VibeBuilders.ai Logo
VibeBuilders.ai

Along

Explore resources related to along to help implement AI solutions for your business.

Running and selling multiple side projects alongside a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
leanpreneur1This week

Running and selling multiple side projects alongside a 9-5

My current side project started 56 days ago when I started writing 1,000 words per day. My core businesses are an agency and job board, and I just needed a creative outlet. The likes of Chris Guillebeau and Nathan Barry attribute their progression to writing so I thought I’d see if it might do the same for me. At first I was just vomiting words onto the screen, I made a blog and wrote mainly technical guides related to my skills. Over time I realised I was writing more and more about running a business as a solopreneur, or lean operator. There is tons of content out there giving you the Birds Eye of going from 0 to £10m. Inspiring stuff, but I think there is a void in real content, explaining the nuts and bolts of the how.  What is the day-to-day like for the solopreneurs who make a good living and have plenty of free time? That’s what I’m striving for anyway. I’m not talking about the 7-figure outliers. Or the ones teaching you to make content so you can have a business teaching others how to make content, and so on. I’m also sick of the ‘I made $X in 5 minutes and how you can too’  So, I started chatting to people in my network who run lean businesses and/or side hustles. I ask them a bit about their journey and ask them to teach something - how they operate, or a skill/process/system/tool that other people like you/me will find useful. One of my first chats was with Sam Dickie, who runs multiple side projects so thought I’d share here, see if others find it useful and get some feedback. I’ve removed all links as I’ve never posted on Reddit before so conscious of not being promotional, I’m posting this stuff to a tiny email list of friends with no upsells. Just finding my feet on whether others find it useful or not: — Sam is a serial entrepreneur who builds projects in his spare time whilst working a 9-5. He’s scaled and sold multiple ventures and currently runs one of the best newsletters out there for builders and entrepreneurs. Building audience through newsletters has always been a cornerstