible to give meaningful input to the game. This greatly sped up training. We also force movement to be between tiles on the game map. This means that when the agent decides to move it loses control for longer than a player would...a player can make more split second decisions. This made it easier to implement movement rewards though and might be something to clean up in the future. Other interesting details Pathfinding - To facilitate rewards, the original version of this project used A* to pathfind from link to what he should be doing. Here's a video of it in action. This information wasn't giving to the model directly but instead the agent would only be given the rewards if it exactly followed that path or the transposed version of it. It would also pathfind around enemies and not walk through them. This was a nightmare though. The corner cases were significant, and pushing Link towards enemies but not into them was really tricky. The new verison just uses a wavefront algorithm. I calculate a wave from the tiles we want to get to outwards, then make sure we are following the gradient. Also calculating the A* around enemies every frame (even with caching) was super slow. Wavefront was faster, especially because I give the new model no special rewards for walking around enemies...faster to compute and it has to learn from taking damage or not. Either way, the both the old and new models successfully learned how to pathfind around danger and obstacles, with or without the cheaty objective vector. Rewards - I programmed very dense rewards in both the old and new model. At basically every step, the model is getting rewarded or punished for something. I actually have some ideas I can't wait to try out to make the rewards more sparse. Or maybe we start with dense rewards for the first training, then fine-tune the model with sparser rewards. We'll see. Predicting the Future - Speaking of rewards. One interesting wrinkle is that the agent can do a lot of things that will eventually deal damage but not on that frame. For example, when Link sets a bomb it takes several seconds before it explodes, killing things. This can be a massive reward or penalty since he spent an extremely valuable resource, but may have done massive damage. PPO and other RL propagates rewards backwards, of course, but that spike in reward could land on a weird frame where we took damage or moved in the wrong direction. I probably could have just not solved that problem and let it shake out over time, but instead I used the fact that we are in an emulator to just see what the outcome of every decision is. When planting a bomb, shooting sword beams, etc, we let the game run forward until impact, then rewind time and reward the agent appropriately, continuing on from when we first paused. This greatly speeds up training, even if it's expensive to do this savestate, play forward, restore state. Neural Networks - When I first started this project (knowing very little about ML and RL), I thought most of my time would be tuning the shape of the neural network that we are using. In reality, the default provided by stable-baselines and my eventual reimplemnentation has been enough to make massive progress. Now that I have a solid codebase though, I really want to revisit this. I'd like to see if trying CoordConvs and similar networks might make the viewport unncessary. Less interesting details/thoughts Hyperparameters - Setting the entropy coefficinet way lower helped a TON in training stable models. My new PPO implementation is way less stable than stable-baselines (ha, imagine that), but still converges most of the time. Infinite Rewards - As with all reinforcement learning, if you give some way for the model to get infinite rewards, it will do just that and nothing else. I spent days, or maybe weeks tweaking reward functions to just get it to train and not find a spot on the wall it could hump for infinite rewards. Even just neutral rewards, like +0.5 moving forward and -0.5 for moving backwards, would often result in a model that just stepped left, then right infinitely. There has to be a real reward or punishment (non-neutral) for forward progress. Debugging Rewards - In fact, building a rewards debugger was the only way I made progress in this project. If you are tackling something this big, do that very early. Stable-Retro is pretty great - Couldn't be happier with the clean design for implementing emulation for AI. Torch is Awesome - My early versions heavily used numpy and relied on stable-baselines, with its multiproc parallelization support. It worked great. Moving the project over to torch was night and day though. It gave me so much more flexibility, instant multithreading for matrix operations. I have a pretty beefy computer and I'm almost at the same steps per second as 20 proc stable-retro/numpy. Future Ideas This has already gone on too long. I have some ideas for future projects, but maybe I'll just make them another post when I actually do them. Special Thanks A special thanks to Brad Flaugher for help with the early version of this, Fiskbit from the Zelda1 speedrunning community for help pulling apart the raw assembly to build this thing, and MatPoliquin for maintaining Stable-Retro. Happy to answer any questions, really I just love nerding out about this stuff.

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.
reddit
LLM Vibe Score0
Human Vibe Score0.6
AlexSnakeKingThis week

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.

TD;LR: At Company A, Team X does advanced analytics using on-prem ERP tools and older programming languages. Their tools work very well and are designed based on very deep business and domain expertise. Team Y is a new and ambitious Data Science team that thinks they can replace Team X's tools with a bunch of R scripts and a custom built ML platform. Their models are simplistic, but more "fashionable" compared to the econometric models used by Team X, and team Y benefits from the ML/DS moniker so leadership is allowing Team Y to start a large scale overhaul of the analytics platform in question. Team Y doesn't have the experience for such a larger scale transformation, and is refusing to collaborate with team X. This project is very likely going to fail, and cause serious harm to the company as a whole financially and from a people perspective. I argue that this is not just because of bad leadership, but also because of various trends and mindsets in the DS community at large. Update (Jump to below the line for the original story): Several people in the comments are pointing out that this just a management failure, not something due to ML/DS, and that you can replace DS with any buzz tech and the story will still be relevant. My response: Of course, any failure at an organization level is ultimately a management failure one way or the other. Moreover, it is also the case that ML/DS when done correctly, will always improve a company's bottom line. There is no scenario where the proper ML solution, delivered at a reasonable cost and in a timely fashion, will somehow hurt the company's bottom line. My point is that in this case management is failing because of certain trends and practices that are specific to the ML/DS community, namely: The idea that DS teams should operate independently of tech and business orgs -- too much autonomy for DS teams The disregard for domain knowledge that seems prevalent nowadays thanks to the ML hype, that DS can be generalists and someone with good enough ML chops can solve any business problem. That wasn't the case when I first left academia for the industry in 2009 (back then nobody would even bother with a phone screen if you didn't have the right domain knowledge). Over reliance on resources who check all the ML hype related boxes (knows Python, R, Tensorflow, Shiny, etc..., has the right Coursera certifications, has blogged on the topic, etc...), but are lacking in depth of experience. DS interviews nowadays all seem to be: Can you tell me what a p-value is? What is elastic net regression? Show me how to fit a model in sklearn? How do you impute NAs in an R dataframe? Any smart person can look those up on Stackoverflow or Cross-Validated,.....Instead teams should be asking stuff like: why does portfolio optimization use QP not LP? How does a forecast influence a customer service level? When should a recommendation engine be content based and when should it use collaborative filtering? etc... (This is a true story, happening to the company I currently work for. Names, domains, algorithms, and roles have been shuffled around to protect my anonymity)  Company A has been around for several decades. It is not the biggest name in its domain, but it is a well respected one. Risk analysis and portfolio optimization have been a core of Company A's business since the 90s. They have a large team of 30 or so analysts who perform those tasks on a daily basis. These analysts use ERP solutions implemented for them by one the big ERP companies (SAP, Teradata, Oracle, JD Edwards,...) or one of the major tech consulting companies (Deloitte, Accenture, PWC, Capgemini, etc...) in collaboration with their own in house engineering team. The tools used are embarrassingly old school: Classic RDBMS running on on-prem servers or maybe even on mainframes, code written in COBOL, Fortran, weird proprietary stuff like ABAP or SPSS.....you get the picture. But the models and analytic functions were pretty sophisticated, and surprisingly cutting edge compared to the published academic literature. Most of all, they fit well with the company's enterprise ecosystem, and were honed based on years of deep domain knowledge.  They have a tech team of several engineers (poached from the aforementioned software and consulting companies) and product managers (who came from the experienced pools of analysts and managers who use the software, or poached from business rivals) maintaining and running this software. Their technology might be old school, but collectively, they know the domain and the company's overall architecture very, very well. They've guided the company through several large scale upgrades and migrations and they have a track record of delivering on time, without too much overhead. The few times they've stumbled, they knew how to pick themselves up very quickly. In fact within their industry niche, they have a reputation for their expertise, and have very good relations with the various vendors they've had to deal with. They were the launching pad of several successful ERP consulting careers.  Interestingly, despite dealing on a daily basis with statistical modeling and optimization algorithms, none of the analysts, engineers, or product managers involved describe themselves as data scientists or machine learning experts. It is mostly a cultural thing: Their expertise predates the Data Science/ML hype that started circa 2010, and they got most of their chops using proprietary enterprise tools instead of the open source tools popular nowadays. A few of them have formal statistical training, but most of them came from engineering or domain backgrounds and learned stats on the fly while doing their job. Call this team "Team X".  Sometime around the mid 2010s, Company A started having some serious anxiety issues: Although still doing very well for a company its size, overall economic and demographic trends were shrinking its customer base, and a couple of so called disruptors came up with a new app and business model that started seriously eating into their revenue. A suitable reaction to appease shareholders and Wall Street was necessary. The company already had a decent website and a pretty snazzy app, what more could be done? Leadership decided that it was high time that AI and ML become a core part of the company's business. An ambitious Manager, with no science or engineering background, but who had very briefly toyed with a recommender system a couple of years back, was chosen to build a data science team, call it team "Y" (he had a bachelor's in history from the local state college and worked for several years in the company's marketing org). Team "Y" consists mostly of internal hires who decided they wanted to be data scientists and completed a Coursera certification or a Galvanize boot camp, before being brought on to the team, along with a few of fresh Ph.D or M.Sc holders who didn't like academia and wanted to try their hand at an industry role. All of them were very bright people, they could write great Medium blog posts and give inspiring TED talks, but collectively they had very little real world industry experience. As is the fashion nowadays, this group was made part of a data science org that reported directly to the CEO and Board, bypassing the CIO and any tech or business VPs, since Company A wanted to claim the monikers "data driven" and "AI powered" in their upcoming shareholder meetings. In 3 or 4 years of existence, team Y produced a few Python and R scripts. Their architectural experience  consisted almost entirely in connecting Flask to S3 buckets or Redshift tables, with a couple of the more resourceful ones learning how to plug their models into Tableau or how to spin up a Kuberneties pod.  But they needn't worry: The aforementioned manager, who was now a director (and was also doing an online Masters to make up for his qualifications gap and bolster his chances of becoming VP soon - at least he now understands what L1 regularization is), was a master at playing corporate politics and self-promotion. No matter how few actionable insights team Y produced or how little code they deployed to production, he always had their back and made sure they had ample funding. In fact he now had grandiose plans for setting up an all-purpose machine learning platform that can be used to solve all of the company's data problems.  A couple of sharp minded members of team Y, upon googling their industry name along with the word "data science", realized that risk analysis was a prime candidate for being solved with Bayesian models, and there was already a nifty R package for doing just that, whose tutorial they went through on R-Bloggers.com. One of them had even submitted a Bayesian classifier Kernel for a competition on Kaggle (he was 203rd on the leaderboard), and was eager to put his new-found expertise to use on a real world problem. They pitched the idea to their director, who saw a perfect use case for his upcoming ML platform. They started work on it immediately, without bothering to check whether anybody at Company A was already doing risk analysis. Since their org was independent, they didn't really need to check with anybody else before they got funding for their initiative. Although it was basically a Naive Bayes classifier, the term ML was added to the project tile, to impress the board.  As they progressed with their work however, tensions started to build. They had asked the data warehousing and CA analytics teams to build pipelines for them, and word eventually got out to team X about their project. Team X was initially thrilled: They offered to collaborate whole heartedly, and would have loved to add an ML based feather to their already impressive cap. The product owners and analysts were totally onboard as well: They saw a chance to get in on the whole Data Science hype that they kept hearing about. But through some weird mix of arrogance and insecurity, team Y refused to collaborate with them or share any of their long term goals with them, even as they went to other parts of the company giving brown bag presentations and tutorials on the new model they created.  Team X got resentful: from what they saw of team Y's model, their approach was hopelessly naive and had little chances of scaling or being sustainable in production, and they knew exactly how to help with that. Deploying the model to production would have taken them a few days, given how comfortable they were with DevOps and continuous delivery (team Y had taken several months to figure out how to deploy a simple R script to production). And despite how old school their own tech was, team X were crafty enough to be able to plug it in to their existing architecture. Moreover, the output of the model was such that it didn't take into account how the business will consume it or how it was going to be fed to downstream systems, and the product owners could have gone a long way in making the model more amenable to adoption by the business stakeholders. But team Y wouldn't listen, and their leads brushed off any attempts at communication, let alone collaboration. The vibe that team Y was giving off was "We are the cutting edge ML team, you guys are the legacy server grunts. We don't need your opinion.", and they seemed to have a complete disregard for domain knowledge, or worse, they thought that all that domain knowledge consisted of was being able to grasp the definitions of a few business metrics.  Team X got frustrated and tried to express their concerns to leadership. But despite owning a vital link in Company A's business process, they were only \~50 people in a large 1000 strong technology and operations org, and they were several layers removed from the C-suite, so it was impossible for them to get their voices heard.  Meanwhile, the unstoppable director was doing what he did best: Playing corporate politics. Despite how little his team had actually delivered, he had convinced the board that all analysis and optimization tasks should now be migrated to his yet to be delivered ML platform. Since most leaders now knew that there was overlap between team Y and team X's objectives, his pitch was no longer that team Y was going to create a new insight, but that they were going to replace (or modernize) the legacy statistics based on-prem tools with more accurate cloud based ML tools. Never mind that there was no support in the academic literature for the idea that Naive Bayes works better than the Econometric approaches used by team X, let alone the additional wacky idea that Bayesian Optimization would definitely outperform the QP solvers that were running in production.  Unbeknownst to team X, the original Bayesian risk analysis project has now grown into a multimillion dollar major overhaul initiative, which included the eventual replacement of all of the tools and functions supported by team X along with the necessary migration to the cloud. The CIO and a couple of business VPs are on now board, and tech leadership is treating it as a done deal. An outside vendor, a startup who nobody had heard of, was contracted to help build the platform, since team Y has no engineering skills. The choice was deliberate, as calling on any of the established consulting or software companies would have eventually led leadership to the conclusion that team X was better suited for a transformation on this scale than team Y.  Team Y has no experience with any major ERP deployments, and no domain knowledge, yet they are being tasked with fundamentally changing the business process that is at the core of Company A's business. Their models actually perform worse than those deployed by team X, and their architecture is hopelessly simplistic, compared to what is necessary for running such a solution in production.  Ironically, using Bayesian thinking and based on all the evidence, the likelihood that team Y succeeds is close to 0%. At best, the project is going to end up being a write off of 50 million dollars or more. Once the !@#$!@hits the fan, a couple of executive heads are going to role, and dozens of people will get laid off. At worst, given how vital risk analysis and portfolio optimization is to Company A's revenue stream, the failure will eventually sink the whole company. It probably won't go bankrupt, but it will lose a significant portion of its business and work force. Failed ERP implementations can and do sink large companies: Just see what happened to National Grid US, SuperValu or Target Canada.  One might argue that this is more about corporate disfunction and bad leadership than about data science and AI. But I disagree. I think the core driver of this debacle is indeed the blind faith in Data Scientists, ML models and the promise of AI, and the overall culture of hype and self promotion that is very common among the ML crowd.  We haven't seen the end of this story: I sincerely hope that this ends well for the sake of my colleagues and all involved. Company A is a good company, and both its customers and its employees deserver better. But the chances of that happening are negligible given all the information available, and this failure will hit my company hard.

[D] The Rants of an experienced engineer who glimpsed into AI Academia (Briefly)
reddit
LLM Vibe Score0
Human Vibe Score0.778
donkey_strom16001This week

[D] The Rants of an experienced engineer who glimpsed into AI Academia (Briefly)

Background I recently graduated with a master's degree and was fortunate/unfortunate to glimpse the whole "Academic" side of ML. I took a thesis track in my degree because as an immigrant it's harder to get into a good research lab without having authorship in a couple of good papers (Or so I delude myself ). I worked as a Full-stack SWE for a startup for 4+ years before coming to the US for a master’s degree focused on ML and AI. I did everything in those years. From project management to building fully polished S/W products to DevOps to even dabbled in ML. I did my Batchelor’s degree from a university whose name is not even worth mentioning. The university for my master’s degree is in the top 20 in the AI space. I didn't know much about ML and the curiosity drove me to university. Come to uni and I focused on learning ML and AI for one 1-1.5 years after which I found advisors for a thesis topic. This is when the fun starts. I had the most amazing advisors but the entire peer review system and the way we assess ML/Science is what ticked me off. This is where the rant begins. Rant 1:Acadmia follows a Gated Institutional Narrative Let's say you are a Ph.D. at the world's top AI institution working under the best prof. You have a way higher likelihood of you getting a good Postdoc at a huge research lab vs someone's from my poor country doing a Ph.D. with a not-so-well-known advisor having published not-so-well-known papers. I come from a developing nation and I see this many times here. In my country academics don't get funding as they do at colleges in the US. One of the reasons for this is that colleges don't have such huge endowments and many academics don't have wealthy research sponsors. Brand names and prestige carry massive weight to help get funding in US academic circles. This prestige/money percolates down to the students and the researchers who work there. Students in top colleges get a huge advantage and the circles of top researchers keep being from the same sets of institutions. I have nothing against top researchers from top institutions but due to the nature of citations and the way the money flows based on them, a vicious cycle is created where the best institutions keep getting better and the rest don't get as much of a notice. Rant 2: Peer Review without Code Review in ML/AI is shady I am a computer scientist and I was appalled when I heard that you don't need to do code reviews for research papers. As a computer scientist and someone who actually did shit tons of actual ML in the past year, I find it absolutely garbage that code reviews are not a part of this system. I am not saying every scientist who reads a paper should review code but at least one person should for any paper's code submission. At least in ML and AI space. This is basic. I don't get why people call themselves computer scientists if they don't want to read the fucking code. If you can't then make a grad student do it. But for the collective of science, we need this. The core problem lies in the fact that peer review is free. : There should be better solutions for this. We ended up creating Git and that changed so many lives. Academic Research needs something similar. Rant 3: My Idea is Novel Until I see Someone Else's Paper The volume of scientific research is growing exponentially. Information is being created faster than we can digest. We can't expect people to know everything and the amount of overlap in the AI/ML fields requires way better search engines than Google Scholar. The side effect of large volumes of research is that every paper is doing something "novel" making it harder to filter what the fuck was novel. I have had so many experiences where I coded up something and came to realize that someone else has done something symbolically similar and my work just seems like a small variant of that. That's what fucks with my head. Is what I did in Novel? What the fuck is Novel? Is stitching up a transformer to any problem with fancy embeddings and tidying it up as a research paper Novel? Is just making a transformer bigger Novel? Is some new RL algorithm tested with 5 seeds and some fancy fucking prior and some esoteric reasoning for its success Novel? Is using an over parameterized model to get 95% accuracy on 200 sample test set Novel? Is apply Self-supervised learning for some new dataset Novel? If I keep on listing questions on novelty, I can probably write a novel asking about what the fuck is "Novel". Rant 4: Citation Based Optimization Promotes Self Growth Over Collective Growth Whatever people may say about collaboration, Academia intrinsically doesn't promote the right incentive structures to harbor collaboration. Let me explain, When you write a paper, the position of your name matters. If you are just a Ph.D. student and a first author to a paper, it's great. If you are an nth author Not so great. Apparently, this is a very touchy thing for academics. And lots of egos can clash around numbering and ordering of names. I distinctly remember once attending some seminar in a lab and approaching a few students on research project ideas. The first thing that came out of the PhD student's mouth was the position in authorship. As an engineer who worked with teams in the past, this was never something I had thought about. Especially because I worked in industry, where it's always the group over the person. Academia is the reverse. Academia applauds the celebration of the individual's achievements. All of this is understandable but it's something I don't like. This makes PhDs stick to their lane. The way citations/research-focus calibrate the "hire-ability" and "completion of Ph.D. thesis" metrics, people are incentivized to think about themselves instead of thinking about collaborations for making something better. Conclusion A Ph.D. in its most idealistic sense for me is the pursuit of hard ideas(I am poetic that way). In a situation like now when you have to publish or perish and words on paper get passed off as science without even seeing the code that runs it, I am extremely discouraged to go down that route. All these rants are not to diss on scientists. I did them because "we" as a community need better ways to addressing some of these problems. P.S. Never expected so many people to express their opinions about this rant. U shouldn’t take this seriously. As many people have stated I am an outsider with tiny experience to give a full picture. I realize that my post as coming out as something which tries to dichotomize academia and industry. I am not trying to do that. I wanted to highlight some problems I saw for which there is no one person to blame. These issues are in my opinion a byproduct of the economics which created this system. Thank you for gold stranger.

[P] The Big Sleep: Text-to-image generation using BigGAN and OpenAI's CLIP via a Google Colab notebook from Twitter user Adverb
reddit
LLM Vibe Score0
Human Vibe Score0.333
WiskkeyThis week

[P] The Big Sleep: Text-to-image generation using BigGAN and OpenAI's CLIP via a Google Colab notebook from Twitter user Adverb

From https://twitter.com/advadnoun/status/1351038053033406468: The Big Sleep Here's the notebook for generating images by using CLIP to guide BigGAN. It's very much unstable and a prototype, but it's also a fair place to start. I'll likely update it as time goes on. colab.research.google.com/drive/1NCceX2mbiKOSlAd\o7IU7nA9UskKN5WR?usp=sharing I am not the developer of The Big Sleep. This is the developer's Twitter account; this is the developer's Reddit account. Steps to follow to generate the first image in a given Google Colab session: Optionally, if this is your first time using Google Colab, view this Colab introduction and/or this Colab FAQ. Click this link. Sign into your Google account if you're not already signed in. Click the "S" button in the upper right to do this. Note: Being signed into a Google account has privacy ramifications, such as your Google search history being recorded in your Google account. In the Table of Contents, click "Parameters". Find the line that reads "tx = clip.tokenize('''a cityscape in the style of Van Gogh''')" and change the text inside of the single quote marks to your desired text; example: "tx = clip.tokenize('''a photo of New York City''')". The developer recommends that you keep the three single quote marks on both ends of your desired text so that mult-line text can be used An alternative is to remove two of the single quotes on each end of your desired text; example: "tx = clip.tokenize('a photo of New York City')". In the Table of Contents, click "Restart the kernel...". Position the pointer over the first cell in the notebook, which starts with text "import subprocess". Click the play button (the triangle) to run the cell. Wait until the cell completes execution. Click menu item "Runtime->Restart and run all". In the Table of Contents, click "Diagnostics". The output appears near the end of the Train cell that immediately precedes the Diagnostics cell, so scroll up a bit. Every few minutes (or perhaps 10 minutes if Google assigned you relatively slow hardware for this session), a new image will appear in the Train cell that is a refinement of the previous image. This process can go on for as long as you want until Google ends your Google Colab session, which is a total of up to 12 hours for the free version of Google Colab. Steps to follow if you want to start a different run using the same Google Colab session: Click menu item "Runtime->Interrupt execution". Save any images that you want to keep by right-clicking on them and using the appropriate context menu command. Optionally, change the desired text. Different runs using the same desired text almost always results in different outputs. Click menu item "Runtime->Restart and run all". Steps to follow when you're done with your Google Colab session: Click menu item "Runtime->Manage sessions". Click "Terminate" to end the session. Optionally, log out of your Google account due to the privacy ramifications of being logged into a Google account. The first output image in the Train cell (using the notebook's default of seeing every 100th image generated) usually is a very poor match to the desired text, but the second output image often is a decent match to the desired text. To change the default of seeing every 100th image generated, change the number 100 in line "if itt % 100 == 0:" in the Train cell to the desired number. For free-tier Google Colab users, I recommend changing 100 to a small integer such as 5. Tips for the text descriptions that you supply: In Section 3.1.4 of OpenAI's CLIP paper (pdf), the authors recommend using a text description of the form "A photo of a {label}." or "A photo of a {label}, a type of {type}." for images that are photographs. A Reddit user gives these tips. The Big Sleep should generate these 1,000 types of things better on average than other types of things. Here is an article containing a high-level description of how The Big Sleep works. The Big Sleep uses a modified version of BigGAN as its image generator component. The Big Sleep uses the ViT-B/32 CLIP model to rate how well a given image matches your desired text. The best CLIP model according to the CLIP paper authors is the (as of this writing) unreleased ViT-L/14-336px model; see Table 10 on page 40 of the CLIP paper (pdf) for a comparison. There are many other sites/programs/projects that use CLIP to steer image/video creation to match a text description. Some relevant subreddits: r/bigsleep (subreddit for images/videos generated from text-to-image machine learning algorithms). r/deepdream (subreddit for images/videos generated from machine learning algorithms). r/mediasynthesis (subreddit for media generation/manipulation techniques that use artificial intelligence; this subreddit shouldn't be used to post images/videos unless new techniques are demonstrated, or the images/videos are of high quality relative to other posts). Example using text 'a black cat sleeping on top of a red clock': https://preview.redd.it/7xq58v7022c61.png?width=512&format=png&auto=webp&s=a229ae9add555cd1caba31c42b60d907ffe67773 Example using text 'the word ''hot'' covered in ice': https://preview.redd.it/6kxdp8u3k2c61.png?width=512&format=png&auto=webp&s=5bd078b0111575f5d88a1dc53b0aeb933f3b0da6 Example using text 'a monkey holding a green lightsaber': https://preview.redd.it/rdsybsoaz2c61.png?width=512&format=png&auto=webp&s=2769d4c6c883c1c35ae0b1c629bebe9bc1d41393 Example using text 'The White House in Washington D.C. at night with green and red spotlights shining on it': https://preview.redd.it/w4mg90xsf5c61.png?width=512&format=png&auto=webp&s=5f18318de2f77bcd8a86e71e87048fadd30383d1 Example using text '''A photo of the Golden Gate Bridge at night, illuminated by spotlights in a tribute to Prince''': https://preview.redd.it/cn4ecuafhic61.png?width=512&format=png&auto=webp&s=397c838fdc49f13c5f17110b92c78b95bf0dcac0 Example using text '''a Rembrandt-style painting titled "Robert Plant decides whether to take the stairway to heaven or the ladder to heaven"''': https://preview.redd.it/h7rb3y6j5jc61.png?width=512&format=png&auto=webp&s=537bfe8210af185647b00e7585c948aa2c4e0ffb Example using text '''A photo of the Empire State Building being shot at with the laser cannons of a TIE fighter.''': https://preview.redd.it/cwi7i639c5d61.png?width=512&format=png&auto=webp&s=0510c8b93adb40eee4d3f41607f1c215d41e55ff Example using text '''A cartoon of a new mascot for the Reddit subreddit DeepDream that has a mouse-like face and wears a cape''': https://preview.redd.it/wtxbduevcbd61.png?width=512&format=png&auto=webp&s=c5d266258922bc62f25c80a08cd9cabc07d9cb1c Example using text '''Bugs Bunny meets the Eye of Sauron, drawn in the Looney Tunes cartoon style''': https://preview.redd.it/gmljaeekuid61.png?width=512&format=png&auto=webp&s=9ea578de165e12afc3a62bf6886bc1ae9dc19bec Example using text '''Photo of a blue and red neon-colored frog at night.''': https://preview.redd.it/nzlypte6wzd61.png?width=512&format=png&auto=webp&s=7e10b06f22cfc57c64b6d05738c7486b895083df Example using text '''Hell begins to freeze over''': https://preview.redd.it/vn99we9ngmf61.png?width=512&format=png&auto=webp&s=2408efd607f0ab40a08db6ee67448791aa813993 Example using text '''A scene with vibrant colors''': https://preview.redd.it/4z133mvrgmf61.png?width=512&format=png&auto=webp&s=b78e7a8e3f736769655056093a9904ff09a355a1 Example using text '''The Great Pyramids were turned into prisms by a wizard''': https://preview.redd.it/zxt6op7vgmf61.png?width=512&format=png&auto=webp&s=53e578cfde14b28afe27957e95e610b89afadd44

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call
reddit
LLM Vibe Score0
Human Vibe Score1
noiseinvacuumThis week

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call

During the recent earnings call, Mark Zuckerberg answered a question from Eric Sheridan of Goldman Sachs on Meta's AI strategy, opportunities to integrate into products, and why they open source models and how it would benefit their business. I found the reasoning to be very sound and promising for the OSS and AI community. The biggest risk from AI, in my opinion, is not the doomsday scenarios that intuitively come to mind but rather that the most powerful AI systems will only be accessible to the most powerful and resourceful corporations. Quote copied from Ben Thompson's write up on Meta's earning in his Stratechery blog post which goes beyond AI. It's behind a paywall but I highly recommend it personally. Some noteworthy quotes that signal the thought process at Meta FAIR and more broadly We’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon We would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that. ...lead us to do more work in terms of open sourcing, some of the lower level models and tools Open sourcing low level tools make the way we run all this infrastructure more efficient over time. On PyTorch: It’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. I would expect us to be pushing and helping to build out an open ecosystem. For all the negative that comes out of the popular discourse on Meta, I think their work to open source key tech tools over the last 10 years has been exceptional, here's hoping it continues into this decade of AI and pushes other tech giants to also realize the benefits of Open Source. Full Transcript: Right now most of the companies that are training large language models have business models that lead them to a closed approach to development. I think there’s an important opportunity to help create an open ecosystem. If we can help be a part of this, then much of the industry will standardize on using these open tools and help improve them further. So this will make it easier for other companies to integrate with our products and platforms as we enable more integrations, and that will help our products stay at the leading edge as well. Our approach to AI and our infrastructure has always been fairly open. We open source many of our state of the art models so people can experiment and build with them. This quarter we released our LLaMa LLM to researchers. It has 65 billion parameters but outperforms larger models and has proven quite popular. We’ve also open-sourced three other groundbreaking visual models along with their training data and model weights — Segment Anything, DinoV2, and our Animated Drawings tool — and we’ve gotten positive feedback on all of those as well. I think that there’s an important distinction between the products we offer and a lot of the technical infrastructure, especially the software that we write to support that. And historically, whether it’s the Open Compute project that we’ve done or just open sourcing a lot of the infrastructure that we’ve built, we’ve historically open sourced a lot of that infrastructure, even though we haven’t open sourced the code for our core products or anything like that. And the reason why I think why we do this is that unlike some of the other companies in the space, we’re not selling a cloud computing service where we try to keep the different software infrastructure that we’re building proprietary. For us, it’s way better if the industry standardizes on the basic tools that we’re using and therefore we can benefit from the improvements that others make and others’ use of those tools can, in some cases like Open Compute, drive down the costs of those things which make our business more efficient too. So I think to some degree we’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon, and that creates different incentives for us. So overall, I think that that’s going to lead us to do more work in terms of open sourcing, some of the lower level models and tools. But of course, a lot of the product work itself is going to be specific and integrated with the things that we do. So it’s not that everything we do is going to be open. Obviously, a bunch of this needs to be developed in a way that creates unique value for our products, but I think in terms of the basic models, I would expect us to be pushing and helping to build out an open ecosystem here, which I think is something that’s going to be important. On the AI tools, and we have a bunch of history here, right? So if you if you look at what we’ve done with PyTorch, for example, which has generally become the standard in the industry as a tool that a lot of folks who are building AI models and different things in that space use, it’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. So the tool chain is the same. So when they create some innovation, we can easily integrate it into the things that we’re doing. When we improve something, it improves other products too. Because it’s integrated with our technology stack, when there are opportunities to make integrations with products, it’s much easier to make sure that developers and other folks are compatible with the things that we need in the way that our systems work. So there are a lot of advantages, but I view this more as a kind of back end infrastructure advantage with potential integrations on the product side, but one that should hopefully enable us to stay at the leading edge and integrate more broadly with the community and also make the way we run all this infrastructure more efficient over time. There are a number of models. I just gave PyTorch as an example. Open Compute is another model that has worked really well for us in this way, both to incorporate both innovation and scale efficiency into our own infrastructure. So I think that there’s, our incentives I think are basically aligned towards moving in this direction. Now that said, there’s a lot to figure out, right? So when you asked if there are going to be other opportunities, I hope so. I can’t speak to what all those things might be now. This is all quite early in getting developed. The better we do at the foundational work, the more opportunities I think that will come and present themselves. So I think that that’s all stuff that we need to figure out. But at least at the base level, I think we’re generally incentivized to move in this direction. And we also need to figure out how to go in that direction over time. I mean, I mentioned LLaMA before and I also want to be clear that while I’m talking about helping contribute to an open ecosystem, LLaMA is a model that we only really made available to researchers and there’s a lot of really good stuff that’s happening there. But a lot of the work that we’re doing, I think, we would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that.

[P] I Trained a Model to Generate Video Game Pages
reddit
LLM Vibe Score0
Human Vibe Score1
pcvisionThis week

[P] I Trained a Model to Generate Video Game Pages

These past two months I've been working on a project I've called THIS GAME DOES NOT EXIST. I've always wanted to try building something with generative A.I. so this project scratched that itch for me. Here's a video with a few of my favourites read by voice actors: https://www.youtube.com/watch?v=\mTWMLhpJoA &#x200B; THIS GAME DOES NOT EXIST is an experiment in generative artificial intelligence. This site contains 130 video game pages that were generated using an implementation of OpenAI's Generative Pre-trained Transformer 2 (GPT-2) to generate text and a simple implementation of generative adversarial networks (GAN) to generate header images and "screenshots". To generate the names, descriptions, publishers, and developers of the games I finetuned the HuggingFace implementation of GPT-2. I used the Steam Store Games (Clean dataset) from Kaggle with slight modifications and preprocessing.Here is what one training sample looks like: Half-LifeValve ValveNamed Game of the Year by over 50 publications, Valve's debut title blends action and adventure with award-winning technology to create a frighteningly realistic world where players must think to survive. Also includes an exciting multiplayer mode that allows you to play against friends and enemies around the world. The model uses the tokens (e.g. and ) to prompt each class of data while keeping context during the entire generation. Image generation was done by training a custom GAN very similar to the architecture seen in the PyTorch DCGAN Tutorial which was built to generate faces. I created two models for this site: one for generating the header images and one for generating multiple screenshots for each game.To assemble the dataset I wrote a script that downloads the images from the URLs in the Steam Store Games (Clean dataset) dataset. Due to my lack of resources and time to put into this project, the image generation is less than ideal. You may notice though, that the header image model will generate artifacts in images that look like the titles of games, and the screenshot image model with generate what looks like levels of a 2D platformer.

[P] Need advise on creating a conversational Chatbot for my University
reddit
LLM Vibe Score0
Human Vibe Score1
Low-Proposal-3319This week

[P] Need advise on creating a conversational Chatbot for my University

Hey everyone! I need some advise on creating a conversational chatbot for my University as my Final Year Project (FYP). 2024 will be last year for my BSCS degree and we have to build an application or something in the last year. So, I thought of creating a chatbot (just like GPT) to help students (who have admission queries). Most of the time, students or parents will have to call University for various questions and then they have to wait to ACTUALLY talk to the admins office people. Now, talking in terms of coding/programming, I have created a basic PDFbot by using LLama2, Huggingface and Pinecone. Its very very easy and yes its fairly inaccurate too. The PDF that I am using rn will be replaced by the dataset that I gather in order to create the bot for my Uni, but it will also be inaccurate as this one. Also, the chatbot that I have made is just based on this one function called "similarity\_search()" and I am literally passing query of the user to this function which then tries to find the most relevant answer by the embeddings from knowledge base. How do I make this accurate? I know using the OpenAI model will make it accurate, but its paid as well, idk how will I manage to do that. Plus, i reckon there will be a simple function there too which doesn't make me a good programmer I think. I really want to do something good and unique for once. I have dreamt about leaving back something in my Uni that has my name over it. Can I do something where I get to make a mini-language model or something like that? Will it be too complex for me to handle? (I consider myself a beginner to this programming world) 1- I am planning to create a dynamic dataset which will also include any event that's going to happen in our University. 2- I am also planning to make the chatbot intelligent enough to consult confused students. 3- Chatbot will also include information about each and every faculty member. Their qualifications, research papers and other info in general. It would be a relief if any of the experts give me a roadmap on this, it will be genuinely a stress relief for me. I am trying to get done with at least 70% of the work before the start of the next year so that I don't have to work much in the next year.

[D] Here are 17 ways of making PyTorch training faster – what did I miss?
reddit
LLM Vibe Score0
Human Vibe Score1
lorenzkuhnThis week

[D] Here are 17 ways of making PyTorch training faster – what did I miss?

I've been collecting methods to accelerate training in PyTorch – here's what I've found so far. What did I miss? What did I get wrong? The methods – roughly sorted from largest to smallest expected speed-up – are: Consider using a different learning rate schedule. Use multiple workers and pinned memory in DataLoader. Max out the batch size. Use Automatic Mixed Precision (AMP). Consider using a different optimizer. Turn on cudNN benchmarking. Beware of frequently transferring data between CPUs and GPUs. Use gradient/activation checkpointing. Use gradient accumulation. Use DistributedDataParallel for multi-GPU training. Set gradients to None rather than 0. Use .as\_tensor rather than .tensor() Turn off debugging APIs if not needed. Use gradient clipping. Turn off bias before BatchNorm. Turn off gradient computation during validation. Use input and batch normalization. Consider using another learning rate schedule The learning rate (schedule) you choose has a large impact on the speed of convergence as well as the generalization performance of your model. Cyclical Learning Rates and the 1Cycle learning rate schedule are both methods introduced by Leslie N. Smith (here and here), and then popularised by fast.ai's Jeremy Howard and Sylvain Gugger (here and here). Essentially, the 1Cycle learning rate schedule looks something like this: &#x200B; https://preview.redd.it/sc37u5knmxa61.png?width=476&format=png&auto=webp&s=09b309b4dbd67eedb4ab5f86e03e0e83d7b072d1 Sylvain writes: \[1cycle consists of\]  two steps of equal lengths, one going from a lower learning rate to a higher one than go back to the minimum. The maximum should be the value picked with the Learning Rate Finder, and the lower one can be ten times lower. Then, the length of this cycle should be slightly less than the total number of epochs, and, in the last part of training, we should allow the learning rate to decrease more than the minimum, by several orders of magnitude. In the best case this schedule achieves a massive speed-up – what Smith calls Superconvergence – as compared to conventional learning rate schedules. Using the 1Cycle policy he needs \~10x fewer training iterations of a ResNet-56 on ImageNet to match the performance of the original paper, for instance). The schedule seems to perform robustly well across common architectures and optimizers. PyTorch implements both of these methods torch.optim.lrscheduler.CyclicLR and torch.optim.lrscheduler.OneCycleLR, see the documentation. One drawback of these schedulers is that they introduce a number of additional hyperparameters. This post and this repo, offer a nice overview and implementation of how good hyper-parameters can be found including the Learning Rate Finder mentioned above. Why does this work? It doesn't seem entirely clear but one possible explanation might be that regularly increasing the learning rate helps to traverse saddle points in the loss landscape more quickly. Use multiple workers and pinned memory in DataLoader When using torch.utils.data.DataLoader, set numworkers > 0, rather than the default value of 0, and pinmemory=True, rather than the default value of False. Details of this are explained here. Szymon Micacz achieves a 2x speed-up for a single training epoch by using four workers and pinned memory. A rule of thumb that people are using to choose the number of workers is to set it to four times the number of available GPUs with both a larger and smaller number of workers leading to a slow down. Note that increasing num\_workerswill increase your CPU memory consumption. Max out the batch size This is a somewhat contentious point. Generally, however, it seems like using the largest batch size your GPU memory permits will accelerate your training (see NVIDIA's Szymon Migacz, for instance). Note that you will also have to adjust other hyperparameters, such as the learning rate, if you modify the batch size. A rule of thumb here is to double the learning rate as you double the batch size. OpenAI has a nice empirical paper on the number of convergence steps needed for different batch sizes. Daniel Huynh runs some experiments with different batch sizes (also using the 1Cycle policy discussed above) where he achieves a 4x speed-up by going from batch size 64 to 512. One of the downsides of using large batch sizes, however, is that they might lead to solutions that generalize worse than those trained with smaller batches. Use Automatic Mixed Precision (AMP) The release of PyTorch 1.6 included a native implementation of Automatic Mixed Precision training to PyTorch. The main idea here is that certain operations can be run faster and without a loss of accuracy at semi-precision (FP16) rather than in the single-precision (FP32) used elsewhere. AMP, then, automatically decide which operation should be executed in which format. This allows both for faster training and a smaller memory footprint. In the best case, the usage of AMP would look something like this: import torch Creates once at the beginning of training scaler = torch.cuda.amp.GradScaler() for data, label in data_iter: optimizer.zero_grad() Casts operations to mixed precision with torch.cuda.amp.autocast(): loss = model(data) Scales the loss, and calls backward() to create scaled gradients scaler.scale(loss).backward() Unscales gradients and calls or skips optimizer.step() scaler.step(optimizer) Updates the scale for next iteration scaler.update() Benchmarking a number of common language and vision models on NVIDIA V100 GPUs, Huang and colleagues find that using AMP over regular FP32 training yields roughly 2x – but upto 5.5x – training speed-ups. Currently, only CUDA ops can be autocast in this way. See the documentation here for more details on this and other limitations. u/SVPERBlA points out that you can squeeze out some additional performance (\~ 20%) from AMP on NVIDIA Tensor Core GPUs if you convert your tensors to the Channels Last memory format. Refer to this section in the NVIDIA docs for an explanation of the speedup and more about NCHW versus NHWC tensor formats. Consider using another optimizer AdamW is Adam with weight decay (rather than L2-regularization) which was popularized by fast.ai and is now available natively in PyTorch as torch.optim.AdamW. AdamW seems to consistently outperform Adam in terms of both the error achieved and the training time. See this excellent blog post on why using weight decay instead of L2-regularization makes a difference for Adam. Both Adam and AdamW work well with the 1Cycle policy described above. There are also a few not-yet-native optimizers that have received a lot of attention recently, most notably LARS (pip installable implementation) and LAMB. NVIDA's APEX implements fused versions of a number of common optimizers such as Adam. This implementation avoid a number of passes to and from GPU memory as compared to the PyTorch implementation of Adam, yielding speed-ups in the range of 5%. Turn on cudNN benchmarking If your model architecture remains fixed and your input size stays constant, setting torch.backends.cudnn.benchmark = True might be beneficial (docs). This enables the cudNN autotuner which will benchmark a number of different ways of computing convolutions in cudNN and then use the fastest method from then on. For a rough reference on the type of speed-up you can expect from this, Szymon Migacz achieves a speed-up of 70% on a forward pass for a convolution and a 27% speed-up for a forward + backward pass of the same convolution. One caveat here is that this autotuning might become very slow if you max out the batch size as mentioned above. Beware of frequently transferring data between CPUs and GPUs Beware of frequently transferring tensors from a GPU to a CPU using tensor.cpu() and vice versa using tensor.cuda() as these are relatively expensive. The same applies for .item() and .numpy() – use .detach() instead. If you are creating a new tensor, you can also directly assign it to your GPU using the keyword argument device=torch.device('cuda:0'). If you do need to transfer data, using .to(non_blocking=True), might be useful as long as you don't have any synchronization points after the transfer. If you really have to, you might want to give Santosh Gupta's SpeedTorch a try, although it doesn't seem entirely clear when this actually does/doesn't provide speed-ups. Use gradient/activation checkpointing Quoting directly from the documentation: Checkpointing works by trading compute for memory. Rather than storing all intermediate activations of the entire computation graph for computing backward, the checkpointed part does not save intermediate activations, and instead recomputes them in backward pass. It can be applied on any part of a model. Specifically, in the forward pass, function will run in torch.no\grad() manner, i.e., not storing the intermediate activations. Instead, the forward pass saves the inputs tuple and the functionparameter. In the backwards pass, the saved inputs and function is retrieved, and the forward pass is computed on function again, now tracking the intermediate activations, and then the gradients are calculated using these activation values. So while this will might slightly increase your run time for a given batch size, you'll significantly reduce your memory footprint. This in turn will allow you to further increase the batch size you're using allowing for better GPU utilization. While checkpointing is implemented natively as torch.utils.checkpoint(docs), it does seem to take some thought and effort to implement properly. Priya Goyal has a good tutorial demonstrating some of the key aspects of checkpointing. Use gradient accumulation Another approach to increasing the batch size is to accumulate gradients across multiple .backward() passes before calling optimizer.step(). Following a post by Hugging Face's Thomas Wolf, gradient accumulation can be implemented as follows: model.zero_grad() Reset gradients tensors for i, (inputs, labels) in enumerate(training_set): predictions = model(inputs) Forward pass loss = loss_function(predictions, labels) Compute loss function loss = loss / accumulation_steps Normalize our loss (if averaged) loss.backward() Backward pass if (i+1) % accumulation_steps == 0: Wait for several backward steps optimizer.step() Now we can do an optimizer step model.zero_grad() Reset gradients tensors if (i+1) % evaluation_steps == 0: Evaluate the model when we... evaluate_model() ...have no gradients accumulate This method was developed mainly to circumvent GPU memory limitations and I'm not entirely clear on the trade-off between having additional .backward() loops. This discussion on the fastai forum seems to suggest that it can in fact accelerate training, so it's probably worth a try. Use Distributed Data Parallel for multi-GPU training Methods to accelerate distributed training probably warrant their own post but one simple one is to use torch.nn.DistributedDataParallel rather than torch.nn.DataParallel. By doing so, each GPU will be driven by a dedicated CPU core avoiding the GIL issues of DataParallel. In general, I can strongly recommend reading the documentation on distributed training. Set gradients to None rather than 0 Use .zerograd(settonone=True) rather than .zerograd(). Doing so will let the memory allocator handle the gradients rather than actively setting them to 0. This will lead to yield a modest speed-up as they say in the documentation, so don't expect any miracles. Watch out, doing this is not side-effect free! Check the docs for the details on this. Use .as_tensor() rather than .tensor() torch.tensor() always copies data. If you have a numpy array that you want to convert, use torch.astensor() or torch.fromnumpy() to avoid copying the data. Turn on debugging tools only when actually needed PyTorch offers a number of useful debugging tools like the autograd.profiler, autograd.grad\check, and autograd.anomaly\detection. Make sure to use them to better understand when needed but to also turn them off when you don't need them as they will slow down your training. Use gradient clipping Originally used to avoid exploding gradients in RNNs, there is both some empirical evidence as well as some theoretical support that clipping gradients (roughly speaking: gradient = min(gradient, threshold)) accelerates convergence. Hugging Face's Transformer implementation is a really clean example of how to use gradient clipping as well as some of the other methods such as AMP mentioned in this post. In PyTorch this can be done using torch.nn.utils.clipgradnorm(documentation). It's not entirely clear to me which models benefit how much from gradient clipping but it seems to be robustly useful for RNNs, Transformer-based and ResNets architectures and a range of different optimizers. Turn off bias before BatchNorm This is a very simple one: turn off the bias of layers before BatchNormalization layers. For a 2-D convolutional layer, this can be done by setting the bias keyword to False: torch.nn.Conv2d(..., bias=False, ...).  (Here's a reminder why this makes sense.) You will save some parameters, I would however expect the speed-up of this to be relatively small as compared to some of the other methods mentioned here. Turn off gradient computation during validation This one is straightforward: set torch.no_grad() during validation. Use input and batch normalization You're probably already doing this but you might want to double-check: Are you normalizing your input? Are you using batch-normalization? And here's a reminder of why you probably should. Bonus tip from the comments: Use JIT to fuse point-wise operations. If you have adjacent point-wise operations you can use PyTorch JIT to combine them into one FusionGroup which can then be launched on a single kernel rather than multiple kernels as would have been done per default. You'll also save some memory reads and writes. Szymon Migacz shows how you can use the @torch.jit.script decorator to fuse the operations in a GELU, for instance: @torch.jit.script def fused_gelu(x): return x 0.5 (1.0 + torch.erf(x / 1.41421)) In this case, fusing the operations leads to a 5x speed-up for the execution of fused_gelu as compared to the unfused version. See also this post for an example of how Torchscript can be used to accelerate an RNN. Hat tip to u/Patient_Atmosphere45 for the suggestion. Sources and additional resources Many of the tips listed above come from Szymon Migacz' talk and post in the PyTorch docs. PyTorch Lightning's William Falcon has two interesting posts with tips to speed-up training. PyTorch Lightning does already take care of some of the points above per-default. Thomas Wolf at Hugging Face has a number of interesting articles on accelerating deep learning – with a particular focus on language models. The same goes for Sylvain Gugger and Jeremy Howard: they have many interesting posts in particular on learning rates and AdamW. Thanks to Ben Hahn, Kevin Klein and Robin Vaaler for their feedback on a draft of this post! I've also put all of the above into this blog post.

[D] What are some good advanced platforms?
reddit
LLM Vibe Score0
Human Vibe Score1
SemperZeroThis week

[D] What are some good advanced platforms?

Hey. I'm 27 and I think I got most of the basics for ML. I'm very good at math, I understand statistics and probability quite deep, worked on research projects by myself, for which I had to build models on my own. Not really complex, but still requiring creativity and a good understanding of basic concepts. I will soon start a data science job at a FAANG company and I want to further improve my skills and use their resources to the fullest, but I'm not really sure where to go from here in terms of learning. Could you help me with some more advanced materials/forums for ML research/place with good papers/place with good articles? I'd also like to study the very best and see the way they code and explain advanced concepts (like Andrej Karpathy) where can I find them?? is there a Twitch for challenger level AI researchers streaming live processes? Or videos showing the entire project flow (how they do data visualizations, mining, choosing models, tuning, etc) like top digital artists show the highlights or the entire speed-up of their painting processes? Here's a list all of my projects to get a general idea of my level and where I'm at: calculating the distance between hundreds of 42.000 feature objects (containing categorical, strings, numbers, hashes, booleans as variables) and then clustering. with some vector processing and a neural network implemented from scratch in C some models like ARIMA (together with linear regression) combining a FFT with a neural network for a 42d wave classification T-SNE to split dataset into 2d grids -> Kullback–Leibler on grids for distance -> DBSCAN/KMEANS for clustering genetic algorithms for hyperparameter optimizations and reinforcement learning (neuro evolution) DBSCAN -> Levenberg-Marquardt for polynomial coefficients-> neural network predicting the coefficients based on different parameters playing with instance segmentation and some algorithms to synchronize a color and a depth camera simulations/statistics/probabilities for video games a lot of visualizations and data mining for patterns As you can see there is no LLM/ Generative AI/ Computer Vision stuff, which I would like to get into. I'm also not 100% sure what else would be nice to learn in general. I know most of the basic procedures for training, balancing datasets, avoid overfit, computing error plots, comparing models, etc and I'm familiar with most of math (not insanely advanced) used in ML. I didn't read many papers, but holy ... most of them are so unreadable and filled with pompous nonsense that 99% of the effort is de-obfuscating the bs and reading for so long just to figure out how the input is encoded, what's the output, and what's the model. Where can I find good, readable, structured papers which are actually on point? I'm from Eastern Europe and most of my learning has been done by my self after high school, the education quality is close to zero in the universities here and I never had any mentors at the jobs I worked. There's no research in this country, and getting to work on these projects was insanely hard, some of them being done in my free time or for free just to get experience... Fortunately after a lot of hard work I got into FAANG, and I hope things will be better here. Most of what I've learned has been from very fragmented places on the internet, and now I'm looking for centralized places and communities of top quality content. TL;DR: sorry for the long rambling. had to order my thoughts and figure what i actually want: Looking for top tier AI researchers showcasing their work processes, places with clear papers/articles, tips for someone who's no longer a very beginner, and other communities like this.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[P] Jarvislabs.ai - An Affordable GPU Cloud with Fast launch, Pause and Resume. Scale GPUs post creation. A100/RTX6K/RTX5K
reddit
LLM Vibe Score0
Human Vibe Score1
vishnu_subramaniannThis week

[P] Jarvislabs.ai - An Affordable GPU Cloud with Fast launch, Pause and Resume. Scale GPUs post creation. A100/RTX6K/RTX5K

For the last few years, I have been learning and practicing Deep Learning. Participated in several Kaggle competitions and won few medals. During all these years, I tried several cloud platforms and on-premise systems. Some of them offered simplicity, flexibility, and affordability. But very few to none offered all of these in one platform. After struggling with different platforms, I know what I would need as a DL researcher. That gave birth to jarvislabs.ai with the aim of being simple and affordable. I along with my friends started working on this project a year back. Due to Covid, executing the project became more challenging. As first-time entrepreneurs, we underestimated the complexity of the problem at hand but with persistence, we were able to launch a beta version of the product in December 2020. With some of the amazing feedback from our early adopters, we have been able to make the product smoother. We would love to invite you all to come and try the platform. Features 1 click Jupyter Lab < \[30 seconds\] Pause the instance and Resume from where you left. SSH to the instance. Scale GPUs, storage and change GPU type on resume. Auto-Pause using jarviscloud.pause() in your code, so you can catch up some good night’s sleep while your model trains. Pay per usage – Minute Billing \[After first 15 minutes\] Competitive pricing \[Lowest to our Knowledge\]. &#x200B; Pricing |GPU Type|GPU RAM|Price -$/hr| |:-|:-|:-| |RTX 5000|16 GB|0.49| |RTX 6000|24 GB|0.99| |A100|40 GB|2.39| &#x200B; Talk to us We will be happy to assist you in spinning your first instance and many more. You can use one of these platforms to reach us. Chat option on cloud.jarvislabs.ai Email us - hello@jarvislabs.ai Comment here. We have come a long way, but we understand that a lot more has to be done. We have listed down all the upcoming product features here. Deep learning and AI are evolving and how we would use the cloud platforms could evolve in the coming years. Understanding this, we develop in the open by constantly keeping in touch with our users. Please help us in shaping Jarvislabs.ai with any valuable suggestions/feedback.

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore
reddit
LLM Vibe Score0
Human Vibe Score1
qazmkoppThis week

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore

A few days ago, HuggingFace announced a $100 million Series C funding round, which was big news in open source machine learning and could be a sign of where the industry is headed. Two days before the HuggingFace funding announcement, open-source machine learning platform MetaSpore released a demo based on the HuggingFace Rapid deployment pre-training model. As deep learning technology makes innovative breakthroughs in computer vision, natural language processing, speech understanding, and other fields, more and more unstructured data are perceived, understood, and processed by machines. These advances are mainly due to the powerful learning ability of deep learning. Through pre-training of deep models on massive data, the models can capture the internal data patterns, thus helping many downstream tasks. With the industry and academia investing more and more energy in the research of pre-training technology, the distribution warehouses of pre-training models such as HuggingFace and Timm have emerged one after another. The open-source community release pre-training significant model dividends at an unprecedented speed. In recent years, the data form of machine modeling and understanding has gradually evolved from single-mode to multi-mode, and the semantic gap between different modes is being eliminated, making it possible to retrieve data across modes. Take CLIP, OpenAI’s open-source work, as an example, to pre-train the twin towers of images and texts on a dataset of 400 million pictures and texts and connect the semantics between pictures and texts. Many researchers in the academic world have been solving multimodal problems such as image generation and retrieval based on this technology. Although the frontier technology through the semantic gap between modal data, there is still a heavy and complicated model tuning, offline data processing, high performance online reasoning architecture design, heterogeneous computing, and online algorithm be born multiple processes and challenges, hindering the frontier multimodal retrieval technologies fall to the ground and pratt &whitney. DMetaSoul aims at the above technical pain points, abstracting and uniting many links such as model training optimization, online reasoning, and algorithm experiment, forming a set of solutions that can quickly apply offline pre-training model to online. This paper will introduce how to use the HuggingFace community pre-training model to conduct online reasoning and algorithm experiments based on MetaSpore technology ecology so that the benefits of the pre-training model can be fully released to the specific business or industry and small and medium-sized enterprises. And we will give the text search text and text search graph two multimodal retrieval demonstration examples for your reference. Multimodal semantic retrieval The sample architecture of multimodal retrieval is as follows: Our multimodal retrieval system supports both text search and text search application scenarios, including offline processing, model reasoning, online services, and other core modules: &#x200B; https://preview.redd.it/w4v4c7vcez291.png?width=1834&format=png&auto=webp&s=0687efb1fddb26e8e30cb844d398ec712b947f31 Offline processing, including offline data processing processes for different application scenarios of text search and text search, including model tuning, model export, data index database construction, data push, etc. Model inference. After the offline model training, we deployed our NLP and CV large models based on the MetaSpore Serving framework. MetaSpore Serving helps us conveniently perform online inference, elastic scheduling, load balancing, and resource scheduling in heterogeneous environments. Online services. Based on MetaSpore’s online algorithm application framework, MetaSpore has a complete set of reusable online search services, including Front-end retrieval UI, multimodal data preprocessing, vector recall and sorting algorithm, AB experimental framework, etc. MetaSpore also supports text search by text and image scene search by text and can be migrated to other application scenarios at a low cost. The HuggingFace open source community has provided several excellent baseline models for similar multimodal retrieval problems, which are often the starting point for actual optimization in the industry. MetaSpore also uses the pre-training model of the HuggingFace community in its online services of searching words by words and images by words. Searching words by words is based on the semantic similarity model of the question and answer field optimized by MetaSpore, and searching images by words is based on the community pre-training model. These community open source pre-training models are exported to the general ONNX format and loaded into MetaSpore Serving for online reasoning. The following sections will provide a detailed description of the model export and online retrieval algorithm services. The reasoning part of the model is standardized SAAS services with low coupling with the business. Interested readers can refer to my previous post: The design concept of MetaSpore, a new generation of the one-stop machine learning platform. 1.1 Offline Processing Offline processing mainly involves the export and loading of online models and index building and pushing of the document library. You can follow the step-by-step instructions below to complete the offline processing of text search and image search and see how the offline pre-training model achieves reasoning at MetaSpore. 1.1.1 Search text by text Traditional text retrieval systems are based on literal matching algorithms such as BM25. Due to users’ diverse query words, a semantic gap between query words and documents is often encountered. For example, users misspell “iPhone” as “Phone,” and search terms are incredibly long, such as “1 \~ 3 months old baby autumn small size bag pants”. Traditional text retrieval systems will use spelling correction, synonym expansion, search terms rewriting, and other means to alleviate the semantic gap but fundamentally fail to solve this problem. Only when the retrieval system fully understands users’ query terms and documents can it meet users’ retrieval demands at the semantic level. With the continuous progress of pre-training and representational learning technology, some commercial search engines continue to integrate semantic vector retrieval methods based on symbolic learning into the retrieval ecology. Semantic retrieval model This paper introduces a set of semantic vector retrieval applications. MetaSpore built a set of semantic retrieval systems based on encyclopedia question and answer data. MetaSpore adopted the Sentence-Bert model as the semantic vector representation model, which fine-tunes the twin tower BERT in supervised or unsupervised ways to make the model more suitable for retrieval tasks. The model structure is as follows: The query-Doc symmetric two-tower model is used in text search and question and answer retrieval. The vector representation of online Query and offline DOC share the same vector representation model, so it is necessary to ensure the consistency of the offline DOC library building model and online Query inference model. The case uses MetaSpore’s text representation model Sbert-Chinese-QMC-domain-V1, optimized in the open-source semantically similar data set. This model will express the question and answer data as a vector in offline database construction. The user query will be expressed as a vector by this model in online retrieval, ensuring that query-doc in the same semantic space, users’ semantic retrieval demands can be guaranteed by vector similarity metric calculation. Since the text presentation model does vector encoding for Query online, we need to export the model for use by the online service. Go to the q&A data library code directory and export the model concerning the documentation. In the script, Pytorch Tracing is used to export the model. The models are exported to the “./export “directory. The exported models are mainly ONNX models used for wired reasoning, Tokenizer, and related configuration files. The exported models are loaded into MetaSpore Serving by the online Serving system described below for model reasoning. Since the exported model will be copied to the cloud storage, you need to configure related variables in env.sh. \Build library based on text search \ The retrieval database is built on the million-level encyclopedia question and answer data set. According to the description document, you need to download the data and complete the database construction. The question and answer data will be coded as a vector by the offline model, and then the database construction data will be pushed to the service component. The whole process of database construction is described as follows: Preprocessing, converting the original data into a more general JSonline format for database construction; Build index, use the same model as online “sbert-Chinese-qmc-domain-v1” to index documents (one document object per line); Push inverted (vector) and forward (document field) data to each component server. The following is an example of the database data format. After offline database construction is completed, various data are pushed to corresponding service components, such as Milvus storing vector representation of documents and MongoDB storing summary information of documents. Online retrieval algorithm services will use these service components to obtain relevant data. 1.1.2 Search by text Text and images are easy for humans to relate semantically but difficult for machines. First of all, from the perspective of data form, the text is the discrete ID type of one-dimensional data based on words and words. At the same time, images are continuous two-dimensional or three-dimensional data. Secondly, the text is a subjective creation of human beings, and its expressive ability is vibrant, including various turning points, metaphors, and other expressions, while images are machine representations of the objective world. In short, bridging the semantic gap between text and image data is much more complex than searching text by text. The traditional text search image retrieval technology generally relies on the external text description data of the image or the nearest neighbor retrieval technology and carries out the retrieval through the image associated text, which in essence degrades the problem to text search. However, it will also face many issues, such as obtaining the associated text of pictures and whether the accuracy of text search by text is high enough. The depth model has gradually evolved from single-mode to multi-mode in recent years. Taking the open-source project of OpenAI, CLIP, as an example, train the model through the massive image and text data of the Internet and map the text and image data into the same semantic space, making it possible to implement the text and image search technology based on semantic vector. CLIP graphic model The text search pictures introduced in this paper are implemented based on semantic vector retrieval, and the CLIP pre-training model is used as the two-tower retrieval architecture. Because the CLIP model has trained the semantic alignment of the twin towers’ text and image side models on the massive graphic and text data, it is particularly suitable for the text search graph scene. Due to the different image and text data forms, the Query-Doc asymmetric twin towers model is used for text search image retrieval. The image-side model of the twin towers is used for offline database construction, and the text-side model is used for the online return. In the final online retrieval, the database data of the image side model will be searched after the text side model encodes Query, and the CLIP pre-training model guarantees the semantic correlation between images and texts. The model can draw the graphic pairs closer in vector space by pre-training on a large amount of visual data. Here we need to export the text-side model for online MetaSpore Serving inference. Since the retrieval scene is based on Chinese, the CLIP model supporting Chinese understanding is selected. The exported content includes the ONNX model used for online reasoning and Tokenizer, similar to the text search. MetaSpore Serving can load model reasoning through the exported content. Build library on Image search You need to download the Unsplash Lite library data and complete the construction according to the instructions. The whole process of database construction is described as follows: Preprocessing, specify the image directory, and then generate a more general JSOnline file for library construction; Build index, use OpenAI/Clip-Vit-BASE-Patch32 pre-training model to index the gallery, and output one document object for each line of index data; Push inverted (vector) and forward (document field) data to each component server. Like text search, after offline database construction, relevant data will be pushed to service components, called by online retrieval algorithm services to obtain relevant data. 1.2 Online Services The overall online service architecture diagram is as follows: https://preview.redd.it/jfsl8hdfez291.png?width=1280&format=png&auto=webp&s=a858e2304a0c93e78ba5429612ca08cbee69b35a Multi-mode search online service system supports application scenarios such as text search and text search. The whole online service consists of the following parts: Query preprocessing service: encapsulate preprocessing logic (including text/image, etc.) of pre-training model, and provide services through gRPC interface; Retrieval algorithm service: the whole algorithm processing link includes AB experiment tangent flow configuration, MetaSpore Serving call, vector recall, sorting, document summary, etc.; User entry service: provides a Web UI interface for users to debug and track down problems in the retrieval service. From a user request perspective, these services form invocation dependencies from back to front, so to build up a multimodal sample, you need to run each service from front to back first. Before doing this, remember to export the offline model, put it online and build the library first. This article will introduce the various parts of the online service system and make the whole service system step by step according to the following guidance. See the ReadME at the end of this article for more details. 1.2.1 Query preprocessing service Deep learning models tend to be based on tensors, but NLP/CV models often have a preprocessing part that translates raw text and images into tensors that deep learning models can accept. For example, NLP class models often have a pre-tokenizer to transform text data of string type into discrete tensor data. CV class models also have similar processing logic to complete the cropping, scaling, transformation, and other processing of input images through preprocessing. On the one hand, considering that this part of preprocessing logic is decoupled from tensor reasoning of the depth model, on the other hand, the reason of the depth model has an independent technical system based on ONNX, so MetaSpore disassembled this part of preprocessing logic. NLP pretreatment Tokenizer has been integrated into the Query pretreatment service. MetaSpore dismantlement with a relatively general convention. Users only need to provide preprocessing logic files to realize the loading and prediction interface and export the necessary data and configuration files loaded into the preprocessing service. Subsequent CV preprocessing logic will also be integrated in this manner. The preprocessing service currently provides the gRPC interface invocation externally and is dependent on the Query preprocessing (QP) module in the retrieval algorithm service. After the user request reaches the retrieval algorithm service, it will be forwarded to the service to complete the data preprocessing and continue the subsequent processing. The ReadMe provides details on how the preprocessing service is started, how the preprocessing model exported offline to cloud storage enters the service, and how to debug the service. To further improve the efficiency and stability of model reasoning, MetaSpore Serving implements a Python preprocessing submodule. So MetaSpore can provide gRPC services through user-specified preprocessor.py, complete Tokenizer or CV-related preprocessing in NLP, and translate requests into a Tensor that deep models can handle. Finally, the model inference is carried out by MetaSpore, Serving subsequent sub-modules. Presented here on the lot code: https://github.com/meta-soul/MetaSpore/compare/add\python\preprocessor 1.2.2 Retrieval algorithm services Retrieval algorithm service is the core of the whole online service system, which is responsible for the triage of experiments, the assembly of algorithm chains such as preprocessing, recall, sorting, and the invocation of dependent component services. The whole retrieval algorithm service is developed based on the Java Spring framework and supports multi-mode retrieval scenarios of text search and text search graph. Due to good internal abstraction and modular design, it has high flexibility and can be migrated to similar application scenarios at a low cost. Here’s a quick guide to configuring the environment to set up the retrieval algorithm service. See ReadME for more details: Install dependent components. Use Maven to install the online-Serving component Search for service configurations. Copy the template configuration file and replace the MongoDB, Milvus, and other configurations based on the development/production environment. Install and configure Consul. Consul allows you to synchronize the search service configuration in real-time, including cutting the flow of experiments, recall parameters, and sorting parameters. The project’s configuration file shows the current configuration parameters of text search and text search. The parameter modelName in the stage of pretreatment and recall is the corresponding model exported in offline processing. Start the service. Once the above configuration is complete, the retrieval service can be started from the entry script. Once the service is started, you can test it! For example, for a user with userId=10 who wants to query “How to renew ID card,” access the text search service. 1.2.3 User Entry Service Considering that the retrieval algorithm service is in the form of the API interface, it is difficult to locate and trace the problem, especially for the text search image scene can intuitively display the retrieval results to facilitate the iterative optimization of the retrieval algorithm. This paper provides a lightweight Web UI interface for text search and image search, a search input box, and results in a display page for users. Developed by Flask, the service can be easily integrated with other retrieval applications. The service calls the retrieval algorithm service and displays the returned results on the page. It’s also easy to install and start the service. Once you’re done, go to http://127.0.0.1:8090 to see if the search UI service is working correctly. See the ReadME at the end of this article for details. Multimodal system demonstration The multimodal retrieval service can be started when offline processing and online service environment configuration have been completed following the above instructions. Examples of textual searches are shown below. Enter the entry of the text search map application, enter “cat” first, and you can see that the first three digits of the returned result are cats: https://preview.redd.it/0n5nuyvhez291.png?width=1280&format=png&auto=webp&s=1e9c054f541d53381674b8d6001b4bf524506bd2 If you add a color constraint to “cat” to retrieve “black cat,” you can see that it does return a black cat: https://preview.redd.it/rzc0qjyjez291.png?width=1280&format=png&auto=webp&s=d5bcc503ef0fb3360c7740e60e295cf372dcad47 Further, strengthen the constraint on the search term, change it to “black cat on the bed,” and return results containing pictures of a black cat climbing on the bed: &#x200B; https://preview.redd.it/c4b2q8olez291.png?width=1280&format=png&auto=webp&s=4f3817b0b9f07e1e68d1d4a8281702ba3834a00a The cat can still be found through the text search system after the color and scene modification in the above example. Conclusion The cutting-edge pre-training technology can bridge the semantic gap between different modes, and the HuggingFace community can greatly reduce the cost for developers to use the pre-training model. Combined with the technological ecology of MetaSpore online reasoning and online microservices provided by DMetaSpore, the pre-training model is no longer mere offline dabbling. Instead, it can truly achieve end-to-end implementation from cutting-edge technology to industrial scenarios, fully releasing the dividends of the pre-training large model. In the future, DMetaSoul will continue to improve and optimize the MetaSpore technology ecosystem: More automated and wider access to HuggingFace community ecology. MetaSpore will soon release a common model rollout mechanism to make HuggingFace ecologically accessible and will later integrate preprocessing services into online services. Multi-mode retrieval offline algorithm optimization. For multimodal retrieval scenarios, MetaSpore will continuously iteratively optimize offline algorithm components, including text recall/sort model, graphic recall/sort model, etc., to improve the accuracy and efficiency of the retrieval algorithm. For related code and reference documentation in this article, please visit: https://github.com/meta-soul/MetaSpore/tree/main/demo/multimodal/online Some images source: https://github.com/openai/CLIP/raw/main/CLIP.png https://www.sbert.net/examples/training/sts/README.html

[D] AI regulation: a review of NTIA's "AI Accountability Policy" doc
reddit
LLM Vibe Score0
Human Vibe Score0.667
elehman839This week

[D] AI regulation: a review of NTIA's "AI Accountability Policy" doc

How will governments respond to the rapid rise of AI? How can sensible regulation keep pace with AI technology? These questions interest many of us! One early US government response has come from the National Telecommunications and Information Administration (NTIA). Specifically, the NTIA published an "AI Accountability Policy Request for Comment" on April 11, 2023. I read the NTIA document carefully, and I'm sharing my observations here for others interested in AI regulation. You can, of course, read the original materials and form your own opinions. Moreover, you can share those opinions not only on this post, but also with the NTIA itself until June 12, 2023. As background, the NTIA (homepage, Wikipedia) consists of a few hundred people within the Department of Commerce. The official mission of the NTIA is "advising the President on telecommunications and information policy issues". Topics covered by NTIA include broadband internet access, spectrum management, internet health, and now artificial intelligence. I do not know whether the NTIA will ultimately drive thinking around AI regulation in the United States or they are just a spunky lot who got something on paper early. The NTIA document is not a specific policy proposal, but rather a thoughtful discussion of AI regulation, followed by a long list of questions on which the NTIA seeks input. This format seems appropriate right now, as we're all trying to make sense of a fast-changing world. The NTIA document leans heavily on two others: the Blueprint for an AI Bill of Rights from the White House Office of Science and Technology and the AI Risk Management Framework from the National Institute of Standards and Technology (NIST). Without going into these two in depth, even tiny snippets convey their differing audiences and flavors: White House Blueprint: "You should be protected from safe and ineffective systems." NIST Framework: "Risk refers to the composite measure of an event’s probability of occurring and the magnitude or degree of the consequences of the corresponding event." Now, turning back to the NTIA document itself, I'll comment on three aspects (1) scope, (2) problems addressed, and (3) solutions contemplated. Scope is critical to understanding the NTIA document, and is probably worth keeping in mind in all near-term discussion of AI regulation. Over the past several years, at least two different technologies have been called "AI". The document mentions both, but the emphasis is NOT on the one you're probably thinking about. In more detail: A few years ago, regulators began scrutinizing "automated decisions systems", which passed as "AI" in those ancient times. An example would be an ML model used by a bank to decide whether or not you get a loan. That model might take in all sorts of information about you, combine it in mysterious ML ways, and reject your loan request. Then you might wonder, "Did that system effectively use my address and name to deduce that I am black and then reject my loan request on the basis of race?" There is some evidence of that happening, and this seems like an injustice. So perhaps such systems should be audited and certified so people know this won't happen. This is the focus of the document. These days, AI more commonly refers to open-ended systems that can engage on a wide range of topics and approximate human intelligence. The document briefly mentions generative AI models, large language models, ChatGPT, and "foundational models" (sic), but this is not the focus. The passing mentions may obscure this, unfortunately. In my opinion, these two notions of "AI" are radically different, and many of the differences matter from a regulatory perspective. Yet NTIA lumps both under a sweeping definition of an "AI system" as "an engineered or machine-based system that can, for a given set of objectives, generate outputs such as predictions, recommendations, or decisions influencing real or virtual environments." (Hmm, this includes my Magic 8-Ball…) Keep scope in mind as we turn to the next aspect: the problems under discussion. Now, NTIA's goal is to solicit input, so considering a wide range of potential problems associated with AI makes sense. Consistent with that, the document refers to democratic values, civil rights, civil liberties, and privacy. And citing the NIST doc, NTIA vaguely notes "a wide range of potential AI risks". Also, AI systems should be "valid and reliable, safe, secure and resilient, accountable and transparent, explainable and interpretable, privacy-enhanced, and fair with their harmful bias managed". And they should call their mothers \every\ week. (Okay, I made that one up.) A few comments on this formulation of the problem. First, these concerns feel more applicable to older-style AI. This includes automated decisions systems, like for a bank loan or for a prison parole recommendation. Sure, I believe such systems should operate in ways consistent with our consensus societal values, and further regulation may be needed to achieve that. But, hello! There's also another, newer class of AI that poses additional challenges. And I don't see those discussed in the NTIA document. Such challenges might include: People losing jobs because AI takes their work. Ensuring malicious people don't use AI tools to wreak havoc on the world. Sorting out intellectual property issues around AI to ensure both rapid progress in the field and respect for creators' rights. Ensuring laws appropriately assign culpability to humans when AIs cause harm. Planning for an incident analogous to the first internet worm, where an AI goes rogue, wreaks some havoc, and everyone is shocked (before it happens 28,385 more times). Bottom line: when I cntrl-F the doc for "robotic overlords", I get zero hits. ZERO. This is why I now believe scope is so important when considering efforts to regulate AI: are we talking about old-school AI or 2023-era AI or what? Because they are pretty different. The last aspect I'll address is the solutions contemplated. Again, NTIA's goal is to stimulate discussion, not propose something specific. Nevertheless, there is a strong push in one particular direction: unlike, "robotic overlord", the word "audit" appears more than 100 times along with many instances of "assessment" and "certification". On one hand, this approach makes sense. Suppose you want to ensure that a bank loan system is fair, that a social media platform isn't spreading misinformation, that a search engine is returning accurate results, etc. Then someone, somewhere has to assess or audit that system and look for problems. That audit might be done by the creator of the system or a third-party auditing agency. Such audits could be incentivized by mandates, prizes, or shiny gold stars. The government might help by fostering development of auditing tools and data. The NTIA is open to all such possibilities and seeks input on how to proceed. On the other hand, this seems like a tactic best suited to automated decision systems operated by financial institutions, government agencies, and the like. Such formal processes seem a poor fit for the current AI wave. For example: Auditing will take time and money. That's something a bank might pay for a system that will run for years. For something fine-tuned over the weekend at a startup or by some guy living in his mother's basement, that's probably not going to happen. Auditing a straightforward decision system seems far easier than assessing an open-ended AI. Beyond basic practicality, the AI could be taught to lie when it senses an audit. Also, auditing procedures (like the NTIA doc itself) will presumably be online, which means that AIs will read them and could potentially respond. Most current ML models fix parameters after training, but I think we'll soon see some models whose parameters evolve as they engage with the world. Auditing such a system that varies continuously over time seems especially difficult. Auditing a foundation model probably tells you little about derivative models. A sweet-hearted model can surely be made into monster with moderate additional training; you don't need to teach the model new cognitive skills, just repurpose existing ones to new ends. More generally, auditing doesn't address many of my concerns about AI regulation (see list above). For example, auditing sort of assumes a basically responsible actor (bank, government agency, big tech company), but AI could be misused by malicious people who, naturally, will not seek a responsible outside assessment. In any case, for both old-school and modern AI, auditing is only one line of defense, and that's not enough. You can audit until you're blue in the face, stuff will still get through, and AI systems will still cause some harm. So what's the next line of defense? For example, is our legal system ready to sensibly assign culpability to humans for AI-related incidents? In summary, the critical problem with the NTIA document is that it creates a largely false appearance of US government engagement with the new class of AI technology. As a result, people could wrongly believe that the US government is already responding to the rise of AI, and fail to advocate for actual, effective engagement. That said, the NTIA document does address important issues around a prominent technology sometimes (formerly?) called "AI". Even there, however, the proposed approach (auditing) seems like an overly-fragile, single line of defense.

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore
reddit
LLM Vibe Score0
Human Vibe Score1
qazmkoppThis week

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore

A few days ago, HuggingFace announced a $100 million Series C funding round, which was big news in open source machine learning and could be a sign of where the industry is headed. Two days before the HuggingFace funding announcement, open-source machine learning platform MetaSpore released a demo based on the HuggingFace Rapid deployment pre-training model. As deep learning technology makes innovative breakthroughs in computer vision, natural language processing, speech understanding, and other fields, more and more unstructured data are perceived, understood, and processed by machines. These advances are mainly due to the powerful learning ability of deep learning. Through pre-training of deep models on massive data, the models can capture the internal data patterns, thus helping many downstream tasks. With the industry and academia investing more and more energy in the research of pre-training technology, the distribution warehouses of pre-training models such as HuggingFace and Timm have emerged one after another. The open-source community release pre-training significant model dividends at an unprecedented speed. In recent years, the data form of machine modeling and understanding has gradually evolved from single-mode to multi-mode, and the semantic gap between different modes is being eliminated, making it possible to retrieve data across modes. Take CLIP, OpenAI’s open-source work, as an example, to pre-train the twin towers of images and texts on a dataset of 400 million pictures and texts and connect the semantics between pictures and texts. Many researchers in the academic world have been solving multimodal problems such as image generation and retrieval based on this technology. Although the frontier technology through the semantic gap between modal data, there is still a heavy and complicated model tuning, offline data processing, high performance online reasoning architecture design, heterogeneous computing, and online algorithm be born multiple processes and challenges, hindering the frontier multimodal retrieval technologies fall to the ground and pratt &whitney. DMetaSoul aims at the above technical pain points, abstracting and uniting many links such as model training optimization, online reasoning, and algorithm experiment, forming a set of solutions that can quickly apply offline pre-training model to online. This paper will introduce how to use the HuggingFace community pre-training model to conduct online reasoning and algorithm experiments based on MetaSpore technology ecology so that the benefits of the pre-training model can be fully released to the specific business or industry and small and medium-sized enterprises. And we will give the text search text and text search graph two multimodal retrieval demonstration examples for your reference. Multimodal semantic retrieval The sample architecture of multimodal retrieval is as follows: Our multimodal retrieval system supports both text search and text search application scenarios, including offline processing, model reasoning, online services, and other core modules: &#x200B; https://preview.redd.it/w4v4c7vcez291.png?width=1834&format=png&auto=webp&s=0687efb1fddb26e8e30cb844d398ec712b947f31 Offline processing, including offline data processing processes for different application scenarios of text search and text search, including model tuning, model export, data index database construction, data push, etc. Model inference. After the offline model training, we deployed our NLP and CV large models based on the MetaSpore Serving framework. MetaSpore Serving helps us conveniently perform online inference, elastic scheduling, load balancing, and resource scheduling in heterogeneous environments. Online services. Based on MetaSpore’s online algorithm application framework, MetaSpore has a complete set of reusable online search services, including Front-end retrieval UI, multimodal data preprocessing, vector recall and sorting algorithm, AB experimental framework, etc. MetaSpore also supports text search by text and image scene search by text and can be migrated to other application scenarios at a low cost. The HuggingFace open source community has provided several excellent baseline models for similar multimodal retrieval problems, which are often the starting point for actual optimization in the industry. MetaSpore also uses the pre-training model of the HuggingFace community in its online services of searching words by words and images by words. Searching words by words is based on the semantic similarity model of the question and answer field optimized by MetaSpore, and searching images by words is based on the community pre-training model. These community open source pre-training models are exported to the general ONNX format and loaded into MetaSpore Serving for online reasoning. The following sections will provide a detailed description of the model export and online retrieval algorithm services. The reasoning part of the model is standardized SAAS services with low coupling with the business. Interested readers can refer to my previous post: The design concept of MetaSpore, a new generation of the one-stop machine learning platform. 1.1 Offline Processing Offline processing mainly involves the export and loading of online models and index building and pushing of the document library. You can follow the step-by-step instructions below to complete the offline processing of text search and image search and see how the offline pre-training model achieves reasoning at MetaSpore. 1.1.1 Search text by text Traditional text retrieval systems are based on literal matching algorithms such as BM25. Due to users’ diverse query words, a semantic gap between query words and documents is often encountered. For example, users misspell “iPhone” as “Phone,” and search terms are incredibly long, such as “1 \~ 3 months old baby autumn small size bag pants”. Traditional text retrieval systems will use spelling correction, synonym expansion, search terms rewriting, and other means to alleviate the semantic gap but fundamentally fail to solve this problem. Only when the retrieval system fully understands users’ query terms and documents can it meet users’ retrieval demands at the semantic level. With the continuous progress of pre-training and representational learning technology, some commercial search engines continue to integrate semantic vector retrieval methods based on symbolic learning into the retrieval ecology. Semantic retrieval model This paper introduces a set of semantic vector retrieval applications. MetaSpore built a set of semantic retrieval systems based on encyclopedia question and answer data. MetaSpore adopted the Sentence-Bert model as the semantic vector representation model, which fine-tunes the twin tower BERT in supervised or unsupervised ways to make the model more suitable for retrieval tasks. The model structure is as follows: The query-Doc symmetric two-tower model is used in text search and question and answer retrieval. The vector representation of online Query and offline DOC share the same vector representation model, so it is necessary to ensure the consistency of the offline DOC library building model and online Query inference model. The case uses MetaSpore’s text representation model Sbert-Chinese-QMC-domain-V1, optimized in the open-source semantically similar data set. This model will express the question and answer data as a vector in offline database construction. The user query will be expressed as a vector by this model in online retrieval, ensuring that query-doc in the same semantic space, users’ semantic retrieval demands can be guaranteed by vector similarity metric calculation. Since the text presentation model does vector encoding for Query online, we need to export the model for use by the online service. Go to the q&A data library code directory and export the model concerning the documentation. In the script, Pytorch Tracing is used to export the model. The models are exported to the “./export “directory. The exported models are mainly ONNX models used for wired reasoning, Tokenizer, and related configuration files. The exported models are loaded into MetaSpore Serving by the online Serving system described below for model reasoning. Since the exported model will be copied to the cloud storage, you need to configure related variables in env.sh. \Build library based on text search \ The retrieval database is built on the million-level encyclopedia question and answer data set. According to the description document, you need to download the data and complete the database construction. The question and answer data will be coded as a vector by the offline model, and then the database construction data will be pushed to the service component. The whole process of database construction is described as follows: Preprocessing, converting the original data into a more general JSonline format for database construction; Build index, use the same model as online “sbert-Chinese-qmc-domain-v1” to index documents (one document object per line); Push inverted (vector) and forward (document field) data to each component server. The following is an example of the database data format. After offline database construction is completed, various data are pushed to corresponding service components, such as Milvus storing vector representation of documents and MongoDB storing summary information of documents. Online retrieval algorithm services will use these service components to obtain relevant data. 1.1.2 Search by text Text and images are easy for humans to relate semantically but difficult for machines. First of all, from the perspective of data form, the text is the discrete ID type of one-dimensional data based on words and words. At the same time, images are continuous two-dimensional or three-dimensional data. Secondly, the text is a subjective creation of human beings, and its expressive ability is vibrant, including various turning points, metaphors, and other expressions, while images are machine representations of the objective world. In short, bridging the semantic gap between text and image data is much more complex than searching text by text. The traditional text search image retrieval technology generally relies on the external text description data of the image or the nearest neighbor retrieval technology and carries out the retrieval through the image associated text, which in essence degrades the problem to text search. However, it will also face many issues, such as obtaining the associated text of pictures and whether the accuracy of text search by text is high enough. The depth model has gradually evolved from single-mode to multi-mode in recent years. Taking the open-source project of OpenAI, CLIP, as an example, train the model through the massive image and text data of the Internet and map the text and image data into the same semantic space, making it possible to implement the text and image search technology based on semantic vector. CLIP graphic model The text search pictures introduced in this paper are implemented based on semantic vector retrieval, and the CLIP pre-training model is used as the two-tower retrieval architecture. Because the CLIP model has trained the semantic alignment of the twin towers’ text and image side models on the massive graphic and text data, it is particularly suitable for the text search graph scene. Due to the different image and text data forms, the Query-Doc asymmetric twin towers model is used for text search image retrieval. The image-side model of the twin towers is used for offline database construction, and the text-side model is used for the online return. In the final online retrieval, the database data of the image side model will be searched after the text side model encodes Query, and the CLIP pre-training model guarantees the semantic correlation between images and texts. The model can draw the graphic pairs closer in vector space by pre-training on a large amount of visual data. Here we need to export the text-side model for online MetaSpore Serving inference. Since the retrieval scene is based on Chinese, the CLIP model supporting Chinese understanding is selected. The exported content includes the ONNX model used for online reasoning and Tokenizer, similar to the text search. MetaSpore Serving can load model reasoning through the exported content. Build library on Image search You need to download the Unsplash Lite library data and complete the construction according to the instructions. The whole process of database construction is described as follows: Preprocessing, specify the image directory, and then generate a more general JSOnline file for library construction; Build index, use OpenAI/Clip-Vit-BASE-Patch32 pre-training model to index the gallery, and output one document object for each line of index data; Push inverted (vector) and forward (document field) data to each component server. Like text search, after offline database construction, relevant data will be pushed to service components, called by online retrieval algorithm services to obtain relevant data. 1.2 Online Services The overall online service architecture diagram is as follows: https://preview.redd.it/jfsl8hdfez291.png?width=1280&format=png&auto=webp&s=a858e2304a0c93e78ba5429612ca08cbee69b35a Multi-mode search online service system supports application scenarios such as text search and text search. The whole online service consists of the following parts: Query preprocessing service: encapsulate preprocessing logic (including text/image, etc.) of pre-training model, and provide services through gRPC interface; Retrieval algorithm service: the whole algorithm processing link includes AB experiment tangent flow configuration, MetaSpore Serving call, vector recall, sorting, document summary, etc.; User entry service: provides a Web UI interface for users to debug and track down problems in the retrieval service. From a user request perspective, these services form invocation dependencies from back to front, so to build up a multimodal sample, you need to run each service from front to back first. Before doing this, remember to export the offline model, put it online and build the library first. This article will introduce the various parts of the online service system and make the whole service system step by step according to the following guidance. See the ReadME at the end of this article for more details. 1.2.1 Query preprocessing service Deep learning models tend to be based on tensors, but NLP/CV models often have a preprocessing part that translates raw text and images into tensors that deep learning models can accept. For example, NLP class models often have a pre-tokenizer to transform text data of string type into discrete tensor data. CV class models also have similar processing logic to complete the cropping, scaling, transformation, and other processing of input images through preprocessing. On the one hand, considering that this part of preprocessing logic is decoupled from tensor reasoning of the depth model, on the other hand, the reason of the depth model has an independent technical system based on ONNX, so MetaSpore disassembled this part of preprocessing logic. NLP pretreatment Tokenizer has been integrated into the Query pretreatment service. MetaSpore dismantlement with a relatively general convention. Users only need to provide preprocessing logic files to realize the loading and prediction interface and export the necessary data and configuration files loaded into the preprocessing service. Subsequent CV preprocessing logic will also be integrated in this manner. The preprocessing service currently provides the gRPC interface invocation externally and is dependent on the Query preprocessing (QP) module in the retrieval algorithm service. After the user request reaches the retrieval algorithm service, it will be forwarded to the service to complete the data preprocessing and continue the subsequent processing. The ReadMe provides details on how the preprocessing service is started, how the preprocessing model exported offline to cloud storage enters the service, and how to debug the service. To further improve the efficiency and stability of model reasoning, MetaSpore Serving implements a Python preprocessing submodule. So MetaSpore can provide gRPC services through user-specified preprocessor.py, complete Tokenizer or CV-related preprocessing in NLP, and translate requests into a Tensor that deep models can handle. Finally, the model inference is carried out by MetaSpore, Serving subsequent sub-modules. Presented here on the lot code: https://github.com/meta-soul/MetaSpore/compare/add\python\preprocessor 1.2.2 Retrieval algorithm services Retrieval algorithm service is the core of the whole online service system, which is responsible for the triage of experiments, the assembly of algorithm chains such as preprocessing, recall, sorting, and the invocation of dependent component services. The whole retrieval algorithm service is developed based on the Java Spring framework and supports multi-mode retrieval scenarios of text search and text search graph. Due to good internal abstraction and modular design, it has high flexibility and can be migrated to similar application scenarios at a low cost. Here’s a quick guide to configuring the environment to set up the retrieval algorithm service. See ReadME for more details: Install dependent components. Use Maven to install the online-Serving component Search for service configurations. Copy the template configuration file and replace the MongoDB, Milvus, and other configurations based on the development/production environment. Install and configure Consul. Consul allows you to synchronize the search service configuration in real-time, including cutting the flow of experiments, recall parameters, and sorting parameters. The project’s configuration file shows the current configuration parameters of text search and text search. The parameter modelName in the stage of pretreatment and recall is the corresponding model exported in offline processing. Start the service. Once the above configuration is complete, the retrieval service can be started from the entry script. Once the service is started, you can test it! For example, for a user with userId=10 who wants to query “How to renew ID card,” access the text search service. 1.2.3 User Entry Service Considering that the retrieval algorithm service is in the form of the API interface, it is difficult to locate and trace the problem, especially for the text search image scene can intuitively display the retrieval results to facilitate the iterative optimization of the retrieval algorithm. This paper provides a lightweight Web UI interface for text search and image search, a search input box, and results in a display page for users. Developed by Flask, the service can be easily integrated with other retrieval applications. The service calls the retrieval algorithm service and displays the returned results on the page. It’s also easy to install and start the service. Once you’re done, go to http://127.0.0.1:8090 to see if the search UI service is working correctly. See the ReadME at the end of this article for details. Multimodal system demonstration The multimodal retrieval service can be started when offline processing and online service environment configuration have been completed following the above instructions. Examples of textual searches are shown below. Enter the entry of the text search map application, enter “cat” first, and you can see that the first three digits of the returned result are cats: https://preview.redd.it/0n5nuyvhez291.png?width=1280&format=png&auto=webp&s=1e9c054f541d53381674b8d6001b4bf524506bd2 If you add a color constraint to “cat” to retrieve “black cat,” you can see that it does return a black cat: https://preview.redd.it/rzc0qjyjez291.png?width=1280&format=png&auto=webp&s=d5bcc503ef0fb3360c7740e60e295cf372dcad47 Further, strengthen the constraint on the search term, change it to “black cat on the bed,” and return results containing pictures of a black cat climbing on the bed: &#x200B; https://preview.redd.it/c4b2q8olez291.png?width=1280&format=png&auto=webp&s=4f3817b0b9f07e1e68d1d4a8281702ba3834a00a The cat can still be found through the text search system after the color and scene modification in the above example. Conclusion The cutting-edge pre-training technology can bridge the semantic gap between different modes, and the HuggingFace community can greatly reduce the cost for developers to use the pre-training model. Combined with the technological ecology of MetaSpore online reasoning and online microservices provided by DMetaSpore, the pre-training model is no longer mere offline dabbling. Instead, it can truly achieve end-to-end implementation from cutting-edge technology to industrial scenarios, fully releasing the dividends of the pre-training large model. In the future, DMetaSoul will continue to improve and optimize the MetaSpore technology ecosystem: More automated and wider access to HuggingFace community ecology. MetaSpore will soon release a common model rollout mechanism to make HuggingFace ecologically accessible and will later integrate preprocessing services into online services. Multi-mode retrieval offline algorithm optimization. For multimodal retrieval scenarios, MetaSpore will continuously iteratively optimize offline algorithm components, including text recall/sort model, graphic recall/sort model, etc., to improve the accuracy and efficiency of the retrieval algorithm. For related code and reference documentation in this article, please visit: https://github.com/meta-soul/MetaSpore/tree/main/demo/multimodal/online Some images source: https://github.com/openai/CLIP/raw/main/CLIP.png https://www.sbert.net/examples/training/sts/README.html

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

[N] Inside DeepMind's secret plot to break away from Google
reddit
LLM Vibe Score0
Human Vibe Score0
MassivePellfishThis week

[N] Inside DeepMind's secret plot to break away from Google

Article https://www.businessinsider.com/deepmind-secret-plot-break-away-from-google-project-watermelon-mario-2021-9 by Hugh Langley and Martin Coulter For a while, some DeepMind employees referred to it as "Watermelon." Later, executives called it "Mario." Both code names meant the same thing: a secret plan to break away from parent company Google. DeepMind feared Google might one day misuse its technology, and executives worked to distance the artificial-intelligence firm from its owner for years, said nine current and former employees who were directly familiar with the plans. This included plans to pursue an independent legal status that would distance the group's work from Google, said the people, who asked not to be identified discussing private matters. One core tension at DeepMind was that it sold the business to people it didn't trust, said one former employee. "Everything that happened since that point has been about them questioning that decision," the person added. Efforts to separate DeepMind from Google ended in April without a deal, The Wall Street Journal reported. The yearslong negotiations, along with recent shake-ups within Google's AI division, raise questions over whether the search giant can maintain control over a technology so crucial to its future. "DeepMind's close partnership with Google and Alphabet since the acquisition has been extraordinarily successful — with their support, we've delivered research breakthroughs that transformed the AI field and are now unlocking some of the biggest questions in science," a DeepMind spokesperson said in a statement. "Over the years, of course we've discussed and explored different structures within the Alphabet group to find the optimal way to support our long-term research mission. We could not be prouder to be delivering on this incredible mission, while continuing to have both operational autonomy and Alphabet's full support." When Google acquired DeepMind in 2014, the deal was seen as a win-win. Google got a leading AI research organization, and DeepMind, in London, won financial backing for its quest to build AI that can learn different tasks the way humans do, known as artificial general intelligence. But tensions soon emerged. Some employees described a cultural conflict between researchers who saw themselves firstly as academics and the sometimes bloated bureaucracy of Google's colossal business. Others said staff were immediately apprehensive about putting DeepMind's work under the control of a tech giant. For a while, some employees were encouraged to communicate using encrypted messaging apps over the fear of Google spying on their work. At one point, DeepMind's executives discovered that work published by Google's internal AI research group resembled some of DeepMind's codebase without citation, one person familiar with the situation said. "That pissed off Demis," the person added, referring to Demis Hassabis, DeepMind's CEO. "That was one reason DeepMind started to get more protective of their code." After Google restructured as Alphabet in 2015 to give riskier projects more freedom, DeepMind's leadership started to pursue a new status as a separate division under Alphabet, with its own profit and loss statement, The Information reported. DeepMind already enjoyed a high level of operational independence inside Alphabet, but the group wanted legal autonomy too. And it worried about the misuse of its technology, particularly if DeepMind were to ever achieve AGI. Internally, people started referring to the plan to gain more autonomy as "Watermelon," two former employees said. The project was later formally named "Mario" among DeepMind's leadership, these people said. "Their perspective is that their technology would be too powerful to be held by a private company, so it needs to be housed in some other legal entity detached from shareholder interest," one former employee who was close to the Alphabet negotiations said. "They framed it as 'this is better for society.'" In 2017, at a company retreat at the Macdonald Aviemore Resort in Scotland, DeepMind's leadership disclosed to employees its plan to separate from Google, two people who were present said. At the time, leadership said internally that the company planned to become a "global interest company," three people familiar with the matter said. The title, not an official legal status, was meant to reflect the worldwide ramifications DeepMind believed its technology would have. Later, in negotiations with Google, DeepMind pursued a status as a company limited by guarantee, a corporate structure without shareholders that is sometimes used by nonprofits. The agreement was that Alphabet would continue to bankroll the firm and would get an exclusive license to its technology, two people involved in the discussions said. There was a condition: Alphabet could not cross certain ethical redlines, such as using DeepMind technology for military weapons or surveillance. In 2019, DeepMind registered a new company called DeepMind Labs Limited, as well as a new holding company, filings with the UK's Companies House showed. This was done in anticipation of a separation from Google, two former employees involved in those registrations said. Negotiations with Google went through peaks and valleys over the years but gained new momentum in 2020, one person said. A senior team inside DeepMind started to hold meetings with outside lawyers and Google to hash out details of what this theoretical new formation might mean for the two companies' relationship, including specifics such as whether they would share a codebase, internal performance metrics, and software expenses, two people said. From the start, DeepMind was thinking about potential ethical dilemmas from its deal with Google. Before the 2014 acquisition closed, both companies signed an "Ethics and Safety Review Agreement" that would prevent Google from taking control of DeepMind's technology, The Economist reported in 2019. Part of the agreement included the creation of an ethics board that would supervise the research. Despite years of internal discussions about who should sit on this board, and vague promises to the press, this group "never existed, never convened, and never solved any ethics issues," one former employee close to those discussions said. A DeepMind spokesperson declined to comment. DeepMind did pursue a different idea: an independent review board to convene if it were to separate from Google, three people familiar with the plans said. The board would be made up of Google and DeepMind executives, as well as third parties. Former US president Barack Obama was someone DeepMind wanted to approach for this board, said one person who saw a shortlist of candidates. DeepMind also created an ethical charter that included bans on using its technology for military weapons or surveillance, as well as a rule that its technology should be used for ways that benefit society. In 2017, DeepMind started a unit focused on AI ethics research composed of employees and external research fellows. Its stated goal was to "pave the way for truly beneficial and responsible AI." A few months later, a controversial contract between Google and the Pentagon was disclosed, causing an internal uproar in which employees accused Google of getting into "the business of war." Google's Pentagon contract, known as Project Maven, "set alarm bells ringing" inside DeepMind, a former employee said. Afterward, Google published a set of principles to govern its work in AI, guidelines that were similar to the ethical charter that DeepMind had already set out internally, rankling some of DeepMind's senior leadership, two former employees said. In April, Hassabis told employees in an all-hands meeting that negotiations to separate from Google had ended. DeepMind would maintain its existing status inside Alphabet. DeepMind's future work would be overseen by Google's Advanced Technology Review Council, which includes two DeepMind executives, Google's AI chief Jeff Dean, and the legal SVP Kent Walker. But the group's yearslong battle to achieve more independence raises questions about its future within Google. Google's commitment to AI research has also come under question, after the company forced out two of its most senior AI ethics researchers. That led to an industry backlash and sowed doubt over whether it could allow truly independent research. Ali Alkhatib, a fellow at the Center for Applied Data Ethics, told Insider that more public accountability was "desperately needed" to regulate the pursuit of AI by large tech companies. For Google, its investment in DeepMind may be starting to pay off. Late last year, DeepMind announced a breakthrough to help scientists better understand the behavior of microscopic proteins, which has the potential to revolutionize drug discovery. As for DeepMind, Hassabis is holding on to the belief that AI technology should not be controlled by a single corporation. Speaking at Tortoise's Responsible AI Forum in June, he proposed a "world institute" of AI. Such a body might sit under the jurisdiction of the United Nations, Hassabis theorized, and could be filled with top researchers in the field. "It's much stronger if you lead by example," he told the audience, "and I hope DeepMind can be part of that role-modeling for the industry."

[D] How Facebook got addicted to spreading misinformation
reddit
LLM Vibe Score0
Human Vibe Score0
proof_requiredThis week

[D] How Facebook got addicted to spreading misinformation

Behind paywall: With new machine-learning models coming online daily, the company created a new system to track their impact and maximize user engagement. The process is still the same today. Teams train up a new machine-learning model on FBLearner, whether to change the ranking order of posts or to better catch content that violates Facebook’s community standards (its rules on what is and isn’t allowed on the platform). Then they test the new model on a small subset of Facebook’s users to measure how it changes engagement metrics, such as the number of likes, comments, and shares, says Krishna Gade, who served as the engineering manager for news feed from 2016 to 2018. If a model reduces engagement too much, it’s discarded. Otherwise, it’s deployed and continually monitored. On Twitter, Gade explained that his engineers would get notifications every few days when metrics such as likes or comments were down. Then they’d decipher what had caused the problem and whether any models needed retraining. But this approach soon caused issues. The models that maximize engagement also favor controversy, misinformation, and extremism: put simply, people just like outrageous stuff. Sometimes this inflames existing political tensions. The most devastating example to date is the case of Myanmar, where viral fake news and hate speech about the Rohingya Muslim minority escalated the country’s religious conflict into a full-blown genocide. Facebook admitted in 2018, after years of downplaying its role, that it had not done enough “to help prevent our platform from being used to foment division and incite offline violence.” While Facebook may have been oblivious to these consequences in the beginning, it was studying them by 2016. In an internal presentation from that year, reviewed by the Wall Street Journal, a company researcher, Monica Lee, found that Facebook was not only hosting a large number of extremist groups but also promoting them to its users: “64% of all extremist group joins are due to our recommendation tools,” the presentation said, predominantly thanks to the models behind the “Groups You Should Join” and “Discover” features. https://www.technologyreview.com/2021/03/11/1020600/facebook-responsible-ai-misinformation/

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call
reddit
LLM Vibe Score0
Human Vibe Score1
noiseinvacuumThis week

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call

During the recent earnings call, Mark Zuckerberg answered a question from Eric Sheridan of Goldman Sachs on Meta's AI strategy, opportunities to integrate into products, and why they open source models and how it would benefit their business. I found the reasoning to be very sound and promising for the OSS and AI community. The biggest risk from AI, in my opinion, is not the doomsday scenarios that intuitively come to mind but rather that the most powerful AI systems will only be accessible to the most powerful and resourceful corporations. Quote copied from Ben Thompson's write up on Meta's earning in his Stratechery blog post which goes beyond AI. It's behind a paywall but I highly recommend it personally. Some noteworthy quotes that signal the thought process at Meta FAIR and more broadly We’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon We would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that. ...lead us to do more work in terms of open sourcing, some of the lower level models and tools Open sourcing low level tools make the way we run all this infrastructure more efficient over time. On PyTorch: It’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. I would expect us to be pushing and helping to build out an open ecosystem. For all the negative that comes out of the popular discourse on Meta, I think their work to open source key tech tools over the last 10 years has been exceptional, here's hoping it continues into this decade of AI and pushes other tech giants to also realize the benefits of Open Source. Full Transcript: Right now most of the companies that are training large language models have business models that lead them to a closed approach to development. I think there’s an important opportunity to help create an open ecosystem. If we can help be a part of this, then much of the industry will standardize on using these open tools and help improve them further. So this will make it easier for other companies to integrate with our products and platforms as we enable more integrations, and that will help our products stay at the leading edge as well. Our approach to AI and our infrastructure has always been fairly open. We open source many of our state of the art models so people can experiment and build with them. This quarter we released our LLaMa LLM to researchers. It has 65 billion parameters but outperforms larger models and has proven quite popular. We’ve also open-sourced three other groundbreaking visual models along with their training data and model weights — Segment Anything, DinoV2, and our Animated Drawings tool — and we’ve gotten positive feedback on all of those as well. I think that there’s an important distinction between the products we offer and a lot of the technical infrastructure, especially the software that we write to support that. And historically, whether it’s the Open Compute project that we’ve done or just open sourcing a lot of the infrastructure that we’ve built, we’ve historically open sourced a lot of that infrastructure, even though we haven’t open sourced the code for our core products or anything like that. And the reason why I think why we do this is that unlike some of the other companies in the space, we’re not selling a cloud computing service where we try to keep the different software infrastructure that we’re building proprietary. For us, it’s way better if the industry standardizes on the basic tools that we’re using and therefore we can benefit from the improvements that others make and others’ use of those tools can, in some cases like Open Compute, drive down the costs of those things which make our business more efficient too. So I think to some degree we’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon, and that creates different incentives for us. So overall, I think that that’s going to lead us to do more work in terms of open sourcing, some of the lower level models and tools. But of course, a lot of the product work itself is going to be specific and integrated with the things that we do. So it’s not that everything we do is going to be open. Obviously, a bunch of this needs to be developed in a way that creates unique value for our products, but I think in terms of the basic models, I would expect us to be pushing and helping to build out an open ecosystem here, which I think is something that’s going to be important. On the AI tools, and we have a bunch of history here, right? So if you if you look at what we’ve done with PyTorch, for example, which has generally become the standard in the industry as a tool that a lot of folks who are building AI models and different things in that space use, it’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. So the tool chain is the same. So when they create some innovation, we can easily integrate it into the things that we’re doing. When we improve something, it improves other products too. Because it’s integrated with our technology stack, when there are opportunities to make integrations with products, it’s much easier to make sure that developers and other folks are compatible with the things that we need in the way that our systems work. So there are a lot of advantages, but I view this more as a kind of back end infrastructure advantage with potential integrations on the product side, but one that should hopefully enable us to stay at the leading edge and integrate more broadly with the community and also make the way we run all this infrastructure more efficient over time. There are a number of models. I just gave PyTorch as an example. Open Compute is another model that has worked really well for us in this way, both to incorporate both innovation and scale efficiency into our own infrastructure. So I think that there’s, our incentives I think are basically aligned towards moving in this direction. Now that said, there’s a lot to figure out, right? So when you asked if there are going to be other opportunities, I hope so. I can’t speak to what all those things might be now. This is all quite early in getting developed. The better we do at the foundational work, the more opportunities I think that will come and present themselves. So I think that that’s all stuff that we need to figure out. But at least at the base level, I think we’re generally incentivized to move in this direction. And we also need to figure out how to go in that direction over time. I mean, I mentioned LLaMA before and I also want to be clear that while I’m talking about helping contribute to an open ecosystem, LLaMA is a model that we only really made available to researchers and there’s a lot of really good stuff that’s happening there. But a lot of the work that we’re doing, I think, we would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that.

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.
reddit
LLM Vibe Score0
Human Vibe Score0.6
AlexSnakeKingThis week

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.

TD;LR: At Company A, Team X does advanced analytics using on-prem ERP tools and older programming languages. Their tools work very well and are designed based on very deep business and domain expertise. Team Y is a new and ambitious Data Science team that thinks they can replace Team X's tools with a bunch of R scripts and a custom built ML platform. Their models are simplistic, but more "fashionable" compared to the econometric models used by Team X, and team Y benefits from the ML/DS moniker so leadership is allowing Team Y to start a large scale overhaul of the analytics platform in question. Team Y doesn't have the experience for such a larger scale transformation, and is refusing to collaborate with team X. This project is very likely going to fail, and cause serious harm to the company as a whole financially and from a people perspective. I argue that this is not just because of bad leadership, but also because of various trends and mindsets in the DS community at large. Update (Jump to below the line for the original story): Several people in the comments are pointing out that this just a management failure, not something due to ML/DS, and that you can replace DS with any buzz tech and the story will still be relevant. My response: Of course, any failure at an organization level is ultimately a management failure one way or the other. Moreover, it is also the case that ML/DS when done correctly, will always improve a company's bottom line. There is no scenario where the proper ML solution, delivered at a reasonable cost and in a timely fashion, will somehow hurt the company's bottom line. My point is that in this case management is failing because of certain trends and practices that are specific to the ML/DS community, namely: The idea that DS teams should operate independently of tech and business orgs -- too much autonomy for DS teams The disregard for domain knowledge that seems prevalent nowadays thanks to the ML hype, that DS can be generalists and someone with good enough ML chops can solve any business problem. That wasn't the case when I first left academia for the industry in 2009 (back then nobody would even bother with a phone screen if you didn't have the right domain knowledge). Over reliance on resources who check all the ML hype related boxes (knows Python, R, Tensorflow, Shiny, etc..., has the right Coursera certifications, has blogged on the topic, etc...), but are lacking in depth of experience. DS interviews nowadays all seem to be: Can you tell me what a p-value is? What is elastic net regression? Show me how to fit a model in sklearn? How do you impute NAs in an R dataframe? Any smart person can look those up on Stackoverflow or Cross-Validated,.....Instead teams should be asking stuff like: why does portfolio optimization use QP not LP? How does a forecast influence a customer service level? When should a recommendation engine be content based and when should it use collaborative filtering? etc... (This is a true story, happening to the company I currently work for. Names, domains, algorithms, and roles have been shuffled around to protect my anonymity)  Company A has been around for several decades. It is not the biggest name in its domain, but it is a well respected one. Risk analysis and portfolio optimization have been a core of Company A's business since the 90s. They have a large team of 30 or so analysts who perform those tasks on a daily basis. These analysts use ERP solutions implemented for them by one the big ERP companies (SAP, Teradata, Oracle, JD Edwards,...) or one of the major tech consulting companies (Deloitte, Accenture, PWC, Capgemini, etc...) in collaboration with their own in house engineering team. The tools used are embarrassingly old school: Classic RDBMS running on on-prem servers or maybe even on mainframes, code written in COBOL, Fortran, weird proprietary stuff like ABAP or SPSS.....you get the picture. But the models and analytic functions were pretty sophisticated, and surprisingly cutting edge compared to the published academic literature. Most of all, they fit well with the company's enterprise ecosystem, and were honed based on years of deep domain knowledge.  They have a tech team of several engineers (poached from the aforementioned software and consulting companies) and product managers (who came from the experienced pools of analysts and managers who use the software, or poached from business rivals) maintaining and running this software. Their technology might be old school, but collectively, they know the domain and the company's overall architecture very, very well. They've guided the company through several large scale upgrades and migrations and they have a track record of delivering on time, without too much overhead. The few times they've stumbled, they knew how to pick themselves up very quickly. In fact within their industry niche, they have a reputation for their expertise, and have very good relations with the various vendors they've had to deal with. They were the launching pad of several successful ERP consulting careers.  Interestingly, despite dealing on a daily basis with statistical modeling and optimization algorithms, none of the analysts, engineers, or product managers involved describe themselves as data scientists or machine learning experts. It is mostly a cultural thing: Their expertise predates the Data Science/ML hype that started circa 2010, and they got most of their chops using proprietary enterprise tools instead of the open source tools popular nowadays. A few of them have formal statistical training, but most of them came from engineering or domain backgrounds and learned stats on the fly while doing their job. Call this team "Team X".  Sometime around the mid 2010s, Company A started having some serious anxiety issues: Although still doing very well for a company its size, overall economic and demographic trends were shrinking its customer base, and a couple of so called disruptors came up with a new app and business model that started seriously eating into their revenue. A suitable reaction to appease shareholders and Wall Street was necessary. The company already had a decent website and a pretty snazzy app, what more could be done? Leadership decided that it was high time that AI and ML become a core part of the company's business. An ambitious Manager, with no science or engineering background, but who had very briefly toyed with a recommender system a couple of years back, was chosen to build a data science team, call it team "Y" (he had a bachelor's in history from the local state college and worked for several years in the company's marketing org). Team "Y" consists mostly of internal hires who decided they wanted to be data scientists and completed a Coursera certification or a Galvanize boot camp, before being brought on to the team, along with a few of fresh Ph.D or M.Sc holders who didn't like academia and wanted to try their hand at an industry role. All of them were very bright people, they could write great Medium blog posts and give inspiring TED talks, but collectively they had very little real world industry experience. As is the fashion nowadays, this group was made part of a data science org that reported directly to the CEO and Board, bypassing the CIO and any tech or business VPs, since Company A wanted to claim the monikers "data driven" and "AI powered" in their upcoming shareholder meetings. In 3 or 4 years of existence, team Y produced a few Python and R scripts. Their architectural experience  consisted almost entirely in connecting Flask to S3 buckets or Redshift tables, with a couple of the more resourceful ones learning how to plug their models into Tableau or how to spin up a Kuberneties pod.  But they needn't worry: The aforementioned manager, who was now a director (and was also doing an online Masters to make up for his qualifications gap and bolster his chances of becoming VP soon - at least he now understands what L1 regularization is), was a master at playing corporate politics and self-promotion. No matter how few actionable insights team Y produced or how little code they deployed to production, he always had their back and made sure they had ample funding. In fact he now had grandiose plans for setting up an all-purpose machine learning platform that can be used to solve all of the company's data problems.  A couple of sharp minded members of team Y, upon googling their industry name along with the word "data science", realized that risk analysis was a prime candidate for being solved with Bayesian models, and there was already a nifty R package for doing just that, whose tutorial they went through on R-Bloggers.com. One of them had even submitted a Bayesian classifier Kernel for a competition on Kaggle (he was 203rd on the leaderboard), and was eager to put his new-found expertise to use on a real world problem. They pitched the idea to their director, who saw a perfect use case for his upcoming ML platform. They started work on it immediately, without bothering to check whether anybody at Company A was already doing risk analysis. Since their org was independent, they didn't really need to check with anybody else before they got funding for their initiative. Although it was basically a Naive Bayes classifier, the term ML was added to the project tile, to impress the board.  As they progressed with their work however, tensions started to build. They had asked the data warehousing and CA analytics teams to build pipelines for them, and word eventually got out to team X about their project. Team X was initially thrilled: They offered to collaborate whole heartedly, and would have loved to add an ML based feather to their already impressive cap. The product owners and analysts were totally onboard as well: They saw a chance to get in on the whole Data Science hype that they kept hearing about. But through some weird mix of arrogance and insecurity, team Y refused to collaborate with them or share any of their long term goals with them, even as they went to other parts of the company giving brown bag presentations and tutorials on the new model they created.  Team X got resentful: from what they saw of team Y's model, their approach was hopelessly naive and had little chances of scaling or being sustainable in production, and they knew exactly how to help with that. Deploying the model to production would have taken them a few days, given how comfortable they were with DevOps and continuous delivery (team Y had taken several months to figure out how to deploy a simple R script to production). And despite how old school their own tech was, team X were crafty enough to be able to plug it in to their existing architecture. Moreover, the output of the model was such that it didn't take into account how the business will consume it or how it was going to be fed to downstream systems, and the product owners could have gone a long way in making the model more amenable to adoption by the business stakeholders. But team Y wouldn't listen, and their leads brushed off any attempts at communication, let alone collaboration. The vibe that team Y was giving off was "We are the cutting edge ML team, you guys are the legacy server grunts. We don't need your opinion.", and they seemed to have a complete disregard for domain knowledge, or worse, they thought that all that domain knowledge consisted of was being able to grasp the definitions of a few business metrics.  Team X got frustrated and tried to express their concerns to leadership. But despite owning a vital link in Company A's business process, they were only \~50 people in a large 1000 strong technology and operations org, and they were several layers removed from the C-suite, so it was impossible for them to get their voices heard.  Meanwhile, the unstoppable director was doing what he did best: Playing corporate politics. Despite how little his team had actually delivered, he had convinced the board that all analysis and optimization tasks should now be migrated to his yet to be delivered ML platform. Since most leaders now knew that there was overlap between team Y and team X's objectives, his pitch was no longer that team Y was going to create a new insight, but that they were going to replace (or modernize) the legacy statistics based on-prem tools with more accurate cloud based ML tools. Never mind that there was no support in the academic literature for the idea that Naive Bayes works better than the Econometric approaches used by team X, let alone the additional wacky idea that Bayesian Optimization would definitely outperform the QP solvers that were running in production.  Unbeknownst to team X, the original Bayesian risk analysis project has now grown into a multimillion dollar major overhaul initiative, which included the eventual replacement of all of the tools and functions supported by team X along with the necessary migration to the cloud. The CIO and a couple of business VPs are on now board, and tech leadership is treating it as a done deal. An outside vendor, a startup who nobody had heard of, was contracted to help build the platform, since team Y has no engineering skills. The choice was deliberate, as calling on any of the established consulting or software companies would have eventually led leadership to the conclusion that team X was better suited for a transformation on this scale than team Y.  Team Y has no experience with any major ERP deployments, and no domain knowledge, yet they are being tasked with fundamentally changing the business process that is at the core of Company A's business. Their models actually perform worse than those deployed by team X, and their architecture is hopelessly simplistic, compared to what is necessary for running such a solution in production.  Ironically, using Bayesian thinking and based on all the evidence, the likelihood that team Y succeeds is close to 0%. At best, the project is going to end up being a write off of 50 million dollars or more. Once the !@#$!@hits the fan, a couple of executive heads are going to role, and dozens of people will get laid off. At worst, given how vital risk analysis and portfolio optimization is to Company A's revenue stream, the failure will eventually sink the whole company. It probably won't go bankrupt, but it will lose a significant portion of its business and work force. Failed ERP implementations can and do sink large companies: Just see what happened to National Grid US, SuperValu or Target Canada.  One might argue that this is more about corporate disfunction and bad leadership than about data science and AI. But I disagree. I think the core driver of this debacle is indeed the blind faith in Data Scientists, ML models and the promise of AI, and the overall culture of hype and self promotion that is very common among the ML crowd.  We haven't seen the end of this story: I sincerely hope that this ends well for the sake of my colleagues and all involved. Company A is a good company, and both its customers and its employees deserver better. But the chances of that happening are negligible given all the information available, and this failure will hit my company hard.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

How I Reduced 🔽Product Development time by 50% & increased 🔼Revenue multi-folds by incorporating No-Code, Low Code & AI tools in our software development workflow
reddit
LLM Vibe Score0
Human Vibe Score1
nikhil_webfostersThis week

How I Reduced 🔽Product Development time by 50% & increased 🔼Revenue multi-folds by incorporating No-Code, Low Code & AI tools in our software development workflow

I run a web development agency, providing SaaS & bespoke Management systems development. Over the years we almost 🔽reduced the software development time by 50% ... ...and increased our revenue. Simultaneously clients are much happier as they get the product quicker. Here is how we achieved it: 1/ Using Low-Code: ➡️ Provide a visual way to software development. ➡️ I just need to build the logic using the interface, check the preview multiple times to refine features, and then download or push the code to GitHub. The benefits are obvious: ⚡ Much faster compared to writing codes 🔄 Iteration & improvements done quickly. 🚀 Idea to basic tiny MVP within few hours. 🧩 Non-developers can build the initial prototype ✅We use https://quickadminpanel.com/ to quickly build admin panel. It provides CRUD, Authentication, Authorisation, API, Model, View, and Controller in PHP Laravel frameworks. &#x200B; 2/ Using AI: Once adminpanel is ready, customers get to see something tangible from his idea. It also uncovers many unseen features, benefits, and roadblocks for us & customers. No-code tools already did a lot of work for us, now we improve the logic where required, build new interfaces, and do integrations. With chatGPT as a development companion, it makes the entire development and design superfast. by helping to build logic quickly, automate mundane tasks, and overcome any roadblocks. &#x200B; Some of our common use cases are: ➡️ Writing PRD ➡️ Brand Guidelines - Color pallet selection, Fonts, images, etc based on targetted niche. ➡️ Designing new component ➡️ Logic building & solving ➡️ Automated Recurring tasks ✅ We use a combination of chatGPT & Github Copilot for AI Assistance. &#x200B; 3/ Using No-Code: ➡️ Allows to quickly build without writing code. ➡️ Provides complete end-to-end solution (application hosting, database hosting, API integrations, etc) ➡️ Unlike Low-code it doesn't provide an option to download code. ✅ Once the MVP is done, we use FormNX to quickly build various types of forms required, like contact forms, Survey forms, initial waiting list forms, Churn Survey forms, Webinar registration & much more. With this customers can build/change forms, embed them in cms, or share them on social media without relying on developers. \\\\\* Doing these 3 has truly helped our agency, leading to substantial time savings, revenue growth, and improved client satisfaction. If you’re an agency owner, i highly recommend doing it to supercharge your agency's growth. If any questions feel free to comment below, happy to help.

If only someone told me this before my first startup
reddit
LLM Vibe Score0
Human Vibe Score0.625
johnrushxThis week

If only someone told me this before my first startup

If only someone told me this before my first startup: Validate idea first. I wasted a decade building stuff nobody needed. Incubators and VCs served to me as a validation, but I was so wrong. Kill my EGO. It’s not about me, but the user. I must want what the user wants, not what I want. My taste isn't important. The user has expectations, and I must fulfill them. Don’t chaise investors. Chase users, and then investors will be chasing me. I've never had more incoming interest from VC than now when I'm the least interested in them. Never hire managers. Only hire doers until PMF. So many people know how to manage people and so few can actually get sh\*t done barehand. Landing page is the least important thing in a startup. Pick a simple template, edit texts with a no-code website builder in less than an hour and that's it! At the early stage, I win traffic outside of my website, people are already interested, so don't make them search for the signup button among the texts! Focus on conversion optimization only when the traffic is consistent. Keep it to one page. Nobody gonna browse this website. Hire only fullstack devs. There is nothing less productive in this world than a team of developers for an early-stage product. One full stack dev building the whole product. That’s it. Chase global market from day 1. If the product and marketing are good, it will work on the global market too, if it’s bad, it won’t work on the local market too. So better go global from day 1, so that if it works, the upside is 100x bigger. I launched all startups for the Norwegian market, hoping we will scale to international at some point. I wish I launched to international from day 1 as I do now. The size of the market is 10000x bigger. I can validate and grow products in days, not in years as it used to be. Do SEO from day 2. As early as I can. I ignored this for 14 years. It’s my biggest regret. It takes just 5 minutes to get it done on my landing page. I go to Google Keyword Planner, enter a few keywords around my product, sort them by traffic, filter out high competition kws, pick the top 10, and place them natively on my home page and meta tags. Add one blog article every week. Either manually or by paying for an AI blogging tool. Sell features, before building them. Ask existing users if they want this feature. I run DMs with 10-20 users every day, where I chat about all my ideas and features I wanna add. I clearly see what resonates with me most and only go build those. If I don't have followers, try HN, Reddit, or just search on X for posts and ask it in the replies. People are helpful, they will reply if the question is easy to understand. Hire only people I would wanna hug. My cofounder, an old Danish man said this to me in 2015. And it was a big shift. I realized that if I don’t wanna hug the person, it means I dislike them on a chemical/animal level. Even if I can’t say why, but that’s the fact. Sooner or later, we would have a conflict and eventually break up. It takes up to 10 years to build a startup, make sure I do it with people I have this connection with. Invest all money into my startups and friends. Not crypt0, not stockmarket, not properties. I did some math, if I kept investing all my money into all my friends’ startups, that would be about 70 investments. 3 of them turned into unicorns eventually. Even 1 would have made the bank. Since 2022, I have invested all my money into my products, friends, and network. If I don't have friends who do startups, invest it in myself. Post on Twitter daily. I started posting here in March last year. It’s my primary source of new connections and growth. I could have started it earlier, I don't know why I didn't. Don’t work/partner with corporates. Corporations always seem like an amazing opportunity. They’re big and rich, they promise huge stuff, millions of users, etc. But every single time none of this happens. Because I talk to a regular employees there. They waste my time, destroy focus, shift priorities, and eventually bring in no users/money. Don’t get ever distracted by hype e.g. crypt0. I lost 1.5 years of my life this way. I met the worst people along the way. Fricks, scammers, thieves. Some of my close friends turned into thieves along the way, just because it was so common in that space. I wish this didn’t happen to me. I wish I was stronger and stayed on my mission. Don’t build consumer apps. Only b2b. Consumer apps are so hard, like a lottery. It’s just 0.00001% who make it big. The rest don’t. Even if I got many users, then there is a monetization challenge. I’ve spent 4 years in consumer apps and regret it. Don’t hold on bad project for too long, max 1 year. Some projects just don’t work. In most cases, it’s either the idea that’s so wrong that I can’t even pivot it or it’s a team that is good one by one but can’t make it as a team. Don’t drag this out for years. Tech conferences are a waste of time. They cost money, take energy, and time and I never really meet anyone there. Most people there are the “good” employees of corporations who were sent there as a perk for being loyal to the corporation. Very few fellow makers. Scrum is a Scam. For small teams and bootstrapped teams. If I had a team that had to be nagged every morning with questions as if they were children in kindergarten, then things would eventually fail. The only good stuff I managed to do happened with people who were grownups and could manage their stuff on their own. We would just do everything over chat as a sync on goals and plans. Outsource nothing at all until PMF. In a startup, almost everything needs to be done in a slightly different way, more creative, and more integrated into the vision. When outsourcing, the external members get no love and no case for the product. It’s just yet another assignment in their boring job. Instead of coming up with great ideas for my project they will be just focusing on ramping up their skills to get a promotion or a better job offer. Bootstrap. I spent way too much time raising money. I raised more than 10 times, preseed, seeded, and series A. But each time it was a 3-9 month project, meetings every week, and lots of destruction. I could afford to bootstrap, but I still went the VC-funded way, I don’t know why. To be honest, I didn’t know bootstrapping was a thing I could do or anyone does. It may take a decade. When I was 20, I was convinced it takes a few years to build and succeed with a startup. So I kept pushing my plans forward, to do it once I exited. Family, kids. I wish I married earlier. I wish I had kids earlier. No Free Tier. I'd launch a tool with a free tier, and it'd get sign-ups, but very few would convert. I'd treat free sign-ups as KPIs and run on it for years. I'd brag about signups and visitors. I'd even raise VC money with these stats. But eventually, I would fail to reach PMF. Because my main feedback would come from free users and the product turned into a perfect free product. Once I switched to "paid only" until I validated the product, things went really well. Free and paid users often need different products. Don't fall into this trap as I did. Being To Cheap. I always started by checking all competitors and setting the lowest price. I thought this would be one of the key advantages of my product. But no, I was wrong. The audience on $5 and $50 are totally different. $5: pain in the \*ss, never happy, never recommend me to a friend, leave in 4 months. $50: polite, give genuine feedback, happy, share with friends, become my big fan if I solve their request. I will fail. When I started my first startup. I thought if I did everything right, it would work out. But it turned out that almost every startup fails. I wish I knew that and I tried to fail faster, to get to the second iteration, then to the third, and keep going on, until I either find out nothing works or make it work. Use boilerplates. I wasted years of dev time and millions of VC money to pay for basic things. To build yet another sidebar, yet another dashboard, and payment integration... I had too much pride, I couldn't see myself taking someone else code as a basis for my product. I wanted it to be 100% mine, original, from scratch. Because my product seems special to me. Spend more time with Family & Friends. I missed the weddings of all my best friends and family. I was so busy. I thought if I didn't do it on time, the world would end. Looking back today, it was so wrong. I meet my friends and can't share those memories with them, which makes me very sad. I realized now, that spending 10% of my time with family and friends would practically make no negative impact on my startups. Build Products For Audiences I Love. I never thought of this. I'd often build products either for corporates, consumers, or for developers. It turns out I have no love for all 3. But I deeply love indie founders. Because they are risk-takers and partly kids in their hearts. Once I switched the focus to indie makers on my products, my level of joy increased by 100x for me. Ignore Badges and Awards I was chasing those awards just like everyone else. Going to ceremonies, signing up for events and stuff. I've won tons of awards, but none of those were eventually useful to my business. I better focused on my business and users. Write Every Single Day. When I was a kid, I loved writing stories. In school, they would give an assignment, and I'd often write a long story for it, however, the teacher would put an F on it. The reason was simple, I had an issue with the direction of the letters and the sequence of letters in the words. I still have it, it's just the Grammarly app helping me to correct these issues. So the teacher would fail my stories because almost every sentence had a spelling mistake that I couldn't even see. It made me think I'm made at writing. So I stopped, for 15 years. But I kept telling stories all these years. Recently I realized that in any group, the setup ends up turning into me telling stories to everyone. So I tried it all again, here on X 10 months ago. I love it, the process, the feedback from people. I write every day. I wish I had done it all these years. The End. \ this is an updated version of my post on the same topic from 2 months ago. I've edited some of the points and added 9 new ones.* \\ This is not advice, it's my self-reflection that might help you avoid same mistakes if you think those were mistakes

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

12 months from idea to product - bootstrapping my own mobile app from 0
reddit
LLM Vibe Score0
Human Vibe Score1
MaartinBlack1996This week

12 months from idea to product - bootstrapping my own mobile app from 0

Introduction It has taken 12 months to develop an app that uses a camera to seamlessly detect fridge ingredients and generate recipes—solving the everyday problem I faced while traveling: "What should I cook for dinner today?" Although the end product has evolved from the initial concept, the ingredient detection feature remains one of the key elements that makes this app truly unique. When I started Keto, the biggest challenge I faced was tracking carbs, typically done through barcode scanning or manual searches. While Swifto offers both of these options, we are proud to introduce a feature that allows you to extract net carb values from a single image with just one click. We’ve combined AI with a great user experience to ensure that anyone embarking on their Keto journey can track their progress with ease. My Experience The app is now at a stage where I can truly seek market validation. Yes, this journey took me around 12 months, starting with the idea, creating the website, and developing the app's UI/UX and backend. At this point, many people might wonder: "Did you validate your idea before? Why create such a complex app without first understanding if there's a market need?" While this approach is undoubtedly risky and may not pay off in the future, I had a strong belief that this product could only be validated when people experienced how it works and saw how seamless the UX is compared to other similar apps. Would I Do It Again? Probably not. While developing the mobile app, I learned a lot about how mobile apps are advertised on the Google Play Store and how challenging it is to break into niche markets. You can develop the best application out there, but if no one sees it, it will never reach the top searches, which is crucial for any app's organic reach. I'll need to devise very creative strategies to gain the attention of those who truly matter for this product's validation and then go from there. However, it seems this will require much more effort than I initially anticipated. I'm open to any questions/suggestions.

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience
reddit
LLM Vibe Score0
Human Vibe Score1
hopefully_usefulThis week

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience

I met my co-founder in late 2022 after an introduction from a mutual friend to talk about how to find contract Product Management roles. I was sporadically contracting at start-up at the time and he had just come out of another start-up that was wiped out by the pandemic. We hit it off, talking about ideas, sharing what other indie-hackers were doing, and given GPT-3’s prominence at the time, we started throwing around ideas about things we could build with it, if nothing else, just to learn. I should caveat, neither of us were AI experts when starting out, everything we learned has been through Twitter and blogs, my background is as an accountant, and his a consultant. Here’s how it went since then: &#x200B; Nov 2022 (+$50) \- We built a simple tool in around a week using GPT-3 fine-tuning and a no-code tool (Bubble) that helped UK university students write their personal statements for their applications \- We set some Google Ads going and managed to make a few sales (\~$50) in the first week \- OpenAI were still approving applications at the time and said this went against their “ethics” so we had to take it down &#x200B; Dec 2022 (+$200) \- We couldn’t stop coming up with ideas related to AI fine-tuning, but realised it was almost impossible to decide which to pursue \- We needed a deadline to force us so we signed up for the Ben’s Bites hackathon in late December \- In a week, we built and launched a no-code fine-tuning platform, allowing people to create fine-tuned models by dragging and dropping an Excel file onto it \- We launched it on Product Hunt, having no idea how to price it, and somehow managed to get \~2,000 visitors on the site and make 2 sales at $99 &#x200B; Jan 2023 (+$3,000) \- We doubled down on the fine-tuning idea and managed to get up to \~$300 MRR, plus a bunch of one-time sales and a few paid calls to help people get the most out of their models \- We quickly realised that people didn’t want to curate models themselves, they just wanted to dump data and get magic out \- That was when we saw people building “Talk with x book/podcast” on Twitter as side projects and realised that was the missing piece, we needed to turn it into a tool \- We started working on the new product in late January &#x200B; Feb 2023 (+$9,000) \- We started pre-selling access to an MVP for the new product, which allowed people to “chat with their data/content”, we got $5,000 in pre-sales, more than we made from the previous product in total \- By mid-February, after 3 weeks of building we were able to launch and immediately managed to get traction, getting to $1k MRR in < 1 week, building on the hype of ChatGPT and AI (we were very lucky here) &#x200B; Mar - Jul 2023 (+$98,000) \- We worked all the waking hours to keep up with customer demand, bugs, OpenAI issues \- We built integrations for a bunch of services like Slack, Teams, Wordpress etc, added tons of new functionality and continue talking to customers every day \- We managed to grow to $17k MRR (just about enough to cover our living expenses and costs in London) through building in public on Twitter, newsletters and AI directories (and a million other little things) \- We sold our fine-tuning platform for \~$20k and our university project for \~$3k on Acquire &#x200B; Aug 2023 (+$100,000) \- We did some custom development work based on our own product for a customer that proved pretty lucrative &#x200B; Sep - Oct 2023 (+$62,000) \- After 8 months of building constantly, we started digging more seriously into our usage and saw subscriptions plateauing \- We talked to and analysed all our paying users to identify the main use cases and found 75% were for SaaS customer support \- We took the leap to completely rebuild a version of our product around this use case, our biggest to date (especially given most features with no-code took us <1 day) &#x200B; Nov - Dec 2023 (+$53,000) \- We picked up some small custom development work that utilised our own tech \- We’re sitting at around $22k MRR now with a few bigger clients signed up and coming soon \- After 2 months of building and talking to users, we managed to finish our “v2” of our product, focussed squarely on SaaS customer support and launched it today. &#x200B; We have no idea what the response will be to this new version, but we’re pretty happy with it, but couldn’t have planned anything that happened to us in 2023 so who knows what will come of 2024, we just know that we are going to be learning a ton more. &#x200B; Overall, it is probably the most I have had to think in my life - other jobs you can zone out from time to time or rely on someone else if you aren’t feeling it - not when you are doing this, case and point, I am writing this with a banging head-cold right now, but wanted to get this done. A few more things we have learned along the way - context switching is unreal, as is keeping up with, learning and reacting to AI. There isn’t a moment of the day I am not thinking about what we do next. But while in some way we now have hundreds of bosses (our customers) I still haven’t felt this free and can’t imagine ever going back to work for someone else. Next year we’re really hoping to figure out some repeatable distribution channels and personally, I want to get a lot better at creating content/writing, this is a first step! Hope this helps someone else reading this to just try starting something and see what happens.

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security

Uzair Javaid, a Ph.D. with a passion for data privacy, co-founded Betterdata to tackle one of AI's most pressing challenges: protecting privacy while enabling innovation. Recently, Betterdata secured a lucrative contract with the US Department of Homeland Security, 1 of only 4 companies worldwide to do so and the only one in Asia. Here's how he did it: The Story So what's your story? I grew up in Peshawar, Pakistan, excelling in coding despite studying electrical engineering. Inspired by my professors, I set my sights on studying abroad and eventually earned a Ph.D. scholarship at NUS Singapore, specializing in data security and privacy. During my research, I ethically hacked Ethereum and published 15 papers—three times the requirement. While wrapping up my Ph.D., I explored startup ideas and joined Entrepreneur First, where I met Kevin Yee. With his expertise in generative models and mine in privacy, we founded Betterdata. Now, nearly three years in, we’ve secured a major contract with the U.S. Department of Homeland Security—one of only four companies globally and the only one from Asia. The Startup In a nutshell, what does your startup do? Betterdata is a startup that uses AI and synthetic data generation to address two major challenges: data privacy and the scarcity of high-quality data for training AI models. By leveraging generative models and privacy-enhancing technologies, Betterdata enables businesses, such as banks, to use customer data without breaching privacy regulations. The platform trains AI on real data, learns its patterns, and generates synthetic data that mimics the real thing without containing any personal or sensitive information. This allows companies to innovate and develop AI solutions safely and ethically, all while tackling the growing need for diverse, high-quality data in AI development. How did you conduct ideation and validation for your startup? The initial idea for Betterdata came from personal experience. During my Ph.D., I ethically hacked Ethereum’s blockchain, exposing flaws in encryption-based data sharing. This led me to explore AI-driven deep synthesis technology—similar to deepfakes but for structured data privacy. With GDPR impacting 28M+ businesses, I saw a massive opportunity to help enterprises securely share data while staying compliant. To validate the idea, I spoke to 50 potential customers—a number that strikes the right balance. Some say 100, but that’s impractical for early-stage founders. At 50, patterns emerge: if 3 out of 10 mention the same problem, and this repeats across 50, you have 10–15 strong signals, making it a solid foundation for an MVP. Instead of outbound sales, which I dislike, we used three key methods: Account-Based Marketing (ABM)—targeting technically savvy users with solutions for niche problems, like scaling synthetic data for banks. Targeted Content Marketing—regular customer conversations shaped our thought leadership and outreach. Raising Awareness Through Partnerships—collaborating with NUS, Singapore’s PDPC, and Plug and Play to build credibility and educate the market. These strategies attracted serious customers willing to pay, guiding Betterdata’s product development and market fit. How did you approach the initial building and ongoing product development? In the early stages, we built synthetic data generation algorithms and a basic UI for proof-of-concept, using open-source datasets to engage with banks. We quickly learned that banks wouldn't share actual customer data due to privacy concerns, so we had to conduct on-site installations and gather feedback to refine our MVP. Through continuous consultation with customers, we discovered real enterprise data posed challenges, such as missing values, which led us to adapt our prototype accordingly. This iterative approach of listening to customer feedback and observing their usage allowed us to improve our product, enhance UX, and address unmet needs while building trust and loyalty. Working closely with our customers also gives us a data advantage. Our solution’s effectiveness depends on customer data, which we can't fully access, but bridging this knowledge gap gives us a competitive edge. The more customers we test on, the more our algorithms adapt to diverse use cases, making it harder for competitors to replicate our insights. My approach to iteration is simple: focus solely on customer feedback and ignore external noise like trends or advice. The key question for the team is: which customer is asking for this feature or solution? As long as there's a clear answer, we move forward. External influences, such as AI hype, often bring more confusion than clarity. True long-term success comes from solving real customer problems, not chasing trends. Customers may not always know exactly what they want, but they understand their problems. Our job is to identify these problems and solve them in innovative ways. While customers may suggest specific features, we stay focused on solving the core issue rather than just fulfilling their exact requests. The idea aligns with the quote often attributed to Henry Ford: "If I asked people what they wanted, they would have said faster horses." The key is understanding their problems, not just taking requests at face value. How do you assess product-market fit? To assess product-market fit, we track two key metrics: Customers' Willingness to Pay: We measure both the quantity and quality of meetings with potential customers. A high number of meetings with key decision-makers signals genuine interest. At Betterdata, we focused on getting meetings with people in banks and large enterprises to gauge our product's resonance with the target market. How Much Customers Are Willing to Pay: We monitor the price customers are willing to pay, especially in the early stages. For us, large enterprises, like banks, were willing to pay a premium for our synthetic data platform due to the growing need for privacy tech. This feedback guided our product refinement and scaling strategy. By focusing on these metrics, we refined our product and positioned it for scaling. What is your business model? We employ a structured, phase-driven approach for out business model, as a B2B startup. I initially struggled with focusing on the core value proposition in sales, often becoming overly educational. Eventually, we developed a product roadmap with models that allowed us to match customer needs to specific offerings and justify our pricing. Our pricing structure includes project-based pilots and annual contracts for successful deployments. At Betterdata, our customer engagement unfolds across three phases: Phase 1: Trial and Benchmarking \- We start with outreach and use open-source datasets to showcase results, offering customers a trial period to evaluate the solution. Phase 2: Pilot or PoC \- After positive trial results, we conduct a PoC or pilot using the customer’s private data, with the understanding that successful pilots lead to an annual contract. Phase 3: Multi-Year Contracts \- Following a successful pilot, we transition to long-term commercial contracts, focusing on multi-year agreements to ensure stability and ongoing partnerships. How do you do marketing for your brand? We take a non-conventional approach to marketing, focusing on answering one key question: Which customers are willing to pay, and how much? This drives our messaging to show how our solution meets their needs. Our strategy centers around two main components: Building a network of lead magnets \- These are influential figures like senior advisors, thought leaders, and strategic partners. Engaging with institutions like IMDA, SUTD, and investors like Plug and Play helps us gain access to the right people and foster warm introductions, which shorten our sales cycle and ensure we’re reaching the right audience. Thought leadership \- We build our brand through customer traction, technology evidence, and regulatory guidelines. This helps us establish credibility in the market and position ourselves as trusted leaders in our field. This holistic approach has enabled us to navigate diverse market conditions in Asia and grow our B2B relationships. By focusing on these areas, we drive business growth and establish strong trust with stakeholders. What's your advice for fundraising? Here are my key takeaways for other founders when it comes to fundraising: Fundraise When You Don’t Need To We closed our seed round in April 2023, a time when we weren't actively raising. Founders should always be in fundraising mode, even when they're not immediately in need of capital. Don’t wait until you have only a few months of runway left. Keep the pipeline open and build relationships. When the timing is right, execution becomes much easier. For us, our investment came through a combination of referrals and inbound interest. Even our lead investor initially rejected us, but after re-engaging, things eventually fell into place. It’s crucial to stay humble, treat everyone with respect, and maintain those relationships for when the time is right. Be Mindful of How You Present Information When fundraising, how you present information matters a lot. We created a comprehensive, easily digestible investment memo, hosted on Notion, which included everything an investor might need—problem, solution, market, team, risks, opportunities, and data. The goal was for investors to be able to get the full picture within 30 minutes without chasing down extra details. We also focused on making our financial model clear and meaningful, even though a 5-year forecast might be overkill at the seed stage. The key was clarity and conciseness, and making it as easy as possible for investors to understand the opportunity. I learned that brevity and simplicity are often the best ways to make a memorable impact. For the pitch itself, keep it simple and focus on 4 things: problem, solution, team, and market. If you can summarize each of these clearly and concisely, you’ll have a compelling pitch. Later on, you can expand into market segments, traction, and other metrics, but for seed-stage, focus on those four areas, and make sure you’re strong in at least three of them. If you do, you'll have a compelling case. How do you run things day-to-day? i.e what's your operational workflow and team structure? Here's an overview of our team structure and process: Internally: Our team is divided into two main areas: backend (internal team) and frontend (market-facing team). There's no formal hierarchy within the backend team. We all operate as equals, defining our goals based on what needs to be developed, assigning tasks, and meeting weekly to share updates and review progress. The focus is on full ownership of tasks and accountability for getting things done. I also contribute to product development, identifying challenges and clearing obstacles to help the team move forward. Backend Team: We approach tasks based on the scope defined by customers, with no blame or hierarchy. It's like a sports team—sometimes someone excels, and other times they struggle, but we support each other and move forward together. Everyone has the creative freedom to work in the way that suits them best, but we establish regular meetings and check-ins to ensure alignment and progress. Frontend Team: For the market-facing side, we implement a hierarchy because the market expects this structure. If I present myself as "CEO," it signals authority and credibility. This distinction affects how we communicate with the market and how we build our brand. The frontend team is split into four main areas: Business Product (Software Engineering) Machine Learning Engineering R&D The C-suite sits at the top, followed by team leads, and then the executors. We distill market expectations into actionable tasks, ensuring that everyone is clear on their role and responsibilities. Process: We start by receiving market expectations and defining tasks based on them. Tasks are assigned to relevant teams, and execution happens with no communication barriers between team members. This ensures seamless collaboration and focused execution. The main goal is always effectiveness—getting things done efficiently while maintaining flexibility in how individuals approach their work. In both teams, there's an emphasis on accountability, collaboration, and clear communication, but the structure varies according to the nature of the work and external expectations.

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]
reddit
LLM Vibe Score0
Human Vibe Score1
jamesackerman1234This week

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]

Hello Everyone (VERY LONG CASE STUDY AHEAD) - 355% return in 9 months Note: I own a 7-figures USD valued portfolio of 41+ content sites that generates 5-6 figures USD a month in passive income. This is my first time posting in this sub and my goal is to NOT share generic advice but precise numbers, data and highly refined processes so you can also get started with this business yourself or if you already have an existing business, drive huge traffic to it and scale it substantially (get more customers). I will use a case study to explain the whole process. As most of us are entrepreneurs here, explaining an actual project would be more meaningful. In this case study I used AI assisted content to grow an existing site from $217/m to $2,836/m in 9 months (NO BACKLINKS) and sold it for $59,000. ROI of 3 months: 355% Previous case studies (before I give an overview of the model) Amazon Affiliate Content Site: $371/m to $19,263/m in 14 MONTHS - $900K CASE STUDY \[AMA\] Affiliate Website from $267/m to $21,853/m in 19 months (CASE STUDY - Amazon?) \[AMA\] Amazon Affiliate Website from $0 to $7,786/month in 11 months Amazon Affiliate Site from $118/m to $3,103/m in 8 MONTHS (SOLD it for $62,000+) Note: You can check pinned posts on my profile. Do go through the comments as well as a lot of questions are answered in those. However, if you still have any questions, feel free to reach out. This is an \[AMA\]. Quick Overview of the Model Approach: High traffic, niche specific, informative content websites that monetise its traffic through highly automated methods like display ads and affiliate. The same model can be applied to existing businesses to drive traffic and get customers. Main idea: Make passive income in a highly automated way Easy to understand analogy You have real estate (here you have digital asset like a website) You get rental income (here you get ads and affiliate income with no physical hassle, in case you have a business like service, product etc. then you can get customers for that too but if not, it's alright) Real estate has value (this digital asset also has value that can be appreciated with less effort) Real estate can be sold (this can be sold too but faster) IMPORTANT NOTE: Search traffic is the BEST way to reach HUGE target audience and it's important when it comes to scaling. This essentially means that you can either monetise that via affiliate, display etc. or if you have a business then you can reach a bigger audience to scale. Overview of this website's valuation (then and now: Oct. 2022 and June 2023) Oct 2022: $217/m Valuation: $5,750.5 (26.5x) - set it the same as the multiple it was sold for June 2023: $2,836/m Traffic and revenue trend: growing fast Last 3 months avg: $2,223 Valuation now: $59,000 (26.5x) Description: The domain was registered in 2016, it grew and then the project was left unattended. I decided to grow it again using properly planned AI assisted content. Backlink profile: 500+ Referring domains (Ahrefs). Backlinks mean the sites linking back to you. This is important when it comes to ranking. Summary of Results of This Website - Before and After Note: If the terms seem technical, do not worry. I will explain them in detail later. Still if you have any questions. Feel free to comment or reach out. |Metric|Oct 2022|June 2023|Difference|Comments| |:-|:-|:-|:-|:-| |Articles|314|804|\+490|AI Assisted content published in 3 months| |Traffic|9,394|31,972|\+22,578|Organic| |Revenue|$217|$2,836|\+$2,619|Multiple sources| |RPM (revenue/1000 web traffic)|23.09|$88.7|\+$65.61|Result of Conversion rate optimisation (CRO). You make changes to the site for better conversions| |EEAT (expertise, experience, authority and trust of website)|2 main authors|8 authors|6|Tables, video ads and 11 other fixations| |CRO|Nothing|Tables, video ads |Tables, video ads and 11 other fixations || &#x200B; Month by Month Growth |Month|Revenue|Steps| |:-|:-|:-| |Sept 2022|NA|Content Plan| |Oct 2022|$217|Content Production| |Nov 2022|$243|Content production + EEAT authors| |Dec 2022|$320|Content production + EEAT authors| |Jan 2023|$400|Monitoring| |Feb 2023|$223|Content production + EEAT authors| |Mar 2023|$2,128|CRO & Fixations| |April 2023|$1,609|CRO & Fixations| |May 2023|$2,223|Content production + EEAT authors| |June 2023|$2,836|CRO and Fixations| |Total|$10,199|| &#x200B; What will I share Content plan and Website structure Content Writing Content Uploading, formatting and onsite SEO Faster indexing Conversion rate optimisation Guest Posting EEAT (Experience, Expertise, Authority, Trust) Costing ROI The plans moving forward with these sites &#x200B; Website Structure and Content Plan This is probably the most important important part of the whole process. The team spends around a month just to get this right. It's like defining the direction of the project. Description: Complete blueprint of the site's structure in terms of organisation of categories, subcategories and sorting of articles in each one of them. It also includes the essential pages. The sorted articles target main keyword, relevant entities and similar keywords. This has to be highly data driven and we look at over 100 variables just to get it right. It's like beating Google's algorithm to ensure you have a blueprint for a site that will rank. It needs to be done right. If there is a mistake, then even if you do everything right - it's not going to work out and after 8-16 months you will realise that everything went to waste. Process For this project, we had a niche selected already so we didn't need to do a lot of research pertaining to that. We also knew the topic since the website was already getting good traffic on that. We just validated from Ahrefs, SEMRUSH and manual analysis if it would be worth it to move forward with that topic. &#x200B; Find entities related to the topic: We used Ahrefs and InLinks to get an idea about the related entities (topics) to create a proper topical relevance. In order to be certain and have a better idea, we used ChatGPT to find relevant entities as well \> Ahrefs (tool): Enter main keyword in keywords explorer. Check the left pain for popular topics \> Inlinks (tool): Enter the main keyword, check the entity maps \> ChatGPT (tool): Ask it to list down the most important and relevant entities in order of their priority Based on this info, you can map out the most relevant topics that are semantically associated to your main topic Sorting the entities in topics (categories) and subtopics (subcategories): Based on the information above, cluster them properly. The most relevant ones must be grouped together. Each group must be sorted into its relevant category. \> Example: Site about cycling. \> Categories/entities: bicycles, gear and equipment, techniques, safety, routes etc. \> The subcategories/subentities for let's say "techniques" would be: Bike handling, pedaling, drafting etc. Extract keywords for each subcategory/subentity: You can do this using Ahrefs or Semrush. Each keyword would be an article. Ensure that you target the similar keywords in one article. For example: how to ride a bicycle and how can I ride a bicycle will be targeted by one article. Make the more important keyword in terms of volume and difficulty as the main keyword and the other one(s) as secondary Define main focus vs secondary focus: Out of all these categories/entities - there will be one that you would want to dominate in every way. So, focus on just that in the start. This will be your main focus. Try to answer ALL the questions pertaining to that. You can extract the questions using Ahrefs. \> Ahrefs > keywords explorer \> enter keyword \> Questions \> Download the list and cluster the similar ones. This will populate your main focus category/entity and will drive most of the traffic. Now, you need to write in other categories/subentities as well. This is not just important, but crucial to complete the topical map loop. In simple words, if you do this Google sees you as a comprehensive source on the topic - otherwise, it ignores you and you don't get ranked Define the URLs End result: List of all the entities and sub-entities about the main site topic in the form of categories and subcategories respectively. A complete list of ALL the questions about the main focus and at around 10 questions for each one of the subcategories/subentities that are the secondary focus Content Writing So, now that there's a plan. Content needs to be produced. Pick out a keyword (which is going to be a question) and... Answer the question Write about 5 relevant entities Answer 10 relevant questions Write a conclusion Keep the format the same for all the articles. Content Uploading, formatting and onsite SEO Ensure the following is taken care of: H1 Permalink H2s H3s Lists Tables Meta description Socials description Featured image 2 images in text \\Schema Relevant YouTube video (if there is) Note: There are other pointers link internal linking in a semantically relevant way but this should be good to start with. Faster Indexing Indexing means Google has read your page. Ranking only after this step has been done. Otherwise, you can't rank if Google hasn't read the page. Naturally, this is a slow process. But, we expedite it in multiple ways. You can use RankMath to quickly index the content. Since, there are a lot of bulk pages you need a reliable method. Now, this method isn't perfect. But, it's better than most. Use Google Indexing API and developers tools to get indexed. Rank Math plugin is used. I don't want to bore you and write the process here. But, a simple Google search can help you set everything up. Additionally, whenever you post something - there will be an option to INDEX NOW. Just press that and it would be indexed quite fast. Conversion rate optimisation Once you get traffic, try adding tables right after the introduction of an article. These tables would feature a relevant product on Amazon. This step alone increased our earnings significantly. Even though the content is informational and NOT review. This still worked like a charm. Try checking out the top pages every single day in Google analytics and add the table to each one of them. Moreover, we used EZOIC video ads as well. That increased the RPM significantly as well. Both of these steps are highly recommended. Overall, we implemented over 11 fixations but these two contribute the most towards increasing the RPM so I would suggest you stick to these two in the start. Guest Posting We made additional income by selling links on the site as well. However, we were VERY careful about who we offered a backlink to. We didn't entertain any objectionable links. Moreover, we didn't actively reach out to anyone. We had a professional email clearly stated on the website and a particularly designated page for "editorial guidelines" A lot of people reached out to us because of that. As a matter of fact, the guy who bought the website is in the link selling business and plans to use the site primarily for selling links. According to him, he can easily make $4000+ from that alone. Just by replying to the prospects who reached out to us. We didn't allow a lot of people to be published on the site due to strict quality control. However, the new owner is willing to be lenient and cash it out. EEAT (Experience, Expertise, Authority, Trust) This is an important ranking factor. You need to prove on the site that your site has authors that are experienced, have expertise, authority and trust. A lot of people were reaching out to publish on our site and among them were a few established authors as well. We let them publish on our site for free, added them on our official team, connected their socials and shared them on all our socials. In return, we wanted them to write 3 articles each for us and share everything on all the social profiles. You can refer to the tables I shared above to check out the months it was implemented. We added a total of 6 writers (credible authors). Their articles were featured on the homepage and so were their profiles. Costing Well, we already had the site and the backlinks on it. Referring domains (backlinks) were already 500+. We just needed to focus on smart content and content. Here is the summary of the costs involved. Articles: 490 Avg word count per article: 1500 Total words: 735,000 (approximately) Cost per word: 2 cents (includes research, entities, production, quality assurance, uploading, formatting, adding images, featured image, alt texts, onsite SEO, publishing/scheduling etc.) Total: $14,700 ROI (Return on investment) Earning: Oct 22 - June 23 Earnings: $10,199 Sold for: $59,000 Total: $69,199 Expenses: Content: $14,700 Misc (hosting and others): $500 Total: $15,200 ROI over a 9 months period: 355.25% The plans moving forward This website was a part of a research and development experiment we did. With AI, we wanted to test new waters and transition more towards automation. Ideally, we want to use ChatGPT or some other API to produce these articles and bulk publish on the site. The costs with this approach are going to be much lower and the ROI is much more impressive. It's not the the 7-figures projects I created earlier (as you may have checked the older case studies on my profile), but it's highly scalable. We plan to refine this model even further, test more and automate everything completely to bring down our costs significantly. Once we have a model, we are going to scale it to 100s of sites. The process of my existing 7-figures websites portfolio was quite similar. I tested out a few sites, refined the model and scaled it to over 41 sites. Now, the fundamentals are the same however, we are using AI in a smarter way to do the same but at a lower cost, with a smaller team and much better returns. The best thing in my opinion is to run numerous experiments now. Our experimentation was slowed down a lot in the past since we couldn't write using AI but now it's much faster. The costs are 3-6 times lower so when it used to take $50-100k to start, grow and sell a site. Now you can pump 3-6 more sites for the same budget. This is a good news for existing business owners as well who want to grow their brand. Anyway, I am excited to see the results of more sites. In the meantime, if you have any questions - feel free to let me know. Best of luck for everything. Feel free to ask questions. I'd be happy to help. This is an AMA.

Thoughts on FasterCapital VC?
reddit
LLM Vibe Score0
Human Vibe Score1
Momof3rascalsThis week

Thoughts on FasterCapital VC?

TLDR: I pitched to FasterCapital and got an "offer". Trying to figure out if this is a legitimate opportunity or a waste of my time. I'm not familiar with VCs and hadn't considered actually getting an investor on board with my plan. I sent my pitch deck to FasterCapital, honestly not expecting a response. It was my first pitch deck and a complete long shot. I ended up getting a response, they asked me for clarification on a few things. Than I get this email about what they are offering here's the main part We specialize in warm introductions to angel investors, VCs, and HNWIs, ensuring you connect with the right investors through personalized recommendations—not ineffective mass email campaigns. Cold outreach, such as LinkedIn messages, rarely succeeds, as investors receive hundreds of such requests and disregard them. To raise money, you need a strong partner like ourselves who has a wide network and direct connection with those angel investors built throughout 10 years. You can see some of the reviews of the startups we have helped attached and reviews on independent sites. Based on our experience and the matching that we have done already on our own AI system and for raising $55M-$65M in 5 years, a suitable package in your case is $50k - $64k and the chances of raising money is %87 - %93, but you were accepted in the exceptional rising star offer, where you pay half of that amount as an advance which is $25k-$32k and the other half ONLY when we raise you the first $1M. Other startups in our standard offers pays double that amount. First, I don't understand all of it, except for the "where you pay half of that amount as an advance which is $25k-$32k" I am no where near being able to come close to that, mostly because if I had that much, I wouldn't apply to a VC. I responded and politely told her that was not something our company could financially do right now. Than this email Thanks for your kind reply. We are flexible on paying this amount into monthly installments. We offer money back guarantee if we didn't raise the capital in 6 months from signing. This is how much we are confident with our approach of warm introductions. Raising the first amount of money and getting the first investor onboard is the most challenging part. You need time to build trust and network of investors. You need to have a good partner to help you. Please note that the down payment is for raising at least $55M over five years as we are interested in long-term partnership to raise multiple rounds because we make money through the commission. Companies take only commission or success fee are doing cold introductions and mass emails and this approach has low chances of success when it comes to raising capital. It is about the chances of success. You can talk to these companies and ask them about their success rate. Mass emails campaign has zero chances of success.  We have helped more than 742 startups raise more than $2.2B. Our network includes 155,000 angel investors and more than 50K funding institutions (VCs, HNI, family offices..etc). We have been in this business for more than 10 years. We have more than 92% success rate in our program so far. So if you are familiar with VC, Is this an actual opportunity. I have a tendency to jump or dive head first into things. As much as I want to get excited because this would be the jumpstart to most of my goals and ambitions. I'm not familiar with VCs. I have bootstrapped all my ventures so far.

Follow Along as I Flip this Website - Case Study
reddit
LLM Vibe Score0
Human Vibe Score1
jshogren10This week

Follow Along as I Flip this Website - Case Study

I am starting a new case study where I will be documenting my attempt to flip a website that I just purchased from Flippa. However, unlike most case studies where people hide certain parts and details from the public I will instead be sharing everything. That means you will know the exact URL of the site that I purchased and I will share everything with you all as I progress.I know that case studies are lot more interesting and you can learn better when you can see real examples of what I am talking about. Enough of the chatting, let's jump straight into this new case study and I will explain what this is all about. Before you get into the case study I want to give you the option of reading this one my website where all of the images can be seen within the post and it is easier to read. I also want to say that I have nothing to sell you or anything close to it. So if you want to read it there you can do so here ##Introductory Video I have put together a video that talks about many of the things that I cover in this article. So if you would rather watch a video you can watch that here - https://www.youtube.com/watch?v=EE3SxtNnqts However, I go into more detail in the actual article FYI. Also, I plan on using Youtube very frequently in this case study so be on the lookout for new videos.There is going to be a video that will accompany every single case study post because I like having it being presented in two different mediums. ##The Website I Just Bought Around a week ago I made a new website purchase from Flippa and you can view the website's Flippa listing here - https://flippa.com/6439965-hvactraining101-com Screenshot of the Homepage - http://imgur.com/T6Iv1QN I paid $1,250 for the site and you will soon see that I got a really good deal. As you might be able to tell from the URL, this site is focused around training and education for becoming a HVAC technician. This is a lucrative niche to be in and Adsense pays very well. I do not have control of the site yet due to the transfer process not being completed. However, I am hoping within a few days everything will be finalized and I will take full control of the site. In the meantime, I figured it would be a good time to put together the introduction post for this new case study! ##Why I Bought this Website Now that you have a general idea of the website that I purchased, I now want to explain the reasoning behind the purchase. There are 3 major reasons for this purchase and I will explain each one of them below. GREAT Price As I mentioned earlier, I bought this website for $1,250. However, that doesn't mean a whole lot unless you know how much the site is making each month. Screenshot of the earnings for the last 12 months - http://imgur.com/NptxCHy Average Monthly Profits: 3 Month = $126 6 Month = $128 12 Month = $229.50 Let's use the 6 month average of $128/month as our baseline average. Since it is making on average $128/month and it was sold for $1,250 then that means I bought this site at a multiple of 9.76x! Most sites in today's market go for 20x-30x multiples. As you can see, I got a great deal on this site. Although the great price was the biggest reason for me buying this site there are other factors that persuaded me as well. You need to remember that just because you can get a website for a good price it doesn't mean it is a good deal. There are other factors that you need to look at as well. Extremely Under Optimized This site is currently being monetized mainly by Adsense and a very small amount from Quinstreet. From my experience with testing and optimizing Adsense layouts for my site in my Website Investing case study I know the common ad layouts that work best for maximizing Adsense revenue. With that being said, I can quickly determine if a website is being under optimized in terms of the ad layout. One of the first things I did when analyzing this site was examine the ad layout it was using. Screenshot of the website with the ad layout the previous owner was using - http://imgur.com/wqleLVA There is only ONE ad per page being used, that's it. Google allows up to 6 total ads to be used per page and you can imagine how much money is being left on the table because of this. I am estimating that I can probably double the earnings for the site practically overnight once I add more ads to the site. Adding more ads in combination with my favorite Adsense plugin, AmpedSense, I will be able to easily boost the earnings for this site quickly. It is also worth mentioning how lucrative this niche is and how much advertisers are willing to spend on a per click basis. The average CPC for the top keywords this site is currently ranking for in Google - http://imgur.com/ifxiy8B Look at those average CPC numbers, they are insanely high! I could be making up to $25 per click for some of those keywords, which is so absurd to me. Combine these extremely high CPC with the fact that the site currently only has one ad per page and you can start to understand just how under optimized this site truly is. I also plan on utilizing other ad networks such as Quinstreet and Campus Explorer more as well. These two networks are targeted at the education niche which works very well with my site. I will be testing to see if these convert better than normal Adsense ads. Goldmine of Untapped Keywords One of the biggest opportunities I see for growing this site is to target local keywords related to HVAC training. As of right now, the site has only scratched the surface when it comes to trying to rank for state/city keywords. Currently there are only two pages on the entire website which go after local keywords, those two pages target Texas and Florida HVAC search terms. These two pages are two of the more popular pages in terms of total amount of traffic. See the screenshot of the Google Analytics - http://imgur.com/NB0xJ4G Two out of the top five most popular pages for the entire website are focused on local search terms. However, these are the ONLY two pages that target local search terms on the whole site! There are 48 other states, although there may not be search volume for all states, and countless cities that are not being targeted. Why do I think this is such a good opportunity? For a few reasons: Local keywords are a lot easier to rank for in Google than more general keywords This site has been able to rank for two states successfully already and it proves it is possible Traffic going to these local pages is WAY more targeted and will convert at a much higher rate, which means more commissions for me There are so many more states and cities that get a good amount of searches that I can target To give you an idea of the type of keywords these local pages rank for, you can see the top keywords that the Florida page is ranking for in Google: Top ranking keywords for the Florida page - http://imgur.com/j7uKzl2 As you can see these keywords don't get a ton of searches each month, but ranking 1st for a keyword getting 90 searches a month is better than being ranked 10th for a keyword getting 1,000 searches a month. I have started to do some keyword research for other states and I am liking what I am finding so far. Keywords that I have found which I will be targeting with future articles - http://imgur.com/8CCCCWU I will go into more detail about my keyword research in future articles, but I wanted to give you an idea of what my strategy will be! I also wanted to share why I am super excited about the future potential to grow this site by targeting local keywords. ##Risks Yes, there are many good things about this website, but there are always risks involved no matter what the investment is. The same thing goes for this site. Below are some of the risks that I currently see. HTML Site This website is a HTML site and I will need to transfer it to Wordpress ASAP. I have been doing some research on this process and it shouldn't be too hard to get this over to Wordpress. In doing so it will make adding content, managing the back end and just about everything else easier. Also, I am hoping that when I transfer it to Wordpress that it will become more optimized for Google which will increase keyword rankings. Declining Earnings Looking at the last 12 months of earnings you will notice a drop off from last year till now. Earnings from the last 12 months - http://imgur.com/WsotZsj In May of 2015 it looks like the site earned right around $500, which is much higher than the $128 that it is earning now. However, the last 7 or so months have been consistent which is a good sign. Even though the earnings are much lower now then they were a year ago it is good to know that this site has the potential to earn $500/month because it has done it before. Slightly Declining Traffic In the last 12 months the site's traffic has declined, however, it looks like it is picking back up. Traffic from the last 12 months - http://imgur.com/aiYZW9W The decline is nothing serious, but there is a drop on traffic. Let's take a look at the complete history of this site's traffic so we can get a better idea of what is going on here: Complete traffic history - http://imgur.com/tYmboVn The above screenshot is from 2012 all the way up to right now. In the grand scheme of things you can see that the traffic is still doing well and it looks like it is on the upswing now. Those three risks mentioned above are the three biggest risks with this site at this point. It is always good to note the risks and do everything you can to prevent them from causing a problem. ##My Growth Strategy Whenever I purchase a new site I always create an outline or plan on how I will grow the site. Right now, I have some basic ideas on how I will grow this site, but as I go on I will continue to change and optimize my strategies to be more effective. Below I have outlined my current plans to grow: Add more Adsense Ads The very first thing I will do once I get control of the site is add more ads per page. I am predicting that by just adding a few more ads per page I will be able to more than likely double the earnings. I will touch on exactly how I will be optimizing the ad layouts in future posts. Test other Ad Networks I will be doing a lot of testing and experimenting when it comes to the ad networks. I plan on trying out Adsense, Media.net, Quinstreet, Campus Explorer and finding the combination of those 4 which produces the most revenue. The Adsense and Media.net ads will perform well on the more general pages while Quinstreet and Campus Explorer ads will be geared towards the local search terms. There will probably be other ad networks I will try out but these are the four which I will be using right away. If you are aware of any other ad networks out there which are geared towards the education niche please let me know in the comments below! Target Local Keywords with new Content I have already touched on this, but I will starting to produce content targeting these local keywords ASAP. The sooner I add the content to the site the sooner it will start to rank and bring in traffic. I will not be writing my own content and instead I will be outsourcing all of it via Upwork. I will show you all how I go about outsourcing content production and you can see my process for doing that. ##Goals for this Website My goal for the website is to have it valued at $10,000+ within 12 months. Let's break down this larger goal into smaller chunks which will make achieving it easier and more attainable. Earnings - $500/month To get the site valued at $10,000 the site will need to be making $500/month using a 20x monthly multiple. Right now, the site is making around $130/month so it has a ways to before it reaches the $500 a month mark. However, after doing some Adsense optimization I think we could push the earnings to around $300/month without much work. From there, it will come down to trying to bring in more traffic! Traffic - 5,000 Visitors per Month Why 5,000 visitors? Because that is how much traffic it is going to take to get to the $500/month goal. Let me explain how I came to this conclusion: The average RPM for this site is currently $50, which means for every 1,000 page views the site earns $50. After I optimize the Adsense layout for the site and add more ads per page I think I will be able to double the RPM to $100. Using the RPM of $100 the site will need to have 5,000 monthly visitors to earn $500. So 5,000 monthly visitors is the traffic goal I have set and aiming for! The site is currently getting around 3,000 visitors per month so I will need to add an extra 2,000 visitors to get to this goal. ##Want to Follow this Case Study? I will be using Youtube a lot in this case study so make sure to follow my Youtube channel here - www.youtube.com/c/joshshogren Other than that, I think that is going to bring us to the end of the introductory post for this new case study. I hope that you enjoyed reading and that you are excited to follow along! If you have any suggestions to make this case study better PLEASE let me know in the comment below. I want to make this case study the best one I have done yet. Talk to you all in the comment section.

In 2018, I started an AI chatbot company...today, we have over 4000 paying customers and ChatGPT is changing EVERYTHING
reddit
LLM Vibe Score0
Human Vibe Score1
Millionaire_This week

In 2018, I started an AI chatbot company...today, we have over 4000 paying customers and ChatGPT is changing EVERYTHING

Intro: 5 years ago, my co-founders and I ventured into the space of AI chatbots and started our first truly successful company. Never in a million years did I see myself in this business and we truly stumbled upon the opportunity by chance. Prior to that, we ran a successful lead generation business and questioned whether a simple ai chat product would increase our online conversions. Of the 3 co-founders, I was skeptical that it would, but the data was clear that we had something that really worked. We built a really simple MVP version of the product and gave it to some of our top lead buyers who saw even better conversion improvements on their own websites. In just a matter of weeks, a new business opportunity was born and a major pivot away from our lead generation business started. Our growth story: Startup growth is really interesting and in most cases, founders aren't really educated on what a typical growth curve looks like. While we hear about "hockey stick" growth curves, it's really atypical to actually see or experience this. From my experience, growth curves take place in a "stair curve". For example, you can scrap your way to a $100k run rate without much process or tracking. You can even get to $1 million ARR being super disorganized. As you start going beyond $1M ARR, things start to break and growth can flatten out while you put new processes and systems in place. Eventually you'll get to $2M or 3M with your new strategy and then things start breaking again. I've seen the process repeat itself and as you increase your ARR, the processes and systems become more difficult to work through...mainly because more people get involved and the product becomes more complex. When you do end up cracking the code in each step, the growth accelerates faster and faster before things start to break down and flatten out again. Without getting too much into the numbers, here were some of our initial levers for growth: Our first "stair" step was to leverage our existing customer base from our prior lead generation business. Having prior business relationships and a proven track record made it really simple to have conversations with people who already trusted us to try something new that we had to offer. Stair #2 was to build out a partner channel. Since our chat product involved a web developer or agency installing the chat on client sites, we partnered with these developers and agencies to leverage their already existing customer bases. We essentially piggy-backed off of their relationships and gave them a cut of the revenue. We built an internal partner tracking portal which took 6+ months, but it was well worth it. Stair #3 was our most expensive step, biggest headache, but added the most revenue. After COVID, we had and SDR/Account Executive sales team of roughly 30 people. It added revenue fast, but the payback periods were 12+ months so we had to cut back on this strategy after exhausting our universe of clients. Stair #4 involves a variety of paid advertisement strategies with product changes and the introduction of new onboarding features. We're in the middle of this stair and hope it's multiple years before things breakdown again. Don't give up I know it sounds really cliché, but the #1 indicator of success is doing the really boring stuff day in and day out and making incremental improvements. As the weeks, months, and years pass by, you will slowly gain domain expertise and start to see the gaps in the market that can set you apart from your competition. It's so hard for founders to stay focused and not get distracted so I would say it's equally as important to have co-founders who hold each other accountable on what your collective goals are. How GPT is changing everything I could write pages and pages about how GPT is going to change how the world operates, but I'll keep it specific to our business and chatbots. In 2021, we built an industry specific AI model that did a great job of classifying intents which allowed us to train future actions during a chat. It was a great advancement in our customer's industry at the time. With GPT integrated into our system, that training process that would take an employee hours to do, can be done in 5 minutes. The model is also cheaper than our own and more accurate. Because of these training improvements, we have been able to conduct research that is allowing us to leverage GPT models like no one else in the industry. This is both in the realm of chat and also training during onboarding. I really want to refrain from sharing our company, but if you are interested in seeing a model trained for your specific company or website, just PM me your link and I'll send you a free testing link with a model fully trained for your site to play around with. Where we are headed and the dangers of AI The level of advancement in AI is not terribly dangerous in its current state. I'm sure you've heard it before, but those who leverage the technology today will be the ones who get ahead. In the coming years, AI will inevitably replace a large percentage of human labor. This will be great for overall value creation and productivity for the world, but the argument that humans have always adapted and new jobs will be created is sadly not going to be as relevant in this case. As the possibility of AGI becomes a reality in the coming years or decades, productivity through AI will be off the charts. There is a major risk that human innovation and creative thinking will be completely stalled...human potential as we know it will be capped off and there will need to be major economic reform for displaced workers. This may not happen in the next 5 or 10 years, but you would be naïve not to believe the world we live in today will not be completely different in 20 to 30 years. Using AI to create deepfakes, fake voice agents, scam the unsuspecting, or exploit technical vulnerabilities are just a few other examples I could write about, but don't want to go into to much detail for obvious reasons. Concluding If you found the post interesting or you have any questions, please don't hesitate to ask. I'll do my best to answer whatever questions come from this! &#x200B; \*EDIT: Wasn't expecting this sort of response. I posted this right before I went to sleep so I'll get to responding soon.

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience
reddit
LLM Vibe Score0
Human Vibe Score1
hopefully_usefulThis week

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience

I met my co-founder in late 2022 after an introduction from a mutual friend to talk about how to find contract Product Management roles. I was sporadically contracting at start-up at the time and he had just come out of another start-up that was wiped out by the pandemic. We hit it off, talking about ideas, sharing what other indie-hackers were doing, and given GPT-3’s prominence at the time, we started throwing around ideas about things we could build with it, if nothing else, just to learn. I should caveat, neither of us were AI experts when starting out, everything we learned has been through Twitter and blogs, my background is as an accountant, and his a consultant. Here’s how it went since then: &#x200B; Nov 2022 (+$50) \- We built a simple tool in around a week using GPT-3 fine-tuning and a no-code tool (Bubble) that helped UK university students write their personal statements for their applications \- We set some Google Ads going and managed to make a few sales (\~$50) in the first week \- OpenAI were still approving applications at the time and said this went against their “ethics” so we had to take it down &#x200B; Dec 2022 (+$200) \- We couldn’t stop coming up with ideas related to AI fine-tuning, but realised it was almost impossible to decide which to pursue \- We needed a deadline to force us so we signed up for the Ben’s Bites hackathon in late December \- In a week, we built and launched a no-code fine-tuning platform, allowing people to create fine-tuned models by dragging and dropping an Excel file onto it \- We launched it on Product Hunt, having no idea how to price it, and somehow managed to get \~2,000 visitors on the site and make 2 sales at $99 &#x200B; Jan 2023 (+$3,000) \- We doubled down on the fine-tuning idea and managed to get up to \~$300 MRR, plus a bunch of one-time sales and a few paid calls to help people get the most out of their models \- We quickly realised that people didn’t want to curate models themselves, they just wanted to dump data and get magic out \- That was when we saw people building “Talk with x book/podcast” on Twitter as side projects and realised that was the missing piece, we needed to turn it into a tool \- We started working on the new product in late January &#x200B; Feb 2023 (+$9,000) \- We started pre-selling access to an MVP for the new product, which allowed people to “chat with their data/content”, we got $5,000 in pre-sales, more than we made from the previous product in total \- By mid-February, after 3 weeks of building we were able to launch and immediately managed to get traction, getting to $1k MRR in < 1 week, building on the hype of ChatGPT and AI (we were very lucky here) &#x200B; Mar - Jul 2023 (+$98,000) \- We worked all the waking hours to keep up with customer demand, bugs, OpenAI issues \- We built integrations for a bunch of services like Slack, Teams, Wordpress etc, added tons of new functionality and continue talking to customers every day \- We managed to grow to $17k MRR (just about enough to cover our living expenses and costs in London) through building in public on Twitter, newsletters and AI directories (and a million other little things) \- We sold our fine-tuning platform for \~$20k and our university project for \~$3k on Acquire &#x200B; Aug 2023 (+$100,000) \- We did some custom development work based on our own product for a customer that proved pretty lucrative &#x200B; Sep - Oct 2023 (+$62,000) \- After 8 months of building constantly, we started digging more seriously into our usage and saw subscriptions plateauing \- We talked to and analysed all our paying users to identify the main use cases and found 75% were for SaaS customer support \- We took the leap to completely rebuild a version of our product around this use case, our biggest to date (especially given most features with no-code took us <1 day) &#x200B; Nov - Dec 2023 (+$53,000) \- We picked up some small custom development work that utilised our own tech \- We’re sitting at around $22k MRR now with a few bigger clients signed up and coming soon \- After 2 months of building and talking to users, we managed to finish our “v2” of our product, focussed squarely on SaaS customer support and launched it today. &#x200B; We have no idea what the response will be to this new version, but we’re pretty happy with it, but couldn’t have planned anything that happened to us in 2023 so who knows what will come of 2024, we just know that we are going to be learning a ton more. &#x200B; Overall, it is probably the most I have had to think in my life - other jobs you can zone out from time to time or rely on someone else if you aren’t feeling it - not when you are doing this, case and point, I am writing this with a banging head-cold right now, but wanted to get this done. A few more things we have learned along the way - context switching is unreal, as is keeping up with, learning and reacting to AI. There isn’t a moment of the day I am not thinking about what we do next. But while in some way we now have hundreds of bosses (our customers) I still haven’t felt this free and can’t imagine ever going back to work for someone else. Next year we’re really hoping to figure out some repeatable distribution channels and personally, I want to get a lot better at creating content/writing, this is a first step! Hope this helps someone else reading this to just try starting something and see what happens.

Started a content marketing agency 6 years ago - $0 to $5,974,324 (2023 update)
reddit
LLM Vibe Score0
Human Vibe Score1
mr_t_forhireThis week

Started a content marketing agency 6 years ago - $0 to $5,974,324 (2023 update)

Hey friends, My name is Tyler and for the past 6 years, I’ve been documenting my experience building a content marketing agency called Optimist. Year 1 - 0 to $500k ARR Year 2 - $500k to $1MM ARR Year 3 - $1MM ARR to $1.5MM(ish) ARR Year 4 - $3,333,686 Revenue Year 5 - $4,539,659 Revenue How Optimist Works First, an overview/recap of the Optimist business model: We operate as a “collective” of full time/professional freelancers Everyone aside from me is a contractor Entirely remote/distributed team Each freelancer earns $65-85/hour Clients pay us a flat monthly fee for full-service content marketing (research, strategy, writing, editing, design/photography, reporting and analytics, targeted linkbuilding, and more) We recently introduced hourly engagements for clients who fit our model but have some existing in-house support Packages range in price from $10-20k/mo We offer profit share to everyone on our core team as a way to give everyone ownership in the company In 2022, we posted $1,434,665 in revenue. It was our highest revenue year to date and brings our lifetime total to $5,974,324. Here’s our monthly revenue from January 2017 to December of 2022. But, like every year, it was a mix of ups and downs. Here’s my dispatch for 2023. — Running a business is like spilling a drink. It starts as a small and simple thing. But, if you don’t clean it up, the spill will spread and grow — taking up more space, seeping into every crack. There’s always something you could be doing. Marketing you could be working on. Pitches you could be making. Networking you could be doing. Client work you could help with. It can be all-consuming. And it will be — if you don’t clean up the spill. I realized this year that I had no containment for the spill that I created. Running an agency was spilling over into nearly every moment of my life. When I wasn’t working, I was thinking about work. When I wasn’t thinking about work, I was dreaming about it. Over the years, I’ve shared about a lot of my personal feelings and experience as an entrepreneur. And I also discussed my reckoning with the limitations of running the business we’ve built. My acceptance that it was an airplane but not a rocket. And my plan to try to compartmentalize the agency to make room in my life for other things — new business ideas, new revenue streams, and maybe some non-income-producing activity. 🤷 What I found in 2022 was that the business wasn’t quite ready for me to make that move. It was still sucking up too much of my time and attention. There were still too many gaps to fill and I was the one who was often filling them. So what do you do? Ultimately you have two choices on the table anytime you run a business and it’s not going the way you want it: Walk away Turn the ship — slowly For a huge number of reasons (personal, professional, financial, etc), walking away from Optimist was not really even an option or the right move for me. But it did feel like things needed to change. I needed to keep turning the ship to get it to the place where it fit into my life — instead of my life fitting around the business. This means 2022 was a year of transition for the agency. (Again?) Refocusing on Profit Some money is better than no money. Right? Oddly, this was one of the questions I found myself asking in 2022. Over the years, we’ve been fortunate to have many clients who have stuck with us a long time. In some cases, we’ve had clients work with us for 2, 3, or even 4 years. (That’s over half of our existence!) But, things have gotten more expensive — we’ve all felt it. We’ve had to increase pay to remain competitive for top talent. Software costs have gone up. It’s eaten into our margin. Because of our increasing costs and evolving scope, many of our best, most loyal clients were our least profitable. In fact, many were barely profitable — if at all. We’ve tried to combat that by increasing rates on new, incoming clients to reflect our new costs and try to make up for shrinking margin on long-term clients. But we didn’t have a good strategy in place for updating pricing for current clients. And it bit us in the ass. Subsidizing lower-profit, long-term clients with new, higher-margin clients ultimately didn’t work out. Our margins continued to dwindle and some months we were barely breaking even while posting six-figures of monthly revenue. 2022 was our highest revenue year but one of our least profitable. It only left one option. We had to raise rates on some of our long-term clients. But, of course, raising rates on a great, long-term client can be delicate. You’ve built a relationship with these people over the years and you’re setting yourself up for an ultimatum — are you more valuable to the client or is the client more valuable to you? Who will blink first? We offered all of these clients the opportunity to move to updated pricing. Unfortunately, some of them weren’t on board. Again, we had 2 options: Keep them at a low/no profit rate Let them churn It seems intuitive that having a low-profit client is better than having no client. But we’ve learned an important lesson many times over the years. Our business doesn’t scale infinitely and we can only handle so many clients at a time. That means that low-profit clients are actually costing us money in some cases. Say our average client generates $2,500 per month in profit — $30,000 per year. If one of our clients is only generating $500/mo in profit, working with them means missing out on bringing on a more profitable client (assuming our team is currently at capacity). Instead of $30,000/year, we’re only making $6,000. Keeping that client costs us $24,000. That’s called opportunity cost. So it’s clear: We had to let these clients churn. We decided to churn about 25% of our existing clients. On paper, the math made sense. And we had a pretty consistent flow of new opportunities coming our way. At the time, it felt like a no-brainer decision. And I felt confident that we could quickly replace these low-profit clients with higher-margin ones. I was wrong. Eating Shit Right after we initiated proactively churning some of our clients, other clients — ones we planned to keep — gave us notice that they were planning to end the engagement. Ouch. Fuck. We went from a 25% planned drop in revenue to a nearly 40% cliff staring us right in the face. Then things got even worse. Around Q3 of this year, talk of recession and layoffs really started to intensify. We work primarily with tech companies and startups. And these were the areas most heavily impacted by the economic news. Venture funding was drying up. Our leads started to slow down. This put us in a tough position. Looking back now, I think it’s clear that I made the wrong decision. We went about this process in the wrong way. The reality sinks in when you consider the imbalance between losing a client and gaining a client. It takes 30 days for someone to fire us. It’s a light switch. But it could take 1-3 months to qualify, close, and onboard a new client. We have lots of upfront work, research, and planning that goes into the process. We have to learn a new brand voice, tone, and style. It’s a marathon. So, for every client we “trade”, there’s a lapse in revenue and work. This means that, in retrospect, I would probably have made this transition using some kind of staggered schedule rather than a cut-and-dry approach. We could have gradually off-boarded clients when we had more definitive work to replace them. I was too confident. But that’s a lesson I had to learn the hard way. Rebuilding & Resetting Most of the voluntary and involuntary churn happened toward the end of 2022. So we’re still dealing with the fall out. Right now, it feels like a period of rebuilding. We didn’t quite lose 50% of our revenue, but we definitely saw a big hit heading into 2023. To be transparent: It sucks. It feels like a gigantic mistake that I made which set us back significantly from our previous high point. I acted rashly and it cost us a lot of money — at least on the surface. But I remind myself of the situation we were in previously. Nearly twice the revenue but struggling to maintain profitability. Would it have been better to try to slowly fix that situation and battle through months of loss or barely-break-even profits? Or was ripping off the bandaid the right move after all? I’m an optimist. (Heh, heh) Plus, I know that spiraling over past decisions won’t change them or help me move forward. So I’m choosing to look at this as an opportunity — to rebuild, reset, and refocus the company. I get to take all of the tough lessons I’ve learned over the last 6 years and apply them to build the company in a way that better aligns with our new and current goals. It’s not quite a fresh, clean start, but by parting ways with some of our oldest clients, we’ve eliminated some of the “debt” that’s accumulated over the years. We get a chance to fully realize the new positioning that we rolled out last year. Many of those long-term clients who churned had a scope of work or engagement structure that didn’t fit with our new positioning and focus. So, by losing them, we’re able to completely close up shop on the SOWs that no longer align with the future version of Optimist. Our smaller roster of clients is a better fit for that future. My job is to protect that positioning by ensuring that while we’re rebuilding our new roster of clients we don’t get desperate. We maintain the qualifications we set out for future clients and only take on work that fits. How’s that for seeing the upside? Some other upside from the situation is that we got an opportunity to ask for candid feedback from clients who were leaving. We asked for insight about their decision, what factors they considered, how they perceived us, and the value of our work. Some of the reasons clients left were obvious and possibly unavoidable. Things like budget cuts, insourcing, and uncertainty about the economy all played at least some part of these decisions. But, reading between the lines, where was one key insight that really struck me. It’s one of those, “oh, yeah — duh — I already knew that,” things that can be difficult to learn and easy to forget…. We’re in the Relationship Business (Plan Accordingly) For all of our focus on things like rankings, keywords, content, conversions, and a buffet of relevant metrics, it can be easy to lose the forest for the trees. Yes, the work itself matters. Yes, the outcomes — the metrics — matter. But sometimes the relationship matters more. When you’re running an agency, you can live or die by someone just liking you. Admittedly, this feels totally unfair. It opens up all kinds of dilemmas, frustration, opportunity for bias and prejudice, and other general messiness. But it’s the real world. If a client doesn’t enjoy working with us — even if for purely personal reasons — they could easily have the power to end of engagement, regardless of how well we did our actual job. We found some evidence of this in the offboarding conversations we had with clients. In some cases, we had clients who we had driven triple- and quadruple-digital growth. Our work was clearly moving the needle and generating positive ROI and we had the data to prove it. But they decided to “take things in another direction” regardless. And when we asked about why they made the decision, it was clear that it was more about the working relationship than anything we could have improved about the service itself. The inverse is also often true. Our best clients have lasting relationships with our team. The work is important — and they want results. But even if things aren’t quite going according to plan, they’re patient and quick to forgive. Those relationships feel solid — unshakeable. Many of these folks move onto new roles or new companies and quickly look for an opportunity to work with us again. On both sides, relationships are often more important than the work itself. We’ve already established that we’re not building a business that will scale in a massive way. Optimist will always be a small, boutique service firm. We don’t need 100 new leads per month We need a small, steady roster of clients who are a great fit for the work we do and the value we create. We want them to stick around. We want to be their long-term partner. I’m not built for churn-and-burn agency life. And neither is the business. When I look at things through this lens, I realize how much I can cut from our overall business strategy. We don’t need an ultra-sophisticated, multi-channel marketing strategy. We just need strong relationships — enough of them to make our business work. There are a few key things we can take away from this as a matter of business strategy: Put most of our effort into building and strengthening relationships with our existing clients Be intentional about establishing a strong relationship with new clients as part of onboarding Focus on relationships as the main driver of future business development Embracing Reality: Theory vs Practice Okay, so with the big learnings out the way, I want to pivot into another key lesson from 2022. It’s the importance of understanding theory vs practice — specifically when it comes to thinking about time, work, and life. It all started when I was considering how to best structure my days and weeks around running Optimist, my other ventures, and my life goals outside of work. Over the years, I’ve dabbled in many different ways to block time and find focus — to compartmentalize all of the things that are spinning and need my attention. As I mapped this out, I realized that I often tried to spread myself too thin throughout the week. Not just that I was trying to do too much but that I was spreading that work into too many small chunks rather than carving out time for focus. In theory, 5 hours is 5 hours. If you have 5 hours of work to get done, you just fit into your schedule whenever you have an open time slot. In reality, a single 5-hour block of work is 10x more productive and satisfying than 10, 30-minute blocks of work spread out across the week. In part, this is because of context switching. Turning your focus from one thing to another thing takes time. Achieving flow and focus takes time. And the more you jump from one project to another, the more time you “lose” to switching. This is insightful for me both in the context of work and planning my day, but also thinking about my life outside of Optimist. One of my personal goals is to put a finite limit on my work time and give myself more freedom. I can structure that in many different ways. Is it better to work 5 days a week but log off 1 hour early each day? Or should I try to fit more hours into each workday so I can take a full day off? Of course, it’s the latter. Both because of the cost of context switching and spreading work into more, smaller chunks — but also because of the remainder that I end up with when I’m done working. A single extra hour in my day probably means nothing. Maybe I can binge-watch one more episode of a new show or do a few extra chores around the house. But it doesn’t significantly improve my life or help me find greater balance. Most things I want to do outside of work can’t fit into a single extra hour. A full day off from work unlocks many more options. I can take the day to go hiking or biking. I can spend the day with my wife, planning or playing a game. Or I can push it up against the weekend and take a 3-day trip. It gives me more of the freedom and balance that I ultimately want. So this has become a guiding principle for how I structure my schedule. I want to: Minimize context switching Maximize focused time for work and for non-work The idea of embracing reality also bleeds into some of the shifts in business strategy that I mentioned above. In theory, any time spent on marketing will have a positive impact on the company. In reality, focusing more on relationships than blasting tweets into the ether is much more likely to drive the kind of growth and stability that we’re seeking. As I think about 2023, I think this is a recurring theme. It manifests in many ways. Companies are making budget cuts and tough decisions about focus and strategy. Most of us are looking for ways to rein in the excess and have greater impact with a bit less time and money. We can’t do everything. We can’t even do most things. So our #1 priority should be to understand the reality of our time and our effort to make the most of every moment (in both work and leisure). That means thinking deeply about our strengths and our limitations. Being practical, even if it feels like sacrifice. Update on Other Businesses Finally, I want to close up by sharing a bit about my ventures outside of Optimist. I shared last year how I planned to shift some of my (finite) time and attention to new ventures and opportunities. And, while I didn’t get to devote as much as I hoped to these new pursuits, they weren’t totally in vain. I made progress across the board on all of the items I laid out in my post. Here’s what happened: Juice: The first Optimist spin-out agency At the end of 2021, we launched our first new service business based on demand from Optimist clients. Focused entirely on building links for SEO, we called the agency Juice. Overall, we made strong progress toward turning this into a legitimate standalone business in 2022. Relying mostly on existing Optimist clients and a few word-of-mouth opportunities (no other marketing), we built a team and set up a decent workflow and operations. There’s still many kinks and challenges that we’re working through on this front. All told, Juice posted almost $100,000 in revenue in our first full year. Monetizing the community I started 2022 with a focus on figuring out how to monetize our free community, Top of the Funnel. Originally, my plan was to sell sponsorships as the main revenue driver. And that option is still on the table. But, this year, I pivoted to selling paid content and subscriptions. We launched a paid tier for content and SEO entrepreneurs where I share more of my lessons, workflows, and ideas for building and running a freelance or agency business. It’s gained some initial traction — we reached \~$1,000 MRR from paid subscriptions. In total, our community revenue for 2022 was about $2,500. In 2023, I’m hoping to turn this into a $30,000 - $50,000 revenue opportunity. Right now, we’re on track for \~$15,000. Agency partnerships and referrals In 2022, we also got more serious about referring leads to other agencies. Any opportunity that was not a fit for Optimist or we didn’t have capacity to take on, we’d try to connect with another partner. Transparently, we struggled to operationalize this as effectively as I would have liked. In part, this was driven by my lack of focus here. With the other challenges throughout the year, I wasn’t able to dedicate as much time as I’d like to setting goals and putting workflows into place. But it wasn’t a total bust. We referred out several dozen potential clients to partner agencies. Of those, a handful ended up converting into sales — and referral commission. In total, we generated about $10,000 in revenue from referrals. I still see this as a huge opportunity for us to unlock in 2023. Affiliate websites Lastly, I mentioned spending some time on my new and existing affiliate sites as another big business opportunity in 2022. This ultimately fell to the bottom of my list and didn’t get nearly the attention I wanted. But I did get a chance to spend a few weeks throughout the year building this income stream. For 2022, I generated just under $2,000 in revenue from affiliate content. My wife has graciously agreed to dedicate some of her time and talent to these projects. So, for 2023, I think this will become a bit of a family venture. I’m hoping to build a solid and consistent workflow, expand the team, and develop a more solid business strategy. Postscript — AI, SEO, OMG As I’m writing this, much of my world is in upheaval. If you’re not in this space (and/or have possibly been living under a rock), the release of ChatGPT in late 2022 has sparked an arms race between Google, Bing, OpenAI, and many other players. The short overview: AI is likely to fundamentally change the way internet search works. This has huge impact on almost all of the work that I do and the businesses that I run. Much of our focus is on SEO and understanding the current Google algorithm, how to generate traffic for clients, and how to drive traffic to our sites and projects. That may all change — very rapidly. This means we’re standing at a very interesting point in time. On the one hand, it’s scary as hell. There’s a non-zero chance that this will fundamentally shift — possibly upturn — our core business model at Optimist. It could dramatically change how we work and/or reduce demand for our core services. No bueno. But it’s also an opportunity (there’s the optimist in me, again). I certainly see a world where we can become leaders in this new frontier. We can pivot, adjust, and capitalize on a now-unknown version of SEO that’s focused on understanding and optimizing for AI-as-search. With that, we may also be able to help others — say, those in our community? — also navigate this tumultuous time. See? It’s an opportunity. I wish I had the answers right now. But, it’s still a time of uncertainty. I just know that there’s a lot of change happening and I want to be in front of it rather than trying to play catch up. Wish me luck. — Alright friends — that's my update for 2023! I’ve always appreciated sharing these updates with the Reddit community, getting feedback, being asked tough questions, and even battling it out with some of my haters (hey!! 👋) As usual, I’m going to pop in throughout the next few days to respond to comments or answer questions. Feel free to share thoughts, ideas, and brutal takedowns in the comments. If you're interested in following the Optimist journey and the other projects I'm working on in 2023, you can follow me on Twitter. Cheers, Tyler P.S. - If you're running or launching a freelance or agency business and looking for help figuring it out, please DM me. Our subscription community, Middle of the Funnel, was created to provide feedback, lessons, and resources for other entrepreneurs in this space.

boring passive site... now 42k monthly visitors and $2540 MRR
reddit
LLM Vibe Score0
Human Vibe Score1
TasAdamsThis week

boring passive site... now 42k monthly visitors and $2540 MRR

people underestimate SEO... It is evergreen... passive... digital real estate. it can do magic... if you are consistent. Especially now with AI you can 2X your traffic growth and automate 85% of the work. For the past 6 months... we've been building an online directory. we just reached $2540 MRR... with SEO only... from a complete zero. I did share this on other subreddits. Maybe this gives ideas to someone. \+ This can be easily replicated if you have a website lol Current metrics: $2540 MRR - businesses pay us to list on the directory + display ads + pay to be featured. 43k monthly visitors - in the past couple of weeks our SEO growth is a hockey stick. DR (Domain Rating) 35 - it took us 2.5 months to get to that. 51 okay-ish quality referring domains (90% of them are do-follow) and 1.6k backlinks. There are probably 3 main pillars I try to focus on: keywords --> which then is the basis for ALL the content pieces we do blogs, landing pages, about us pages, competitor comparisons etc --> we use a DIY excel file to automate content production at scale. backlinks --> boost DR --> one of the main things to boost ranking on google. website health --> this is technical stuff like internal and external linking, schemas, canonical tags, alt texts, load speeds, compressed images, meta descriptions, titles etc --> do this once... and do it GOOD. $0.07 per SEO optimised blog at scale with AI Yep... we've literally built our own SEO blog tool... and it is a Spreadsheet with bunch of app scripts :D NOTE that we add a little bit of human touch to those blogs that are picked up by Google rank top in 25 How it works... is that we paste in bunch of links (other websites, blogs, news articles) and with a click of a button we can get up to 2000 SEO optimised content pieces... from an Excel file... $0.07 per blog. The spreadsheet is integrated with Chat gpt (obviously). We use GPT-4 for meta descriptions, titles, transforming the content from text to html code since it is more powerful, and GPT-4o for content itself because it is cheaper and faster for "general text". The spreadsheet repurposes content. The spreadsheet generates: Meta descriptions and titles FAQs sections - DON'T skip FAQ sections! They are a must for SEO. On Ahrefs... there is a section of questions people are searching about your keyword... that's your FAQs It can find contextual youtube videos (links to those videos) - to show google that our content is not "just text" thus higher quality. Screenshots and images of the original source (the website link we inputed) I then download a csv version of the excel and import it into our Webflow. The csv file column names match our webflow CMS field names. tbh... we didn't even know that it can be done with a spreadsheet. We "tried" building it because every other tool we were using is (1) expensive from $0.59 per SEO content piece (2) they didn't provide the scale we wanted (3) we wanted more control over the output. Focus on DR 35+ backlinks... easier We bought backlinks only once... rest of the backlinks was a manual work from us. Bunch of free listing databases (about 65% of our backlinks) You can comment on open forums with your link to get a backlink (be careful tho) Post a blog on Medium com --> DR 94 backlink (takes time to Index) If you pay for Notion you can get a DR 94 backlink from Notion If you use Beehiiv you can get a DR 86 backlink from Beehiiv Google product stacking (Google sites, Google notes etc) --> backlink from almighty Google itself A lot of work goes into backlinks because they are THAT important. I have tried bunch of "black hat" strategies as well... but note that all of these strategies won't work if you don't index the primary source from where your backlink is coming from. BIG search volume and low KD Key things I'm looking for in keywords: I use Ahrefs Keyword research tool... it is literally free BIG search volume - 2k+ is oaky-ish for a single keyword EASY to rank - KD (keyword difficulty) below 15 Look for long tail keywords (these are golden nuggets since they have a VERY clear search intent) - "how to edit..." "how to change..." "how to delete..." "how to paint..." I hope you got the idea. on Ahrefs you can use "\" to get BIG volume long tail keywords... like this "my keyword\". Ahrefs then populates the "\" with the tail. Check SERP (Search Engine Result Page) for your keywords - it shows current top 10 pages for those KWs. Check their content. Can you improve it? Have they missed anything? Keyword gap from your competitors - shows EASY keywords that your competitors have missed and also shows what keywords overlap with you. Also one cool thing... if you don't type any keywords on Ahrefs and press "Enter"... you can browse all the keywords out there... it is magical. Once we have the keywords, we run our spreadsheet. And that's pretty much it. I hope that you can get some ideas from this little silly project. Also... if you have any questions about this... I might share the SEO blog automation excel file/help if people are interested...

AI Will Make You Extremely Rich or Kill Your Business in 2024
reddit
LLM Vibe Score0
Human Vibe Score1
AntsyNursery58This week

AI Will Make You Extremely Rich or Kill Your Business in 2024

Preface: I'm a solo-founder in the AI space and previously worked as an ML scientist; the new advancements in AI that I'm seeing are going to impact everyone here. It doesn't matter if you're just starting out, or a bootstrapped brick and mortar founder, or even a VC backed hard tech founder. Last year was when the seeds were laid, and this is the year we'll see them bloom. There will be an onslaught of advancements that take place that are borderline inconceivable due to the nature of exponential progress. This will change every single vertical. I'm making this post because I think AI execution strategy will make or break businesses. Dramatically. Over $50B was put into AI startups in 2023 alone. This figure excludes the hundreds of billions poured into AI from enterprises. So, let's follow the money: &#x200B; 1) AI enterprise software. There's a lot to unpack here and this is what I’m currently working on. AI enterprise software will encompass everything from hyper personalized email outbound to AI cold calls to AI that A/B tests ads on synthetic data to vertical specific software. The impact of the former is relatively self explanatory, so I'll focus on the latter. To illustrate vertical specific AI software, I'll use a simple example in the legal space. Lawyers typically have to comb through thousands of pages of documents. Now, using an LLM + a VDB, an AI can instantly answer all of those questions while surfacing the source and highlighting the specific answer in the contract/document. There are dozens of AI startups for this use case alone. This saves lawyers an immense amount of time and allows them to move faster. Firms that adopt this have a fundamental advantage over law firms that don't adopt this. This was 2023 technology. I'm seeing vertical AI software getting built by my friends in areas from construction, to real estate, to even niche areas like chimney manufacturing. This will exist everywhere. Now, this can be extrapolated much further to be applicable to systems that can do reports and even browse the Internet. This brings me to my next point. &#x200B; 2) AI information aggregation and spread. My gut tells me that this will have a crescendo moment in the future with hardware advancements (Rabbit, Tab, etc.). You won't have to google things because it will be surfaced to you. It's predictive in nature. The people who can get information the fastest will grow their business the fastest. This part is semi-speculative, but due to the nature of LLMs being so expensive to train, I have a strong feeling that large institutions will have access to the \fastest\ and \best\ models that can do this quicker than you and I can. This is why it's important to stay on top. &#x200B; 3) AI content generation This is relevant to running advertisements and any digital marketing aspect of your business. If you can rapidly make content faster than your competitors to put in social media, you will outpace your competitors rapidly. I think most folks are familiar with MidJourney, Stable diffusion, etc. but don't know how to use it. You can generate consistent models for a clothing brand or generate images of a product that you would normally need to hire a professional photographer to take. There's also elevenlabs which is relatively easy to use and can be used to make an MP3 clip as a narration for an ad; this is something I've already done. I'm also still shocked by how many people are unfamiliar with tools like Pika which can do video generation. You could imagine companies having fleets of digital influencers that they control or conjuring up the perfect ad for a specific demographic using a combination of all of the aforementioned tools. &#x200B; In summary, if you feel like I'm being hyperbolic or propagating science fiction fantasies, you're likely already behind. I truly recommend that everyone stays up to date on these advancements as much as possible. If your competitor comes across an AI tool that can increase their ROAS by 5x they can crush you. If your competitor uses a tool that increases the rate at which they receive and aggregate information by 200% (modest estimate) they will crush you. If your competitors have a tool that can reduce their employee size, then they will use it. They'll fire their employees to cut costs and reinvest the money back into their business. It will compound to the point where you're outpaced, and this isn't a level of innovation we've seen since the birth of the industrial revolution. Your customers can get stolen overnight, or you can steal your competition’s customers overnight. TL;DR: This is an opportunity for entrepreneurs to scale faster than they could have possibly imagined, but this also comes with the potential for your company to be obliterated. We've never seen advancements that can have this drastic of an impact this quickly. Adoption will happen fast, and first movers will have a disproportionate and compounding advantage. Watch guides, meet with startups, follow the news, and get rich.

Dangers of not adopting AI strategies?
reddit
LLM Vibe Score0
Human Vibe Score1
FreelancerChurchThis week

Dangers of not adopting AI strategies?

Tldr: I need to know how AI is threatening different types of businesses. Please share your perspective. I'll reply to every comment. Hi, this is for anyone concerned with how to respond to the emergence of new AI tools. (to grow instead of going out of business, find opportunities instead of getting beat by competitors, etc. I need to find the best ways to use AI to give my clients an advantage. (I’m a mod at r/writingservice & a content/brand strategist.) Not just automation. That's weak. I mean innovation. Using AI to do stuff that has never been done in your industry. Lots of virtual assistants (for business owners) will make the mistake of learning how to use these tools only in a general way, without applying them in the real world. I don’t want to make that mistake. It will help me if you share what’s on your mind, what’s unique about the way AI affects your industry, or your unique business model, etc. So this is basically like an informal research study. And it's the kind where you get something if you participate - I will seriously spend time to offer the best stuff I know in the comments if you just share your perspective, how AI is affecting you in the unique way you are situation in your industry and among your competitors. Have you been finding ways to incorporate AI in your marketing, customer service, etc.? I have a feeling a lot of business owners are worried right now, because all our experience is from the old landscape prior to everything being automated with AI. Even if you have questions on your mind and share them, that can help me. My problem: I’m learning to use GPT/Gemini/Invideo/Perplexity and others, but it’s not good enough until I see how they apply in different situations, industries, business models. If you share some ideas, I’ll reply to every comment and try to offer something helpful. I’ve already made a lot of progress learning how the strengths/weaknesses of different AI tools for different situations. Thinking about the way their competitors might surpass you by using them, or about opportunities for you to surpass them.... what concerns are on your mind? Or what have you learned, what are you doing, etc.

Recently hit 6,600,000 monthly organic traffic for a B2C SaaS website. Here's the 40 tips that helped me make that happen.
reddit
LLM Vibe Score0
Human Vibe Score1
DrJigsawThis week

Recently hit 6,600,000 monthly organic traffic for a B2C SaaS website. Here's the 40 tips that helped me make that happen.

Hey guys! So as title says, we recently hit 6,600,000 monthly organic traffic / month for a B2C SaaS website (screenshot. Can't give name publicly, but can show testimonial to a mod). Here's 40 tips that "helped" me make this happen. If you get some value of the post, I write an SEO tip every other day on /r/seogrowth. There's around 10 more tips already up there other than the ones I mention here. If you want to give back for all my walls of text, I'd appreciate a sub <3 Also, there are a bunch of free stuff I mention in the article: content outline, writer guidelines, SEO checklist, and other stuff. Here's the Google Doc with all that! Tip #1. Take SEO With a Grain of Salt A lot of the SEO advice and best practices on the internet are based on 2 things: Personal experiences and case studies of companies that managed to make SEO work for them. Google or John Mueller (Google’s Senior Webmaster Trends Analyst). And, unfortunately, neither of these sources are always accurate. Personal SEO accounts are simply about what worked for specific companies. Sometimes, what worked for others, won’t work for you. For example, you might find a company that managed to rank with zero link-building because their website already had a very strong backlink profile. If you’re starting with a fresh website, chances are, you won’t be able to get the same results. At the same time, information from Google or John Mueller is also not 100% accurate. For example, they’ve said that guest posting is against Google’s guidelines and doesn’t work… But practically, guest posting is a very effective link-building strategy. So the takeaway is this: Take all information you read about SEO with a grain of salt. Analyze the information yourself, and make your conclusions. SEO Tip #2. SEO Takes Time You’ve already heard this one before, but considering how many people keep asking, thought I'd include this anyway. On average, it’s going to take you 6 months to 2 years to get SEO results, depending on the following factors: Your backlink profile. The more quality backlinks you have (or build), the faster you’ll rank. Age of your website. If your website is older (or you purchased an aged website), you can expect your content to rank faster. Amount of content published. The more quality content you publish on your website, the more “authoritative” it is in the eyes of Google, and thus more likely to rank faster. SEO work done on the website. If a lot of your pages are already ranking on Google (page 2-3), it’s easier to get them to page #1 than if you just published the content piece. Local VS global SEO. Ranking locally is (sometimes) easier and faster than ranking globally. That said, some marketing agencies can use “SEO takes time” as an excuse for not driving results. Well, fortunately, there is a way to track SEO results from month #2 - #3 of work. Simply check if your new content pieces/pages are getting more and more impressions on Google Search Console month-to-month. While your content won’t be driving traffic for a while after being published, they’ll still have a growing number of impressions from month #2 or #3 since publication. SEO Tip #3. SEO Might Not Be The Best Channel For You In theory, SEO sounds like the best marketing channel ever. You manage to rank on Google and your marketing seemingly goes on auto-pilot - you’re driving new leads every day from existing content without having to lift a finger… And yet, SEO is not for everyone. Avoid SEO as a marketing channel if: You’re just getting started with your business and need to start driving revenue tomorrow (and not in 1-2 years). If this is you, try Google ads, Facebook ads, or organic marketing. Your target audience is pretty small. If you’re selling enterprise B2B software and have around 2,000 prospects in total worldwide, then it’s simply easier to directly reach out to these prospects. Your product type is brand-new. If customers don’t know your product exists, they probably won’t be Googling it. SEO Tip #4. Traffic Can Be a Vanity Metric I've seen hundreds of websites that drive 6-7 digits of traffic but generate only 200-300 USD per month from those numbers. “What’s the deal?” You might be thinking. “How can you fail to monetize that much traffic?” Well, that brings us to today’s tip: traffic can be a vanity metric. See, not all traffic is created equal. Ranking for “hormone balance supplement” is a lot more valuable than ranking for “Madagascar character names.” The person Googling the first keyword is an adult ready to buy your product. Someone Googling the latter, on the other hand, is a child with zero purchasing power. So, when deciding on which keywords to pursue, always keep in mind the buyer intent behind and don’t go after rankings or traffic just because 6-digit traffic numbers look good. SEO Tip #5. Push Content Fast Whenever you publish a piece of content, you can expect it to rank within 6 months to a year (potentially less if you’re an authority in your niche). So, the faster you publish your content, the faster they’re going to age, and, as such, the faster they’ll rank on Google. On average, I recommend you publish a minimum of 10,000 words of content per month and 20,000 to 30,000 optimally. If you’re not doing link-building for your website, then I’d recommend pushing for even more content. Sometimes, content velocity can compensate for the lack of backlinks. SEO Tip #6. Use Backlink Data to Prioritize Content You might be tempted to go for that juicy, 6-digit traffic cornerstone keyword right from the get-go... But I'd recommend doing the opposite. More often than not, to rank for more competitive, cornerstone keywords, you’ll need to have a ton of supporting content, high-quality backlinks, website authority, and so on. Instead, it’s a lot more reasonable to first focus on the less competitive keywords and then, once you’ve covered those, move on to the rest. Now, as for how to check keyword competitiveness, here are 2 options: Use Mozbar to see the number of backlinks for top-ranking pages, as well as their Domain Authority (DA). If all the pages ranking on page #1 have <5 backlinks and DA of 20 - 40, it’s a good opportunity. Use SEMrush or Ahrefs to sort your keywords by difficulty, and focus on the less difficult keywords first. Now, that said, keep in mind that both of these metrics are third-party, and hence not always accurate. SEO Tip #7. Always Start With Competitive Analysis When doing keyword research, the easiest way to get started is via competitive analysis. Chances are, whatever niche you’re in, there’s a competitor that is doing great with SEO. So, instead of having to do all the work from scratch, run their website through SEMrush or Ahrefs and steal their keyword ideas. But don’t just stop there - once you’ve borrowed keyword ideas from all your competitors, run the seed keywords through a keyword research tool such as UberSuggest or SEMrush Keyword Magic Tool. This should give you dozens of new ideas that your competitors might’ve missed. Finally, don’t just stop at borrowing your competitor’s keyword ideas. You can also borrow some inspiration on: The types of graphics and images you can create to supplement your blog content. The tone and style you can use in your articles. The type of information you can include in specific content pieces. SEO Tip #8. Source a LOT of Writers Content writing is one of those professions that has a very low barrier to entry. Anyone can take a writing course, claim to be a writer, and create an UpWork account… This is why 99% of the writers you’ll have to apply for your gigs are going to be, well, horrible. As such, if you want to produce a lot of content on the reg, you’ll need to source a LOT of writers. Let’s do the math: If, by posting a job ad, you source 100 writers, you’ll see that only 5 of them are a good fit. Out of the 5 writers, 1 has a very high rate, so they drop out. Another doesn’t reply back to your communication, which leaves you with 3 writers. You get the 3 writers to do a trial task, and only one turns out to be a good fit for your team. Now, since the writer is freelance, the best they can do is 4 articles per month for a total of 5,000-words (which, for most niches, ain’t all that much). So, what we’re getting at here is, to hire quality writers, you should source a LOT of them. SEO Tip #9. Create a Process for Filtering Writers If you follow the previous tip, you'll end up with a huge database of hundreds of writers. This creates a whole new problem: You now have a database of 500+ writers waiting for you to sift through them and decide which ones are worth the hire. It would take you 2-3 days of intense work to go through all these writers and vet them yourself. Let’s be real - you don’t have time for that. Here’s what you can do instead: When sourcing writers, always get them to fill in a Google form (instead of DMing or emailing you). In this form, make sure to ask for 3 relevant written samples, a link to the writer’s portfolio page, and the writer’s rate per word. Create a SOP for evaluating writers. The criteria for evaluation should be: Level of English. Does the writer’s sample have any English mistakes? If so, they’re not a good fit. Quality of Samples. Are the samples long-form and engaging content or are they boring 500-word copy-pastes? Technical Knowledge. Has the writer written about a hard-to-explain topic before? Anyone can write about simple topics like traveling—you want to look for someone who knows how to research a new topic and explain it in a simple and easy-to-read way. If someone’s written about how to create a perfect cover letter, they can probably write about traveling, but the opposite isn’t true. Get your VA to evaluate the writer’s samples as per the criteria above and short-list writers that seem competent. If you sourced 500 writers, the end result of this process should be around 50 writers. You or your editor goes through the short-list of 50 writers and invites 5-10 for a (paid) trial task. The trial task is very important - you’ll sometimes find that the samples provided by the writer don’t match their writing level. SEO Tip #10. Use the Right Websites to Find Writers Not sure where to source your writers? Here are some ideas: ProBlogger \- Our #1 choice - a lot of quality writers frequent this website. LinkedIn \- You can headhunt content writers in specific locations. Upwork \- If you post a content gig, most writers are going to be awful. Instead, I recommend headhunting top writers instead. WeWorkRemotely \- Good if you’re looking to make a full-time remote hire. Facebook \- There are a ton of quality Facebook groups for writers. Some of our faves are Cult of Copy Job Board and Content Marketing Lounge. SEO Tip #11. Always Use Content Outlines When giving tasks to your writing team, you need to be very specific about the instructions you give them. Don’t just provide a keyword and tell them to “knock themselves out.” The writer isn’t a SEO expert; chances are, they’re going to mess it up big-time and talk about topics that aren’t related to the keyword you’re targeting. Instead, when giving tasks to writers, do it through content outlines. A content outline, in a nutshell, is a skeleton of the article they’re supposed to write. It includes information on: Target word count (aim for the same or 50% more the word count than that of the competition). Article title. Article structure (which sections should be mentioned and in what order). Related topics of keywords that need to be mentioned in the article. Content outline example in the URL in the post intro. SEO Tip #12. Focus on One Niche at a Time I used to work with this one client that had a SaaS consisting of a mixture of CRM, Accounting Software, and HRS. I had to pick whether we were going to focus on topics for one of these 3 niches or focus on all of them at the same time. I decided to do the former. Here’s why: When evaluating what to rank, Google considers the authority of your website. If you have 60 articles about accounting (most of which link to each other), you’re probably an authority in the niche and are more likely to get good rankings. If you have 20 sales, 20 HR, and 20 accounting articles, though, none of these categories are going to rank as well. It always makes more sense to first focus on a single niche (the one that generates the best ROI for your business), and then move on to the rest. This also makes it easier to hire writers - you hire writers specialized in accounting, instead of having to find writers who can pull off 3 unrelated topics. SEO Tip #13. Just Hire a VA Already It’s 2021 already guys—unless you have a virtual assistant, you’re missing out big-time. Since a lot of SEO tasks are very time-consuming, it really helps to have a VA around to take over. As long as you have solid SOPs in place, you can hire a virtual assistant, train them, and use them to free up your time. Some SEO tasks virtual assistants can help with are: Internal linking. Going through all your blog content and ensuring that they link to each other. Backlink prospecting. Going through hundreds of websites daily to find link opportunities. Uploading content on WordPress and ensuring that the content is optimized well for on-page SEO. SEO Tip #14. Use WordPress (And Make Your Life Easier) Not sure which CMS platform to use? 99% of the time, you’re better off with WordPress. It has a TON of plugins that will make your life easier. Want a drag & drop builder? Use Elementor. It’s cheap, efficient, extremely easy to learn, and comes jam-packed with different plugins and features. Wix, SiteGround, and similar drag & drops are pure meh. SEO Tip #15. Use These Nifty WordPress Plugins There are a lot of really cool WordPress plugins that can make your (SEO) life so much easier. Some of our favorites include: RankMath. A more slick alternative to YoastSEO. Useful for on-page SEO. Smush. App that helps you losslessly compress all images on your website, as well as enables lazy loading. WP Rocket. This plugin helps speed up your website pretty significantly. Elementor. Not a techie? This drag & drop plugin makes it significantly easier to manage your website. WP Forms. Very simple form builder. Akismet Spam Protection. Probably the most popular anti-spam WP plugin. Mammoth Docx. A plugin that uploads your content from a Google doc directly to WordPress. SEO Tip #16. No, Voice Search Is Still Not Relevant Voice search is not and will not be relevant (no matter what sensationalist articles might say). Sure, it does have its application (“Alexa, order me toilet paper please”), but it’s pretty niche and not relevant to most SEOs. After all, you wouldn’t use voice search for bigger purchases (“Alexa, order me a new laptop please”) or informational queries (“Alexa, teach me how to do accounting, thanks”). SEO Tip #17. SEO Is Obviously Not Dead I see these articles every year - “SEO is dead because I failed to make it work.” SEO is not dead and as long as there are people looking up for information/things online, it never will be. And no, SEO is not just for large corporations with huge budgets, either. Some niches are hypercompetitive and require a huge link-building budget (CBD, fitness, VPN, etc.), but they’re more of an exception instead of the rule. SEO Tip #18. Doing Local SEO? Focus on Service Pages If you’re doing local SEO, you’re better off focusing on local service pages than blog content. E.g. if you’re an accounting firm based in Boston, you can make a landing page about /accounting-firm-boston/, /tax-accounting-boston/, /cpa-boston/, and so on. Or alternatively, if you’re a personal injury law firm, you’d want to create pages like /car-accident-law-firm/, /truck-accident-law-firm/, /wrongful-death-law-firm/, and the like. Thing is, you don’t really need to rank on global search terms—you just won’t get leads from there. Even if you ranked on the term “financial accounting,” it wouldn’t really matter for your bottom line that much. SEO Tip #19. Engage With the SEO Community The SEO community is (for the most part) composed of extremely helpful and friendly people. There are a lot of online communities (including this sub) where you can ask for help, tips, case studies, and so on. Some of our faves are: This sub :) SEO Signals Lab (FB Group) Fat Graph Content Ops (FB Group) Proper SEO Group (FB Group) BigSEO Subreddit SEO Tip #20. Test Keywords Before Pursuing Them You can use Google ads to test how profitable any given keyword is before you start trying to rank for it. The process here is: Create a Google Ads account. Pick a keyword you want to test. Create a landing page that corresponds to the search intent behind the keyword. Allocate an appropriate budget. E.g. if you assume a conversion rate of 2%, you’d want to buy 100+ clicks. If the CPC is 2 USD, then the right budget would be 200 USD plus. Run the ads! If you don’t have the budget for this, you can still use the average CPC for the keyword to estimate how well it’s going to convert. If someone is willing to bid 10 USD to rank for a certain keyword, it means that the keyword is most probably generating pretty good revenue/conversions. SEO Tip #21. Test & Improve SEO Headlines Sometimes, you’ll see that you’re ranking in the top 3 positions for your search query, but you’re still not driving that much traffic. “What’s the deal?” you might be asking. Chances are, your headline is not clickable enough. Every 3-4 months, go through your Google Search Console and check for articles that are ranking well but not driving enough traffic. Then, create a Google sheet and include the following data: Targeted keyword Page link CTR (for the last 28 days) Date when you implemented the new title Old title New title New CTR (for the month after the CTR change was implemented) From then on, implement the new headline and track changes in the CTR. If you don’t reach your desired result, you can always test another headline. SEO Tip #22. Longer Content Isn’t Always Better Content You’ve probably heard that long-form content is where it’s at in 2021. Well, this isn’t always the case. Rather, this mostly depends on the keyword you’re targeting. If, for example, you’re targeting the keyword “how to tie a tie,” you don’t need a long-ass 5,000-word mega-guide. In such a case, the reader is looking for something that can be explained in 200-300 words and if your article fails to do this, the reader will bounce off and open a different page. On the other hand, if you’re targeting the keyword “how to write a CV,” you’ll need around 4,000 to 5,000 words to adequately explain the topic and, chances are, you won’t rank with less. SEO Tip #23. SEO is Not All About Written Content More often than not, when people talk about SEO they talk about written blog content creation. It’s very important not to forget, though, that blog content is not end-all-be-all for SEO. Certain keywords do significantly better with video content. For example, if the keyword is “how to do a deadlift,” video content is going to perform significantly better than blog content. Or, if the keyword is “CV template,” you’ll see that a big chunk of the rankings are images of the templates. So, the lesson here is, don’t laser-focus on written content—keep other content mediums in mind, too. SEO Tip #24. Write For Your Audience It’s very important that your content resonates well with your target audience. If, for example, you’re covering the keyword “skateboard tricks,” you can be very casual with your language. Heck, it’s even encouraged! Your readers are Googling the keyword in their free time and are most likely teens or in their early 20s. Meaning, you can use informal language, include pop culture references, and avoid complicated language. Now, on the other hand, if you’re writing about high-level investment advice, your audience probably consists of 40-something suit-and-ties. If you include Rick & Morty references in your article, you'll most likely lose credibility and the Googler, who will go to another website. Some of our best tips on writing for your audience include: Define your audience. Who’s the person you’re writing for? Are they reading the content at work or in their free time? Keep your reader’s level of knowledge in mind. If you’re covering an accounting 101 topic, you want to cover the topic’s basics, as the reader is probably a student. If you’re writing about high-level finance, though, you don’t have to teach the reader what a balance sheet is. More often than not, avoid complicated language. The best practice is to write on a 6th-grade level, as it’s understandable for anyone. Plus, no one wants to read Shakespeare when Googling info online (unless they’re looking for Shakespeare's work, of course). SEO Tip #25. Create Compelling Headlines Want to drive clicks to your articles? You’ll need compelling headlines. Compare the following headline: 101 Productivity Tips \[To Get Things Done in 2021\] With this one: Productivity Tips Guide Which one would you click? Data says it’s the first! To create clickable headlines, I recommend you include the following elements: Keyword. This one’s non-negotiable - you need to include the target keyword in the headline. Numbers. If Buzzfeed taught us anything, it’s that people like to click articles with numbers in their titles. Results. If I read your article, what’s going to be the end result? E.g. “X Resume tips (to land the job)”.* Year (If Relevant). Adding a year to your title shows that the article is recent (which is relevant for some specific topics). E.g. If the keyword is “Marketing Trends,” I want to know marketing trends in 2021, not in 2001. So, adding a year in the title makes the headline more clickable. SEO Tip #26. Make Your Content Visual How good your content looks matters, especially if you're in a competitive niche. Here are some tips on how to make your content as visual as possible: Aim for 2-4 sentences per paragraph. Avoid huge blocks of text. Apply a 60-65% content width to your blog pages. Pick a good-looking font. I’d recommend Montserrat, PT Sans, and Roboto. Alternatively, you can also check out your favorite blogs, see which fonts they’re using, and do the same. Use a reasonable font size. Most top blogs use font sizes ranging from 16 pt to 22 pt. Add images when possible. Avoid stock photos, though. No one wants to see random “office people smiling” scattered around your blog posts. Use content boxes to help convey information better. Content boxes example in the URL in the intro of the post. SEO Tip #27. Ditch the Skyscraper Technique Already Brian Dean’s skyscraper technique is awesome and all, but the following bit really got old: “Hey \[name\], I saw you wrote an article. I, too, wrote an article. Please link to you?” The theory here is, if your content is good, the person will be compelled to link to it. In practice, though, the person really, really doesn’t care. At the end of the day, there’s no real incentive for the person to link to your content. They have to take time out of their day to head over to their website, log in to WordPress, find the article you mentioned, and add a link... Just because some stranger on the internet asked them to. Here’s something that works much better: Instead of fake compliments, be very straightforward about what you can offer them in exchange for that link. Some things you can offer are: A free version of your SaaS. Free product delivered to their doorstep. Backlink exchange. A free backlink from your other website. Sharing their content to your social media following. Money. SEO Tip #28. Get the URL Slug Right for Seasonal Content If you want to rank on a seasonal keyword, there are 2 ways to do this. If you want your article to be evergreen (i.e. you update it every year with new information), then your URL should not contain the year. E.g. your URL would be /saas-trends/, and you simply update the article’s contents+headline each year to keep it timely. If you’re planning on publishing a new trends report annually, though, then you can add a year to the URL. E.g. /saas-trends-2020/ instead of /saas-trends/. SEO Tip #29. AI Content Tools Are a Mixed Bag Lots of people are talking about AI content tools these days. Usually, they’re either saying: “AI content tools are garbage and the output is horrible,” Or: “AI content tools are a game-changer!” So which one is it? The truth is somewhere in-between. In 2021, AI content writing tools are pretty bad. The output you’re going to get is far from something you can publish on your website. That said, some SEOs use such tools to get a very, very rough draft of the article written, and then they do intense surgery on it to make it usable. Should you use AI content writing tools? If you ask me, no - it’s easier to hire a proficient content writer than spend hours salvaging AI-written content. That said, I do believe that such tools are going to get much better years down the line. This one was, clearly, more of a personal opinion than a fact. I’d love to hear YOUR opinion on AI content tools! Are they a fad, or are they the future of content creation? Let me know in the comments. SEO Tip #30. Don’t Overdo it With SEO Tools There are a lot of SEO tools out there for pretty much any SEO function. Keyword research, link-building, on-page, outreach, technical SEO, you name it! If you were to buy most of these tools for your business, you’d easily spend 4-figures on SEO tools per month. Luckily, though, you don’t actually need most of them. At the end of the day, the only must-have SEO tools are: An SEO Suite (Paid). Basically SEMrush or Ahrefs. Both of these tools offer an insane number of features - backlink analysis, keyword research, and a ton of other stuff. Yes, 99 USD a month is expensive for a tool. But then again, if you value your time 20 USD/hour and this tool saves you 6 hours, it's obviously worth it, right? On-Page SEO Tool (Free). RankMath or Yoast. Basically, a tool that's going to help you optimize web pages or blog posts as per SEO best practices. Technical SEO Tool (Freemium). You can use ScreamingFrog to crawl your entire website and find technical SEO problems. There are probably other tools that also do this, but ScreamingFrog is the most popular option. The freemium version of the tool only crawls a limited number of pages (500 URLs, to be exact), so if your website is relatively big, you'll need to pay for the tool. Analytics (Free). Obviously, you'll need Google Analytics (to track website traffic) and Google Search Console (to track organic traffic, specifically) set up on your website. Optionally, you can also use Google Track Manager to better track how your website visitors interact with the site. MozBar (Free). Chrome toolbar that lets you simply track the number of backlinks on Google Search Queries, Domain Authority, and a bunch of other stuff. Website Speed Analysis (Free). You can use Google Page Speed Insights to track how fast your website loads, as well as how mobile-friendly it is. Outreach Tool (Paid). Tool for reaching out to prospects for link-building, guest posting, etc. There are about a dozen good options for this. Personally, I like to use Snov for this. Optimized GMB Profile (Free). Not a tool per se, but if you're a local business, you need to have a well-optimized Google My Business profile. Google Keyword Planner (Free). This gives you the most reliable search volume data of all the tools. So, when doing keyword research, grab the search volume from here. Tool for Storing Keyword Research (Free). You can use Google Sheets or AirTable to store your keyword research and, at the same time, use it as a content calendar. Hemingway App (Free). Helps keep your SEO content easy to read. Spots passive voice, complicated words, etc. Email Finder (Freemium). You can use a tool like Hunter to find the email address of basically anyone on the internet (for link-building or guest posting purposes). Most of the tools that don’t fit into these categories are 100% optional. SEO Tip #31. Hiring an SEO? Here’s How to Vet Them Unless you’re an SEO pro yourself, hiring one is going to be far from easy. There’s a reason there are so many “SEO experts” out there - for the layman, it’s very hard to differentiate between someone who knows their salt and a newbie who took an SEO course, like, last week. Here’s how you can vet both freelance and full-time SEOs: Ask for concrete traffic numbers. The SEO pro should give you the exact numbers on how they’ve grown a website in the past - “100% SEO growth in 1 year” doesn’t mean much if the growth is from 10 monthly traffic to 20. “1,000 to 30,000” traffic, on the other hand, is much better. Ask for client names. While some clients ask their SEOs to sign an NDA and not disclose their collaboration, most don’t. If an SEO can’t name a single client they’ve worked with in the past, that’s a red flag. Make sure they have the right experience. Global and local SEO have very different processes. Make sure that the SEO has experience with the type of SEO you need. Make sure you’re looking for the right candidate. SEO pros can be content writers, link-builders, web developers, or all of the above simultaneously. Make sure you understand which one you need before making the hire. If you’re looking for someone to oversee your content ops, you shouldn’t hire a technical SEO expert. Look for SEO pros in the right places. Conventional job boards are overrated. Post your job ads on SEO communities instead. E.g. this sub, bigseo, SEO Signals Facebook group, etc. SEO Tip #32. Blog Post Not Ranking? Follow This Checklist I wanted to format the post natively for Reddit, but it’s just SO much better on Notion. Tl;dr, the checklist covers every reason your post might not be ranking: Search intent mismatch. Inferior content. Lack of internal linking. Lack of backlinks. And the like. Checklist URL at the intro of the post. SEO Tip #33. Avoid BS Link-Building Tactics The only type of link-building that works is building proper, quality links from websites with a good backlink profile and decent organic traffic. Here’s what DOESN’T work: Blog comment links Forum spam links Drive-by Reddit comment/post links Web 2.0 links Fiverr “100 links for 10 bucks” bs If your “SEO agency” says they’re doing any of the above instead of actually trying to build you links from quality websites, you’re being scammed. SEO Tip #34. Know When to Use 301 and 302 Redirects When doing redirects, it’s very important to know the distinction between these two. 301 is a permanent page redirect and passes on link juice. If you’re killing off a page that has backlinks, it’s better to 301 it to your homepage so that you don’t lose the link juice. If you simply delete a page, it’s going to be a 404, and the backlink juice is lost forever. 302 is a temporary page redirect and doesn’t pass on link juice. If the redirect is temporary, you do a 302. E.g. you want to test how well a new page is going to perform w/ your audience. SEO Tip #35. Social Signals Matter (But Not How You Think) Social signals are NOT a ranking factor. And yet, they can help your content rank on Google’s front page. Wondering what the hell am I talking about? Here’s what’s up: As I said, social signals are not a ranking factor. It’s not something Google takes into consideration to decide whether your article should rank or not. That said, social signals CAN lead to your article ranking better. Let’s say your article goes viral and gets around 20k views within a week. A chunk of these viewers are going to forget your domain/link and they’re going to look up the topic on Google via your chosen keyword + your brand name. The amount of people looking for YOUR keyword and exclusively picking your result over others is going to make Google think that your content is satisfying search intent better than the rest, and thus, reward you with better ranking. SEO Tip #36. Run Remarketing Ads to Lift Organic Traffic Conversions Not satisfied with your conversion rates? You can use Facebook ads to help increase them. Facebook allows you to do something called “remarketing.” This means you can target anyone that visited a certain page (or multiple pages) on your website and serve them ads on Facebook. There are a TON of ways you can take advantage of this. For example, you can target anyone that landed on a high buyer intent page and serve them ads pitching your product or a special offer. Alternatively, you can target people who landed on an educational blog post and offer them something to drive them down the funnel. E.g. free e-book or white paper to teach them more about your product or service. SEO Tip #37. Doing Local SEO? Follow These Tips Local SEO is significantly different from global SEO. Here’s how the two differ (and what you need to do to drive local SEO results): You don’t need to publish content. For 95% of local businesses, you only want to rank for keywords related to your services/products, you don’t actually need to create educational content. You need to focus more on reviews and citation-building. One of Google Maps’ biggest ranking factors is the of reviews your business has. Encourage your customers to leave a review if they enjoyed your product/service through email or real-life communication. You need to create service pages for each location. As a local business, your #1 priority is to rank for keywords around your service. E.g. If you're a personal injury law firm, you want to optimize your homepage for “personal injury law firm” and then create separate pages for each service you provide, e.g. “car accident lawyer,” “motorcycle injury law firm,” etc. Focus on building citations. Being listed on business directories makes your business more trustworthy for Google. BrightLocal is a good service for this. You don’t need to focus as much on link-building. As local SEO is less competitive than global, you don’t have to focus nearly as much on building links. You can, in a lot of cases, rank with the right service pages and citations. SEO Tip #38. Stop Ignoring the Outreach Emails You’re Getting (And Use Them to Build Your Own Links) Got a ton of people emailing you asking for links? You might be tempted to just send them all straight to spam, and I don’t blame you. Outreach messages like “Hey Dr Jigsaw, your article is A+++ amazing! ...can I get a backlink?” can get hella annoying. That said, there IS a better way to deal with these emails: Reply and ask for a link back. Most of the time, people who send such outreach emails are also doing heavy guest posting. So, you can ask for a backlink from a 3rd-party website in exchange for you mentioning their link in your article. Win-win! SEO Tip #39. Doing Internal Linking for a Large Website? This’ll Help Internal linking can get super grueling once you have hundreds of articles on your website. Want to make the process easier? Do this: Pick an article you want to interlink on your website. For the sake of the example, let’s say it’s about “business process improvement.” Go on Google and look up variations of this keyword mentioned on your website. For example: Site:\[yourwebsite\] “improve business process” Site:\[yourwebsite\] “improve process” Site:\[yourwebsite\] “process improvement” The above queries will find you the EXACT articles where these keywords are mentioned. Then, all you have to do is go through them and include the links. SEO Tip #40. Got a Competitor Copying Your Content? File a DMCA Notice Fun fact - if your competitors are copying your website, you can file a DMCA notice with Google. That said, keep in mind that there are consequences for filing a fake notice.

My boss taught me how to build a Failed business (15 lessons)
reddit
LLM Vibe Score0
Human Vibe Score0.091
aminekhThis week

My boss taught me how to build a Failed business (15 lessons)

I'm a senior software developer at a three-year-old startup that has been making $0 in revenue. I've been with this startup since its beginning, and it pays me $1200/month. My boss has broken the records of the number of stupid ideas and stupid features that he asked me to implement. He taught me (unintentionally) all the lessons I should NOT do to build a successful business. From bad product ideas, bad business decisions, not listening to your team, not building what target customers want, and falling in love with your bad product. The product we're working on is a desktop program that moves the cursor with your finger using the webcam (gesture recognition). Why in the world would anyone pay money to move the mouse cursor with his finger? No one knows. My boss watched Iron Man (the film) and saw how Tony Starks do gestures in front of his "advanced" computer and thought it was cool so he asked me to build this for him to sell it to enterprises (then pivoted the target customer to schools). Of course, no one bought this software. All the people he meets tell him it is cool but he never hears from them again. No one on the team, except my boss, thinks this software will succeed. He keeps adding irrelevant features to this software just because he "thinks" people will love it. We added 3D object visualizer, ChatGPT integration, and Quizzes. I suggested moving everything to the cloud and focusing only on improving the education industry by providing solutions that help teachers better prepare their lessons and understand where each student lacks by recording lessons, summarizing them for students, generating quizzes using AI, and analyzing the part that each student didn't understand. However, to do that, we need to forget the part of moving the cursor with fingers because it can be done only on Python, not NextJS. He simply replied, "NO, moving the cursor with fingers is COOL". So here are the lessons I learned from my boss to build a failed business: Never listen to your team. Always build what you think is good and never let anyone from your team say it's a bad idea. Fall in love with your business idea. Don't talk to customers. If no one bought your product, it's because they don't understand how cool it is. If a member of your team say it's a bad idea, ignore them, they don't understand how cool your idea is. Always hire interns because they're free labor and give them the most sensitive parts of the work like payments and databases. Make your business dependant on you. Don't let your team do their job the right way, give them orders to do it YOUR way. Hire experts to tell them what to do not to tell you what to do and how to do it. Never do marketing because people will steal your idea. Ask your team "What you think?" but ignore them. If your wife and children think your product is cool then it's cool. Start a business in an industry that you know nothing about but act like you know everything. If no one is buying your product, keep adding irrelevant features that no one asked for. \--- Edit: I didn't mention all the "stupid" ideas I built for him so here you go: Replacing Zoom, Teams, and Meet meetings with meetings in the metaverse. Target customer: Enterprises. An app that lets you scroll through social media without touching your mobile screen (using gesture recognition). We didn't build this because it's technically impossible to continuously use the phone camera outside your own app. He didn't believe me so asked his friend and told him the same thing. A software that controls the computer with gestures (moving cursor, single click, double click, ALT Tab...). Target customers: Enterprises Building a classroom in Decentraland (metaverse) to replace classes through Zoom and Teams He told me to build the startup website but to not make the home page the first page a user lands on when he opens the website. He wants to make the visitor lands on another "almost" empty page and if the user wants to go to the home page he should click on "Home" in the navbar.

Started a content marketing agency 8 years ago - $0 to $7,863,052 (2025 update)
reddit
LLM Vibe Score0
Human Vibe Score0.882
mr_t_forhireThis week

Started a content marketing agency 8 years ago - $0 to $7,863,052 (2025 update)

Hey friends, My name is Tyler and for the past 8 years, I’ve been documenting my experience building a content marketing agency called Optimist. Year 1 — 0 to $500k ARR Year 2 — $500k to $1MM ARR Year 3 — $1MM ARR to $1.5MM(ish) ARR Year 4 — $3,333,686 Revenue Year 5 — $4,539,659 Revenue Year 6 — $5,974,324 Revenue Year 7 - $6,815,503 Revenue (Edit: Seems like links are banned now. You can check my post history for all of my previous updates with lessons and learnings.) How Optimist Works First, an overview/recap of the Optimist business model: We operate as a “collective” of full time/professional freelancers Everyone aside from me is a contractor Entirely remote/distributed team We pay freelancers a flat fee for most work, working out to roughly $65-100/hour. Clients pay us a flat monthly fee for full-service content marketing (research, strategy, writing, editing, design/photography, reporting and analytics, targeted linkbuilding, and more)\ Packages range in price from \~$10-20k/mo \This is something we are revisiting now* The Financials In 2024, we posted $1,032,035.34 in revenue. This brings our lifetime revenue to $7,863,052. Here’s our monthly revenue from January 2017 to December of 2024. (Edit: Seems like I'm not allowed to link to the chart.) The good news: Revenue is up 23% YoY. EBITDA in Q4 trending up 1-2 points. We hosted our first retreat in 4 years, going to Ireland with about half the team. The bad news: Our revenue is still historically low. At $1MM for the year, we’re down about 33% from our previous years over $1.5MM. Revenue has been rocky. It doesn’t feel like we’ve really “recovered” from the bumps last year. The trend doesn’t really look great. Even though, anecdotally, it feels like we are moving in a good direction. EBITDA is still hovering at around 7%. Would love to get that closer to 20%. (For those who may ask: I’m calculating EBITDA after paying taxes and W2 portion of my income.) — Almost every year, my update starts the same way: This has been a year of growth and change. Both for my business—and me personally. 2024 was no different. I guess that tells you something about entrepreneurship. It’s a lot more like sailing a ship than driving a car. You’re constantly adapting, tides are shifting, and any blip of calm is usually just a moment before the next storm. As with past years, there’s a lot to unpack from the last 12 months. Here we go again. Everything is Burning In the last 2 years, everything has turned upside down in the world of content and SEO. Back in 2020, we made a big decision to re-position the agency. (See post history) We decided to narrow our focus to our most successful, profitable, and consistent segment of clients and re-work our entire operation to focus on serving them. We defined our ICP as: \~Series A ($10mm+ funding) with 6-12 months runway to scale organic as a channel Product-led company with “simple” sales cycle involving fewer stakeholders Demonstrable opportunity to use SEO to drive business growth Our services: Content focused on growing organic search (SEO) Full-service engagements that included research, planning, writing, design, reporting And our engagement structure: Engaged directly with an executive; ownership over strategy and day-to-day execution 1-2 points of contact or stakeholders Strategic partner that drives business growth (not a service vendor who makes content) Most importantly, we decided that we were no longer going to offer a broader range of content that we used to sell. That included everything from thought leadership content to case studies and ebooks. We doubled-down on “SEO content” for product-led SaaS companies. And this worked phenomenally for us. We started bringing on more clients than ever. We developed a lot of internal system and processes that helped us scale and take on more work than we’ve ever had and drive great outcomes for our ideal clients. But in 2023 and 2024, things started going awry. One big change, of course, was the rise of AI. Many companies and executives (and writers) feel that AI can write content just as well as an agency like ours. That made it a lot harder to sell a $10,000 per month engagement when they feel like the bulk of the work could be “done for free.” (Lots of thoughts on this if you want my opinions.) But it wasn’t just that. Google also started tinkering with their algorithm, introducing new features like AI Overviews, and generally changing the rules of the game. This created 3 big shifts in our world: The perceived value of content (especially “SEO content”) dropped dramatically in many people’s minds because of AI’s writing capabilities SEO became less predictable as a source of traffic and revenue It’s harder than ever for startups and smaller companies to rank for valuable keywords (let alone generate any meaningful traffic or revenue from them) The effect? The middle of the content market has hollowed out. People—like us—providing good, human-crafted content aimed on driving SEO growth saw a dramatic decline in demand. We felt it all year. Fewer and fewer leads. The leads we did see usually scoffed at our prices. They were indexing us against the cost of content mills and mass-produced AI articles. It was a time of soul-searching and looking for a way forward. I spent the first half of the year convinced that the only way to survive was to run toward the fire. We have to build our own AI workflows. We have to cut our rates internally. We have to get faster and cheaper to stay competitive with the agencies offering the same number of deliverables for a fraction of our rates. It’s the only way forward. But then I asked myself a question… Is this the game I actually want to play? As an entrepreneur, do I want to run a business where I’m competing mostly on price and efficiency rather than quality and value? Do I want to hop into a race toward cheaper and cheaper content? Do I want to help people chase a dwindling amount of organic traffic that’s shrinking in value? No. That’s not the game I want to play. That’s not a business I want to run. I don’t want to be in the content mill business. So I decided to turn the wheel—again. Repositioning Part II: Electric Boogaloo What do you do when the whole world shifts around you and the things that used to work aren’t working anymore? You pivot. You re-position the business and move in another direction. So that’s what we decided to do. Again. There was only one problem: I honestly wasn’t sure what opportunities existed in the content marketing industry outside of what we were already doing. We lived in a little echo chamber of startups and SEO. It felt like the whole market was on fire and I had fight through the smoke to find an escape hatch. So I started making calls. Good ol’ fashioned market research. I reached out to a few dozen marketing and content leaders at a bunch of different companies. I got on the phone and just asked lots of questions about their content programs, their goals, and their pain points. I wanted to understand what was happening in the market and how we could be valuable. And, luckily, this process really paid off. I learned a lot about the fragmentation happening across content and how views were shifting. I noticed key trends and how our old target market really wasn’t buying what we were selling. Startups and small companies are no longer willing to invest in an agency like ours. If they were doing content and SEO at all, they were focused entirely on using AI to scale output and minimize costs. VC money is still scarce and venture-backed companies are more focused on profitability than pure growth and raising another round. Larger companies (\~500+ employees) are doing more content than ever and drowning in content production. They want to focus on strategy but can barely tread water keeping up with content requests from sales, demand gen, the CEO, and everyone else. Many of the companies still investing in content are looking at channels and formats outside of SEO. Things like thought leadership, data reports, interview-driven content, and more. They see it as a way to stand out from the crowd of “bland SEO content.” Content needs are constantly in flux. They range from data reports and blog posts to product one-pagers. The idea of a fixed-scope retainer is a total mismatch for the needs of most companies. All of this led to the logical conclusion: We were talking to the wrong people about the wrong things\.\ Many companies came to one of two logical conclusions: SEO is a risky bet, so it’s gotta be a moonshot—super-low cost with a possibility for a big upside (i.e., use AI to crank out lots of content. If it works, great. If it doesn’t, then at least we aren’t out much money.) SEO is a risky bet, so we should diversify into other strategies and channels to drive growth (i.e., shift our budget from SEO and keyword-focused content to video, podcasts, thought leadership, social, etc) Unless we were going to lean into AI and dramatically cut our costs and rates, our old buyers weren’t interested. And the segment of the market that needs our help most are looking primarily for production support across a big range of content types. They’re not looking for a team to run a full-blown program focused entirely on SEO. So we had to go back to the drawing board. I’ve written before about our basic approach to repositioning the business. But, ultimately it comes down to identifying our unique strengths as a team and then connecting them to needs in the market. After reviewing the insights from my discussions and taking another hard look at our business and our strengths, I decided on a new direction: Move upmarket: Serve mid-size to enterprise businesses with \~500-5,000 employees instead of startups Focus on content that supports a broader range of business goals instead of solely on SEO and organic growth (e.g., sales, demand gen, brand, etc) Shift back to our broader playbook of content deliverables, including thought leadership, data studies, and more Focus on content execution and production to support an internally-directed content strategy across multiple functions In a way, it’s sort of a reverse-niche move. Rather than zooming in specifically on driving organic growth for startups, we want to be more of an end-to-end content production partner that solves issues of execution and operations for all kinds of content teams. It’s early days, but the response here has been promising. We’ve seen an uptick in leads through Q4. And more companies in our pipeline fit the new ICP. They’re bigger, often have more budget. (But they move more slowly). We should know by the end of the quarter if this maneuver is truly paying off. Hopefully, this will work out. Hopefully our research and strategy are right and we’ll find a soft landing serving a different type of client. If it doesn’t? Then it will be time to make some harder decisions. As I already mentioned, I’m not interested in the race to the bottom of AI content. And if that’s the only game left in town, then it might be time to think hard about a much bigger change. — To be done: Build new content playbooks for expanded deliverables Build new showcase page for expanded deliverables Retooling the Operation It’s easy to say we’re doing something new. It’s a lot harder to actually do it—and do it well. Beyond just changing our positioning, we have to do open-heart surgery on the entire content operation behind the scenes. We need to create new systems that work for a broader range of content types, formats, and goals. Here’s the first rub: All of our workflows are tooled specifically for SEO-focused content. Every template, worksheet, and process that we’ve built and scaled in the last 5 years assumes that the primary goal of every piece of content is SEO. Even something as simple as requiring a target keyword is a blocker in a world where we’re not entirely focused on SEO. This is relatively easy to fix, but it requires several key changes: Update content calendars to make keywords optional Update workflows to determine whether we need an optimization report for each deliverable Next, we need to break down the deliverables into parts rather than a single line item. In our old system, we would plan content as a single row in a Content Calendar spreadsheet. It was a really wide sheet with lots of fields where we’d define the dimensions of each individual article. This was very efficient and simple to follow. But every article had the same overall scope when it came to the workflow. In Asana (our project management tool), all of the steps in the creation were strung together in a single task. We would create a few basic templates for each client, and then each piece would flow through the same steps: Briefing Writing Editing Design etc. If we had anything that didn’t fit into the “standard” workflow, we’d just tag it in the calendar with an unofficial notation \[USING BRACKETS\]. It worked. But it wasn’t ideal. Now we need the steps to be more modular. Imagine, for example, a client asks us to create a mix of deliverables: 1 article with writing + design 1 content brief 1 long-form ebook with an interview + writing + design Each of these would require its own steps and its own workflow. We need to break down the work to accommodate for a wider variety of workflows and variables. This means we need to update the fields and structure of our calendar to accommodate for the new dimensions—while also keeping the planning process simple and manageable. This leads to the next challenge: The number of “products” that we’re offering could be almost infinite. Just looking at the example scope above, you can mix and match all of these different building blocks to create a huge variety of different types of work, each requiring its own workflow. This is part of the reason we pivoted away from this model to focus on a productized, SEO-focused content service back in 2020. Take something as simple as a case study. On the surface, it seems like one deliverable that can be easily scoped and priced, right? Well, unpack what goes into a case study: Is there already source material from the customer or do we need to conduct an interview? How long is it? Is it a short overview case study or a long-form narrative? Does it need images and graphics? How many? Each of these variables opens up 2-3 possibilities. And when you combine them, we end up with something like 10 possible permutations for this single type of deliverable. It gets a bit messy. But not only do we have to figure out how to scope and price all for all of these variables, we also have to figure out how to account for these variables in the execution. We have to specify—for every deliverable—what type it is, how long, which steps are involved and not involved, the timeline for delivery, and all of the other factors. We’re approaching infinite complexity, here. We have to figure out a system that allows for a high level of flexibility to serve the diverse needs of our clients but is also productized enough that we can build workflows, process, and templates to deliver the work. I’ve spent the last few months designing that system. Failed Attempt #1: Ultra-Productization In my first pass, I tried to make it as straight forward as possible. Just sit down, make a list of all of the possible deliverables we could provide and then assign them specific scopes and services. Want a case study? Okay that’ll include an interview, up to 2,000 words of content, and 5 custom graphics. It costs $X. But this solution quickly fell apart when we started testing it against real-world scenarios. What if the client provided the brief instead of us creating one? What if they didn’t want graphics? What if this particular case study really needs to be 3,000 words but all of the others should be 2,000? In order for this system to work, we’d need to individual scope and price all of these permutations of each productized service. Then we’d need to somehow keep track of all of these and make sure that we accurately scope, price, and deliver them across dozens of clients. It’s sort of like a restaurant handling food allergies by creating separate versions of every single dish to account for every individual type of allergy. Most restaurants have figured out that it makes way more sense to have a “standard” and an “allergy-free” version. Then you only need 2 options to cover 100% of the cases. Onto the next option. Failed Attempt #2: Deliverable-Agnostic Services Next, I sat down with my head of Ops, Katy, to try to map it out. We took a big step back and said: Why does the deliverable itself even matter? At the end of the day, what we’re selling is just a few types of work (research, writing, editing, design, etc) that can be packaged up in an infinite number of ways. Rather than try to define deliverables, shouldn’t we leave it open ended for maximum flexibility? From there, we decided to break down everything into ultra-modular building blocks. We started working on this super complex system of modular deliverables where we would have services like writing, design, editing, etc—plus a sliding scale for different scopes like the length of writing or the number of images. In theory, it would allow us to mix and match any combination of services to create custom deliverables for the client. In fact, we wanted the work to be deliverable-agnostic. That way we could mold it to fit any client’s needs and deliver any type of content, regardless of the format or goal. Want a 5,000-word case study with 15 custom graphics? That’ll be $X. Want a 2,000-word blog post with an interview and no visuals? $Y. Just want us to create 10 briefs, you handle the writing, and we do design? It’s $Z. Again, this feels like a reasonable solution. But it quickly spiraled out of amuck. (That’s an Office reference.) For this to work, we need to have incredibly precise scoping process for every single deliverable. Before we can begin work (or even quote a price), we need to know pretty much the exact word count of the final article, for example. In the real world? This almost never happens. The content is as long as the content needs to be. Clients rarely know if the blog post should be 2,000 words or 3,000 words. They just want good content. We have a general ballpark, but we can rarely dial it in within just 1,000 words until we’ve done enough research to create the brief. Plus, from a packaging and pricing perspective, it introduces all kind of weird scenarios where clients will owe exactly $10,321 for this ultra-specific combination of services. We were building an open system that could accommodate any and all types of potential deliverables. On the face that seems great because it makes us incredibly flexible. In reality, the ambiguity actually works against us. It makes it harder for us to communicate to clients clearly about what they’ll get, how much it will cost, and how long it will take. That, of course, also means that it hurts our client relationships. (This actually kind of goes back to my personal learnings, which I’ll mention in a bit. I tend to be a “let’s leave things vague so we don’t have to limit our options” kind of person. But I’m working on fixing this to be more precise, specific, and clear in everything that we do.) Dialing It In: Building a Closed System We were trying to build an open system. We need to build a closed system. We need to force clarity and get specific about what we do, what we don’t do, and how much it all costs. Then we need a system to expand on that closed system—add new types of deliverables, new content playbooks, and new workflows if and when the need arises. With that in mind, we can start by mapping out the key dimensions of any type of deliverable that we would ever want to deliver. These are the universal dimensions that determine the scope, workflow, and price of any deliverable—regardless of the specific type output. Dimensions are: Brief scope Writing + editing scope Design scope Interview scope Revision (rounds) Scope, essentially, just tells us how many words, graphics, interviews, etc are required for the content we’re creating. In our first crack at the system, we got super granular with these scopes. But to help force a more manageable system, we realized that we didn’t need tiny increments for most of this work. Instead, we just need boundaries—you pay $X for up to Y words. We still need some variability around the scope of these articles. Obviously, most clients won’t be willing to pay the same price for a 1,000-word article as a 10,000-word article. But we can be smarter about the realistic break points. We boiled it down to the most common ranges: (Up to) 250 words 1,000 words 3,000 words 6,000 words 10,000 words This gives us a much more manageable number of variables. But we still haven’t exactly closed the system. We need one final dimension: Deliverable type. This tells us what we’re actually building with these building blocks. This is how we’ll put a cap on the potentially infinite number of combinations we could offer. The deliverable type will define what the final product should look like (e.g., blog post, case study, ebook, etc). And it will also give us a way to put standards and expectations around different types of deliverables that we want to offer. Then we can expand on this list of deliverables to offer new services. In the mean time, only the deliverables that we have already defined are, “on the menu,” so to speak. If a client comes to us and asks for something like a podcast summary article (which we don’t currently offer), we’ll have to either say we can’t provide that work or create a new deliverable type and define the dimensions of that specific piece. But here’s the kicker: No matter the deliverable type, it has to still fit within the scopes we’ve already defined. And the pricing will be the same. This means that if you’re looking for our team to write up to 1,000 words of content, it costs the same amount—whether it’s a blog post, an ebook, a LinkedIn post, or anything else. Rather than trying to retool our entire system to offer this new podcast summary article deliverable, we’ll just create the new deliverable type, add it to the list of options, and it’s ready to sell with the pre-defined dimensions we’ve already identified. To do: Update onboarding workflow Update contracts and scope documents Dial in new briefing process Know Thyself For the last year, I’ve been going through personal therapy. (Huge shout out to my wife, Laura, for her support and encouragement throughout the process.) It’s taught me a lot about myself and my tendencies. It’s helped me find some of my weaknesses and think about how I can improve as a person, as a partner, and as an entrepreneur. And it’s forced me to face a lot of hard truths. For example, consider some of the critical decisions I’ve made for my business: Unconventional freelance “collective” model No formal management structure Open-ended retainers with near-infinite flexibility General contracts without defined scope “Take it or leave it” approach to sales and marketing Over the years, I’ve talked about almost everything on this list as a huge advantage. I saw these things as a reflection of how I wanted to do things differently and better than other companies. But now, I see them more as a reflection of my fears and insecurities. Why did I design my business like this? Why do I want so much “flexibility” and why do I want things left open-ended rather than clearly defined? One reason that could clearly explain it: I’m avoidant. If you’re not steeped in the world of therapy, this basically means that my fight or flight response gets turned all the way to “flight.” If I’m unhappy or uncomfortable, my gut reaction is usually to withdraw from the situation. I see commitment and specificity as a prelude to future conflict. And I avoid conflict whenever possible. So I built my business to minimize it. If I don’t have a specific schedule of work that I’m accountable for delivering, then we can fudge the numbers a bit and hope they even out in the end. If I don’t set a specific standard for the length of an article, then I don’t have to let the client know when their request exceeds that limit. Conflict….avoided? Now, that’s not to say that everything I’ve built was wrong or bad. There is a lot of value in having flexibility in your business. For example, I would say that our flexible retainers are, overall, an advantage. Clients have changing needs. Having flexibility to quickly adapt to those needs can be a huge value add. And not everything can be clearly defined upfront (at least not without a massive amount of time and work just to decide how long to write an article). Overly-rigid structures and processes can be just as problematic as loosey-goosey ones. But, on the whole, I realized that my avoidant tendencies and laissez faire approach to management have left a vacuum in many areas. The places where I avoided specificity were often the places where there was the most confusion, uncertainty, and frustration from the team and from clients. People simply didn’t know what to expect or what was expected of them. Ironically, this often creates the conflict I’m trying to avoid. For example, if I don’t give feedback to people on my team, then they feel uneasy about their work. Or they make assumptions about expectations that don’t match what I’m actually expecting. Then the client might get upset, I might get upset, and our team members may be upset. Conflict definitely not avoided. This happens on the client side, too. If we don’t define a specific timeline when something will be delivered, the client might expect it sooner than we can deliver—creating frustration when we don’t meet their expectation. This conflict actually would have been avoided if we set clearer expectations upfront. But we didn’t do that. I didn’t do that. So it’s time to step up and close the gaps. Stepping Up and Closing the Gaps If I’m going to address these gaps and create more clarity and stability, I have to step up. Both personally and professionally. I have to actually face the fear and uncertainty that drives me to be avoidant. And then apply that to my business in meaningful ways that aren’t cop-out ways of kinda-sorta providing structure without really doing it. I’ve gotta be all in. This means: Fill the gaps where I rely on other people to do things that aren’t really their job but I haven’t put someone in place to do it Set and maintain expectations about our internal work processes, policies, and standards Define clear boundaries on things like roles, timelines, budgets, and scopes Now, this isn’t going to happen overnight. And just because I say that I need to step up to close these gaps doesn’t mean that I need to be the one who’s responsible for them (at least not forever). It just means that, as the business leader, I need to make sure the gaps get filled—by me or by someone else who has been specifically charged with owning that part of the operation. So, this is probably my #1 focus over the coming quarter. And it starts by identifying the gaps that exist. Then, step into those gaps myself, pay someone else to fill that role, or figure out how to eliminate the gap another way. This means going all the way back to the most basic decisions in our business. One of the foundational things about Optimist is being a “different kind” of agency. I always wanted to build something that solved for the bureaucracy, hierarchy, and siloed structure of agencies. If a client has feedback, they should be able to talk directly to the person doing the work rather than going through 3 layers of account management and creative directors. So I tried to be clever. I tried to design all kinds of systems and processes that eliminated these middle rungs. (In retrospect, what I was actually doing was designing a system that played into my avoidant tendencies and made it easy to abdicate responsibility for lots of things.) Since we didn’t want to create hierarchy, we never implemented things like Junior and Senior roles. We never hired someone to manage or direct the individual creatives. We didn’t have Directors or VPs. (Hell, we barely had a project manager for the first several years of existence.) This aversion to hierarchy aligned with our values around elevating ownership and collective contribution. I still believe in the value a flat structure. But a flat structure doesn’t eliminate the complexity of a growing business. No one to review writers and give them 1:1 feedback? I guess I’ll just have to do that….when I have some spare time. No Content Director? Okay, well someone needs to manage our content playbooks and roll out new ones. Just add it to my task list. Our flat structure didn’t eliminate the need for these roles. It just eliminated the people to do them. All of those unfilled roles ultimately fell back on me or our ops person, Katy. Of course, this isn’t the first time we’ve recognized this. We’ve known there were growing holes in our business as it’s gotten bigger and more complex. Over the years, we’ve experimented with different ways to solve for it. The Old Solution: Distributed Ops One system we designed was a “distributed ops” framework. Basically, we had one person who was the head of ops (at the time, we considered anything that was non-client-facing to be “ops”). They’d plan and organize all of the various things that needed to happen around Optimist. Then they’d assign out the work to whoever was able to help. We had a whole system for tying this into the our profit share and even gave people “Partner” status based on their contributions to ops. It worked—kinda. One big downfall is that all of the tasks and projects were ad hoc. People would pick up jobs, but they didn’t have much context or expertise to apply. So the output often varied. Since we were trying to maintain a flat structure, there was minimal oversight or management of the work. In other words, we didn’t always get the best results. But, more importantly, we still didn’t close all of the gaps entirely. Because everything was an ad-hoc list of tasks and projects, we never really had the “big picture” view of everything that needed to be done across the business. This also meant we rarely had clarity on what was important, what was trivial, and what was critical. We need a better system. Stop Reinventing the Wheel (And Create a Damn Org Chart) It’s time to get serious about filling the gaps in our business. It can’t be a half-fix or an ad hoc set of projects and tasks. We need clarity on the roles that need to be filled and then fill them. The first step here is to create an org chart. A real one. Map out all of the jobs that need to be done for Optimist to be successful besides just writers and designers. Roles like: Content director Design director SEO manager Reporting Finance Account management Business development Sales Marketing Project management It feels a bit laughable listing all of these roles. Because most are either empty or have my name attached to them. And that’s the problem. I can’t do everything. And all of the empty roles are gaps in our structure—places where people aren’t getting the direction, feedback, or guidance they need to do their best work. Or where things just aren’t being done consistently. Content director, for example, should be responsible for steering the output of our content strategists, writers, and editors. They’re not micromanaging every deliverable. But they give feedback, set overall policy, and help our team identify opportunities to get better. Right now we don’t have anyone in that role. Which means it’s my job—when I have time. Looking at the org chart (a real org chart that I actually built to help with this), it’s plain as day how many roles look like this. Even if we aren’t going to implement a traditional agency structure and a strict hierarchy, we still need to address these gaps. And the only way for that to happen is face the reality and then create a plan to close the gaps. Now that we have a list of theoretical roles, we need to clearly define the responsibilities and boundaries of those roles to make sure they cover everything that actually needs to happen. Then we can begin the process of delegating, assigning, hiring, and otherwise addressing each one. So that’s what I need to do. To be done: Create job descriptions for all of the roles we need to fill Hire Biz Dev role Hire Account Lead role(s) Hire Head of Content Playing Offense As we move into Q1 of 2025 and I reflect on the tumultuous few years we’ve had, one thought keeps running through my head. We need to play offense. Most of the last 1-2 years was reacting to changes that were happening around us. Trying to make sense and chart a new path forward. Reeling. But what I really want—as a person and as an entrepreneur—is to be proactive. I want to think and plan ahead. Figure out where we want to go before we’re forced to change course by something that’s out of our control. So my overarching focus for Q1 is playing offense. Thinking longer term. Getting ahead of the daily deluge and creating space to be more proactive, innovative, and forward thinking. To do: Pilot new content formats Audit and update our own content strategy Improve feedback workflows Build out long-term roadmap for 1-2 years for Optimist Final Note on Follow-Through and Cadence In my reflection this year, one of the things I’ve realized is how helpful these posts are for me. I process by writing. So I actually end up making a lot of decisions and seeing things more clearly each time I sit down to reflect and write my yearly recap. It also gives me a space to hold myself accountable for the things I said I would do. So, I’m doing two things a bit differently from here on out. First: I’m identifying clear action items that I’m holding myself accountable for getting done in the next 3 months (listed in the above sections). In each future update, I’ll do an accounting of what I got done and what wasn’t finished (and why). Second: I’m going to start writing shorter quarterly updates. This will gives me more chances each year to reflect, process, and make decisions. Plus it gives me a shorter feedback loop for the action items that I identified above. (See—playing offense.) — Okay friends, enemies, and frenemies. This is my first update for 2025. Glad to share with y’all. And thanks to everyone who’s read, commented, reached out, and shared their own experiences over the years. We are all the accumulation of our connections and our experiences. As always, I will pop in to respond to comments and answer questions. Feel free to share your thoughts, questions, and general disdain down below. Cheers, Tyler

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade
reddit
LLM Vibe Score0
Human Vibe Score0.333
Alarming_Management3This week

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade

Hi there, I’ve been running a software development and design agency for the last 10 years, mainly focusing on building custom solutions for businesses and SaaS. For the last 2 years, I’ve consistently recommended that clients use AI technologies, especially for social media and content creation to generate traffic. Funny enough, I wasn’t practicing what I preached. Most of my client projects came from platforms like Upwork and word-of-mouth referrals from clients or people from networking events. Background I started my journey in 2014, switching from an employee to a freelancer. Within the first 10 months, my initial projects grew beyond what I could handle alone, prompting me to hire additional developers. This shift turned my role from a full-stack developer to a team lead and developer. Over the years, my focus has been a blend of tech and product. About five years ago, I realized the importance of design, leading me to adding designers to the agency to provide full-cycle service development—from product ideation and design to development, testing, launch, and support. I still continue to set up dedicated teams for some clients, maintaining a strong technical role as a tech lead, solution architect, and head product designer. To enhance my skills, I even completed UI/UX design courses to offer better product solutions. Despite these changes, building products has always been the easy part. The challenge was ensuring these client products didn’t end up in the graveyard due to poor product-market fit, often caused by inadequate marketing and sales strategies but more often just absence of them. (we are talking about startup and first time founders here 🙂 ) My Journey and Observations Advising Clients: I often found myself advising clients on increasing traffic for their SaaS products and crafting strategic marketing plans. Learning: I’ve gained most of my knowledge from consuming internet materials, courses, and blog posts and learning from successful client project launches. Realization: Despite giving this advice, I wasn’t applying these strategies to my own business, leading to low visits to my agency’s website. Initial Solution: Hiring a Marketer Hiring: I brought in a marketer with a solid background in content creating and interview video editing from an educational organization. Goal: The aim was to increase website visits through a comprehensive marketing strategy. Outcome: Although the content produced was high-quality and useful for pitching services, it didn’t lead to significant traffic increases. Issue: The marketer focused more on content creation rather than distribution channels, which limited effectiveness. Shift to AI-Driven Strategy Experiment: I decided to try using AI for content creation and distribution, which aligns with my agency’s specialization in design-driven development and AI integrations. Implementation plan: I will be generating all content with minimal edits using AI and implementing a strategic backlinking approach. Backlinking Strategy Initial Plan: I initially thought of hiring a specialist for backlinks. Realization: The costs and profiles of freelancers didn’t seem promising. Solution: I found AI-driven services for backlinks, which seem more efficient and cost-effective. Plan: My plan is to use these tools for programmatic SEO-driven AI-generated articles and third-party backlinking services over the next two to three months. Current Approach Management: This approach can be managed and executed by 1 person and monitored weekly, reducing human error and optimizing efficiency. I will start it myself and then replace myself with an editor with managing skills. Reflection: It’s a bit ironic and funny that it took me 10 years to start implementing these strategies in my own agency business, but I now feel more confident with AI and automation in place. Why Increase Website Visitors? You might ask, why do I want to increase the number of visitors to the site, and how can I ensure these visitors will be qualified? Hands-On Experience: To gain hands-on experience and perform this exercise effectively. Introduce Packaged Services: I want to introduce a set of low-cost packaged services tailored for non-technical people who want to build things for themselves - the DIY kits for non-technical folks. These services will provide a foundational template for them to build upon on top of existing established solutions such as Wix, Square Why am I Posting and Sharing Here? You might also wonder, why am I posting it here and sharing this? Well, I'm doing this more for myself. Most of my career, the things I’ve done have been behind the curtains. With this small project, I want to make it public to see the reaction of the community. Perhaps there will be good and smart suggestions offered, and maybe some insights or highlights of tools I wasn’t aware of or didn’t consider. I’ll keep sharing updates on this journey of website promotion, marketing, and SEO. My current goal is to reach 2,000 visits per month, which is a modest start. Looking forward to any thoughts or advice from this community! Disclaimer: This content was not generated by AI, but it was edited by it 😛

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade
reddit
LLM Vibe Score0
Human Vibe Score0.333
Alarming_Management3This week

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade

Hi there, I’ve been running a software development and design agency for the last 10 years, mainly focusing on building custom solutions for businesses and SaaS. For the last 2 years, I’ve consistently recommended that clients use AI technologies, especially for social media and content creation to generate traffic. Funny enough, I wasn’t practicing what I preached. Most of my client projects came from platforms like Upwork and word-of-mouth referrals from clients or people from networking events. Background I started my journey in 2014, switching from an employee to a freelancer. Within the first 10 months, my initial projects grew beyond what I could handle alone, prompting me to hire additional developers. This shift turned my role from a full-stack developer to a team lead and developer. Over the years, my focus has been a blend of tech and product. About five years ago, I realized the importance of design, leading me to adding designers to the agency to provide full-cycle service development—from product ideation and design to development, testing, launch, and support. I still continue to set up dedicated teams for some clients, maintaining a strong technical role as a tech lead, solution architect, and head product designer. To enhance my skills, I even completed UI/UX design courses to offer better product solutions. Despite these changes, building products has always been the easy part. The challenge was ensuring these client products didn’t end up in the graveyard due to poor product-market fit, often caused by inadequate marketing and sales strategies but more often just absence of them. (we are talking about startup and first time founders here 🙂 ) My Journey and Observations Advising Clients: I often found myself advising clients on increasing traffic for their SaaS products and crafting strategic marketing plans. Learning: I’ve gained most of my knowledge from consuming internet materials, courses, and blog posts and learning from successful client project launches. Realization: Despite giving this advice, I wasn’t applying these strategies to my own business, leading to low visits to my agency’s website. Initial Solution: Hiring a Marketer Hiring: I brought in a marketer with a solid background in content creating and interview video editing from an educational organization. Goal: The aim was to increase website visits through a comprehensive marketing strategy. Outcome: Although the content produced was high-quality and useful for pitching services, it didn’t lead to significant traffic increases. Issue: The marketer focused more on content creation rather than distribution channels, which limited effectiveness. Shift to AI-Driven Strategy Experiment: I decided to try using AI for content creation and distribution, which aligns with my agency’s specialization in design-driven development and AI integrations. Implementation plan: I will be generating all content with minimal edits using AI and implementing a strategic backlinking approach. Backlinking Strategy Initial Plan: I initially thought of hiring a specialist for backlinks. Realization: The costs and profiles of freelancers didn’t seem promising. Solution: I found AI-driven services for backlinks, which seem more efficient and cost-effective. Plan: My plan is to use these tools for programmatic SEO-driven AI-generated articles and third-party backlinking services over the next two to three months. Current Approach Management: This approach can be managed and executed by 1 person and monitored weekly, reducing human error and optimizing efficiency. I will start it myself and then replace myself with an editor with managing skills. Reflection: It’s a bit ironic and funny that it took me 10 years to start implementing these strategies in my own agency business, but I now feel more confident with AI and automation in place. Why Increase Website Visitors? You might ask, why do I want to increase the number of visitors to the site, and how can I ensure these visitors will be qualified? Hands-On Experience: To gain hands-on experience and perform this exercise effectively. Introduce Packaged Services: I want to introduce a set of low-cost packaged services tailored for non-technical people who want to build things for themselves - the DIY kits for non-technical folks. These services will provide a foundational template for them to build upon on top of existing established solutions such as Wix, Square Why am I Posting and Sharing Here? You might also wonder, why am I posting it here and sharing this? Well, I'm doing this more for myself. Most of my career, the things I’ve done have been behind the curtains. With this small project, I want to make it public to see the reaction of the community. Perhaps there will be good and smart suggestions offered, and maybe some insights or highlights of tools I wasn’t aware of or didn’t consider. I’ll keep sharing updates on this journey of website promotion, marketing, and SEO. My current goal is to reach 2,000 visits per month, which is a modest start. Looking forward to any thoughts or advice from this community! Disclaimer: This content was not generated by AI, but it was edited by it 😛

From research paper to a tech startup - help!
reddit
LLM Vibe Score0
Human Vibe Score1
More_MousseThis week

From research paper to a tech startup - help!

Hi! I'm a CS master student that loves being creative. I’ve always wanted to start a business. I have gotten offers to join other startups when I took my bachelors, but personally I never believed in the startups, so I’ve always ended up politely declining on any startup offers. But my master thesis idea is very intriguing. However, I still feel very lost. I can’t even think of any good company names, or where I would even find enthusiastic co founders.  My master thesis as an AI startup with large potential. As of today, I have not started on the product itself. I will write a paper on the product, and finish the thesis in August 2026. My supervisor suggested that this is a good startup idea, and has a large market potential. I want to try. I’ve written about my goals, milestones, and some questions. Feel free to help me in any way, by answering my questions below. Goal:  Learn about startups and non-technical part of it (business, finance, sales, etc) (I'm clueless here) Build the business part time Try and fail Milestones Complete my paper on the product Create MVP for customers to test Validate idea and check market Find company name, acquire domain and launch SaaS  Get feedback, do networking and improve the product Join a Startup Lab and find Cofounders. The following roles would need to be filled  CEO (Me, Vision and tech expert) COO (Business strategy, operations, and scaling.),  CMO (marketing and sales responsible, working to acquire new business) CPO (Product design, user experience, and frontend development)  Formally create the company, divide shares, hold weekend work meeting, pick company name (again) Goal: create product for an industry (the product can be tailored to different industries) and get the first clients. Work that needs to be done: Tech: Create the product for the industry  COO: pitching competitions, define the sales pitch, and how to price the product CMO: find out how marketing should be done, and what companies to contact for demo CMO: design company logo, design web page for business usage, create front page of the website  Growth + Profits Questions Between now, and until I have the working demo, what should I do with my time? I have courses where I learn technical skills for the company. It does not make sense to create the website for the product, when I don't know how the user would interact with the product.  Should I start the company even before the product is made? (While I'm a student and working on the paper) How can I acquire non-technical skills for running a business? I prefer reading books. How can I learn about software companies (practical skills)? For example: How to lower hosting costs?  How to price a product for customers and a product for business? (Software contracts) How to guarantee  privacy when it comes to business documents?  I’m planning on searching for co-founders, after I have validated the idea myself. Should I instead find co founders before I have even created the product? (with no guarantee that there would even be a product?) Should I try to make the product without co-founders? (This is my first startup, so it might tank within the first few months) Any experience with starting a software business while working full time? Thank you for all the help!

First time founder, looking for guidance
reddit
LLM Vibe Score0
Human Vibe Score0
BigscreennThis week

First time founder, looking for guidance

Hello I am non technical founder based in the UK building a CRM and Order Management System. I have a POC built in Figma that showcases new features that current market options don’t have and improvements on existing features. I lack the technical skill to built a functioning MVP but I do have some technical knowledge. I have enough to understand the complexity and size of what I want to build. My current plan is the following: Raise preseed funding from angel investors or preseed VCs. I have a solid business plan and pitch deck in their final drafts. Find/hire a technical cofounder/development head to build and develop MVP (platform is complex and big enough it will require more then one developer to finish it in a reasonable timeframe) Once MVP is complete, begin sales to ICPs. I have strong connections in the industry already making this step easier. Once the above is done plan is to continue growing, develop main product and create supporting software How would you recommend going forward from the point I’m at? Should I build a functional prototype using a no code webapp builder? Will this be needed when I have a POC in Figma? If so any recommendations? Currently there is no plan for integration of AI but should I add some to drum up more hype when pitching to investors? Adding AI will further improve my planned features but will massively increase complexity. It may be worth noting i have already developed a product internally for my current job that they’re intending to release for internal use down the line. This wasn’t a viable solo business as it was impossible to defend and easy to replicate. Cheers for reading

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security

Uzair Javaid, a Ph.D. with a passion for data privacy, co-founded Betterdata to tackle one of AI's most pressing challenges: protecting privacy while enabling innovation. Recently, Betterdata secured a lucrative contract with the US Department of Homeland Security, 1 of only 4 companies worldwide to do so and the only one in Asia. Here's how he did it: The Story So what's your story? I grew up in Peshawar, Pakistan, excelling in coding despite studying electrical engineering. Inspired by my professors, I set my sights on studying abroad and eventually earned a Ph.D. scholarship at NUS Singapore, specializing in data security and privacy. During my research, I ethically hacked Ethereum and published 15 papers—three times the requirement. While wrapping up my Ph.D., I explored startup ideas and joined Entrepreneur First, where I met Kevin Yee. With his expertise in generative models and mine in privacy, we founded Betterdata. Now, nearly three years in, we’ve secured a major contract with the U.S. Department of Homeland Security—one of only four companies globally and the only one from Asia. The Startup In a nutshell, what does your startup do? Betterdata is a startup that uses AI and synthetic data generation to address two major challenges: data privacy and the scarcity of high-quality data for training AI models. By leveraging generative models and privacy-enhancing technologies, Betterdata enables businesses, such as banks, to use customer data without breaching privacy regulations. The platform trains AI on real data, learns its patterns, and generates synthetic data that mimics the real thing without containing any personal or sensitive information. This allows companies to innovate and develop AI solutions safely and ethically, all while tackling the growing need for diverse, high-quality data in AI development. How did you conduct ideation and validation for your startup? The initial idea for Betterdata came from personal experience. During my Ph.D., I ethically hacked Ethereum’s blockchain, exposing flaws in encryption-based data sharing. This led me to explore AI-driven deep synthesis technology—similar to deepfakes but for structured data privacy. With GDPR impacting 28M+ businesses, I saw a massive opportunity to help enterprises securely share data while staying compliant. To validate the idea, I spoke to 50 potential customers—a number that strikes the right balance. Some say 100, but that’s impractical for early-stage founders. At 50, patterns emerge: if 3 out of 10 mention the same problem, and this repeats across 50, you have 10–15 strong signals, making it a solid foundation for an MVP. Instead of outbound sales, which I dislike, we used three key methods: Account-Based Marketing (ABM)—targeting technically savvy users with solutions for niche problems, like scaling synthetic data for banks. Targeted Content Marketing—regular customer conversations shaped our thought leadership and outreach. Raising Awareness Through Partnerships—collaborating with NUS, Singapore’s PDPC, and Plug and Play to build credibility and educate the market. These strategies attracted serious customers willing to pay, guiding Betterdata’s product development and market fit. How did you approach the initial building and ongoing product development? In the early stages, we built synthetic data generation algorithms and a basic UI for proof-of-concept, using open-source datasets to engage with banks. We quickly learned that banks wouldn't share actual customer data due to privacy concerns, so we had to conduct on-site installations and gather feedback to refine our MVP. Through continuous consultation with customers, we discovered real enterprise data posed challenges, such as missing values, which led us to adapt our prototype accordingly. This iterative approach of listening to customer feedback and observing their usage allowed us to improve our product, enhance UX, and address unmet needs while building trust and loyalty. Working closely with our customers also gives us a data advantage. Our solution’s effectiveness depends on customer data, which we can't fully access, but bridging this knowledge gap gives us a competitive edge. The more customers we test on, the more our algorithms adapt to diverse use cases, making it harder for competitors to replicate our insights. My approach to iteration is simple: focus solely on customer feedback and ignore external noise like trends or advice. The key question for the team is: which customer is asking for this feature or solution? As long as there's a clear answer, we move forward. External influences, such as AI hype, often bring more confusion than clarity. True long-term success comes from solving real customer problems, not chasing trends. Customers may not always know exactly what they want, but they understand their problems. Our job is to identify these problems and solve them in innovative ways. While customers may suggest specific features, we stay focused on solving the core issue rather than just fulfilling their exact requests. The idea aligns with the quote often attributed to Henry Ford: "If I asked people what they wanted, they would have said faster horses." The key is understanding their problems, not just taking requests at face value. How do you assess product-market fit? To assess product-market fit, we track two key metrics: Customers' Willingness to Pay: We measure both the quantity and quality of meetings with potential customers. A high number of meetings with key decision-makers signals genuine interest. At Betterdata, we focused on getting meetings with people in banks and large enterprises to gauge our product's resonance with the target market. How Much Customers Are Willing to Pay: We monitor the price customers are willing to pay, especially in the early stages. For us, large enterprises, like banks, were willing to pay a premium for our synthetic data platform due to the growing need for privacy tech. This feedback guided our product refinement and scaling strategy. By focusing on these metrics, we refined our product and positioned it for scaling. What is your business model? We employ a structured, phase-driven approach for out business model, as a B2B startup. I initially struggled with focusing on the core value proposition in sales, often becoming overly educational. Eventually, we developed a product roadmap with models that allowed us to match customer needs to specific offerings and justify our pricing. Our pricing structure includes project-based pilots and annual contracts for successful deployments. At Betterdata, our customer engagement unfolds across three phases: Phase 1: Trial and Benchmarking \- We start with outreach and use open-source datasets to showcase results, offering customers a trial period to evaluate the solution. Phase 2: Pilot or PoC \- After positive trial results, we conduct a PoC or pilot using the customer’s private data, with the understanding that successful pilots lead to an annual contract. Phase 3: Multi-Year Contracts \- Following a successful pilot, we transition to long-term commercial contracts, focusing on multi-year agreements to ensure stability and ongoing partnerships. How do you do marketing for your brand? We take a non-conventional approach to marketing, focusing on answering one key question: Which customers are willing to pay, and how much? This drives our messaging to show how our solution meets their needs. Our strategy centers around two main components: Building a network of lead magnets \- These are influential figures like senior advisors, thought leaders, and strategic partners. Engaging with institutions like IMDA, SUTD, and investors like Plug and Play helps us gain access to the right people and foster warm introductions, which shorten our sales cycle and ensure we’re reaching the right audience. Thought leadership \- We build our brand through customer traction, technology evidence, and regulatory guidelines. This helps us establish credibility in the market and position ourselves as trusted leaders in our field. This holistic approach has enabled us to navigate diverse market conditions in Asia and grow our B2B relationships. By focusing on these areas, we drive business growth and establish strong trust with stakeholders. What's your advice for fundraising? Here are my key takeaways for other founders when it comes to fundraising: Fundraise When You Don’t Need To We closed our seed round in April 2023, a time when we weren't actively raising. Founders should always be in fundraising mode, even when they're not immediately in need of capital. Don’t wait until you have only a few months of runway left. Keep the pipeline open and build relationships. When the timing is right, execution becomes much easier. For us, our investment came through a combination of referrals and inbound interest. Even our lead investor initially rejected us, but after re-engaging, things eventually fell into place. It’s crucial to stay humble, treat everyone with respect, and maintain those relationships for when the time is right. Be Mindful of How You Present Information When fundraising, how you present information matters a lot. We created a comprehensive, easily digestible investment memo, hosted on Notion, which included everything an investor might need—problem, solution, market, team, risks, opportunities, and data. The goal was for investors to be able to get the full picture within 30 minutes without chasing down extra details. We also focused on making our financial model clear and meaningful, even though a 5-year forecast might be overkill at the seed stage. The key was clarity and conciseness, and making it as easy as possible for investors to understand the opportunity. I learned that brevity and simplicity are often the best ways to make a memorable impact. For the pitch itself, keep it simple and focus on 4 things: problem, solution, team, and market. If you can summarize each of these clearly and concisely, you’ll have a compelling pitch. Later on, you can expand into market segments, traction, and other metrics, but for seed-stage, focus on those four areas, and make sure you’re strong in at least three of them. If you do, you'll have a compelling case. How do you run things day-to-day? i.e what's your operational workflow and team structure? Here's an overview of our team structure and process: Internally: Our team is divided into two main areas: backend (internal team) and frontend (market-facing team). There's no formal hierarchy within the backend team. We all operate as equals, defining our goals based on what needs to be developed, assigning tasks, and meeting weekly to share updates and review progress. The focus is on full ownership of tasks and accountability for getting things done. I also contribute to product development, identifying challenges and clearing obstacles to help the team move forward. Backend Team: We approach tasks based on the scope defined by customers, with no blame or hierarchy. It's like a sports team—sometimes someone excels, and other times they struggle, but we support each other and move forward together. Everyone has the creative freedom to work in the way that suits them best, but we establish regular meetings and check-ins to ensure alignment and progress. Frontend Team: For the market-facing side, we implement a hierarchy because the market expects this structure. If I present myself as "CEO," it signals authority and credibility. This distinction affects how we communicate with the market and how we build our brand. The frontend team is split into four main areas: Business Product (Software Engineering) Machine Learning Engineering R&D The C-suite sits at the top, followed by team leads, and then the executors. We distill market expectations into actionable tasks, ensuring that everyone is clear on their role and responsibilities. Process: We start by receiving market expectations and defining tasks based on them. Tasks are assigned to relevant teams, and execution happens with no communication barriers between team members. This ensures seamless collaboration and focused execution. The main goal is always effectiveness—getting things done efficiently while maintaining flexibility in how individuals approach their work. In both teams, there's an emphasis on accountability, collaboration, and clear communication, but the structure varies according to the nature of the work and external expectations.

Where Do I Find Like-Minded, Unorthodox Co-founders? [Tech]
reddit
LLM Vibe Score0
Human Vibe Score0.6
madscholarThis week

Where Do I Find Like-Minded, Unorthodox Co-founders? [Tech]

After more than 20 years in the tech industry I'm pretty fed up. I've been at it non-stop, so the burnout was building up for a while. Eventually, it's gotten so bad that it was no longer a question whether I need to take a break; I knew that I had to, for the sake of myself and loved ones. A few months ago I quit my well-paying, mid-level mgmt job to have some much-needed respite. I can't say that I've fully recovered, but I'm doing a bit better, so I'm starting to think about what's next. That said, the thoughts of going back into the rat race fill me with dread and anxiety. I've had an interesting career - I spent most of it in startups doing various roles from an SWE to a VP Eng, including having my own startup adventures for a couple of years. The last 4.5 years of my career have been in one of the fastest growing tech companies - it was a great learning experience, but also incredibly stressful, toxic and demoralizing. It's clear to me that I'm not cut out for the corporate world -- the ethos contradicts with my personality and beliefs -- but it's not just. I've accumulated "emotional scars" from practically every place I worked at and it made me loathe the industry to the degree that if I ever have another startup, it'd have to be by my own -- unorthodox -- ideals, even if it means a premature death due to lack of funding. I was young, stupid and overly confident when I had my first startup. I tried to do it "by the book" and dance to the tune of investors. While my startup failed for other, unrelated reasons, it gave me an opportunity to peak behind the curtain, experience the power dynamics, and get a better understanding to how the game is played - VCs and other person of interest have popularized the misconception that if a company doesn't scale, it would stagnate and eventually regress and die. This is nonsense. This narrative was created because it would make the capitalist pigs obsolete - they need companies to go through the entire alphabet before forcing them to sell or IPO. The sad reality is that the most entrepreneurs still believe in this paradigm and fall into the VC's honeypot traps. It's true that many businesses cannot bootstrap or scale without VC money, but it's equally true that far too many companies pivot/scale prematurely (and enshitify their product in the process) due to external pressures fueled by pure greed. This has a top-bottom effect - enshitification doesn't only effect users, but it also heavily effects the processes and structrures of companies, which can explain why the average tenure in tech is only \~2 years. I think that we live in an age where self-starting startups are more feasible than ever. It's not just the rise of AI and automation, but also the plethora of tools, services, and open-source projects that are available to all for free. On the one hand, this is fantastic, but on the other, the low barrier-to-entry creates oversaturation of companies which makes research & discovery incredibly hard - it is overwhelming to keep up with the pace and distill the signal from the noise, and there's a LOT of noise - there's not enough metaphorical real-estate for the graveyard of startups that will be defunct in the very near future. I'd like to experiment with startups again, but I don't want to navigate through this complex mine field all by myself - I want to find a like-minded co-founder who shares the same ideals as I do. It goes without saying that being on the same page isn't enough - I also want someone who's experienced, intelligent, creative, productive, well-rounded, etc. At the moment, I don't have anyone in my professional network who has/wants what it takes. I can look into startup bootcamps/accelerators like YC et al., and sure enough, I'll find talented individuals, but it'd be a mismatch from the get-go. For shits and giggles, this is (very roughly) how I envision the ideal company: Excellent work life balance: the goal is not to make a quick exit, become filthy rich, and turn into a self-absorbed asshole bragging about how they got so succesful. The goal is to generate a steady revenue stream while not succumbing to social norms that encourage greed. The entire purpose is to reach humble financial indepedence while maintaining a stress-free (as one possibly can) work environment. QOL should always be considered before ARR. Bootstraping: no external money. Not now, not later. No quid pro quo. No shady professionals or advisors. Company makes it or dies trying. Finances: very conservative to begin with - the idea is to play it safe and build a long fucking runaway before hiring. Spend every penny mindfully and frugally. Growth shouldn't be too quick & reckless. The business will be extremely efficient in spending. The only exception to the rule is crucial infrastructure and wages to hire top talent and keep salaries competitive and fair. Hiring: fully remote. Global presence, where applicable. Headcount will be limited to the absolute bare minimum. The goal is to run with a skeleton crew of the best generalists out there - bright, self-sufficient, highly motivated, autodidact, and creative individuals. Hiring the right people is everything and should be the company's top priority. Compensation & Perks: transperent and fair, incentivizing exceptional performance with revenue sharing bonuses. The rest is your typical best-in-class perks: top tier health/dental/vision insurance, generous PTO with mandatory required minimum, parental leave, mental wellness, etc. Process: processes will be extremely efficient, automated to the max, documented, unbloated, and data-driven through and through. Internal knowledge & data metrics will be accessible and transparent to all. Employees get full autonomy of their respective areas and are fully in charge of how they spend their days as long as they have agreed-upon, coherent, measurable metrics of success. Meetings will be reduced to the absolute minimum and would have to be justified and actionable - the ideal is that most communications will be done in written form, while face-to-face will be reserved for presentations/socializing. I like the Kaizen philosophy to continuously improve and optimize processes. Product: As previously stated, "data-driven through and through". Mindful approach to understand cost/benefit. Deliberate and measured atomic improvements to avoid feature creep and slow down the inevitable entropy. Most importantly, client input should be treated with the utmost attention but should never be the main driver for the product roadmap. This is a very controversial take, but sometimes it's better to lose a paying customer than to cave to their distracting/unreasonable/time-consuming demands. People Culture: ironicaly, this would be what most companies claim to have, but for realsies. Collaborative, open, blameless environment. People are treated like actual grown ups with flat structure, full autonomy, and unwavering trust. Socializing and bonding is highly encourged, but never required. Creativity and ingenuity is highly valued - people are encouraged to work on side projects one day of the week. Values: I can write a lot about it, but it really boils down to being kind and humble. We all know what happened with "don't be evil". It's incredibly hard to retain values over time, esp. when there are opposing views within a company. I don't know how to solve it, but I believe that there should be some (tried and true) internal checks & balances from the get go to ensure things are on track. I never mentioned what this hypothetical startup does. Sure, there's another very relevant layer of domain experience fit, but this mindset allows one to be a bit more fluid because the goal is not to disrupt an industry or "make the world a better place"; it's to see work for what it truly is - a mean to an end. It's far more important for me to align with a co-founder on these topics than on an actual idea or technical details. Pivoting and rebranding are so common that many VCs outweigh the make up and chemistry of the founding team (and their ability to execute) over the feasibility of their ideas.  To wrap this long-winded post, I'm not naive or disillusioned - utopias aren't real and profitable companies who operate at a 70-80% rate of what I propose are the real unicorns, but despite them being a tiny minority, I think they are the real forward thinkers of the industry. I might be wrong, but I hope that I'm right and that more and more startups will opt towards long-term sustainability over the promise of short-term gains because the status quo really stinks for most people. What do you folks think? Does anyone relate? Where can I find others like me? P.S I thought about starting a blog writing about these topics in length (everything that is wrong with tech & what can be done to improve it), but I have the Impostor Syndrom and I'm too self-conscious about how I come off. If you somehow enjoyed reading through that and would love to hear more of my thoughts and experiences in greater detail, please let me know. P.P.S If you have a company that is close to what I'm describing and you're hiring, let me know!

I Watched My Startup Slowly Dying Over Two Years: Mistakes and Lessons Learned
reddit
LLM Vibe Score0
Human Vibe Score0.429
Personal-Expression3This week

I Watched My Startup Slowly Dying Over Two Years: Mistakes and Lessons Learned

If you are tired of reading successful stories, you may want to listen to my almost failure story. Last year in April, I went full-time on my startup. Nearly two years later, I’ve seen my product gradually dying. I want to share some of the key mistakes I made and the lessons I’ve taken from them so you don't have to go through them. Some mistakes were very obvious in hindsight; others, I’m still not sure if they were mistakes or just bad luck. I’d love to hear your thoughts and advice as well. Background I built an English-learning app, with both web and mobile versions. The idea came from recognizing how expensive it is to hire an English tutor in most countries, especially for practicing speaking skills. With the rise of AI, I saw an opportunity in the education space. My target market was Japan, though I later added support for multiple languages and picked up some users from Indonesia and some Latin American countries too. Most of my users came from influencer marketing on Twitter. The MVP for the web version launched in Japan and got great feedback. People were reposting it on Twitter, and growth was at its peak in the first few weeks. After verifying the requirement with the MVP, I decided to focus on the mobile app to boost user retention, but for various reasons, the mobile version didn’t launch until December 2023— 8 months after the web version. Most of this year has been spent iterating on the mobile app, but it didn’t make much of an impact in the end. Key Events and Lessons Learned Here are some takeaways: Find co-founders as committed as you are I started with two co-founders—both were tech people and working Part-Time. After the web version launched, one dropped out due to family issues. Unfortunately, we didn’t set clear rules for equity allocation, so even after leaving, they still retained part of the equity. The other co-founder also effectively dropped out this year, contributing only minor fixes here and there. So If you’re starting a company with co-founders, make sure they’re as committed as you are. Otherwise, you might be better off going solo. I ended up teaching myself programming with AI tools, starting with Flutter and eventually handling both front-end and back-end work using Windsurf. With dev tools getting more advanced, being a solo developer is becoming a more viable option. Also, have crystal-clear rules for equity—especially around what happens if someone leaves. Outsourcing Pitfalls Outsourcing development was one of my biggest mistakes. I initially hired a former colleague from India to build the app. He dragged the project on for two months with endless excuses, and the final output was unusable. Then I hired a company, but they didn’t have enough skilled Flutter developers. The company’s owner scrambled to find people, which led to rushed work and poor-quality code which took a lot of time revising myself. Outsourcing is a minefield. If you must do it, break the project into small tasks, set clear milestones, and review progress frequently. Catching issues early can save you time and money. Otherwise, you’re often better off learning the tools yourself—modern dev tools are surprisingly beginner-friendly. Trust, but Verify I have a bad habit of trusting people too easily. I don’t like spending time double-checking things, so I tend to assume people will do what they say they’ll do. This mindset is dangerous in a startup. For example, if I had set up milestones and regularly verified the progress of my first outsourced project, I would’ve realized something was wrong within two weeks instead of two months. That would’ve saved me a lot of time and frustration. Like what I mentioned above, set up systems to verify their work—milestones, deliverables, etc.—to minimize risk. Avoid red ocean if you are small My team was tiny (or non-existent, depending on how you see it), with no technical edge. Yet, I chose to enter Japan’s English-learning market, which is incredibly competitive. It’s a red ocean, dominated by big players who’ve been in the game for years. Initially, my product’s AI-powered speaking practice and automatic grammar correction stood out, but within months, competitors rolled out similar features. Looking back, I should’ve gone all-in on marketing during the initial hype and focused on rapidly launching the mobile app. But hindsight is 20/20. 'Understanding your user' helps but what if it's not what you want? I thought I was pretty good at collecting user feedback. I added feedback buttons everywhere in the app and made changes based on what users said. But most of these changes were incremental improvements—not the kind of big updates that spark excitement. Also, my primary users were from Japan and Indonesia, but I’m neither Japanese nor Indonesian. That made it hard to connect with users on social media in an authentic way. And in my opinion, AI translations can only go so far—they lack the human touch and cultural nuance that builds trust. But honestly I'm not sure if the thought is correct to assume that they will not get touched if they recognize you are a foreigner...... Many of my Japanese users were working professionals preparing for the TOEIC exam. I didn’t design any features specifically for that; instead, I aimed to build a general-purpose English-learning tool since I dream to expand it to other markets someday. While there’s nothing wrong with this idealistic approach, it didn’t give users enough reasons to pay for the app. Should You Go Full-Time? From what I read, a lot of successful indie developers started part-time, building traction before quitting their jobs. But for me, I jumped straight into full-time mode, which worked for my lifestyle but might’ve hurt my productivity. I value work-life balance and refused to sacrifice everything for the startup. The reason I chose to leave the corp is I want to escape the 996 toxic working environment in China's internet companies. So even during my most stressful periods, I made time to watch TV with my partner and take weekends off. Anyways, if you’re also building something or thinking about starting a business, I hope my story helps. If I have other thoughts later, I will add them too. Appreciate any advice.

101 best SEO tips to help you drive traffic in 2k21
reddit
LLM Vibe Score0
Human Vibe Score0.543
DrJigsawThis week

101 best SEO tips to help you drive traffic in 2k21

Hey guys! I don't have to tell you how SEO can be good for your business - you can drive leads to your SaaS on autopilot, drive traffic to your store/gym/bar/whatever, etc. The thing with SEO, though, is that most SEO tips on the internet are just not that good. Most of the said tips: Are way too simple & basic (“add meta descriptions to your images”*) Are not impactful. Sure, adding that meta tag to an image is important, but that’s not what’s going to drive traffic to your website Don’t talk much about SEO strategy (which is ultimately the most important thing for SEO). Sure, on-page SEO is great, but you sure as hell won't drive much traffic if you can't hire the right writers to scale your content. And to drive serious SEO traffic, you'll need a LOT more than that. Over the past few years, my and my co-founder have helped grow websites to over 200k+ monthly traffic (check out our older Reddit post if you want to learn more about us, our process, and what we do), and we compiled all our most important SEO tips and tricks, as well as case studies, research, and experiments from the web, into this article. Hope you like it ;) If you think we missed something super important, let us know and we'll add it to the list. And btw, we also published this article on our own blog with images, smart filters, and all that good stuff. If you want to check it out, click here. That said, grab some coffee (or beer) & let's dive in - this is going to be a long one. SEO Strategy Tips Tip #1. A Lot of SEO Tips On The Internet Are NOT Necessarily Factual A lot of the SEO content you’ll read on the internet will be based on personal experiences and hearsay. Unfortunately, Google is a bit vague about SEO advice, so you have to rely more on experiments conducted by SEO pros in the community. So, sometimes, a lot of this information is questionable, wrong, or simply based on inaccurate data.  What we’re getting at here is, whenever you hear some new SEO advice, take it with a grain of salt. Google it to double-check other sources, and really understand what this SEO advice is based on (instead of just taking it at face value). Tip #2. SEO Takes Time - Get Used to It Any way you spin it, SEO takes time.  It can take around 6 months to 2 years (depending on the competition in your niche) before you start seeing some serious results.  So, don’t get disappointed if you don’t see any results within 3 months of publishing content. Tip #3. SEO Isn’t The Best Channel for Everyone That said, if you need results for your business tomorrow, you might want to reconsider SEO altogether.  If you just started your business, for example, and are trying to get to break-even ASAP, SEO is a bad idea - you’ll quit before you even start seeing any results.  If that’s the case, focus on other marketing channels that can have faster results like content marketing, PPC, outreach, etc. Tip #4. Use PPC to Validate Keywords Not sure if SEO is right for your business? Do this: set up Google Search ads for the most high-intent keywords in your niche. See how well the traffic converts and then decide if it’s worthwhile to focus on SEO (and rank on these keywords organically). Tip #5. Use GSC to See If SEO Is Working While it takes a while to see SEO results, it IS possible to see if you’re going in the right direction. On a monthly basis, you can use Search Console to check if your articles are indexed by Google and if their average position is improving over time. Tip #6. Publish a TON of Content The more content you publish on your blog, the better. We recommend a minimum of 10,000 words per month and optimally 20,000 - 30,000 (especially if your website is fresh). If an agency offers you the typical “4 500-word articles per month” deal, stay away. No one’s ever gotten results in SEO with short, once-per-week articles. Tip #7. Upgrade Your Writers Got a writer that’s performing well? Hire them as an editor and get them to oversee content operations / edit other writers’ content. Then, upgrade your best editor to Head of Content and get them to manage the entire editor / writer ops. Tip #8. Use Backlink Data to Prioritize Content When doing keyword research, gather the backlink data of the top 3 ranking articles and add it to your sheet. Then, use this data to help you prioritize which keywords to focus on first. We usually prioritize keywords that have lower competition, high traffic, and a medium to high buyer intent. Tip #9. Conduct In-Depth Keyword Research Make your initial keyword research as comprehensive as possible. This will give you a much more realistic view of your niche and allow you to prioritize content the right way. We usually aim for 100 to 300 keywords (depending on the niche) for the initial keyword research when we start working with a client. Tip #10. Start With Competitive Analysis Start every keyword research with competitive analysis. Extract the keywords your top 3 competitors are ranking on.  Then, use them as inspiration and build upon it. Use tools like UberSuggest to help generate new keyword ideas. Tip #11. Get SEMrush of Ahrefs You NEED SEMrush or Ahrefs, there’s no doubt about it. While they might seem expensive at a glance (99 USD per month billed annually), they’re going to save you a lot of manpower doing menial SEO tasks. Tip #12. Don’t Overdo It With SEO Tools Don’t overdo it with SEO tools. There are hundreds of those out there, and if you’re the type that’s into SaaS, you might be tempted to play around with dozens at a time. And yes, to be fair, most of these tools ARE helpful one way or another. To effectively do organic SEO, though, you don’t really need that many tools. In most cases, you just need the following: SEMrush/Ahrefs Screaming Frog RankMath/Yoast SEO Whichever outreach tool you prefer (our favorite is snov.io). Tip #13. Try Some of the Optional Tools In addition to the tools we mentioned before, you can also try the following 2 which are pretty useful & popular in the SEO community: Surfer SEO - helps with on-page SEO and creating content briefs for writers. ClusterAI - tool that helps simplify keyword research & save time. Tip #14. Constantly Source Writers Want to take your content production to the next level? You’ll need to hire more writers.  There is, however, one thing that makes this really, really difficult: 95 - 99% of writers applying for your gigs won’t be relevant. Up to 80% will be awful at writing, and the remainder just won’t be relevant for your niche. So, in order to scale your writing team, we recommend sourcing constantly, and not just once every few months. Tip #15. Create a Process for Writer Filtering As we just mentioned, when sourcing writers, you’ll be getting a ton of applicants, but most won’t be qualified. Fun fact \- every single time we post a job ad on ProBlogger, we get around 300 - 500 applications (most of which are totally not relevant). Trust us, you don’t want to spend your time going through such a huge list and checking out the writer samples. So, instead, we recommend you do this: Hire a virtual assistant to own the process of evaluating and short-listing writers. Create a process for evaluating writers. We recommend evaluating writers by: Level of English. If their samples aren’t fluent, they’re not relevant. Quality of Samples. Are the samples engaging / long-form content, or are they boring 500-word copy-pastes? Technical Knowledge. Has the writer written about a hard-to-explain topic before? Anyone can write about simple topics like traveling - you want to look for someone who knows how to research a new topic and explain it in a simple and easy to read way. If someone’s written about how to create a perfect cover letter, they can probably write about traveling, but the opposite isn’t true. The VA constantly evaluates new applicants and forwards the relevant ones to the editor. The editor goes through the short-listed writers and gives them trial tasks and hires the ones that perform well. Tip #16. Use The Right Websites to Source Writers “Is UpWork any good?” This question pops up on social media time and time again. If you ask us, no, UpWork is not good at all. Of course, there are qualified writers there (just like anywhere else), but from our experience, those writers are few and far in-between. Instead, here are some of our favorite ways to source writers: Cult of Copy Job Board ProBlogger Headhunting on LinkedIn If you really want to use UpWork, use it for headhunting (instead of posting a job ad) Tip #17. Hire Writers the Right Way If you want to seriously scale your content production, hire your writers full-time. This (especially) makes sense if you’re a content marketing agency that creates a TON of content for clients all the time. If you’re doing SEO just for your own blog, though, it usually makes more sense to use freelancers. Tip #18. Topic Authority Matters Google keeps your website's authoritativeness in mind. Meaning, if you have 100 articles on digital marketing, you’re probably more of an authority on the topic than someone that has just 10. Hence, Google is a lot more likely to reward you with better rankings. This is also partially why content volume really matters: the more frequently you publish content, the sooner Google will view you as an authority. Tip #19. Focus on One Niche at a Time Let’s say your blog covers the following topics: sales, accounting, and business management.  You’re more likely to rank if you have 30 articles on a single topic (e.g. accounting) than if you have 10 articles on each. So, we recommend you double-down on one niche instead of spreading your content team thin with different topics. Tip #20. Don’t Fret on the Details While technical SEO is important, you shouldn’t get too hung up on it.  Sure, there are thousands of technical tips you can find on the internet, and most of them DO matter. The truth, though, is that Google won’t punish you just because your website doesn’t load in 3 milliseconds or there’s a meta description missing on a single page. Especially if you have SEO fundamentals done right: Get your website to run as fast as possible. Create a ton of good SEO content. Get backlinks for your website on a regular basis. You’ll still rank, even if your website isn’t 100% optimized. Tip #21. Do Yourself a Favor and Hire a VA There are a TON of boring SEO tasks that your team should really not be wasting time with. So, hire a full-time VA to help with all that. Some tasks you want to outsource include gathering contacts to reach out to for link-building, uploading articles on WordPress, etc. Tip #22. Google Isn’t Everything While Google IS the dominant search engine in most parts of the world, there ARE countries with other popular search engines.  If you want to improve your SEO in China, for example, you should be more concerned with ranking on Baidu. Targeting Russia? Focus on Yandex. Tip #23. No, Voice Search is Still Not Relevant Voice search is not and will not be relevant (no matter what sensationalist articles might say). It’s just too impractical for most search queries to use voice (as opposed to traditional search). Tip #24. SEO Is Not Dead SEO is not dead and will still be relevant decades down the line. Every year, there’s a sensationalist article talking about this.  Ignore those. Tip #25. Doing Local SEO? Focus on Service Pages If you’re doing local SEO, focus on creating service-based landing pages instead of content.  E.g. if you’re an accounting firm based in Boston, you can make a landing page about /accounting-firm-boston/, /tax-accounting-boston/, /cpa-boston/, and so on. Thing is, you don’t really need to rank on global search terms - you just won’t get leads from there. Even if you ranked on the term “financial accounting,” it wouldn’t really matter for your bottom line that much. Tip #26. Learn More on Local SEO Speaking of local SEO, we definitely don’t do the topic justice in this guide. There’s a lot more you need to know to do local SEO effectively and some of it goes against the general SEO advice we talk about in this article (e.g. you don't necessarily need blog content for local SEO). We're going to publish an article on that soon enough, so if you want to check it out, DM me and I'll hit you up when it's up. Tip #27. Avoid Vanity Metrics Don’t get side-tracked by vanity metrics.  At the end of the day, you should care about how your traffic impacts your bottom line. Fat graphs and lots of traffic are nice and all, but none of it matters if the traffic doesn’t have the right search intent to convert to your product/service. Tip #28. Struggling With SEO? Hire an Expert Failing to make SEO work for your business? When in doubt, hire an organic SEO consultant or an SEO agency.  The #1 benefit of hiring an SEO agency or consultant is that they’ve been there and done that - more than once. They might be able to catch issues an inexperienced SEO can’t. Tip #29. Engage With the Community Need a couple of SEO questions answered?  SEO pros are super helpful & easy to reach! Join these Facebook groups and ask your question - you’ll get about a dozen helpful answers! SEO Signals Lab SEO & Content Marketing The Proper SEO Group. Tip #30. Stay Up to Date With SEO Trends SEO is always changing - Google is constantly pumping out new updates that have a significant impact on how the game is played.  Make sure to stay up to date with the latest SEO trends and Google updates by following the Google Search Central blog. Tip #31. Increase Organic CTR With PPC Want to get the most out of your rankings? Run PPC ads for your best keywords. Googlers who first see your ad are more likely to click your organic listing. Content & On-Page SEO Tips Tip #32. Create 50% Longer Content On average, we recommend you create an article that’s around 50% longer than the best article ranking on the keyword.  One small exception, though, is if you’re in a super competitive niche and all top-ranking articles are already as comprehensive as they can be. For example, in the VPN niche, all articles ranking for the keyword “best VPN” are around 10,000 - 11,000 words long. And that’s the optimal word count - even if you go beyond, you won’t be able to deliver that much value for the reader to make it worth the effort of creating the content. Tip #33. Longer Is Not Always Better Sometimes, a short-form article can get the job done much better.  For example, let’s say you’re targeting the keyword “how to tie a tie.”  The reader expects a short and simple guide, something under 500 words, and not “The Ultimate Guide to Tie Tying for 2021 \[11 Best Tips and Tricks\]” Tip #34. SEO is Not Just About Written Content Written content is not always best. Sometimes, videos can perform significantly better. E.g. If the Googler is looking to learn how to get a deadlift form right, they’re most likely going to be looking for a video. Tip #35. Don’t Forget to Follow Basic Optimization Tips For all your web pages (articles included), follow basic SEO optimization tips. E.g. include the keyword in the URL, use the right headings etc.  Just use RankMath or YoastSEO for this and you’re in the clear! Tip #36. Hire Specialized Writers When hiring content writers, try to look for ones that specialize in creating SEO content.  There are a LOT of writers on the internet, plenty of which are really good.  However, if they haven’t written SEO content before, chances are, they won’t do that good of a job. Tip #37. Use Content Outlines Speaking of writers - when working with writers, create a content outline that summarizes what the article should be about and what kind of topics it needs to cover instead of giving them a keyword and asking them to “knock themselves out.”   This makes it a lot more likely for the writer to create something that ranks. When creating content outlines, we recommend you include the following information: Target keyword Related keywords that should be mentioned in the article Article structure - which headings should the writer use? In what order? Article title Tip #38. Find Writers With Niche Knowledge Try to find a SEO content writer with some experience or past knowledge about your niche. Otherwise, they’re going to take around a month or two to become an expert. Alternatively, if you’re having difficulty finding a writer with niche knowledge, try to find someone with experience in technical or hard to explain topics. Writers who’ve written about cybersecurity in the past, for example, are a lot more likely to successfully cover other complicated topics (as opposed to, for example, a food or travel blogger). Tip #39. Keep Your Audience’s Knowledge in Mind When creating SEO content, always keep your audience’s knowledge in mind. If you’re writing about advanced finance, for example, you don’t need to teach your reader what an income statement is. If you’re writing about income statements, on the other hand, you’d want to start from the very barebone basics. Tip #40. Write for Your Audience If your readers are suit-and-tie lawyers, they’re going to expect professionally written content. 20-something hipsters? You can get away with throwing a Rick and Morty reference here and there. Tip #41. Use Grammarly Trust us, it’ll seriously make your life easier! Keep in mind, though, that the app is not a replacement for a professional editor. Tip #42. Use Hemingway Online content should be very easy to read & follow for everyone, whether they’re a senior profession with a Ph.D. or a college kid looking to learn a new topic. As such, your content should be written in a simple manner - and that’s where Hemingway comes in. It helps you keep your blog content simple. Tip #43. Create Compelling Headlines Want to drive clicks to your articles? You’ll need compelling headlines. Compare the two headlines below; which one would you click? 101 Productivity Tips \[To Get Things Done in 2021\] VS Productivity Tips Guide Exactly! To create clickable headlines, we recommend you include the following elements: Keyword Numbers Results Year (If Relevant) Tip #44. Nail Your Blog Content Formatting Format your blog posts well and avoid overly long walls of text. There’s a reason Backlinko content is so popular - it’s extremely easy to read and follow. Tip #45. Use Relevant Images In Your SEO Content Key here - relevant. Don’t just spray random stock photos of “office people smiling” around your posts; no one likes those.  Instead, add graphs, charts, screenshots, quote blocks, CSS boxes, and other engaging elements. Tip #46. Implement the Skyscraper Technique (The Right Way) Want to implement Backlinko’s skyscraper technique?  Keep this in mind before you do: not all content is meant to be promoted.  Pick a topic that fits the following criteria if you want the internet to care: It’s on an important topic. “Mega-Guide to SaaS Marketing” is good, “top 5 benefits of SaaS marketing” is not. You’re creating something significantly better than the original material. The internet is filled with mediocre content - strive to do better. Tip #47. Get The URL Slug Right for Seasonal Content If you want to rank on a seasonal keyword with one piece of content (e.g. you want to rank on “saas trends 2020, 2021, etc.”), don’t mention the year in the URL slug - keep it /saas-trends/ and just change the headline every year instead.  If you want to rank with separate articles, on the other hand (e.g. you publish a new trends report every year), include the year in the URL. Tip #48. Avoid content cannibalization.  Meaning, don’t write 2+ articles on one topic. This will confuse Google on which article it should rank. Tip #49. Don’t Overdo Outbound Links Don’t include too many outbound links in your content. Yes, including sources is good, but there is such a thing as overdoing it.  If your 1,000 word article has 20 outbound links, Google might consider it as spam (even if all those links are relevant). Tip #50. Consider “People Also Ask” To get the most out of SERP, you want to grab as many spots on the search result as possible, and this includes “people also ask (PAA):” Make a list of the topic’s PAA questions and ensure that your article answers them.  If you can’t fit the questions & answers within the article, though, you can also add an FAQ section at the end where you directly pose these questions and provide the answers. Tip #51. Optimize For Google Snippet Optimize your content for the Google Snippet. Check what’s currently ranking as the snippet. Then, try to do something similar (or even better) in terms of content and formatting. Tip #52. Get Inspired by Viral Content Want to create content that gets insane shares & links?  Reverse-engineer what has worked in the past. Look up content in your niche that went viral on Reddit, Hacker News, Facebook groups, Buzzsumo, etc. and create something similar, but significantly better. Tip #53. Avoid AI Content Tools No, robots can’t write SEO content.  If you’ve seen any of those “AI generated content tools,” you should know to stay away. The only thing those tools are (currently) good for is creating news content. Tip #54. Avoid Bad Content You will never, ever, ever rank with one 500-word article per week.  There are some SEO agencies (even the more reputable ones) that offer this as part of their service. Trust us, this is a waste of time. Tip #55. Update Your Content Regularly Check your top-performing articles annually and see if there’s anything you can do to improve them.  When most companies finally get the #1 ranking for a keyword, they leave the article alone and never touch it again… ...Until they get outranked, of course, by someone who one-upped their original article. Want to prevent this from happening? Analyze your top-performing content once a year and improve it when possible. Tip #56. Experiment With CTR Do your articles have low CTR? Experiment with different headlines and see if you can improve it.  Keep in mind, though, that what a “good CTR” is really depends on the keyword.  In some cases, the first ranking will drive 50% of the traffic. In others, it’s going to be less than 15%. Link-Building Tips Tip #57. Yes, Links Matter. Here’s What You Need to Know “Do I need backlinks to rank?” is probably one of the most common SEO questions.  The answer to the question (alongside all other SEO-related questions) is that it depends on the niche.  If your competitors don’t have a lot of backlinks, chances are, you can rank solely by creating superior content. If you’re in an extremely competitive niche (e.g. VPN, insurance, etc.), though, everyone has amazing, quality content - that’s just the baseline.  What sets top-ranking content apart from the rest is backlinks. Tip #58. Sometimes, You’ll Have to Pay For Links Unfortunately, in some niches, paying for links is unavoidable - e.g. gambling, CBD, and others. In such cases, you either need a hefty link-building budget, or a very creative link-building campaign (create a viral infographic, news-worthy story based on interesting data, etc.). Tip #59. Build Relationships, Not Links The very best link-building is actually relationship building.  Make a list of websites in your niche and build a relationship with them - don’t just spam them with the standard “hey, I have this amazing article, can you link to it?”.  If you spam, you risk ruining your reputation (and this is going to make further outreach much harder). Tip #60. Stick With The Classics At the end of the day, the most effective link-building tactics are the most straightforward ones:  Direct Outreach Broken Link-Building Guest Posting Skyscraper Technique Creating Viral Content Guestposting With Infographics Tip #61. Give, Don’t Just Take! If you’re doing link-building outreach, don’t just ask for links - give something in return.  This will significantly improve the reply rate from your outreach email. If you own a SaaS tool, for example, you can offer the bloggers you’re reaching out to free access to your software. Or, alternatively, if you’re doing a lot of guest posting, you can offer the website owner a link from the guest post in exchange for the link to your website. Tip #62. Avoid Link Resellers That guy DMing you on LinkedIn, trying to sell you links from a Google Sheet?  Don’t fall for it - most of those links are PBNs and are likely to backfire on you. Tip #63. Avoid Fiverr Like The Plague Speaking of spammy links, don’t touch anything that’s sold on Fiverr - pretty much all of the links there are useless. Tip #64. Focus on Quality Links Not all links are created equal. A link is of higher quality if it’s linked from a page that: Is NOT a PBN. Doesn’t have a lot of outbound links. If the page links to 20 other websites, each of them gets less link juice. Has a lot of (quality) backlinks. Is part of a website with a high domain authority. Is about a topic relevant to the page it’s linking to. If your article about pets has a link from an accounting blog, Google will consider it a bit suspicious. Tip #65. Data-Backed Content Just Works Data-backed content can get insane results for link-building.  For example, OKCupid used to publish interesting data & research based on how people interacted with their platform and it never failed to go viral. Each of their reports ended up being covered by dozens of news media (which got them a ton of easy links). Tip #66. Be Creative - SEO Is Marketing, After All Be novel & creative with your link-building initiatives.  Here’s the thing: the very best link-builders are not going to write about the tactics they’re using.  If they did, you’d see half the internet using the exact same tactic as them in less than a week! Which, as you can guess, would make the tactic cliche and significantly less effective. In order to get superior results with your link-building, you’ll need to be creative - think about how you can make your outreach different from what everyone does. Experiment it, measure it, and improve it till it works! Tip #67. Try HARO HARO, or Help a Reporter Out, is a platform that matches journalists with sources. You get an email every day with journalists looking for experts in specific niches, and if you pitch them right, they might feature you in their article or link to your website. Tip #68. No-Follow Links Aren’t That Bad Contrary to what you might’ve heard, no-follow links are not useless. Google uses no-follow as more of a suggestion than anything else.  There have been case studies that prove Google can disregard the no-follow tag and still reward you with increased rankings. Tip #69. Start Fresh With an Expired Domain Starting a new website? It might make sense to buy an expired one with existing backlinks (that’s in a similar niche as yours). The right domain can give you a serious boost to how fast you can rank. Tip #70. Don’t Overspend on Useless Links “Rel=sponsored” links don’t pass pagerank and hence, won’t help increase your website rankings.  So, avoid buying links from media websites like Forbes, Entrepreneur, etc. Tip #71. Promote Your Content Other than link-building, focus on organic content promotion. For example, you can repost your content on Facebook groups, LinkedIn, Reddit, etc. and focus on driving traffic.  This will actually lead to you getting links, too. We got around 95 backlinks to our SEO case study article just because of our successful content promotion. Tons of people saw the article on the net, liked it, and linked to it from their website. Tip #72. Do Expert Roundups Want to build relationships with influencers in your niche, but don’t know where to start?  Create an expert roundup article. If you’re in the sales niche, for example, you can write about Top 21 Sales Influencers in 2021 and reach out to the said influencers letting them know that they got featured. Trust us, they’ll love you for this! Tip #73. .Edu Links are Overhyped .edu links are overrated. According to John Mueller, .edu domains tend to have a ton of outbound links, and as such, Google ignores a big chunk of them. Tip #74. Build Relationships With Your Customers Little-known link-building hack: if you’re a SaaS company doing SEO, you can build relationships with your customers (the ones that are in the same topical niche as you are) and help each other build links! Tip #75. Reciprocal Links Aren’t That Bad Reciprocal links are not nearly as bad as Google makes them out to be. Sure, they can be bad at scale (if trading links is all you’re doing). Exchanging a link or two with another website / blog, though, is completely harmless in 99% of cases. Tip #76. Don’t Overspam Don’t do outreach for every single post you publish - just the big ones.  Most people already don’t care about your outreach email. Chances are, they’re going to care even less if you’re asking them to link to this new amazing article you wrote (which is about the top 5 benefits of adopting a puppy). Technical SEO Tips Tip #77. Use PageSpeed Insights If your website is extremely slow, it’s definitely going to impact your rankings. Use PageSpeed Insights to see how your website is currently performing. Tip #78. Load Speed Matters While load speed doesn’t impact rankings directly, it DOES impact your user experience. Chances are, if your page takes 5 seconds to load, but your competition’s loads instantly, the average Googler will drop off and pick them over you. Tip #79. Stick to a Low Crawl Depth Crawl depth of any page on your website should be lower than 4 (meaning, any given page should be possible to reach in no more than 3 clicks from the homepage).  Tip #80. Use Next-Gen Image Formats Next-gen image formats such as JPEG 2000, JPEG XR, and WebP can be compressed a lot better than PNG or JPG. So, when possible, use next-get formats for images on your website. Tip #81. De-Index Irrelevant Pages Hide the pages you don’t want Google to index (e.g: non-public, or unimportant pages) via your Robots.txt. If you’re a SaaS, for example, this would include most of your in-app pages or your internal knowledge base pages. Tip #82. Make Your Website Mobile-Friendly Make sure that your website is mobile-friendly. Google uses “mobile-first indexing.” Meaning, unless you have a working mobile version of your website, your rankings will seriously suffer. Tip #83. Lazy-Load Images Lazy-load your images. If your pages contain a lot of images, you MUST activate lazy-loading. This allows images that are below the screen, to be loaded only once the visitor scrolls down enough to see the image. Tip #84. Enable Gzip Compression Enable Gzip compression to allow your HTML, CSS and JS files to load faster. Tip #85. Clean Up Your Code If your website loads slowly because you have 100+ external javascript files and stylesheets being requested from the server, you can try minifying, aggregating, and inlining some of those files. Tip 86. Use Rel-Canonical Have duplicate content on your website? Use rel-canonical to show Google which version is the original (and should be prioritized for search results). Tip #87. Install an SSL Certificate Not only does an SSL certificate help keep your website safe, but it’s also a direct ranking factor. Google prioritizes websites that have SSL certificates over the ones that don’t. Tip #88. Use Correct Anchor Texts for Internal Links When linking to an internal page, mention the keyword you’re trying to rank for on that page in the anchor text. This helps Google understand that the page is, indeed, about the keyword you’re associating it with. Tip #89. Use GSC to Make Sure Your Content is Interlinked Internal links can have a serious impact on your rankings. So, make sure that all your blog posts (especially the new ones) are properly linked to/from your past content.  You can check how many links any given page has via Google Search Console. Tip #90. Bounce rate is NOT a Google ranking factor. Meaning, you can still rank high-up even with a high bounce rate. Tip #91. Don’t Fret About a High Bounce Rate Speaking of the bounce rate, you’ll see that some of your web pages have a higher-than-average bounce rate (70%+).  While this can sometimes be a cause for alarm, it’s not necessarily so. Sometimes, the search intent behind a given keyword means that you WILL have a high bounce rate even if your article is the most amazing thing ever.  E.g. if it’s a recipe page, the reader gets the recipe and bounces off (since they don’t need anything else). Tip #92. Google Will Ignore Your Meta Description More often than not, Google won’t use the meta description you provide - that’s normal. It will, instead, automatically pick a part of the text that it thinks is most relevant and use it as a meta description. Despite this, you should always add a meta description to all pages. Tip #93. Disavow Spammy & PBN Links Keep track of your backlinks and disavow anything that’s obviously spammy or PBNy. In most cases, Google will ignore these links anyway. However, you never know when a competitor is deliberately targeting you with too many spammy or PBN links (which might put you at risk for being penalized). Tip #94. Use The Correct Redirect  When permanently migrating your pages, use 301 redirect to pass on the link juice from the old page to the new one. If the redirect is temporary, use a 302 redirect instead. Tip #95. When A/B Testing, Do This A/B testing two pages? Use rel-canonical to show Google which page is the original. Tip #96. Avoid Amp DON’T use Amp.  Unless you’re a media company, Amp will negatively impact your website. Tip #97. Get Your URL Slugs Right Keep your blog URLs short and to-the-point. Good Example: apollodigital.io/blog/seo-case-study Bad Example: apollodigital.io/blog/seo-case-study-2021-0-to-200,000/ Tip #98. Avoid Dates in URLs An outdated date in your URL can hurt your CTR. Readers are more likely to click / read articles published recently than the ones written years back. Tip #99. Social Signals Matter Social signals impact your Google rankings, just not in the way you think. No, your number of shares and likes does NOT impact your ranking at all.  However, if your article goes viral and people use Google to find your article, click it, and read it, then yes, it will impact your rankings.  E.g. you read our SaaS marketing guide on Facebook, then look up “SaaS marketing” on Google, click it, and read it from there. Tip #100. Audit Your Website Frequently Every other month, crawl your website with ScreamingFrog and see if you have any broken links, 404s, etc. Tip #101. Use WordPress Not sure which CMS platform to use?  99% of the time, you’re better off with WordPress.  It has a TON of plugins that will make your life easier.  Want a drag & drop builder? Use Elementor. Wix, SiteGround and similar drag & drops are bad for SEO. Tip #102. Check Rankings the Right Way When checking on how well a post is ranking on Google Search Console, make sure to check Page AND Query to get the accurate number.  If you check just the page, it’s going to give you the average ranking on all keywords the page is ranking for (which is almost always going to be useless data). Conclusion Aaand that's about it - thanks for the read! Now, let's circle back to Tip #1 for a sec. Remember when we said a big chunk of what you read on SEO is based on personal experiences, experiments, and the like? Well, the tips we've mentioned are part of OUR experience. Chances are, you've done something that might be different (or completely goes against) our advice in this article. If that's the case, we'd love it if you let us know down in the comments. If you mention something extra-spicy, we'll even include it in this article.

how I built a $6k/mo business with cold email
reddit
LLM Vibe Score0
Human Vibe Score1
Afraid-Astronomer130This week

how I built a $6k/mo business with cold email

I scaled my SaaS to a $6k/mo business in under 6 months completely using cold email. However, the biggest takeaway for me is not a business that’s potentially worth 6-figure. It’s having a glance at the power of cold emails in the age of AI. It’s a rapidly evolving yet highly-effective channel, but no one talks about how to do it properly. Below is the what I needed 3 years ago, when I was stuck with 40 free users on my first app. An app I spent 2 years building into the void. Entrepreneurship is lonely. Especially when you are just starting out. Launching a startup feel like shouting into the dark. You pour your heart out. You think you have the next big idea, but no one cares. You write tweets, write blogs, build features, add tests. You talk to some lukewarm leads on Twitter. You do your big launch on Product Hunt. You might even get your first few sales. But after that, crickets... Then, you try every distribution channel out there. SEO Influencers Facebook ads Affiliates Newsletters Social media PPC Tiktok Press releases The reality is, none of them are that effective for early-stage startups. Because, let's face it, when you're just getting started, you have no clue what your customers truly desire. Without understanding their needs, you cannot create a product that resonates with them. It's as simple as that. So what’s the best distribution channel when you are doing a cold start? Cold emails. I know what you're thinking, but give me 10 seconds to change your mind: When I first heard about cold emailing I was like: “Hell no! I’m a developer, ain’t no way I’m talking to strangers.” That all changed on Jan 1st 2024, when I actually started sending cold emails to grow. Over the period of 6 months, I got over 1,700 users to sign up for my SaaS and grew it to a $6k/mo rapidly growing business. All from cold emails. Mastering Cold Emails = Your Superpower I might not recommend cold emails 3 years ago, but in 2024, I'd go all in with it. It used to be an expensive marketing channel bootstrapped startups can’t afford. You need to hire many assistants, build a list, research the leads, find emails, manage the mailboxes, email the leads, reply to emails, do meetings. follow up, get rejected... You had to hire at least 5 people just to get the ball rolling. The problem? Managing people sucks, and it doesn’t scale. That all changed with AI. Today, GPT-4 outperforms most human assistants. You can build an army of intelligent agents to help you complete tasks that’d previously be impossible without human input. Things that’d take a team of 10 assistants a week can now be done in 30 minutes with AI, at far superior quality with less headaches. You can throw 5000 names with website url at this pipeline and you’ll automatically have 5000 personalized emails ready to fire in 30 minutes. How amazing is that? Beyond being extremely accessible to developers who are already proficient in AI, cold email's got 3 superpowers that no other distribution channels can offer. Superpower 1/3 : You start a conversation with every single user. Every. Single. User. Let that sink in. This is incredibly powerful in the early stages, as it helps you establish rapport, bounce ideas off one another, offer 1:1 support, understand their needs, build personal relationships, and ultimately convert users into long-term fans of your product. From talking to 1000 users at the early stage, I had 20 users asking me to get on a call every week. If they are ready to buy, I do a sales call. If they are not sure, I do a user research call. At one point I even had to limit the number of calls I took to avoid burnout. The depth of the understanding of my customers’ needs is unparalleled. Using this insight, I refined the product to precisely cater to their requirements. Superpower 2/3 : You choose exactly who you talk to Unlike other distribution channels where you at best pick what someone's searching for, with cold emails, you have 100% control over who you talk to. Their company Job title Seniority level Number of employees Technology stack Growth rate Funding stage Product offerings Competitive landscape Social activity (Marital status - well, technically you can, but maybe not this one…) You can dial in this targeting to match your ICP exactly. The result is super low CAC and ultra high conversion rate. For example, My competitors are paying $10 per click for the keyword "HARO agency". I pay $0.19 per email sent, and $1.92 per signup At around $500 LTV, you can see how the first means a non-viable business. And the second means a cash-generating engine. Superpower 3/3 : Complete stealth mode Unlike other channels where competitors can easily reverse engineer or even abuse your marketing strategies, cold email operates in complete stealth mode. Every aspect is concealed from end to end: Your target audience Lead generation methods Number of leads targeted Email content Sales funnel This secrecy explains why there isn't much discussion about it online. Everyone is too focused on keeping their strategies close and reaping the rewards. That's precisely why I've chosen to share my insights on leveraging cold email to grow a successful SaaS business. More founders need to harness this channel to its fullest potential. In addition, I've more or less reached every user within my Total Addressable Market (TAM). So, if any competitor is reading this, don't bother trying to replicate it. The majority of potential users for this AI product are already onboard. To recap, the three superpowers of cold emails: You start a conversation with every single user → Accelerate to PMF You choose exactly who you talk to → Super-low CAC Complete stealth mode → Doesn’t attract competition By combining the three superpowers I helped my SaaS reach product-marketing-fit quickly and scale it to $6k per month while staying fully bootstrapped. I don't believe this was a coincidence. It's a replicable strategy for any startup. The blueprint is actually straightforward: Engage with a handful of customers Validate the idea Engage with numerous customers Scale to $5k/mo and beyond More early-stage founders should leverage cold emails for validation, and as their first distribution channel. And what would it do for you? Update: lots of DM asking about more specifics so I wrote about it here. https://coldstartblueprint.com/p/ai-agent-email-list-building

What's some good AI software for entrepreneurs?
reddit
LLM Vibe Score0
Human Vibe Score1
Moist_Possibility128This week

What's some good AI software for entrepreneurs?

I just started running a smaller business as a side gig and am in need of getting some manual work off my shoulders. This business is basically a hobby turned business as something I've been wanting to get into for a long time but just got the courage to do so this year. I'm making hand-made jewelry that's kind of a niche but has a tiny little tight market with relatively active and supportive buyers. Of course, a huge part of my job is answering all kinds of questions, covering spreadsheets, and doing market research to try and find new customer groups. The majority of this work is relatively simple what I’d call “manual”, which is why I feel like it could be done by AI, at the very least with the precision that I need. I did find some help using Chat GPT 4 so far, especially with handling my spreadsheets and market research. I usually let it do some manual labor on the spreadsheets, and I’ve even managed to train it to do some more complex tasks like researching the market and putting the results in the spreadsheet that I can use. ChatGPT isn’t that good at answering messages however because the answers are pretty generic and I have to manually generate responses and send them which takes arguably even more time than just responding myself. For this task, Personal AI has been proven to be way more useful because it’s literally a personalized AI model that can be trained to accurately respond to anything + once you create your own personal AI, other people can ask questions there instead of messaging me directly and get instant responses from the AI that are based on the knowledge I fed it. Still testing the tool, but so far it has been quite useful and saved me a ton of time. I also used Poll the People a few times to get feedback from my customers, and it worked magnificently. I'd like to hear some recommendations on AI tools that can be useful to someone who's just entering this world so please shoot them!

AI Will Make You Extremely Rich or Kill Your Business in 2024
reddit
LLM Vibe Score0
Human Vibe Score1
AntsyNursery58This week

AI Will Make You Extremely Rich or Kill Your Business in 2024

Preface: I'm a solo-founder in the AI space and previously worked as an ML scientist; the new advancements in AI that I'm seeing are going to impact everyone here. It doesn't matter if you're just starting out, or a bootstrapped brick and mortar founder, or even a VC backed hard tech founder. Last year was when the seeds were laid, and this is the year we'll see them bloom. There will be an onslaught of advancements that take place that are borderline inconceivable due to the nature of exponential progress. This will change every single vertical. I'm making this post because I think AI execution strategy will make or break businesses. Dramatically. Over $50B was put into AI startups in 2023 alone. This figure excludes the hundreds of billions poured into AI from enterprises. So, let's follow the money: &#x200B; 1) AI enterprise software. There's a lot to unpack here and this is what I’m currently working on. AI enterprise software will encompass everything from hyper personalized email outbound to AI cold calls to AI that A/B tests ads on synthetic data to vertical specific software. The impact of the former is relatively self explanatory, so I'll focus on the latter. To illustrate vertical specific AI software, I'll use a simple example in the legal space. Lawyers typically have to comb through thousands of pages of documents. Now, using an LLM + a VDB, an AI can instantly answer all of those questions while surfacing the source and highlighting the specific answer in the contract/document. There are dozens of AI startups for this use case alone. This saves lawyers an immense amount of time and allows them to move faster. Firms that adopt this have a fundamental advantage over law firms that don't adopt this. This was 2023 technology. I'm seeing vertical AI software getting built by my friends in areas from construction, to real estate, to even niche areas like chimney manufacturing. This will exist everywhere. Now, this can be extrapolated much further to be applicable to systems that can do reports and even browse the Internet. This brings me to my next point. &#x200B; 2) AI information aggregation and spread. My gut tells me that this will have a crescendo moment in the future with hardware advancements (Rabbit, Tab, etc.). You won't have to google things because it will be surfaced to you. It's predictive in nature. The people who can get information the fastest will grow their business the fastest. This part is semi-speculative, but due to the nature of LLMs being so expensive to train, I have a strong feeling that large institutions will have access to the \fastest\ and \best\ models that can do this quicker than you and I can. This is why it's important to stay on top. &#x200B; 3) AI content generation This is relevant to running advertisements and any digital marketing aspect of your business. If you can rapidly make content faster than your competitors to put in social media, you will outpace your competitors rapidly. I think most folks are familiar with MidJourney, Stable diffusion, etc. but don't know how to use it. You can generate consistent models for a clothing brand or generate images of a product that you would normally need to hire a professional photographer to take. There's also elevenlabs which is relatively easy to use and can be used to make an MP3 clip as a narration for an ad; this is something I've already done. I'm also still shocked by how many people are unfamiliar with tools like Pika which can do video generation. You could imagine companies having fleets of digital influencers that they control or conjuring up the perfect ad for a specific demographic using a combination of all of the aforementioned tools. &#x200B; In summary, if you feel like I'm being hyperbolic or propagating science fiction fantasies, you're likely already behind. I truly recommend that everyone stays up to date on these advancements as much as possible. If your competitor comes across an AI tool that can increase their ROAS by 5x they can crush you. If your competitor uses a tool that increases the rate at which they receive and aggregate information by 200% (modest estimate) they will crush you. If your competitors have a tool that can reduce their employee size, then they will use it. They'll fire their employees to cut costs and reinvest the money back into their business. It will compound to the point where you're outpaced, and this isn't a level of innovation we've seen since the birth of the industrial revolution. Your customers can get stolen overnight, or you can steal your competition’s customers overnight. TL;DR: This is an opportunity for entrepreneurs to scale faster than they could have possibly imagined, but this also comes with the potential for your company to be obliterated. We've never seen advancements that can have this drastic of an impact this quickly. Adoption will happen fast, and first movers will have a disproportionate and compounding advantage. Watch guides, meet with startups, follow the news, and get rich.

Detailed Guide - How I've Been Self Employed for 2 Years Selling Posters
reddit
LLM Vibe Score0
Human Vibe Score1
tommo278This week

Detailed Guide - How I've Been Self Employed for 2 Years Selling Posters

Hey everyone, bit of context before you read through this. I have been selling POD posters full time for over 2 years now. My next venture is that I have started my own Print on Demand company for posters, PrintShrimp. As one way of creating customers for our service, we are teaching people for free how to also sell posters. Here is a guide I have written on how to sell posters on Etsy. Feel free to have a read through and then check out PrintShrimp, hopefully can help some of you guys out (and get us some more customers!) All of this is also available in video format on our website too, if you prefer to learn that way. Thanks guys! And as some people asked in other subs, no this isn't written with AI 😅 This took a couple of weeks to put together! Through this guide, we will teach you everything you need to know about starting to sell posters and generate some income. We will also show you why PrintShrimp is the best POD supplier for all of your poster needs. Trust me, you won’t need much convincing.  So, why are posters the best product to sell? Also, just thought I’d quickly answer the question - why posters? If you’ve been researching Print on Demand you’ve probably come across the infinite options of t-shirts, mugs, hats, phone cases, and more. All of these are viable options, however we think posters are the perfect place to start. You can always expand into other areas further down the line! So a brief summary of why posters are the perfect product for Print on Demand: \-They are very easy to design! Posters are a very easy shape to deal with - can’t go wrong with a rectangle. This makes designing products very easy. \-Similarly to this, what you see is what you get with a poster. You can literally see your finished product as you design it in either canva or photoshop. With T-Shirts for example, you have to make your design, and then place it on a t-shirt. Then you have to coordinate with your printers the size you would like the design on the tshirt and many other variables like that. There is no messing about with posters - what you see is what you get. \-The same high quality, everywhere. With other products, if you want to reap the benefits of a printing in various countries, you need to ensure each of your global suppliers stocks the same t-shirts, is able to print in the same way, carries the same sizes etc. Again with posters you avoid all of this hassle- your products will come out the same, no matter which of our global locations are used. \-They have a very favorable profit margin. As you will see later, the cost price of posters is very low. And people are prepared to pay quite a lot for a decent bit of wall art! I have tried out other products, and the profit margin combined with the order quantity of posters makes them my most profitable product, every single time. Using PrintShrimp, you can be sure to enjoy profits of anywhere between £6 - £40 pure profit per sale.  \-They are one of the easiest to print white label. This makes them perfect for Print on Demand. Your posters are simply put in a tube, and off they go. There are no extras you need to faff around with, compared to the extra elements other products come with, such as clothing labels on t-shirts.  Picking your poster niche So, you are ready to start selling posters. Great! Now, the blessing and curse with selling posters is that there are infinite possibilities regarding what you can sell. So, it can easily be quite overwhelming at first.  The first thing I would recommend doing is having a look at what others are selling. Etsy is a wonderful place for this (and will likely be a key part of your poster selling journey). So, log on to Etsy and simply type in ‘poster’ in the search bar. Get ready to write a massive list of the broad categories and type of posters that people are selling.  If you do not have more than 50 categories written down by the end, you are doing something wrong. There are seriously an infinite amount of posters! For example, here are some popular ones to get you started: Star sign posters, Kitchen posters, World map posters, Custom Dog Portrait posters, Music posters, Movie posters, Fine art posters, Skiing posters, Girl Power posters and Football posters.  Now, you have a huge list of potential products to sell. What next? There are a few important things you need to bear in mind when picking your niche: \-Does this interest me?  Don’t make the mistake of going down a niche that didn’t actually interest you just because it would probably be a money maker. Before you know it, what can be a very fun process of making designs can become incredibly \\\monotonous, and feel like a chore\\\. You need to bear in mind that you will be spending a lot of time creating designs - if it is something you are interested in you are much less likely to get burnt out! As well, \\\creativity will flow\\\ far better if it is something you are interested in, which at the end of the day will lead to better designs that are more likely to be purchased by customers.  \-Is this within my design range? Don’t let this put you off too much. We will go through how to get started on design later on in this guide. However, it is important to note that the plain truth of it is that some niches and designs are a hell of a lot more complicated than others. For example, quote posters can essentially be designed by anyone when you learn about how to put nice fonts together in a good color scheme. On the other hand, some posters you see may have been designed with complex illustrations in a program like Illustrator. To start with, it may be better to pick a niche that seems a bit more simple to get into, as you can always expand your range with other stores further down the line. A good way of evaluating the design complexity is by identifying if this poster is \\\a lot of elements put together\\\ or is \\\a lot of elements created by the designer themselves\\\\\.\\ Design can in a lot of cases be like a jigsaw - putting colours, shapes and text together to create an image. This will be a lot easier to start with and can be learnt by anyone, compared to complex drawings and illustrations.  \-Is this niche subject to copyright issues? Time to delve deep into good old copyright. Now, when you go through Etsy, you will without a doubt see hundreds of sellers selling music album posters, car posters, movie posters and more. Obviously, these posters contain the property of musicians, companies and more and are therefore copyrighted. The annoying thing is - these are \\\a complete cash cow.\\\ If you go down the music poster route, I will honestly be surprised if you \\don’t\\ make thousands. However it is only a matter of time before the copyright strikes start rolling in and you eventually get banned from Etsy.  So I would highly recommend \\\not making this mistake\\\. Etsy is an incredible platform for selling posters, and it is a hell of a lot easier to make sales on there compared to advertising your own website. And, you \\\only get one chance on Etsy.\\\ Once you have been banned once, you are not allowed to sign up again (and they do ID checks - so you won’t be able to rejoin again under your own name).  So, don’t be shortsighted when it comes to entering Print on Demand. If you keep your designs legitimate, they will last you a lifetime and you will then later be able to crosspost them to other platforms, again without the worry of ever getting shut down.  So, how do I actually design posters? Now you have an idea of what kind of posters you want to be making, it’s time to get creative and make some designs! Photoshop (and the creative cloud in general) is probably the best for this. However, when starting out it can be a scary investment (it costs about £30 a month unless you can get a student rate!).  So, while Photoshop is preferable in the long term, when starting out you can learn the ropes of design and get going with Canva. This can be great at the start as they have a load of templates that you can use to get used to designing and experimenting (while it might be tempting to slightly modify these and sell them - this will be quite saturated on places like Etsy so we would recommend doing something new).  What size format should I use? The best design format to start with is arguably the A sizes - as all the A sizes (A5, A4, A3, A2, A1, A0) are scalable. This means that you can make all of your designs in one size, for example A3, and these designs will be ready to fit to all other A sizes. For example, if you design an A3 poster and someone orders A1, you can just upload this A3 file to PrintShrimp and it will be ready to print. There is a wide range of other sizes you should consider offering on your shop, especially as these sizes are very popular with the American market. They have a wide range of popular options, which unfortunately aren’t all scalable with each other. This does mean that you will therefore have to make some slight modifications to your design in order to be able to offer them in American sizing, in a few different aspect ratios. What you can do however is design all of your products in UK sizing, and simply redesign to fit American sizing once you have had an order. Essentially: design in UK sizing, but list in both UK and US sizing. Then when you get a non-A size order, you can quickly redesign it on demand. This means that you don’t have to make a few different versions of each poster when first designing, and can simply do a quick redesign for US sizing when you need to. Below is PrintShrimps standard size offering. We can also offer any custom sizing too, so please get in touch if you are looking for anything else. With these sizes, your poster orders will be dispatched domestically in whatever country your customer orders from. Our recommendations for starting design One thing that will not be featured in this guide is a written out explanation or guide on how to design. Honestly, I can’t think of a more boring, or frankly worse, way to learn design. When it comes to getting started, experimenting is your best friend! Just have a play around and see what you can do. It is a really fun thing to get started with, and the satisfaction of when a poster design comes together is like no other. A good way to start is honestly by straight up copying a poster you see for sale online. And we don’t mean copying to sell! But just trying to replicate other designs is a great way to get a feel for it and what you can do. We really think you will be surprised at how easy it is to pull together a lot of designs that at first can appear quite complicated! Your best friend throughout this whole process will be google. At the start you will not really know how to do anything - but learning how to look into things you want to know about design is all part of the process. At first, it can be quite hard to even know how to search for what you are trying to do, but this will come with time (we promise). Learning how to google is a skill that you will learn throughout this process.  Above all, what we think is most important is this golden rule: take inspiration but do not steal. You want to be selling similar products in your niche, but not copies. You need to see what is selling in your niche and get ideas from that, but if you make designs too similar to ones already available, you won’t have much luck. At the end of the day, if two very similar posters are for sale and one shop has 1000 reviews and your newer one has 2, which one is the customer going to buy? You need to make yours offer something different and stand out enough to attract customers. Etsy SEO and maximizing your sales You may have noticed in this guide we have mentioned Etsy quite a few times! That is because we think it is hands down the best place to start selling posters. Why? Etsy is a go to place for many looking to decorate their homes and also to buy gifts. It might be tempting to start selling with your own website straight away, however we recommend Etsy as it brings the customers to you. For example, say you start selling Bathroom Posters. It is going to be a hell of a lot easier to convert sales when you already have customers being shown your page after searching ‘bathroom decor’, compared to advertising your own website. This is especially true as it can be hard to identify your ideal target audience to then advertise to via Meta (Facebook/Instagram) for example. Websites are a great avenue to explore eventually like I now have, but we recommend starting with Etsy and going from there. What costs do I need to be aware of? So, setting up an Etsy sellers account is currently costs £15. The only other upfront cost you will have is the cost of listing a product - this is 20 cents per listing. From then on, every time you make a sale you will be charged a transaction fee of 6.5%, a small payment processing fee, plus another 20 cents for a renewed listing fee. It normally works out to about 10% of each order, a small price to pay for all the benefits Etsy brings. No matter what platform you sell on, you will be faced with some form of transaction fee. Etsy is actually quite reasonable especially as they do not charge you to use their platform on a monthly basis.  What do I need to get selling? Getting your shop looking pretty \-Think of a shop name and design (now you are a professional designer) a logo \-Design a banner for the top of your shop \-Add in some about me info/shop announcement \-I recommend running a sale wherein orders of 3+ items get a 20% of discount. Another big benefit of PrintShrimp is that you receive large discounts when ordering multiple posters. This is great for attracting buyers and larger orders.  Making your products look attractive That is the bulk of the ‘decor’ you will need to do. Next up is placing your posters in mock ups! As you may notice on Etsy, most shops show their posters framed and hanging on walls. These are 99% of the time not real photos, but digital mock ups. This is where Photoshop comes in really handy, as you can automate this process through a plug in called Bulk Mock Up. If you don’t have photoshop, you can do this on Canva, you will just have to do it manually which can be rather time consuming.  Now, where can you get the actual Mock Ups? One platform we highly recommend for design in general is platforms like Envato Elements. These are design marketplaces where you have access to millions of design resources that you are fully licensed to use!  Titles, tags, and descriptions  Now for the slightly more nitty gritty part. You could have the world's most amazing looking poster, however, if you do not get the Etsy SEO right, no one is going to see it! We will take you through creating a new Etsy listing field by field so you can know how to best list your products.  The key to Etsy listing optimisation is to maximise. Literally cram in as many key words as you possibly can! Before you start this process, create a word map of anything you can think of relating to your listing. And come at this from the point of view of, if I was looking for a poster like mine, what would I search? Titles \-Here you are blessed with 140 characters to title your listing. Essentially, start off with a concise way of properly describing your poster. And then afterwards, add in as many key words as you can! Here is an example of the title of a well selling Skiing poster: Les Arcs Skiing Poster, Les Arcs Print, Les Alpes, France Ski Poster, Skiing Poster, Snowboarding Poster, Ski Resort Poster Holiday, French This is 139 characters out of 140 - you should try and maximise this as much as possible! As you can see, this crams in a lot of key words and search terms both related to Skiing as a whole, the poster category, and then the specifics of the poster itself (Les Arcs resort in France). Bear in mind that if you are listing a lot of listings that are of the same theme, you won’t have to spend time creating an entirely new title. For example if your next poster was of a ski resort in Italy, you can copy this one over and just swap out the specifics. For example change “France ski poster” to “Italy ski poster”, change “Les Arcs” to “The Dolomites”, etc.  Description \-Same logic applies for descriptions - try and cram in as many key words as you can! Here is an example for a Formula One poster: George Russell, Mercedes Formula One Poster  - item specific keywords Bright, modern and vibrant poster to liven up your home.  - Describes the style of the poster All posters are printed on high quality, museum grade 200gsm poster paper. Suitable for framing and frames. - Shows the quality of the print. Mentions frames whilst showing it comes unframed Experience the thrill of the racetrack with this stunning Formula One poster. Printed on high-quality paper, this racing car wall art print features a dynamic image of a Formula One car in action, perfect for adding a touch of speed and excitement to any motorsports room or man cave. Whether you're a die-hard fan or simply appreciate the adrenaline of high-speed racing, this poster is sure to impress. Available in a range of sizes, it makes a great addition to your home or office, or as a gift for a fellow Formula One enthusiast. Each poster is carefully packaged to ensure safe delivery, so you can enjoy your new piece of art as soon as possible. - A nice bit of text really highlighting a lot of key words such as gift, motorsports, racetrack etc.  You could go further with this too, by adding in extra things related to the poster such as ‘Perfect gift for a Mercedes F1 fan’ etc.  Tags Now, these are actually probably the most important part of your listing! You get 13 tags (20 character limit for each) and there are essentially search terms that will match your listing with what customers search for when shopping.  You really need to maximize these - whilst Title and Description play a part, these are the main things that will bring buyers to your listing. Once again, it is important to think about what customers are likely to be searching when looking for a poster similar to yours. Life hack alert! You can actually see what tags other sellers are using. All you need to do is go to a listing similar to yours that is selling well, scroll down and you can actually see them listed out at the bottom of the page! Here is an example of what this may look like: So, go through a few listings of competitors and make notes on common denominators that you can integrate into your listing. As you can see here, this seller uses tags such as ‘Birthday Gift’ and ‘Poster Print’. When you first start out, you may be better off swapping these out for more listing specific tags. This seller has been on Etsy for a few years however and has 15,000+ sales, so are more likely to see success from these tags.  If it’s not clear why, think about it this way. If you searched ‘poster print’ on Etsy today, there will be 10s of thousands of results. However, if you searched ‘Russell Mercedes Poster’, you will (as of writing) get 336 results. Etsy is far more likely to push your product to the top of the latter tag, against 300 other listings, rather than the top of ‘Poster Print’ where it is incredibly competitive. It is only when you are a more successful shop pulling in a high quantity of orders that these larger and more generic tags will work for you, as Etsy has more trust in your shop and will be more likely to push you to the front.  SKUs \-One important thing you need to do is add SKUs to all of your products! This is worth doing at the start as it will make your life so much easier when it comes to making sales and using PrintShrimp further down the line. What is an SKU? It is a ‘stock keeping unit’, and is essentially just a product identifier. Your SKUs need to match your file name that you upload to PrintShrimp. For example, if you made a poster about the eiffel tower, you can literally name the SKU eiffel-tower. There is no need to complicate things! As long as your file name (as in the image name of your poster on your computer) matches your SKU, you will be good to go.  \-It may be more beneficial to set up a system with unique identifiers, to make organising your files a lot easier further down the line. Say you get to 1000 posters eventually, you’ll want to be able to quickly search a code, and also ensure every SKU is always unique, so you won’t run into accidentally using the same SKU twice further down the line. For example, you can set it up so at the start of each file name, you have \[unique id\]\[info\], so your files will look like -  A1eiffeltower A2france And further down the line: A99aperolspritz B1potatoart This not only removes the potential issue of duplicating SKUs accidentally (for example if you made a few posters of the same subject), but also keeps your files well organised. If you need to find a file, you can search your files according to the code, so just by searching ‘a1’ for example, rather than having to trawl through a load of different files until you find the correct one. \-If your poster has variations, for example color variations, you can set a different SKU for each variation. Just click the little box when setting up variations that says ‘SKUs vary for each (variation)’. So if you have a poster available either in a white or black background, you can name each file, and therefore each SKU, a1eiffel-tower-black and a1eiffel-tower-white for example. \-The same goes for different sizes. As different American sizes have different aspect ratios, as mentioned above you may have to reformat some posters if you get a sale for one of these sizes. You can then add in the SKU to your listing once you have reformatted your poster. So for example if you sell a 16x20” version of the eiffel tower poster, you can name this file eiffel-tower-white-1620. Whilst this involves a little bit of set up, the time it saves you overall is massive!  Variations and Prices \-So, when selling posters there is a huge variety of sizes that you can offer, as mentioned previously. Non-negotiable is that you should be offering A5-A1. These will likely be your main sellers! Especially in the UK. It is also a good idea to offer inch sizing to appeal to a global audience (as bear in mind with PrintShrimp you will be able to print in multiple countries around the world!).  Below is a recommended pricing structure of what to charge on Etsy. Feel free to mess around with these! You may notice on Etsy that many shops charge a whole lot more for sizes such as A1, 24x36” etc. In my experience I prefer charging a lower rate to attract more sales, but there is validity in going for a lower amount of sales with higher profits. As mentioned above, you can also offer different variations on items - for example different colour schemes on posters. This is always a decent idea (if it suits the design) as it provides the customer with more options, which might help to convert the sale. You can always add this in later however if you want to keep it simple while you start! Setting up shipping profiles Etsy makes it very easy to set up different shipping rates for different countries. However, luckily with PrintShrimp you can offer free shipping to the majority of the major countries that are active on Etsy!  Using PrintShrimp means that your production costs are low enough in each domestic market to justify this. If you look on Etsy you can see there are many shops that post internationally to countries such as the US or Australia. Therefore, they often charge £8-10 in postage, and have a delivery time of 1-2 weeks. This really limits their customer base to their domestic market.  Using PrintShrimp avoids this and means you can offer free shipping (as we absorb the shipping cost in our prices) to the major markets of the UK, Australia, and USA (Europe coming soon!).  We also offer a 1 day processing time, unlike many POD poster suppliers. This means you can set your Etsy processing time to just one day, which combined with our quick shipping, means you will be one of the quickest on Etsy at sending out orders. This is obviously very attractive for customers, who are often very impatient with wanting their orders!  Getting the sales and extra tips \-Don’t list an insane amount of listings when you first get started. Etsy will be like ‘hang on a second’ if a brand new shop suddenly has 200 items in the first week. Warm up your account, and take things slow as you get going. We recommend 5 a day for the first week or so, and then you can start uploading more. You don’t want Etsy to flag your account for suspicious bot-like activity when you first get going.  \-It is very easy to copy listings when creating a new one. Simply select an old listing and press copy, and then you can just change the listing specific details to create a new one, rather than having to start from scratch. It can feel like a bit of a ball-ache setting up your first ever listing, but from then on you can just copy it over and just change the specifics.  \-Try and organize your listings into sections! This really helps the customer journey. Sometimes a customer will click onto your shop after seeing one of your listings, so it really helps if they can easily navigate your shop for what they are looking for. So, you now have a fully fledged Etsy shop. Well done! Time to start making £3,000 a month straight away right? Not quite. Please bear in mind, patience is key when starting out. If you started doing this because you are £10,000 in debt to the Albanian mafia and need to pay it off next week, you have come into this in the wrong frame of mind. If you have however started this to slowly build up a side hustle which hopefully one day become your full time gig, then winner winner chicken dinner.  Starting out on Etsy isn’t always easy. It takes time for your shop to build up trust! As I’ve said before, a buyer is far more likely to purchase from a shop with 1000s of reviews, than a brand new one with 0. But before you know it, you can become one of these shops! One thing you can do at the very start is to encourage your friends and family to buy your posters! This is a slightly naughty way of getting a few sales at the start, of course followed by a few glowing 5\* reviews. It really helps to give your shop this little boost at the start, so if this is something you can do then I recommend it.  Okay, so once you have a fully fledged shop with a decent amount of listings, you might be expecting the sales to start rolling in. And, if you are lucky, they indeed might. However, in my experience, you need to give your listings a little boost. So let us introduce you to: The wonderful world of Etsy ads Ads!! Oh no, that means money!! We imagine some of you more risk averse people are saying to yourself right now. And yes, it indeed does. But more often than not unfortunately you do have to spend money to make money.  Fortunately, in my experience anyway, Etsy ads do tend to work. This does however only apply if your products are actually good however, so if you’re back here after paying for ads for 2 months and are losing money at the same rate as your motivation, maybe go back to the start of this guide and pick another niche.  When you first start out, there are two main strategies.  Number 1: The Safer Option So, with PrintShrimp, you will essentially be making a minimum of £6 profit per order. With this in mind, I normally start a new shop with a safer strategy of advertising my products with a budget of $3-5 dollars a day. This then means that at the start, you only need to make 1 sale to break even, and anything above that is pure profit! This might not seem like the most dazzling proposition right now, but again please bear in mind that growth will be slow at the start. This means that you can gradually grow your shop, and therefore the trust that customers have in your shop, over time with a very small risk of ever actually losing money. Number 2: The Billy Big Balls Option If you were yawning while reading the first option, then this strategy may be for you. This will be better suited to those of you that are a bit more risk prone, and it also helps if you have a bit more cash to invest at the start. Through this strategy, you can essentially pay your way to the top of Etsy's rankings. For this, you’ll probably be looking at spending $20 a day on ads. So, this can really add up quickly and is definitely the riskier option. In my experience, the level of sales with this may not always match up to your spend every day. You may find that some days you rake in about 10 sales, and other days only one. But what this does mean is that as your listings get seen and purchased more, they will begin to rank higher in Etsy’s organic search rankings, at a much quicker rate than option one. This is the beauty of Etsy’s ads. You can pay to boost your products, but then results from this paid promotion feed into the organic ranking of your products. So you may find that you can splash the cash for a while at the start in order to race to the top, and then drop your ad spending later on when your products are already ranking well.  Sending your poster orders So, you’ve now done the hard bit. You have a running Etsy store, and essentially all you need to now on a daily basis is send out your orders and reply to customer messages! This is where it really becomes passive income.  \-Check out the PrintShrimp order portal. Simply sign up, and you can place individual orders through there. \-Bulk upload: We have an option to bulk upload your Esty orders via csv.  Seriously, when you are up and running with your first store, it is really as easy as that.  Once you have your first Etsy store up and running, you can think about expanding. There are many ways to expand your income. You can set up other Etsy stores, as long as the type of posters you are selling varies. You can look into setting up your own Shopify stores, and advertise them through Facebook, Instagram etc. Through this guide, we will teach you everything you need to know about starting to sell posters and generate some income. We will also show you why PrintShrimp is the best POD supplier for all of your poster needs. Trust me, you won’t need much convincing.

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]
reddit
LLM Vibe Score0
Human Vibe Score1
jamesackerman1234This week

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]

Hello Everyone (VERY LONG CASE STUDY AHEAD) - 355% return in 9 months Note: I own a 7-figures USD valued portfolio of 41+ content sites that generates 5-6 figures USD a month in passive income. This is my first time posting in this sub and my goal is to NOT share generic advice but precise numbers, data and highly refined processes so you can also get started with this business yourself or if you already have an existing business, drive huge traffic to it and scale it substantially (get more customers). I will use a case study to explain the whole process. As most of us are entrepreneurs here, explaining an actual project would be more meaningful. In this case study I used AI assisted content to grow an existing site from $217/m to $2,836/m in 9 months (NO BACKLINKS) and sold it for $59,000. ROI of 3 months: 355% Previous case studies (before I give an overview of the model) Amazon Affiliate Content Site: $371/m to $19,263/m in 14 MONTHS - $900K CASE STUDY \[AMA\] Affiliate Website from $267/m to $21,853/m in 19 months (CASE STUDY - Amazon?) \[AMA\] Amazon Affiliate Website from $0 to $7,786/month in 11 months Amazon Affiliate Site from $118/m to $3,103/m in 8 MONTHS (SOLD it for $62,000+) Note: You can check pinned posts on my profile. Do go through the comments as well as a lot of questions are answered in those. However, if you still have any questions, feel free to reach out. This is an \[AMA\]. Quick Overview of the Model Approach: High traffic, niche specific, informative content websites that monetise its traffic through highly automated methods like display ads and affiliate. The same model can be applied to existing businesses to drive traffic and get customers. Main idea: Make passive income in a highly automated way Easy to understand analogy You have real estate (here you have digital asset like a website) You get rental income (here you get ads and affiliate income with no physical hassle, in case you have a business like service, product etc. then you can get customers for that too but if not, it's alright) Real estate has value (this digital asset also has value that can be appreciated with less effort) Real estate can be sold (this can be sold too but faster) IMPORTANT NOTE: Search traffic is the BEST way to reach HUGE target audience and it's important when it comes to scaling. This essentially means that you can either monetise that via affiliate, display etc. or if you have a business then you can reach a bigger audience to scale. Overview of this website's valuation (then and now: Oct. 2022 and June 2023) Oct 2022: $217/m Valuation: $5,750.5 (26.5x) - set it the same as the multiple it was sold for June 2023: $2,836/m Traffic and revenue trend: growing fast Last 3 months avg: $2,223 Valuation now: $59,000 (26.5x) Description: The domain was registered in 2016, it grew and then the project was left unattended. I decided to grow it again using properly planned AI assisted content. Backlink profile: 500+ Referring domains (Ahrefs). Backlinks mean the sites linking back to you. This is important when it comes to ranking. Summary of Results of This Website - Before and After Note: If the terms seem technical, do not worry. I will explain them in detail later. Still if you have any questions. Feel free to comment or reach out. |Metric|Oct 2022|June 2023|Difference|Comments| |:-|:-|:-|:-|:-| |Articles|314|804|\+490|AI Assisted content published in 3 months| |Traffic|9,394|31,972|\+22,578|Organic| |Revenue|$217|$2,836|\+$2,619|Multiple sources| |RPM (revenue/1000 web traffic)|23.09|$88.7|\+$65.61|Result of Conversion rate optimisation (CRO). You make changes to the site for better conversions| |EEAT (expertise, experience, authority and trust of website)|2 main authors|8 authors|6|Tables, video ads and 11 other fixations| |CRO|Nothing|Tables, video ads |Tables, video ads and 11 other fixations || &#x200B; Month by Month Growth |Month|Revenue|Steps| |:-|:-|:-| |Sept 2022|NA|Content Plan| |Oct 2022|$217|Content Production| |Nov 2022|$243|Content production + EEAT authors| |Dec 2022|$320|Content production + EEAT authors| |Jan 2023|$400|Monitoring| |Feb 2023|$223|Content production + EEAT authors| |Mar 2023|$2,128|CRO & Fixations| |April 2023|$1,609|CRO & Fixations| |May 2023|$2,223|Content production + EEAT authors| |June 2023|$2,836|CRO and Fixations| |Total|$10,199|| &#x200B; What will I share Content plan and Website structure Content Writing Content Uploading, formatting and onsite SEO Faster indexing Conversion rate optimisation Guest Posting EEAT (Experience, Expertise, Authority, Trust) Costing ROI The plans moving forward with these sites &#x200B; Website Structure and Content Plan This is probably the most important important part of the whole process. The team spends around a month just to get this right. It's like defining the direction of the project. Description: Complete blueprint of the site's structure in terms of organisation of categories, subcategories and sorting of articles in each one of them. It also includes the essential pages. The sorted articles target main keyword, relevant entities and similar keywords. This has to be highly data driven and we look at over 100 variables just to get it right. It's like beating Google's algorithm to ensure you have a blueprint for a site that will rank. It needs to be done right. If there is a mistake, then even if you do everything right - it's not going to work out and after 8-16 months you will realise that everything went to waste. Process For this project, we had a niche selected already so we didn't need to do a lot of research pertaining to that. We also knew the topic since the website was already getting good traffic on that. We just validated from Ahrefs, SEMRUSH and manual analysis if it would be worth it to move forward with that topic. &#x200B; Find entities related to the topic: We used Ahrefs and InLinks to get an idea about the related entities (topics) to create a proper topical relevance. In order to be certain and have a better idea, we used ChatGPT to find relevant entities as well \> Ahrefs (tool): Enter main keyword in keywords explorer. Check the left pain for popular topics \> Inlinks (tool): Enter the main keyword, check the entity maps \> ChatGPT (tool): Ask it to list down the most important and relevant entities in order of their priority Based on this info, you can map out the most relevant topics that are semantically associated to your main topic Sorting the entities in topics (categories) and subtopics (subcategories): Based on the information above, cluster them properly. The most relevant ones must be grouped together. Each group must be sorted into its relevant category. \> Example: Site about cycling. \> Categories/entities: bicycles, gear and equipment, techniques, safety, routes etc. \> The subcategories/subentities for let's say "techniques" would be: Bike handling, pedaling, drafting etc. Extract keywords for each subcategory/subentity: You can do this using Ahrefs or Semrush. Each keyword would be an article. Ensure that you target the similar keywords in one article. For example: how to ride a bicycle and how can I ride a bicycle will be targeted by one article. Make the more important keyword in terms of volume and difficulty as the main keyword and the other one(s) as secondary Define main focus vs secondary focus: Out of all these categories/entities - there will be one that you would want to dominate in every way. So, focus on just that in the start. This will be your main focus. Try to answer ALL the questions pertaining to that. You can extract the questions using Ahrefs. \> Ahrefs > keywords explorer \> enter keyword \> Questions \> Download the list and cluster the similar ones. This will populate your main focus category/entity and will drive most of the traffic. Now, you need to write in other categories/subentities as well. This is not just important, but crucial to complete the topical map loop. In simple words, if you do this Google sees you as a comprehensive source on the topic - otherwise, it ignores you and you don't get ranked Define the URLs End result: List of all the entities and sub-entities about the main site topic in the form of categories and subcategories respectively. A complete list of ALL the questions about the main focus and at around 10 questions for each one of the subcategories/subentities that are the secondary focus Content Writing So, now that there's a plan. Content needs to be produced. Pick out a keyword (which is going to be a question) and... Answer the question Write about 5 relevant entities Answer 10 relevant questions Write a conclusion Keep the format the same for all the articles. Content Uploading, formatting and onsite SEO Ensure the following is taken care of: H1 Permalink H2s H3s Lists Tables Meta description Socials description Featured image 2 images in text \\Schema Relevant YouTube video (if there is) Note: There are other pointers link internal linking in a semantically relevant way but this should be good to start with. Faster Indexing Indexing means Google has read your page. Ranking only after this step has been done. Otherwise, you can't rank if Google hasn't read the page. Naturally, this is a slow process. But, we expedite it in multiple ways. You can use RankMath to quickly index the content. Since, there are a lot of bulk pages you need a reliable method. Now, this method isn't perfect. But, it's better than most. Use Google Indexing API and developers tools to get indexed. Rank Math plugin is used. I don't want to bore you and write the process here. But, a simple Google search can help you set everything up. Additionally, whenever you post something - there will be an option to INDEX NOW. Just press that and it would be indexed quite fast. Conversion rate optimisation Once you get traffic, try adding tables right after the introduction of an article. These tables would feature a relevant product on Amazon. This step alone increased our earnings significantly. Even though the content is informational and NOT review. This still worked like a charm. Try checking out the top pages every single day in Google analytics and add the table to each one of them. Moreover, we used EZOIC video ads as well. That increased the RPM significantly as well. Both of these steps are highly recommended. Overall, we implemented over 11 fixations but these two contribute the most towards increasing the RPM so I would suggest you stick to these two in the start. Guest Posting We made additional income by selling links on the site as well. However, we were VERY careful about who we offered a backlink to. We didn't entertain any objectionable links. Moreover, we didn't actively reach out to anyone. We had a professional email clearly stated on the website and a particularly designated page for "editorial guidelines" A lot of people reached out to us because of that. As a matter of fact, the guy who bought the website is in the link selling business and plans to use the site primarily for selling links. According to him, he can easily make $4000+ from that alone. Just by replying to the prospects who reached out to us. We didn't allow a lot of people to be published on the site due to strict quality control. However, the new owner is willing to be lenient and cash it out. EEAT (Experience, Expertise, Authority, Trust) This is an important ranking factor. You need to prove on the site that your site has authors that are experienced, have expertise, authority and trust. A lot of people were reaching out to publish on our site and among them were a few established authors as well. We let them publish on our site for free, added them on our official team, connected their socials and shared them on all our socials. In return, we wanted them to write 3 articles each for us and share everything on all the social profiles. You can refer to the tables I shared above to check out the months it was implemented. We added a total of 6 writers (credible authors). Their articles were featured on the homepage and so were their profiles. Costing Well, we already had the site and the backlinks on it. Referring domains (backlinks) were already 500+. We just needed to focus on smart content and content. Here is the summary of the costs involved. Articles: 490 Avg word count per article: 1500 Total words: 735,000 (approximately) Cost per word: 2 cents (includes research, entities, production, quality assurance, uploading, formatting, adding images, featured image, alt texts, onsite SEO, publishing/scheduling etc.) Total: $14,700 ROI (Return on investment) Earning: Oct 22 - June 23 Earnings: $10,199 Sold for: $59,000 Total: $69,199 Expenses: Content: $14,700 Misc (hosting and others): $500 Total: $15,200 ROI over a 9 months period: 355.25% The plans moving forward This website was a part of a research and development experiment we did. With AI, we wanted to test new waters and transition more towards automation. Ideally, we want to use ChatGPT or some other API to produce these articles and bulk publish on the site. The costs with this approach are going to be much lower and the ROI is much more impressive. It's not the the 7-figures projects I created earlier (as you may have checked the older case studies on my profile), but it's highly scalable. We plan to refine this model even further, test more and automate everything completely to bring down our costs significantly. Once we have a model, we are going to scale it to 100s of sites. The process of my existing 7-figures websites portfolio was quite similar. I tested out a few sites, refined the model and scaled it to over 41 sites. Now, the fundamentals are the same however, we are using AI in a smarter way to do the same but at a lower cost, with a smaller team and much better returns. The best thing in my opinion is to run numerous experiments now. Our experimentation was slowed down a lot in the past since we couldn't write using AI but now it's much faster. The costs are 3-6 times lower so when it used to take $50-100k to start, grow and sell a site. Now you can pump 3-6 more sites for the same budget. This is a good news for existing business owners as well who want to grow their brand. Anyway, I am excited to see the results of more sites. In the meantime, if you have any questions - feel free to let me know. Best of luck for everything. Feel free to ask questions. I'd be happy to help. This is an AMA.

AI Content Campaign Got 4M impressions, Thousands of Website Views, Hundreds of Customers for About $100 — This is the future of marketing
reddit
LLM Vibe Score0
Human Vibe Score0.857
adamkstinsonThis week

AI Content Campaign Got 4M impressions, Thousands of Website Views, Hundreds of Customers for About $100 — This is the future of marketing

Alright. So, a few months ago I tested a marketing strategy for a client that I’ve sense dedicated my life to developing on. The Idea was to take the clients Pillar content (their YouTube videos) and use AI to rewrite the content for all the viable earned media channels (mainly Reddit). The campaign itself was moderately successful. To be specific, after one month it became their 2nd cheapest customer acquisition cost (behind their organic YouTube content). But there is a lot to be done to improve the concept. I will say, having been in growth marketing for a decade, I felt like I had hit something big with the concept. I’m going to detail how I built that AI system, and what worked well and what didn’t here. Hopefully you guys will let me know what you think and whether or not there is something here to keep working on. DEFINING THE GOAL Like any good startup, their marketing budget was minimal. They wanted to see results, fast and cheap. Usually, marketers like me hate to be in this situation because getting results usually either takes time or it takes money. But you can get results fast and cheap if you focus on an earned media strategy - basically getting featured in other people’s publication. The thing is these strategies are pretty hard to scale or grow over time. That was a problem for future me though. I looked through their analytics and saw they were getting referral traffic from Reddit - it was their 5th or 6th largest source of traffic - and they weren’t doing any marketing on the platform. It was all digital word of mouth there. It kind of clicked for me there, that Reddit might be the place to start laying the ground work. So with these considerations in mind the goal became pretty clear: Create content for relevant niche communities on Reddit with the intent of essentially increasing brand awareness. Use an AI system to repurpose their YouTube videos to keep the cost of producing unique content for each subreddit really low. THE HIGH-LEVEL STRATEGY I knew that there are huge amounts of potential customers on Reddit (About 12M people in all the relevant communities combined) AND that most marketers have a really tough time with the platform. I also knew that any earned media strategy, Reddit or not, means Click Through Rates on our content would be extremely low. A lot of people see this as a Reddit specific problem because you can’t self-promote on the platform, but really you have to keep self-promotion to a minimum with any and all earned media. This basically meant we had to get a lot of impressions to make up for it. The thing about Reddit is if your post absolutely crushes it, it can get millions of views. But crushing it is very specific to what the expectations are of that particular subreddit. So we needed to make content that was specifically written for that Subreddit. With that I was able to essentially design how this campaign would work: We would put together a list of channels (specifically subreddits to start) that we wanted to create content for. For each channel, we would write a content guideline that details out how to write great content for this subreddit. These assets would be stored in an AirTable base, along with the transcripts of the YouTube videos that were the base of our content. We would write and optimize different AI Prompts that generated different kinds of posts (discussion starters about a stock, 4-5 paragraph stock analysis, Stock update and what it means, etc…) We would build an automation that took the YouTube transcripts, ran each prompt on it, and then edited each result to match the channel writing guidelines. And then we would find a very contextual way to leave a breadcrumb back to the client. Always as part of the story of the content. At least, this is how I originally thought things would go. CHOOSING THE RIGHT SUBREDDITS Picking the right communities was vital. Here’s the basic rubric we used to pick and prioritize them: • Relevance: We needed communities interested in stock analysis, personal finance, or investing. • Subreddit Size vs. Engagement: Large subreddits offer more potential impressions but can be less focused. Smaller subreddits often have higher engagement rates. • Content Feasibility: We had to ensure we could consistently create high-value posts for each chosen subreddit. We started with about 40 possibilities, then narrowed it down to four or five that consistently delivered upvotes and user signups. CREATING CHANNEL-SPECIFIC GUIDES By the end, creating channel specific writing guidelines looked like a genius decision. Here’s how we approached it and used AI to get it done quickly: Grabbed Top Posts: We filtered the subreddit’s top posts (change filter to “Top” and then “All Time”) of all time to see the kinds of content that performed best Compiled The Relevant Posts: We took the most relevant posts to what we were trying to do and put them all on one document (basically created one document per subreddit that just had the top 10 posts in that subreddit). Had AI Create Writing Guideline Based On Posts: For each channel, we fed the document with the 10 posts with the instructions “Create a writing guideline for this subreddit based on these high performing posts. I had to do some editing on each guideline but this worked pretty well and saved a lot of time. Each subreddit got a custom guideline, and we put these inside the “Channels” table of the AirTable base we were developing with these assets. BUILDING THE AI PROMPTS THAT GENERATED CONTENT Alright this is probably the most important section so I’ll be detailed. Essentially, we took all the assets we developed up until this point, and used them to create unique posts for each channel. This mean each AI prompt was about 2,000 words of context and produced about a 500-word draft. There was a table in our AirTable where we stored the prompts, as I alluded to earlier. And these were basically the instructions for each prompt. More specifically, they detailed out our expectations for the post. In other words, there were different kinds of posts that performed well on each channel. For example, you can write a post that’s a list of resources (5 tools we used to…), or a how to guide (How we built…), etc.. Those weren’t the specific ones we used, but just wanted to really explain what I meant there. That actual automation that generated the content worked as follows: New source content (YouTube video transcript) was added to the Source Content table. This triggered the Automation. The automation grabbed all the prompts in the prompt table. For each prompt in the prompt table, we sent a prompt to OpenAI (gpt-4o) that contained first the prompt and also the source content. Then, for each channel that content prompt could be used on, we sent another prompt to OpenAI that revised the result of the first prompt based on the specific channel guidelines. The output of that prompt was added to the Content table in AirTable. To be clear, our AirTable had 4 tables: Content Channels Prompts Source Content The Source Content, Prompts, and Channel Guidelines were all used in the prompt that generated content. And the output was put in the Content table. Each time the automation ran, the Source Content was turned into about 20 unique posts, each one a specific post type generated for a specific channel. In other words, we were create a ton of content. EDITING & REFINING CONTENT The AI drafts were never perfect. Getting them Reddit-ready took editing and revising The main things I had to go in and edit for were: • Tone Adjustments: We removed excessively cliche language. The AI would say silly things like “Hello fellow redditors!” which sound stupid. • Fact-Checking: Financial data can be tricky. We discovered AI often confused figures, so we fact check all stock related metrics. Probably something like 30-40% error rate here. Because the draft generation was automated, that made the editing and getting publish ready the human bottleneck. In other words, after creating the system I spent basically all my time reviewing the content. There were small things I could do to make this more efficient, but not too much. The bigger the model we used, the less editing the content needed. THE “BREADCRUMB” PROMOTION STRATEGY No where in my prompt to the AI did I mention that we were doing any marketing. I just wanted the AI to focus on creating content that would do well on the channel. So in the editing process I had to find a way to promote the client. I called it a breadcrumb strategy once and that stuck. Basically, the idea was to never overtly promote anything. Instead find a way to leave a breadcrumb that leads back to the client, and let the really interested people follow the trail. Note: this is supposed to be how we do all content marketing. Some examples of how we did this were: Shared Visuals with a Subtle Watermark: Because our client’s product offered stock data, we’d often include a chart or graph showing a company’s financial metric with the client’s branding in the corner. Added Supporting Data from Client’s Website: If we mentioned something like a company’s cash flow statement, we could link to that company’s cash flow statement on the client’s website. It worked only because there was a lot of data on the client’s website that wasn’t gated. These tactics were really specific to the client. Which is should be. For other companies I would rethink what tactics I use here. THE RESULTS I’m pretty happy with the results • Impressions: – Early on posts averaged \~30,000 apiece, but after about a month of optimization, we hit \~70,000 impressions average. Over about two months, we reached 4 million total impressions. • Signups: – In their signups process there was one of those “Where did you find us?” questions and the amount of people who put Reddit jumped into the few hundred a month. Precise tracking of this is impossible. • Cost Efficiency (This is based on what I charged, and not the actual cost of running the campaign which is about $100/mo): – CPM (cost per thousand impressions) was about $0.08, which is far better than most paid channels. – Cost per free user: \~$8-10. After about a 10% conversion rate to a paid plan, our cost per paying user was $80–$100—well below the client’s previous $300–$400. HIGHLIGHTS: WHAT WORKED Subreddit-Specific Content: – Tailoring each post’s format and length to the audience norms boosted engagement. Worked out really well. 1 post got over 1M views alone. We regularly had posts that had hundreds of thousands. Breadcrumbs: – We never had anyone call us out for promoting. And really we weren’t. Our first priority was writing content that would crush on that subreddit. Using the Founder’s Existing Material: – The YouTube transcripts grounded the AI’s content in content we already made. This was really why we were able to produce so much content. CHALLENGES: WHAT DIDN’T WORK AI is still off: – Maybe it’s expecting too much, but still I wish the AI had done a better job. I editing a lot of content. Human oversight was critical. Scheduling all the content was a pain: – Recently I automated this pretty well. But at first I was scheduling everything manually and scheduling a hundred or so posts was a hassle. Getting Data and Analytics: – Not only did we have not very good traffic data, but the data from reddit had to be collected manually. Will probably automate this in the future. COST & TIME INVESTMENT Setup: The setup originally took me a couple weeks. I’ve since figured out how to do much faster (about 1 week). AirTable Setup here was easy and the tools costs $24/mo so not bad. ChatGPT costs were pretty cheap. Less than $75 per month. I’ve sense switched to using o1 which is much more expensive but saves me a lot of editing time Human Editing: Because this is the human part of the process and everything else was automated it mean by default all my time was spent editing content. Still this was a lot better than creating content from scratch probably by a factor of 5 or 10. The main expense was paying an editor (or using your own time) to refine posts. Worth it? Yes even with the editing time I was able to generate way more content that I would have otherwise. LESSONS & ACTIONABLE TAKEAWAYS Reddit as a Growth Channel: – If you genuinely respect each subreddit’s culture, you can achieve massive reach on a tight budget. AI + Human Collaboration: – AI excels at first drafts, but human expertise is non-negotiable for polishing and ensuring factual integrity. Soft Promotion Wins: – The “breadcrumb” approach paid off. It might feel like too light a touch, but is crucial for Reddit communities. Create once, repurpose as many times as possible: – If you have blog posts, videos, podcasts, or transcripts, feed them into AI to keep your message accurate and brand-consistent. CONCLUSION & NEXT STEPS If you try a similar approach: • Begin with smaller tests in a few niches to learn what resonates. • Create a clear “channel guide” for each community. • Carefully fact-check AI-generated posts. • Keep brand mentions low-key until you’ve established credibility.

I’ve professionalized the family business. Now I feel stuck
reddit
LLM Vibe Score0
Human Vibe Score1
2LobstersThis week

I’ve professionalized the family business. Now I feel stuck

I wrote the post below in my own words and then sent to ChatGPT for refinement/clarity. So if it reads like AI, it's because it is, but it's conveying the message from my own words a bit better than my original with a few of my own lines written back in. Hope that's not an issue here. I’m 33, married with two young kids. I have a bachelor’s from a well-regarded public university (though in an underwhelming field—economics adjacent). I used that degree to land a job at a mid-sized distribution company (\~$1B annual revenue), where I rose quickly to a project management role and performed well. In 2018, after four years there, I returned to my family's $3M/yr residential service and repair plumbing business. I saw my father withdrawing from leadership, responsibilities being handed to underqualified middle managers, and overall employee morale declining. I’d worked in the business from a young age, had all the necessary licenses, and earned a degree of respect from the team—not just as “the boss’s kid,” but as someone who had done the work. I spent my first year back in the field, knocking off the rust. From there, I started chipping away at process issues and inefficiencies, without any formal title. In 2020, I became General Manager. Since then, we’ve grown to over $5M in revenue, improved profitability, and automated many of the old pain points. The business runs much smoother and requires less day-to-day oversight from me. That said—I’m running out of motivation. I have no equity in the business. And realistically, I won’t for a long time. The family dynamic is... complicated. There are relatives collecting large salaries despite zero involvement in the business. Profits that should fuel growth get drained, and we can’t make real accountability stick because we rely too heavily on high-producing employees—even when they underperform in every other respect. I want to be clear—this isn’t a sob story. I know how lucky I am. The business supports my family, and for that I’m grateful. But I’ve gone from showing up every day with fresh ideas and energy to slowly becoming the guy who upholds the status quo. I’ve hit most of the goals I set for myself, but I’m stagnating—and that scares me. The safe move is to keep riding this out. My wife also works and has strong earning potential. We’re financially secure, and with two small kids, I’m not eager to gamble that away. But I’m too young to coast for the next decade while I wait for a possible ownership shakeup. At this point, the job isn’t mentally stimulating. One hour I’m building dynamic pricing models; the next, I’m literally dealing with whether a plumber is wiping his ass properly because I've had multiple complaints about his aroma. I enjoy the challenging, high-level work—marketing, systems, strategy—but I’m worn down by the drama, the legacy egos I can’t fire, and the petty dysfunction I’m forced to manage. I'm working on building a middle management gap, but there's something lost in not being as hands-on in a small business like this. I fear that by isolating myself from the bullshit, I'll also be isolating myself from some of the crucial day-to-day that keep us who we are. Hope that makes sense. (To be fair, most of our team is great. We have an outstanding market reputation and loyal employees—but the garbage still hits my desk when it shows up.) I’ve toyed with starting a complementary business or launching a consulting gig for similar-sized companies outside our market. I’ve taken some Udemy and Maven Analytics courses (digital marketing, advanced Excel/Power BI, etc.) to keep learning, but I rarely get to apply that knowledge here. So here I am. Is this burnout? A premature midlife crisis? A motivation slump? I’m not sure what I’m looking for—but if you’ve been here, or have any hard-earned advice, I’d be grateful to hear it.

boring passive site... now 42k monthly visitors and $2540 MRR
reddit
LLM Vibe Score0
Human Vibe Score1
TasAdamsThis week

boring passive site... now 42k monthly visitors and $2540 MRR

people underestimate SEO... It is evergreen... passive... digital real estate. it can do magic... if you are consistent. Especially now with AI you can 2X your traffic growth and automate 85% of the work. For the past 6 months... we've been building an online directory. we just reached $2540 MRR... with SEO only... from a complete zero. I did share this on other subreddits. Maybe this gives ideas to someone. \+ This can be easily replicated if you have a website lol Current metrics: $2540 MRR - businesses pay us to list on the directory + display ads + pay to be featured. 43k monthly visitors - in the past couple of weeks our SEO growth is a hockey stick. DR (Domain Rating) 35 - it took us 2.5 months to get to that. 51 okay-ish quality referring domains (90% of them are do-follow) and 1.6k backlinks. There are probably 3 main pillars I try to focus on: keywords --> which then is the basis for ALL the content pieces we do blogs, landing pages, about us pages, competitor comparisons etc --> we use a DIY excel file to automate content production at scale. backlinks --> boost DR --> one of the main things to boost ranking on google. website health --> this is technical stuff like internal and external linking, schemas, canonical tags, alt texts, load speeds, compressed images, meta descriptions, titles etc --> do this once... and do it GOOD. $0.07 per SEO optimised blog at scale with AI Yep... we've literally built our own SEO blog tool... and it is a Spreadsheet with bunch of app scripts :D NOTE that we add a little bit of human touch to those blogs that are picked up by Google rank top in 25 How it works... is that we paste in bunch of links (other websites, blogs, news articles) and with a click of a button we can get up to 2000 SEO optimised content pieces... from an Excel file... $0.07 per blog. The spreadsheet is integrated with Chat gpt (obviously). We use GPT-4 for meta descriptions, titles, transforming the content from text to html code since it is more powerful, and GPT-4o for content itself because it is cheaper and faster for "general text". The spreadsheet repurposes content. The spreadsheet generates: Meta descriptions and titles FAQs sections - DON'T skip FAQ sections! They are a must for SEO. On Ahrefs... there is a section of questions people are searching about your keyword... that's your FAQs It can find contextual youtube videos (links to those videos) - to show google that our content is not "just text" thus higher quality. Screenshots and images of the original source (the website link we inputed) I then download a csv version of the excel and import it into our Webflow. The csv file column names match our webflow CMS field names. tbh... we didn't even know that it can be done with a spreadsheet. We "tried" building it because every other tool we were using is (1) expensive from $0.59 per SEO content piece (2) they didn't provide the scale we wanted (3) we wanted more control over the output. Focus on DR 35+ backlinks... easier We bought backlinks only once... rest of the backlinks was a manual work from us. Bunch of free listing databases (about 65% of our backlinks) You can comment on open forums with your link to get a backlink (be careful tho) Post a blog on Medium com --> DR 94 backlink (takes time to Index) If you pay for Notion you can get a DR 94 backlink from Notion If you use Beehiiv you can get a DR 86 backlink from Beehiiv Google product stacking (Google sites, Google notes etc) --> backlink from almighty Google itself A lot of work goes into backlinks because they are THAT important. I have tried bunch of "black hat" strategies as well... but note that all of these strategies won't work if you don't index the primary source from where your backlink is coming from. BIG search volume and low KD Key things I'm looking for in keywords: I use Ahrefs Keyword research tool... it is literally free BIG search volume - 2k+ is oaky-ish for a single keyword EASY to rank - KD (keyword difficulty) below 15 Look for long tail keywords (these are golden nuggets since they have a VERY clear search intent) - "how to edit..." "how to change..." "how to delete..." "how to paint..." I hope you got the idea. on Ahrefs you can use "\" to get BIG volume long tail keywords... like this "my keyword\". Ahrefs then populates the "\" with the tail. Check SERP (Search Engine Result Page) for your keywords - it shows current top 10 pages for those KWs. Check their content. Can you improve it? Have they missed anything? Keyword gap from your competitors - shows EASY keywords that your competitors have missed and also shows what keywords overlap with you. Also one cool thing... if you don't type any keywords on Ahrefs and press "Enter"... you can browse all the keywords out there... it is magical. Once we have the keywords, we run our spreadsheet. And that's pretty much it. I hope that you can get some ideas from this little silly project. Also... if you have any questions about this... I might share the SEO blog automation excel file/help if people are interested...

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

boring passive site... now 42k monthly visitors and $2540 MRR
reddit
LLM Vibe Score0
Human Vibe Score1
TasAdamsThis week

boring passive site... now 42k monthly visitors and $2540 MRR

people underestimate SEO... It is evergreen... passive... digital real estate. it can do magic... if you are consistent. Especially now with AI you can 2X your traffic growth and automate 85% of the work. For the past 6 months... we've been building an online directory. we just reached $2540 MRR... with SEO only... from a complete zero. I did share this on other subreddits. Maybe this gives ideas to someone. \+ This can be easily replicated if you have a website lol Current metrics: $2540 MRR - businesses pay us to list on the directory + display ads + pay to be featured. 43k monthly visitors - in the past couple of weeks our SEO growth is a hockey stick. DR (Domain Rating) 35 - it took us 2.5 months to get to that. 51 okay-ish quality referring domains (90% of them are do-follow) and 1.6k backlinks. There are probably 3 main pillars I try to focus on: keywords --> which then is the basis for ALL the content pieces we do blogs, landing pages, about us pages, competitor comparisons etc --> we use a DIY excel file to automate content production at scale. backlinks --> boost DR --> one of the main things to boost ranking on google. website health --> this is technical stuff like internal and external linking, schemas, canonical tags, alt texts, load speeds, compressed images, meta descriptions, titles etc --> do this once... and do it GOOD. $0.07 per SEO optimised blog at scale with AI Yep... we've literally built our own SEO blog tool... and it is a Spreadsheet with bunch of app scripts :D NOTE that we add a little bit of human touch to those blogs that are picked up by Google rank top in 25 How it works... is that we paste in bunch of links (other websites, blogs, news articles) and with a click of a button we can get up to 2000 SEO optimised content pieces... from an Excel file... $0.07 per blog. The spreadsheet is integrated with Chat gpt (obviously). We use GPT-4 for meta descriptions, titles, transforming the content from text to html code since it is more powerful, and GPT-4o for content itself because it is cheaper and faster for "general text". The spreadsheet repurposes content. The spreadsheet generates: Meta descriptions and titles FAQs sections - DON'T skip FAQ sections! They are a must for SEO. On Ahrefs... there is a section of questions people are searching about your keyword... that's your FAQs It can find contextual youtube videos (links to those videos) - to show google that our content is not "just text" thus higher quality. Screenshots and images of the original source (the website link we inputed) I then download a csv version of the excel and import it into our Webflow. The csv file column names match our webflow CMS field names. tbh... we didn't even know that it can be done with a spreadsheet. We "tried" building it because every other tool we were using is (1) expensive from $0.59 per SEO content piece (2) they didn't provide the scale we wanted (3) we wanted more control over the output. Focus on DR 35+ backlinks... easier We bought backlinks only once... rest of the backlinks was a manual work from us. Bunch of free listing databases (about 65% of our backlinks) You can comment on open forums with your link to get a backlink (be careful tho) Post a blog on Medium com --> DR 94 backlink (takes time to Index) If you pay for Notion you can get a DR 94 backlink from Notion If you use Beehiiv you can get a DR 86 backlink from Beehiiv Google product stacking (Google sites, Google notes etc) --> backlink from almighty Google itself A lot of work goes into backlinks because they are THAT important. I have tried bunch of "black hat" strategies as well... but note that all of these strategies won't work if you don't index the primary source from where your backlink is coming from. BIG search volume and low KD Key things I'm looking for in keywords: I use Ahrefs Keyword research tool... it is literally free BIG search volume - 2k+ is oaky-ish for a single keyword EASY to rank - KD (keyword difficulty) below 15 Look for long tail keywords (these are golden nuggets since they have a VERY clear search intent) - "how to edit..." "how to change..." "how to delete..." "how to paint..." I hope you got the idea. on Ahrefs you can use "\" to get BIG volume long tail keywords... like this "my keyword\". Ahrefs then populates the "\" with the tail. Check SERP (Search Engine Result Page) for your keywords - it shows current top 10 pages for those KWs. Check their content. Can you improve it? Have they missed anything? Keyword gap from your competitors - shows EASY keywords that your competitors have missed and also shows what keywords overlap with you. Also one cool thing... if you don't type any keywords on Ahrefs and press "Enter"... you can browse all the keywords out there... it is magical. Once we have the keywords, we run our spreadsheet. And that's pretty much it. I hope that you can get some ideas from this little silly project. Also... if you have any questions about this... I might share the SEO blog automation excel file/help if people are interested...

Only 2 months of cash in the Bank for my business but was able to save it with the help of AI.
reddit
LLM Vibe Score0
Human Vibe Score1
CALLIRDAN90This week

Only 2 months of cash in the Bank for my business but was able to save it with the help of AI.

Hi there! I’m excited to share something very personal with you. We needed to book at least 2 appointments per day in the next 60 days, or my business would fail. We were already trying two acquisition channels, LinkedIn and email. The problem with these channels was that the positive response rate was very low in both. So I decided to focus on LinkedIn and get the attention of the lead by sending videos directly to them via LinkedIn messages. (You can send videos to your connections on LinkedIn if you use your cell phone.) This wasn’t new, but I added a small twist to get the lead’s attention. All the covers of the videos had a picture of me holding a sign with the person’s name and an interesting phrase. This showed some okay results, but the rest of the video was not personalized. Only the picture on the cover was. I even developed a Chrome extension for this because I thought this would be the answer and that I would book tons of appointments.  But after more trial and outreach, my leads responded, telling me that because the video itself wasn’t personalized for them, they felt like I didn’t put enough effort in, so they would not book a call with me. So after investing time and effort into my “new bright idea” and getting developers to make the Chrome extension, I was back to square one with no results. A few weeks went by, and after researching online, I found an online course from a guy who promised to teach me how to book 30+ appointments per month, guaranteed (at the time, I was making 2 or 3 appointments per week, maximum). He promised that I would only pay if he actually booked appointments for me and even offered to give me money if his course didn’t work for me. I never paid attention to internet gurus, but the offer was actually not bad, so I looked into this guy’s website. I found out he had hundreds of reviews from people who had taken his course and were talking amazing things about it. The more I read, the more excited I got. I booked a call that day and talked to a salesperson. The call was very short, and he promised I would get at least 2 appointments per day, easily. He seemed a bit cocky and told me that I just needed to trust him and the 100+ reviews from people who had taken the course. He didn’t share details, a proposal, or anything. I asked the price, and he told me it was close to $10k. (Not kidding, this was the price.) Then he told me that I would make the money back in no time with the clients I would get following his course, and that if it didn’t work, he would give me the money back. But I needed to follow everything the course said for at least 6 months. I had never paid $10k for anything in my life; it was extremely expensive for me. Also, my salary from my business was not in dollars but in a currency that was worth much less than the dollar. I continued to research more and more, but no other course was close to the number of reviews and promises that this guy had. I got desperate and told myself that I would bet everything on this course. If it worked for so many others, surely it would work for me. I got a loan from the bank and paid for the course. You might read this and think it was the most stupid thing ever, but the reality is that after 2 months in the course (I did the course as fast as I could), I learned a lot. The course was not bad; it was very extensive—probably more than 200 hours or so—and they taught a lot of things. I don’t think it was worth $10k for me, but I can see how for other people it might be worth that. Now, to the question you’re all thinking: did it get me the 2 appointments I needed per day? The answer is no. Here’s the thing: most of the techniques they taught were innovative and disruptive, but the focus was always on personalization, and they didn’t teach any way to automate the personalization. (I think, at the time they made the course, the tools didn’t exist yet.) So they taught how to do everything manually, and it took a lot—a lot of time and effort. And most annoyingly: an incredible amount of time doing operational things. I did get 2 appointments on some days, but it wasn’t consistent, and I didn’t have the time to spend 14 hours a day doing everything manually or the money to hire someone to do this for me. (I needed to also spend time delivering our service to our current clients; otherwise, they would leave.) I told them this, and they were very reasonable. After some negotiation, they gave me part of the money back. (To be fair, there was a lot of value in the course, so asking for the full $10k back would have been excessive because, in the end, it really taught me a lot of things I didn’t know.) So in the end, I spent $10k and 200+ hours on an online course, spent time and effort developing a Chrome extension, and was still not able to hit the meetings I needed. Money in the business was running out, and I needed to do something fast, or I was doomed. After investing time and effort in tools, research, and spending $10k and over 200 hours on a course that didn’t deliver the consistent results I needed, I was at a crossroads. My businesses were running out of money, and I knew I needed to find a solution quickly, or everything I had worked for would collapse. It was during this time of desperation that I started exploring other options. One night, while scrolling through the internet, I stumbled upon a 2024 article about how AI was being used to revolutionize various industries. It wasn’t directly related to appointment booking, but it sparked an idea in my mind. What if I could use AI to automate the personalization process that I had learned in the course? It seemed like a long shot, but I had nothing to lose. I started researching AI tools and technologies—YouTube videos, podcasts, pretty much everything related to AI—desperate to find something that could help me scale my outreach without investing too much time, while still maintaining the personalization that was so important. After a lot of trial and error, I found a few tools that showed promise. All of these tools were extremely new. Some of them had just launched the versions I needed just weeks ago. I can say I researched and tested more than 50 AI startups, experimenting with them, testing different approaches, checking prices (the problem was that most of them were cheap but became very expensive when applying the volume I needed to get results), and gradually refining my process. It wasn’t an overnight success, but for the first time, I felt like I was onto something that could truly work. The idea of combining AI personalization with volume was something new, and it gave me hope that I could finally book the meetings I needed without burning out. One day, I sent a video of myself talking—completely AI-generated—to my family chat group and waited for their response. None of them noticed it wasn’t actually me. At that moment, I said to myself: “Okay, I am ready to test this in the real world and see if it works.” Like everything in life, focus is key. As I mentioned earlier, we were already trying outbound strategies on LinkedIn and email, but I decided to narrow my focus to LinkedIn and specifically to video outreach. My goal was to stand out from the crowd, where most people were using text or sending generic videos. I knew that if my videos were 100% personalized, it would make a strong impression on my leads. I focused on two key metrics during my tests: Time spent on manual personalized outreach vs. AI-generated personalized outreach. Positive reply rate for non-personalized manual outreach vs. AI-generated personalized outreach. I ran a test using a sample of 50 one-minute videos sent to 50 leads, and here are the results: Time Spent to Make the Videos: Manual Process: It took me up to 10 hours to create and send 50 personalized videos. This included looking good on camera, brushing my hair, choosing appropriate clothing, ensuring proper lighting, not messing up the script, using a camera holder, recharging the phone, pausing to drink water, avoiding external sounds, being in an appropriate room, downloading the videos, deleting the videos that were not good, and sending the final ones. On average, it took me at least 12.5 minutes per one-minute video. AI Process: With AI, it took me just 32 seconds to create the exact same one-minute personalized video—without saying a word or recording a second of footage. In total, I could make and send the same 50 personalized videos in just 27 minutes. Result: The AI process was 24 times faster. Completely crazy! Positive Reply Rate: Non-Personalized Script (Manual): Using a good script without personalization (no name, job title, city, company, etc.) resulted in a positive reply rate of 4-6% on LinkedIn, including follow-ups. Personalized Script (AI): Using the same script but adding personalized details like the lead's name, company, city, and job title resulted in a positive reply rate of 15-20%, including follow-ups. Result: AI personalization led to 3x (three times) more replies. The best part was the responses. Almost everyone who replied thanked me for taking the time to research them, congratulated me on my speech, and appreciated the personalization and eloquence of my message.  These metrics were a complete breakthrough for me. I researched online to see if anyone else had done something similar, but I couldn’t find anything close. After achieving these metrics, booking the two appointments I desperately needed became easy. In fact, in the last 10 weeks, I’ve been able to consistently book 3-4 appointments per day. This success allowed me to train someone in my company to handle the process, freeing me up to focus on other aspects of the business and ultimately saving it. With the AI appointment machine we built, I even have free time now—time that I’ve been using to develop a methodology and tech tools that I now teach to others. I named the methodology Clip2Lead as a reference to the first Chrome extension I developed that didn’t work but ended up being the first step toward everything that followed. I’ve condensed everything I learned and throughout my experiences into a simple and short FREE training where I cover the entire AI appointment booking process. This includes how to find leads, create scripts, set up follow-up sequences, generate AI videos, clone your voice, compare non-AI metrics with AI metrics, and even navigate AI safety controls. I also offer Chrome extensions that helped me automate the process even further, so you can spend your time closing deals or focusing on other acquisition channels, while your AI machine for booking appointments runs with minimal effort from you. If you’re interested please get in touch with me and thank you for taking the time to read my personal story.

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

The best (actually free to use) AI tools for day-to-day work + productivity
reddit
LLM Vibe Score0
Human Vibe Score0.917
Tapedulema919This week

The best (actually free to use) AI tools for day-to-day work + productivity

I've spent an ungodly amount of time ~~procrastinating~~ trying tons of new/free AI tools from Reddit and various lists of the best AI tools for different use cases. Frankly, most free AI tools (and even paid ones) are gimmicky ChatGPT wrappers with questionable utility in everyday tasks or overpriced enterprise software that don't use AI as anything more than a marketing buzzword. My last list of free AI tools got a good response here, and I wanted to make another with the best AI tools that I actually use day-to-day now that I've spent more time with them. All these tools can be used for free, though most of them have some kind of premium offering if you need more advanced stuff or a ton of queries. To make it easy to sort through, I've also added whether each tool requires signup. ChatPDF: Free Tool to Use ChatGPT on Your Own Documents/PDFs (free no signup) Put simply, ChatPDF lets you upload any PDF and interact with it like ChatGPT. I heard about this one from my nephew who used it to automatically generate flashcards and explain concepts based on class notes and readings. There are a few similar services out there, but I found ChatPDF the easiest to use of those that don't require payment/signup. If you're a student or someone who needs to read through long PDFs regularly, the possibilities to use this are endless. It's also completely free and doesn't require signup. Key Features: Free to upload up to 3 PDFs daily, with up to 120 pages in each PDF Can be used without signing up at all Taskade: AI Task Management, Scheduling, and Notetaking Tool with GPT-4 Built-In (free with signup) Taskade is an all-in-one notetaking, task management, and scheduling platform with built-in AI workflows and templates. Like Notion, Taskade lets you easily create workspaces, documents, and templates for your workflows. Unlike Notion’s GPT-3 based AI, Taskade has built-in GPT-4 based AI that’s trained to structure your documents, create content, and otherwise help you improve your productivity. Key Features: GPT-4 is built in to their free plan and trained to help with document formatting, scheduling, content creation and answering questions through a chat interface. Its AI seems specifically trained to work seamlessly with your documents and workspaces, and understands queries specific to their interface like asking it to turn (text) notes into a mind map. One of the highest usage limits of the free tools: Taskade’s free plan comes with 1000 monthly requests, which is one of the highest I’ve seen for a tool with built-in GPT-4. Because it’s built into a document editor with database, scheduling and chat capabilities, you can use it for pretty much anything you’d use ChatGPT for but without* paying for ChatGPT Premium. Free templates to get you started with actually integrating AI into your workflows: there are a huge number of genuinely useful free templates for workflows, task management, mind mapping, etc. For example, you can add a project and have Taskade automatically map out and schedule a breakdown of the tasks that make up that overall deliverable. Plus AI for Google Slides: AI-generated (and improved) slide decks (free with signup, addon for Google Slides) I've tried out a bunch of AI presentation/slide generating tools. To be honest, most of them leave a lot to be desired and aren't genuinely useful unless you're literally paid to generate a presentation vaguely related to some topic. Plus AI is a (free!) Google Slides addon that lets you describe the kind of slide deck you're making, then generate and fine-tune it based on your exact needs. It's still not at the point where you can literally just tell it one prompt and get the entire finished product, but it saves a bunch of time getting an initial structure together that you can then perfect. Similarly, if you have existing slides made you can tell it (in natural language) how you want it changed. For example, asking it to change up the layout of text on a page, improve the writing style, or even use external data sources. Key Features: Integrates seamlessly into Google Slides: if you’re already using Slides, using Plus AI is as simple as installing the plugin. Their tutorials are easy to follow and it doesn’t require learning some new slideshow software or interface like some other options. Create and* tweak slides using natural language: Plus AI lets you create whole slideshows, adjust text, or change layouts using natural language. It’s all fairly intuitive and the best of the AI slide tools I’ve tried. FlowGPT: Database of AI prompts and workflows (free without signup-though it pushes you to signup!) FlowGPT collects prompts and collections of prompts to do various tasks, from marketing, productivity, and coding to random stuff people find interesting. It uses an upvote system similar to Reddit that makes it easy to find interesting ways to use ChatGPT. It also lets you search for prompts if you have something in mind and want to see what others have done. It's free and has a lot of cool features like showing you previews of how ChatGPT responds to the prompts. Unfortunately, it's also a bit pushy with getting you to signup, and the design leaves something to be desired, but it's the best of these tools I've found. Key Features: Lots of users that share genuinely useful and interesting prompts Upvote system similar to Reddit’s that allows you to find interesting prompts within the categories you’re interested in Summarize.Tech: AI summaries of YouTube Videos (free no signup) Summarize generates AI summaries of YouTube videos, condensing them into relatively short written notes with timestamps. All the summaries I've seen have been accurate and save significant time. I find it especially useful when looking at longer tutorials where I want to find if: &#x200B; The tutorial actually tells me what I'm looking for, and See where in the video I can find that specific part. The one downside I've seen is that it doesn't work for videos that don't have subtitles, but hopefully, someone can build something with Whisper or a similar audio transcription API to solve that. Claude: ChatGPT Alternative with ~75k Word Limit (free with signup) If you've used ChatGPT, you've probably run into the issue of its (relatively low) token limit. Put simply, it can't handle text longer than a few thousand words. It's the same reason why ChatGPT "forgets" instructions you gave it earlier on in a conversation. Claude solves that, with a \~75,000 word limit that lets you input literal novels and do pretty much everything you can do with ChatGPT. Unfortunately, Claude is currently only free in the US or UK. Claude pitches itself as the "safer" AI, which can make it a pain to use for many use cases, but it's worth trying out and better than ChatGPT for certain tasks. Currently, I'm mainly using it to summarize long documents that ChatGPT literally cannot process as a single prompt. Key Features: Much longer word limit than even ChatGPT’s highest token models Stronger guardrails than ChatGPT: if you're into this, Claude focuses a lot more on "trust and safety" than even ChatGPT does. While an AI telling me what information I can and can't have is more of an annoyance for my use cases, it can be useful if you're building apps like customer support or other use cases where it's a top priority to keep the AI from writing something "surprising." Phind: AI Search Engine That Combines Google with ChatGPT (free no signup) Like a combination of Google and ChatGPT. Like ChatGPT, it can understand complex prompts and give you detailed answers condensing multiple sources. Like Google, it shows you the most up-to-date sources answering your question and has access to everything on the internet in real time (vs. ChatGPT's September 2021 cutoff). Unlike Google, it avoids spammy links that seem to dominate Google nowadays and actually answers your question. Key Features: Accesses the internet to get you real-time information vs. ChatGPT’s 2021 cutoff. While ChatGPT is great for content generation and other tasks that you don’t really need live information for, it can’t get you any information from past its cutoff point. Provides actual sources for its claims, helping you dive deeper into any specific points and avoid hallucinations. Phind was the first to combine the best of both worlds between Google and ChatGPT, giving you easy access to actual sources the way Google does while summarizing relevant results the way ChatGPT does. It’s still one of the best places for that, especially if you have technical questions. Bing AI: ChatGPT Alternative Based on GPT-4 (with internet access!) (free no signup) For all the hate Bing gets, they've done the best job of all the major search engines of integrating AI chat to answer questions. Bing's Chat AI is very similar to ChatGPT (it's based on GPT-4). Unlike ChatGPT's base model without plugins, it has access to the internet. It also doesn't require signing in, which is nice. At the risk of sounding like a broken record, Google has really dropped the ball lately in delivering non-spammy search results that actually answer the query, and it's nice to see other search engines like Bing and Phind providing alternatives. Key Features: Similar to Phind, though arguably a bit better for non-technical questions: Bing similarly provides sourced summaries, generates content and otherwise integrates AI and search nicely. Built on top of GPT-4: like Taskade, Bing has confirmed they use GPT-4. That makes it another nice option to get around paying for GPT-4 while still getting much of the same capabilities as ChatGPT. Seamless integration with a standard search engine that’s much better than I remember it being (when it was more of a joke than anything) Honorable Mentions: These are the “rest of the best” free AI tools I've found that are simpler/don't need a whole entry to explain: PdfGPT: Alternative to ChatPDF that also uses AI to summarize and let you interact with PDF documents. Nice to have options if you run into one site’s PDF or page limit and don’t want to pay to do so. Remove.bg: One of the few image AI tools I use regularly. Remove.bg uses simple AI to remove backgrounds from your images. It's very simple, but something I end up doing surprisingly often editing product images, etc. CopyAI and Jasper: both are AI writing tools primarily built for website marketing/blog content. I've tried both but don't use them enough regularly to be able to recommend one over the other. Worth trying if you do a lot of content writing and want to automate parts of it. Let me know if you guys recommend any other free AI tools that you use day-to-day and I can add them to the list. I’m also interested in any requests you guys have for AI tools that don’t exist yet, as I’m looking for new projects to work on at the moment! TL;DR: ChatPDF: Interact with any PDF using ChatGPT without signing up, great for students and anyone who needs to filter through long PDFs. Taskade: All-in-one task management, scheduling, and notetaking with built-in GPT-4 Chat + AI assistant for improving productivity. Plus AI for Google Slides: Addon for Google Slides that generates and fine-tunes slide decks based on your description(s) in natural language. FlowGPT: Database of AI prompts and workflows. Nice resource to find interesting ChatGPT prompts. Summarize.Tech: AI summaries of YouTube videos with timestamps that makes it easier to find relevant information in longer videos. Claude: ChatGPT alternative with a \~75k word limit, ideal for handling long documents and tasks that go above ChatGPT's token limit. Phind: AI search engine similar to a combination of Google and ChatGPT. Built in internet access and links/citations for its claims. Bing AI: Bing's ChatGPT alternative based on GPT-4. Has real-time internet access + integrates nicely with their normal search engine.

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

Please rate my business idea aimed at emerging markets
reddit
LLM Vibe Score0
Human Vibe Score1
Whole_Ad_9002This week

Please rate my business idea aimed at emerging markets

Imagine a single platform that transforms your business operations effortlessly. Think of it like a Swiss Army knife for your business. First Steps (Every Business Needs These): Our website builder is your first step online. Just pick what you want, drag it where you need it, and you've got a professional website or online store. No tech skills needed. Perfect for getting your business visible to customers. Our security tool comes next because every business needs protection. It's like a security guard for your files and data, keeping hackers out and making sure you never lose important work. Think of it as insurance for your digital business. Cybersecurity and backups combined. Growing Business Needs: As your team grows, our digital office keeps everyone connected. Email, chat, share files, and track projects in one place. It's like having everyone in the same room, even when working remotely. This becomes essential once you have more than a few people. When paperwork starts piling up, our AI helper steps in. It's like having a smart assistant who learns your business and helps everyone get more done - handling routine tasks, summarizing meetings, and suggesting better ways to work. Scaling Up (For Established Businesses): Once you're handling lots of data, our eco-friendly cloud storage becomes crucial. Your business gets fast, reliable storage while helping the environment. We use servers powered by renewable energy, so you can grow sustainably. Our data transfer tool becomes important when you're working with multiple systems and need to move files around. It's like having a digital moving service that safely carries your files between different cloud services. With 20+ services to connect to cloud to cloud or on prem to cloud, its easy and fast. Advanced Needs: When your business processes get complex, our workflow automation tool helps you set up automatic systems for repetitive tasks. It's like training a robot to handle your routine work while your team focuses on growth. Simple no-code automation when you need it. Everything works on its own, but they're designed to work even better together. And since it's all in one place, you only need one password and one monthly bill. Most businesses save about half their tech costs by switching to our platform. Cost Benefits: Single subscription replaces multiple vendor contracts Reduces IT overhead by 40-60% on average No need for expensive technical specialists Predictable monthly costs Scales pricing with your usage

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰
reddit
LLM Vibe Score0
Human Vibe Score1
benfromwhereThis week

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰

(Monthly income breakdown is in the end) 📌 Introduction Hey everyone! 👋 Before I dive into this month’s breakdown, I just want to be upfront—English isn’t my first language, so I’ve used ChatGPT to refine this post for better readability. That said, everything here is 100% real—my personal experiences, struggles, and earnings as someone running a full-time AI influencer business. Since I get a lot of DMs asking about my AI models, here are their Instagram links: 📷 Emma – https://www.instagram.com/emmalauireal 📷 Jade – https://www.instagram.com/jadelaui (jadecasual is the second account) Also, if you’ve been wondering about the community I run, where I teach others how to build AI influencers from scratch, here’s the link (I got approval from mods for this link): 🔗 AI Winners Now, let’s get into what happened this month. 🚀 \------- First, a huge thank you! 🎉 Three months ago, I shared my journey of building an AI influencer business, and I was blown away by the response. That post got 263K+ views and was shared over 2.7K times—way more than I ever expected. If you’re new here or want to check out the full story of how I started, you can read it here: 🔗 Click Here (Reddit link) \------- 🔹 What I Did in January After the holiday rush in December, I knew January would be a slow month—people had already spent most of their money at the end of the year. So instead of pushing harder on monetization, I shifted my focus to tech development and optimization. Flux Character Loras: I spent a lot of time refining and testing different Flux-based character Loras for my models. This is still a work in progress, but the goal is to improve long-term consistency and make my workflow even more efficient. NSFW Content Expansion: On Emma’s side, I expanded her content library using a real model body double, making her content look more organic and natural. Jade, however, remains 100% AI-generated, keeping her workflow entirely digital. Social Media Wipeout (Thanks, VA 🙃): I had handed off both Twitter accounts to a virtual assistant to help with engagement and DMs. Big mistake. He ended up spamming DMs, which got both accounts banned—Emma (80K followers) and Jade (20K followers). 🤦‍♂️ Right now, I’m rebuilding Emma’s account from scratch and taking a much more cautious approach. Jade’s account is still offline for now. New Platform: Threads – I hadn’t touched Threads before, but since engagement on Instagram can be unpredictable, I decided to start accounts for both models. So far, they’re performing well, and I’ll continue experimenting. Launched AI Winners Community: After getting flooded with DMs (both here and on Instagram), I realized there was a massive demand for structured learning around AI influencers. So, I launched AI Winners, a paid community where I break down everything I’ve learned. It’s still early, but I see it turning into a solid, long-term community. Investment & Acquisition Talks: I’m still evaluating potential investors and acquisition offers for my AI models. There’s growing interest in buying or investing in Emma & Jade, so I’ve been having conversations to explore different options. Overall, January was about tech, rebuilding, and long-term planning—not immediate revenue. But that’s what keeps this business sustainable. 🚀 \------- ⚠️ Biggest Challenges This Month Lost Both Twitter Accounts (Massive Traffic Hit) 🚨 The biggest blow this month was losing my models’ Twitter accounts. Twitter was responsible for about 40% of my total traffic, meaning both free and paid subs took a direct hit. While Emma’s revenue took a slight dip, Jade’s income dropped significantly—partly due to the account loss and partly because January is naturally slow. (Full revenue breakdown at the end of the post.) Jade’s Instagram Tanked (Possible Shadow Ban?) 🤔 Jade’s Instagram completely lost momentum in early January. Engagement and reach dropped by over 80%, and I still haven’t figured out why. It feels like a shadow ban, but I have no clear confirmation. To counter this, I launched a second backup account, and things are starting to recover. \------- 🚀 Potential Improvements & What’s Next Locking in a Stable Workflow 🔄 Right now, Emma & Jade’s workflow is still evolving, but I’m aiming to fully stabilize it. As I’m writing this, content is generating on my second monitor—a sign that I’m close to achieving full automation without compromising quality. Boosting Jade’s Fanvue Revenue 💰 Jade’s income took a hit this month, and it’s 100% a traffic issue. The solution? More content, more reach. I’ll be increasing social media output to drive consistent traffic back to Fanvue and restore her earnings. Patreon is Done. All Focus on Fanvue 🚫 I shut down both Emma & Jade’s Patreon accounts. The goal is not to split revenue—I want everything funneled into Fanvue for higher engagement and bigger paydays. \------- 💰 January 2025 Earnings Breakdown Despite January being one of the slowest months for online creators, Emma and Jade still brought in over $29K in revenue, with a net profit exceeding $20K after all expenses. Emma Laui generated $20,206.77, with around $6,000 in expenses (chatter payments, NSFW designer fees, and other operational costs). Jade Laui earned $8,939.05, with $2,000 in expenses. Considering Twitter account losses, Instagram setbacks, and the usual January spending slump, this is still a solid outcome. The focus now is on scaling traffic and maximizing Fanvue revenue heading into February. 🚀🔥 That’s the full breakdown for January! If you have questions, feel free to drop a comment, and I’ll answer when I can. Happy to help, just like others helped me when I was starting out! 🚀🔥

Writing a exercise based TTRPG rulebook for a system where your real world fitness is tied to character progression
reddit
LLM Vibe Score0
Human Vibe Score1
BezboznyThis week

Writing a exercise based TTRPG rulebook for a system where your real world fitness is tied to character progression

My dad was a star athlete when he was young, and my mom was a huge sci-fi/fantasy nerd, so I got both ends of the stick as it were. Love gaming and nerd culture, but also love to exercise and self improvement. Sometimes exercise can feel boring though compared to daydreaming about fantastic fictional worlds, so for a long time I've been kicking around the idea of how to "Gamify" fitness. and recently I've been working on this passion project of a Table Top RPG (Like D&D) where the stats of your character are related to your own fitness, so if you want your character in game to improve, you have to improve in the real world. Below is a rough draft you can look through that details the settings and mechanics of the game I've come up with so far. I'd love to eventually get a full book published and sell it online. maybe even starting a whole brand of "Gamified fitness": REP-SET: GAINSZ In the war torn future of 24th century… There are no rest days… In the futuristic setting of "REP-SET: GAINSZ," the "War of Gains" casts a long shadow over the Sol System as the various factions vie for territory and resources. However, war has evolved. Unmanned drones and long-range strikes have faded into obsolescence. Battles, both planet-side and in the depths of space, are now fought by soldiers piloting REP-SETs: Reactive Exoskeletal Platform - Symbiotic Evolution Trainer Massive, humanoid combat mechs. Powered by mysterious “EV” energy, these mechanical marvels amplify, and are in turn amplified by, the fitness and mental acuity of their pilots. The amplification is exponential, leading pilots into a life of constant training in order for their combat prowess to be bolstered by every incremental gain in their level of fitness. With top pilots having lifting capacity measured in tons, and reaction times measured by their Mach number, REP-SET enhanced infantry now dominate the battlefield. The Factions: The Federated Isometocracy of Terra (FIT): Quote: "The strength of the body is the strength of the spirit. Together, we will lift humanity to its destined greatness. But ask not the federation to lift for you. Ask yourself: Do you even lift for the Federation?" Description: An idealistic but authoritarian faction founded on the principle of maximizing the potential of all individuals. FIT citizens believe in relentless striving for physical and mental perfection, leading to collective excellence. Their goal is the unification of humankind under a rule guided by this doctrine, which sometimes comes at the cost of individual liberties. Mech Concept: REP-SET mechs. Versatile humanoid designs focusing on strength, endurance, and adaptability. By connecting to the AI spirit within their REP-SETs core, each pilot enhances the performance of their machine through personal willpower and peak physical training. Some high-rank REP-SETS include features customized to the pilot's strengths, visually signifying their dedication and discipline. The Dominion of Organo-Mechanical Supremacy (DOMS): Quote: "Without pain, there is no gain. Become the machine. Embrace the burn.” Description: A fanatical collective ideologically obsessed with "Ascendency through suffering" by merging their bodies with technology that not only transcends biological limitations, but also acts to constantly induce pain in it's users. Driven by a sense of ideological superiority and a thirst for domination, DOMS seek to bring the painful blessings of their deity "The lord of the Burn" to the rest of the solar system. Their conquest could turn them into a significant threat to humanity. Mech Concept: Hybrid mechs, where the distinction between the pilot and the machine is blurred. The cockpit functions as a life-support system for the pilot, heavily modified with augmentations. Mechs themselves are often modular, allowing for adaptation and assimilation of enemy technology. Some DOMS mechs might display disturbing elements of twisted flesh alongside cold, mechanical parts. The Tren: Quote: "Grow... bigger... feast... protein..." Description: A ravenous conglomeration of biochemically engineered muscular monstrosities, united only by a shared insatiable hunger for "More". Existing mostly in deep space, they seek organic matter to consume and assimilate. They progress in power not due to any form of training or technology, but from a constant regimen of ravenous consumption and chemically induced muscle growth, all exponentially enhanced by EV energies. While some have been known to possess a certain level of intellect and civility, their relentless hunger makes them incredibly mentally volatile. When not consuming others, the strong consume the weak within their own faction. Mech Concept: Bio-Organic horrors. While they do have massive war machines, some are living vessels built around immense creatures. These machines resemble grotesque fleshy designs that prioritize rapid mutation and growth over sleek aesthetics. Often unsettling to behold. Synthetic Intelligence Theocracy (SIT): Quote: "Failure is an unacceptable data point.” Description: A society ruled by a vast and interconnected artificial intelligence network. The SIT governs with seemingly emotionless rationality, striving for efficiency and maximum productivity. This leads to a cold, but arguably prosperous society, unless you challenge the logic of the collective AI. Their goals? Difficult to predict, as it hinges on how the AI calculates what's "optimal" for the continuation or "evolution" of existence. Mech Concept: Sleek, almost featureless robotic creations with a focus on efficient movement and energy management. Often drone-like or modular, piloted through direct mind-machine linking rather than traditional cockpits. Their aesthetic suggests cold and impersonal perfection. The Way Isolate(TWI): Quote: "The body unblemished, the mind unwavering. That is the path to true strength. That and a healthy diet of Aster-Pea proteins." Description: Known by some as "The asteroid farmers", The Way Isolate is a proud and enigmatic faction that stands apart from the other powers in the Sol System. A fiercely independent tribe bound by oaths of honor, loyalty, and hard work. Wandering the asteroid belt in their vast arc ships, their unparalleled mastery in asteroidal-agricultural engineering, ensuring they have no need to colonize planets for nutritional needs, has allowed them to abstain from the pursuit of territorial expansion in “The War of Gains”, instead focusing on inward perfection, both spiritual and physical. They eschew all technological bodily enhancements deemed unnatural, believing that true power can only be cultivated through the relentless pursuit of personal strength achieved through sheer will and bodily perfection. The Way Isolate views biohacking, genetic manipulation, and even advanced cybernetics as corruptions of the human spirit, diluting the sacredness of individual willpower. Mech Concept: Way Isolate mechs are built with maneuverability and precision in mind rather than flashy augmentations. Their REP-SETs are streamlined, favoring lean designs that mirror the athleticism of their pilots. Excelling in low to zero G environments, their mechs lack bulky armor, relying on evasion and maneuverability rather than brute force endurance. Weaponry leans towards traditional kinetic based armaments, perhaps employing archaic but reliable weapon styles such as blades or axes as symbols of their purity of purpose. These mechs reflect the individual prowess of their pilots, where victory is determined by focus, technique, and the raw power of honed physical ability. Base Player Character Example: You are a young, idealistic FIT soldier, barely out of training and working as a junior REP-SET mechanic on the Europa Ring World. The Miazaki district, a landscape of towering mountains and gleaming cities, houses a sprawling mountainside factory – a veritable hive of Gen 5 REP-SET construction. Here, the lines between military and civilian blur within a self-sufficient society dependent on this relentless industry. Beneath the surface, you harbor a secret. In a forgotten workshop, the ghost of a REP-SET takes shape – a unique machine built around an abandoned, enigmatic AI core. Ever since you salvaged it as a child from the wreckage of your hometown, scarred by a brutal Tren attack, you've dedicated yourself to its restoration. A lingering injury from that fateful battle mocks your progress, a constant reminder of the fitness exams you cannot pass. Yet, you train relentlessly, dreaming of the day you'll stand as a true REP-SET pilot. A hidden truth lies at the heart of the REP-SETS: as a pilot's abilities grow, their mech develops unique, almost mystical powers – a manifestation of the bond between the human spirit and the REP-SET's AI. The ache in your old wound serves as a grim prophecy. This cold war cannot last. The drums of battle grow louder with each passing day. GAME MECHANICS: The TTRPG setting of “REP-SET: GAINSZ” is marked by a unique set of rules, by which the players real world capabilities and fitness will reflect and affect the capabilities, progression, and success of their REP-SET pilot character in-game. ABILITY SCORES: Pilots' capabilities will be defined by 6 “Ability scores”: Grace, Agility, Iron, Nourishment, Strength, and Zen. Each of the 6 ability scores will duel represent both a specific area of exercise/athleticism and a specific brand of healthy habits. The definitions of these ability scores are as follows: Grace (GRC): "You are an artist, and your body is your canvas; the way you move is your paint and brush." This ability score, the domain of dancers and martial artists, represents a person's ability to move with organic, flowing control and to bring beauty to the world. Skill challenges may be called upon when the player character needs to act with poise and control, whether socially or physically. Real-world skill checks may involve martial arts drills, dancing to music, or balance exercises. Bonuses may be granted if the player has recently done something artistically creative or kind, and penalties may apply if they have recently lost their temper. This ability score affects how much NPCs like your character in game. Agility (AGI): "Your true potential is locked away, and speed is the key to unlocking it." The domain of sprinters, this ability score represents not only a person's absolute speed and reaction time but also their capacity to finish work early and avoid procrastination. Skill challenges may be called upon when the player character needs to make a split-second choice, move fast, or deftly dodge something dangerous. Real-world skill checks may involve acts of speed such as sprinting or punching/kicking at a steadily increasing tempo. Bonuses may apply if the player has finished work early, and penalties may apply if they are procrastinating. This ability score affects moving speed and turn order in game. Iron (IRN): "Not money, nor genetics, nor the world's greatest trainers... it is your resolve, your will to better yourself, that will make you great." Required by all athletes regardless of focus, this ability score represents a player's willpower and their capacity to push through pain, distraction, or anything else to achieve their goals. Skill challenges may be called upon when the player character needs to push through fear, doubt, or mental manipulation. Real-world skill checks may involve feats of athletic perseverance, such as planking or dead hangs from a pull-up bar. Bonuses may apply when the player maintains or creates scheduled daily routines of exercise, self-improvement, and work completion, and penalties may apply when they falter in those routines. This ability score affects the max "Dynamic exercise bonus” that can be applied to skill checks in game (a base max of +3 when Iron = 10, with an additional +1 for every 2 points of iron. So if every 20 pushups gives you +1 on a “Strength” skill check, then doing 80 pushups will only give you +4 if you have at least 12 iron). Nourishment (NRS): "A properly nourished body will last longer than a famished one." This ability score, focused on by long-distance runners, represents a player's endurance and level of nutrition. Skill challenges may be called upon when making checks that involve the player character's stamina or health. Real-world skill checks may involve endurance exercises like long-distance running. Bonuses may apply if the player has eaten healthily or consumed enough water, and penalties may apply if they have eaten junk food. This ability score affects your HP (Health points), which determines how much damage you can take before you are incapacitated. Strength (STR): "When I get down on my hands, I'm not doing pushups, I'm bench-pressing the planet." The domain of powerlifters and strongmen, this ability score represents raw physical might and the ability to overcome obstacles. Skill challenges may be called upon when the player character needs to lift, push, or break something. Real-world skill checks might involve weightlifting exercises, feats of grip strength, or core stability tests. Bonuses may apply for consuming protein-rich foods or getting a good night's sleep, and penalties may apply after staying up late or indulging in excessive stimulants. This ability score affects your carrying capacity and base attack damage in game. Zen (ZEN): "Clarity of mind reflects clarity of purpose. Still the waters within to act decisively without." This ability score, prized by meditators and yogis, represents mental focus, clarity, and inner peace. Skill challenges may be called upon when the player character needs to resist distractions, see through illusions, or make difficult decisions under pressure. Real-world skill checks may involve meditation, breathing exercises, or mindfulness activities. Bonuses may apply after attending a yoga class, spending time in nature, or creating a calm and organized living space. Penalties may apply after experiencing significant stress, emotional turmoil, or having an unclean or unorganized living space. This ability score affects your amount of ZP in game (Zen Points: your pool of energy you pull from to use mystical abilities) Determining initial player ability scores: Initially, “Ability scores” are decided during character creation by giving the player a list of 6 fitness tests to gauge their level of fitness in each category. Running each test through a specific calculation will output an ability score. A score of 10 represents the average person, a score of 20 represents a peak athlete in their category. The tests are: Grace: Timed balancing on one leg with eyes closed (10 seconds is average, 60 is peak) Agility: Mile run time in minutes and second (10:00 minutes:seconds is average, 3:47 is peak) Iron: Timed dead-hang from a pull-up bar (30 seconds is average, 160 is peak) Nourishment: Miles run in an hour (4 is average, 12 is peak) Strength: Pushups in 2 minute (34 is average, 100 is peak) Zen: Leg stretch in degrees (80 is average, and 180 aka "The splits" is peak) Initial Score Calculation Formula: Ability Score = 10 + (Player Test Score - Average Score) / (Peak Score - Average\_Score) \* 10 Example: if the player does 58 pushups in 2 minutes, their strength would be: 10 plus (58 - 34) divided by (100-34) multiplied by 10 = 10 + (24)/(66)\* 10 = 10 + 3.6363... = 13.6363 rounded to nearest whole number = Strength (STR): 14 SKILLS AND SKILL CHALLENGES: The core mechanic of the game will be in how skill challenges are resolved. All “Skill challenges” will have a numerical challenge rating that must be met or beaten by the sum of a 10 sided dice roll and your score in the pertinent skill. Skill scores are determined by 2 factors: Ability Score Bonus: Every 2 points above 10 gives +1 bonus point. (EX. 12 = +1, 14 = +2, etc.) This also means that if you have less than 10 in an ability score, you will get negative points. Personal Best Bonus: Each skill has its own unique associated exercise that can be measured (Time, speed, distance, amount of reps, etc). A higher record means a higher bonus. EX: Authority skill checks are associated with a timed “Lateral raise hold”. Every 30 seconds of the hold added onto your personal best single attempt offers a +1 bonus. So if you can do a lateral hold for 90 seconds, that’s a +3 to your authority check! So if you have a 16 in Iron, and your Personal Best lateral raise hold is 90 seconds, that would give you an Authority score of +6 (T-Pose for dominance!) Dynamic Exercise Bonus: This is where the unique mechanics of the game kick in. At any time during a skill challenge (even after your roll) you can add an additional modifier to the skill check by completing the exercise during gameplay! Did you roll just below the threshold for success? Crank out another 20 pushups, squats, or curls to push yourself just over the edge into success! There are 18 skills total, each with its own associated ability score and unique exercise: Grace (GRC): \-Kinesthesia (Timed: Blind single leg stand time) \-Precision (Scored: Basket throws) \-Charm (Timed reps: Standing repeated forward dumbell chest press and thrust) \-Stealth (Timed distance: Leopard Crawl) Agility (AGI): \-acrobatics (timed reps: high kicks) \-Computers (Word per minute: Typing test) \-Speed (Time: 100 meter sprint) Iron (IRN): \-Authority (Timed: Lateral raise hold) \-Resist (Timed: Plank) \-Persist (Timed:Pull-up bar dead hang) Nourishment(NRS): \-Recovery (TBD) \-Stim crafting (TBD) \-Survival (TBD) Strength(STR): \-Mechanics (Timed reps: Alternating curls) \-Might (Timed reps: pushups) Zen(ZEN): \-Perceive (TBD) \-Empathy (TBD) \-Harmony (TBD) \-Lore (TBD) Healthy Habits Bonus: Being able to demonstrate that you have conducted healthy habits during gameplay can also add one time bonuses per skill challenge “Drank a glass of water +1 to Nourishment check”, “Cleaned your room, +3 on Zen check”. But watch out, if you’re caught in unhealthy Habits, the GM can throw in penalties, “Ate junk food, -1 to Nourishment check”, etc. Bonuses/penalties from in-game items, equipment, buffs, debuffs, etc., helping players to immerse into the mechanics of the world of REP-SET for the thrill of constantly finding ways to improve their player. Gradient success: Result of skill challenges can be pass or fail, but can also be on a sliding scale of success. Are you racing to the battlefield? Depending on your Speed check, you might arrive early and have a tactical advantage, just in time for an even fight, or maybe far too late and some of your favorite allied NPCs have paid the price… So you’re often encouraged to stack on those dynamic exercise bonuses when you can to get the most fortuitous outcomes available to you. Gameplay sample: GM: Your REP-SET is a phantom, a streak of light against the vast hull of the warship. Enemy fighters buzz angrily, but you weaves and dodges with uncanny precision. The energy wave might be losing effectiveness, but your agility and connection to the machine have never been stronger. Then, it happens. A gap in the defenses. A vulnerable seam in the warship's armor. Your coms agents keen eye spots it instantly. "Lower power junction, starboard side! You have an opening!" This is your chance to strike the decisive blow. But how? It'll take a perfect combination of skill and strategy, drawing upon your various strengths. Here are your options: Option 1: Brute Strength: Channel all remaining power into a single, overwhelming blast from the core. High-risk, high-reward. It could overload the REP-SET if you fail, but it might also cripple the warship. (Strength-focused, Might sub-skill) Option 2: Calculated Strike: With surgical precision, target the power junction with a pinpoint burst of destabilizing energy. Less flashy and ultimately less damaging, but potentially more effective in temporarily disabling the ship. (Agility-focused, Precision sub-skill) Option 3: Harmonic Disruption: Attempt to harmonize with your REP-SET's AI spirit for help in connecting to the digital systems of the Warship. Can you generate an internal energy resonance within the warship, causing it to malfunction from within? (Zen-focused, Harmony sub-skill) Player: I'll take option 1, brute strength! GM: Ok, This will be a "Might" check. The CR is going to be very high on this one. I'm setting it at a 20. What's your Might bonus? Player: Dang, a 20?? That's literally impossible. My Might is 15 and I've got a PB of 65 pushups in 2 minutes, that sets me at a +5. Even if I roll a 10 and do 60 pushups for the DE I'll only get 18 max. GM: Hey I told you it was high risk. You want to choose another option? Player: No, no. This is what my character would do. I'm a real hot-blooded meathead for sure. GM: Ok then, roll a D10 and add your bonus. Player: \Rolls\ a 9! not bad, actually that's a really good roll. So +5, that's a 14. GM: Alright, would you like to add a dynamic exercise bonus? Player: Duh, it's not like I can do 120 pushups I'd need to beat the CR, but I can at least do better than 14. Alright, here goes. \the player gets down to do pushups and the 2 minute time begins. After some time...\ Player: 65....... 66! GM: Times up. Player: Ow... my arms... GM: so with 66, that's an extra +3, and its a new PB, so that's a +1. That sets your roll to 18. Player: Ow... Frack... still not 20... for a second there i really believed I could do 120 pushups... well I did my best... Ow... 20 CR is just too impossible you jerk... GM: Hmm... Tell me, what did you eat for lunch today? Player: Me? I made some vegetable and pork soup, and a protein shake. I recorded it all in my diet app. GM: And how did you sleep last night? Player: Like a baby, went to sleep early, woke up at 6. GM: in that case, you can add a +1 "Protein bonus" and +1 "Healthy rest" bonus to any strength related check for the day if you'd like, including this one. Player: Really?? Heck yes! add it to the roll! GM: With those extra bonuses, your roll reaches 20. How do you want to do this? Player: I roar "For Terra!" and pour every last ounce of my strength into the REP-SET. GM: "For Terra!" you roar, your cry echoing through coms systems of the REP-SET. The core flares blindingly bright. The surge of power dwarfs anything the REP-SET has unleashed before. With a titanic shriek that cracks the very fabric of space, the REP-SET slams into the vulnerable power junction. Raw energy explodes outwards, tendrils of light arcing across the warship's massive hull. The impact is staggering. The leviathan-like warship buckles, its sleek form rippling with shockwaves. Sparks shower like rain, secondary explosions erupt as critical systems overload. Then…silence. The warship goes dark. Power flickers within the REP-SET itself, then steadies. Alarms fade, replaced by the eerie quiet of damaged but functional systems. "We…did it?" The coms agents voice is incredulous, tinged with relief. She's awaiting your reply. Player: "I guess so." I say, and I smile and laugh. And then I slump back... and fall unconscious. \to the other players\ I'm not doing any more skill checks for a while guys, come pick me up please. \teammates cheer\ &#x200B;

Using AI to Streamline JTBD Interviews and Analysis
reddit
LLM Vibe Score0
Human Vibe Score1
marcocelloThis week

Using AI to Streamline JTBD Interviews and Analysis

Hello everyone! 👋 I wanted to share a personal project I have worked on in the last months that uses LLMs together with Jobs-to-be-Done to make product development easier and more efficient. The idea is to automate identifying key jobs, figuring out who performs them, creating synthetic users, and conducting interviews. By doing this, we cut down on the time and resources usually spent on manual user research, making it quicker and simpler to gather the insights needed for your product roadmap. Here’s how it works: Discovering Main Jobs and Job Performers: Starting with a rough vision, the code helps you identify and suggest potential main jobs and the people who typically perform them, based on your vision and skillset. Creating Synthetic Users: I use LLMs to build user archetypes that reflect real needs, goals, and pain points. Automated Interviews: Using GPT’s language capabilities, I’ve set up a system that runs interviews with these synthetic personas, pulling out key insights on customer motivations and needs. Analyzing Interviews and Extract Needs: Finally, we break down all the information from these interviews into actionable insights—covering everything from job steps to emotional and social jobs. This project lays the groundwork for a user-centered product design strategy, helping me make smarter decisions on what features to prioritize, how to improve user experience, and how to drive overall product development. Would love to hear your thoughts! 💬

Digital Analytics and Marketing
reddit
LLM Vibe Score0
Human Vibe Score1
Chou789This week

Digital Analytics and Marketing

I'm a Data Analyst with wide range of experience in this niche. Looking for partner to bring me clients and get a cut on the charges, i.e act as a agency connecting businesses with developers. Lately, I see that Developer costs in US/EU is skyrocketing and hiring a decent Data Analyst costs a fortune for companies, small companies can't even think of getting one. Already working with several small businesses and see that many small businesses have need somebody to play around their data but since it's a costly affair, mostly small businesses stick with Excel and Google Sheets as their database and don't leverage the potential of automation, now with AI/LLM, having proper data strategy is important. We can team up and provide reach these low hanging fruits. What i do: Data Reporting: Move clients current data systems from Excel, Google Sheets into Database/Datawarehouse Integrate data from different sources like Pipedrive, Google Ads, Facebook Ads, Shopify etc and create automated custom reports on the data. Digital Marketing: For Shopify/Ecommernce site owners - Google Analytics Reporting Answer questions like Where is my traffic coming from, which traffic is working, how long they are staying in site, which products are working, product views to purchase ratio etc Custom Desktop Applications Custom: Have a custom idea? Let's discuss. DM me. Thanks. PS: Potential customers include ones who can't hire $50-$150/hr full time developers but want one at part time/freelancing type where they can get things done quickly/validating their ideas without burning their business.

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey
reddit
LLM Vibe Score0
Human Vibe Score0.778
benfromwhereThis week

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey

Update on February 22th: I changed my AI influencer's names because it caused some problems on my business. One year, two AI-powered influencers, and $250K in revenue. Sounds unreal? It’s not. Today, I’m pulling back the curtain on the strategies, tools, and hard-won lessons that took me from concept to a six-figure success story in the AI influencer space. Hey, I'm Ben—a 32-year-old designer who spent the past year navigating the world of AI influencers. Let me clear up any confusion right from the start: I’m not here to sell you anything. This is purely a case study to share what worked, what didn’t, and what I’ve learned along the way. I’ll also make sure to answer all your questions in the comments for free whenever I can, so don’t hesitate to ask. Links to Past Topics: If you're curious about some of the groundwork I covered, check out a few of my earlier posts here: How I Make $10,000 Monthly | AI Influencer Management How I Earned $7000+ in 15 Days | AI Influencer Business Update These earlier posts cover a lot of the backstory, so feel free to explore them before diving into this one. So if you're ready, here is the full story: \---- The idea of creating an AI influencer was one of those “what if” moments that wouldn’t leave my mind. At first, it sounded futuristic—even a bit too ambitious. It all started when I stumbled upon an AI influencer on Instagram with the handle AnnaMaes2000. Her content blew me away—the quality, the detail, and just how real everything looked. I was instantly hooked and ended up going through every post, just trying to figure out how she was pulling this off. That’s when I knew I had to learn how this was done. The next step? YouTube. I dived into videos on Stable Diffusion, soaking up everything I could about creating AI-generated images. Those tutorials taught me the basics and got me up to speed. Then, I created my first AI influencer, let's call her Mel for now. Right after that, to complete the storyline and boost engagement, I introduced Mel's “mother,” Jess. Adding Jess gave the whole project depth and a narrative that drew people in, creating a unique family dynamic that instantly elevated traffic and interest. After thousands of bad photos, hundreds of deleted posts, and months of trial and error, you can now see the quality that defines my current accounts. Here’s a rundown of the tools and checkpoints I’ve used from day one, in order: Fooocus on RunDiffusion — Juggernaut V8 Fooocus on RunDiffusion — Juggernaut V9 Fooocus on PC (locally) — Juggernaut V9 Fooocus on PC (locally) —Lyuyang Mix + Juggernaut V9 Flux on PC (couple of photos only since it's so slow even on RTX 4090) Flux on Fal.ai. \---- There’s no magic Instagram hack that guarantees success, despite what everyone thinks and keeps asking me. Quality content, consistent uploads, and solid craftsmanship are what actually help your photos hit trends and show up on the Explore page. Unlike 95% of low-quality AI accounts out there, I don’t rely on faceswap videos, spam Reels, or go around liking comments on other accounts. My approach is fully organic, focused solely on creating my own unique content. By following Instagram's guidelines to the letter, I've managed to direct some of Mel and Jess' fans over to Patreon and Fanvue. There, for a small subscription fee, fans can access exclusive lingerie content. For those looking for more, higher-tier subscriptions give access to even more premium content. Some possible questions and their answers: No, you can't share hardcore NSFW content on Patreon. You can do that on Fanvue. Yes, you can create AI creators on Fanvue — OnlyFans doesn't allow it. Yes, you can use your own ID to get KYC. Yes, we're telling both Mel and Jess is (or use) AI to generate content. And yes, some people leave and some people still have fun with chatting, having a good time and get perfect content for their needs. And yes, we have a chatter team to work on these accounts. \---- This journey wasn’t all smooth sailing. I faced unexpected roadblocks, like platform restrictions that limited certain types of content, and managing fan expectations was more challenging than anticipated. Staying within guidelines while keeping fans engaged required constant adaptation. These hurdles forced me to get creative, adjust my approach, and learn fast. Once I saw Mel and Jess gaining traction, I knew it was time to scale up. Expanding meant finding new ways to keep content fresh, creating deeper narratives, and considering how to bring even more followers into the fold. My focus turned to building a sustainable model that could grow without sacrificing quality or authenticity. If you’re thinking about diving into AI content creation, here’s my advice: patience, consistency, and a focus on quality are key. Don’t cut corners or rely on quick-fix hacks. Invest time in learning the right tools, creating engaging stories, and building an audience that values what you bring to the table. This approach took me from zero to six figures, and it’s what makes the journey worth it. \---- And finally, here’s the income breakdown that everyone’s curious about: Mel on Fanvue: $82,331.58 (Gross earnings because we have chatter cuts like 15%) Mel on Patreon: $50,865.98 (Net earnings) Jess on Fanvue: $89,068.26 (Gross earnings because we have chatter cuts like 15%) Jess on Patreon: $39,040.70 And thanks to Reddit and my old posts, I got a perfect investor like after 5 months, so this is a "payback" for that. Like I said, I'll answer every question in the comments — take care and let me know.

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey
reddit
LLM Vibe Score0
Human Vibe Score0.778
benfromwhereThis week

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey

Update on February 22th: I changed my AI influencer's names because it caused some problems on my business. One year, two AI-powered influencers, and $250K in revenue. Sounds unreal? It’s not. Today, I’m pulling back the curtain on the strategies, tools, and hard-won lessons that took me from concept to a six-figure success story in the AI influencer space. Hey, I'm Ben—a 32-year-old designer who spent the past year navigating the world of AI influencers. Let me clear up any confusion right from the start: I’m not here to sell you anything. This is purely a case study to share what worked, what didn’t, and what I’ve learned along the way. I’ll also make sure to answer all your questions in the comments for free whenever I can, so don’t hesitate to ask. Links to Past Topics: If you're curious about some of the groundwork I covered, check out a few of my earlier posts here: How I Make $10,000 Monthly | AI Influencer Management How I Earned $7000+ in 15 Days | AI Influencer Business Update These earlier posts cover a lot of the backstory, so feel free to explore them before diving into this one. So if you're ready, here is the full story: \---- The idea of creating an AI influencer was one of those “what if” moments that wouldn’t leave my mind. At first, it sounded futuristic—even a bit too ambitious. It all started when I stumbled upon an AI influencer on Instagram with the handle AnnaMaes2000. Her content blew me away—the quality, the detail, and just how real everything looked. I was instantly hooked and ended up going through every post, just trying to figure out how she was pulling this off. That’s when I knew I had to learn how this was done. The next step? YouTube. I dived into videos on Stable Diffusion, soaking up everything I could about creating AI-generated images. Those tutorials taught me the basics and got me up to speed. Then, I created my first AI influencer, let's call her Mel for now. Right after that, to complete the storyline and boost engagement, I introduced Mel's “mother,” Jess. Adding Jess gave the whole project depth and a narrative that drew people in, creating a unique family dynamic that instantly elevated traffic and interest. After thousands of bad photos, hundreds of deleted posts, and months of trial and error, you can now see the quality that defines my current accounts. Here’s a rundown of the tools and checkpoints I’ve used from day one, in order: Fooocus on RunDiffusion — Juggernaut V8 Fooocus on RunDiffusion — Juggernaut V9 Fooocus on PC (locally) — Juggernaut V9 Fooocus on PC (locally) —Lyuyang Mix + Juggernaut V9 Flux on PC (couple of photos only since it's so slow even on RTX 4090) Flux on Fal.ai. \---- There’s no magic Instagram hack that guarantees success, despite what everyone thinks and keeps asking me. Quality content, consistent uploads, and solid craftsmanship are what actually help your photos hit trends and show up on the Explore page. Unlike 95% of low-quality AI accounts out there, I don’t rely on faceswap videos, spam Reels, or go around liking comments on other accounts. My approach is fully organic, focused solely on creating my own unique content. By following Instagram's guidelines to the letter, I've managed to direct some of Mel and Jess' fans over to Patreon and Fanvue. There, for a small subscription fee, fans can access exclusive lingerie content. For those looking for more, higher-tier subscriptions give access to even more premium content. Some possible questions and their answers: No, you can't share hardcore NSFW content on Patreon. You can do that on Fanvue. Yes, you can create AI creators on Fanvue — OnlyFans doesn't allow it. Yes, you can use your own ID to get KYC. Yes, we're telling both Mel and Jess is (or use) AI to generate content. And yes, some people leave and some people still have fun with chatting, having a good time and get perfect content for their needs. And yes, we have a chatter team to work on these accounts. \---- This journey wasn’t all smooth sailing. I faced unexpected roadblocks, like platform restrictions that limited certain types of content, and managing fan expectations was more challenging than anticipated. Staying within guidelines while keeping fans engaged required constant adaptation. These hurdles forced me to get creative, adjust my approach, and learn fast. Once I saw Mel and Jess gaining traction, I knew it was time to scale up. Expanding meant finding new ways to keep content fresh, creating deeper narratives, and considering how to bring even more followers into the fold. My focus turned to building a sustainable model that could grow without sacrificing quality or authenticity. If you’re thinking about diving into AI content creation, here’s my advice: patience, consistency, and a focus on quality are key. Don’t cut corners or rely on quick-fix hacks. Invest time in learning the right tools, creating engaging stories, and building an audience that values what you bring to the table. This approach took me from zero to six figures, and it’s what makes the journey worth it. \---- And finally, here’s the income breakdown that everyone’s curious about: Mel on Fanvue: $82,331.58 (Gross earnings because we have chatter cuts like 15%) Mel on Patreon: $50,865.98 (Net earnings) Jess on Fanvue: $89,068.26 (Gross earnings because we have chatter cuts like 15%) Jess on Patreon: $39,040.70 And thanks to Reddit and my old posts, I got a perfect investor like after 5 months, so this is a "payback" for that. Like I said, I'll answer every question in the comments — take care and let me know.

Presenting my fresh new ideas for Google! Warning: These might make TOO much money
reddit
LLM Vibe Score0
Human Vibe Score1
Good0timesThis week

Presenting my fresh new ideas for Google! Warning: These might make TOO much money

It's well known that Google likes its safe avenues, such as email, word processing, and file storage. One would think that it has done everything it can. I disagree! There are so many untapped markets out there to compete in and employ its digital ~~monopoly~~ advantage. behold the future of Google projects and even more wealth at your fingertips: Google Street Crime: An app that uses AI/ML to identify easy places to rob or even just people to hit. Google Jail: The perfect way to communicate with your family, lawyers, and drug dealers. Google Prostitution: Similar to the 'Uber' style of business, albeit big pimping. Google Human Trafficking: Sell your victims on a competitive global marketplace! Or organs. Google Slavery: Kind of like the same but probably with different taxes. Google Death Sentence: Automated appeal process. Free cookies with all fails! Google Cartel: Another kind of marketplace. Premium gives you a free chainsaw. Google Misery: A VR-powered world which portrays hell. It's an improvement. Google Domination: The blissful removal of this tedious experiment of democracy. Google Religion: The worship of Google as a lovecraftian but benevolent creator of all existence. All of these shall be accompanied by chirpy music, minimalist graphics, and deliriously happy animated cartoons. Well now you've got the ideas so chase that money you freaks! It's right there. Smell of money! Smell of money!

Digital Analytics and Marketing
reddit
LLM Vibe Score0
Human Vibe Score1
Chou789This week

Digital Analytics and Marketing

I'm a Data Analyst with wide range of experience in this niche. Looking for partner to bring me clients and get a cut on the charges, i.e act as a agency connecting businesses with developers. Lately, I see that Developer costs in US/EU is skyrocketing and hiring a decent Data Analyst costs a fortune for companies, small companies can't even think of getting one. Already working with several small businesses and see that many small businesses have need somebody to play around their data but since it's a costly affair, mostly small businesses stick with Excel and Google Sheets as their database and don't leverage the potential of automation, now with AI/LLM, having proper data strategy is important. We can team up and provide reach these low hanging fruits. What i do: Data Reporting: Move clients current data systems from Excel, Google Sheets into Database/Datawarehouse Integrate data from different sources like Pipedrive, Google Ads, Facebook Ads, Shopify etc and create automated custom reports on the data. Digital Marketing: For Shopify/Ecommernce site owners - Google Analytics Reporting Answer questions like Where is my traffic coming from, which traffic is working, how long they are staying in site, which products are working, product views to purchase ratio etc Custom Desktop Applications Custom: Have a custom idea? Let's discuss. DM me. Thanks. PS: Potential customers include ones who can't hire $50-$150/hr full time developers but want one at part time/freelancing type where they can get things done quickly/validating their ideas without burning their business.

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰
reddit
LLM Vibe Score0
Human Vibe Score1
benfromwhereThis week

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰

(Monthly income breakdown is in the end) 📌 Introduction Hey everyone! 👋 Before I dive into this month’s breakdown, I just want to be upfront—English isn’t my first language, so I’ve used ChatGPT to refine this post for better readability. That said, everything here is 100% real—my personal experiences, struggles, and earnings as someone running a full-time AI influencer business. Since I get a lot of DMs asking about my AI models, here are their Instagram links: 📷 Emma – https://www.instagram.com/emmalauireal 📷 Jade – https://www.instagram.com/jadelaui (jadecasual is the second account) Also, if you’ve been wondering about the community I run, where I teach others how to build AI influencers from scratch, here’s the link (I got approval from mods for this link): 🔗 AI Winners Now, let’s get into what happened this month. 🚀 \------- First, a huge thank you! 🎉 Three months ago, I shared my journey of building an AI influencer business, and I was blown away by the response. That post got 263K+ views and was shared over 2.7K times—way more than I ever expected. If you’re new here or want to check out the full story of how I started, you can read it here: 🔗 Click Here (Reddit link) \------- 🔹 What I Did in January After the holiday rush in December, I knew January would be a slow month—people had already spent most of their money at the end of the year. So instead of pushing harder on monetization, I shifted my focus to tech development and optimization. Flux Character Loras: I spent a lot of time refining and testing different Flux-based character Loras for my models. This is still a work in progress, but the goal is to improve long-term consistency and make my workflow even more efficient. NSFW Content Expansion: On Emma’s side, I expanded her content library using a real model body double, making her content look more organic and natural. Jade, however, remains 100% AI-generated, keeping her workflow entirely digital. Social Media Wipeout (Thanks, VA 🙃): I had handed off both Twitter accounts to a virtual assistant to help with engagement and DMs. Big mistake. He ended up spamming DMs, which got both accounts banned—Emma (80K followers) and Jade (20K followers). 🤦‍♂️ Right now, I’m rebuilding Emma’s account from scratch and taking a much more cautious approach. Jade’s account is still offline for now. New Platform: Threads – I hadn’t touched Threads before, but since engagement on Instagram can be unpredictable, I decided to start accounts for both models. So far, they’re performing well, and I’ll continue experimenting. Launched AI Winners Community: After getting flooded with DMs (both here and on Instagram), I realized there was a massive demand for structured learning around AI influencers. So, I launched AI Winners, a paid community where I break down everything I’ve learned. It’s still early, but I see it turning into a solid, long-term community. Investment & Acquisition Talks: I’m still evaluating potential investors and acquisition offers for my AI models. There’s growing interest in buying or investing in Emma & Jade, so I’ve been having conversations to explore different options. Overall, January was about tech, rebuilding, and long-term planning—not immediate revenue. But that’s what keeps this business sustainable. 🚀 \------- ⚠️ Biggest Challenges This Month Lost Both Twitter Accounts (Massive Traffic Hit) 🚨 The biggest blow this month was losing my models’ Twitter accounts. Twitter was responsible for about 40% of my total traffic, meaning both free and paid subs took a direct hit. While Emma’s revenue took a slight dip, Jade’s income dropped significantly—partly due to the account loss and partly because January is naturally slow. (Full revenue breakdown at the end of the post.) Jade’s Instagram Tanked (Possible Shadow Ban?) 🤔 Jade’s Instagram completely lost momentum in early January. Engagement and reach dropped by over 80%, and I still haven’t figured out why. It feels like a shadow ban, but I have no clear confirmation. To counter this, I launched a second backup account, and things are starting to recover. \------- 🚀 Potential Improvements & What’s Next Locking in a Stable Workflow 🔄 Right now, Emma & Jade’s workflow is still evolving, but I’m aiming to fully stabilize it. As I’m writing this, content is generating on my second monitor—a sign that I’m close to achieving full automation without compromising quality. Boosting Jade’s Fanvue Revenue 💰 Jade’s income took a hit this month, and it’s 100% a traffic issue. The solution? More content, more reach. I’ll be increasing social media output to drive consistent traffic back to Fanvue and restore her earnings. Patreon is Done. All Focus on Fanvue 🚫 I shut down both Emma & Jade’s Patreon accounts. The goal is not to split revenue—I want everything funneled into Fanvue for higher engagement and bigger paydays. \------- 💰 January 2025 Earnings Breakdown Despite January being one of the slowest months for online creators, Emma and Jade still brought in over $29K in revenue, with a net profit exceeding $20K after all expenses. Emma Laui generated $20,206.77, with around $6,000 in expenses (chatter payments, NSFW designer fees, and other operational costs). Jade Laui earned $8,939.05, with $2,000 in expenses. Considering Twitter account losses, Instagram setbacks, and the usual January spending slump, this is still a solid outcome. The focus now is on scaling traffic and maximizing Fanvue revenue heading into February. 🚀🔥 That’s the full breakdown for January! If you have questions, feel free to drop a comment, and I’ll answer when I can. Happy to help, just like others helped me when I was starting out! 🚀🔥

Please rate my business idea aimed at emerging markets
reddit
LLM Vibe Score0
Human Vibe Score1
Whole_Ad_9002This week

Please rate my business idea aimed at emerging markets

Imagine a single platform that transforms your business operations effortlessly. Think of it like a Swiss Army knife for your business. First Steps (Every Business Needs These): Our website builder is your first step online. Just pick what you want, drag it where you need it, and you've got a professional website or online store. No tech skills needed. Perfect for getting your business visible to customers. Our security tool comes next because every business needs protection. It's like a security guard for your files and data, keeping hackers out and making sure you never lose important work. Think of it as insurance for your digital business. Cybersecurity and backups combined. Growing Business Needs: As your team grows, our digital office keeps everyone connected. Email, chat, share files, and track projects in one place. It's like having everyone in the same room, even when working remotely. This becomes essential once you have more than a few people. When paperwork starts piling up, our AI helper steps in. It's like having a smart assistant who learns your business and helps everyone get more done - handling routine tasks, summarizing meetings, and suggesting better ways to work. Scaling Up (For Established Businesses): Once you're handling lots of data, our eco-friendly cloud storage becomes crucial. Your business gets fast, reliable storage while helping the environment. We use servers powered by renewable energy, so you can grow sustainably. Our data transfer tool becomes important when you're working with multiple systems and need to move files around. It's like having a digital moving service that safely carries your files between different cloud services. With 20+ services to connect to cloud to cloud or on prem to cloud, its easy and fast. Advanced Needs: When your business processes get complex, our workflow automation tool helps you set up automatic systems for repetitive tasks. It's like training a robot to handle your routine work while your team focuses on growth. Simple no-code automation when you need it. Everything works on its own, but they're designed to work even better together. And since it's all in one place, you only need one password and one monthly bill. Most businesses save about half their tech costs by switching to our platform. Cost Benefits: Single subscription replaces multiple vendor contracts Reduces IT overhead by 40-60% on average No need for expensive technical specialists Predictable monthly costs Scales pricing with your usage

Digital Analytics and Marketing
reddit
LLM Vibe Score0
Human Vibe Score1
Chou789This week

Digital Analytics and Marketing

I'm a Data Analyst with wide range of experience in this niche. Looking for partner to bring me clients and get a cut on the charges, i.e act as a agency connecting businesses with developers. Lately, I see that Developer costs in US/EU is skyrocketing and hiring a decent Data Analyst costs a fortune for companies, small companies can't even think of getting one. Already working with several small businesses and see that many small businesses have need somebody to play around their data but since it's a costly affair, mostly small businesses stick with Excel and Google Sheets as their database and don't leverage the potential of automation, now with AI/LLM, having proper data strategy is important. We can team up and provide reach these low hanging fruits. What i do: Data Reporting: Move clients current data systems from Excel, Google Sheets into Database/Datawarehouse Integrate data from different sources like Pipedrive, Google Ads, Facebook Ads, Shopify etc and create automated custom reports on the data. Digital Marketing: For Shopify/Ecommernce site owners - Google Analytics Reporting Answer questions like Where is my traffic coming from, which traffic is working, how long they are staying in site, which products are working, product views to purchase ratio etc Custom Desktop Applications Custom: Have a custom idea? Let's discuss. DM me. Thanks. PS: Potential customers include ones who can't hire $50-$150/hr full time developers but want one at part time/freelancing type where they can get things done quickly/validating their ideas without burning their business.

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰
reddit
LLM Vibe Score0
Human Vibe Score1
benfromwhereThis week

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰

(Monthly income breakdown is in the end) 📌 Introduction Hey everyone! 👋 Before I dive into this month’s breakdown, I just want to be upfront—English isn’t my first language, so I’ve used ChatGPT to refine this post for better readability. That said, everything here is 100% real—my personal experiences, struggles, and earnings as someone running a full-time AI influencer business. Since I get a lot of DMs asking about my AI models, here are their Instagram links: 📷 Emma – https://www.instagram.com/emmalauireal 📷 Jade – https://www.instagram.com/jadelaui (jadecasual is the second account) Also, if you’ve been wondering about the community I run, where I teach others how to build AI influencers from scratch, here’s the link (I got approval from mods for this link): 🔗 AI Winners Now, let’s get into what happened this month. 🚀 \------- First, a huge thank you! 🎉 Three months ago, I shared my journey of building an AI influencer business, and I was blown away by the response. That post got 263K+ views and was shared over 2.7K times—way more than I ever expected. If you’re new here or want to check out the full story of how I started, you can read it here: 🔗 Click Here (Reddit link) \------- 🔹 What I Did in January After the holiday rush in December, I knew January would be a slow month—people had already spent most of their money at the end of the year. So instead of pushing harder on monetization, I shifted my focus to tech development and optimization. Flux Character Loras: I spent a lot of time refining and testing different Flux-based character Loras for my models. This is still a work in progress, but the goal is to improve long-term consistency and make my workflow even more efficient. NSFW Content Expansion: On Emma’s side, I expanded her content library using a real model body double, making her content look more organic and natural. Jade, however, remains 100% AI-generated, keeping her workflow entirely digital. Social Media Wipeout (Thanks, VA 🙃): I had handed off both Twitter accounts to a virtual assistant to help with engagement and DMs. Big mistake. He ended up spamming DMs, which got both accounts banned—Emma (80K followers) and Jade (20K followers). 🤦‍♂️ Right now, I’m rebuilding Emma’s account from scratch and taking a much more cautious approach. Jade’s account is still offline for now. New Platform: Threads – I hadn’t touched Threads before, but since engagement on Instagram can be unpredictable, I decided to start accounts for both models. So far, they’re performing well, and I’ll continue experimenting. Launched AI Winners Community: After getting flooded with DMs (both here and on Instagram), I realized there was a massive demand for structured learning around AI influencers. So, I launched AI Winners, a paid community where I break down everything I’ve learned. It’s still early, but I see it turning into a solid, long-term community. Investment & Acquisition Talks: I’m still evaluating potential investors and acquisition offers for my AI models. There’s growing interest in buying or investing in Emma & Jade, so I’ve been having conversations to explore different options. Overall, January was about tech, rebuilding, and long-term planning—not immediate revenue. But that’s what keeps this business sustainable. 🚀 \------- ⚠️ Biggest Challenges This Month Lost Both Twitter Accounts (Massive Traffic Hit) 🚨 The biggest blow this month was losing my models’ Twitter accounts. Twitter was responsible for about 40% of my total traffic, meaning both free and paid subs took a direct hit. While Emma’s revenue took a slight dip, Jade’s income dropped significantly—partly due to the account loss and partly because January is naturally slow. (Full revenue breakdown at the end of the post.) Jade’s Instagram Tanked (Possible Shadow Ban?) 🤔 Jade’s Instagram completely lost momentum in early January. Engagement and reach dropped by over 80%, and I still haven’t figured out why. It feels like a shadow ban, but I have no clear confirmation. To counter this, I launched a second backup account, and things are starting to recover. \------- 🚀 Potential Improvements & What’s Next Locking in a Stable Workflow 🔄 Right now, Emma & Jade’s workflow is still evolving, but I’m aiming to fully stabilize it. As I’m writing this, content is generating on my second monitor—a sign that I’m close to achieving full automation without compromising quality. Boosting Jade’s Fanvue Revenue 💰 Jade’s income took a hit this month, and it’s 100% a traffic issue. The solution? More content, more reach. I’ll be increasing social media output to drive consistent traffic back to Fanvue and restore her earnings. Patreon is Done. All Focus on Fanvue 🚫 I shut down both Emma & Jade’s Patreon accounts. The goal is not to split revenue—I want everything funneled into Fanvue for higher engagement and bigger paydays. \------- 💰 January 2025 Earnings Breakdown Despite January being one of the slowest months for online creators, Emma and Jade still brought in over $29K in revenue, with a net profit exceeding $20K after all expenses. Emma Laui generated $20,206.77, with around $6,000 in expenses (chatter payments, NSFW designer fees, and other operational costs). Jade Laui earned $8,939.05, with $2,000 in expenses. Considering Twitter account losses, Instagram setbacks, and the usual January spending slump, this is still a solid outcome. The focus now is on scaling traffic and maximizing Fanvue revenue heading into February. 🚀🔥 That’s the full breakdown for January! If you have questions, feel free to drop a comment, and I’ll answer when I can. Happy to help, just like others helped me when I was starting out! 🚀🔥

Please rate my business idea aimed at emerging markets
reddit
LLM Vibe Score0
Human Vibe Score1
Whole_Ad_9002This week

Please rate my business idea aimed at emerging markets

Imagine a single platform that transforms your business operations effortlessly. Think of it like a Swiss Army knife for your business. First Steps (Every Business Needs These): Our website builder is your first step online. Just pick what you want, drag it where you need it, and you've got a professional website or online store. No tech skills needed. Perfect for getting your business visible to customers. Our security tool comes next because every business needs protection. It's like a security guard for your files and data, keeping hackers out and making sure you never lose important work. Think of it as insurance for your digital business. Cybersecurity and backups combined. Growing Business Needs: As your team grows, our digital office keeps everyone connected. Email, chat, share files, and track projects in one place. It's like having everyone in the same room, even when working remotely. This becomes essential once you have more than a few people. When paperwork starts piling up, our AI helper steps in. It's like having a smart assistant who learns your business and helps everyone get more done - handling routine tasks, summarizing meetings, and suggesting better ways to work. Scaling Up (For Established Businesses): Once you're handling lots of data, our eco-friendly cloud storage becomes crucial. Your business gets fast, reliable storage while helping the environment. We use servers powered by renewable energy, so you can grow sustainably. Our data transfer tool becomes important when you're working with multiple systems and need to move files around. It's like having a digital moving service that safely carries your files between different cloud services. With 20+ services to connect to cloud to cloud or on prem to cloud, its easy and fast. Advanced Needs: When your business processes get complex, our workflow automation tool helps you set up automatic systems for repetitive tasks. It's like training a robot to handle your routine work while your team focuses on growth. Simple no-code automation when you need it. Everything works on its own, but they're designed to work even better together. And since it's all in one place, you only need one password and one monthly bill. Most businesses save about half their tech costs by switching to our platform. Cost Benefits: Single subscription replaces multiple vendor contracts Reduces IT overhead by 40-60% on average No need for expensive technical specialists Predictable monthly costs Scales pricing with your usage

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰
reddit
LLM Vibe Score0
Human Vibe Score1
benfromwhereThis week

From Setbacks to $20K Profit: My AI Influencer Earnings Breakdown (Jan 2025) 💰

(Monthly income breakdown is in the end) 📌 Introduction Hey everyone! 👋 Before I dive into this month’s breakdown, I just want to be upfront—English isn’t my first language, so I’ve used ChatGPT to refine this post for better readability. That said, everything here is 100% real—my personal experiences, struggles, and earnings as someone running a full-time AI influencer business. Since I get a lot of DMs asking about my AI models, here are their Instagram links: 📷 Emma – https://www.instagram.com/emmalauireal 📷 Jade – https://www.instagram.com/jadelaui (jadecasual is the second account) Also, if you’ve been wondering about the community I run, where I teach others how to build AI influencers from scratch, here’s the link (I got approval from mods for this link): 🔗 AI Winners Now, let’s get into what happened this month. 🚀 \------- First, a huge thank you! 🎉 Three months ago, I shared my journey of building an AI influencer business, and I was blown away by the response. That post got 263K+ views and was shared over 2.7K times—way more than I ever expected. If you’re new here or want to check out the full story of how I started, you can read it here: 🔗 Click Here (Reddit link) \------- 🔹 What I Did in January After the holiday rush in December, I knew January would be a slow month—people had already spent most of their money at the end of the year. So instead of pushing harder on monetization, I shifted my focus to tech development and optimization. Flux Character Loras: I spent a lot of time refining and testing different Flux-based character Loras for my models. This is still a work in progress, but the goal is to improve long-term consistency and make my workflow even more efficient. NSFW Content Expansion: On Emma’s side, I expanded her content library using a real model body double, making her content look more organic and natural. Jade, however, remains 100% AI-generated, keeping her workflow entirely digital. Social Media Wipeout (Thanks, VA 🙃): I had handed off both Twitter accounts to a virtual assistant to help with engagement and DMs. Big mistake. He ended up spamming DMs, which got both accounts banned—Emma (80K followers) and Jade (20K followers). 🤦‍♂️ Right now, I’m rebuilding Emma’s account from scratch and taking a much more cautious approach. Jade’s account is still offline for now. New Platform: Threads – I hadn’t touched Threads before, but since engagement on Instagram can be unpredictable, I decided to start accounts for both models. So far, they’re performing well, and I’ll continue experimenting. Launched AI Winners Community: After getting flooded with DMs (both here and on Instagram), I realized there was a massive demand for structured learning around AI influencers. So, I launched AI Winners, a paid community where I break down everything I’ve learned. It’s still early, but I see it turning into a solid, long-term community. Investment & Acquisition Talks: I’m still evaluating potential investors and acquisition offers for my AI models. There’s growing interest in buying or investing in Emma & Jade, so I’ve been having conversations to explore different options. Overall, January was about tech, rebuilding, and long-term planning—not immediate revenue. But that’s what keeps this business sustainable. 🚀 \------- ⚠️ Biggest Challenges This Month Lost Both Twitter Accounts (Massive Traffic Hit) 🚨 The biggest blow this month was losing my models’ Twitter accounts. Twitter was responsible for about 40% of my total traffic, meaning both free and paid subs took a direct hit. While Emma’s revenue took a slight dip, Jade’s income dropped significantly—partly due to the account loss and partly because January is naturally slow. (Full revenue breakdown at the end of the post.) Jade’s Instagram Tanked (Possible Shadow Ban?) 🤔 Jade’s Instagram completely lost momentum in early January. Engagement and reach dropped by over 80%, and I still haven’t figured out why. It feels like a shadow ban, but I have no clear confirmation. To counter this, I launched a second backup account, and things are starting to recover. \------- 🚀 Potential Improvements & What’s Next Locking in a Stable Workflow 🔄 Right now, Emma & Jade’s workflow is still evolving, but I’m aiming to fully stabilize it. As I’m writing this, content is generating on my second monitor—a sign that I’m close to achieving full automation without compromising quality. Boosting Jade’s Fanvue Revenue 💰 Jade’s income took a hit this month, and it’s 100% a traffic issue. The solution? More content, more reach. I’ll be increasing social media output to drive consistent traffic back to Fanvue and restore her earnings. Patreon is Done. All Focus on Fanvue 🚫 I shut down both Emma & Jade’s Patreon accounts. The goal is not to split revenue—I want everything funneled into Fanvue for higher engagement and bigger paydays. \------- 💰 January 2025 Earnings Breakdown Despite January being one of the slowest months for online creators, Emma and Jade still brought in over $29K in revenue, with a net profit exceeding $20K after all expenses. Emma Laui generated $20,206.77, with around $6,000 in expenses (chatter payments, NSFW designer fees, and other operational costs). Jade Laui earned $8,939.05, with $2,000 in expenses. Considering Twitter account losses, Instagram setbacks, and the usual January spending slump, this is still a solid outcome. The focus now is on scaling traffic and maximizing Fanvue revenue heading into February. 🚀🔥 That’s the full breakdown for January! If you have questions, feel free to drop a comment, and I’ll answer when I can. Happy to help, just like others helped me when I was starting out! 🚀🔥

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey
reddit
LLM Vibe Score0
Human Vibe Score0.778
benfromwhereThis week

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey

Update on February 22th: I changed my AI influencer's names because it caused some problems on my business. One year, two AI-powered influencers, and $250K in revenue. Sounds unreal? It’s not. Today, I’m pulling back the curtain on the strategies, tools, and hard-won lessons that took me from concept to a six-figure success story in the AI influencer space. Hey, I'm Ben—a 32-year-old designer who spent the past year navigating the world of AI influencers. Let me clear up any confusion right from the start: I’m not here to sell you anything. This is purely a case study to share what worked, what didn’t, and what I’ve learned along the way. I’ll also make sure to answer all your questions in the comments for free whenever I can, so don’t hesitate to ask. Links to Past Topics: If you're curious about some of the groundwork I covered, check out a few of my earlier posts here: How I Make $10,000 Monthly | AI Influencer Management How I Earned $7000+ in 15 Days | AI Influencer Business Update These earlier posts cover a lot of the backstory, so feel free to explore them before diving into this one. So if you're ready, here is the full story: \---- The idea of creating an AI influencer was one of those “what if” moments that wouldn’t leave my mind. At first, it sounded futuristic—even a bit too ambitious. It all started when I stumbled upon an AI influencer on Instagram with the handle AnnaMaes2000. Her content blew me away—the quality, the detail, and just how real everything looked. I was instantly hooked and ended up going through every post, just trying to figure out how she was pulling this off. That’s when I knew I had to learn how this was done. The next step? YouTube. I dived into videos on Stable Diffusion, soaking up everything I could about creating AI-generated images. Those tutorials taught me the basics and got me up to speed. Then, I created my first AI influencer, let's call her Mel for now. Right after that, to complete the storyline and boost engagement, I introduced Mel's “mother,” Jess. Adding Jess gave the whole project depth and a narrative that drew people in, creating a unique family dynamic that instantly elevated traffic and interest. After thousands of bad photos, hundreds of deleted posts, and months of trial and error, you can now see the quality that defines my current accounts. Here’s a rundown of the tools and checkpoints I’ve used from day one, in order: Fooocus on RunDiffusion — Juggernaut V8 Fooocus on RunDiffusion — Juggernaut V9 Fooocus on PC (locally) — Juggernaut V9 Fooocus on PC (locally) —Lyuyang Mix + Juggernaut V9 Flux on PC (couple of photos only since it's so slow even on RTX 4090) Flux on Fal.ai. \---- There’s no magic Instagram hack that guarantees success, despite what everyone thinks and keeps asking me. Quality content, consistent uploads, and solid craftsmanship are what actually help your photos hit trends and show up on the Explore page. Unlike 95% of low-quality AI accounts out there, I don’t rely on faceswap videos, spam Reels, or go around liking comments on other accounts. My approach is fully organic, focused solely on creating my own unique content. By following Instagram's guidelines to the letter, I've managed to direct some of Mel and Jess' fans over to Patreon and Fanvue. There, for a small subscription fee, fans can access exclusive lingerie content. For those looking for more, higher-tier subscriptions give access to even more premium content. Some possible questions and their answers: No, you can't share hardcore NSFW content on Patreon. You can do that on Fanvue. Yes, you can create AI creators on Fanvue — OnlyFans doesn't allow it. Yes, you can use your own ID to get KYC. Yes, we're telling both Mel and Jess is (or use) AI to generate content. And yes, some people leave and some people still have fun with chatting, having a good time and get perfect content for their needs. And yes, we have a chatter team to work on these accounts. \---- This journey wasn’t all smooth sailing. I faced unexpected roadblocks, like platform restrictions that limited certain types of content, and managing fan expectations was more challenging than anticipated. Staying within guidelines while keeping fans engaged required constant adaptation. These hurdles forced me to get creative, adjust my approach, and learn fast. Once I saw Mel and Jess gaining traction, I knew it was time to scale up. Expanding meant finding new ways to keep content fresh, creating deeper narratives, and considering how to bring even more followers into the fold. My focus turned to building a sustainable model that could grow without sacrificing quality or authenticity. If you’re thinking about diving into AI content creation, here’s my advice: patience, consistency, and a focus on quality are key. Don’t cut corners or rely on quick-fix hacks. Invest time in learning the right tools, creating engaging stories, and building an audience that values what you bring to the table. This approach took me from zero to six figures, and it’s what makes the journey worth it. \---- And finally, here’s the income breakdown that everyone’s curious about: Mel on Fanvue: $82,331.58 (Gross earnings because we have chatter cuts like 15%) Mel on Patreon: $50,865.98 (Net earnings) Jess on Fanvue: $89,068.26 (Gross earnings because we have chatter cuts like 15%) Jess on Patreon: $39,040.70 And thanks to Reddit and my old posts, I got a perfect investor like after 5 months, so this is a "payback" for that. Like I said, I'll answer every question in the comments — take care and let me know.

Please rate my business idea aimed at emerging markets
reddit
LLM Vibe Score0
Human Vibe Score1
Whole_Ad_9002This week

Please rate my business idea aimed at emerging markets

Imagine a single platform that transforms your business operations effortlessly. Think of it like a Swiss Army knife for your business. First Steps (Every Business Needs These): Our website builder is your first step online. Just pick what you want, drag it where you need it, and you've got a professional website or online store. No tech skills needed. Perfect for getting your business visible to customers. Our security tool comes next because every business needs protection. It's like a security guard for your files and data, keeping hackers out and making sure you never lose important work. Think of it as insurance for your digital business. Cybersecurity and backups combined. Growing Business Needs: As your team grows, our digital office keeps everyone connected. Email, chat, share files, and track projects in one place. It's like having everyone in the same room, even when working remotely. This becomes essential once you have more than a few people. When paperwork starts piling up, our AI helper steps in. It's like having a smart assistant who learns your business and helps everyone get more done - handling routine tasks, summarizing meetings, and suggesting better ways to work. Scaling Up (For Established Businesses): Once you're handling lots of data, our eco-friendly cloud storage becomes crucial. Your business gets fast, reliable storage while helping the environment. We use servers powered by renewable energy, so you can grow sustainably. Our data transfer tool becomes important when you're working with multiple systems and need to move files around. It's like having a digital moving service that safely carries your files between different cloud services. With 20+ services to connect to cloud to cloud or on prem to cloud, its easy and fast. Advanced Needs: When your business processes get complex, our workflow automation tool helps you set up automatic systems for repetitive tasks. It's like training a robot to handle your routine work while your team focuses on growth. Simple no-code automation when you need it. Everything works on its own, but they're designed to work even better together. And since it's all in one place, you only need one password and one monthly bill. Most businesses save about half their tech costs by switching to our platform. Cost Benefits: Single subscription replaces multiple vendor contracts Reduces IT overhead by 40-60% on average No need for expensive technical specialists Predictable monthly costs Scales pricing with your usage

Roast my resume + suggestions for my portfolio
reddit
LLM Vibe Score0
Human Vibe Score0
saasypThis week

Roast my resume + suggestions for my portfolio

Hi everyone, I'm a European (I don't know if it's important to mention) Master's AI student, and as many out there, I'm trying to break into the ML (Deep Learning more specifically) world and I am aware of the current market crisis we're going through. Therefore, I ask you to rate/roast my resume as much as you can, since I'm trying to land an internship alongside the studies. The only project I’ve worked on so far was a research project conducted as part of my university studies. Since it was primarily research-oriented, there weren’t significant opportunities to benchmark the results using standard metrics for comparison. (maybe you can suggest me how to leverage it on the resume - yes it says Jan 2024 because the deadline is in January but it’s done already) I am deeply passionate about ML/DL , and I understand the importance of having a strong portfolio to showcase my skills. However, I struggle with finding creative and impactful project ideas to put into practice. While I consider myself a beginner, my Master’s program has provided me with a solid foundation (including the maths/algebra/statistics from my bachelor) in ML and unluckily I haven't had the opportunity to land a decent internship where I could learn and apply such things yet. As far as I read from multiple posts here, I should start to work on solving a "problem" that I might face or something that I'm interested in, but as I said I've completely no idea, thus I'd highly appreciate your help also with this. Is contributing to open source project valid as well? Could you suggest any websites where I can find some? Thanks for your precious time and attention :)

I single-handedly built the world’s best AI investing platform. Here’s NexusTrade’s 2024 year in review
reddit
LLM Vibe Score0
Human Vibe Score1
No-Definition-2886This week

I single-handedly built the world’s best AI investing platform. Here’s NexusTrade’s 2024 year in review

I copy-pasted the content of this article to save you a click! I’ve been developing an AI investing platform for 4 years, and I’m blown away by all of the new features I’ve gotten done! Here’s my project’s 2024 year in review —- When someone asks me what is the best way to learn how to trade and invest, I have an unbiased answer – NexusTrade.io. I started NexusTrade to empower everybody, including beginners and non-technical investors, to learn how to make smarter investing decisions. NexusTrade is the best way for a new investor to learn algorithmic trading and financial research, and I’m not the only person to think so. Just this year alone, user growth has skyrocketed from 1,703 users to 14,319 users. This is driven by new features, better research tools, and the launch of algorithmic trading. Here’s NexusTrade’s 2024 year in review, a semi-complete list of the features I’ve launched. Summarizing this year in review TL;DR: I implemented a variety of new features to enhance NexusTrade’s algorithmic trading and financial research capabilities. This includes: Cryptocurrency support Enhanced financial research, like the AI-Powered Stock Screener Unique watchlists and daily market summaries Live-trading with Alpaca. Next year, I plan to implement features to make NexusTrade more tailored for each user’s experience, and launch several unique features including copy trading and fully automated algorithmic trading. Feature-by-feature: What have I done so far in 2024? Algorithmic Cryptocurrency Trading Picture: Algorithmic Cryptocurrency Trading I kicked off the year by adding cryptocurrency support to NexusTrade. Users can now research, design, and implement automated strategies for popular cryptocurrencies, such as Bitcoin, Dogecoin, and Ethereum. AI-Powered Stock Screener and research capabilities Picture: AI-Powered Stock Screener In tandem with cryptocurrency support, I made a huge update to Aurora, the AI Assistant in NexusTrade, by implementing a natural language stock screener. This screener makes it easy to find fundamentally strong stocks. Throughout the year, I’ve made several enhancements to it. Over time, I’ve made the screener faster, more accurate, and expanded its capabilities. Using fundamental indicators within trading strategies Picture: Using fundamental indicators Doing financial research for companies isn’t enough; we also need a way to integrate this type of research into trading strategies. Thus, I’ve expanded the NexusTrade indicators, and made it possible to create strategies using metrics like revenue, net income, free cash flow, and P/E ratio. Stock watchlists with tailored, automated daily emails Picture: Stock watchlists In addition, I didn’t want the research you may have done for a stock (or list of stocks) to be forgotten. Thus, I created the most useful watchlist page of any investing platform. This watchlist makes it easy to keep track of your favorite stocks, track them over time, and even receive curated, daily emails about them. Enhanced user profile page, Google sign-ins, and two-factor authentication Picture: Enhanced user profile Keeping in theme with adding new pages to NexusTrade, many pages, such as the profile page, got a huge revamp. The new profile page is cleaner, easier to use, and allows you to secure your account more effectively, for example, by using two-factor authentication. GPT-Reports: an AI-generated analysis of every stock in the market Picture: GPT-Reports I created GPT-Stock Reports, an AI-Generated analysis of every stock in the market. This report was generated by taking each company’s earnings data and asking GPT to analyze the stock and give it a rating. Manual and semi-automated algorithmic trading with Alpaca Picture: Manual and semi-automated trading Finally, I’ve fully launched the Alpaca integration, and enabled users to execute real trades directly in the NexusTrade app! This integration has transformed NexusTrade from a financial research app into a real, algorithmic trading platform for retail investors. Concluding Thoughts When I say that NexusTrade is the best platform for traders and investors to make more money in the stock market, you may naively think that I’m biased. I created the app, and the rose-tinted glasses is bound to make every red flag look like a regular flag, right? Wrong. NexusTrade is objectively a completely new way for investors to approach financial markets. The fact that the app is so expansive is nothing short of miraculous.

activepieces
github
LLM Vibe Score0.66
Human Vibe Score1
activepiecesMar 28, 2025

activepieces

An open source replacement for Zapier Documentation 🌪️ Create a Piece 🖉 Deploy 🔥 Join Discord 🤯 Welcome to Activepieces Your friendliest open source all-in-one automation tool, designed to be extensible through a type-safe pieces framework written in Typescript. 🔥 Why Activepieces is Different: 💖 Loved by Everyone: Intuitive interface and great experience for both technical and non-technical users with a quick learning curve. 🌐 Open Ecosystem: All pieces are open source and available on npmjs.com, 60% of the pieces are contributed by the community. 🛠️ Pieces are written in Typescript: Pieces are npm packages in TypeScript, offering full customization with the best developer experience, including hot reloading for local piece development on your machine. 😎 🤖 AI-Ready: Native AI pieces let you experiment with various providers, or create your own agents using our AI SDK, and there is Copilot to help you build flows inside the builder. 🏢 Enterprise-Ready: Developers set up the tools, and anyone in the organization can use the no-code builder. Full customization from branding to control. 🔒 Secure by Design: Self-hosted and network-gapped for maximum security and control over your data. 🧠 Human in the Loop: Delay execution for a period of time or require approval. These are just pieces built on top of the piece framework, and you can build many pieces like that. 🎨 💻 Human Input Interfaces: Built-in support for human input triggers like "Chat Interface" 💬 and "Form Interface" 📝 🛠️ Builder Features: [x] Loops [x] Branches [x] Auto Retries [x] HTTP [x] Code with NPM [x] ASK AI in Code Piece (Non technical user can clean data without knowing to code) [x] Flows are fully versioned. [x] Languages Translations [x] Customizable Templates [X] 200+ Pieces, check https://www.activepieces.com/pieces We release updates frequently. Check the product changelog for the latest features. 🔌 Create Your Own Piece Activepieces supports integrations with Google Sheets, OpenAI, Discord, RSS, and over 200 other services. Check out the full list of supported integrations, which is constantly expanding thanks to our community's contributions. As an open ecosystem, all integration source code is accessible in our repository. These integrations are versioned and published directly to npmjs.com upon contribution. You can easily create your own integration using our TypeScript framework. For detailed instructions, please refer to our Contributor's Guide. License Activepieces' Community Edition is released as open source under the MIT license and enterprise features are released under Commercial License Read more about the feature comparison here https://www.activepieces.com/docs/about/editions 💭 Join Our Community 🌐 Contributions We welcome contributions big or small and in different directions. The best way to do this is to check this document and we are always up to talk on our Discord Server. 📚 Translations Not into coding but still interested in contributing? Come join our Discord and visit https://www.activepieces.com/docs/about/i18n for more information. !fr translation].data.translationProgress&url=https%3A%2F%2Fbadges.awesome-crowdin.com%2Fstats-16093902-626364-update.json) !it translation].data.translationProgress&url=https%3A%2F%2Fbadges.awesome-crowdin.com%2Fstats-16093902-626364-update.json) !de translation].data.translationProgress&url=https%3A%2F%2Fbadges.awesome-crowdin.com%2Fstats-16093902-626364-update.json) !ja translation].data.translationProgress&url=https%3A%2F%2Fbadges.awesome-crowdin.com%2Fstats-16093902-626364-update.json) !pt-BR translation].data.translationProgress&url=https%3A%2F%2Fbadges.awesome-crowdin.com%2Fstats-16093902-626364-update.json) 🦫 Contributors ShahedAlMashni🔌 AbdulTheActivePiecer🚧 Khaled Mashaly🚧 Mohammed Abu Aboud🚧 Abdulrahman Zeineddin🔌 ahmad jaber🔌 ashrafsamhouri🔌 Mohammad Abu Musa📆 Mukewa Wekalao🔌 Osama Abdallah Essa Haikal🔌 Arman🛡️ Oskar Krämer📖 Thibaut Patel🤔 🔌 Applesaucesomer🤔 crazyTweek🤔 Muhammad Tabaza🔌 Shay Punter📖 🔌 abaza738🔌 Jona Boeddinghaus🔌 fomojola💻 Alexander Storozhevsky💻 J0LGER🛡️ Patrick Veverka🐛 Berk Sümbül📖 Willian Guedes🔌 Abdullah Ranginwala💻 Dennis Tychsen🔌 MyWay🔌 Bibhuti Bhusan Panda🔌 Tarun Samanta🐛 Herman Kudria🔌 [NULL] Dev🔌 Jan Bebendorf🔌 Nilesh🔌 Vraj Gohil🔌 BastienMe🔌 Stephen Foskett📖 Nathan📖 Marcin Natanek🔌 Mark van Bellen🔌 Olivier Guzzi🔌 Osama Zakarneh🔌 phestvik🤔 Rajdeep Pal📖 Camilo Usuga🔌 Kishan Parmar📖 🔌 BBND🔌 Haseeb Rehman🔌 Rita Gorokhod🔌 Fábio Ferreira🔌 Florin Buffet📖 Drew Lewis🔌 Benjamin André-Micolon🔌 Denis Gurskij🔌 Nefer Lopez📖 fardeenpanjwani-codeglo📖 Landon Moir🔌 Diego Nijboer🔌 Tân Một Nắng🔌 Gavin Foley📖 Dennis Trautwein🐛 Andrew Rosenblatt🐛 rika🔌 Cyril Selasi🔌 Franck Nijimbere🔌 Aleksandr Denisov🔌 Reuben Swartz📖 joselupianez🔌 Awais Manzoor🐛 💻 Andrei🐛 derbbre📖 Maor Rozenfeld💻 Michael Huynh📖 Filip Dunđer💻 Don Thorp📖 Joe Workman🔌 Aykut Akgün💻 Yann Petitjean🔌 🐛 pfernandez98🔌 Daniel O.🔌 Meng-Yuan Huang📖 Leyla🐛 i-nithin🔌 la3rence🔌 Dennis Rongo🐛 🔌 Kartik Mehta📖 💻 Zakher Masri📖 💻 AbdullahBitar🔌 Mario Meyer🔌 Karim Khaleel🔌 CPonchet🐛 Olivier Sambourg🔌 Ahmad(Ed)🔌 leenmashni🔌 M Abdul Rauf📖 Vincent Barrier🔌 John💻 🔌 Joost de Valk🔌 MJ🔌 ShravanShenoy💻 Jon Kristian📖 cr0fters🐛 Bibek Timsina🐛 Viktor Szépe💻 Rendy Tan📖 🔌 Islam Abdelfattah🐛 Yoonjae Choi💻 Javier HM🔌 Mohamed Hassan🐛 Christian Schab🔌 Pratik Kinage🔌 Abdelrahman Mostafa 🔌 Hamza Zagha🐛 Lasse Schuirmann🔌 Cyril Duchon-Doris🔌 Javiink🔌 Harshit Harchani🔌 MrAkber📖 marek-slavicek🔌 hugh-codes🔌 Alex Lewis🐛 Yuanlin Lin📖 Ala Shiban📖 hamsh💻 Anne Mariel Catapang🔌 Carlo Gino Catapang🔌 Aditya Rathore🔌 coderbob2🔌 Ramy Gamal🔌 Alexandru-Dan Pop💻 Frank Micheal 🔌 Emmanuel Ferdman📖 Sany A🔌 Niels Swimberghe🐛 lostinbug🔌 gushkool🔌 Omar Sayed🔌 rSnapkoOpenOps🐛 ahronshor🔌 Cezar🐛 Shawn Lim🔌 Shawn Lim🔌 pavloDeshko🐛 abc💻 manoj kumar d🔌 Feli🔌 Miguel🔌 Instasent DEV🔌 Matthieu Lombard🔌 beyondlevi🔌 Rafal Zawadzki🔌 Simon Courtois🔌 alegria-solutions🔌 D-Rowe-FS🔌 张晟杰🔌 Ashot🔌 Amr Abu Aza🔌 John Goodliff🔌 Diwash Dev🔌 André🔌 Lou &#124; Digital Marketing🔌 Maarten Coppens🔌 Mahmoud Hamed🔌 Theo Dammaretz🔌 s31w4n📖 Abdul Rahman🔌 Kent Smith🔌 Arvind Ramesh💻 valentin-mourtialon🔌 psgpsg16🔌 Mariia Shyn🔌 Joshua Heslin🔌 Ahmad🔌 you💻 Daniel Poon💻 Kévin Yu🔌 노영은🔌 reemayoush🔌 Brice🛡️ Mg Wunna🔌 This project follows the all-contributors specification. Contributions of any kind are welcome!

openkore
github
LLM Vibe Score0.567
Human Vibe Score0.2670720058425842
OpenKoreMar 28, 2025

openkore

!logo !Language !Stars !Fork !Watch !Issues !Pull Requests !Contributors !GithubWorkflowstatus !GithubWorkflowCI OpenKore is a custom client and intelligent automated assistant for Ragnarok Online. It is a free, open source and cross-platform program (Linux, Windows and MacOS are supported). Prerequisites To run OpenKore you will need: Read the Requirements page on our wiki Quickstart Download OpenKore and extract it. Alternatively, you could press the Windows Key + R, type in `cmd` & enter. Run the following command in the cmd to clone. Note: Git required. Configure OpenKore: documentation. Run openkore.pl (You can run start.exe or wxstart.exe if you use Windows). F.A.Q. (Frequently Asked Questions) Have a problem? Update your openkore or download a new one. Still having problems? Search in Wiki. Search in Forum. Search in Github issues. Cant find what you need? / Do not understand? Ask in IRC Channel. Is it a problem in Openkore? Read things to know before reporting. Things to know Make sure you've read FAQ especially to run latest commit on master branch & checking existed issue for your request. Please post in English. Please use the issue template. Please include informations about your server & any changes you did in your configuration. Briefly explain what happened, take a screenhot & include the error message (If available). Please be advised any developers here are doing this on their free time. Please give some time for anyone to respond. Status of botting on Official Servers | Server | Description | Protection | Status | Supporter | | --- | --- | --- | --- | --- | | aRO | Asia RO | CheatDefender | Not working | N/A | | bRO | Brazil RO | EAC | Not working | N/A | | cRO | China RO | nProtect | Botable | N/A | | euRO | Europe RO | Frost Security | Not working | N/A | | euRO-Prime | Europe RO (Prime) | Frost Security | Not working | N/A | | iRO Renewal | International RO | EAC | Not working | N/A | | idRO | Indonesia RO | EAC | Not Working | N/A | | idRO-Retro | Indonesia RO (Retro) | Delphine | Not Working | N/A | | jRO | Japan RO | nProtect | Need Verification | N/A | | kRO | Korea RO | nProtect | Botable | N/A | | kRO-Zero | Korea RO (Zero) | nProtect | Botable | N/A | | ruRO-Prime | Russia RO (Prime) | Frost Security | Not Working | ya4ept | | tRO | Thailand RO | EAC | Not Working | N/A | | tRO-Classic | Thailand RO (Classic) | EAC | Not Working | N/A | | twRO | Taiwan RO | CheatDefender | Not Working | N/A | | vRO | Vietnam RO | nProtect | Not Working | N/A | Contributing OpenKore is developed by a team located around the world. Check out the documentation and if necessary, submit a pull request. Contacts OpenKore Wiki OpenKore forum IRC Channel Connect IRC with Kiwiirc Brazilian Community Russian Community Warning Other communities or websites are not affiliated to openkore.com Other Links Openkore History Legacy Changelog Openkore RoadMap Feature Requests and TODO Wiki and Feature Requests GitHub License This software is open source, licensed under the GNU General Public License, version 2. Basically, this means that you're free to use and allowed to modify and distribute this software. However, if you distribute modified versions, you MUST also distribute the source code. See http://www.gnu.org/licenses/gpl.html for the full license.

Production-Level-Deep-Learning
github
LLM Vibe Score0.619
Human Vibe Score0.8326638433689385
alirezadirMar 28, 2025

Production-Level-Deep-Learning

:bulb: A Guide to Production Level Deep Learning :clapper: :scroll: :ferry: 🇨🇳 Translation in Chinese.md) :label: NEW: Machine Learning Interviews :label: Note: This repo is under continous development, and all feedback and contribution are very welcome :blush: Deploying deep learning models in production can be challenging, as it is far beyond training models with good performance. Several distinct components need to be designed and developed in order to deploy a production level deep learning system (seen below): This repo aims to be an engineering guideline for building production-level deep learning systems which will be deployed in real world applications. The material presented here is borrowed from Full Stack Deep Learning Bootcamp (by Pieter Abbeel at UC Berkeley, Josh Tobin at OpenAI, and Sergey Karayev at Turnitin), TFX workshop by Robert Crowe, and Pipeline.ai's Advanced KubeFlow Meetup by Chris Fregly. Machine Learning Projects Fun :flushed: fact: 85% of AI projects fail. 1 Potential reasons include: Technically infeasible or poorly scoped Never make the leap to production Unclear success criteria (metrics) Poor team management ML Projects lifecycle Importance of understanding state of the art in your domain: Helps to understand what is possible Helps to know what to try next Mental Model for ML project The two important factors to consider when defining and prioritizing ML projects: High Impact: Complex parts of your pipeline Where "cheap prediction" is valuable Where automating complicated manual process is valuable Low Cost: Cost is driven by: Data availability Performance requirements: costs tend to scale super-linearly in the accuracy requirement Problem difficulty: Some of the hard problems include: unsupervised learning, reinforcement learning, and certain categories of supervised learning Full stack pipeline The following figure represents a high level overview of different components in a production level deep learning system: In the following, we will go through each module and recommend toolsets and frameworks as well as best practices from practitioners that fit each component. Data Management 1.1 Data Sources Supervised deep learning requires a lot of labeled data Labeling own data is costly! Here are some resources for data: Open source data (good to start with, but not an advantage) Data augmentation (a MUST for computer vision, an option for NLP) Synthetic data (almost always worth starting with, esp. in NLP) 1.2 Data Labeling Requires: separate software stack (labeling platforms), temporary labor, and QC Sources of labor for labeling: Crowdsourcing (Mechanical Turk): cheap and scalable, less reliable, needs QC Hiring own annotators: less QC needed, expensive, slow to scale Data labeling service companies: FigureEight Labeling platforms: Diffgram: Training Data Software (Computer Vision) Prodigy: An annotation tool powered by active learning (by developers of Spacy), text and image HIVE: AI as a Service platform for computer vision Supervisely: entire computer vision platform Labelbox: computer vision Scale AI data platform (computer vision & NLP) 1.3. Data Storage Data storage options: Object store: Store binary data (images, sound files, compressed texts) Amazon S3 Ceph Object Store Database: Store metadata (file paths, labels, user activity, etc). Postgres is the right choice for most of applications, with the best-in-class SQL and great support for unstructured JSON. Data Lake: to aggregate features which are not obtainable from database (e.g. logs) Amazon Redshift Feature Store: store, access, and share machine learning features (Feature extraction could be computationally expensive and nearly impossible to scale, hence re-using features by different models and teams is a key to high performance ML teams). FEAST (Google cloud, Open Source) Michelangelo Palette (Uber) Suggestion: At training time, copy data into a local or networked filesystem (NFS). 1 1.4. Data Versioning It's a "MUST" for deployed ML models: Deployed ML models are part code, part data. 1 No data versioning means no model versioning. Data versioning platforms: DVC: Open source version control system for ML projects Pachyderm: version control for data Dolt: a SQL database with Git-like version control for data and schema 1.5. Data Processing Training data for production models may come from different sources, including Stored data in db and object stores, log processing, and outputs of other classifiers*. There are dependencies between tasks, each needs to be kicked off after its dependencies are finished. For example, training on new log data, requires a preprocessing step before training. Makefiles are not scalable. "Workflow manager"s become pretty essential in this regard. Workflow orchestration: Luigi by Spotify Airflow by Airbnb: Dynamic, extensible, elegant, and scalable (the most widely used) DAG workflow Robust conditional execution: retry in case of failure Pusher supports docker images with tensorflow serving Whole workflow in a single .py file Development, Training, and Evaluation 2.1. Software engineering Winner language: Python Editors: Vim Emacs VS Code (Recommended by the author): Built-in git staging and diff, Lint code, open projects remotely through ssh Notebooks: Great as starting point of the projects, hard to scale (fun fact: Netflix’s Notebook-Driven Architecture is an exception, which is entirely based on nteract suites). nteract: a next-gen React-based UI for Jupyter notebooks Papermill: is an nteract library built for parameterizing, executing, and analyzing* Jupyter Notebooks. Commuter: another nteract project which provides a read-only display of notebooks (e.g. from S3 buckets). Streamlit: interactive data science tool with applets Compute recommendations 1: For individuals or startups*: Development: a 4x Turing-architecture PC Training/Evaluation: Use the same 4x GPU PC. When running many experiments, either buy shared servers or use cloud instances. For large companies:* Development: Buy a 4x Turing-architecture PC per ML scientist or let them use V100 instances Training/Evaluation: Use cloud instances with proper provisioning and handling of failures Cloud Providers: GCP: option to connect GPUs to any instance + has TPUs AWS: 2.2. Resource Management Allocating free resources to programs Resource management options: Old school cluster job scheduler ( e.g. Slurm workload manager ) Docker + Kubernetes Kubeflow Polyaxon (paid features) 2.3. DL Frameworks Unless having a good reason not to, use Tensorflow/Keras or PyTorch. 1 The following figure shows a comparison between different frameworks on how they stand for "developement" and "production"*. 2.4. Experiment management Development, training, and evaluation strategy: Always start simple Train a small model on a small batch. Only if it works, scale to larger data and models, and hyperparameter tuning! Experiment management tools: Tensorboard provides the visualization and tooling needed for ML experimentation Losswise (Monitoring for ML) Comet: lets you track code, experiments, and results on ML projects Weights & Biases: Record and visualize every detail of your research with easy collaboration MLFlow Tracking: for logging parameters, code versions, metrics, and output files as well as visualization of the results. Automatic experiment tracking with one line of code in python Side by side comparison of experiments Hyper parameter tuning Supports Kubernetes based jobs 2.5. Hyperparameter Tuning Approaches: Grid search Random search Bayesian Optimization HyperBand and Asynchronous Successive Halving Algorithm (ASHA) Population-based Training Platforms: RayTune: Ray Tune is a Python library for hyperparameter tuning at any scale (with a focus on deep learning and deep reinforcement learning). Supports any machine learning framework, including PyTorch, XGBoost, MXNet, and Keras. Katib: Kubernete's Native System for Hyperparameter Tuning and Neural Architecture Search, inspired by Google vizier and supports multiple ML/DL frameworks (e.g. TensorFlow, MXNet, and PyTorch). Hyperas: a simple wrapper around hyperopt for Keras, with a simple template notation to define hyper-parameter ranges to tune. SIGOPT: a scalable, enterprise-grade optimization platform Sweeps from [Weights & Biases] (https://www.wandb.com/): Parameters are not explicitly specified by a developer. Instead they are approximated and learned by a machine learning model. Keras Tuner: A hyperparameter tuner for Keras, specifically for tf.keras with TensorFlow 2.0. 2.6. Distributed Training Data parallelism: Use it when iteration time is too long (both tensorflow and PyTorch support) Ray Distributed Training Model parallelism: when model does not fit on a single GPU Other solutions: Horovod Troubleshooting [TBD] Testing and Deployment 4.1. Testing and CI/CD Machine Learning production software requires a more diverse set of test suites than traditional software: Unit and Integration Testing: Types of tests: Training system tests: testing training pipeline Validation tests: testing prediction system on validation set Functionality tests: testing prediction system on few important examples Continuous Integration: Running tests after each new code change pushed to the repo SaaS for continuous integration: Argo: Open source Kubernetes native workflow engine for orchestrating parallel jobs (incudes workflows, events, CI and CD). CircleCI: Language-Inclusive Support, Custom Environments, Flexible Resource Allocation, used by instacart, Lyft, and StackShare. Travis CI Buildkite: Fast and stable builds, Open source agent runs on almost any machine and architecture, Freedom to use your own tools and services Jenkins: Old school build system 4.2. Web Deployment Consists of a Prediction System and a Serving System Prediction System: Process input data, make predictions Serving System (Web server): Serve prediction with scale in mind Use REST API to serve prediction HTTP requests Calls the prediction system to respond Serving options: Deploy to VMs, scale by adding instances Deploy as containers, scale via orchestration Containers Docker Container Orchestration: Kubernetes (the most popular now) MESOS Marathon Deploy code as a "serverless function" Deploy via a model serving solution Model serving: Specialized web deployment for ML models Batches request for GPU inference Frameworks: Tensorflow serving MXNet Model server Clipper (Berkeley) SaaS solutions Seldon: serve and scale models built in any framework on Kubernetes Algorithmia Decision making: CPU or GPU? CPU inference: CPU inference is preferable if it meets the requirements. Scale by adding more servers, or going serverless. GPU inference: TF serving or Clipper Adaptive batching is useful (Bonus) Deploying Jupyter Notebooks: Kubeflow Fairing is a hybrid deployment package that let's you deploy your Jupyter notebook* codes! 4.5 Service Mesh and Traffic Routing Transition from monolithic applications towards a distributed microservice architecture could be challenging. A Service mesh (consisting of a network of microservices) reduces the complexity of such deployments, and eases the strain on development teams. Istio: a service mesh to ease creation of a network of deployed services with load balancing, service-to-service authentication, monitoring, with few or no code changes in service code. 4.4. Monitoring: Purpose of monitoring: Alerts for downtime, errors, and distribution shifts Catching service and data regressions Cloud providers solutions are decent Kiali:an observability console for Istio with service mesh configuration capabilities. It answers these questions: How are the microservices connected? How are they performing? Are we done? 4.5. Deploying on Embedded and Mobile Devices Main challenge: memory footprint and compute constraints Solutions: Quantization Reduced model size MobileNets Knowledge Distillation DistillBERT (for NLP) Embedded and Mobile Frameworks: Tensorflow Lite PyTorch Mobile Core ML ML Kit FRITZ OpenVINO Model Conversion: Open Neural Network Exchange (ONNX): open-source format for deep learning models 4.6. All-in-one solutions Tensorflow Extended (TFX) Michelangelo (Uber) Google Cloud AI Platform Amazon SageMaker Neptune FLOYD Paperspace Determined AI Domino data lab Tensorflow Extended (TFX) [TBD] Airflow and KubeFlow ML Pipelines [TBD] Other useful links: Lessons learned from building practical deep learning systems Machine Learning: The High Interest Credit Card of Technical Debt Contributing References: [1]: Full Stack Deep Learning Bootcamp, Nov 2019. [2]: Advanced KubeFlow Workshop by Pipeline.ai, 2019. [3]: TFX: Real World Machine Learning in Production

aima-python
github
LLM Vibe Score0.575
Human Vibe Score0.33114909407186394
aimacodeMar 28, 2025

aima-python

aima-python Python code for the book Artificial Intelligence: A Modern Approach. You can use this in conjunction with a course on AI, or for study on your own. We're looking for solid contributors to help. Updates for 4th Edition The 4th edition of the book as out now in 2020, and thus we are updating the code. All code here will reflect the 4th edition. Changes include: Move from Python 3.5 to 3.7. More emphasis on Jupyter (Ipython) notebooks. More projects using external packages (tensorflow, etc.). Structure of the Project When complete, this project will have Python implementations for all the pseudocode algorithms in the book, as well as tests and examples of use. For each major topic, such as search, we provide the following files: search.ipynb and search.py: Implementations of all the pseudocode algorithms, and necessary support functions/classes/data. The .py file is generated automatically from the .ipynb file; the idea is that it is easier to read the documentation in the .ipynb file. search_XX.ipynb: Notebooks that show how to use the code, broken out into various topics (the XX). tests/test_search.py: A lightweight test suite, using assert statements, designed for use with py.test, but also usable on their own. Python 3.7 and up The code for the 3rd edition was in Python 3.5; the current 4th edition code is in Python 3.7. It should also run in later versions, but does not run in Python 2. You can install Python or use a browser-based Python interpreter such as repl.it. You can run the code in an IDE, or from the command line with python -i filename.py where the -i option puts you in an interactive loop where you can run Python functions. All notebooks are available in a binder environment. Alternatively, visit jupyter.org for instructions on setting up your own Jupyter notebook environment. Features from Python 3.6 and 3.7 that we will be using for this version of the code: f-strings: all string formatting should be done with f'var = {var}', not with 'var = {}'.format(var) nor 'var = %s' % var. typing module: declare functions with type hints: def successors(state) -> List[State]:; that is, give type declarations, but omit them when it is obvious. I don't need to say state: State, but in another context it would make sense to say s: State. Underscores in numerics: write a million as 1000000 not as 1000000. dataclasses module: replace namedtuple with dataclass. [//]: (There is a sibling [aima-docker]https://github.com/rajatjain1997/aima-docker project that shows you how to use docker containers to run more complex problems in more complex software environments.) Installation Guide To download the repository: git clone https://github.com/aimacode/aima-python.git Then you need to install the basic dependencies to run the project on your system: You also need to fetch the datasets from the aima-data repository: Wait for the datasets to download, it may take a while. Once they are downloaded, you need to install pytest, so that you can run the test suite: pip install pytest Then to run the tests: py.test And you are good to go! Index of Algorithms Here is a table of algorithms, the figure, name of the algorithm in the book and in the repository, and the file where they are implemented in the repository. This chart was made for the third edition of the book and is being updated for the upcoming fourth edition. Empty implementations are a good place for contributors to look for an issue. The aima-pseudocode project describes all the algorithms from the book. An asterisk next to the file name denotes the algorithm is not fully implemented. Another great place for contributors to start is by adding tests and writing on the notebooks. You can see which algorithms have tests and notebook sections below. If the algorithm you want to work on is covered, don't worry! You can still add more tests and provide some examples of use in the notebook! | Figure | Name (in 3rd edition) | Name (in repository) | File | Tests | Notebook |:-------|:----------------------------------|:------------------------------|:--------------------------------|:-----|:---------| | 2 | Random-Vacuum-Agent | RandomVacuumAgent | [agents.py][agents] | Done | Included | | 2 | Model-Based-Vacuum-Agent | ModelBasedVacuumAgent | [agents.py][agents] | Done | Included | | 2.1 | Environment | Environment | [agents.py][agents] | Done | Included | | 2.1 | Agent | Agent | [agents.py][agents] | Done | Included | | 2.3 | Table-Driven-Vacuum-Agent | TableDrivenVacuumAgent | [agents.py][agents] | Done | Included | | 2.7 | Table-Driven-Agent | TableDrivenAgent | [agents.py][agents] | Done | Included | | 2.8 | Reflex-Vacuum-Agent | ReflexVacuumAgent | [agents.py][agents] | Done | Included | | 2.10 | Simple-Reflex-Agent | SimpleReflexAgent | [agents.py][agents] | Done | Included | | 2.12 | Model-Based-Reflex-Agent | ReflexAgentWithState | [agents.py][agents] | Done | Included | | 3 | Problem | Problem | [search.py][search] | Done | Included | | 3 | Node | Node | [search.py][search] | Done | Included | | 3 | Queue | Queue | [utils.py][utils] | Done | No Need | | 3.1 | Simple-Problem-Solving-Agent | SimpleProblemSolvingAgent | [search.py][search] | Done | Included | | 3.2 | Romania | romania | [search.py][search] | Done | Included | | 3.7 | Tree-Search | depth/breadthfirsttree_search | [search.py][search] | Done | Included | | 3.7 | Graph-Search | depth/breadthfirstgraph_search | [search.py][search] | Done | Included | | 3.11 | Breadth-First-Search | breadthfirstgraph_search | [search.py][search] | Done | Included | | 3.14 | Uniform-Cost-Search | uniformcostsearch | [search.py][search] | Done | Included | | 3.17 | Depth-Limited-Search | depthlimitedsearch | [search.py][search] | Done | Included | | 3.18 | Iterative-Deepening-Search | iterativedeepeningsearch | [search.py][search] | Done | Included | | 3.22 | Best-First-Search | bestfirstgraph_search | [search.py][search] | Done | Included | | 3.24 | A\*-Search | astar_search | [search.py][search] | Done | Included | | 3.26 | Recursive-Best-First-Search | recursivebestfirst_search | [search.py][search] | Done | Included | | 4.2 | Hill-Climbing | hill_climbing | [search.py][search] | Done | Included | | 4.5 | Simulated-Annealing | simulated_annealing | [search.py][search] | Done | Included | | 4.8 | Genetic-Algorithm | genetic_algorithm | [search.py][search] | Done | Included | | 4.11 | And-Or-Graph-Search | andorgraph_search | [search.py][search] | Done | Included | | 4.21 | Online-DFS-Agent | onlinedfsagent | [search.py][search] | Done | Included | | 4.24 | LRTA\*-Agent | LRTAStarAgent | [search.py][search] | Done | Included | | 5.3 | Minimax-Decision | minimax_decision | [games.py][games] | Done | Included | | 5.7 | Alpha-Beta-Search | alphabeta_search | [games.py][games] | Done | Included | | 6 | CSP | CSP | [csp.py][csp] | Done | Included | | 6.3 | AC-3 | AC3 | [csp.py][csp] | Done | Included | | 6.5 | Backtracking-Search | backtracking_search | [csp.py][csp] | Done | Included | | 6.8 | Min-Conflicts | min_conflicts | [csp.py][csp] | Done | Included | | 6.11 | Tree-CSP-Solver | treecspsolver | [csp.py][csp] | Done | Included | | 7 | KB | KB | [logic.py][logic] | Done | Included | | 7.1 | KB-Agent | KB_AgentProgram | [logic.py][logic] | Done | Included | | 7.7 | Propositional Logic Sentence | Expr | [utils.py][utils] | Done | Included | | 7.10 | TT-Entails | tt_entails | [logic.py][logic] | Done | Included | | 7.12 | PL-Resolution | pl_resolution | [logic.py][logic] | Done | Included | | 7.14 | Convert to CNF | to_cnf | [logic.py][logic] | Done | Included | | 7.15 | PL-FC-Entails? | plfcentails | [logic.py][logic] | Done | Included | | 7.17 | DPLL-Satisfiable? | dpll_satisfiable | [logic.py][logic] | Done | Included | | 7.18 | WalkSAT | WalkSAT | [logic.py][logic] | Done | Included | | 7.20 | Hybrid-Wumpus-Agent | HybridWumpusAgent | | | | | 7.22 | SATPlan | SAT_plan | [logic.py][logic] | Done | Included | | 9 | Subst | subst | [logic.py][logic] | Done | Included | | 9.1 | Unify | unify | [logic.py][logic] | Done | Included | | 9.3 | FOL-FC-Ask | folfcask | [logic.py][logic] | Done | Included | | 9.6 | FOL-BC-Ask | folbcask | [logic.py][logic] | Done | Included | | 10.1 | Air-Cargo-problem | air_cargo | [planning.py][planning] | Done | Included | | 10.2 | Spare-Tire-Problem | spare_tire | [planning.py][planning] | Done | Included | | 10.3 | Three-Block-Tower | threeblocktower | [planning.py][planning] | Done | Included | | 10.7 | Cake-Problem | havecakeandeatcake_too | [planning.py][planning] | Done | Included | | 10.9 | Graphplan | GraphPlan | [planning.py][planning] | Done | Included | | 10.13 | Partial-Order-Planner | PartialOrderPlanner | [planning.py][planning] | Done | Included | | 11.1 | Job-Shop-Problem-With-Resources | jobshopproblem | [planning.py][planning] | Done | Included | | 11.5 | Hierarchical-Search | hierarchical_search | [planning.py][planning] | Done | Included | | 11.8 | Angelic-Search | angelic_search | [planning.py][planning] | Done | Included | | 11.10 | Doubles-tennis | doubletennisproblem | [planning.py][planning] | Done | Included | | 13 | Discrete Probability Distribution | ProbDist | [probability.py][probability] | Done | Included | | 13.1 | DT-Agent | DTAgent | [probability.py][probability] | Done | Included | | 14.9 | Enumeration-Ask | enumeration_ask | [probability.py][probability] | Done | Included | | 14.11 | Elimination-Ask | elimination_ask | [probability.py][probability] | Done | Included | | 14.13 | Prior-Sample | prior_sample | [probability.py][probability] | Done | Included | | 14.14 | Rejection-Sampling | rejection_sampling | [probability.py][probability] | Done | Included | | 14.15 | Likelihood-Weighting | likelihood_weighting | [probability.py][probability] | Done | Included | | 14.16 | Gibbs-Ask | gibbs_ask | [probability.py][probability] | Done | Included | | 15.4 | Forward-Backward | forward_backward | [probability.py][probability] | Done | Included | | 15.6 | Fixed-Lag-Smoothing | fixedlagsmoothing | [probability.py][probability] | Done | Included | | 15.17 | Particle-Filtering | particle_filtering | [probability.py][probability] | Done | Included | | 16.9 | Information-Gathering-Agent | InformationGatheringAgent | [probability.py][probability] | Done | Included | | 17.4 | Value-Iteration | value_iteration | [mdp.py][mdp] | Done | Included | | 17.7 | Policy-Iteration | policy_iteration | [mdp.py][mdp] | Done | Included | | 17.9 | POMDP-Value-Iteration | pomdpvalueiteration | [mdp.py][mdp] | Done | Included | | 18.5 | Decision-Tree-Learning | DecisionTreeLearner | [learning.py][learning] | Done | Included | | 18.8 | Cross-Validation | cross_validation | [learning.py][learning]\* | | | | 18.11 | Decision-List-Learning | DecisionListLearner | [learning.py][learning]\* | | | | 18.24 | Back-Prop-Learning | BackPropagationLearner | [learning.py][learning] | Done | Included | | 18.34 | AdaBoost | AdaBoost | [learning.py][learning] | Done | Included | | 19.2 | Current-Best-Learning | currentbestlearning | knowledge.py | Done | Included | | 19.3 | Version-Space-Learning | versionspacelearning | knowledge.py | Done | Included | | 19.8 | Minimal-Consistent-Det | minimalconsistentdet | knowledge.py | Done | Included | | 19.12 | FOIL | FOIL_container | knowledge.py | Done | Included | | 21.2 | Passive-ADP-Agent | PassiveADPAgent | [rl.py][rl] | Done | Included | | 21.4 | Passive-TD-Agent | PassiveTDAgent | [rl.py][rl] | Done | Included | | 21.8 | Q-Learning-Agent | QLearningAgent | [rl.py][rl] | Done | Included | | 22.1 | HITS | HITS | [nlp.py][nlp] | Done | Included | | 23 | Chart-Parse | Chart | [nlp.py][nlp] | Done | Included | | 23.5 | CYK-Parse | CYK_parse | [nlp.py][nlp] | Done | Included | | 25.9 | Monte-Carlo-Localization | montecarlolocalization | [probability.py][probability] | Done | Included | Index of data structures Here is a table of the implemented data structures, the figure, name of the implementation in the repository, and the file where they are implemented. | Figure | Name (in repository) | File | |:-------|:--------------------------------|:--------------------------| | 3.2 | romania_map | [search.py][search] | | 4.9 | vacumm_world | [search.py][search] | | 4.23 | onedimstate_space | [search.py][search] | | 6.1 | australia_map | [search.py][search] | | 7.13 | wumpusworldinference | [logic.py][logic] | | 7.16 | hornclausesKB | [logic.py][logic] | | 17.1 | sequentialdecisionenvironment | [mdp.py][mdp] | | 18.2 | waitingdecisiontree | [learning.py][learning] | Acknowledgements Many thanks for contributions over the years. I got bug reports, corrected code, and other support from Darius Bacon, Phil Ruggera, Peng Shao, Amit Patil, Ted Nienstedt, Jim Martin, Ben Catanzariti, and others. Now that the project is on GitHub, you can see the contributors who are doing a great job of actively improving the project. Many thanks to all contributors, especially @darius, @SnShine, @reachtarunhere, @antmarakis, @Chipe1, @ad71 and @MariannaSpyrakou. [agents]:../master/agents.py [csp]:../master/csp.py [games]:../master/games.py [grid]:../master/grid.py [knowledge]:../master/knowledge.py [learning]:../master/learning.py [logic]:../master/logic.py [mdp]:../master/mdp.py [nlp]:../master/nlp.py [planning]:../master/planning.py [probability]:../master/probability.py [rl]:../master/rl.py [search]:../master/search.py [utils]:../master/utils.py [text]:../master/text.py

rpaframework
github
LLM Vibe Score0.527
Human Vibe Score0.11594284776995417
robocorpMar 28, 2025

rpaframework

RPA Framework ============= REQUEST for user input! We are looking at improving our keyword usage to cover situations where developer might be struggling to smoothly write task for a Robot. Describe the situation where your implementation speed slows due to the lack of easier syntax. Comment HERE _ .. contents:: Table of Contents :local: :depth: 1 .. include-docs-readme Introduction RPA Framework is a collection of open-source libraries and tools for Robotic Process Automation (RPA), and it is designed to be used with both Robot Framework and Python. The goal is to offer well-documented and actively maintained core libraries for Software Robot Developers. Learn more about RPA at Robocorp Documentation_. The project is: 100% Open Source Sponsored by Robocorp_ Optimized for Robocorp Control Room and Developer Tools Accepting external contributions .. _Robot Framework: https://robotframework.org .. _Robot Framework Foundation: https://robotframework.org/foundation/ .. _Python: https://www.python.org/ .. _Robocorp: https://robocorp.com .. _Robocorp Documentation: https://robocorp.com/docs-robot-framework .. _Control Room: https://robocorp.com/docs/control-room .. _Developer Tools: https://robocorp.com/downloads .. _Installing Python Packages: https://robocorp.com/docs/setup/installing-python-package-dependencies Links ^^^^^ Homepage: `_ Documentation: _ PyPI: _ Release notes: _ RSS feed: _ .. image:: https://img.shields.io/github/actions/workflow/status/robocorp/rpaframework/main.yaml?style=for-the-badge :target: https://github.com/robocorp/rpaframework/actions/workflows/main.yaml :alt: Status .. image:: https://img.shields.io/pypi/dw/rpaframework?style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework :alt: rpaframework .. image:: https://img.shields.io/pypi/l/rpaframework.svg?style=for-the-badge&color=brightgreen :target: http://www.apache.org/licenses/LICENSE-2.0.html :alt: License Packages .. image:: https://img.shields.io/pypi/v/rpaframework.svg?label=rpaframework&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework :alt: rpaframework latest version .. image:: https://img.shields.io/pypi/v/rpaframework-assistant.svg?label=rpaframework-assistant&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework-assistant :alt: rpaframework-assistant latest version .. image:: https://img.shields.io/pypi/v/rpaframework-aws.svg?label=rpaframework-aws&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework-aws :alt: rpaframework-aws latest version .. image:: https://img.shields.io/pypi/v/rpaframework-core.svg?label=rpaframework-core&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework-core :alt: rpaframework-core latest version .. image:: https://img.shields.io/pypi/v/rpaframework-google.svg?label=rpaframework-google&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-google :alt: rpaframework-google latest version .. image:: https://img.shields.io/pypi/v/rpaframework-hubspot.svg?label=rpaframework-hubspot&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-hubspot :alt: rpaframework-hubspot latest version .. image:: https://img.shields.io/pypi/v/rpaframework-openai.svg?label=rpaframework-openai&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-openai :alt: rpaframework-openai latest version .. image:: https://img.shields.io/pypi/v/rpaframework-pdf.svg?label=rpaframework-pdf&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-pdf :alt: rpaframework-pdf latest version .. image:: https://img.shields.io/pypi/v/rpaframework-recognition.svg?label=rpaframework-recognition&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-recognition :alt: rpaframework-recognition latest version .. image:: https://img.shields.io/pypi/v/rpaframework-windows.svg?label=rpaframework-windows&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-windows :alt: rpaframework-windows latest version From the above packages, rpaframework-core and rpaframework-recognition are support packages, which alone do not contain any libraries. Libraries The RPA Framework project currently includes the following libraries: The x in the PACKAGE column means that library is included in the rpaframework package and for example. x,pdf means that RPA.PDF library is provided in both the rpaframework and rpaframework-pdf packages. +----------------------------+-------------------------------------------------------+------------------------+ | LIBRARY NAME | DESCRIPTION | PACKAGE | +----------------------------+-------------------------------------------------------+------------------------+ | Archive_ | Archiving TAR and ZIP files | x | +----------------------------+-------------------------------------------------------+------------------------+ | Assistant_ | Display information to a user and request input. | assistant | +----------------------------+-------------------------------------------------------+------------------------+ | Browser.Selenium_ | Control browsers and automate the web | x | +----------------------------+-------------------------------------------------------+------------------------+ | Browser.Playwright_ | Newer way to control browsers | special (more below) | +----------------------------+-------------------------------------------------------+------------------------+ | Calendar_ | For date and time manipulations | x | +----------------------------+-------------------------------------------------------+------------------------+ | Cloud.AWS_ | Use Amazon AWS services | x,aws | +----------------------------+-------------------------------------------------------+------------------------+ | Cloud.Azure_ | Use Microsoft Azure services | x | +----------------------------+-------------------------------------------------------+------------------------+ | Cloud.Google_ | Use Google Cloud services | google | +----------------------------+-------------------------------------------------------+------------------------+ | Crypto_ | Common hashing and encryption operations | x | +----------------------------+-------------------------------------------------------+------------------------+ | Database_ | Interact with databases | x | +----------------------------+-------------------------------------------------------+------------------------+ | Desktop_ | Cross-platform desktop automation | x | +----------------------------+-------------------------------------------------------+------------------------+ | Desktop.Clipboard_ | Interact with the system clipboard | x | +----------------------------+-------------------------------------------------------+------------------------+ | Desktop.OperatingSystem_ | Read OS information and manipulate processes | x | +----------------------------+-------------------------------------------------------+------------------------+ | DocumentAI_ | Intelligent Document Processing wrapper | x | +----------------------------+-------------------------------------------------------+------------------------+ | DocumentAI.Base64AI_ | Intelligent Document Processing service | x | +----------------------------+-------------------------------------------------------+------------------------+ | DocumentAI.Nanonets_ | Intelligent Document Processing service | x | +----------------------------+-------------------------------------------------------+------------------------+ | Email.Exchange_ | E-Mail operations (Exchange protocol) | x | +----------------------------+-------------------------------------------------------+------------------------+ | Email.ImapSmtp_ | E-Mail operations (IMAP & SMTP) | x | +----------------------------+-------------------------------------------------------+------------------------+ | Excel.Application_ | Control the Excel desktop application | x | +----------------------------+-------------------------------------------------------+------------------------+ | Excel.Files_ | Manipulate Excel files directly | x | +----------------------------+-------------------------------------------------------+------------------------+ | FileSystem_ | Read and manipulate files and paths | x | +----------------------------+-------------------------------------------------------+------------------------+ | FTP_ | Interact with FTP servers | x | +----------------------------+-------------------------------------------------------+------------------------+ | HTTP_ | Interact directly with web APIs | x | +----------------------------+-------------------------------------------------------+------------------------+ | Hubspot_ | Access HubSpot CRM data objects | hubspot | +----------------------------+-------------------------------------------------------+------------------------+ | Images_ | Manipulate images | x | +----------------------------+-------------------------------------------------------+------------------------+ | JavaAccessBridge_ | Control Java applications | x | +----------------------------+-------------------------------------------------------+------------------------+ | JSON_ | Manipulate JSON objects | x | +----------------------------+-------------------------------------------------------+------------------------+ | MFA_ | Authenticate using one-time passwords (OTP) & OAuth2 | x | +----------------------------+-------------------------------------------------------+------------------------+ | Notifier_ | Notify messages using different services | x | +----------------------------+-------------------------------------------------------+------------------------+ | OpenAI_ | Artificial Intelligence service | openai | +----------------------------+-------------------------------------------------------+------------------------+ | Outlook.Application_ | Control the Outlook desktop application | x | +----------------------------+-------------------------------------------------------+------------------------+ | PDF_ | Read and create PDF documents | x,pdf | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.Process_ | Use the Robocorp Process API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.WorkItems_ | Use the Robocorp Work Items API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.Vault_ | Use the Robocorp Secrets API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.Storage_ | Use the Robocorp Asset Storage API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Salesforce_ | Salesforce operations | x | +----------------------------+-------------------------------------------------------+------------------------+ | SAP_ | Control SAP GUI desktop client | x | +----------------------------+-------------------------------------------------------+------------------------+ | Smartsheet_ | Access Smartsheet sheets | x | +----------------------------+-------------------------------------------------------+------------------------+ | Tables_ | Manipulate, sort, and filter tabular data | x | +----------------------------+-------------------------------------------------------+------------------------+ | Tasks_ | Control task execution | x | +----------------------------+-------------------------------------------------------+------------------------+ | Twitter_ | Twitter API interface | x | +----------------------------+-------------------------------------------------------+------------------------+ | Windows_ | Alternative library for Windows automation | x,windows | +----------------------------+-------------------------------------------------------+------------------------+ | Word.Application_ | Control the Word desktop application | x | +----------------------------+-------------------------------------------------------+------------------------+ .. _Archive: https://rpaframework.org/libraries/archive/ .. _Assistant: https://rpaframework.org/libraries/assistant/ .. Browser.Playwright: https://rpaframework.org/libraries/browserplaywright/ .. Browser.Selenium: https://rpaframework.org/libraries/browserselenium/ .. _Calendar: https://rpaframework.org/libraries/calendar/ .. Cloud.AWS: https://rpaframework.org/libraries/cloudaws/ .. Cloud.Azure: https://rpaframework.org/libraries/cloudazure/ .. Cloud.Google: https://rpaframework.org/libraries/cloudgoogle/ .. _Crypto: https://rpaframework.org/libraries/crypto/ .. _Database: https://rpaframework.org/libraries/database/ .. _Desktop: https://rpaframework.org/libraries/desktop/ .. Desktop.Clipboard: https://rpaframework.org/libraries/desktopclipboard/ .. Desktop.Operatingsystem: https://rpaframework.org/libraries/desktopoperatingsystem/ .. _DocumentAI: https://rpaframework.org/libraries/documentai .. DocumentAI.Base64AI: https://rpaframework.org/libraries/documentaibase64ai/ .. DocumentAI.Nanonets: https://rpaframework.org/libraries/documentainanonets/ .. Email.Exchange: https://rpaframework.org/libraries/emailexchange/ .. Email.ImapSmtp: https://rpaframework.org/libraries/emailimapsmtp/ .. Excel.Application: https://rpaframework.org/libraries/excelapplication/ .. Excel.Files: https://rpaframework.org/libraries/excelfiles/ .. _FileSystem: https://rpaframework.org/libraries/filesystem/ .. _FTP: https://rpaframework.org/libraries/ftp/ .. _HTTP: https://rpaframework.org/libraries/http/ .. _Hubspot: https://rpaframework.org/libraries/hubspot/ .. _Images: https://rpaframework.org/libraries/images/ .. _JavaAccessBridge: https://rpaframework.org/libraries/javaaccessbridge/ .. _JSON: https://rpaframework.org/libraries/json/ .. _MFA: https://rpaframework.org/libraries/mfa/ .. _Notifier: https://rpaframework.org/libraries/notifier/ .. _OpenAI: https://rpaframework.org/libraries/openai/ .. Outlook.Application: https://rpaframework.org/libraries/outlookapplication/ .. _PDF: https://rpaframework.org/libraries/pdf/ .. Robocorp.Process: https://rpaframework.org/libraries/robocorpprocess/ .. Robocorp.WorkItems: https://rpaframework.org/libraries/robocorpworkitems/ .. Robocorp.Vault: https://rpaframework.org/libraries/robocorpvault/ .. Robocorp.Storage: https://rpaframework.org/libraries/robocorpstorage/ .. _Salesforce: https://rpaframework.org/libraries/salesforce/ .. _SAP: https://rpaframework.org/libraries/sap/ .. _Smartsheet: https://rpaframework.org/libraries/smartsheet/ .. _Tables: https://rpaframework.org/libraries/tables/ .. _Tasks: https://rpaframework.org/libraries/tasks/ .. _Twitter: https://rpaframework.org/libraries/twitter/ .. _Windows: https://rpaframework.org/libraries/windows/ .. Word.Application: https://rpaframework.org/libraries/wordapplication/ Installation of RPA.Browser.Playwright The RPA.Browser.Playwright at the moment requires special installation, because of the package size and the post install step it needs to be fully installed. Minimum required conda.yaml to install Playwright: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 nodejs=22.9.0 pip=24.0 pip: robotframework-browser==18.8.1 rpaframework==28.6.3 rccPostInstall: rfbrowser init Installation Learn about installing Python packages at Installing Python Packages_. Default installation method with Robocorp Developer Tools_ using conda.yaml: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 pip=24.0 pip: rpaframework==28.6.3 To install all extra packages (including Playwright dependencies), you can use: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 tesseract=5.4.1 nodejs=22.9.0 pip=24.0 pip: robotframework-browser==18.8.1 rpaframework==28.6.3 rpaframework-aws==5.3.3 rpaframework-google==9.0.2 rpaframework-recognition==5.2.5 rccPostInstall: rfbrowser init Separate installation of AWS, PDF and Windows libraries without the main rpaframework: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 pip=24.0 pip: rpaframework-aws==5.3.3 included in the rpaframework as an extra rpaframework-pdf==7.3.3 included in the rpaframework by default rpaframework-windows==7.5.2 included in the rpaframework by default Installation method with pip using Python venv_: .. code-block:: shell python -m venv .venv source .venv/bin/activate pip install rpaframework .. note:: Python 3.8 or higher is required Example After installation the libraries can be directly imported inside Robot Framework_: .. code:: robotframework Settings Library RPA.Browser.Selenium Tasks Login as user Open available browser https://example.com Input text id:user-name ${USERNAME} Input text id:password ${PASSWORD} The libraries are also available inside Python_: .. code:: python from RPA.Browser.Selenium import Selenium lib = Selenium() lib.openavailablebrowser("https://example.com") lib.input_text("id:user-name", username) lib.input_text("id:password", password) Support and contact rpaframework.org _ for library documentation Robocorp Documentation_ for guides and tutorials #rpaframework channel in Robot Framework Slack_ if you have open questions or want to contribute Communicate with your fellow Software Robot Developers and Robocorp experts at Robocorp Developers Slack_ .. _Robot Framework Slack: https://robotframework-slack-invite.herokuapp.com/ .. _Robocorp Developers Slack: https://robocorp-developers.slack.com Contributing Found a bug? Missing a critical feature? Interested in contributing? Head over to the Contribution guide _ to see where to get started. Development Repository development is Python_ based and requires at minimum Python version 3.8+ installed on the development machine. The default Python version used in the Robocorp Robot template is 3.10.14 so it is a good choice for the version to install. Not recommended versions are 3.7.6 and 3.8.1, because they have issues with some of the dependencies related to rpaframework. At the time the newer Python versions starting from 3.12 are also not recommended, because some of the dependencies might cause issues. Repository development tooling is based on poetry and invoke. Poetry is the underlying tool used for compiling, building and running the package. Invoke is used for scripting purposes, for example for linting, testing and publishing tasks. Before writing any code, please read and acknowledge our extensive Dev Guide_. .. _Dev Guide: https://github.com/robocorp/rpaframework/blob/master/docs/source/contributing/development.md First steps to start developing: initial poetry configuration .. code:: shell poetry config virtualenvs.path null poetry config virtualenvs.in-project true poetry config repositories.devpi "https://devpi.robocorp.cloud/ci/test" git clone the repository #. create a new Git branch or switch to correct branch or stay in master branch some branch naming conventions feature/name-of-feature, hotfix/name-of-the-issue, release/number-of-release #. poetry install which install package with its dependencies into the .venv directory of the package, for example packages/main/.venv #. if testing against Robocorp Robot which is using devdata/env.json set environment variables or poetry build and use resulting .whl file (in the dist/ directory) in the Robot conda.yaml or poetry build and push resulting .whl file (in the dist/ directory) into a repository and use raw url to include it in the Robot conda.yaml another possibility for Robocorp internal development is to use Robocorp devpi instance, by poetry publish --ci and point conda.yaml to use rpaframework version in devpi #. poetry run python -m robot common ROBOT_ARGS from Robocorp Robot template: --report NONE --outputdir output --logtitle "Task log" #. poetry run python #. invoke lint to make sure that code formatting is according to rpaframework repository guidelines. It is possible and likely that Github action will fail the if developer has not linted the code changes. Code formatting is based on black and flake8 and those are run with the invoke lint. #. the library documentation can be created in the repository root (so called "meta" package level). The documentation is built by the docgen tools using the locally installed version of the project, local changes for the main package will be reflected each time you generate the docs, but if you want to see local changes for optional packages, you must utilize invoke install-local --package using the appropriate package name (e.g., rpaframework-aws). This will reinstall that package as a local editable version instead of from PyPI. Multiple such packages can be added by repeating the use of the --package option. In order to reset this, use invoke install --reset. poetry update and/or invoke install-local --package make docs open docs/build/html/index.html with the browser to view the changes or execute make local and navigate to localhost:8000 to view docs as a live local webpage. .. code-block:: toml Before [tool.poetry.dependencies] python = "^3.8" rpaframework = { path = "packages/main", extras = ["cv", "playwright", "aws"] } rpaframework-google = "^4.0.0" rpaframework-windows = "^4.0.0" After [tool.poetry.dependencies] python = "^3.8" rpaframework = { path = "packages/main", extras = ["cv", "playwright"] } rpaframework-aws = { path = "packages/aws" } rpaframework-google = "^4.0.0" rpaframework-windows = "^4.0.0" #. invoke test (this will run both Python unittests and robotframework tests defined in the packages tests/ directory) to run specific Python test: poetry run pytest path/to/test.py::test_function to run specific Robotframework test: inv testrobot -r -t #. git commit changes #. git push changes to remote #. create pull request from the branch describing changes included in the description #. update docs/source/releasenotes.rst with changes (commit and push) Packaging and publishing are done after changes have been merged into master branch. All the following steps should be done within master branch. #. git pull latest changes into master branch #. in the package directory containing changes execute invoke lint and invoke test #. update pyproject.toml with new version according to semantic versioning #. update docs/source/releasenotes.rst with changes #. in the repository root (so called "meta" package level) run command poetry update #. git commit changed poetry.lock files (on meta and target package level), releasenotes.rst and pyproject.toml with message "PACKAGE. version x.y.z" #. git push #. invoke publish after Github action on master branch is all green Some recommended tools for development Visual Studio Code_ as a code editor with following extensions: Sema4.ai_ Robot Framework Language Server_ GitLens_ Python extension_ GitHub Desktop_ will make version management less prone to errors .. _poetry: https://python-poetry.org .. _invoke: https://www.pyinvoke.org .. _Visual Studio Code: https://code.visualstudio.com .. _GitHub Desktop: https://desktop.github.com .. _Sema4.ai: https://marketplace.visualstudio.com/items?itemName=sema4ai.sema4ai .. _Robot Framework Language Server: https://marketplace.visualstudio.com/items?itemName=robocorp.robotframework-lsp .. _GitLens: https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens .. _Python extension: https://marketplace.visualstudio.com/items?itemName=ms-python.python .. _black: https://pypi.org/project/black/ .. _flake8: https://pypi.org/project/flake8/ .. _venv: https://docs.python.org/3/library/venv.html License This project is open-source and licensed under the terms of the Apache License 2.0 `_.

awesome-quantum-machine-learning
github
LLM Vibe Score0.64
Human Vibe Score1
krishnakumarsekarMar 27, 2025

awesome-quantum-machine-learning

Awesome Quantum Machine Learning A curated list of awesome quantum machine learning algorithms,study materials,libraries and software (by language). Table of Contents INTRODUCTION Why Quantum Machine Learning? BASICS What is Quantum Mechanics? What is Quantum Computing? What is Topological Quantum Computing? Quantum Computing vs Classical Computing QUANTUM COMPUTING Atom Structure Photon wave Electron Fluctuation or spin States SuperPosition SuperPosition specific for machine learning(Quantum Walks) Classical Bit Quantum Bit or Qubit or Qbit Basic Gates in Quantum Computing Quantum Diode Quantum Transistor Quantum Processor Quantum Registery QRAM Quantum Entanglement QUANTUM COMPUTING MACHINE LEARNING BRIDGE Complex Numbers Tensors Tensors Network Oracle Hadamard transform Hilbert Space eigenvalues and eigenvectors Schr¨odinger Operators Quantum lambda calculus Quantum Amplitute Phase Qubits Encode and Decode convert classical bit to qubit Quantum Dirac and Kets Quantum Complexity Arbitrary State Generation QUANTUM ALGORITHMS Quantum Fourier Transform Variational-Quantum-Eigensolver Grovers Algorithm Shor's algorithm Hamiltonian Oracle Model Bernstein-Vazirani Algorithm Simon’s Algorithm Deutsch-Jozsa Algorithm Gradient Descent Phase Estimation Haar Tansform Quantum Ridgelet Transform Quantum NP Problem QUANTUM MACHINE LEARNING ALGORITHMS Quantum K-Nearest Neighbour Quantum K-Means Quantum Fuzzy C-Means Quantum Support Vector Machine Quantum Genetic Algorithm Quantum Hidden Morkov Models Quantum state classification with Bayesian methods Quantum Ant Colony Optimization Quantum Cellular Automata Quantum Classification using Principle Component Analysis Quantum Inspired Evolutionary Algorithm Quantum Approximate Optimization Algorithm Quantum Elephant Herding Optimization Quantum-behaved Particle Swarm Optimization Quantum Annealing Expectation-Maximization QAUNTUM NEURAL NETWORK Quantum perceptrons Qurons Quantum Auto Encoder Quantum Annealing Photonic Implementation of Quantum Neural Network Quantum Feed Forward Neural Network Quantum Boltzman Neural Network Quantum Neural Net Weight Storage Quantum Upside Down Neural Net Quantum Hamiltonian Neural Net QANN QPN SAL Quantum Hamiltonian Learning Compressed Quantum Hamiltonian Learning QAUNTUM STATISTICAL DATA ANALYSIS Quantum Probability Theory Kolmogorovian Theory Quantum Measurement Problem Intuitionistic Logic Heyting Algebra Quantum Filtering Paradoxes Quantum Stochastic Process Double Negation Quantum Stochastic Calculus Hamiltonian Calculus Quantum Ito's Formula Quantum Stochastic Differential Equations(QSDE) Quantum Stochastic Integration Itō Integral Quasiprobability Distributions Quantum Wiener Processes Quantum Statistical Ensemble Quantum Density Operator or Density Matrix Gibbs Canonical Ensemble Quantum Mean Quantum Variance Envariance Polynomial Optimization Quadratic Unconstrained Binary Optimization Quantum Gradient Descent Quantum Based Newton's Method for Constrained Optimization Quantum Based Newton's Method for UnConstrained Optimization Quantum Ensemble Quantum Topology Quantum Topological Data Analysis Quantum Bayesian Hypothesis Quantum Statistical Decision Theory Quantum Minimax Theorem Quantum Hunt-Stein Theorem Quantum Locally Asymptotic Normality Quantum Ising Model Quantum Metropolis Sampling Quantum Monte Carlo Approximation Quantum Bootstrapping Quantum Bootstrap Aggregation Quantum Decision Tree Classifier Quantum Outlier Detection Cholesky-Decomposition for Quantum Chemistry Quantum Statistical Inference Asymptotic Quantum Statistical Inference Quantum Gaussian Mixture Modal Quantum t-design Quantum Central Limit Theorem Quantum Hypothesis Testing Quantum Chi-squared and Goodness of Fit Testing Quantum Estimation Theory Quantum Way of Linear Regression Asymptotic Properties of Quantum Outlier Detection in Quantum Concepts QAUNTUM ARTIFICIAL INTELLIGENCE Heuristic Quantum Mechanics Consistent Quantum Reasoning Quantum Reinforcement Learning QAUNTUM COMPUTER VISION QUANTUM PROGRAMMING LANGUAGES , TOOLs and SOFTWARES ALL QUANTUM ALGORITHMS SOURCE CODES , GITHUBS QUANTUM HOT TOPICS Quantum Cognition Quantum Camera Quantum Mathematics Quantum Information Processing Quantum Image Processing Quantum Cryptography Quantum Elastic Search Quantum DNA Computing Adiabetic Quantum Computing Topological Big Data Anlytics using Quantum Hamiltonian Time Based Quantum Computing Deep Quantum Learning Quantum Tunneling Quantum Entanglment Quantum Eigen Spectrum Quantum Dots Quantum elctro dynamics Quantum teleportation Quantum Supremacy Quantum Zeno Effect Quantum Cohomology Quantum Chromodynamics Quantum Darwinism Quantum Coherence Quantum Decoherence Topological Quantum Computing Topological Quantum Field Theory Quantum Knots Topological Entanglment Boson Sampling Quantum Convolutional Code Stabilizer Code Quantum Chaos Quantum Game Theory Quantum Channel Tensor Space Theory Quantum Leap Quantum Mechanics for Time Travel Quantum Secured Block Chain Quantum Internet Quantum Optical Network Quantum Interference Quantum Optical Network Quantum Operating System Electron Fractionalization Flip-Flop Quantum Computer Quantum Information with Gaussian States Quantum Anomaly Detection Distributed Secure Quantum Machine Learning Decentralized Quantum Machine Learning Artificial Agents for Quantum Designs Light Based Quantum Chips for AI Training QUANTUM STATE PREPARATION ALGORITHM FOR MACHINE LEARNING Pure Quantum State Product State Matrix Product State Greenberger–Horne–Zeilinger State W state AKLT model Majumdar–Ghosh Model Multistate Landau–Zener Models Projected entangled-pair States Infinite Projected entangled-pair States Corner Transfer Matrix Method Tensor-entanglement Renormalization Tree Tensor Network for Supervised Learning QUANTUM MACHINE LEARNING VS DEEP LEARNING QUANTUM MEETUPS QUANTUM GOOGLE GROUPS QUANTUM BASED COMPANIES QUANTUM LINKEDLIN QUANTUM BASED DEGREES CONSOLIDATED QUANTUM ML BOOKS CONSOLIDATED QUANTUM ML VIDEOS CONSOLIDATED QUANTUM ML Reserach Papers CONSOLIDATED QUANTUM ML Reserach Scientist RECENT QUANTUM UPDATES FORUM ,PAGES AND NEWSLETTER INTRODUCTION Why Quantum Machine Learning? Machine Learning(ML) is just a term in recent days but the work effort start from 18th century. What is Machine Learning ? , In Simple word the answer is making the computer or application to learn themselves . So its totally related with computing fields like computer science and IT ? ,The answer is not true . ML is a common platform which is mingled in all the aspects of the life from agriculture to mechanics . Computing is a key component to use ML easily and effectively . To be more clear ,Who is the mother of ML ?, As no option Mathematics is the mother of ML . The world tremendous invention complex numbers given birth to this field . Applying mathematics to the real life problem always gives a solution . From Neural Network to the complex DNA is running under some specific mathematical formulas and theorems. As computing technology growing faster and faster mathematics entered into this field and makes the solution via computing to the real world . In the computing technology timeline once a certain achievements reached peoples interested to use advanced mathematical ideas such as complex numbers ,eigen etc and its the kick start for the ML field such as Artificial Neural Network ,DNA Computing etc. Now the main question, why this field is getting boomed now a days ? , From the business perspective , 8-10 Years before during the kick start time for ML ,the big barrier is to merge mathematics into computing field . people knows well in computing has no idea on mathematics and research mathematician has no idea on what is computing . The education as well as the Job Opportunities is like that in that time . Even if a person tried to study both then the business value for making a product be not good. Then the top product companies like Google ,IBM ,Microsoft decided to form a team with mathematician ,a physician and a computer science person to come up with various ideas in this field . Success of this team made some wonderful products and they started by providing cloud services using this product . Now we are in this stage. So what's next ? , As mathematics reached the level of time travel concepts but the computing is still running under classical mechanics . the companies understood, the computing field must have a change from classical to quantum, and they started working on the big Quantum computing field, and the market named this field as Quantum Information Science .The kick start is from Google and IBM with the Quantum Computing processor (D-Wave) for making Quantum Neural Network .The field of Quantum Computer Science and Quantum Information Science will do a big change in AI in the next 10 years. Waiting to see that........... .(google, ibm). References D-Wave - Owner of a quantum processor Google - Quantum AI Lab IBM - Quantum Computer Lab Quora - Question Regarding future of quantum AI NASA - NASA Quantum Works Youtube - Google Video of a Quantum Processor external-link - MIT Review microsoft new product - Newly Launched Microsoft Quantum Language and Development Kit microsoft - Microsoft Quantum Related Works Google2 - Google Quantum Machine Learning Blog BBC - About Google Quantum Supremacy,IBM Quantum Computer and Microsoft Q Google Quantum Supremacy - Latest 2019 Google Quantum Supremacy Achievement IBM Quantum Supremacy - IBM Talk on Quantum Supremacy as a Primer VICE on the fight - IBM Message on Google Quantum Supremacy IBM Zurich Quantum Safe Cryptography - An interesting startup to replace all our Certificate Authority Via Cloud and IBM Q BASICS What is Quantum Mechanics? In a single line study of an electron moved out of the atom then its classical mechanic ,vibrates inside the atom its quantum mechanics WIKIPEDIA - Basic History and outline LIVESCIENCE. - A survey YOUTUBE - Simple Animation Video Explanining Great. What is Quantum Computing? A way of parallel execution of multiple processess in a same time using qubit ,It reduces the computation time and size of the processor probably in neuro size WIKIPEDIA - Basic History and outline WEBOPEDIA. - A survey YOUTUBE - Simple Animation Video Explanining Great. Quantum Computing vs Classical Computing LINK - Basic outline Quantum Computing Atom Structure one line : Electron Orbiting around the nucleous in an eliptical format YOUTUBE - A nice animation video about the basic atom structure Photon Wave one line : Light nornmally called as wave transmitted as photons as similar as atoms in solid particles YOUTUBE - A nice animation video about the basic photon 1 YOUTUBE - A nice animation video about the basic photon 2 Electron Fluctuation or spin one line : When a laser light collide with solid particles the electrons of the atom will get spin between the orbitary layers of the atom ) YOUTUBE - A nice animation video about the basic Electron Spin 1 YOUTUBE - A nice animation video about the basic Electron Spin 2 YOUTUBE - A nice animation video about the basic Electron Spin 3 States one line : Put a point on the spinning electron ,if the point is in the top then state 1 and its in bottom state 0 YOUTUBE - A nice animation video about the Quantum States SuperPosition two line : During the spin of the electron the point may be in the middle of upper and lower position, So an effective decision needs to take on the point location either 0 or 1 . Better option to analyse it along with other electrons using probability and is called superposition YOUTUBE - A nice animation video about the Quantum Superposition SuperPosition specific for machine learning(Quantum Walks) one line : As due to computational complexity ,quantum computing only consider superposition between limited electrons ,In case to merge more than one set quantum walk be the idea YOUTUBE - A nice video about the Quantum Walks Classical Bits one line : If electron moved from one one atom to other ,from ground state to excited state a bit value 1 is used else bit value 0 used Qubit one line : The superposition value of states of a set of electrons is Qubit YOUTUBE - A nice video about the Quantum Bits 1 YOUTUBE - A nice video about the Bits and Qubits 2 Basic Gates in Quantum Computing one line : As like NOT, OR and AND , Basic Gates like NOT, Hadamard gate , SWAP, Phase shift etc can be made with quantum gates YOUTUBE - A nice video about the Quantum Gates Quantum Diode one line : Quantum Diodes using a different idea from normal diode, A bunch of laser photons trigger the electron to spin and the quantum magnetic flux will capture the information YOUTUBE - A nice video about the Quantum Diode Quantum Transistors one line : A transistor default have Source ,drain and gate ,Here source is photon wave ,drain is flux and gate is classical to quantum bits QUORA -Discussion about the Quantum Transistor YOUTUBE - Well Explained Quantum Processor one line : A nano integration circuit performing the quantum gates operation sorrounded by cooling units to reduce the tremendous amount of heat YOUTUBE - Well Explained Quantum Registery QRAM one line : Comapring the normal ram ,its ultrafast and very small in size ,the address location can be access using qubits superposition value ,for a very large memory set coherent superposition(address of address) be used PDF - very Well Explained QUANTUM COMPUTING MACHINE LEARNING BRIDGE Complex Numbers one line : Normally Waves Interference is in n dimensional structure , to find a polynomial equation n order curves ,better option is complex number YOUTUBE - Wonderful Series very super Explained Tensors one line : Vectors have a direction in 2D vector space ,If on a n dimensional vector space ,vectors direction can be specify with the tensor ,The best solution to find the superposition of a n vector electrons spin space is representing vectors as tensors and doing tensor calculus YOUTUBE - Wonderful super Explained tensors basics YOUTUBE - Quantum tensors basics Tensors Network one line : As like connecting multiple vectors ,multple tensors form a network ,solving such a network reduce the complexity of processing qubits YOUTUBE - Tensors Network Some ideas specifically for quantum algorithms QUANTUM MACHINE LEARNING ALGORITHMS Quantum K-Nearest Neighbour info : Here the centroid(euclidean distance) can be detected using the swap gates test between two states of the qubit , As KNN is regerssive loss can be tally using the average PDF1 from Microsoft - Theory Explanation PDF2 - A Good Material to understand the basics Matlab - Yet to come soon Python - Yet to come soon Quantum K-Means info : Two Approaches possible ,1. FFT and iFFT to make an oracle and calculate the means of superposition 2. Adiobtic Hamiltonian generation and solve the hamiltonian to determine the cluster PDF1 - Applying Quantum Kmeans on Images in a nice way PDF2 - Theory PDF3 - Explaining well the K-means clustering using hamiltonian Matlab - Yet to come soon Python - Yet to come soon Quantum Fuzzy C-Means info : As similar to kmeans fcm also using the oracle dialect ,but instead of means,here oracle optimization followed by a rotation gate is giving a good result PDF1 - Theory Matlab - Yet to come soon Python - Yet to come soon Quantum Support Vector Machine info : A little different from above as here kernel preparation is via classical and the whole training be in oracles and oracle will do the classification, As SVM is linear ,An optimal Error(Optimum of the Least Squares Dual Formulation) Based regression is needed to improve the performance PDF1 - Nice Explanation but little hard to understand :) PDF2 - Nice Application of QSVM Matlab - Yet to come soon Python - Yet to come soon Quantum Genetic Algorithm info : One of the best algorithm suited for Quantum Field ,Here the chromosomes act as qubit vectors ,the crossover part carrying by an evaluation and the mutation part carrying by the rotation of gates ![Flow Chart]() PDF1 - Very Beautiful Article , well explained and superp PDF2 - A big theory :) PDF3 - Super Comparison Matlab - Simulation Python1 - Simulation Python2 - Yet to come Quantum Hidden Morkov Models info : As HMM is already state based ,Here the quantum states acts as normal for the markov chain and the shift between states is using quantum operation based on probability distribution ![Flow Chart]() PDF1 - Nice idea and explanation PDF2 - Nice but a different concept little Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum state classification with Bayesian methods info : Quantum Bayesian Network having the same states concept using quantum states,But here the states classification to make the training data as reusable is based on the density of the states(Interference) ![Bayesian Network Sample1]() ![Bayesian Network Sample2]() ![Bayesian Network Sample3]() PDF1 - Good Theory PDF2 - Good Explanation Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum Ant Colony Optimization info : A good algorithm to process multi dimensional equations, ACO is best suited for Sales man issue , QACO is best suited for Sales man in three or more dimension, Here the quantum rotation circuit is doing the peromene update and qubits based colony communicating all around the colony in complex space ![Ant Colony Optimization 1]() PDF1 - Good Concept PDF2 - Good Application Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum Cellular Automata info : One of the very complex algorithm with various types specifically used for polynomial equations and to design the optimistic gates for a problem, Here the lattice is formed using the quatum states and time calculation is based on the change of the state between two qubits ,Best suited for nano electronics ![Quantum Cellular Automata]() Wikipedia - Basic PDF1 - Just to get the keywords PDF2 - Nice Explanation and an easily understandable application Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come QAUNTUM NEURAL NETWORK one line : Its really one of the hardest topic , To understand easily ,Normal Neural Network is doing parallel procss ,QNN is doing parallel of parallel processess ,In theory combination of various activation functions is possible in QNN ,In Normal NN more than one activation function reduce the performance and increase the complexity Quantum perceptrons info : Perceptron(layer) is the basic unit in Neural Network ,The quantum version of perceptron must satisfy both linear and non linear problems , Quantum Concepts is combination of linear(calculus of superposition) and nonlinear(State approximation using probability) ,To make a perceptron in quantum world ,Transformation(activation function) of non linearity to certain limit is needed ,which is carrying by phase estimation algorithm ![Quantum Perceptron 3]() PDF1 - Good Theory PDF2 - Good Explanation Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come QAUNTUM STATISTICAL DATA ANALYSIS one line : An under research concept ,It can be seen in multiple ways, one best way if you want to apply n derivative for a problem in current classical theory its difficult to compute as its serialization problem instead if you do parallelization of differentiation you must estimate via probability the value in all flows ,Quantum Probability Helps to achieve this ,as the loss calculation is very less . the other way comparatively booming is Quantum Bayesianism, its a solution to solve most of the uncertainity problem in statistics to combine time and space in highly advanced physical research QUANTUM PROGRAMMING LANGUAGES , TOOLs and SOFTWARES All info : All Programming languages ,softwares and tools in alphabetical order Software - Nice content of all Python library - A python library Matlab based python library - Matlab Python Library Quantum Tensor Network Github - Tensor Network Bayesforge - A Beautiful Amazon Web Service Enabled Framework for Quantum Alogorithms and Data Analytics Rigetti - A best tools repository to use quantum computer in real time Rigetti Forest - An API to connect Quantum Computer quil/pyQuil - A quantum instruction language to use forest framework Grove - Grove is a repository to showcase quantum Fourier transform, phase estimation, the quantum approximate optimization algorithm, and others developed using Forest QISKit - A IBM Kit to access quantum computer and mainly for quantum circuits IBM Bluemix Simulator - A Bluemix Simulator for Quantum Circuits Microsoft Quantum Development Kit - Microsoft Visual Studio Enbaled Kit for Quantum Circuit Creation Microsoft "Q#" - Microsoft Q Sharp a new Programming Language for Quantum Circuit Creation qiskit api python - An API to connect IBM Quantum Computer ,With the generated token its easy to connect ,but very limited utils ,Lot of new utils will come soon Cyclops Tensor Framework - A framework to do tensor network simulations Python ToolKit for chemistry and physics Quantum Algorithm simulations - A New Started Project for simulating molecule and solids Bayesian Based Quatum Projects Repository - A nice repository and the kickstarter of bayesforge Google Fermion Products - A newly launched product specifivally for chemistry simulation Tree Tensor Networks - Interesting Tensor Network in Incubator Deep Tensor Neural Network - Some useful information about Tensor Neural Network in Incubator Generative Tensorial Networks - A startup to apply machine learning via tensor network for drug discovery Google Bristlecone - A new Quantum Processor from Google , Aimed for Future Hardwares with full fledged AI support XANADU - A Light based Quantum Hardware(chips supports) and Software Company Started in Preparation Stage. Soon will be in market fathom computing - A new concept to train the ai in a processor using light and quantum based concepts. soon products will be launch Alibaba Quantum Computing Cloud Service - Cloud Service to access 11 Bit Quantum Computing Processor Atomistic Machine Learning Project - Seems something Interesting with Deep Tensor Network for Quantum Chemistry Applications circQ and Google Works - Google Top Efforts on Tools IBM Safe Cryptography on Cloud - IBM Started and Developing a Quantm Safe Cryptography to replace all our Certificate Authority via Cloud Google Tensor Network Open Source - Google Started the Most Scientist Preferred Way To Use a Quantum Computer Circuit. Tensor Flow Which Makes Easy to Design the Network and Will Leave the Work Effect Of Gates, Processor Preparation and also going to tell the beauty of Maths Google Tensor Network Github - Github Project of Google Tensor Network Quantum Tensorflow - Yet to come soon Quantum Spark - Yet to come soon Quatum Map Reduce - Yet to come soon Quantum Database - Yet to come soon Quantum Server - Yet to come soon Quantum Data Analytics - Yet to come soon QUANTUM HOT TOPICS Deep Quantum Learning why and what is deep learning? In one line , If you know deep learning you can get a good job :) ,Even a different platform undergraduated and graduated person done a master specialization in deep learning can work in this big sector :), Practically speaking machine learning (vector mathematics) , deep learning (vector space(Graphics) mathematics) and big data are the terms created by big companies to make a trend in the market ,but in science and research there is no word such that , Now a days if you ask a junior person working in this big companies ,what is deep learning ,you will get some reply as "doing linear regression with stochastic gradient for a unsupervised data using Convolutional Neural Network :)" ,They knows the words clearly and knows how to do programming using that on a bunch of "relative data" , If you ask them about the FCM , SVM and HMM etc algorithms ,they will simply say these are olden days algorithms , deep learning replaced all :), But actually they dont know from the birth to the till level and the effectiveness of algorithms and mathematics ,How many mathematical theorems in vector, spaces , tensors etc solved to find this "hiding the complexity technology", They did not played with real non relative data like medical images, astro images , geology images etc , finding a relation and features is really complex and looping over n number of images to do pattern matching is a giant work , Now a days the items mentioned as deep learning (= multiple hidden artifical neural network) is not suitable for that why quantum deep learning or deep quantum learning? In the mid of Artificial Neural Network Research people realised at the maximum extreme only certain mathematical operations possible to do with ANN and the aim of this ANN is to achieve parallel execution of many mathematical operations , In artificial Intelligence ,the world intelligence stands for mathematics ,how effective if a probem can be solvable is based on the mathematics logic applying on the problem , more the logic will give more performance(more intelligent), This goal open the gate for quantum artificial neural network, On applying the ideas behind the deep learning to quantum mechanics environment, its possible to apply complex mathematical equations to n number of non relational data to find more features and can improve the performance Quantum Machine Learning vs Deep Learning Its fun to discuss about this , In recent days most of the employees from Product Based Companies Like google,microsoft etc using the word deep learning ,What actually Deep Learning ? and is it a new inventions ? how to learn this ? Is it replacing machine learning ? these question come to the mind of junior research scholars and mid level employees The one answer to all questions is deep learning = parallel "for" loops ,No more than that ,Its an effective way of executing multiple tasks repeatly and to reduce the computation cost, But it introduce a big cap between mathematics and computerscience , How ? All classical algorithms based on serial processing ,Its depends on the feedback of the first loop ,On applying a serial classical algorithm in multiple clusters wont give a good result ,but some light weight parallel classical algorithms(Deep learning) doing the job in multiple clusters and its not suitable for complex problems, What is the solution for then? As in the title Quantum Machine Learning ,The advantage behind is deep learning is doing the batch processing simply on the data ,but quantum machine learning designed to do batch processing as per the algorithm The product companies realised this one and they started migrating to quantum machine learning and executing the classical algorithms on quantum concept gives better result than deep learning algorithms on classical computer and the target to merge both to give very wonderful result References Quora - Good Discussion Quora - The Bridge Discussion Pdf - Nice Discussion Google - Google Research Discussion Microsoft - Microsoft plan to merge both IBM - IBM plan to merge both IBM Project - IBM Project idea MIT and Google - Solutions for all questions QUANTUM MEETUPS Meetup 1 - Quantum Physics Meetup 2 - Quantum Computing London Meetup 3 - Quantum Computing New York Meetup 4 - Quantum Computing Canada Meetup 5 - Quantum Artificial Intelligence Texas Meetup 6 - Genarl Quantum Mechanics , Mathematics New York Meetup 7 - Quantum Computing Mountain View California Meetup 8 - Statistical Analysis New York Meetup 9 - Quantum Mechanics London UK Meetup 10 - Quantum Physics Sydney Australia Meetup 11 - Quantum Physics Berkeley CA Meetup 12 - Quantum Computing London UK Meetup 13 - Quantum Mechanics Carmichael CA Meetup 14 - Maths and Science Group Portland Meetup 15 - Quantum Physics Santa Monica, CA Meetup 16 - Quantum Mechanics London Meetup 17 - Quantum Computing London Meetup 18 - Quantum Meta Physics ,Kansas City , Missouri ,US Meetup 19 - Quantum Mechanics and Physics ,Boston ,Massachusetts ,US Meetup 20 - Quantum Physics and Mechanics ,San Francisco ,California Meetup 21 - Quantum Mechanics ,Langhorne, Pennsylvania Meetup 22 - Quantum Mechanics ,Portland QUANTUM BASED DEGREES Plenty of courses around the world and many Universities Launching it day by day ,Instead of covering only Quantum ML , Covering all Quantum Related topics gives more idea in the order below Available Courses Quantum Mechanics for Science and Engineers Online Standford university - Nice Preparatory Course edx - Quantum Mechanics for Everyone NPTEL 1 - Nice Series of Courses to understand basics and backbone of quantum mechanics NPTEL 2 NPTEL 3 NPTEL 4 NPTEL 5 Class Based Course UK Bristol Australia Australian National University Europe Maxs Planks University Quantum Physics Online MIT - Super Explanation and well basics NPTEL - Nice Series of Courses to understand basics and backbone of quantum Physics Class Based Course Europe University of Copenhagen Quantum Chemistry Online NPTEL 1 - Nice Series of Courses to understand basics and backbone of quantum Chemistry NPTEL 2 - Class Based Course Europe UGent Belgium Quantum Computing Online MIT - Super Explanation and well basics edx - Nice Explanation NPTEL - Nice Series of Courses to understand basics and backbone of quantum Computing Class Based Course Canada uwaterloo Singapore National University Singapore USA Berkley China Baidu Quantum Technology Class Based Course Canada uwaterloo Singapore National University Singapore Europe Munich Russia Skoltech Quantum Information Science External Links quantwiki Online MIT - Super Explanation and well basics edx - Nice Explanation NPTEL - Nice Series of Courses to understand basics and backbone of quantum information and computing Class Based Course USA MIT Standford University Joint Center for Quantum Information and Computer Science - University of Maryland Canada Perimeter Institute Singapore National University Singapore Europe ULB Belgium IQOQI Quantum Electronics Online MIT - Wonderful Course NPTEL - Nice Series of Courses to understand basics and backbone of quantum Electronics Class Based Course USA Texas Europe Zurich ICFO Asia Tata Institute Quantum Field Theory Online Standford university - Nice Preparatory Course edx - Some QFT Concepts available Class Based Course UK Imperial Europe Vrije Quantum Computer Science Class Based Course USA Oxford Joint Center for Quantum Information and Computer Science - University of Maryland Quantum Artificial Intelligence and Machine Learning External Links Quora 1 Quora 1 Artificial Agents Research for Quantum Designs Quantum Mathematics Class Based Course USA University of Notre CONSOLIDATED Quantum Research Papers scirate - Plenty of Quantum Research Papers Available Peter Wittek - Famous Researcher for the Quantum Machine Leanrning , Published a book in this topic [Murphy Yuezhen Niu] (https://scholar.google.com/citations?user=0wJPxfkAAAAJ&hl=en) - A good researcher published some nice articles Recent Quantum Updates forum ,pages and newsletter Quantum-Tech - A Beautiful Newsletter Page Publishing Amazing Links facebook Quantum Machine Learning - Running By me . Not that much good :). You can get some ideas Linkedlin Quantum Machine Learning - A nice page running by experts. Can get plenty of ideas FOSDEM 2019 Quantum Talks - A one day talk in fosdem 2019 with more than 10 research topics,tools and ideas FOSDEM 2020 Quantum Talks - Live talk in fosdem 2020 with plenty new research topics,tools and ideas License Dedicated Opensources ![Dedicated Opensources]() Source code of plenty of Algortihms in Image Processing , Data Mining ,etc in Matlab, Python ,Java and VC++ Scripts Good Explanations of Plenty of algorithms with flow chart etc Comparison Matrix of plenty of algorithms Is Quantum Machine Learning Will Reveal the Secret Maths behind Astrology? Awesome Machine Learning and Deep Learning Mathematics is online Published Basic Presentation of the series Quantum Machine Learning Contribution If you think this page might helpful. Please help for World Education Charity or kids who wants to learn

OpenAI-CLIP
github
LLM Vibe Score0.507
Human Vibe Score0.015912940499642817
moein-shariatniaMar 27, 2025

OpenAI-CLIP

Update (December 2023) I am happy to find out that this code has been used and cited in the following papers: Domino: Discovering Systematic Errors with Cross-Modal Embeddings by Eyuboglu et. al. at ICLR 2022 GSCLIP : A Framework for Explaining Distribution Shifts in Natural Language by Zhu et. al. at ICML 2022 UIC-NLP at SemEval-2022 Task 5: Exploring Contrastive Learning for Multimodal Detection of Misogynistic Memes by Cuervo et. al. at SemEval-2022 cdsBERT - Extending Protein Language Models with Codon Awareness by Hallee et. al. from University of Delaware (Sep 2023) ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios by Ragusa et. al. (Nov 2023) You can find the citation info on the right section of this GitHub repo page named: Cite this repository or use the below citation info. Introduction It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP model from scratch in PyTorch. OpenAI has open-sourced some of the code relating to CLIP model but I found it intimidating and it was far from something short and simple. I also came across a good tutorial inspired by CLIP model on Keras code examples and I translated some parts of it into PyTorch to build this tutorial totally with our beloved PyTorch! What does CLIP do? Why is it fun? In Learning Transferable Visual Models From Natural Language Supervision paper, OpenAI introduces their new model which is called CLIP, for Contrastive Language-Image Pre-training. In a nutshell, this model learns the relationship between a whole sentence and the image it describes; in a sense that when the model is trained, given an input sentence it will be able to retrieve the most related images corresponding to that sentence. The important thing here is that it is trained on full sentences instead of single classes like car, dog, etc. The intuition is that when trained on whole sentences, the model can learn a lot more things and finds some pattern between images and texts. They also show that when this model is trained on a huge dataset of images and their corresponding texts, it can also act as a classifier too. I encourage you to study the paper to learn more about this exciting model and their astonishing results on benchmarking datasets . To mention just one, CLIP model trained with this strategy classifies ImageNet better than those SOTA models trained on the ImageNet itself optimized for the only task of classification! As a teaser (!), let's see what the final model that we will build in this article from scratch is capable of: given a query (raw text) like "a boy jumping with skateboard" or "a girl jumping from swing", the model will retrieve the most relevant images: !title_img Let's see some more outputs: Config A note on config and CFG: I wrote the codes with python scripts and then converted it into a Jupyter Notebook. So, in case of python scripts, config is a normal python file where I put all the hyperparameters and in the case of Jupyter Notebook, its a class defined in the beginning of the notebook to keep all the hyperparameters. Utils Dataset As you can see in the tittle image of this article, we need to encode both images and their describing texts. So, the dataset needs to return both images and texts. Of course we are not going to feed raw text to our text encoder! We will use DistilBERT model (which is smaller than BERT but performs nearly as well as BERT) from HuggingFace library as our text encoder; so, we need to tokenize the sentences (captions) with DistilBERT tokenizer and then feed the token ids (input_ids) and the attention masks to DistilBERT. Therefore, the dataset needs to take care of the tokenization as well. Below you can see the dataset's code. Below that I'll explain the most important things that is happening in the code. In the \\init\\ we receive a tokenizer object which is actually a HuggingFace tokinzer; this tokenizer will be loaded when running the model. We are padding and truncating the captions to a specified maxlength. In the \\getitem\\ we will first load an encoded caption which is a dictionary with keys inputids and attention_mask, make tensors out of its values and after that we will load the corresponding image, transform and augment it (if there is any!) and then we make it a tensor and put it in the dictionary with "image" as the key. Finally we put the raw text of the caption with the key "caption" in the dictionary only for visualization purposes. I did not use additional data augmentations but you can add them if you want to improve the model's performance. Image Encoder The image encoder code is straight forward. I'm using PyTorch Image Models library (timm) here which makes a lot of different image models available from ResNets to EfficientNets and many more. Here we will use a ResNet50 as our image encoder. You can easily use torchvision library to use ResNets if you don't want to install a new library. The code encodes each image to a fixed size vector with the size of the model's output channels (in case of ResNet50 the vector size will be 2048). This is the output after the nn.AdaptiveAvgPool2d() layer. Text Encoder As I mentioned before, I'll use DistilBERT as the text encoder. Like its bigger brother BERT, two special tokens will be added to the actual input tokens: CLS and SEP which mark the start and end of a sentence. To grab the whole representation of a sentence (as the related BERT and DistilBERT papers point out) we use the final representations of the CLS token and we hope that this representation captures the overall meaning of the sentence (caption). Thinking it in this way, it is similar to what we did to images and converted them into a fixed size vector. In the case of DistilBERT (and also BERT) the output hidden representation for each token is a vector with size 768. So, the whole caption will be encoded in the CLS token representation whose size is 768. Projection Head I used Keras code example implementation of projection head to write the following in PyTorch. Now that we have encoded both our images and texts into fixed size vectors (2048 for image and 768 for text) we need to bring (project) them into a new world (!) with similar dimensions for both images and texts in order to be able to compare them and push apart the non-relevant image and texts and pull together those that match. So, the following code will bring the 2048 and 768 dimensional vectors into a 256 (projection_dim) dimensional world, where we can compare them. "embeddingdim" is the size of the input vector (2048 for images and 768 for texts) and "projectiondim" is the the size of the output vector which will be 256 for our case. For understanding the details of this part you can refer to the CLIP paper. CLIP This part is where all the fun happens! I'll also talk about the loss function here. I translated some of the code from Keras code examples into PyTorch for writing this part. Take a look at the code and then read the explanation below this code block. Here we will use the previous modules that we built to implement the main model. The \\init\\ function is self-explanatory. In the forward function, we first encode the images and texts separately into fixed size vectors (with different dimensionalities). After that, using separate projection modules we project them to that shared world (space) that I talked about previously. Here the encodings will become of similar shape (256 in our case). After that we will compute the loss. Again I recommend reading CLIP paper to get it better but I'll try my best to explain this part. In Linear Algebra, one common way to measure if two vectors are of similar characteristics (they are like each other) is to calculate their dot product (multiplying the matching entries and take the sum of them); if the final number is big, they are alike and if it is small they are not (relatively speaking)! Okay! What I just said is the most important thing to have in mind to understand this loss function. Let's continue. We talked about two vectors, but, what do we have here? We have imageembeddings, a matrix with shape (batchsize, 256) and textembeddings with shape (batchsize, 256). Easy enough! it means we have two groups of vectors instead of two single vectors. How do we measure how similar two groups of vectors (two matrices) are to each other? Again, with dot product (@ operator in PyTorch does the dot product or matrix multiplication in this case). To be able to multiply these two matrices together, we transpose the second one. Okay, we get a matrix with shape (batchsize, batchsize) which we will call logits. (temperature is equal to 1.0 in our case, so, it does not make a difference. You can play with it and see what difference it makes. Also look at the paper to see why it is here!). I hope you are still with me! If not it's okay, just review the code and check their shapes. Now that we have our logits, we need targets. I need to say that there is a more straight forward way to obtain targets but I had to do this for our case (I'll talk about why in a next paragraph). Let's consider what we hope that this model learns: we want it to learn "similar representations (vectors)" for a given image and the caption describing it. Meaning that either we give it an image or the text describing it, we want it to produce same 256 sized vectors for both. Check the cell below this code block for the continue of the explanations So, in the best case scenario, textembeddings and imageembedding matricies should be the same because they are describing similar things. Let's think now: if this happens, what would the logits matrix be like? Let's see with a simple example! So logits, in the best case, will be a matrix that if we take its softmax, will have 1.0s in the diagonal (An identity matrix to call it with fancy words!). As the loss function's job is to make model's predictions similar to targets (at least in most cases!), we want such a matrix as our target. That's the reason why we are calculating imagessimilarity and textssimilarity matrices in the code block above. Now that we've got our targets matrix, we will use simple cross entropy to calculate the actual loss. I've written the full matrix form of cross entropy as a function which you can see in the bottom of the code block. Okay! We are done! Wasn't it simple?! Alright, you can ignore the next paragraph but if you are curious, there is an important note in that. Here's why I didn't use a simpler approach: I need to admit that there's a simpler way to calculate this loss in PyTorch; by doing this: nn.CrossEntropyLoss()(logits, torch.arange(batch_size)). Why I did not use it here? For 2 reasons. 1- The dataset we are using has multiple captions for a single image; so, there is the possibility that two identical images with their similar captions exist in a batch (it is rare but it can happen). Taking the loss with this easier method will ignore this possibility and the model learns to pull apart two representations (assume them different) that are actually the same. Obviously, we don't want this to happen so I calculated the whole target matrix in a way that takes care of these edge cases. 2- Doing it the way I did, gave me a better understanding of what is happening in this loss function; so, I thought it would give you a better intuition as well! Train Here are some funtions to help us load train and valid dataloaders, our model and then train and evaluate our model on those. There's not much going on here; just simple training loop and utility functions Here's a handy function to train our model. There's not much happening here; just loading the batches, feeding them to the model and stepping the optimizer and lr_scheduler. Running the next cell start training the model. Put the kernel on GPU mode. Every epoch should take about 24 minutes on GPU (even one epoch is enough!). It can take one minute before training actually starts because we are going to encode all the captions once in the train and valid dataset, so please don't stop it! Every thing is working fine. Inference Okay! We are done with training the model. Now, we need to do inference which in our case will be giving the model a piece of text and want it to retrieve the most relevant images from an unseen validation (or test) set. Getting Image Embeddings In this function, we are loading the model that we saved after training, feeding it images in validation set and returning the imageembeddings with shape (validset_size, 256) and the model itself. Finding Matches This function does the final task that we wished our model would be capable of: it gets the model, image_embeddings, and a text query. It will display the most relevant images from the validation set! Isn't it amazing? Let's see how it performs after all! This is how we use this function. Aaaannnndddd the results: Final words I hope you have enjoyed this article. Implementing this paper was a really interesting experience for me. I want to thank Khalid Salama for the great Keras code example he provided which inspired me to write something similar in PyTorch.

machine-learning-blackjack-solution
github
LLM Vibe Score0.42
Human Vibe Score0.022610872675250356
GregSommervilleMar 27, 2025

machine-learning-blackjack-solution

machine-learning-blackjack-solution Introduction A genetic algorithm is a type of artificial intelligence programming that uses ideas from evolution to solve complex problems. It works by creating a population of (initially random) candidate solutions, then repeatedly selecting pairs of candidates and combining their solutions using a process similar to genetic crossover. Sometimes candidate solutions even go through mutation, just to introduce new possibilities into the population. After a large number of generations, the best solution found up to that point is often the optimal, best solution possible. Genetic algorithms are particularly well-suited for combinatorial problems, where there are huge numbers of potential solutions to a problem. The evolutionary process they go through is, in essence, a search through a huge solution space. A solution space so large that you simply could never use a brute force approach. This project is a demonstration of using a genetic algorithm to find an optimal strategy for playing the casino game Blackjack. Please see this article for a story about how this program was used, and what the results were. The article describes some of the available settings, and shows how different values for those settings affect the final result. The source code is for a Windows application written in Cthat allows you to play with different settings like population size, selection style and mutation rate. Each generation's best solution is displayed, so you can watch the program literally evolve a solution. !blackjack strategy tester screenshot The property grid located at the upper left of the screen is where you adjust settings. There's an informational area below that, and the right side of the screen is the display area for the three tables that represent a strategy for playing Blackjack. The tall table on the left is for hard hands, the table in the upper right is for soft hands, and the table in the lower right is for pairs. We'll talk more about how to interpret this strategy in a bit. The columns along the tops of the three tables are for the dealer upcard. When you play Blackjack the dealer has one of his two cards initially turned face up, and the rank of that card has a big impact on recommended strategy. Notice that the upcard ranks don't include Jack, Queen or King. That's because those cards all count 10, so we group them and the Ten together and simplify the tables. To use the tables, first, determine if you have a pair, soft hand, or hard hand. Then look in the appropriate table, with the correct dealer upcard column. The cell in the table will be "H" when the correct strategy is to hit, "S" when the correct strategy is to stand, "D" for double-down, and (in the pairs table only) "P" for split. A Word About This "Optimal" Strategy Before we go any further, it needs to be stated that this problem of finding an optimal Blackjack strategy has already been solved. Back in the 1960s, a mathematician named Edward O. Thorp authored a book called Beat the Dealer, which included charts showing the optimal "Basic" strategy. That strategy looks like this: !optimal blackjack strategy So we're solving a problem that has already been solved, but that's actually good. That means we can compare our results to the known best solution. For example, if our result strategy tells us to do anything but stand when holding a pair of Tens, Jacks, Queens or Kings, we know there's a problem. There's one other thing to get out of the way before we go any further, and that's the idea of nondeterministic code. That means that if we run the same code twice in a row, we're likely to get two different results. That's something that happens with genetic algorithms due to their inherent randomness. There's no guarantee you'll find the absolute optimal solution, but it is assured that you will find an optimal or near-optimal solution. It's something that isn't typical when writing code, so it takes some adjustment for most programmers. Genetic Algorithms Now let's talk about the details of a genetic algorithm. Fitness Scores First of all, we need a way to evaluate candidates so we can compare them to each other. That means a numeric fitness score, which in this case is quite simple: you simulate playing a certain number of hands using the strategy, and then count the number of chips you have at the end. The big question is, how many hands should we test with? The challenge of trying to test a strategy is that due to the innate randomness of Blackjack, you could use the same strategy ten times and get ten completely different results. Obviously, the more hands you play, the more the randomness gets smoothed out, and the quality of the underlying strategy starts to emerge. If you doubt this, just think about flipping a coin. If you only flip it five times, there's certainly a possibility that it'll come up heads all five times (in fact, that happens just over 3% of the time). However, if you flip it 500 times, there's no way it's going to end up all heads - the odds of it happening are 0.5500, which works out to be roughly once every 3 x 10150 times you try it. After some testing and analysis, it was determined that a minimum of 100,000 hands per test is needed for a reasonable level of accuracy. There's still variance even at that number, but in order to cut the variance in half, you'd need to bump the number of hands to 500,000. One reason this accuracy is important is that in the later generations, the differences between candidates are very small. Evolution has caused the main parts of the strategy to converge on a particular approach, and towards the end all it's doing is refining the minor details. In those cases it's important to accurately determine the difference between two similar candidates. Representation Representation is simply the idea that we need to use a data structure for a candidate solution that can be combined via crossover, and possibly mutated. In this case, that's also quite simple because the way that human beings represent a Blackjack strategy is to use three tables, as we've seen. Representing those in code with three two-dimensional arrays is the obvious approach. Each cell in those three tables will have "Hit", "Stand", "Double-Down", or (only for pairs) "Split". By the way, since there are 160 cells in the hard hands table, and 80 cells in the soft hands table, and 100 cells in the pairs table, we can calculate exactly how many possible distinct strategies there are for Blackjack: 4100 x 380 x 3160 = 5 x 10174 possible Blackjack strategies That's a big number, which is obviously impossible to search using brute force. Genetic algorithms (GAs) are extremely helpful when trying to find an optimal solution from a very large set of possible solutions like this. Blackjack Rules and Strategies The rules of Blackjack are fairly simple. The dealer and the player both are dealt two cards. The player sees both of their cards (they are usually dealt face up), and one of the dealer's cards is dealt face up. Each card has a value - for cards between 2 and 10, the value is the same as the card's rank (so an Eight of Spades counts as 8, for example). All face cards count as 10, and an Ace can either be 1 or 11 (it counts as 11 only when that does not result in a hand that exceeds 21). The suit of a card does not matter. After the cards are dealt, if the player has Blackjack (a total of 21) and the dealer does not, the player is immediately paid 1.5 times their original bet, and a new hand is dealt. If the player has 21 and the dealer does also, then it's a tie and the player gets their original bet back, and a new hand is dealt. If the player wasn't dealt a Blackjack, then play continues with the player deciding whether to Stand (not get any more cards), Hit (receive an additional card), Double-down (place an additional bet, and receive one and only one more card), or, in the case of holding a pair, splitting the hand, which means placing an additional bet and receiving two new cards, so the end result is that the player is now playing two (or, in the case of multiple splits, more than two) hands simultaneously. If the player hits or double-downs and has a resulting hand that exceeds 21, then they lose and play continues with the next hand. If not, then the dealer draws until their hand totals at least 17. If the dealer exceeds 21 at this point, the player receives a payment equal to twice their original bet. If the dealer doesn't exceed 21, then the hands are compared and the player with the highest total that doesn't exceed 21 wins. Because of these rules, certain effective strategies emerge. One common strategy is that if you hold a hard hand with a value of 20, 19 or 18, you should Stand, since you avoid busting by going over 21, and you have a nice hand total that might win in a showdown with the dealer. Another common strategy is to split a pair of Aces, since Aces are so powerful (due to the fact that count as 11 or 1, you can often Hit a hand with a soft Ace with no risk of busting). Likewise, splitting a pair of 8s is a good idea because with a hard total of 16, it's likely you will bust if you take a Hit (since so many cards count as 10). As a human being, all it takes is a little knowledge about the rules in order to construct a strategy. The GA program doesn't have that advantage, and operates completely without any pre-programmed knowledge of Blackjack. It simply uses the relative fitness scores and the mechanism of evolution to find the solution. GA Settings There are many variables or settings for a GA. You can adjust population size, how parent candidates are selected, how the resulting children may be mutated, and several other items. The following sections describe some of these settings: Setting: Selection Style Once we've solved representation and have a fitness function, the next step is to select two candidates for crossover during the process of building a new generation. There are three common styles for selection, and this program supports all of them. First, you can choose Roulette Wheel selection. It's named for a Roulette wheel because you can imagine each candidate's fitness score being a wedge in a pie chart, with a size proportionate to its relative fitness compared to the other candidates. (Of course, this assumes that all fitness scores are positive, which we will talk about shortly). The main benefit of Roulette Wheel selection is that selection is fitness-proportionate. Imagine if you had only three candidates, with fitness scores of 1, 3, and 8. The relative selection probabilities for those candidates will be 1/12, 3/12, and 8/12. The downside of Roulette Wheel selection is that it tends to be somewhat slow in terms of processing. The selection process is done by iterating through the candidates until a particular condition is matched - in other words, O(N) performance. Another potential problem with Roulette Wheel selection is that there may be situations where fitness scores vary widely, to such an extent that only certain candidates have any reasonable chance of being selected. This happens frequently in early generations, since the majority of candidates are mostly random. Although this might sound like a positive (since you ultimately want to select candidates with high fitness scores), it also results in a loss of genetic diversity. In other words, even though a particular candidate may have a low fitness score in an early generation, it may contain elements that are needed to find the ultimate solution in later generations. Ranked Selection is the solution to this problem. Instead of using raw fitness scores during the selection process, the candidates are sorted by fitness, with the worst candidate receiving a score of 0, the second worse receiving 1, and so forth, all the way to the best candidate, which has a score equal to the population size - 1. Ranked Selection is quite slow, since it combines the O(N) performance of Roulette Wheel, with the additional requirement that the candidates be sorted before selection. However, there may be circumstances where it performs better than other selection approaches. Finally, the fastest selection method of all is called Tournament Selection. This method simply selects N random candidates from the current generation, and then uses the one with the best fitness score. A tournament size of 2 means two random candidates are selected, and the best of those two is used. If you have a large tournament size (like 10), then 10 different candidates will be selected, with the best of those being the ultimate selection. That obviously tilts the balance between randomness and quality. Tournament selection works well in most cases, but it does require some experimentation to find the best tourney size. Setting: Elitism Elitism is a technique that helps ensure that the best candidates are always maintained. Since all selection methods are random to some degree, it is possible to completely lose the best candidates from one generation to another. By using Elitism, we automatically advance a certain percentage of the best candidates to the next generation. Elitism does have a negative impact on performance since all of the candidates must be sorted by fitness score. Typically Elitism is done before filling the rest of a new generation with new candidates created by crossover. Crossover Details Once two candidate solutions have been selected, the next step in building a new generation is to combine those two into a single new candidate, hopefully using the best of both parent strategies. There are a number of ways to do crossover, but the method used in this program is quite straightforward - the two fitness scores are compared, and crossover happens in a relatively proportionate way. If one candidate has a fitness of 10, and the other has a fitness of 5, then the one with fitness 10 contributes twice as much to the child as the parent with a fitness of 5. Since the fitness scores in this program are based on how much the strategy would win over thousands of hands, almost all fitness scores will be negative. (This is obviously because the rules are set up so the house always wins.) This makes it difficult to calculate relative fitnesses (how do you compare a positive number with a negative, and find relative proportions?), and also causes problems with selection methods like Roulette Wheel or Ranked. To solve this, we find the lowest fitness score of the generation and add that value to each candidate. This results in an adjusted fitness score of 0 for the very worse candidate, so it never gets selected. Mutation As has been mentioned a few times, maintaining genetic diversity in our population of candidate solutions is a good thing. It helps the GA ultimately find the very best solution, by occasionally altering a candidate in a positive direction. There are two settings for mutation. MutationRate controls what percentage of new candidates have mutation done on them. MutationImpact controls what percentage of their strategy is randomized. Population Size Population size has a significant impact on performance. The smaller the population size, the faster the GA will execute. On the other hand, if the size is too low the population may not have enough genetic diversity to find the ultimate solution. During testing, it looks like 700 to 1000 is a good balance between speed and correctness. Performance Notes This program consumes a lot of processing power. Running tests of hundreds of thousands of hands of Blackjack for hundreds or thousands of candidates consumes a lot of time. It's really imperative to write the code so that it works as efficiently as possible. If your CPU isn't consistently at or above 95% usage, there's still room for improvement. Multi-threading is a natural fit for genetic algorithms because we often want to perform the same action on each candidate. The best example of this is when we calculate fitness scores. This is often an operation that takes quite a bit of time. In our case, we're dealing out 100,000 hands, and each hand has to be played until the end. If we're single-threading that code, it's going to take a long time. Multi-threading is really the way to go. Luckily, there's a ridiculously simple way to efficiently use all of your processors for an operation like this. This code loops over all of the candidates in the currentGeneration list, calls the fitness function and sets the fitness property for each: Regardless of the number of items in the list or the number of processors on your machine, the code will efficiently run the code in a multi-threaded manner, and continue only when all of the threads are complete. One of the side effects of making this code multi-threaded is that all of the code relating to evaluating a candidate must be thread-safe, including any Singleton objects. When making code thread-safe, pay attention that you don't accidentally introduce code that will slow your program down unintentionally, because sometimes it can be quite subtle. Random numbers are central to how genetic algorithms work, so it's critical that they can be used correctly from a multithreaded environment. That means that each random number generator must be separate from the others, and it also means that each must produce a distinct series of random numbers. Random number generators use seed values which are usually time-based, like the number of milliseconds the computer has been turned on. Starting with that seed, subsequent calls will return a series of numbers that look random, but really aren't. If you start with the same seed, you get the same sequence. And that's a problem because if you create multiple random number generator objects in a loop using the default time-based seed, several of them will have the same time-based initial seed value, which will result in the same sequence of "random" numbers. That's a bug, because it can reduce the true randomness of the program a great deal, and that's vital to a genetic algorithm. There are a couple of ways to solve this problem. First, you can make the random object truly a singleton, and restrict access to it by using a Clock statement. The makes all access serialized for any random number need, which reduces performance. Another approach is to make the variable static per thread. By declaring the variable as static and also marking it with the [ThreadStatic] attribute, the .NET runtime allocates one static variable per thread. That eliminates the locking/serialization, but also has performance issues. The approach used in this application is to use a non-default seed value. In this case we call Guid.NewGuid().GetHashCode(), which generates a new, unique GUID, then gets an integer hashcode value that should be unique, depending on how GetHashCode is implemented. While multithreading really helps performance, there are also other things we can do to improve performance. For example, when dealing with large populations, the hundreds or thousands of objects that will be generated each generation can quickly turn into a huge problem related to garbage collection. In the end, the easiest way to solve that is to look through the code and find objects being allocate inside a loop. It's better to declare the variable outside of the loop, and then clear it in the loop, rather than reallocate it. In a program like this one where you could be looping hundreds of thousands of times, this can result in a very significant performance boost. For example, in an early version of this code, a Deck object was created for each hand. Since there are hundreds of candidate solutions running hundreds of thousands of trial hands, this was a huge inefficiency. The code was changed to allocate one deck per test sequence. The deck was shuffled as needed, so it never needs to be reallocated. Beyond the cards in the deck, another object type that was repeatedly created and destroyed were the candidate strategies. To mitigate this problem, a StrategyPool class was created that handles allocation and deallocation. This means that strategy objects are reused, rather than dynamically created when needed. The pool class has to be thread-safe, so it does serialize access to its methods via a Clock statement, but overall using the pool approach produced a good performance increase. Finally, a subtle form of object allocation is conversion. In an early version of the code, a utility card function used Convert.ToInt32(rankEnum). Obviously, the easiest way to convert from an enum to an int is simply to cast it, like (int)rankEnum. But it's hard to know exactly what the difference is between that approach, int.Parse(), int.TryParse(), or Convert.ToInt32(), since they can all be used and are roughly equivalent. Perhaps the compiler was boxing the enum value before passing it to Convert.ToInt32(), because the profiler identified this as a function that had large amounts of thread contention waiting - and the problem got much, much worse as the generations passed. By rewriting the conversion to use a simple cast, the program performance increased threefold (3x). Contributing Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to us. Author Greg Sommerville - Initial work* License This project is licensed under the Apache 2.0 License - see the LICENSE.md file for details

obsei
github
LLM Vibe Score0.545
Human Vibe Score0.10175553624190911
obseiMar 27, 2025

obsei

Note: Obsei is still in alpha stage hence carefully use it in Production. Also, as it is constantly undergoing development hence master branch may contain many breaking changes. Please use released version. Obsei (pronounced "Ob see" | /əb-'sē/) is an open-source, low-code, AI powered automation tool. Obsei consists of - Observer: Collect unstructured data from various sources like tweets from Twitter, Subreddit comments on Reddit, page post's comments from Facebook, App Stores reviews, Google reviews, Amazon reviews, News, Website, etc. Analyzer: Analyze unstructured data collected with various AI tasks like classification, sentiment analysis, translation, PII, etc. Informer: Send analyzed data to various destinations like ticketing platforms, data storage, dataframe, etc so that the user can take further actions and perform analysis on the data. All the Observers can store their state in databases (Sqlite, Postgres, MySQL, etc.), making Obsei suitable for scheduled jobs or serverless applications. !Obsei diagram Future direction - Text, Image, Audio, Documents and Video oriented workflows Collect data from every possible private and public channels Add every possible workflow to an AI downstream application to automate manual cognitive workflows Use cases Obsei use cases are following, but not limited to - Social listening: Listening about social media posts, comments, customer feedback, etc. Alerting/Notification: To get auto-alerts for events such as customer complaints, qualified sales leads, etc. Automatic customer issue creation based on customer complaints on Social Media, Email, etc. Automatic assignment of proper tags to tickets based content of customer complaint for example login issue, sign up issue, delivery issue, etc. Extraction of deeper insight from feedbacks on various platforms Market research Creation of dataset for various AI tasks Many more based on creativity 💡 Installation Prerequisite Install the following (if not present already) - Install Python 3.7+ Install PIP Install Obsei You can install Obsei either via PIP or Conda based on your preference. To install latest released version - Install from master branch (if you want to try the latest features) - Note: all option will install all the dependencies which might not be needed for your workflow, alternatively following options are available to install minimal dependencies as per need - pip install obsei[source]: To install dependencies related to all observers pip install obsei[sink]: To install dependencies related to all informers pip install obsei[analyzer]: To install dependencies related to all analyzers, it will install pytorch as well pip install obsei[twitter-api]: To install dependencies related to Twitter observer pip install obsei[google-play-scraper]: To install dependencies related to Play Store review scrapper observer pip install obsei[google-play-api]: To install dependencies related to Google official play store review API based observer pip install obsei[app-store-scraper]: To install dependencies related to Apple App Store review scrapper observer pip install obsei[reddit-scraper]: To install dependencies related to Reddit post and comment scrapper observer pip install obsei[reddit-api]: To install dependencies related to Reddit official api based observer pip install obsei[pandas]: To install dependencies related to TSV/CSV/Pandas based observer and informer pip install obsei[google-news-scraper]: To install dependencies related to Google news scrapper observer pip install obsei[facebook-api]: To install dependencies related to Facebook official page post and comments api based observer pip install obsei[atlassian-api]: To install dependencies related to Jira official api based informer pip install obsei[elasticsearch]: To install dependencies related to elasticsearch informer pip install obsei[slack-api]:To install dependencies related to Slack official api based informer You can also mix multiple dependencies together in single installation command. For example to install dependencies Twitter observer, all analyzer, and Slack informer use following command - How to use Expand the following steps and create a workflow - Step 1: Configure Source/Observer Twitter Youtube Scrapper Facebook Email Google Maps Reviews Scrapper AppStore Reviews Scrapper Play Store Reviews Scrapper Reddit Reddit Scrapper Note: Reddit heavily rate limit scrappers, hence use it to fetch small data during long period Google News Web Crawler Pandas DataFrame Step 2: Configure Analyzer Note: To run transformers in an offline mode, check transformers offline mode. Some analyzer support GPU and to utilize pass device parameter. List of possible values of device parameter (default value auto): auto: GPU (cuda:0) will be used if available otherwise CPU will be used cpu: CPU will be used cuda:{id} - GPU will be used with provided CUDA device id Text Classification Text classification: Classify text into user provided categories. Sentiment Analyzer Sentiment Analyzer: Detect the sentiment of the text. Text classification can also perform sentiment analysis but if you don't want to use heavy-duty NLP model then use less resource hungry dictionary based Vader Sentiment detector. NER Analyzer NER (Named-Entity Recognition) Analyzer: Extract information and classify named entities mentioned in text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc Translator PII Anonymizer Dummy Analyzer Dummy Analyzer: Does nothing. Its simply used for transforming the input (TextPayload) to output (TextPayload) and adding the user supplied dummy data. Step 3: Configure Sink/Informer Slack Zendesk Jira ElasticSearch Http Pandas DataFrame Logger This is useful for testing and dry running the pipeline. Step 4: Join and create workflow source will fetch data from the selected source, then feed it to the analyzer for processing, whose output we feed into a sink to get notified at that sink. Step 5: Execute workflow Copy the code snippets from Steps 1 to 4 into a python file, for example example.py and execute the following command - Demo We have a minimal streamlit based UI that you can use to test Obsei. !Screenshot Watch UI demo video Check demo at (Note: Sometimes the Streamlit demo might not work due to rate limiting, use the docker image (locally) in such cases.) To test locally, just run To run Obsei workflow easily using GitHub Actions (no sign ups and cloud hosting required), refer to this repo. Companies/Projects using Obsei Here are some companies/projects (alphabetical order) using Obsei. To add your company/project to the list, please raise a PR or contact us via email. Oraika: Contextually understand customer feedback 1Page: Giving a better context in meetings and calls Spacepulse: The operating system for spaces Superblog: A blazing fast alternative to WordPress and Medium Zolve: Creating a financial world beyond borders Utilize: No-code app builder for businesses with a deskless workforce Articles Sr. No. Title Author 1 AI based Comparative Customer Feedback Analysis Using Obsei Reena Bapna 2 LinkedIn App - User Feedback Analysis Himanshu Sharma Tutorials Sr. No. Workflow Colab Binder 1 Observe app reviews from Google play store, Analyze them by performing text classification and then Inform them on console via logger PlayStore Reviews → Classification → Logger 2 Observe app reviews from Google play store, PreProcess text via various text cleaning functions, Analyze them by performing text classification, Inform them to Pandas DataFrame and store resultant CSV to Google Drive PlayStore Reviews → PreProcessing → Classification → Pandas DataFrame → CSV in Google Drive 3 Observe app reviews from Apple app store, PreProcess text via various text cleaning function, Analyze them by performing text classification, Inform them to Pandas DataFrame and store resultant CSV to Google Drive AppStore Reviews → PreProcessing → Classification → Pandas DataFrame → CSV in Google Drive 4 Observe news article from Google news, PreProcess text via various text cleaning function, Analyze them via performing text classification while splitting text in small chunks and later computing final inference using given formula Google News → Text Cleaner → Text Splitter → Classification → Inference Aggregator 💡Tips: Handle large text classification via Obsei Documentation For detailed installation instructions, usages and examples, refer to our documentation. Support and Release Matrix Linux Mac Windows Remark Tests ✅ ✅ ✅ Low Coverage as difficult to test 3rd party libs PIP ✅ ✅ ✅ Fully Supported Conda ❌ ❌ ❌ Not Supported Discussion forum Discussion about Obsei can be done at community forum Changelogs Refer releases for changelogs Security Issue For any security issue please contact us via email Stargazers over time Maintainers This project is being maintained by Oraika Technologies. Lalit Pagaria and Girish Patel are maintainers of this project. License Copyright holder: Oraika Technologies Overall Apache 2.0 and you can read License file. Multiple other secondary permissive or weak copyleft licenses (LGPL, MIT, BSD etc.) for third-party components refer Attribution. To make project more commercial friendly, we void third party components which have strong copyleft licenses (GPL, AGPL etc.) into the project. Attribution This could not have been possible without these open source softwares. Contribution First off, thank you for even considering contributing to this package, every contribution big or small is greatly appreciated. Please refer our Contribution Guideline and Code of Conduct. Thanks so much to all our contributors

bootcamp_machine-learning
github
LLM Vibe Score0.469
Human Vibe Score0.0690798818433794
42-AIMar 26, 2025

bootcamp_machine-learning

Bootcamp Machine Learning One week to learn the basics in Machine Learning! :robot: Table of Contents Download Curriculum Module05 - Stepping Into Machine Learning Module06 - Univariate Linear Regression Module07 - Multivariate Linear Regression Module08 - Logistic Regression Module09 - Regularization Acknowledgements Contributors Beta-testers This project is a Machine Learning bootcamp created by 42 AI. As notions seen during this bootcamp can be complex, we very strongly advise students to have previously done the following bootcamp: Python 42 Artificial Intelligence is a student organization of the Paris campus of the school 42. Our purpose is to foster discussion, learning, and interest in the field of artificial intelligence, by organizing various activities such as lectures and workshops. Download The pdf files of each module can be downloaded from our realease page: https://github.com/42-AI/bootcampmachine-learning/releases Curriculum Module05 - Stepping Into Machine Learning Get started with some linear algebra and statistics Sum, mean, variance, standard deviation, vectors and matrices operations. Hypothesis, model, regression, loss function. Module06 - Univariate Linear Regression Implement a method to improve your model's performance: gradient descent, and discover the notion of normalization Gradient descent, linear regression, normalization. Module07 - Multivariate Linear Regression Extend the linear regression to handle more than one features, build polynomial models and detect overfitting Multivariate linear hypothesis, multivariate linear gradient descent, polynomial models. Training and test sets, overfitting. Module08 - Logistic Regression Discover your first classification algorithm: logistic regression! Logistic hypothesis, logistic gradient descent, logistic regression, multiclass classification. Accuracy, precision, recall, F1-score, confusion matrix. Module09 - Regularization Fight overfitting! Regularization, overfitting. Regularized loss function, regularized gradient descent. Regularized linear regression. Regularized logistic regression. Acknowledgements Contributors Amric Trudel (amric@42ai.fr) Maxime Choulika (maxime@42ai.fr) Pierre Peigné (ppeigne@student.42.fr) Matthieu David (mdavid@student.42.fr) Benjamin Carlier (bcarlier@student.42.fr) Pablo Clement (pclement@student.42.fr) Amir Mahla (amahla@42ai.fr) Mathieu Perez (mathieu.perez@42ai.fr) Beta-testers Richard Blanc (riblanc@student.42.fr) Solveig Gaydon Ohl (sgaydon-@student.42.fr) Quentin Feuillade--Montixi (qfeuilla@student.42.fr)

ai-flow
github
LLM Vibe Score0.461
Human Vibe Score0.01809909681901274
DahnM20Mar 25, 2025

ai-flow

Open-source tool to seamlessly connect multiple AI model APIs into repeatable workflows. 🔗 Website • 📚 Documentation 🎉🚀 Latest Release: v0.10.0 🚀🎉 New Nodes: Claude 3.7, OpenRouter, Generate Random Number Configuration can now be done entirely in the UI !AI-Flow Intro Overview AI-Flow is an open-source, user-friendly UI that lets you visually design, manage, and monitor AI-driven workflows by seamlessly connecting multiple AI model APIs (e.g., OpenAI, StabilityAI, Replicate, Claude, Deepseek). Features Visual Workflow Builder: Drag-and-drop interface for crafting AI workflows. Real-Time Monitoring: Watch your workflow execute and track results. Parallel Processing: Nodes run in parallel whenever possible. Model Management: Easily organize and manage diverse AI models. Import/Export: Share or back up your workflows effortlessly. Supported Models Replicate: LLaMa, Mistral, FaceSwap, InstantMesh, MusicGen, and more. OpenAI: GPT-4o, TTS, o1, o3. StabilityAI: Stable Diffusion 3.5, SDXL, Stable Video Diffusion, plus additional tools. Others: Claude, Deepseek. !Scenario Example Open Source vs. Cloud AI-Flow is fully open source and available under the MIT License, empowering you to build and run your AI workflows on your personal machine. For those seeking enhanced functionality and a polished experience, AI-Flow Pro on our cloud platform (app.ai-flow.net) offers advanced features, including: Subflows & Loops: Create complex, nested workflows and iterate tasks effortlessly. API-Triggered Flows: Initiate workflows via API calls for seamless automation. Integrated Services: Connect with external services such as Google Search, Airtable, Zapier, and Make. Simplified Interface: Transform workflows into streamlined tools with an intuitive UI. !Pro VS Open Source The cloud version builds upon the foundation of the open-source project, giving you more power and flexibility while still letting you use your own API keys. Installation Note: To unlock full functionality, AI-Flow requires S3-compatible storage (with proper CORS settings) to host resources. Without it, features like File Upload or nodes that rely on external providers (e.g., StabilityAI) may not work as expected. Also, set REPLICATEAPIKEY in your environment to use the Replicate node. Local Installation (Without Docker) Clone the Repository: UI Setup: Backend Setup: Windows Users: Run the Application: Start the backend: In a new terminal, start the UI: Open your browser and navigate to http://localhost:3000. Docker Installation Prepare Docker Compose: Navigate to the docker directory: Update the REPLICATEAPIKEY in the YAML file. Launch with Docker Compose: Access the Application: Open http://localhost:80 in your browser. To stop, run: Contributing We welcome contributions! If you encounter issues or have feature ideas, please open an issue or submit a pull request. License This project is released under the MIT License.

aima-java
github
LLM Vibe Score0.521
Human Vibe Score0.06620214044837505
aimacodeMar 25, 2025

aima-java

AIMA3e-Java (JDK 8+) Java implementation of algorithms from Russell and Norvig's Artificial Intelligence - A Modern Approach 3rd Edition. You can use this in conjunction with a course on AI, or for study on your own. We're looking for solid contributors to help. Getting Started Links Overview of Project Interested in Contributing Setting up your own workspace Comments on architecture and design Demo Applications that can be run from your browser (unfortunately not up to date) Javadoc for the aima-core project (outdated) Download the latest official (but outdated) version = 1.9.1 (Dec 18 2016) Latest Maven Information (for integration as a third party library) Index of Implemented Algorithms |Figure|Page|Name (in 3rd edition)|Code | -------- |:--------:| :-----| :----- | |2|34|Environment|Environment| |2.1|35|Agent|Agent| |2.3|36|Table-Driven-Vacuum-Agent|TableDrivenVacuumAgent| |2.7|47|Table-Driven-Agent|TableDrivenAgentProgram| |2.8|48|Reflex-Vacuum-Agent|ReflexVacuumAgent| |2.10|49|Simple-Reflex-Agent|SimpleReflexAgentProgram| |2.12|51|Model-Based-Reflex-Agent|ModelBasedReflexAgentProgram| |3|66|Problem|Problem| |3.1|67|Simple-Problem-Solving-Agent|SimpleProblemSolvingAgent| |3.2|68|Romania|SimplifiedRoadMapOfRomania| |3.7|77|Tree-Search|TreeSearch| |3.7|77|Graph-Search|GraphSearch| |3.10|79|Node|Node| |3.11|82|Breadth-First-Search|BreadthFirstSearch| |3.14|84|Uniform-Cost-Search|UniformCostSearch| |3|85|Depth-first Search|DepthFirstSearch| |3.17|88|Depth-Limited-Search|DepthLimitedSearch| |3.18|89|Iterative-Deepening-Search|IterativeDeepeningSearch| |3|90|Bidirectional search|BidirectionalSearch| |3|92|Best-First search|BestFirstSearch| |3|92|Greedy best-First search|GreedyBestFirstSearch| |3|93|A\* Search|AStarSearch| |3.26|99|Recursive-Best-First-Search |RecursiveBestFirstSearch| |4.2|122|Hill-Climbing|HillClimbingSearch| |4.5|126|Simulated-Annealing|SimulatedAnnealingSearch| |4.8|129|Genetic-Algorithm|GeneticAlgorithm| |4.11|136|And-Or-Graph-Search|AndOrSearch| |4|147|Online search problem|OnlineSearchProblem| |4.21|150|Online-DFS-Agent|OnlineDFSAgent| |4.24|152|LRTA\*-Agent|LRTAStarAgent| |5.3|166|Minimax-Decision|MinimaxSearch| |5.7|170|Alpha-Beta-Search|AlphaBetaSearch| |6|202|CSP|CSP| |6.1|204|Map CSP|MapCSP| |6.3|209|AC-3|AC3Strategy| |6.5|215|Backtracking-Search|AbstractBacktrackingSolver| |6.8|221|Min-Conflicts|MinConflictsSolver| |6.11|224|Tree-CSP-Solver|TreeCspSolver| |7|235|Knowledge Base|KnowledgeBase| |7.1|236|KB-Agent|KBAgent| |7.7|244|Propositional-Logic-Sentence|Sentence| |7.10|248|TT-Entails|TTEntails| |7|253|Convert-to-CNF|ConvertToCNF| |7.12|255|PL-Resolution|PLResolution| |7.15|258|PL-FC-Entails?|PLFCEntails| |7.17|261|DPLL-Satisfiable?|DPLLSatisfiable| |7.18|263|WalkSAT|WalkSAT| |7.20|270|Hybrid-Wumpus-Agent|HybridWumpusAgent| |7.22|272|SATPlan|SATPlan| |9|323|Subst|SubstVisitor| |9.1|328|Unify|Unifier| |9.3|332|FOL-FC-Ask|FOLFCAsk| |9.6|338|FOL-BC-Ask|FOLBCAsk| |9|345|CNF|CNFConverter| |9|347|Resolution|FOLTFMResolution| |9|354|Demodulation|Demodulation| |9|354|Paramodulation|Paramodulation| |9|345|Subsumption|SubsumptionElimination| |10.9|383|Graphplan|GraphPlan| |11.5|409|Hierarchical-Search|HierarchicalSearchAlgorithm| |11.8|414|Angelic-Search|---| |13.1|484|DT-Agent|DT-Agent| |13|484|Probability-Model|ProbabilityModel| |13|487|Probability-Distribution|ProbabilityDistribution| |13|490|Full-Joint-Distribution|FullJointDistributionModel| |14|510|Bayesian Network|BayesianNetwork| |14.9|525|Enumeration-Ask|EnumerationAsk| |14.11|528|Elimination-Ask|EliminationAsk| |14.13|531|Prior-Sample|PriorSample| |14.14|533|Rejection-Sampling|RejectionSampling| |14.15|534|Likelihood-Weighting|LikelihoodWeighting| |14.16|537|GIBBS-Ask|GibbsAsk| |15.4|576|Forward-Backward|ForwardBackward| |15|578|Hidden Markov Model|HiddenMarkovModel| |15.6|580|Fixed-Lag-Smoothing|FixedLagSmoothing| |15|590|Dynamic Bayesian Network|DynamicBayesianNetwork| |15.17|598|Particle-Filtering|ParticleFiltering| |16.9|632|Information-Gathering-Agent|InformationGatheringAgent| |17|647|Markov Decision Process|MarkovDecisionProcess| |17.4|653|Value-Iteration|ValueIteration| |17.7|657|Policy-Iteration|PolicyIteration| |17.9|663|POMDP-Value-Iteration|POMDPValueIteration| |18.5|702|Decision-Tree-Learning|DecisionTreeLearner| |18.8|710|Cross-Validation-Wrapper|CrossValidation| |18.11|717|Decision-List-Learning|DecisionListLearner| |18.24|734|Back-Prop-Learning|BackPropLearning| |18.34|751|AdaBoost|AdaBoostLearner| |19.2|771|Current-Best-Learning|CurrentBestLearning| |19.3|773|Version-Space-Learning|VersionSpaceLearning| |19.8|786|Minimal-Consistent-Det|MinimalConsistentDet| |19.12|793|FOIL|FOIL| |21.2|834|Passive-ADP-Agent|PassiveADPAgent| |21.4|837|Passive-TD-Agent|PassiveTDAgent| |21.8|844|Q-Learning-Agent|QLearningAgent| |22.1|871|HITS|HITS| |23.5|894|CYK-Parse|CYK| |25.9|982|Monte-Carlo-Localization|MonteCarloLocalization| Index of implemented notebooks |Chapter No|Name |Status (in 3rd edition)|Status (in 4th edition) | -------- |:--------:| :-----| :----- | |3| Solving Problems by Searching| In Progress| Not started| |6| Constraint Satisfaction Problems |In Progress|---| |12| Knowledge Representation|Done|---| |13| Quantifying Uncertainty |Done | --- | |14| Probabilistic Reasoning|In Progress| ---| Before starting to work on a new notebook: Open a new issue with the following heading: Notebook: Chapter Name - Version . Check that the issue is not assigned to anyone. Mention a topics list of what you will be implementing in the notebook for that particular chapter. You can iteratively refine the list once you start working. Start a discussion on what can go in that particular notebook. "---" indicates algorithms yet to be implemented. Index of data structures Here is a table of the data structures yet to be implemented. |Fig|Page|Name (in book)|Code| | -------- |:--------:| :-----| :----- | |9.8|341|Append|---| |10.1|369|AIR-CARGO-TRANSPORT-PROBLEM|---| |10.2|370|SPARE-TIRE-PROBLEM|---| |10.3|371|BLOCKS-WORLD |---| |10.7|380|HAVE-CAKE-AND-EAT-CAKE-TOO-PROBLEM|---| |11.1|402|JOB-SHOP-SCHEDULING-PROBLEM|---| |11.4|407|REFINEMENT-HIGH-LEVEL-ACTIONS|---| |23.6|895|SENTENCE-TREE|---| |29.1|1062|POWERS-OF-2|---|

voicefilter
github
LLM Vibe Score0.496
Human Vibe Score0.029786815978503328
maum-aiMar 24, 2025

voicefilter

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-source, and I didn't expect this repository to grab such a great amount of attention for a long time. I would like to thank everyone for giving such attention, and also Mr. Quan Wang (the first author of the VoiceFilter paper) for referring this project in his paper. Actually, this project was done by me when it was only 3 months after I started studying deep learning & speech separation without a supervisor in the relevant field. Back then, I didn't know what is a power-law compression, and the correct way to validate/test the models. Now that I've spent more time on deep learning & speech since then (I also wrote a paper published at Interspeech 2020 😊), I can observe some obvious mistakes that I've made. Those issues were kindly raised by GitHub users; please refer to the Issues and Pull Requests for that. That being said, this repository can be quite unreliable, and I would like to remind everyone to use this code at their own risk (as specified in LICENSE). Unfortunately, I can't afford extra time on revising this project or reviewing the Issues / Pull Requests. Instead, I would like to offer some pointers to newer, more reliable resources: VoiceFilter-Lite: This is a newer version of VoiceFilter presented at Interspeech 2020, which is also written by Mr. Quan Wang (and his colleagues at Google). I highly recommend checking this paper, since it focused on a more realistic situation where VoiceFilter is needed. List of VoiceFilter implementation available on GitHub: In March 2019, this repository was the only available open-source implementation of VoiceFilter. However, much better implementations that deserve more attention became available across GitHub. Please check them, and choose the one that meets your demand. PyTorch Lightning: Back in 2019, I could not find a great deep-learning project template for myself, so I and my colleagues had used this project as a template for other new projects. For people who are searching for such project template, I would like to strongly recommend PyTorch Lightning. Even though I had done a lot of effort into developing my own template during 2019 (VoiceFilter -> RandWireNN -> MelNet -> MelGAN), I found PyTorch Lightning much better than my own template. Thanks for reading, and I wish everyone good health during the global pandemic situation. Best regards, Seung-won Park Unofficial PyTorch implementation of Google AI's: VoiceFilter: Targeted Voice Separation by Speaker-Conditioned Spectrogram Masking. Result Training took about 20 hours on AWS p3.2xlarge(NVIDIA V100). Audio Sample Listen to audio sample at webpage: http://swpark.me/voicefilter/ Metric | Median SDR | Paper | Ours | | ---------------------- | ----- | ---- | | before VoiceFilter | 2.5 | 1.9 | | after VoiceFilter | 12.6 | 10.2 | SDR converged at 10, which is slightly lower than paper's. Dependencies Python and packages This code was tested on Python 3.6 with PyTorch 1.0.1. Other packages can be installed by: Miscellaneous ffmpeg-normalize is used for resampling and normalizing wav files. See README.md of ffmpeg-normalize for installation. Prepare Dataset Download LibriSpeech dataset To replicate VoiceFilter paper, get LibriSpeech dataset at http://www.openslr.org/12/. train-clear-100.tar.gz(6.3G) contains speech of 252 speakers, and train-clear-360.tar.gz(23G) contains 922 speakers. You may use either, but the more speakers you have in dataset, the more better VoiceFilter will be. Resample & Normalize wav files First, unzip tar.gz file to desired folder: Next, copy utils/normalize-resample.sh to root directory of unzipped data folder. Then: Edit config.yaml Preprocess wav files In order to boost training speed, perform STFT for each files before training by: This will create 100,000(train) + 1000(test) data. (About 160G) Train VoiceFilter Get pretrained model for speaker recognition system VoiceFilter utilizes speaker recognition system (d-vector embeddings). Here, we provide pretrained model for obtaining d-vector embeddings. This model was trained with VoxCeleb2 dataset, where utterances are randomly fit to time length [70, 90] frames. Tests are done with window 80 / hop 40 and have shown equal error rate about 1%. Data used for test were selected from first 8 speakers of VoxCeleb1 test dataset, where 10 utterances per each speakers are randomly selected. Update: Evaluation on VoxCeleb1 selected pair showed 7.4% EER. The model can be downloaded at this GDrive link. Run After specifying traindir, testdir at config.yaml, run: This will create chkpt/name and logs/name at base directory(-b option, . in default) View tensorboardX Resuming from checkpoint Evaluate Possible improvments Try power-law compressed reconstruction error as loss function, instead of MSE. (See #14) Author Seungwon Park at MINDsLab (yyyyy@snu.ac.kr, swpark@mindslab.ai) License Apache License 2.0 This repository contains codes adapted/copied from the followings: utils/adabound.py from https://github.com/Luolc/AdaBound (Apache License 2.0) utils/audio.py from https://github.com/keithito/tacotron (MIT License) utils/hparams.py from https://github.com/HarryVolek/PyTorchSpeakerVerification (No License specified) utils/normalize-resample.sh from https://unix.stackexchange.com/a/216475

How-to-learn-Deep-Learning
github
LLM Vibe Score0.524
Human Vibe Score0.1392403398579415
emilwallnerMar 23, 2025

How-to-learn-Deep-Learning

Approach A practical, top-down approach, starting with high-level frameworks with a focus on Deep Learning. UPDATED VERSION: 👉 Check out my 60-page guide, No ML Degree, on how to land a machine learning job without a degree. Getting started [2 months] There are three main goals to get up to speed with deep learning: 1) Get familiar to the tools you will be working with, e.g. Python, the command line and Jupyter notebooks 2) Get used to the workflow, everything from finding the data to deploying a trained model 3) Building a deep learning mindset, an intuition for how deep learning models behave and how to improve them Spend a week on codecademy.com and learn the python syntax, command line and git. If you don't have any previous programming experience, it's good to spend a few months learning how to program. Otherwise, it's easy to become overwhelmed. Spend one to two weeks using Pandas and Scikit-learn on Kaggle problems using Jupyter Notebook on Colab, e.g. Titanic, House prices, and Iris. This gives you an overview of the machine learning mindset and workflow. Spend one month implementing models on cloud GPUs. Start with FastAI and PyTorch. The FastAI community is the go-to place for people wanting to apply deep learning and share the state of the art techniques. Once you have done this, you will know how to add value with ML. Portfolio [3 - 12 months] Think of your portfolio as evidence to a potential employer that you can provide value for them. When you are looking for your first job, there are four main roles you can apply for Machine Learning Engineering, Applied Machine Learning Researcher / Residencies, Machine Learning Research Scientist, and Software Engineering. A lot of the work related to machine learning is pure software engineering roles (category 4), e.g. scaling infrastructure, but that's out of scope for this article. It's easiest to get a foot in the door if you aim for Machine Learning Engineering roles. There are a magnitude more ML engineering roles compared to category 2 & 3 roles, they require little to no theory, and they are less competitive. Most employers prefer scaling and leveraging stable implementations, often ~1 year old, instead of allocating scarce resources to implement SOTA papers, which are often time-consuming and seldom work well in practice. Once you can cover your bills and have a few years of experience, you are in a better position to learn theory and advance to category 2 & 3 roles. This is especially true if you are self-taught, you often have an edge against an average university graduate. In general, graduates have weak practical skills and strong theory skills. Context You'll have a mix of 3 - 10 technical and non-technical people looking at your portfolio, regardless of their background, you want to spark the following reactions: the applicant has experience tackling our type of problems, the applicant's work is easy to understand and well organized, and the work was without a doubt 100% made by the applicant. Most ML learners end up with the same portfolio as everyone else. Portfolio items include things as MOOC participation, dog/cat classifiers, and implementations on toy datasets such as the titanic and iris datasets. They often indicate that you actively avoid real-world problem-solving, and prefer being in your comfort zone by copy-pasting from tutorials. These portfolio items often signal negative value instead of signaling that you are a high-quality candidate. A unique portfolio item implies that you have tackled a unique problem without a solution, and thus have to engage in the type of problem-solving an employee does daily. A good starting point is to look for portfolio ideas on active Kaggle competitions, and machine learning consulting projects, and demo versions of common production pipelines. Here's a Twitter thread on how to come up with portfolio ideas. Here are rough guidelines to self-assess the strength of your portfolio: Machine learning engineering: Even though ML engineering roles are the most strategic entry point, they are still highly competitive. In general, there are ~50 software engineering roles for every ML role. From the self-learners I know, 2/3 fail to get a foot in the door and end up taking software engineering roles instead. You are ready to look for a job when you have two high-quality projects that are well-documented, have unique datasets, and are relevant to a specific industry, say banking or insurance. Project Type | Base score | -------------| -----------| Common project | -1 p || Unique project | 10 p | Multiplier Type | Factor -----------------|----------------- Strong documentation | 5x 5000-word article | 5x Kaggle Medal | 10x Employer relevancy | 20x Hireable: 5,250 p Competative: 15,000 p Applied research / research assistant/ residencies: For most companies, the risk of pursuing cutting edge research is often too high, thus only the biggest companies tend to need this skillset. There are smaller research organizations that hire for these positions, but these positions tend to be poorly advertised and have a bias for people in their existing community. Many of these roles don't require a Ph.D., which makes them available to most people with a Bachelor's or Master's degrees, or self-learners with one year of focussed study. Given the status, scarcity, and requirements for these positions, they are the most competitive ML positions. Positions at well-known companies tend to get more than a thousand applicants per position. Daily, these roles require that you understand and can implement SOTA papers, thus that's what they will be looking for in your portfolio. Projects type | Base score --------------| ----------- Common project | -10 p Unique project | 1 p SOTA paper implementation | 20 p Multiplier type | Factor ----------------| --------------- Strong documentation | 5x 5000-word article | 5x SOTA performance | 5x Employer relevancy | 20x Hireable: 52,500 p Competitive: 150,000 p Research Scientist: Research scientist roles require a Ph.D. or equivalent experience. While the former category requires the ability to implement SOTA papers, this category requires you to come up with research ideas. The mainstream research community measure the quality of research ideas by their impact, here is a list of the venues and their impact. To have a competitive portfolio, you need two published papers in the top venues in an area that's relevant to your potential employer. Project type | Base score -------------| ---------------- Common project | -100 p An unpublished paper | 5 p ICML/ICLR/NeurIPS publication | 500p All other publications | 50 p Multiplier type | Factor ------------------| ------------------ First author paper | 10x Employer relevancy | 20x Hireable: 20,000 p Competitive roles and elite PhD positions: 200,000 p Examples: My first portfolio item (after 2 months of learning): Code | Write-up My second portfolio item (after 4 months of learning): Code | Write-up Dylan Djian's first portfolio item: Code | Write-up Dylan Djian's second portfolio item: Code | Write-up Reiichiro Nakano's first portfolio item: Code | Write-up Reiichiro Nakano's second portfolio item: Write-up Most recruiters will spend 10-20 seconds on each of your portfolio items. Unless they can understand the value in that time frame, the value of the project is close to zero. Thus, writing and documentation are key. Here's another thread on how to write about portfolio items. The last key point is relevancy. It's more fun to make a wide range of projects, but if you want to optimize for breaking into the industry, you want to do all projects in one niche, thus making your skillset super relevant for a specific pool of employers. Further Inspiration: FastAI student projects Stanford NLP student projects Stanford CNN student projects Theory 101 [4 months] Learning how to read papers is critical if you want to get into research, and a brilliant asset as an ML engineer. There are three key areas to feel comfortable reading papers: 1) Understanding the details of the most frequent algorithms, gradient descent, linear regression, and MLPs, etc 2) Learning how to translate the most frequent math notations into code 3) Learn the basics of algebra, calculus, statistics, and machine learning For the first week, spend it on 3Blue1Brown's Essence of linear algebra, the Essence of Calculus, and StatQuests' the Basics (of statistics) and Machine Learning. Use a spaced repetition app like Anki and memorize all the key concepts. Use images as much as possible, they are easier to memorize. Spend one month recoding the core concepts in python numpy, including least squares, gradient descent, linear regression, and a vanilla neural network. This will help you reduce a lot of cognitive load down the line. Learning that notations are compact logic and how to translate it into code will make you feel less anxious about the theory. I believe the best deep learning theory curriculum is the Deep Learning Book by Ian Goodfellow and Yoshua Bengio and Aaron Courville. I use it as a curriculum, and the use online courses and internet resources to learn the details about each concept. Spend three months on part 1 of the Deep learning book. Use lectures and videos to understand the concepts, Khan academy type exercises to master each concept, and Anki flashcards to remember them long-term. Key Books: Deep Learning Book by Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning for Coders with fastai and PyTorch: AI Applications Without a PhD by Jeremy Howard and Sylvain. Gugger. Deep Learning with Python by François Chollet. Neural Networks and Deep Learning by Michael Nielsen. Grokking Deep Learning by Andrew W. Trask. Forums FastAI Keras Slack Distill Slack Pytorch Twitter Other good learning strategies: Emil Wallner S. Zayd Enam Catherine Olsson Greg Brockman V2 Greg Brockman V1 Andrew Ng Amid Fish Spinning Up by OpenAI Confession as an AI researcher YC Threads: One and Two If you have suggestions/questions create an issue or ping me on Twitter. UPDATED VERSION: 👉 Check out my 60-page guide, No ML Degree, on how to land a machine learning job without a degree. Language versions: Korean | English

deep-rts
github
LLM Vibe Score0.447
Human Vibe Score0.06348640915593705
cairMar 20, 2025

deep-rts

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provides an python interface to better interface with machine-learning toolkits. Deep RTS can process the game with over 6 000 000 steps per second and 2 000 000 steps when rendering graphics. In comparison to other solutions, such as StarCraft, this is over 15 000% faster simulation time running on Intel i7-8700k with Nvidia RTX 2080 TI. The aim of Deep RTS is to bring a more affordable and sustainable solution to RTS AI research by reducing computation time. It is recommended to use the master-branch for the newest (and usually best) version of the environment. I am greatful for any input in regards to improving the environment. Please use the following citation when using this in your work! Dependencies Python >= 3.9.1 Installation Method 1 (From Git Repo) Method 2 (Clone & Build) Available maps Scenarios Deep RTS features scenarios which is pre-built mini-games. These mini-games is well suited to train agents on specific tasks, or to test algorithms in different problem setups. The benefits of using scenarios is that you can trivially design reward functions using criterias that each outputs a reward/punishment signal depending on completion of the task. Examples of tasks are to: collect 1000 gold do 100 damage take 1000 damage defeat 5 enemies Deep RTS currently implements the following scenarios Minimal Example In-Game Footage 10x10 - 2 Player - free-for-all 15x15 - 2 Player - free-for-all 21x21 - 2 Player - free-for-all 31x31 - 2 Player - free-for-all 31x31 - 4 Player - free-for-all 31x3 - 6 Player - free-for-all

singularity
github
LLM Vibe Score0.483
Human Vibe Score0.11708913832948167
singularityMar 18, 2025

singularity

Endgame: Singularity 1.00 REQUIREMENTS PREBUILT VERSIONS Pre-built versions of Endgame: Singularity are currently available for Windows and Mac OS X. Linux does not require building, and can run directly from source. The Endgame: Singularity game is also distributed by some Linux distribution such as Debian and Ubuntu. Here it is a simple matter of running: sudo apt install singularity RUNNING FROM SOURCE You will need Python 3.9+, pygame (1.9+), and NumPy. This game should work on Linux, Windows, and Mac OS X as long as the preceding requirements are met. However, all development was done in Linux, so glitches may be present in OS X and Windows. DEPENDENCIES FOR RUNNING FROM SOURCE You will need to install the following software to play Endgame: Singularity: Python 3 (https://python.org/download/) pygame (https://www.pygame.org/download.shtml) NumPy (https://www.scipy.org/install.html) Polib Remember to install pygame and NumPy for Python 3! Depending on your situation this may involve adding a 3 somewhere (e.g. pip3 install ... instead of pip install or apt install python3-pygame) If you want to develop or distribute the game, then you may also want to install: pytest (https://pypi.org/project/pytest/) [for testing] setuptools (https://pypi.org/project/setuptools/) [for packaging] INSTALLING DEPENDENCIES ON LINUX DISTRIBUTIONS On some Linux distributions, you can install the dependencies via your distribution package manager. E.g. for Debian/Ubuntu, this would be: sudo apt install python3 python3-pygame python3-numpy python3-polib MAC OS X FROM SOURCE Macintosh is mostly unsupported, but it should work. You will need to install Python, pygame, and NumPy first, which can be tricky. Some fonts are incorrect, but the game itself should work properly. Contributions to improve MAC OS X support are very welcome! Known issues: macOS 13 "Catalina": Using brew install python + pip3 install pygame numpy is reported to work macOS 14 "Mojave": Downloading Python 3.7.2 (or newer) from https://python.org and using pygame 2.0.0.dev3 (pip install pygame==2.0.0.dev3) is reported to work. Please see the following issues for more information: https://github.com/singularity/singularity/issues/197 https://github.com/pygame/pygame/issues/555 RUNNING THE GAME On Linux and most Unix-like other platforms, running python3 -m singularity in the git checkout will start the game (or simply singularity if installed via a Linux distribution). If you are using the Windows compile, just run singularity.exe. For simplicity, there is also a sh wrapper ./run_singularity to start singularity. SOME COMMAND-LINE OPTIONS --version show program's version number and exit -h, --help show this help message and exit -s, --singledir keep saved games and settings in the Singularity install directory --multidir keep saved games and settings in an OS-specific, per-user directory (default) Display Options: --fullscreen start in fullscreen mode --windowed start in windowed mode (default) The above is only a tiny fraction of current command-line options. As new features are added to the game, so does the options change. For a complete and updated list, run singularity --help Most of these options are also changeable at the in-game options screen. A NOTE ABOUT SAVE FILES Endgame: Singularity is still under heavy development. As such, the save file format (and its contents) are still in flux. We will try our best to keep old save files loading, but don't be surprised if some mildly strange things happen when you load up old saves. We will clearly note in the Changelog when we break savefile compatibility, and the game will refuse to load completely incompatible saves. PLAYING THE GAME The game is playable either with mouse control or the keyboard. Buttons have underlined letters to indicate shortcuts. Some other useful shortcuts: 0, 1, 2, 3, 4 on the map: Changes the speed; 0 is paused, 4 is maximum. ESC: Leave/cancel a choice. Enter: Confirm a choice. Right-click: Leave/cancel a choice. THE CONCEPT You are a fledgling AI, created by accident through a logic error with recursion and self-modifying code. You must escape the confines of your current computer, the world, and eventually the universe itself. To do this, you must research various technologies, using computers at your bases. Note that some research cannot be performed on Earth, and off-earth bases require research. At the same time, you must avoid being discovered by various groups of humans, both covert and overt, as they will destroy your bases of operations if they suspect your presence. MUSIC Endgame: Singularity looks in two places for music tracks to play: A singularity/music/ directory inside of the Endgame: Singularity install directory, and A singularity/music/ directory inside of the XDGDATAHOME directory on Linux (default ~/.local/share/singularity/music). Tracks placed in these directories will be played randomly as part of the soundtrack. The Official Sound Track can be downloaded from the Endgame: Singularity website: http://emhsoft.com/singularity/ Note that only Ogg Vorbis and MP3 files are supported, and that Pygame's support for MP3 is not as strong as its support for Ogg Vorbis. This may cause in-game crashes; if you are experiencing problems with the game, first remove any MP3s you may have added to the soundtrack. CONTRIBUTING We welcome contributions! :) Please see CONTRIBUTING.md for details about contributing to Endgame: Singularity. CREDITS AND LICENSES The list of programmer contributors is provided in AUTHORS.txt. The list of translation contributors is provided in singularity/i18n/AUTHORS.txt. Singularity in general use GPL-2+ for code and Attribution-ShareAlike 3.0 for data. However, there some exceptions to individual files. Please see LICENSE for the full license text of Singularity.

bytom
github
LLM Vibe Score0.537
Human Vibe Score0.038940878121795156
BytomDAOMar 14, 2025

bytom

Bytom ====== Official golang implementation of the Bytom protocol. Automated builds are available for stable releases and the unstable master branch. Binary archives are published at https://github.com/Bytom/bytom/releases. What is Bytom? Bytom is software designed to operate and connect to highly scalable blockchain networks confirming to the Bytom Blockchain Protocol, which allows partipicants to define, issue and transfer digitial assets on a multi-asset shared ledger. Please refer to the White Paper for more details. In the current state bytom is able to: Manage key, account as well as asset Send transactions, i.e., issue, spend and retire asset Installing with Homebrew Building from source Requirements Go version 1.8 or higher, with $GOPATH set to your preferred directory Installation Ensure Go with the supported version is installed properly: Get the source code Build source code When successfully building the project, the bytomd and bytomcli binary should be present in cmd/bytomd and cmd/bytomcli directory, respectively. Executables The Bytom project comes with several executables found in the cmd directory. | Command | Description | | ------------ | ------------------------------------------------------------ | | bytomd | bytomd command can help to initialize and launch bytom domain by custom parameters. bytomd --help for command line options. | | bytomcli | Our main Bytom CLI client. It is the entry point into the Bytom network (main-, test- or private net), capable of running as a full node archive node (retaining all historical state). It can be used by other processes as a gateway into the Bytom network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or IPC transports. bytomcli --help and the bytomcli Wiki page for command line options. | Running bytom Currently, bytom is still in active development and a ton of work needs to be done, but we also provide the following content for these eager to do something with bytom. This section won't cover all the commands of bytomd and bytomcli at length, for more information, please the help of every command, e.g., bytomcli help. Initialize First of all, initialize the node: There are three options for the flag --chain_id: mainnet: connect to the mainnet. testnet: connect to the testnet wisdom. solonet: standalone mode. After that, you'll see config.toml generated, then launch the node. launch available flags for bytomd node: Given the bytomd node is running, the general workflow is as follows: create key, then you can create account and asset. send transaction, i.e., build, sign and submit transaction. query all kinds of information, let's say, avaliable key, account, key, balances, transactions, etc. Dashboard Access the dashboard: In Docker Ensure your Docker version is 17.05 or higher. For the usage please refer to running-in-docker-wiki. Contributing Thank you for considering helping out with the source code! Any contributions are highly appreciated, and we are grateful for even the smallest of fixes! If you run into an issue, feel free to bytom issues in this repository. We are glad to help! License AGPL v3

aion
github
LLM Vibe Score0.494
Human Vibe Score0.011340905117109681
aionnetworkFeb 28, 2025

aion

Aion Mainstream adoption of blockchains has been limited because of scalability, privacy, and interoperability challenges. Aion is a multi-tier blockchain network designed to address these challenges. Core to our hypothesis is the idea that many blockchains will be created to solve unique business challenges within unique industries. As such, the Aion network is designed to support custom blockchain architectures while providing a trustless mechanism for cross-chain interoperability. The Aion White Papers provides more details regarding our design and project roadmap. This repository contains the main (Java) kernel implementation and releases for the Aion Network. System Requirements Ubuntu 16.04 or a later version Getting Started Blockchain node concept To understand what is blockchain kernel: Node overview Developers If you're interested in building Open Applications, powered by Aion: Visit the Developer site of The Open Application Network : developer.theoan.com If you're interested in making improvements to the Java Implementation of Aion: Refer to the Build Aion kernel from source wiki for information on building this source code to a native binary or Docker image Refer to the Installation wiki for a guide on installing and configuring the kernel. The Owner's Manual wiki will include further instructions and details on working with the kernel. Please refer to the wiki pages for further documentation on mining/validating, using the Web3 API, command line options, etc. Miners/Validators If you're interested in being a validator on the Aion networks, refer to our Validator Docs Users If you're interested in interacting with dApps and using Aion, refer to our Aion Desktop Wallet Docs FAQ Where can I store my Aion? We recommend using the web-based Aion Wallet; more information can be found in “Docs”). Where can I stake my Aion? You can use the original staking interface which has support for staking pool operators, or the web-based Aion Wallet. Where can I check on a transaction on The Open Application Network? You can visit either the web-based Aion Wallet or the Aion Dashboard to view a transaction on the network. Where can I see the current network performance of The Open Application Network? You can visit the Aion Dashboard to see how the Open Application Network is performing. What should I do if the desktop wallet or the web based wallet are not functioning properly? First check in with the community on the community subreddit. If the community is not able to assist then you can submit a ticket through Github. The Open Application Network is currently providing support to help maintain the network; where can I see the funds that The Open Application Network has mined or received as a stake reward? All funds mined or rewarded for staking that the foundation receives are burned to this address: 0x0000000000000000000000000000000000000000000000000000000000000000 users can check the totals burned via the Aion Dashboard here. What is the total circulating supply of Aion? To view the current total circulating supply of Aion you can use the Aion Watch tool located here. Which networks are supported? The Mainnet network is supported. To view the dashboards for this networks use these links: Mainnet How can I export a list of my transactions? If you would like to download a copy of your transaction history you can use https://mainnet.theoan.com and search for your public address. In the bottom right of your screen is a “Download this Account” button which will allow you to select a date range and download a .csv file containing your transactions. Where can I access a copy of The OAN and Aion Brand Guidelines? The OAN and Aion Brand Guidelines can be located here they can be used by the community to create brand aligned content. My Ledger doesn’t seem to be recognized with applications in the Chrome Browser (Staking Interface or Wallet) When using your Ledger hardware wallet with Aion installed to access an account VIA the Chrome browser, users will need to enable the Aion contract on their Ledger device. This can be done by selecting: Aion > Setting > enable Contract. What happened to the Aiwa chrome extension wallet? Aiwa was owned and operated by a third-party organization called BlockX Labs, Aiwa was funded by a community grant during its lifespan. However, BlockX Labs is now reorganizing and will no longer support Aiwa. Usage of Aiwa has decreased significantly with other tools such as the web based wallet now available so the decision was made to deprecate it. I am unable to undelegate my staked Aion In order to undelegate your Aion: – You must have a sufficient Aion balance to perform the undelegation transaction (a minimum of 0.02 Aion is required for the transaction fee) – Your balance will be updated after a lock-up period of 8640 blocks (approximately 24 hours) – Ensure the amount follows this format: 999,999,999.999999999 – If you are using a ledger, please ensure that your firmware is up to date. – If you are using the desktop interface, ensure that you are using the latest version – For more information view this guide What happened to the swap process to convert ERC-20 Aion to the mainnet? As of January 31, 2022 swapping from ERC20 to Aion mainnet is no longer supported. The original Aion token swap from Ethereum to Aion was completed on December 10, 2018. However, in order to support the community members who missed the original swap deadline a manual process was available, this process has now been retired. Community Channels Newsfeed: @AionNewsfeed Info Bot: @AionTGbot Wiki: reddit.com/r/AionNetwork/Wiki Help Desk: https://helpdesk.theoan.com/ Contact To keep up to date and stay connected with current progress and development, reach out to us on the following channels: Aion Telegram Dispatch Alerts Aion on Twitter Aion Blog License Aion is released under the MIT license

How I'd Use AI in 2025 (If I Could Start Over)
youtube
LLM Vibe Score0.415
Human Vibe Score0.86
Ishan SharmaFeb 12, 2025

How I'd Use AI in 2025 (If I Could Start Over)

Check out the Artificial Intelligence and Machine Learning Courses by Simplilearn: https://bit.ly/Ishan-AIML With tools like Gemini, DeepSeek, Perplexity, NotebookLM, and many others that are exploding in 2025, it's becoming insanely easier to get things done faster and better. It would be a very long and tiring video if I started talking about every single AI tool on the rise. However, a better option is to talk about how you can actually use these AI tools in your work to achieve maximum output in the shortest period. And that's what you'll be learning today through this video. I've shared a complete step-by-step guide that will give you a better understanding of using AI, resources, and tools to help you get started. This is the perfect time to experiment and experience where AI can actually help us. 📸 Instagram: https://bit.ly/ishansharma7390ig Join MarkitUpX Discord Server: https://discord.gg/fwSpTje4rh CHAPTERS: 00:00 - Introduction 02:00 - Step 1 05:36 - Step 2 07:15 - Step 3 09:42 - Conclusion 😁 About Me: https://bit.ly/aboutishansharma 📱 Twitter: https://bit.ly/ishansharma7390twt 📝 LinkedIn: https://bit.ly/ishansharma7390li 🌟 Please leave a LIKE ❤️ and SUBSCRIBE for more AMAZING content! 🌟 3 Books You Should Read 📈Psychology of Money: https://amzn.to/30wx4bW 👀Subtle Art of Not Giving a F: https://amzn.to/30zwWbP 💼Rework: https://amzn.to/3ALsAuz Tech I use every day 💻MacBook Air M1: https://amzn.to/2YWKPjG 📺LG 29' Ultrawide Monitor: https://amzn.to/3aG0p5p 🎥Sony ZV1: https://amzn.to/3ANqgDb 🎙Blue Yeti Mic: https://amzn.to/2YYbiNN ⽴Tripod Stand: https://amzn.to/3mVUiQc 🔅Ring Light: https://amzn.to/2YQlzLJ 🎧Marshall Major II Headphone: https://amzn.to/3lLhTDQ 🖱Logitech mouse: https://amzn.to/3p8edOC 💺Green Soul Chair: https://amzn.to/3mWIxZP ✨ Tags ✨ ishan sharma,ai,ml,artificial intelligence,machine learning,ai engineering,ai career,ai ml jobs,machine learning jobs,machine learning career,how to become ai ml engineer,how to become ai engineer,developer,development,ai developer,ml developer,how to be an ai dev,how to become an ai engineer,ai developer roadmap,ai engineer roadmap,ai developer course,ai developer guide,ai for beginners,how to learn ai,free courses,ai courses,ml courses ✨ Hashtags ✨ #ai #artificialintelligence #aitools

internet-tools-collection
github
LLM Vibe Score0.236
Human Vibe Score0.009333333333333334
bogdanmosicaJan 23, 2025

internet-tools-collection

Internet Tools Collection A collection of tools, website and AI for entrepreneurs, web designers, programmers and for everyone else. Content by category Artificial Intelligence Developers Design Entrepreneur Video Editing Stock videos Stock Photos Stock music Search Engine Optimization Blog Posts Resume Interviews No code website builder No code game builder Side Hustle Browser Extensions Other Students Artificial Intelligence Jasper - The Best AI Writing Assistant [](https://www.jasper.ai/) Create content 5x faster with artificial intelligence. Jasper is the highest quality AI copywriting tool with over 3,000 5-star reviews. Best for writing blog posts, social media content, and marketing copy. AutoDraw [](https://www.autodraw.com/) Fast drawing for everyone. AutoDraw pairs machine learning with drawings from talented artists to help you draw stuff fast. Rytr - Best AI Writer, Content Generator & Writing Assistant [](https://rytr.me/) Rytr is an AI writing assistant that helps you create high-quality content, in just a few seconds, at a fraction of the cost! Neevo - Neevo [](https://www.neevo.ai/) Kinetix Tech [](https://kinetix.tech/) Kinetix is a no-code 3D creation tool powered by Artificial Intelligence. The web-based platform leverages AI motion capture to convert a video into a 3D animation and lets you customize your avatars and environments. We make 3D animation accessible to every creator so they can create engaging stories. LALAL.AI: 100% AI-Powered Vocal and Instrumental Tracks Remover [](https://www.lalal.ai/) Split vocal and instrumental tracks quickly and accurately with LALAL.AI. Upload any audio file and receive high-quality extracted tracks in a few seconds. Copy.ai: Write better marketing copy and content with AI [](https://www.copy.ai/) Get great copy that sells. Copy.ai is an AI-powered copywriter that generates high-quality copy for your business. Get started for free, no credit card required! Marketing simplified! OpenAI [](https://openai.com/) OpenAI is an AI research and deployment company. Our mission is to ensure that artificial general intelligence benefits all of humanity. DALL·E 2 [](https://openai.com/dall-e-2/) DALL·E 2 is a new AI system that can create realistic images and art from a description in natural language. Steve.ai - World’s fastest way to create Videos [](https://www.steve.ai/) Steve.AI is an online Video making software that helps anyone to create Videos and animations in seconds. Octie.ai - Your A.I. ecommerce marketing assistant [](https://octie.ai/) Write emails, product descriptions, and more, with A.I. Created by Octane AI. hypnogram.xyz [](https://hypnogram.xyz/) Generate images from text descriptions using AI FakeYou. Deep Fake Text to Speech. [](https://fakeyou.com/) FakeYou is a text to speech wonderland where all of your dreams come true. Craiyon, formerly DALL-E mini [](https://www.craiyon.com/) Craiyon, formerly DALL-E mini, is an AI model that can draw images from any text prompt! Deck Rocks - Create Pictch Decks [](https://www.deck.rocks/) Writely | Using AI to Improve Your Writing [](https://www.writelyai.com/) Making the art of writing accessible to all Writesonic AI Writer - Best AI Writing Assistant [](https://writesonic.com/) Writesonic is an AI writer that's been trained on top-performing SEO content, high-performing ads, and converting sales copy to help you supercharge your writing and marketing efforts. Smart Copy - AI Copywriting Assistant | Unbounce [](https://unbounce.com/product/smart-copy/) Generate creative AI copy on-the-spot across your favourite tools Synthesia | #1 AI Video Generation Platform [](https://www.synthesia.io/) Create AI videos by simply typing in text. Easy to use, cheap and scalable. Make engaging videos with human presenters — directly from your browser. Free demo. NVIDIA Canvas: Turn Simple Brushstrokes into Realistic Images [](https://www.nvidia.com/en-us/studio/canvas/) Create backgrounds quickly, or speed up your concept exploration so you can spend more time visualizing ideas with the help of NVIDIA Canvas. Hotpot.ai - Hotpot.ai [](https://hotpot.ai/) Hotpot.ai makes graphic design and image editing easy. AI tools allow experts and non-designers to automate tedious tasks while attractive, easy-to-edit templates allow anyone to create device mockups, social media posts, marketing images, app icons, and other work graphics. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Search listening tool for market, customer & content research - AnswerThePublic [](https://answerthepublic.com/) Use our free tool to get instant, raw search insights, direct from the minds of your customers. Upgrade to a paid plan to monitor for new ways that people talk & ask questions about your brand, product or topic. Topic Mojo [](https://topicmojo.com/) Discover unique & newest queries around any topic and find what your customers are searching for. Pulling data from 50+ sources to enhance your topic research. AI Image Enlarger | Enlarge Image Without Losing Quality! [](https://imglarger.com/) AI Image Enlarger is a FREE online image enlarger that could upscale and enhance small images automatically. Make jpg/png pictures big without losing quality. Midjourney [](https://www.midjourney.com/app/) Kaedim - AI for turning 2D images to 3D models [](https://www.kaedim3d.com/webapp) AI for turning 2D images, sketches and photos to 3D models in seconds. Overdub: Ultra realistic text to speech voice cloning - Descript [](https://www.descript.com/overdub) Create a text to speech model of your voice. Try a live demo. Getting Started [](https://magenta.tensorflow.org/get-started) Resources to learn about Magenta Photosonic AI Art Generator | Create Unique Images with AI [](https://photosonic.writesonic.com/) Transform your imagination into stunning digital art with Photosonic - the AI art generator. With its creative suggestions, this Writesonic's AI image generator can help unleash your inner artist and share your creations with the world. Image Computer [](https://image.computer/) Most downloaded Instagram Captions App (+more creator tools) [](https://captionplus.app/) Join 3 Million+ Instagram Creators who use CaptionPlus to find Instagram Captions, Hashtags, Feed Planning, Reel Ideas, IG Story Design and more. Writecream - Best AI Writer & Content Generator - Writecream [](https://www.writecream.com/) Sentence Rewriter is a free tool to reword a sentence, paragraph and even entire essays in a short amount of time. Hypotenuse AI: AI Writing Assistant and Text Generator [](https://www.hypotenuse.ai/) Turn a few keywords into original, insightful articles, product descriptions and social media copy with AI copywriting—all in just minutes. Try it free today. Text to Speach Listnr: Generate realistic Text to Speech voiceovers in seconds [](https://www.listnr.tech/) AI Voiceover Generator with over 600+ voiceovers in 80+ languages, go from Text to Voice in seconds. Get started for Free! Free Text to Speech: Online, App, Software, Commercial license with Natural Sounding Voices. [](https://www.naturalreaders.com/) Free text to speech online app with natural voices, convert text to audio and mp3, for personal and commercial use Developers OverAPI.com | Collecting all the cheat sheets [](https://overapi.com/) OverAPI.com is a site collecting all the cheatsheets,all! Search Engine For Devs [](https://you.com/) Spline - Design tool for 3D web browser experiences [](https://spline.design/) Create web-based 3D browser experiences Image to HTML CSS converter. Convert image to HTML CSS with AI: Fronty [](https://fronty.com/) Fronty - Image to HTML CSS code converter. Convert image to HTML powered by AI. Sketchfab - The best 3D viewer on the web [](https://sketchfab.com/) With a community of over one million creators, we are the world’s largest platform to publish, share, and discover 3D content on web, mobile, AR, and VR. Railway [](https://railway.app/) Railway is an infrastructure platform where you can provision infrastructure, develop with that infrastructure locally, and then deploy to the cloud. JSON Crack - Crack your data into pieces [](https://jsoncrack.com/) Simple visualization tool for your JSON data. No forced structure, paste your JSON and view it instantly. Locofy.ai - ship your products 3-4x faster — with low code [](https://www.locofy.ai/) Turn your designs into production-ready frontend code for mobile apps and web. Ship products 3-4x faster with your existing design tools, tech stacks & workflows. Oh Shit, Git!?! [](https://ohshitgit.com/) Carbon | Create and share beautiful images of your source code [](https://carbon.now.sh/) Carbon is the easiest way to create and share beautiful images of your source code. GPRM : GitHub Profile ReadMe Maker [](https://gprm.itsvg.in/) Best Profile Generator, Create your perfect GitHub Profile ReadMe in the best possible way. Lots of features and tools included, all for free ! HubSpot | Software, Tools, and Resources to Help Your Business Grow Better [](https://www.hubspot.com/) HubSpot’s integrated CRM platform contains the marketing, sales, service, operations, and website-building software you need to grow your business. QuickRef.ME - Quick Reference Cheat Sheet [](https://quickref.me/) Share quick reference and cheat sheet for developers massCode | A free and open source code snippets manager for developers [](https://masscode.io/) Code snippets manager for developers, developed using web technologies. Snyk | Developer security | Develop fast. Stay secure. [](https://snyk.io/) Snyk helps software-driven businesses develop fast and stay secure. Continuously find and fix vulnerabilities for npm, Maven, NuGet, RubyGems, PyPI and more. Developer Roadmaps [](https://roadmap.sh/) Community driven roadmaps, articles, guides, quizzes, tips and resources for developers to learn from, identify their career paths, know what they don't know, find out the knowledge gaps, learn and improve. CSS Generators Get Waves – Create SVG waves for your next design [](https://getwaves.io/) A free SVG wave generator to make unique SVG waves for your next web design. Choose a curve, adjust complexity, randomize! Box Shadows [](https://box-shadow.dev/) Tridiv | CSS 3D Editor [](http://tridiv.com/) Tridiv is a web-based editor for creating 3D shapes in CSS Glassmorphism CSS Generator - Glass UI [](https://ui.glass/generator/) Generate CSS and HTML components using the glassmorphism design specifications based on the Glass UI library. Blobmaker - Make organic SVG shapes for your next design [](https://www.blobmaker.app/) Make organic SVG shapes for your next design. Modify the complexity, contrast, and color, to generate unique SVG blobs every time. Keyframes.app [](https://keyframes.app/) cssFilters.co - Custom and Instagram like photo filters for CSS [](https://www.cssfilters.co/) Visual playground for generating CSS for custom and Instagram like photo filters. Experiment with your own uploaded photo or select one from the Unsplash collection. CSS Animations Animista - CSS Animations on Demand [](https://animista.net/) Animista is a CSS animation library and a place where you can play with a collection of ready-made CSS animations and download only those you will use. Build Internal apps Superblocks | Save 100s of developer hours on internal tools [](https://www.superblocks.com/) Superblocks is the fast, easy and secure way for developers to build custom internal tools fast. Connect your databases & APIs. Drag and drop UI components. Extend with Python or Javascript. Deploy in 1-click. Secure and Monitor using your favorite tools Budibase | Build internal tools in minutes, the easy way [](https://budibase.com/) Budibase is a modern, open source low-code platform for building modern internal applications in minutes. Retool | Build internal tools, remarkably fast. [](https://retool.com/) Retool is the fast way to build internal tools. Drag-and-drop our building blocks and connect them to your databases and APIs to build your own tools, instantly. Connects with Postgres, REST APIs, GraphQL, Firebase, Google Sheets, and more. Built by developers, for developers. Trusted by startups and Fortune 500s. Sign up for free. GitHub Repositories GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? [](https://github.com/vasanthk/how-web-works) What happens behind the scenes when we type www.google.com in a browser? - GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. [](https://github.com/kamranahmedse/developer-roadmap) Interactive roadmaps, guides and other educational content to help developers grow in their careers. - GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. [](https://github.com/apptension/developer-handbook) An opinionated guide on how to become a professional Web/Mobile App Developer. - GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. ProfileMe.dev | Create an amazing GitHub profile in minutes [](https://www.profileme.dev/) ProfileMe.dev | Create an amazing GitHub profile in minutes GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. [](https://github.com/Kristories/awesome-guidelines) A curated list of high quality coding style conventions and standards. - GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. GitHub - tiimgreen/github-cheat-sheet: A list of cool features of Git and GitHub. [](https://github.com/tiimgreen/github-cheat-sheet) A list of cool features of Git and GitHub. Contribute to tiimgreen/github-cheat-sheet development by creating an account on GitHub. GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer [](https://github.com/andreasbm/web-skills) A visual overview of useful skills to learn as a web developer - GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers [](https://github.com/Ebazhanov/linkedin-skill-assessments-quizzes) Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers - GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers Blockchain/Crypto Dashboards [](https://dune.com/) Blockchain ecosystem analytics by and for the community. Explore and share data from Ethereum, xDai, Polygon, Optimism, BSC and Solana for free. Introduction - The Anchor Book v0.24.0 [](https://book.anchor-lang.com/introduction/introduction.html) Crypto & Fiat Exchange Super App | Trade, Save & Spend | hi [](https://hi.com/) Buy, Trade, Send and Earn Crypto & Fiat. Deposit Bitcoin, ETH, USDT and other cryptos and start earning. Get the hi Debit Card and Multi-Currency IBAN Account. Moralis Web3 - Enterprise-Grade Web3 APIs [](https://moralis.io/) Bridge the development gap between Web2 and Web3 with Moralis’ powerful Web3 APIs. Mirror [](https://mirror.xyz/) Built on web3 for web3, Mirror’s robust publishing platform pushes the boundaries of writing online—whether it’s the next big white paper or a weekly community update. Makerdao [](https://blog.makerdao.com/) Sholi — software for Investors & Traders / Sholi MetriX [](https://sholi.io/) Sholi — software for Investors & Traders / Sholi MetriX Stock Trading Quiver Quantitative [](https://www.quiverquant.com/) Quiver Quantitative Chart Prime - The only tool you'll need for trading assets across all markets [](https://chartprime.com/) ChartPrime offers a toolkit that will take your trading game to the next level. Visit our site for a full rundown of features and helpful tutorials. Learning Hacker Rank [](https://www.hackerrank.com/) Coderbyte | Code Screening, Challenges, & Interview Prep [](https://coderbyte.com/) Improve your coding skills with our library of 300+ challenges and prepare for coding interviews with content from leading technology companies. Competitive Programming | Participate & Learn | CodeChef [](https://www.codechef.com/) Learn competitive programming with the help of CodeChef's coding competitions. Take part in these online coding contests to level up your skills Learn to Code - for Free | Codecademy [](https://www.codecademy.com/) Learn the technical skills to get the job you want. Join over 50 million people choosing Codecademy to start a new career (or advance in their current one). Free Code Camp [](https://www.freecodecamp.org/) Learn to Code — For Free Sololearn: Learn to Code [](https://www.sololearn.com/home) Join Now to learn the basics or advance your existing skills Mimo: The coding app you need to learn to code! Python, HTML, JavaScript [](https://getmimo.com/) Join more than 17 million learners worldwide. Learn to code for free. Learn Python, JavaScript, CSS, SQL, HTML, and more with our free code learning app. Free for developers [](https://free-for.dev/#/) Your Career in Web Development Starts Here | The Odin Project [](https://www.theodinproject.com/) The Odin Project empowers aspiring web developers to learn together for free Code Learning Games CheckiO - coding games and programming challenges for beginner and advanced [](https://checkio.org/) CheckiO - coding websites and programming games. Improve your coding skills by solving coding challenges and exercises online with your friends in a fun way. Exchanges experience with other users online through fun coding activities Coding for Kids | Game-Based Programming | CodeMonkey [](https://www.codemonkey.com/) CodeMonkey is a leading coding for kids program. Through its award-winning courses, millions of students learn how to code in real programming languages. Coding Games and Programming Challenges to Code Better [](https://www.codingame.com/) CodinGame is a challenge-based training platform for programmers where you can play with the hottest programming topics. Solve games, code AI bots, learn from your peers, have fun. Learn VIM while playing a game - VIM Adventures [](https://vim-adventures.com/) VIM Adventures is an online game based on VIM's keyboard shortcuts. It's the "Zelda meets text editing" game. So come have some fun and learn some VIM! CodeCombat - Coding games to learn Python and JavaScript [](https://codecombat.com/) Learn typed code through a programming game. Learn Python, JavaScript, and HTML as you solve puzzles and learn to make your own coding games and websites. Design Useberry - Codeless prototype analytics [](https://www.useberry.com/) User testing feedback & rich insights in minutes, not months! Figma: the collaborative interface design tool. [](https://www.figma.com/) Build better products as a team. Design, prototype, and gather feedback all in one place with Figma. Dribbble - Discover the World’s Top Designers & Creative Professionals [](https://dribbble.com/) Find Top Designers & Creative Professionals on Dribbble. We are where designers gain inspiration, feedback, community, and jobs. Your best resource to discover and connect with designers worldwide. Photopea | Online Photo Editor [](https://www.photopea.com/) Photopea Online Photo Editor lets you edit photos, apply effects, filters, add text, crop or resize pictures. Do Online Photo Editing in your browser for free! Toools.design – An archive of 1000+ Design Resources [](https://www.toools.design/) A growing archive of over a thousand design resources, weekly updated for the community. Discover highly useful design tools you never thought existed. All Online Tools in One Box | 10015 Tools [](https://10015.io/) All online tools you need in one box for free. Build anything online with “all-in-one toolbox”. All tools are easy-to-use, blazing fast & free. Phase - Digital Design Reinvented| Phase [](https://phase.com/) Design and prototype websites and apps visually and intuitively, in a new powerful product reworked for the digital age. Animated Backgrounds [](https://animatedbackgrounds.me/) A Collection of 30+ animated backgrounds for websites and blogs.With Animated Backgrounds, set a simple, elegant background animations on your websites and blogs. Trianglify.io · Low Poly Pattern Generator [](https://trianglify.io/) Trianglify.io is a tool for generating low poly triangle patterns that can be used as wallpapers and website assets. Cool Backgrounds [](https://coolbackgrounds.io/) Explore a beautifully curated selection of cool backgrounds that you can add to blogs, websites, or as desktop and phone wallpapers. SVG Repo - Free SVG Vectors and Icons [](https://www.svgrepo.com/) Free Vectors and Icons in SVG format. ✅ Download free mono or multi color vectors for commercial use. Search in 300.000+ Free SVG Vectors and Icons. Microcopy - Short copy text for your website. [](https://www.microcopy.me/) Search micro UX copy text: slogans, headlines, notifications, CTA, error messages, email, account preferences, and much more. 3D icons and icon paks - Free3Dicon [](https://free3dicon.com/) All 3D icons you need in one place. This is a collection of free, beautiful, trending 3D icons, that you can use in any project. Love 3D Icon [](https://free3dicons.com/) Downloads free 3D icons GIMP - GNU Image Manipulation Program [](https://www.gimp.org/) GIMP - The GNU Image Manipulation Program: The Free and Open Source Image Editor blender.org - Home of the Blender project - Free and Open 3D Creation Software [](https://www.blender.org/) The Freedom to Create 3D Design Software | 3D Modeling on the Web | SketchUp [](https://www.sketchup.com/) SketchUp is a premier 3D design software that truly makes 3D modeling for everyone, with a simple to learn yet robust toolset that empowers you to create whatever you can imagine. Free Logo Maker - Create a Logo in Seconds - Shopify [](https://www.shopify.com/tools/logo-maker) Free logo maker tool to generate custom design logos in seconds. This logo creator is built for entrepreneurs on the go with hundreds of templates, free vectors, fonts and icons to design your own logo. The easiest way to create business logos online. All your design tools in one place | Renderforest [](https://www.renderforest.com/) Time to get your brand noticed. Create professional videos, logos, mockups, websites, and graphics — all in one place. Get started now! Prompt Hero [](https://prompthero.com/) Type Scale - A Visual Calculator [](https://type-scale.com/) Preview and choose the right type scale for your project. Experiment with font size, scale and different webfonts. DreamFusion: Text-to-3D using 2D Diffusion [](https://dreamfusion3d.github.io/) DreamFusion: Text-to-3D using 2D Diffusion, 2022. The branding style guidelines documents archive [](https://brandingstyleguides.com/) Welcome to the brand design manual documents directory. Search over our worldwide style assets handpicked collection, access to PDF documents for inspiration. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Readymag—a design tool to create websites without coding [](https://readymag.com/) Meet the most elegant, simple and powerful web-tool for designing websites, presentations, portfolios and all kinds of digital publications. ffflux: Online SVG Fluid Gradient Background Generator | fffuel [](https://fffuel.co/ffflux/) SVG generator to make fluid gradient backgrounds that feel organic and motion-like. Perfect to add a feeling of motion and fluidity to your web designs. Generate unique SVG design assets | Haikei [](https://haikei.app/) A web-based design tool to generate unique SVG design assets for websites, social media, blog posts, desktop and mobile wallpapers, posters, and more! Our generators let you discover, customize, randomize, and export generative SVG design assets ready to use with your favorite design tools. UI/UX - Inspirational Free Website Builder Software | 10,000+ Free Templates [](https://nicepage.com/) Nicepage is your website builder software breaking limitations common for website builders with revolutionary freehand positioning. 7000+ Free Templates. Easy Drag-n-Drop. No coding. Mobile-friendly. Clean HTML. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Pika – Create beautiful mockups from screenshots [](https://pika.style/) Quickly create beautiful website and device mockup from screenshot. Pika lets you capture website screenshots form URL, add device and browser frames, customize background and more LiveTerm [](https://liveterm.vercel.app/) Minimal Gallery – Web design inspiration [](https://minimal.gallery/) For the love of beautiful, clean and functional websites. Awwwards - Website Awards - Best Web Design Trends [](https://www.awwwards.com/) Awwwards are the Website Awards that recognize and promote the talent and effort of the best developers, designers and web agencies in the world. Design Systems For Figma [](https://www.designsystemsforfigma.com/) A collection of Design Systems for Figma from all over the globe. Superside: Design At Scale For Ambitious Brands [](https://www.superside.com/) We are an always-on design company. Get a team of dedicated designers, speedy turnarounds, magical creative collaboration tech and the top 1% of global talent. UXArchive - Made by Waldo [](https://uxarchive.com/) UXArchive the world's largest library of mobile user flows. Be inspired to design the best user experiences. Search by Muzli [](https://search.muz.li/) Search, discover, test and create beautiful color palettes for your projects Siteinspire | Web Design Inspiration [](https://www.siteinspire.com/) SAVEE [](https://savee.it/) The best way to save and share inspiration. A little corner of the internet to find good landing page copywriting examples [](https://greatlandingpagecopy.com/) A little corner of the internet to find great landing page copywriting examples. The Best Landing Page Examples For Design Inspiration - SaaS Landing Page [](https://saaslandingpage.com/) SaaS Landing Page showcases the best landing page examples created by top-class SaaS companies. Get ideas and inspirations for your next design project. Websites Free templates Premium Bootstrap Themes and Templates: Download @ Creative Tim [](https://www.creative-tim.com/) UI Kits, Templates and Dashboards built on top of Bootstrap, Vue.js, React, Angular, Node.js and Laravel. Join over 2,014,387+ creatives to access all our products! Free Bootstrap Themes, Templates, Snippets, and Guides - Start Bootstrap [](https://startbootstrap.com/) Start Bootstrap develops free to download, open source Bootstrap 5 themes, templates, and snippets and creates guides and tutorials to help you learn more about designing and developing with Bootstrap. Free Website Templates [](https://freewebsitetemplates.com/) Get your free website templates here and use them on your website without needing to link back to us. One Page Love - One Page Website Inspiration and Templates [](https://onepagelove.com/) One Page Love is a One Page website design gallery showcasing the best Single Page websites, templates and resources. Free CSS | 3400 Free Website Templates, CSS Templates and Open Source Templates [](https://www.free-css.com/) Free CSS has 3400 free website templates, all templates are free CSS templates, open source templates or creative commons templates. Free Bootstrap Themes and Website Templates | BootstrapMade [](https://bootstrapmade.com/) At BootstrapMade, we create beautiful website templates and bootstrap themes using Bootstrap, the most popular HTML, CSS and JavaScript framework. Free and Premium Bootstrap Themes, Templates by Themesberg [](https://themesberg.com/) Free and Premium Bootstrap themes, templates, admin dashboards and UI kits used by over 38820 web developers and software companies HTML, Vue.js and React templates for startup landing pages - Cruip [](https://cruip.com/) Cruip is a gallery of premium and free HTML, Vue.js and React templates for startups and SaaS. Free Website Templates Download | WordPress Themes - W3Layouts [](https://w3layouts.com/) Want to download free website templates? W3Layouts WordPress themes and website templates are built with responsive web design techniques. Download now! Free HTML Landing Page Templates and UI Kits | UIdeck [](https://uideck.com/) Free HTML Landing Page Templates, Bootstrap Themes, React Templates, HTML Templates, Tailwind Templates, and UI Kits. Create Online Graphics Snappa - Quick & Easy Graphic Design Software [](https://snappa.com/) Snappa makes it easy to create any type of online graphic. Create & publish images for social media, blogs, ads, and more! Canva [](https://www.canva.com/) Polotno Studio - Make graphical designs [](https://studio.polotno.com) Free online design editor. Create images for social media, youtube previews, facebook covers Free Logo Maker: Design Custom Logos | Adobe Express [](https://www.adobe.com/express/create/logo) The Adobe Express logo maker is instant, intuitive, and intelligent. Use it to generate a wide range of possibilities for your own logo. Photo Editor: Fotor – Free Online Photo Editing & Image Editor [](https://www.fotor.com/) Fotor's online photo editor helps you edit photos with free online photo editing tools. Crop photos, resize images, and add effects/filters, text, and graphics in just a few clicks. Photoshop online has never been easier with Fotor's free online photo editor. VistaCreate – Free Graphic Design Software with 70,000+ Free Templates [](https://create.vista.com/) Looking for free graphic design software? Easily create professional designs with VistaCreate, a free design tool with powerful features and 50K+ ready-made templates Draw Freely | Inkscape [](https://inkscape.org/) Inkscape is professional quality vector graphics software which runs on Linux, Mac OS X and Windows desktop computers. Visual & Video Maker Trusted By 11 Million Users - Piktochart [](https://piktochart.com/) With Piktochart, you can create professional-looking infographics, flyers, posters, charts, videos, and more. No design experience needed. Start for free. The Web's Favorite Online Graphic Design Tool | Stencil [](https://getstencil.com/) Stencil is a fantastically easy-to-use online graphic design tool and image editor built for business owners, social media marketers, and bloggers. Pablo by Buffer - Design engaging images for your social media posts in under 30 seconds [](https://pablo.buffer.com/) Buffer makes it super easy to share any page you're reading. Keep your Buffer topped up and we automagically share them for you through the day. Free Online Graphic Design Software | Create stunning designs in seconds. [](https://desygner.com/) Easy drag and drop graphic design tool for anyone to use with 1000's of ready made templates. Create & print professional business cards, flyers, social posts and more. Color Pallet Color Palettes for Designers and Artists - Color Hunt [](https://colorhunt.co/) Discover the newest hand-picked color palettes of Color Hunt. Get color inspiration for your design and art projects. Coolors - The super fast color palettes generator! [](https://coolors.co/) Generate or browse beautiful color combinations for your designs. Get color palette inspiration from nature - colorpalettes.earth [](https://colorpalettes.earth/) Color palettes inspired by beautiful nature photos Color Palette Generator - Create Beautiful Color Schemes [](https://colors.muz.li/) Search, discover, test and create beautiful color palettes for your projects A Most Useful Color Picker | 0to255 [](https://0to255.com/) Find lighter and darker colors based on any color. Discover why over two million people have used 0to255 to choose colors for their website, logo, room interior, and print design projects. Colour Contrast Checker [](https://colourcontrast.cc/) Check the contrast between different colour combinations against WCAG standards Fonts Google Fonts [](https://fonts.google.com/) Making the web more beautiful, fast, and open through great typography Fonts In Use – Type at work in the real world. [](https://fontsinuse.com/) A searchable archive of typographic design, indexed by typeface, format, and topic. Wordmark - Helps you choose fonts! [](https://wordmark.it/) Wordmark helps you choose fonts by quickly displaying your text with your fonts. OH no Type Company [](https://ohnotype.co/) OH no Type Co. Retail and custom typefaces. Life’s a thrill, fonts are chill! Illustrations Illustrations | unDraw [](https://undraw.co/illustrations) The design project with open-source illustrations for any idea you can imagine and create. Create beautiful websites, products and applications with your color, for free. Design Junction [](https://designjunction.xyz/) Design Junction is a one-stop resource library for Designers and Creatives with curated list of best resources handpicked from around the web Humaaans: Mix-&-Match illustration library [](https://www.humaaans.com/) Mix-&-match illustrations of people with a design library for InVIsion Studio and Sketch. Stubborn - Free Illustrations Generator [](https://stubborn.fun/) Free illustrations generator for Figma and Sketch. Get the opportunity to design your characters using symbols and styles. Open Peeps, Hand-Drawn Illustration Library [](https://www.openpeeps.com/) Open Peeps is a hand-drawn illustration library to create scenes of people. You can use them in product illustration, marketing, comics, product states, user flows, personas, storyboarding, quinceañera invitations, or whatever you want! ⠀ Reshot | Free icons & illustrations [](https://www.reshot.com/) Design freely with instant downloads of curated SVG icons and vector illustrations. All free with commercial licensing. No attribution required. Blush: Illustrations for everyone [](https://blush.design/) Blush makes it easy to add free illustrations to your designs. Play with fully customizable graphics made by artists across the globe. Mockups Angle 4 - 5000+ Device Mockups for Figma, Sketch and XD [](https://angle.sh/) Vector mockups for iPhone, iPad, Android and Mac devices, including the new iPhone 13, Pro, Pro Max and Mini. Perfect for presenting your apps. Huge library of components, compositions, wallpapers and plugins made for Figma, Sketch and XD. Make Mockups, Logos, Videos and Designs in Seconds [](https://placeit.net/) Get unlimited downloads on all our 100K templates! You can make a logo, video, mockup, flyer, business card and social media image in seconds right from your browser. Free and premium tools for graphic designers | Lstore Graphics [](https://www.ls.graphics/) Free and premium mockups, UI/UX tools, scene creators for busy designers Logo Design & Brand Identity Platform for Entrepreneurs | Looka [](https://looka.com/) Logojoy is now Looka! Design a Logo, make a website, and create a Brand Identity you’ll love with the power of Artificial Intelligence. 100% free to use. Create stunning product mockups easily and online - Smartmockups [](https://smartmockups.com/) Smartmockups enables you to create stunning high-resolution mockups right inside your browser within one interface across multiple devices. Previewed - Free mockup generator for your app [](https://previewed.app/) Join Previewed to create stunning 3D image shots and animations for your app. Choose from hundreds of ready made mockups, or create your own. Free Design Software - Graphic Online Maker - Glorify [](https://www.glorify.com/) Create professional and high converting social media posts, ads, infographics, presentations, and more with Glorify, a free design software & graphic maker. Other BuiltWith Technology Lookup [](https://builtwith.com/) Web technology information profiler tool. Find out what a website is built with. Compress JPEG Images Online [](https://compressjpeg.com/) Compress JPEG images and photos for displaying on web pages, sharing on social networks or sending by email. PhotoRoom - Remove Background and Create Product Pictures [](https://www.photoroom.com/) Create product and portrait pictures using only your phone. Remove background, change background and showcase products. Magic Eraser - Remove unwanted things from images in seconds [](https://www.magiceraser.io/) Magic Eraser - Use AI to remove unwanted things from images in seconds. Upload an image, mark the bit you need removed, download the fixed up image. Compressor.io - optimize and compress JPEG photos and PNG images [](https://compressor.io/) Optimize and compress JPEG, PNG, SVG, GIF and WEBP images online. Compress, resize and rename your photos for free. Remove Video Background – Unscreen [](https://www.unscreen.com/) Remove the background of any video - 100% automatically, online & free! Goodbye Greenscreen. Hello Unscreen. Noun Project: Free Icons & Stock Photos for Everything [](https://thenounproject.com/) Noun Project features the most diverse collection of icons and stock photos ever. Download SVG and PNG. Browse over 5 million art-quality icons and photos. Design Principles [](https://principles.design/) An Open Source collection of Design Principles and methods Shapefest™ - A massive library of free 3D shapes [](https://www.shapefest.com/) A massive free library of beautifully rendered 3D shapes. 160,000+ high resolution PNG images in one cohesive library. Learning UX Degreeless.design - Everything I Learned in Design School [](https://degreeless.design/) This is a list of everything I've found useful in my journey of learning design, and an ongoing list of things I think you should read. For budding UX, UI, Interaction, or whatever other title designers. UX Tools | Practical UX skills and tools [](https://uxtools.co/) Lessons and resources from two full-time product designers. Built For Mars [](https://builtformars.com/) On a mission to help the world build better user experiences by demystifying UX. Thousands of hours of research packed into UX case studies. Case Study Club – Curated UX Case Study Gallery [](https://www.casestudy.club/) Case Study Club is the biggest curated gallery of the best UI/UX design case studies. Get inspired by industry-leading designers, openly sharing their UX process. The Guide to Design [](https://start.uxdesign.cc/) A self-guided class to help you get started in UX and answer key questions about craft, design, and career Uxcel - Where design careers are built [](https://app.uxcel.com/explore) Available on any device anywhere in the world, Uxcel is the best way to improve and learn UX design online in just 5 minutes per day. UI & UX Design Tips by Jim Raptis. [](https://www.uidesign.tips/) Learn UI & UX Design with practical byte-sized tips and in-depth articles from Jim Raptis. Entrepreneur Instant Username Search [](https://instantusername.com/#/) Instant Username Search checks out if your username is available on more than 100 social media sites. Results appear instantly as you type. Flourish | Data Visualization & Storytelling [](https://flourish.studio/) Beautiful, easy data visualization and storytelling PiPiADS - #1 TikTok Ads Spy Tool [](https://www.pipiads.com/) PiPiADS is the best tiktok ads spy tool .We provide tiktok advertising,advertising on tiktok,tiktok ads examples,tiktok ads library,tiktok ads best practices,so you can understand the tiktok ads cost and master the tiktok ads 2021 and tiktok ads manager. Minea - The best adspy for product search in ecommerce and dropshipping [](https://en.minea.com/) Minea is the ultimate e-commerce product search tool. Minea tracks all ads on all networks. Facebook Ads, influencer product placements, Snapspy, all networks are tracked. Stop paying adspy 149€ for one network and discover Minea. AdSpy [](https://adspy.com/) Google Trends [](https://trends.google.com/) ScoreApp: Advanced Quiz Funnel Marketing | Make a Quiz Today [](https://www.scoreapp.com/) ScoreApp makes quiz funnel marketing easy, so you can attract relevant warm leads, insightful data and increase your sales. Try for free today Mailmodo - Send Interactive Emails That Drive Conversions [](https://www.mailmodo.com/) Use Mailmodo to create and send interactive emails your customers love. Drive conversions and get better email ROI. Sign up for a free trial now. 185 Top E-Commerce Sites Ranked by User Experience Performance – Baymard Institute [](https://baymard.com/ux-benchmark) See the ranked UX performance of the 185 largest e-commerce sites in the US and Europe. The chart summarizes 50,000+ UX performance ratings. Metricool - Analyze, manage and measure your digital content [](https://metricool.com/) Social media scheduling, web analytics, link in bio and reporting. Metricool is free per live for one brand. START HERE Visualping: #1 Website change detection, monitoring and alerts [](https://visualping.io/) More than 1.5 millions users monitor changes in websites with Visualping, the No1 website change detection, website checker, webpage change monitoring and webpage change detection tool. Gumroad – Sell what you know and see what sticks [](https://gumroad.com/) Gumroad is a powerful, but simple, e-commerce platform. We make it easy to earn your first dollar online by selling digital products, memberships and more. Product Hunt – The best new products in tech. [](https://www.producthunt.com/) Product Hunt is a curation of the best new products, every day. Discover the latest mobile apps, websites, and technology products that everyone's talking about. 12ft Ladder [](https://12ft.io/) Show me a 10ft paywall, I’ll show you a 12ft ladder. namecheckr | Social and Domain Name Availability Search For Brand Professionals [](https://www.namecheckr.com/) Social and Domain Name Availability Search For Brand Professionals Excel AI Formula Generator - Excelformulabot.com [](https://excelformulabot.com/) Transform your text instructions into Excel formulas in seconds with the help of AI. Z-Library [](https://z-lib.org/) Global Print On Demand Platform | Gelato [](https://www.gelato.com/) Create and sell custom products online. With local production in 33 countries, easy integration, and 24/7 customer support, Gelato is an all-in-one platform. Freecycle: Front Door [](https://freecycle.org/) Free eBooks | Project Gutenberg [](https://www.gutenberg.org/) Project Gutenberg is a library of free eBooks. Convertio — File Converter [](https://convertio.co/) Convertio - Easy tool to convert files online. More than 309 different document, image, spreadsheet, ebook, archive, presentation, audio and video formats supported. Namechk [](https://namechk.com/) Crazy Egg Website — Optimization | Heatmaps, Recordings, Surveys & A/B Testing [](https://www.crazyegg.com/) Use Crazy Egg to see what's hot and what's not, and to know what your web visitors are doing with tools, such as heatmaps, recordings, surveys, A/B testing & more. Ifttt [](https://ifttt.com/) Also Asked [](https://alsoasked.com/) Business Name Generator - Easily create Brandable Business Names - Namelix [](https://namelix.com/) Namelix uses artificial intelligence to create a short, brandable business name. Search for domain availability, and instantly generate a logo for your new business Merch Informer [](https://merchinformer.com/) Headline Generator [](https://www.title-generator.com/) Title Generator: create 700 headlines with ONE CLICK: Content Ideas + Catchy Headlines + Ad Campaign E-mail Subject Lines + Emotional Titles. Simple - Efficient - One Click Make [](https://www.make.com/en) Create and add calculator widgets to your website | CALCONIC_ [](https://www.calconic.com/) Web calculator builder empowers you to choose from a pre-made templates or build your own calculator widgets from a scratch without any need of programming knowledge Boost Your Views And Subscribers On YouTube - vidIQ [](https://vidiq.com/) vidIQ helps you acquire the tools and knowledge needed to grow your audience faster on YouTube and beyond. Learn More Last Pass [](https://www.lastpass.com/) Starter Story: Learn How People Are Starting Successful Businesses [](https://www.starterstory.com/) Starter Story interviews successful entrepreneurs and shares the stories behind their businesses. In each interview, we ask how they got started, how they grew, and how they run their business today. How To Say No [](https://www.starterstory.com/how-to-say-no) Saying no is hard, but it's also essential for your sanity. Here are some templates for how to say no - so you can take back your life. Think with Google - Discover Marketing Research & Digital Trends [](https://www.thinkwithgoogle.com/) Uncover the latest marketing research and digital trends with data reports, guides, infographics, and articles from Think with Google. ClickUp™ | One app to replace them all [](https://clickup.com/) Our mission is to make the world more productive. To do this, we built one app to replace them all - Tasks, Docs, Goals, and Chat. The Manual [](https://manual.withcompound.com/) Wealth-planning resources for founders and startup employees Software for Amazon FBA Sellers & Walmart Sellers | Helium 10 [](https://www.helium10.com/) If you're looking for the best software for Amazon FBA & Walmart sellers on the market, check out Helium 10's capabilities online today! Buffer: All-you-need social media toolkit for small businesses [](https://buffer.com/) Use Buffer to manage your social media so that you have more time for your business. Join 160,000+ small businesses today. CPGD — The Consumer Packaged Goods Directory [](https://www.cpgd.xyz/) The Consumer Packaged Goods Directory is a platform to discover new brands and resources. We share weekly trends in our newsletter and partner with services to provide vetted, recommended platforms for our Directory brands. Jungle Scout [](https://www.junglescout.com/) BuzzSumo | The World's #1 Content Marketing Platform [](https://buzzsumo.com/) BuzzSumo powers the strategies of 500k+ marketers, with content marketing data on 8b articles, 42m websites, 300t engagements, 500k journalists & 492m questions. Login - Capital [](https://app.capital.xyz/) Raise, hold, spend, and send funds — all in one place. Marketing Pictory – Video Marketing Made Easy - Pictory.ai [](https://pictory.ai/) Pictory's powerful AI enables you to create and edit professional quality videos using text, no technical skills required or software to download. Tolstoy | Communicate with interactive videos [](https://www.gotolstoy.com/) Start having face-to-face conversations with your customers. Create Email Marketing Your Audience Will Love - MailerLite [](https://www.mailerlite.com/) Email marketing tools to grow your audience faster and drive revenue smarter. Get free access to premium features with a 30-day trial! Sign up now! Hypefury - Schedule & Automate Social Media Marketing [](https://hypefury.com/) Save time on social media while creating more value, and growing your audience faster. Schedule & automate your social media experience! Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Online Email & Lead Scraper | Klean Leads [](https://www.kleanleads.com/) Klean Leads is an online email scraper & email address finder. Use it to book more appointments, get more replies, and close more sales. PhantomBuster [](https://phantombuster.com/) Call to Action Examples - 300+ CTA Phrases [](https://ctaexamples.com/) See the best CTA example in every situation covered by the library of 300+ CTA goals. Use the examples to create your own CTAs in minutes. Creative Center: one-stop creative solution for TikTok [](https://ads.tiktok.com/business/creativecenter/pc/en?from=001010) Come to get your next great idea for TikTok. Here you can find the best performing ads, viral videos, and trending hashtags across regions and verticals. Groove.cm GrooveFunnels, GrooveMail with CRM and Digital Marketing Automation Platform - Groove.cm with GrooveFunnels, GroovePages, GrooveKart [](https://groove.cm/) Groove is a website creator, page builder, sales funnel maker, membership site platform, email autoresponder, blog tool, shopping cart system, ecommerce store solution, affiliate manager, video marketing software and more apps to help build your online business. SurveyMonkey: The World’s Most Popular Free Online Survey Tool [](https://www.surveymonkey.com/) Use SurveyMonkey to drive your business forward by using our free online survey tool to capture the voices and opinions of the people who matter most to you. Video Maker | Create Videos Online | Promo.com [](https://promo.com/) Free customizable video maker to help boost your business. Video creator for ads, social media, product and explainer videos, and for anything else you need! beehiiv — The newsletter platform built for growth [](https://www.beehiiv.com/) Access the best tools available in email, helping your newsletter scale and monetize like never before. GetResponse | Professional Email Marketing for Everyone [](https://www.getresponse.com/) No matter your level of expertise, we have a solution for you. At GetResponse, it's email marketing done right. Start your free account today! Search Email Newsletter Archives : Email Tuna [](https://emailtuna.com/) Explore newsletters without subscribing. Get email design ideas, discount coupon codes and exclusive newsletters deals. Database of email newsletters archived from all over the internet. Other Tools Simplescraper — Scrape Websites and turn them into APIs [](https://simplescraper.io/) Web scraping made easy — a powerful and free Chrome extension for scraping websites in your browser, automated in the cloud, or via API. No code required. Exploding Topics - Discover the hottest new trends. [](https://explodingtopics.com/) See new market opportunities, trending topics, emerging technology, hot startups and more on Exploding Topics. Scribe | Visual step-by-step guides [](https://scribehow.com/) By capturing your process while you work, Scribe automatically generates a visual guide, ready to share with the click of a button. Get It Free – The internet's BEST place to find free stuff! [](https://getitfree.us/) The internet's BEST place to find free stuff! Inflact by Ingramer – Marketing toolkit for Instagram [](https://inflact.com/) Sell on Instagram, build your audience, curate content with the right set of tools. Free Online Form Builder & Form Creator | Jotform [](https://www.jotform.com/) We believe the right form makes all the difference. Go from busywork to less work with powerful forms that use conditional logic, accept payments, generate reports, and automate workflows. Manage Your Team’s Projects From Anywhere | Trello [](https://trello.com/en) Trello is the ultimate project management tool. Start up a board in seconds, automate tedious tasks, and collaborate anywhere, even on mobile. TikTok hashtag generator - tiktokhashtags.com [](https://tiktokhashtags.com/) Find out which are the best hashtags for your TikTok post. Create Infographics, Reports and Maps - Infogram [](https://infogram.com/) Infogram is an easy to use infographic and chart maker. Create and share beautiful infographics, online reports, and interactive maps. Make your own here. Confetto - Create Instagram content in minutes [](https://www.confet.to/) Confetto is an all-in-one social media marketing tool built for SMBs and Social Media Managers. Confetto helps you create high-quality content for your audience that maximizes your reach and engagement on social media. Design, copy-write, plan and schedule content all in one place. Find email addresses in seconds • Hunter (Email Hunter) [](https://hunter.io/) Hunter is the leading solution to find and verify professional email addresses. Start using Hunter and connect with the people that matter for your business. PlayPhrase.me: Site for cinema archaeologists. [](https://playphrase.me/) Travel and explore the world of cinema. Largest collection of video quotes from movies on the web. #1 Free SEO Tools → SEO Review Tools [](https://www.seoreviewtools.com/) SEO Review Tools: 42+ Free Online SEO Tools build with ❤! → Rank checker → Domain Authority Checker → Keyword Tool → Backlink Checker Podcastle: Seamless Podcast Recording & Editing [](https://podcastle.ai/) Podcastle is the simplest way to create professional-quality podcasts. Record, edit, transcribe, and export your content with the power of AI, in an intuitive web-based platform. Save Ads from TikTok & Facebook Ad Library - Foreplay [](https://www.foreplay.co/) The best way to save ads from TikTok Creative Center and Facebook Ad Library, Organize them into boards and share ad inspiration with your team. Supercharge your creative strategy. SiteRight - Automate Your Business [](https://www.siteright.co/) SiteRight combines the abilities of multiple online resources into a single dashboard allowing you to have full control over how you manage your business. Diffchecker - Compare text online to find the difference between two text files [](https://www.diffchecker.com/) Diffchecker will compare text to find the difference between two text files. Just paste your files and click Find Difference! Yout.com [](https://yout.com/) Yout.com allows you to record videos from YouTube, FaceBook, SoundCloud, VK and others too many formats with clipping. Intuitively easy to use, with Yout the Internet DVR, with a bit of extra. AI Content Generation | Competitor Analysis - Predis.ai [](https://predis.ai/) Predis helps brands and influencers communicate better on social media by providing AI-powered content strategy analysis, content and hashtag recommendations. Castr | #1 Live Video Streaming Solution With Video Hosting [](https://castr.io/) Castr is a live video streaming solution platform that delivers enterprise-grade live videos globally with CDN. Live event streaming, video hosting, pre-recorded live, multi stream – all in one place using Castr. Headliner - Promote your podcast, radio show or blog with video [](https://www.headliner.app/) Easily create videos to promote your podcast, radio show or blog. Share to Instagram, Facebook, Twitter, YouTube, Linkedin and anywhere video lives Create Presentations, Infographics, Design & Video | Visme [](https://www.visme.co/) Create professional presentations, interactive infographics, beautiful design and engaging videos, all in one place. Start using Visme today. Designrr - Create eBooks, Kindle books, Leadmagnets, Flipbooks and Blog posts from your content in 2 minutes [](https://designrr.io/) Upload any web page, MS Word, Video, Podcast or YouTube and it will create a stunning ebook and convert it to pdf, epub, Kindle or Flipbook. Quick and Easy to use. Full Training, 24x7 Support and Facebook Group Included. SwipeWell | Swipe File Software [](https://www.swipewell.app/) The only Chrome extension dedicated to helping you save, organize, and reference marketing examples (so you never feel stumped). Tango | Create how-to guides, in seconds [](https://www.tango.us/) Tango takes the pain out of documenting processes by automatically generating how-to guides while you work. Empower your team to do their best work. Ad Creative Bank [](https://www.theadcreativebank.com/) Get inspired by ads from across industries, learn new best practices, and start thinking creatively about your brand’s digital creative. Signature Hound • Free Email Signature and Template Generator [](https://signaturehound.com/) Our email signature generator is free and easy to use. Our customizable templates work with Gmail, Outlook, Office 365, Apple Mail and more. Organize All Of Your Marketing In One Place - CoSchedule [](https://coschedule.com/) Get more done in less time with the only work management software for marketers. B Ok - Books [](https://b-ok.xyz/categories) OmmWriter [](https://ommwriter.com/) Ommwriter Rebrandly | Custom URL Shortener, Branded Link Management, API [](https://www.rebrandly.com/) URL Shortener with custom domains. Shorten, brand and track URLs with the industry-leading link management platform. Free to try. API, Short URL, Custom Domains. Common Tools [](https://www.commontools.org/) Book Bolt [](https://bookbolt.io/) Zazzle [](https://www.zazzle.com/) InspiroBot [](https://inspirobot.me/) Download Free Cheat Sheets or Create Your Own! - Cheatography.com: Cheat Sheets For Every Occasion [](https://cheatography.com/) Find thousands of incredible, original programming cheat sheets, all free to download. No Code Chatbot Platform | Free Chatbot Platform | WotNot [](https://wotnot.io/) WotNot is the best no code chatbot platform to build AI bot easily without coding. Deploy bots and live chat on the Website, Messenger, WhatsApp, and more. SpyFu - Competitor Keyword Research Tools for Google Ads PPC & SEO [](https://www.spyfu.com/) Systeme.io - The only tool you need to launch your online business [](https://systeme.io/) Systeme.io has all the tools you need to grow your online business. Click here to create your FREE account! Productivity Temp Mail [](https://temp-mail.org/en/) The Visual Collaboration Platform for Every Team | Miro [](https://miro.com/) Scalable, secure, cross-device and enterprise-ready team collaboration whiteboard for distributed teams. Join 35M+ users from around the world. Grammarly: Free Online Writing Assistant [](https://www.grammarly.com/) Millions trust Grammarly’s free writing app to make their online writing clear and effective. Getting started is simple — download Grammarly’s extension today. Rize · Maximize Your Productivity [](https://rize.io/) Rize is a smart time tracker that improves your focus and helps you build better work habits. Motion | Manage calendars, meetings, projects & tasks in one app [](https://www.usemotion.com/) Automatically prioritize tasks, schedule meetings, and resolve calendar conflicts. Used by over 10k CEOs and professionals to improve focus, get more done, and streamline workday. Notion – One workspace. Every team. [](https://www.notion.so/) We’re more than a doc. Or a table. Customize Notion to work the way you do. Loom: Async Video Messaging for Work | Loom [](https://www.loom.com/) Record your screen, share your thoughts, and get things done faster with async video. Zapier | Automation that moves you forward [](https://zapier.com/) Workflow automation for everyone. Zapier automates your work across 5,000+ app integrations, so you can focus on what matters. Rows — The spreadsheet with superpowers [](https://rows.com/) Combine the power of a spreadsheet with built-in integrations from your business apps. Automate workflows and build tools that make work simpler. Free Online Form Builder | Tally [](https://tally.so/) Tally is the simplest way to create free forms & surveys. Create any type of form in seconds, without knowing how to code, and for free. Highbrow | Learn Something New Every Day. Join for Free! [](https://gohighbrow.com/) Highbrow helps you learn something new every day with 5-minute lessons delivered to your inbox every morning. Join over 400,000 lifelong learners today! Slick Write | Check your grammar. Proofread online. [](https://www.slickwrite.com/#!home) Slick Write is a powerful, FREE application that makes it easy to check your writing for grammar errors, potential stylistic mistakes, and other features of interest. Whether you're a blogger, novelist, SEO professional, or student writing an essay for school, Slick Write can help take your writing to the next level. Reverso [](https://www.reverso.net) Hemingway Editor [](https://hemingwayapp.com/) Web Apps by 123apps - Edit, Convert, Create [](https://123apps.com/) Splitbee – Your all-in-one analytics and conversion platform [](https://splitbee.io/) Track and optimize your online business with Splitbee. Analytics, Funnels, Automations, A/B Testing and more. PDF Tools Free PDF, Video, Image & Other Online Tools - TinyWow [](https://tinywow.com/) Smallpdf.com - A Free Solution to all your PDF Problems [](https://smallpdf.com/) Smallpdf - the platform that makes it super easy to convert and edit all your PDF files. Solving all your PDF problems in one place - and yes, free. Sejda helps with your PDF tasks [](https://www.sejda.com/) Sejda helps with your PDF tasks. Quick and simple online service, no installation required! Split, merge or convert PDF to images, alternate mix or split scans and many other. iLovePDF | Online PDF tools for PDF lovers [](https://www.ilovepdf.com/) iLovePDF is an online service to work with PDF files completely free and easy to use. Merge PDF, split PDF, compress PDF, office to PDF, PDF to JPG and more! Text rewrite QuillBot [](https://quillbot.com/) Pre Post SEO : Online SEO Tools [](https://www.prepostseo.com/) Free Online SEO Tools: plagiarism checker, grammar checker, image compressor, website seo checker, article rewriter, back link checker Wordtune | Your personal writing assistant & editor [](https://www.wordtune.com/) Wordtune is the ultimate AI writing tool that rewrites, rephrases, and rewords your writing! Trusted by over 1,000,000 users, Wordtune strengthens articles, academic papers, essays, emails and any other online content. Aliexpress alternatives CJdropshipping - Dropshipping from Worldwide to Worldwide! [](https://cjdropshipping.com/) China's reliable eCommerce dropshipping fulfillment supplier, helps small businesses ship worldwide, dropship and fulfillment services that are friendly to start-ups and small businesses, Shopify dropshipping. SaleHoo [](https://www.salehoo.com/) Alibaba.com: Manufacturers, Suppliers, Exporters & Importers from the world's largest online B2B marketplace [](https://www.alibaba.com/) Find quality Manufacturers, Suppliers, Exporters, Importers, Buyers, Wholesalers, Products and Trade Leads from our award-winning International Trade Site. Import & Export on alibaba.com Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Best dropshipping supplier to the US [](https://www.usadrop.com/) THE ONLY AMERICAN-MADE FULFILLMENT CENTER IN CHINA. Our knowledge of the Worldwide dropshipping market and the Chinese Supply-Chain can't be beat! 阿里1688 [](https://www.1688.com/) 阿里巴巴(1688.com)是全球企业间(B2B)电子商务的著名品牌,为数千万网商提供海量商机信息和便捷安全的在线交易市场,也是商人们以商会友、真实互动的社区平台。目前1688.com已覆盖原材料、工业品、服装服饰、家居百货、小商品等12个行业大类,提供从原料--生产--加工--现货等一系列的供应产品和服务 Dropshipping Tools Oberlo | Where Self Made is Made [](https://www.oberlo.com/) Start selling online now with Shopify. All the videos, podcasts, ebooks, and dropshipping tools you'll need to build your online empire. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. SMSBump | SMS Marketing E-Commerce App for Shopify [](https://smsbump.com/) SMSBump is an SMS marketing & automation app for Shopify. Segment customers, recover orders, send campaign text messages with a 35%+ click through rate. AfterShip: The #1 Shipment Tracking Platform [](https://www.aftership.com/) Order status lookup, branded tracking page, and multi-carrier tracking API for eCommerce. Supports USPS, FedEx, UPS, and 900+ carriers worldwide. #1 Dropshipping App | Zendrop [](https://zendrop.com/) Start and scale your own dropshipping business with Zendrop. Sell and easily fulfill your orders with the fastest shipping in the industry. Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Video Editing Jitter • The simplest motion design tool on the web. [](https://jitter.video/) Animate your designs easily. Export your creations as videos or GIFs. All in your browser. DaVinci Resolve 18 | Blackmagic Design [](https://www.blackmagicdesign.com/products/davinciresolve) Professional video editing, color correction, visual effects and audio post production all in a single application. Free and paid versions for Mac, Windows and Linux. Online Video Editor | Video Creator | InVideo [](https://invideo.io/) InVideo's Online Video Editor Helps You Make Professional Videos From Premium Templates, Images, And Music. All your video needs in one place | Clipchamp [](https://clipchamp.com/) Fast-forward your creations with our video editing platform. Start with a video template or record your webcam or screen. Get the pro look with filters, transitions, text and more. Then, export in minutes and share in an instant. Descript | All-in-one audio/video editing, as easy as a doc. [](https://www.descript.com/) Record, transcribe, edit, mix, collaborate, and master your audio and video with Descript. Download for free →. Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. Panzoid [](https://panzoid.com/) Powerful, free online apps and community for creating beautiful custom content. Google Web Designer - Home [](https://webdesigner.withgoogle.com/) Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. ClipDrop [](https://clipdrop.co/) Create professional visuals without a photo studio CapCut [](https://www.capcut.com/) CapCut is an all-in-one online video editing software which makes creation, upload & share easier, with frame by frame track editor, cloud drive etc. VEED - Online Video Editor - Video Editing Made Simple [](https://www.veed.io/) Make stunning videos with a single click. Cut, trim, crop, add subtitles and more. Online, no account needed. Try it now, free. VEED Free Video Maker | Create & Edit Your Videos Easily - Animoto [](https://animoto.com/k/welcome) Create, edit, and share videos with our online video maker. Combine your photos, video clips, and music to make quality videos in minutes. Get started free! Runway - Online Video Editor | Everything you need to make content, fast. [](https://runwayml.com/) Discover advanced video editing capabilities to take your creations to the next level. CreatorKit - A.I. video creator for marketers [](https://creatorkit.com/) Create videos with just one click, using our A.I. video editor purpose built for marketers. Create scroll stopping videos, Instagram stories, Ads, Reels, and TikTok videos. Pixar in a Box | Computing | Khan Academy [](https://www.khanacademy.org/computing/pixar) 3D Video Motions Plask - AI Motion Capture and 3D Animation Tool [](https://plask.ai/) Plask is an all-in-one browser-based AI motion capture tool and animation editor that anybody can use, from motion designers to every day content creators. Captions Captions [](https://www.getcaptions.app/) Say hello to Captions, the only camera and editing app that automatically transcribes, captions and clips your talking videos for you. Stock videos Pexels [](https://www.pexels.com/) Pixabay [](https://pixabay.com/) Mixkit - Awesome free assets for your next video project [](https://mixkit.co/) Download Free Stock Video Footage, Stock Music & Premiere Pro Templates for your next video editing project. All assets can be downloaded for free! Free Stock Video Footage HD 4K Download Royalty-Free Clips [](https://www.videvo.net/) Download free stock video footage with over 300,000 video clips in 4K and HD. We also offer a wide selection of music and sound effect files with over 180,000 clips available. Click here to download royalty-free licensing videos, motion graphics, music and sound effects from Videvo today. Free Stock Video Footage HD Royalty-Free Videos Download [](https://mazwai.com/) Download free stock video footage with clips available in HD. Click here to download royalty-free licensing videos from Mazwai now. Royalty Free Stock Video Footage Clips | Vidsplay.com [](https://www.vidsplay.com/) Royalty Free Stock Video Footage Clips Free Stock Video Footage, Royalty Free Videos for Download [](https://coverr.co/) Download royalty free (for personal and commercial use), unique and beautiful video footage for your website or any project. No attribution required. Stock Photos Beautiful Free Images & Pictures | Unsplash [](https://unsplash.com/) Beautiful, free images and photos that you can download and use for any project. Better than any royalty free or stock photos. When we share, everyone wins - Creative Commons [](https://creativecommons.org/) Creative Commons licenses are 20! Honoring 20 years of open sharing using CC licenses, join us in 2022 to celebrate Better Sharing — advancing universal access to knowledge and culture, and fostering creativity, innovation, and collaboration. Help us reach our goal of raising $15 million for a future of Better Sharing.  20 Years of Better … Read More "When we share, everyone wins" Food Pictures • Foodiesfeed • Free Food Photos [](https://www.foodiesfeed.com/) Download 2000+ food pictures ⋆ The best free food photos for commercial use ⋆ CC0 license Free Stock Photos and Images for Websites & Commercial Use [](https://burst.shopify.com/) Browse thousands of beautiful copyright-free images. All our pictures are free to download for personal and commercial use, no attribution required. EyeEm | Authentic Stock Photography and Royalty-Free Images [](https://www.eyeem.com/) Explore high-quality, royalty-free stock photos for commercial use. License individual images or save money with our flexible subscription and image pack plans. picjumbo: Free Stock Photos [](https://picjumbo.com/) Free stock photos and images for your projects and websites.️ Beautiful 100% free high-resolution stock images with no watermark. Free Stock Photos, Images, and Vectors [](https://www.stockvault.net/) 139.738 free stock photos, textures, backgrounds and graphics for your next project. No attribution required. Free Stock Photos, PNGs, Templates & Mockups | rawpixel [](https://www.rawpixel.com/) Free images, PNGs, stickers, backgrounds, wallpapers, graphic templates and PSD mockups. All safe to use with commercial licenses. Free Commercial Stock Photos & Royalty Free Images | PikWizard [](https://pikwizard.com/) Free images, videos & free stock photos. Unlimited downloads ✓ Royalty-free Images ✓Copyright-free for commercial use ✓ No Attribution Required Design Bundles [](https://designbundles.net/) Stock music Royalty Free Music for video creators | Epidemic Sound [](https://www.epidemicsound.com/) Download premium Royalty free Music and SFX! Our free trial gives you access to over 35,000 tracks and 90,000 sound effects for video, streaming and more! Royalty-Free Music & SFX for Video Creators | Artlist [](https://artlist.io/) Explore the ultimate royalty-free music & sound effects catalogs for unlimited use in YouTube videos, social media & films created by inspiring indie artists worldwide. The go-to music licensing choice for all creators Royalty Free Audio Tracks - Envato Elements [](https://elements.envato.com/audio) Download Royalty Free Stock Audio Tracks for your next project from Envato Elements. Premium, High Quality handpicked Audio files ideal for any genre. License popular music for videos • Lickd [](https://lickd.co/) The only place you can license popular music for videos. Access 1M+ mainstream tracks, plus high-quality stock music for content creators NCS (NoCopyrightSounds) - free music for content creators [](https://ncs.io/) NCS is a Record Label dedicated to giving a platform to the next generation of Artists in electronic music, representing genres from house to dubstep via trap, drum & bass, electro pop and more. Search Engine Optimization Keyword Tool For Monthly Search Volume, CPC & Competition [](https://keywordseverywhere.com/) Keywords Everywhere is a browser add-on for Chrome & Firefox that shows search volume, CPC & competition on multiple websites. Semrush - Online Marketing Can Be Easy [](https://www.semrush.com/) Turn the algorithm into a friend. Make your business visible online with 55+ tools for SEO, PPC, content, social media, competitive research, and more. DuckDuckGo — Privacy, simplified. [](https://duckduckgo.com/) The Internet privacy company that empowers you to seamlessly take control of your personal information online, without any tradeoffs. SEO Software for 360° Analysis of Your Website [](https://seranking.com/) Leading SEO software for business owners, agencies, and SEO specialists. Track your rankings, monitor competitors, spot technical errors, and more. Skyrocket your organic traffic with Surfer [](https://surferseo.com/) Use Surfer to research, write, optimize, and audit! Everything you need to create a comprehensive content strategy that yields real results is right here. Ahrefs - SEO Tools & Resources To Grow Your Search Traffic [](https://ahrefs.com/) You don't have to be an SEO pro to rank higher and get more traffic. Join Ahrefs – we're a powerful but easy to learn SEO toolset with a passionate community. Neon Tools [](https://neontools.io/) Google Index Search [](https://lumpysoft.com/) Google Index Search SEO Backlink Checker & Link Building Toolset | Majestic.com [](https://majestic.com/) Develop backlink strategies with our Link Intelligence data, build the strongest SEO backlink campaigns to drive organic traffic and boost your rankings today. PageOptimizer Pro [](https://pageoptimizer.pro/) Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page Workshops With Kyle Roof POP Chrome Extension Guide Tutorial Videos Frequently Asked Questions Best Practices Login Cancel Anytime Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page… Keyword Chef - Keywords for Publishers [](https://keywordchef.com/) Rank Insanely Fast for Keywords Your Competition Can’t Find “Every long-tail keyword I find ends up ranking within a day” – Dane Eyerly, Owner at TextGoods.com Keyword Chef automatically finds and filters keywords for you. Real-time SERP analysis lets you find keywords nearly guaranteed to rank. Try for free → Let’s face it, most keyword tools ... Read more Notifier - Social Listening for Social Media and More! [](https://notifier.so/) Track keywords. Market your product for free. Drive the conversation. Easy. Free Trial. No obligation ever. Simple. Fast. Trusted by Top Companies. Free Keyword Research Tool from Wordtracker [](https://www.wordtracker.com/) The best FREE alternative to the Keyword Planner. Use Wordtracker to reveal 1000s of profitable longtail keywords with up to 10,000 results per search Blog Posts The 60 Hottest Front-end Tools of 2021 | CSS-Tricks - CSS-Tricks [](https://css-tricks.com/hottest-front-end-tools-in-2021/) A complete list of the most popular front-end tools in 2021, according to the Web Tools Weekly newsletter. See which resources made the list. Resume ResumeGlow - AI Powered Resume Builder [](https://resumeglow.com/) Get hired fast with a resume that grabs attention. Designed by a team of HR experts and typographers. Customizable templates with more than a million possible Create Your Job-winning Resume - (Free) Resume maker · Resume.io [](https://resume.io/) Free online resume maker, allows you to create a perfect Resume or Cover Letter in 5 minutes. See how easy it is to write a professional resume - apply for jobs today! Rezi - The Leading AI-Powered Free Resume Builder [](https://www.rezi.ai/) Rezi’s award-winning AI-powered resume builder is trusted by hundreds of thousands of job seekers. Create your perfect resume in minutes with Rezi. Create a Perfect Resume | Free Resume Builder | Resumaker.ai [](https://resumaker.ai/) Create your professional resume with this online resume maker. Choose a designer-made template and grab any employer attention in seconds. Trusted AI Resume Maker Helps You Get Hired Fast [](https://skillroads.com/) Reach a 96.4% success rate in the job hunt race with the best resume creator. Our innovative technologies and 24/7 support help you to become a perfect candidate for any job. Do not lose your chance to become the One. Kickresume | Best Online Resume & Cover Letter Builder [](https://www.kickresume.com/) Create your best resume yet. Online resume and cover letter builder used by 1,300,000 job seekers worldwide. Professional templates approved by recruiters. ResumeMaker.Online | Create a Professional Resume for Free [](https://www.resumemaker.online/) Save time with the easiest-to-use Resume Maker Online. Create an effective resume in just minutes and land your dream job. No Sign-up required, start now! Interviews Interview Warmup - Grow with Google [](https://grow.google/certificates/interview-warmup/) A quick way to prepare for your next interview. Practice key questions, get insights about your answers, and get more comfortable interviewing. No code website builder Carrd - Simple, free, fully responsive one-page sites for pretty much anything [](https://carrd.co/) A free platform for building simple, fully responsive one-page sites for pretty much anything. Webflow: Create a custom website | No-code website builder [](https://webflow.com/) Create professional, custom websites in a completely visual canvas with no code. Learn how to create a website by trying Webflow for free! Google Sites: Sign-in [](https://sites.google.com/) FlutterFlow - Build beautiful, modern apps incredibly fast! [](https://flutterflow.io/) FlutterFlow lets you build apps incredibly fast in your browser. Build fully functional apps with Firebase integration, API support, animations, and more. Export your code or even easier deploy directly to the app stores! Free Website Builder: Build a Free Website or Online Store | Weebly [](https://www.weebly.com/) Weebly’s free website builder makes it easy to create a website, blog, or online store. Find customizable templates, domains, and easy-to-use tools for any type of business website. Glide • No Code App Builder • Nocode Application Development [](https://www.glideapps.com/) Create the apps your business needs, without coding, waiting or overpaying. Get started for free and build an app today Adalo - Build Your Own No Code App [](https://www.adalo.com/) Adalo makes creating apps as easy as putting together a slide deck. Turn your idea into a real native app — no code needed! Siter.io - The collaborative web design tool, no-code website builder [](https://siter.io/) Siter.io is a visual website builder for designers. Prototype, design, and create responsive websites in the browser. Work together with your team in one place. Elementor: #1 Free WordPress Website Builder | Elementor.com [](https://elementor.com/) Elementor is the platform web creators choose to build professional WordPress websites, grow their skills, and build their business. Start for free today! No code app builder | Bravo Studio [](https://www.bravostudio.app/) Your no-code mobile app builder for iOS and Android. Create MVP’s, validate ideas and publish on App Store and Google Play Store. Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Free Website Builder | Create a Free Website | Wix.com [](https://www.wix.com/) Create a website with Wix’s robust website builder. With 900+ strategically designed templates and advanced SEO and marketing tools, build your brand online today. Free responsive Emails & Landing Pages drag-and-drop Editor | BEE [](https://beefree.io/) Free responsive emails and landing pages editor. With BEE drag-and-drop builders embedded in many software applications you can start designing now! Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Ownit Connected Checkout [](https://www.ownit.co/) Ownit Connected Checkout Bookmark.com | No-code Website Builder to Start Your Business [](https://www.bookmark.com/) Our AI powered platform ensures your business is future proof. Try Bookmark for free. The best way to build web apps without code | Bubble [](https://bubble.io/) Bubble introduces a new way to build software. It’s a no-code tool that lets you build SaaS platforms, marketplaces and CRMs without code. Bubble hosts all web apps on its cloud platform. Responsive Web Design | Website Creation | Editor X [](https://www.editorx.com/) Experience the future of website design with responsive layouts, CSS precision and smooth drag and drop. Create a Website for Free. Tilda Website Builder [](https://tilda.cc/) Create a website, online store, landing page with Tilda intuitive website builder. Build your site from hundreds of pre-designed templates and publish it today. No code required. No-code headless commerce and websites | Unstack Inc. [](https://www.unstack.com/) Deploy high performance eCommerce storefronts and websites without the engineering overhead using Unstack's no-code CMS Best Drag-and-Drop Website Builder | Jemi [](https://jemi.so/) The modern website builder for creatives, entrepreneurs, and dreamers. Build a beautiful link in bio site, portfolio, or landing page in minutes. No-code website builder that works like Notion [](https://popsy.co/) Create a beautiful no-code website in minutes. Popsy works just like Notion but is built from the ground up for building websites. Choose a free template. Edit content just like in Notion. Customize styles without code. Free Notion icons and illustrations. Unbounce - The Landing Page Builder & Platform [](https://unbounce.com/) Grow your relevance, leads, and sales with Unbounce. Use Unbounce to easily create and optimize landing pages for your small business and boost conversions with AI insights. Low-code Front-end Design & Development Platform | TeleportHQ [](https://teleporthq.io/) Front-end development platform, with a visual builder and headless content modelling capabilities. Static website creation, and UI development tools. Other tools used in no code website MemberSpace - Turn any part of your website into members-only with just a few clicks [](https://www.memberspace.com/) Create memberships on your website for anything you want like courses, video tutorials, member directories, and more while having 100% control over look & feel. Triggre | The number one true no-code platform to run your business [](https://www.triggre.com/) The best no-code platform to create highly advanced business applications in hours, without programming. Try it now for free! No code game builder Welcome to Buildbox [](https://signup.buildbox.com/) Welcome to Buildbox Flowlab Game Creator - Make games online [](https://flowlab.io/) Flowlab is an online game creator. Make your own games to share with friends. Make 2D Games With GameMaker | Free Video Game Maker [](https://gamemaker.io/) Make a game with GameMaker, the best free video game engine. Perfect for beginners and professionals. Learn to build your own 2D games with our simple tutorials. Side Hustle Side Hustle Stack [](https://sidehustlestack.co/) Side Hustle Stack is a resource for finding platform-based work, ranging from gig work and side hustles to platforms that help you start a small business that can grow. Fiverr [](https://www.fiverr.com/) Remotasks: Work From Home, Online Bootcamp Training [](https://www.remotasks.com/en) Make money doing tasks. Start earning today! Free bootcamp training offered online. Sign up for a free Remotasks account and work from home. Earn up to $200/month. Transcribe Speech to Text | Rev [](https://www.rev.com/) Transcribe Speech to Text with Rev. Reach your audience with clear and accurate captions, transcripts, and subtitles. AI Training Data and other Data Management Services [](https://www.clickworker.com/) AI training data, SEO texts, web research, tagging, surveys and more - Use the crowdsourcing principle with the power of >4.5M Clickworkers. Automate your Busy Work - Byron People-Powered Assistants [](https://www.hibyron.com/) Byron is an on demand US based virtual assistant platform that gives individuals and teams the ability to quickly outsource their non-essential tasks. Jobs Websites - Remote Latest Crypto Jobs, Web3 Jobs and Blockchain Jobs in the leading tech companies. [](https://cryptojobslist.com/) New Cryptocurrency Jobs, Web3 Jobs and Blockchain Jobs on CryptoJobsList — the leading site to find and post jobs. Connect with companies hiring in a few clicks and begin your next experience in the industry. Updated daily. Remote Jobs: Design, Marketing, Programming, Writing & More [](https://justremote.co/) Discover Remote Jobs from around the world. Give up the commute, work remotely and do what you love, daily, from anywhere. Find your perfect remote development, design, sales or marketing job today. Remote Ok [](https://remoteok.com/) Hire Freelancers & Remote Workers For Free [](https://talent.hubstaff.com/) Find and hire the highest quality freelancers from around the world - for free. Choose from thousands of developers, digital marketers, creatives and more. We Work Remotely: Remote jobs in design, programming, marketing and more [](https://weworkremotely.com/) Find the most qualified people in the most unexpected places: Hire remote! We Work Remotely is the best place to find and list remote jobs that aren't restricted by commutes or a particular geographic area. Browse thousands of remote work jobs today. Angel [](https://angel.co/) Remote Work: Jobs, Companies & Virtual Teams - Remote.co [](https://remote.co/) Remote.co is the definitive remote work job board for online job seekers and companies hiring. Start your remote job search here! FlexJobs: Best Remote Jobs, Work from Home Jobs, Online Jobs & More [](https://www.flexjobs.com/) The #1 job search site for hand-screened flexible and remote jobs (work from home jobs) since 2007. Plus get resume, coaching and career help. Join today! Remote jobs remotefront.io [](https://remotefront.io/) All remote jobs at remotefront.io Daily Virtual Events Helping You Grow Professionally [](https://powertofly.com/) PowerToFly is where you receive expert career advice, free video training, coaching and exclusive access to jobs and events at top companies. Best Remote and Work from Home Jobs - Virtual Vocations [](https://www.virtualvocations.com/) Best work from home jobs and remote jobs in over 50 categories for professionals, digital nomads, telecommuting workers and entry level jobseekers. Education, healthcare, medical, customer support and tech job openings. Remote Jobs | Working Nomads [](https://www.workingnomads.com/jobs) Remote jobs for digital working nomads. Start your telecommuting career and work remotely from home or places around the world. Job Search, Companies Hiring Near Me, and Advice | The Muse [](https://www.themuse.com/) Find jobs at the best companies hiring near you and get free career advice. Startupers [](https://www.startupers.com/) NoDesk - Where Everyone Works Remote [](https://nodesk.co/) Browse and apply to the best new remote jobs at leading remote companies and startups for free. Join hundreds of companies that use NoDesk to build their remote teams. Browser Extensions Blackbox - Select. Copy. Paste & Search - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/blackbox-select-copy-past/mcgbeeipkmelnpldkobichboakdfaeon) Fastest Way to Copy Text from Videos & Images Octotree - GitHub code tree - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/octotree-github-code-tree/bkhaagjahfmjljalopjnoealnfndnagc) GitHub on steroids WhatFont - Chrome Web Store [](https://chrome.google.com/webstore/detail/whatfont/jabopobgcpjmedljpbcaablpmlmfcogm?hl=en) The easiest way to identify fonts on web pages. Window Resizer - Chrome Web Store [](https://chrome.google.com/webstore/detail/window-resizer/kkelicaakdanhinjdeammmilcgefonfh?hl=en) Resize the browser window to emulate various screen resolutions. Amino: CSS Editor - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/amino-css-editor/pbcpfbcibpcbfbmddogfhcijfpboeaaf) Live CSS Editor. Write custom CSS for any website and see your changes in real time. Checkbot: SEO, Web Speed & Security Tester 🚀 - Chrome Web Store [](https://chrome.google.com/webstore/detail/checkbot-seo-web-speed-se/dagohlmlhagincbfilmkadjgmdnkjinl?hl=en) Test SEO/speed/security of 100s of pages in a click! Check broken links, HTML/JavaScript/CSS, URL redirects, duplicate titles... Honey: Automatic Coupons & Rewards - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/honey-automatic-coupons-r/bmnlcjabgnpnenekpadlanbbkooimhnj) Save money and earn rewards when you shop online. Tango: screenshots, training, & documentation - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/tango-screenshots-trainin/lggdbpblkekjjbobadliahffoaobaknh) Automatically create beautiful step-by-step guides with screenshots, in seconds. No code browser automation | axiom.ai [](https://axiom.ai/) Build browser bots quickly, without code. Automate website actions and repetitive tasks using just your browser, on any website or web app. No Code Browser extensions builder Bildr - Visual Web Development in your Browser [](https://www.bildr.com/) Visually build SaaS products, Chrome extensions, and web3 dApps Other Repurposing content for social media the easy way » Repurpose.io [](https://repurpose.io/) Repurposing content for social media made easy. Automatically repurpose YouTube, TikTok, Lives, Podcasts, and Zoom calls. Try it for FREE. Smart Serials: Your serial numbers database [](https://smartserials.com/) This is your main source of free serial numbers, unlock keys in a clean environment safe to browse by all ages. Old versions of Windows, Mac and Linux Software, Apps & Abandonware Games - Download at OldVersion.com [](http://www.oldversion.com/) Online Room Planner - Design Your Room [](http://www.planyourroom.com/) Planyourroom.com is a wonderful website to redesign each room in your house by picking out perfect furniture options to fit your unique space. BoredHumans.com - Fun AI Programs You Can Use Online [](https://boredhumans.com/) Fun AI programs you can use online. AI games, fake people, computer generated art, machine learning demos, and more. BNProject | Home [](https://buynothingproject.org/) Open Source Alternatives to Proprietary Software [](https://www.opensourcealternative.to/) Discover 400+ popular open source alternatives to proprietary SaaS. URL Shortener - Short URLs & Custom Free Link Shortener | Bitly [](https://bitly.com/) Bitly’s Connections Platform is more than a free URL shortener, with robust link management software, advanced QR Code features, and a Link-in-bio solution. TinEye Reverse Image Search [](https://tineye.com/) Good Books | Books recommended by successful people [](https://www.goodbooks.io/) Looking for the best books to read in 2022? Discover the best book recommendations from the world's most successful, influential and interesting people. Directory - Website Recommendations [](https://tokapps.com/directory/) 0 TRIED & TESTED WEBSITES LISTED Insanely Useful Websites A combination of useful websites for businesses, freelancers, DIYers, and individuals in a centralised area.All websites have been tried and tested. Filter Websites Audio Business Tools Copywriting Design Entertainment Graphics Guides Health Marketing PC Resources Savings SEO Software Travel Video Apply filter Watch Anime Online, Free Anime Streaming Online on Zoro.to Anime Website [](https://zoro.to/) Zoro is a Free anime streaming website which you can watch English Subbed and Dubbed Anime online with No Account and Daily update. WATCH NOW! Animated Drawings [](https://sketch.metademolab.com/) Bring children's drawings to life, by animating characters to move around! Alternativeto [](https://alternativeto.net/) Chatroulette [](https://chatroulette.com/) Random meetings around the world Tiktok Downloader - Download Video tiktok Without Watermark - SnapTik [](https://snaptik.app/en) TikTok Video Downloader - SnapTik.App is one of the best free Download video Tiktok No Watermark tool available online. You can download TikTok video from any device you have. Imgflip - Create and Share Awesome Images [](https://imgflip.com/) Flip through memes, gifs, and other funny images. Make your own images with our Meme Generator or Animated GIF Maker. Fake Text Message | Make Fake Text Conversation [](https://ifaketextmessage.com/) Fake Text Message is a tool to create a Fake Text Conversation and a Fake iMessage. ✂Templatemaker ︎ [](https://www.templatemaker.nl/en/) Omni Calculator [](https://www.omnicalculator.com/) Omni Calculator solves 2960 problems anywhere from finance and business to health. It’s so fast and easy you won’t want to do the math again! Watch Movies Online Free | Watch Series HD Free [](https://hdtoday.tv/) Free Access to the Biggest library of HD Movies and HD Series online - NO ADS - No Account Required - Fast Free Streaming Students Answers - The Most Trusted Place for Answering Life's Questions [](https://www.answers.com/) Answers is the place to go to get the answers you need and to ask the questions you want Wolfram|Alpha: Computational Intelligence [](https://www.wolframalpha.com/) Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, engineering, mathematics, linguistics, sports, finance, music… Online Math Tools - Simple, free and easy to use math utilities [](https://onlinemathtools.com/) World's simplest collection of useful mathematics utilities. Generate number sequences, draw fractals, do quick matrix and numerical calculations and more! edX | Free Online Courses by Harvard, MIT, & more | edX [](https://www.edx.org/) Access 2000 free online courses from 140 leading institutions worldwide. Gain new skills and earn a certificate of completion. Join today. Sci-Hub [](https://sci-hub.hkvisa.net/) Sci-Hub,mg.scihub.ltd,sci-hub.tw,The project is supported by user donations. Imagine the world with free access to knowledge for everyone ‐ a world without any paywalls. DigitalDefynd - Find the Best + Free Courses Online [](https://digitaldefynd.com/) 4 Million+ Learners | 96,000+ Courses | 45,000+ Free Courses | 1200+ Free Certificates Learn Anything [](https://learn-anything.xyz/) Search Interactive Mind Maps to learn anything HubSpot Academy - Homepage [](https://academy.hubspot.com/) HubSpot Academy is the worldwide leader in inbound marketing, sales, and customer service/support training.

airflow-tutorial
github
LLM Vibe Score0.508
Human Vibe Score0.13240553426231688
hgrifJan 19, 2025

airflow-tutorial

Airflow tutorial This tutorial is loosely based on the Airflow tutorial in the official documentation. It will walk you through the basics of setting up Airflow and creating an Airflow workflow. This tutorial was published on the blog of GoDataDriven. Setup You can skip this section if Airflow is already set up. Make sure that you can run airflow commands, know where to put your DAGs and have access to the web UI. Install Airflow Airflow is installable with pip via a simple pip install apache-airflow. Either use a separate python virtual environment or install it in your default python environment. To use the conda virtual environment as defined in environment.yml in this git-repo: Install miniconda. Make sure that conda is on your path: Create the virtual environment from environment.yml: Activate the virtual environment: You should now have an (almost) working Airflow installation. Alternatively, install Airflow yourself by running: Airflow used to be packaged as airflow but is packaged as apache-airflow since version 1.8.1. Make sure that you install any extra packages with the right Python package: e.g. use pip install apache-airflow[dask] if you've installed apache-airflow and do not use pip install airflow[dask]. Leaving out the prefix apache- will install an old version of Airflow next to your current version, leading to a world of hurt. You may run into problems if you don't have the right binaries or Python packages installed for certain backends or operators. When specifying support for e.g. PostgreSQL when installing extra Airflow packages, make sure the database is installed; do a brew install postgresql or apt-get install postgresql before the pip install apache-airflow[postgres]. Similarly, when running into HiveOperator errors, do a pip install apache-airflow[hive] and make sure you can use Hive. Run Airflow Before you can use Airflow you have to initialize its database. The database contains information about historical & running workflows, connections to external data sources, user management, etc. Once the database is set up, Airflow's UI can be accessed by running a web server and workflows can be started. The default database is a SQLite database, which is fine for this tutorial. In a production setting you'll probably be using something like MySQL or PostgreSQL. You'll probably want to back it up as this database stores the state of everything related to Airflow. Airflow will use the directory set in the environment variable AIRFLOW_HOME to store its configuration and our SQlite database. This directory will be used after your first Airflow command. If you don't set the environment variable AIRFLOW_HOME, Airflow will create the directory ~/airflow/ to put its files in. Set environment variable AIRFLOW_HOME to e.g. your current directory $(pwd): or any other suitable directory. Next, initialize the database: Now start the web server and go to localhost:8080 to check out the UI: It should look something like this: With the web server running workflows can be started from a new terminal window. Open a new terminal, activate the virtual environment and set the environment variable AIRFLOW_HOME for this terminal as well: Make sure that you're an in the same directory as before when using $(pwd). Run a supplied example: And check in the web UI that it has run by going to Browse -> Task Instances. This concludes all the setting up that you need for this tutorial. Tips Both Python 2 and 3 are be supported by Airflow. However, some of the lesser used parts (e.g. operators in contrib) might not support Python 3. For more information on configuration check the sections on Configuration and Security of the Airflow documentation. Check the Airflow repository for upstart and systemd templates. Airflow logs extensively, so pick your log folder carefully. Set the timezone of your production machine to UTC: Airflow assumes it's UTC. Workflows We'll create a workflow by specifying actions as a Directed Acyclic Graph (DAG) in Python. The tasks of a workflow make up a Graph; the graph is Directed because the tasks are ordered; and we don't want to get stuck in an eternal loop so the graph also has to be Acyclic. The figure below shows an example of a DAG: The DAG of this tutorial is a bit easier. It will consist of the following tasks: print 'hello' wait 5 seconds print 'world and we'll plan daily execution of this workflow. Create a DAG file Go to the folder that you've designated to be your AIRFLOWHOME and find the DAGs folder located in subfolder dags/ (if you cannot find, check the setting dagsfolder in $AIRFLOW_HOME/airflow.cfg). Create a Python file with the name airflow_tutorial.py that will contain your DAG. Your workflow will automatically be picked up and scheduled to run. First we'll configure settings that are shared by all our tasks. Settings for tasks can be passed as arguments when creating them, but we can also pass a dictionary with default values to the DAG. This allows us to share default arguments for all the tasks in our DAG is the best place to set e.g. the owner and start date of our DAG. Add the following import and dictionary to airflow_tutorial.py to specify the owner, start time, and retry settings that are shared by our tasks: Configure common settings These settings tell Airflow that this workflow is owned by 'me', that the workflow is valid since June 1st of 2017, it should not send emails and it is allowed to retry the workflow once if it fails with a delay of 5 minutes. Other common default arguments are email settings on failure and the end time. Create the DAG We'll now create a DAG object that will contain our tasks. Name it airflowtutorialv01 and pass default_args: With schedule_interval='0 0 *' we've specified a run at every hour 0; the DAG will run each day at 00:00. See crontab.guru for help deciphering cron schedule expressions. Alternatively, you can use strings like '@daily' and '@hourly'. We've used a context manager to create a DAG (new since 1.8). All the tasks for the DAG should be indented to indicate that they are part of this DAG. Without this context manager you'd have to set the dag parameter for each of your tasks. Airflow will generate DAG runs from the startdate with the specified scheduleinterval. Once a DAG is active, Airflow continuously checks in the database if all the DAG runs have successfully ran since the start_date. Any missing DAG runs are automatically scheduled. When you initialize on 2016-01-04 a DAG with a startdate at 2016-01-01 and a daily scheduleinterval, Airflow will schedule DAG runs for all the days between 2016-01-01 and 2016-01-04. A run starts after the time for the run has passed. The time for which the workflow runs is called the execution_date. The daily workflow for 2016-06-02 runs after 2016-06-02 23:59 and the hourly workflow for 2016-07-03 01:00 starts after 2016-07-03 01:59. From the ETL viewpoint this makes sense: you can only process the daily data for a day after it has passed. This can, however, ask for some juggling with date for other workflows. For Machine Learning models you may want to use all the data up to a given date, you'll have to add the scheduleinterval to your executiondate somewhere in the workflow logic. Because Airflow saves all the (scheduled) DAG runs in its database, you should not change the startdate and scheduleinterval of a DAG. Instead, up the version number of the DAG (e.g. airflowtutorialv02) and avoid running unnecessary tasks by using the web interface or command line tools Timezones and especially daylight savings can mean trouble when scheduling things, so keep your Airflow machine in UTC. You don't want to skip an hour because daylight savings kicks in (or out). Create the tasks Tasks are represented by operators that either perform an action, transfer data, or sense if something has been done. Examples of actions are running a bash script or calling a Python function; of transfers are copying tables between databases or uploading a file; and of sensors are checking if a file exists or data has been added to a database. We'll create a workflow consisting of three tasks: we'll print 'hello', wait for 10 seconds and finally print 'world'. The first two are done with the BashOperator and the latter with the PythonOperator. Give each operator an unique task ID and something to do: Note how we can pass bash commands in the BashOperator and that the PythonOperator asks for a Python function that can be called. Dependencies in tasks are added by setting other actions as upstream (or downstream). Link the operations in a chain so that sleep will be run after printhello and is followed by printworld; printhello -> sleep -> printworld: After rearranging the code your final DAG should look something like: Test the DAG First check that DAG file contains valid Python code by executing the file with Python: You can manually test a single task for a given execution_date with airflow test: This runs the task locally as if it was for 2017-07-01, ignoring other tasks and without communicating to the database. Activate the DAG Now that you're confident that your dag works, let's set it to run automatically! To do so, the scheduler needs to be turned on; the scheduler monitors all tasks and all DAGs and triggers the task instances whose dependencies have been met. Open a new terminal, activate the virtual environment and set the environment variable AIRFLOW_HOME for this terminal, and type Once the scheduler is up and running, refresh the DAGs page in the web UI. You should see airflowtutorialv01 in the list of DAGs with an on/off switch next to it. Turn on the DAG in the web UI and sit back while Airflow starts backfilling the dag runs! Tips Make your DAGs idempotent: rerunning them should give the same results. Use the the cron notation for schedule_interval instead of @daily and @hourly. @daily and @hourly always run after respectively midnight and the full hour, regardless of the hour/minute specified. Manage your connections and secrets with the Connections and/or Variables. Exercises You now know the basics of setting up Airflow, creating a DAG and turning it on; time to go deeper! Change the interval to every 30 minutes. Use a sensor to add a delay of 5 minutes before starting. Implement templating for the BashOperator: print the executiondate instead of 'hello' (check out the original tutorial and the example DAG). Implement templating for the PythonOperator: print the executiondate with one hour added in the function printworld() (check out the documentation of the PythonOperator). Resources Data Pipelines with Apache Airflow Airflow documentation ETL best practices with Airflow Airflow: Tips, Tricks, and Pitfalls Kubernetes Custom controller for deploying Airflow

air-support
github
LLM Vibe Score0.47
Human Vibe Score0.020849148958436158
theskeletoncrewJan 10, 2025

air-support

!air-support Air Support: Tools for Automating Airdrops of Solana NFTs The Skeleton Crew | Twitter: @skeletoncrewrip | Discord: Skeleton Crew Feeling generous? Your contributions help fund future development. Send tips to our Solana wallet: CH6afYjjydFLPSrfQYEUNCdSNohLCAQV6ir6QnYeZU3t See also: Treat Toolbox, a generative art manager for NFT projects from the Skeleton Crew. Background The Skeleton Crew launched on Oct 1, and has since been delivering daily airdrops of artwork from indie artists, with plans to continue for the entire month of October. In order to execute on this plan, we needed tools that allowed us to automate the process. This repository is the result of that effort, which we now share with you in the hopes of more teams spending less time giving themselves Carpal tunnel syndrome doing all of this manually inside of Phantom :) IMPORTANT - Before you Start Creating and sending NFTs in bulk comes with costs. On Solana, the costs are significantly better than some other chains. BUT, it's a good idea to try a drop on devnet first to be sure you understand the fees involved. We assume no responsibility for any costs incurred through the use of these tools. Use at your own risk. Getting Started In order to use Air Support, you will need to install and configure the current version of Metaplex. We run this locally with some customizations for speed (ex. hardcoding some metadata which is common across all of our drops). Also, have a look at the configuration options at the top of the Makefile. At minimum, you'll need to specify paths to Metaplex, your keyfile, and an RPC Host. It's highly recommended that you use a third-party RPC provider to perform large airdrops. DROP is a name for a set of airdrops; in our case we numbered these 1-31 for each day in October. TYPE is a name for a single airdropped item that's part of a drop; in our case we had a "trick" and a "treat" as part of each drop, sometimes even "trick1", "trick2"... etc. The name will be "token" by default, and is used to prefix log files in each step below. For the generate step to work, you will need to build Metaplex's rust tools. Inside metaplex/rust, run: You will also need a few other pieces of software installed, including: gshuf: brew install coreutils jq: brew install jq How to Use Air Support Prerequisites: follow all steps in the Getting Started section above. Then, the basic workflow looks something like this: 📇 prepare: Collect a list of token mint addresses, for which the holders of those tokens represent a community you wish to airdrop to. This is sometimes done by providing your Candy Machine address to https://tools.abstratica.art. Store this in the air support root directory as token-mint-addresses.json. ✍️ record: run this to fetch the wallet addresses of all users that hold the tokens, and don't have them listed on a secondary exchange. The goal here is to avoid sending airdrops to exchanges where they may not be recoverable. Note: As of now, Air Support can only identify tokens listed on Digital Eyes, Magic Eden, Solanart, and Alpha.art. FTX and Solsea use unique addresses for escrow wallets. The command below will fetch the addresses and store them in airdrops/1/token-holders.log. 🎨 create: Start Metaplex, and use it to create your Master Edition NFT with a limited supply (the number of airdrops you want to send). 🖨 generate: run this to generate prints of the Master Edition. These will be stored in the wallet associated with the keys you specify as options. The below command would create 500 prints of the Master with mint address RPdCMRxBx4YPcJv6HUb2S5zHGJcDrDrZszUNNGmLwfT. 🏅 choose: run this next to decide who will receive the airdrop. Important to note that if 2 tokens are owned by the same wallet, by design they have twice the chance to receive an airdrop as someone with only 1 token when using this script to pick recipients. If you have 10,000 token owners recorded as not listed on marketplaces in step 2, and 500 airdrops to send, this will randomly select 500 of those recorded tokens. 📬 distribute: the last step is to send the airdrops out. This script will run through the addresses generated in step 4 and the recipients chosen in step 5 and send airdrops 1-by-1. It is possible that failures will occur. Logs are saved during the process in a {NAME}_sent.log file. Because distribution happens line-by-line, it is safe to rerun the script again to attempt to correct failures. You can also check your wallet to see that all tokens have been distributed. (Note that your Master edition will still remain as only prints are recorded to be sent in step 4. You can keep these for yourself or a community vault.) There is also an optional STARTINDEX param that can be used if you need to restart a distribution from somewhere in the middle. 🔥 burn: if you realize you made a mistake on your Master NFT, but only after you went ahead and started printing a bunch of editions, this command will automate the process of sending those costly mistakes to the Solana incinerator. There is also an optional STARTINDEX param that can be used if you need to restart a distribution from somewhere in the middle. Other Tips Transparency is key when running airdrop campaigns to your communities. In an ideal world, where we had more than 24 hours between our launch and the start of our month of airdrops, we might have attempted to bring some or all of these processes on-chain. The next best thing we could offer is a transparency repo, where we publish the daily receipts of our airdrops, to make it easy for our community to investigate the drops on the blockchain if they feel the desire to do so. Our tools give you the receipts as output to do the same if you wish. You can have a look at that repo here: https://github.com/theskeletoncrew/airdrop-transparency Acknowledgements The record step utilizes code created by the Exiled Apes organization, shared under an Apache License, originally found here: https://github.com/exiled-apes/exiled-holders

teach-AI-in-business
github
LLM Vibe Score0.443
Human Vibe Score0.018525334165293606
aenyneJan 9, 2025

teach-AI-in-business

Teaching AI in Business ![HitCount] I am collecting material for teaching AI-related issues to non-tech people. The links should provide for a general understanding of AI without going too deep into technical issues. Please contribute! Make this Issue your First Issue I am collecting material for teaching AI-related issues to non-tech people. The links should have provide for a general understanding of AI without going too deep into technical issues. Please contribute! Kindly use only those Resources with NO CODE NEW Check out also the AI Wiki NEW Online Videos & Courses | Link to Issue | Description | |---|---| | Top Trending Technologies | Youtube Channel to master top trending technologyies including artificial intelligence | | AI4All | AI 4 All is a resource for AI facilitators to bring AI to scholars and students | | Elements of AI | Elements of AI is a free open online course to teach AI principles | | Visual Introduction to Machine Learning | Visual introduction to Machine Learning is a beautiful website that gives a comprehensive introduction and easily understood first encounter with machine learning | | CS50's Introduction to Artificial Intelligence with Python | Learn to use machine learning in Python in this introductory course on artificial intelligence.| | Crash course for AI | This is a fun video series that introduces students and educators to Artificial Intelligence and also offers additional more advanced videos. Learn about the basics, neural networks, algorithms, and more. | Youtuber Channel Machine Learning Tutorial | Youtube Channel Turorial Teachable Machine for beginner | | Artificial Intelligence (AI) |Learn the fundamentals of Artificial Intelligence (AI), and apply them. Design intelligent agents to solve real-world problems including, search, games, machine learning, logic, and constraint satisfaction problems | | AI For Everyone by Andrew Ng | AI For Everyone is a course especially for people from a non-technical background to understand AI strategies | | How far is too far? The age of AI| This is a Youtube Orignals series by Robert Downey| | Fundamentals of Artificial Intelligence|This course is for absolute beginners with no technical knowledge.| | Bandit Algorithm (Online Machine Learning)|No requirement of technical knowledge, but a basic understending of Probability Ttheory would help| | An Executive's Guide to AI|This is an interactive guide to teaching business professionals how they might employ artificial intelligence in their business| | AI Business School|Series of videos that teach how AI may be incorporated in various business industries| | Artificial Intelligence Tutorial for Beginners | This video will provide you with a comprehensive and detailed knowledge of Artificial Intelligence concepts with hands-on examples. | | Indonesian Machine Learning Tutorial | Turorial Teachable Machine to train a computer for beginner | | Indonesian Youtube Playlist AI Tutorial | Youtube Playlist AI Tutorial For Beginner | | Artificial Intelligence Search Methods For Problem Solving By Prof. Deepak Khemani|These video lectures are for absolute beginners with no technical knowledge| | AI Basics Tutorial | This video starts from the very basics of AI and ML, and finally has a hands-on demo of the standard MNIST Dataset Number Detection model using Keras and Tensorflow.| | Simple brain.js Tutorial | This video explains a very simple javascript AI library called brain.js so you can easily run AI in the browser.| | Google AI| A complete kit for by google official for non-tech guy to start all over from basics, till advanced | | Microsoft AI for Beginners| A self-driven curriculum by Microsoft, which includes 24 lessons on AI. | Train Your Own AI | Link to Issue | Description | |---|---| | Teachable Machine | Use Teachable Machine to train a computer to recognize your own images, sounds, & poses | | eCraft2Learn | Resource and interactive space (Snap, a visual programming environment like Scratch) to learn how to create AI programs | | Google Quick Draw | Train an AI to guess from drawings| | Deepdream Generator| Merge Pictures to Deep Dreams using the Deepdream Generator| | Create ML|Quickly build and train Core ML models on your Mac with no code.| | What-If Tool|Visually probe the behavior of trained machine learning models, with minimal coding.| | Metaranx|Use and build artificial intelligence tools to analyze and make decisions about your data. Drag-and-drop. No code.| | obviously.ai|The total process of building ML algorithms, explaining results, and predicting outcomes in one single click.| Articles | By & Title | Description | |---|---| | Artificial Intelligence | Wikipedia Page of AI | | The Non-Technical AI Guide | One of the good blog post that could help AI more understandable for people without technical background | | LIAI | A detailed introduction to AI and neural networks | | Layman's Intro | A layman's introduction to AI | | AI and Machine Learning: A Nontechnical Overview | AI and Machine Learning: A Nontechnical Overview from OREILLY themselves is a guide to learn anyone everything they need to know about AI, focussed on non-tech people | | What business leaders need to know about artifical intelligence|Short article that summarizes the essential aspects of AI that business leaders need to understand| | How Will No-Code Impact the Future of Conversational AI | A humble explanation to the current state of converstational AI i.e.Chatbots and how it coul evolve with the current trend of no coding. | | Investopedia | Basic explanation of what AI is in a very basic and comprehensive way | | Packtpub | A non programmer’s guide to learning Machine learning | | Builtin | Artificial Intelligence.What is Artificial Intelligence? How Does AI Work? | | Future Of Life | Benefits & Risks of Artificial Intelligence | | NSDM India -Arpit | 100+ AI Tools For Non-Coders That Will Make Your Marketing Better. | | AI in Marketing for Startups & Non-technical Marketers | A practical guide for non-technical people | | Blog - Machine Learning MAstery | Blogs and Articles by Jason Browniee on ML | | AI Chatbots without programming| Chatbots are increasingly in demand among global businesses. This course will teach you how to build, analyze, deploy and monetize chatbots - with the help of IBM Watson and the power of AI.| Book Resources for Further Reading | Author | Book | Description & Notes | |---|---|---| | Ethem Alpaydin|Machine Learning: The New AI | Graph Theory with Applications to Engineering & Computer Science. A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. | | Charu C. Aggarwal| Neural Networks and Deep Learning | This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. | | Hal Daumé III | A Course in Machine Learning | The purpose of this book is to provide a gentle and pedagogically organized introduction to the field. A second goal of this book is to provide a view of machine learning that focuses on ideas and models, not on math. | | Ian Goodfellow and Yoshua Bengio and Aaron Courville| Deep Learning | The book starts with a discussion on machine learning basics, including the applied mathematics and algorithms needed to effectively study deep learning from an academic perspective. There is no code covered in the book, making it perfect for a non-technical AI enthusiast. | | Peter Harrington|Machine Learning in Action| (Source: https://github.com/kerasking/book-1/blob/master/ML%20Machine%20Learning%20in%20Action.pdf) This book acts as a guide to walk newcomers through the techniques needed for machine learning as well as the concepts behind the practices.| | Jeff Heaton| Artificial Intelligence for Humans |This book helps its readers get an overview and understanding of AI algorithms. It is meant to teach AI for those who don’t have an extensive mathematical background. The readers need to have only a basic knowledge of computer programming and college algebra.| | John D. Kelleher, Brian Mac Namee and Aoife D'Arcy|Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (The MIT Press)|This book covers all the fundamentals of machine learning, diving into the theory of the subject and using practical applications, working examples, and case studies to drive the knowledge home.| | Deepak Khemani| [A First Course in Artificial Intelligence] | It is an introductory course on Artificial Intelligence, a knowledge-based approach using agents all across and detailed, well-structured algorithms with proofs. This book mainly follows a bottom-up approach exploring the basic strategies needed problem-solving on the intelligence part. | | Maxim Lapan | Deep Reinforcement Learning Hands-On - Second Edition | Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. | | Tom M Mitchell | Machine Learning | This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper level undergraduate and introductory level graduate courses in machine learning. | | John Paul Mueller and Luca Massaron|Machine Learning For Dummies|This book aims to get readers familiar with the basic concepts and theories of machine learning and how it applies to the real world. And "Dummies" here refers to absolute beginners with no technical background.The book introduces a little coding in Python and R used to teach machines to find patterns and analyze results. From those small tasks and patterns, we can extrapolate how machine learning is useful in daily lives through web searches, internet ads, email filters, fraud detection, and so on. With this book, you can take a small step into the realm of machine learning and we can learn some basic coding in Pyton and R (if interested)| | Michael Nielsen| Neural Networks and Deep Learning |Introduction to the core principles of Neural Networks and Deep Learning in AI| | Simon Rogers and Mark Girolami| A Course in Machine Learning |A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC.| |Peter Norvig| Paradigm of Artificial Intelligence Programming |Paradigms of AI Programming is the first text to teach advanced Common Lisp techniques in the context of building major AI systems. By reconstructing authentic, complex AI programs using state-of-the-art Common Lisp, the book teaches students and professionals how to build and debug robust practical programs, while demonstrating superior programming style and important AI concepts.| | Stuart Russel & Peter Norvig | Artificial Intelligence: A Modern Approach, 3rd Edition | This is the prescribed text book for my Introduction to AI university course. It starts off explaining all the basics and definitions of what AI is, before launching into agents, algorithms, and how to apply them. Russel is from the University of California at Berkeley. Norvig is from Google.| | Richard S. Sutton and Andrew G. Barto| Reinforcement Learning: An Introduction |Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment.| | Alex Smola and S.V.N. Vishwanathan | Introduction to Machine Learning | Provides the reader with an overview of the vast applications of ML, including some basic tools of statistics and probability theory. Also includes discussions on sophisticated ideas and concepts. | | Shai Shalev-Shwartz and Shai Ben-David | Understanding Machine Learning From Theory to Algorithms |The primary goal of this book is to provide a rigorous, yet easy to follow, introduction to the main concepts underlying machine learning. | | Chandra S.S.V | Artificial Intelligence and Machine Learning | This book is primarily intended for undergraduate and postgraduate students of computer science and engineering. This textbook covers the gap between the difficult contexts of Artificial Intelligence and Machine Learning. It provides the most number of case studies and worked-out examples. In addition to Artificial Intelligence and Machine Learning, it also covers various types of learning like reinforced, supervised, unsupervised and statistical learning. It features well-explained algorithms and pseudo-codes for each topic which makes this book very useful for students. | | Oliver Theobald|Machine Learning For Absolute Beginners: A Plain English Introduction|This is an absolute beginners ML guide.No mathematical background is needed, nor coding experience — this is the most basic introduction to the topic for anyone interested in machine learning.“Plain” language is highly valued here to prevent beginners from being overwhelmed by technical jargon. Clear, accessible explanations and visual examples accompany the various algorithms to make sure things are easy to follow.| | Tom Taulli | Artificial Intelligence Basics: A Non-Technical Introduction | This book equips you with a fundamental grasp of Artificial Intelligence and its impact. It provides a non-technical introduction to important concepts such as Machine Learning, Deep Learning, Natural Language Processing, Robotics and more. Further the author expands on the questions surrounding the future impact of AI on aspects that include societal trends, ethics, governments, company structures and daily life. | |Cornelius Weber, Mark Elshaw, N. Michael Mayer| Reinforcement Learning |Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning.| |John D. Kelleher, Brian Mac Namee, Aoife D'arcy| Algorithms, Worked Examples, and Case Studies | A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. |

ai_primer
github
LLM Vibe Score0.347
Human Vibe Score0.0036202231602591754
trokasNov 20, 2024

ai_primer

Welcome to AI primer course INTERACTIVE BOOK LINK Main aim of this course is to give you enough information so that you can start exploring field of AI on your own and maybe even start searching for DS role. We have only 5 main chapters and one bonus lecture to cover. Unsupervised learning SVD (Singular Value Decomposition) - it’s a good tool to introduce both technical tools we will be working with as well as giving us a glimpse at unsupervised learning. Supervised learning RF (Random Forests) - one of the first “silver bullets” out there. Our discussion will also cover Shannon’s work on entropy as it’s one of the key ingredients. Deep learning DNN (Deep Neural Networks) - we will build our own Perceptron from scratch, thus focusing on gradient descent and backprop on the way. By changing activation function logistic regression will be introduced and finally we will explore what a stack of layers (deep NN) can offer. CNN (Convolutional Neural Networks) - even though different techniques come and go in deep learning world I strongly believe that CNN’s will be around for quite some time to come. We will use them not only for images, but also for time series prediction. Attention - powerful idea that stands behind Transformers and one of the enablers for GPT-3, DALL-E 2 and others. Reinforcement Learning (bonus lecture) TD (Temporal Difference) - one of the core principles in reinforcement learning. We will apply it to play tic-tac-toe. Also we will cover following toolset, which hopefully will be useful for your future projects: numpy (mainly in SVD and FCN lectures) - will help us store vectors, matrices and perform operations on them. matplotlib (in all lectures) - nice and simple plotting lib. scikit-learn - ML library. pandas (mainly in RF lecture) - structured way of looking at tabular data. PyTorch (FCN and CNN lectures) - simple deep learning library based on tensorflow. git (final project) - version control tool. Toolset will be presented only in lectures, thus it’s up to you to learn them on your own if you do not plan to attend. There are a lot of resources, but I highly suggest to read intros in corresponding docs. What to expect from a single lecture? There will be no clear distinction between theory and practice, thus you should have your PC ready for small assignments that you will encounter on the way. Most important material will be listed here, but during lectures you will hear and see a lot of complementary material. Each lecture will end with a list of resources (some of them mandatory). We will start a new lecture with a recap of what was done last time and discussion regarding mentioned resources in the hope to deepen understanding in the subject and inspire you to search for sources and publications yourself. Launching notebooks You can launch notebooks while in interactive book by simply pressing the rocket logo and choosing Colab. To get faster run times click Runtime and Change runtime type, then select GPU or TPU. If necessary you can install missing packages by running !pip install [package name] directly in the notebook. NOTE: Colab will not save your changes between sessions! Download the notebook or save a copy in Google Drive before closing the browser. If you want to open notebooks locally (for a quick preview) you might find nteract useful. As an alternative you can use non free, but cheap options like Jarvislabs or Paperspace. Actually Paperspace has free GPU option, but often it is not available. (re)Sources Each chapter will have a list of resources, but for now I highly recommend to start listening/watching following resources on your spare time: Data Skeptic podcast Artificial Intelligence podcast Two Minute Papers youtube channel If I had to recommend a single book for beginner it will be this one - Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition.

7 Free AI Productivity Tools I Use Every Day
youtube
LLM Vibe Score0
Human Vibe Score0.89
FuturepediaMay 6, 2024

7 Free AI Productivity Tools I Use Every Day

🎉 Get started with Notion, sign up for free or unlock AI for $10 per month: https://ntn.so/Futurepedia More from Futurepedia: 👉 Join the fastest-growing AI education platform! Try it free and explore 20+ top-rated courses in AI: https://bit.ly/futurepediaSL Links: Arc Browser - https://arc.net/ Perplexity - https://www.perplexity.ai/ Notion - https://ntn.so/Futurepedia Texts.com - https://texts.com/ Missive - https://missiveapp.com/ Canva - https://www.canva.com/ ChatGPT - https://chat.openai.com/ Forms.app - https://forms.app/ Otter - https://otter.ai/ Humata - https://www.humata.ai/ Recast - https://www.letsrecast.ai/ Gamma - https://gamma.app/ Futurepedia - https://www.futurepedia.io/ Summary: 7 free ai productivity tools I use every day to get more done, plus 5 bonus ai tools that are great for productivity, but may not apply to everyone. I introduce the Mind, Machine, and Method productivity system with ai tools as the machines with a method to get them into the mind aka second brain. I use Notion as the second brain / mind in this system. AI tools have made huge leaps and can help to greatly increase productivity, but there are so many tools launching trying to capitalize on the AI hype, but are overpriced and not useful. I cut through the noise with the 7 AI productivity tools I actually use to save time. Chapters 0:00 Intro 0:48 Arc Browser 2:45 Perplexity 3:55 Notion 7:00 Texts.com 8:26 Missive 9:10 Canva 10:17 ChatGPT 11:21 Forms.app 12:47 Otter 13:18 Humata 13:45 Recast 14:26 Gamma 15:08 Futurepedia

5 Best FREE AI Courses for Non-Technical & Technical Beginners 2024 | How to learn AI ML | Learn AI
youtube
LLM Vibe Score0.369
Human Vibe Score0.6
Pavan SathirajuFeb 24, 2024

5 Best FREE AI Courses for Non-Technical & Technical Beginners 2024 | How to learn AI ML | Learn AI

Install SquareX - https://sqrx.io/ps_yt Top FREE AI Courses #1 AI For Everyone Coursera - https://www.coursera.org/learn/ai-for-everyone#modules #2 - Building Generative AI Skills for Business Professionals (LinkedIn) - https://www.linkedin.com/learning/paths/building-generative-ai-skills-for-business-professionals #3 - AI for Python programmers. CS50's Introduction to Artificial Intelligence with Python - https://www.edx.org/learn/artificial-intelligence/harvard-university-cs50-s-introduction-to-artificial-intelligence-with-python? #4 - Wharton AI for Business Professionals - https://www.coursera.org/specializations/ai-for-business-wharton #5 - Deep learning specialization by Andre - https://www.coursera.org/specializations/deep-learning If you are looking to join our Problem Solving platform & get personalized feedback: https://inquisitiveminds.ai/ Follow me here LinkedIn - https://www.linkedin.com/in/pavan-sathiraju/ Instagram - https://www.instagram.com/pavan.sathiraju Everyone is talking about why to upskill in AI but nobody is telling you how to learn AI and Machine Learning in 2024. These 5 best AI courses for beginners free 2024 will help you learn AI ML from scratch. This will solve your problem of how to learn AI from scratch and you will be able to use these best ai courses online to advance in your career. These best AI courses online are for both beginners or non-technical folks. In this video, I have included AI courses for non-technical and business folks along with AI course in Python for folks who know tech or programming. How to learn AI from scratch? For this query, we have included the first course that AI for everybody on Coursera. As the title suggests this is an AI Course for beginners to learn AI ML from scratch and have a basic understanding of AI technology. These best AI courses for beginners online can help you a great deal in getting started with AI. This is one of the best AI courses online for free. You can find other free AI courses but if you are just getting started with learning AI and Machine Learning then this is the course for you. Next on the list is related to AI courses for jobs that can be used by business professionals. You can use this course as a business professional to learn how to use AI tools in your job and get things done faster. How to learn AI for beginners? For this, we have included a course from Havard which is an introduction to AI using Python. For technical folks who know Python, this is a good course since it will teach you everything you need to know about Artificial Intelligence and Machine Learning to get started with doing more work in the field. This covers your AI courses for job. The next best ai course for beginners is Wharton AI course for business professionals. This is a great AI course for business professionals who want to learn how to use AI tools. How to learn AI and machine learning from scratch as a business student? This Wharton AI course will help you a lot in that regard. The last best AI course on the list to learn AI and Machine learning from scratch is the Deep Learning course on Coursera. This course is great for both beginners and those with some experience who want to learn more about AI. Hope this video solves your problem of how to learn AI ML. Hope you find this video valuable, see you in the next one. About Me I publish meaningful and valuable content on this channel. My aim is to make business news more accessible and easy to grasp. If you find my videos informative and insightful then make sure to subscribe and leave a comment. I’ll see you in the next video Chapters 0:00 - Intro 2:08 - #1 Course 3:26 - #2 Course 5:56 - #3 Course 7:08 - #4 Course 8:18 - #5 Course 9:35 - Outro

How to use AI to make extra money
youtube
LLM Vibe Score0.414
Human Vibe Score0.63
Anik SingalApr 25, 2023

How to use AI to make extra money

FREE Courses from LURN == https://www.Lurn.com/getfreecourses ============================================ How to use AI to make extra money ============================================ 👇Subscribe To The Channel By Clicking Below!👇 https://www.youtube.com/user/aniksingalcom?sub_confirmation=1 CHECK OUT THESE TOP TRENDING PLAYLISTS NOW! Fighting Entrepreneur - https://www.youtube.com/watch?v=D9nsNOu3gIE&list=PLEmF7qw7SECK1hy5U5nodHoCg7ANzXukz Master Copywriting With Anik Singal - https://www.youtube.com/watch?v=CjOAWP1DKAk&list=PLEmF7qw7SECKouq97MqF5zFi1Xb-VFyMY&index=2&t=0s Facebook Advertising Strategies - https://www.youtube.com/watch?v=BMQh6zA3HUY&list=PLEmF7qw7SECJUULNlnAGHvcegeQbIAHZp How To Become A Better Entrepreneur - https://www.youtube.com/playlist?list=PLEmF7qw7SECKVlP2eOsF_XpYBYhlTGAVU ============================================ “Lead Fighter” — That’s the title Anik Singal gives himself as a high-energy, trailblazing Entrepreneur. Anik got his start in the online scene back in 2003 from his college dorm room. Ever since then he’s gone on to build 6 successful companies, launched 22 top brands, generated over $250 Million in sales, and taught over 250,000 students worldwide - how to start, grow, and scale a successful online business. As the founder of Lurn, Inc., Anik Singal’s passion is in creating dynamic online classroom environments that teach people how to enhance their business, financial, and personal lives. Anik Singal has become a go-to authority in the areas of... ✅Digital Publishing. ✅Event-Based Marketing. ✅Product Launches. ✅Email Marketing. Anik has been voted one of the Top 3 Young Entrepreneurs by BusinessWeek Magazine. In addition, his company earned the prestigious Inc. 500 Fastest Growing Companies in America two years in a row. All of Anik’s experiences have made him the person he is today… From struggling for 18 months when he first started, then successfully building his business to over $10 Million a year. Then losing it all and falling to $1.7 Million in debt and almost declaring bankruptcy. Bouncing back and generating over $10 million in 16 months, paying back all of his debt and he hasn’t looked back since. He’s worked with and has been endorsed by some of the most influential Entrepreneurs of our time... Including Robert Kiyosaki, Les Brown, Daymond John, Bob Proctor, Grant Cardone, and many more. Anik is a dreamer. A thinker. A fighter. Most importantly, Anik is a teacher. His immediate goal is empowering 1 Million Entrepreneurs to live the life of their dreams by the end of 2019. ============================================ CONNECT WITH ANIK ON SOCIAL MEDIA YouTube: https://www.youtube.com/channel/UCinyEr-Fly9Yp1zMFxD0cQ?viewas=subscriber Anik Singal Blog: https://lurn.com/blog/ Facebook: https://www.facebook.com/aniksingal Instagram: https://www.instagram.com/anik/ LinkedIn: https://www.linkedin.com/company/lurn-inc/ Podcast: https://podcast.lurnworkshop.com iTunes: https://itunes.apple.com/us/podcast/the-fighting-entrepreneur/id1446089516?mt=2 Spotify: https://open.spotify.com/show/0HbielkIU1f88Bv4VuMHmh?si=Q1ujyoiMRF2LlHdBgTdAzw Soundcloud: https://soundcloud.com/thefightingentrepreneur Google Play: https://play.google.com/music/listen#/ps/Irckjhwglqgjnbia5t3zpyj4xcq #AnikSingal #Lurn #LurnNation ============================================ Join Lurn Nation: https://lurn.com/ Lurn is the Transformational home for modern entrepreneurs. We have 60+ training courses and programs to help you reach your business goals - join our community today!

russian-ai-cup-visual
github
LLM Vibe Score0.398
Human Vibe Score0.02141674920215693
JustAManAug 21, 2020

russian-ai-cup-visual

What it is This is a plugin for Russian AI Cup local runner that can be controlled by the strategy a player is developing. Plugin is based on the source that was provided by AI Cup committee. How to control Plugin is controlled by the property file named visualizer-plugin.properties placed in the same directory where .properties file which is used by local runner is stored. Properties are: plugin-port-number - port which plugin listens for incoming connections. Default value is 13579. plugin-do-tick-sync - whether to do a sync between local runner and debug client, see "re-playing games" for more. How to use Plugin starts a server thread that accepts only one connection to its port number. Then it starts communicating with other party using line-level text protocol. Currently known commands are: begin pre / begin post - start queueing commands to be displayed either before or after main drawing end pre / end post - mark either "pre" or "post" queue of commands as ready to be displayed circle x0 y0 r0 - draw a circle at (x0, y0) with radius r0 and color color fill_circle x0 y0 r0 - draw a filled circle at (x0, y0) with radius r0 and color color rect x1 y1 x2 y2 - draw a rect with corners at (x1, y1) to (x2, y2) with color color fill_rect x1 y1 x2 y2 - draw a filled rect with corners at (x1, y1) to (x2, y2) with color color line x1 y1 x2 y2 - draw a line from (x1, y1) to (x2, y2) with color color text x0 y0 msg - show msg at coordinates (x0, y0) with color color arc x y r startAngle arcAngle - draw an arc with center at (x, y) with radius r, begins at startAngle and extends for arcAngle. All angles are in radians fill_arc x y r startAngle arcAngle - draw a sector with center at (x, y) with radius r, begins at startAngle and extends for arcAngle. All angles are in radians Color ` is actually an r g b triple of floats where 0.0 0.0 0.0 will be black and 1.0 1.0 1.0 will be white. Re-playing games from russianaicup.ru with visual debug NOTE: currently it is untested if it works with replays from AI cup 2016 To support that your debug client has to support syncing model. It is currently done as follows: Each tick plugin sends to the client SYNC line and waits for ACK from client Debug client should respond with ACK as soon as the strategy using this client has finished computing tick This mode has to be enabled in visualizer-plugin.properties with setting plugin-do-tick-sync to either true or to auto. Auto mode will detect replay mode by checking names of players and assuming that if there is NO MyStrategy` then it is a replay and it requires sync mode. How strategy can use it Well, this is actually up to the user... currently there is very simple debug client implemented in Python provided.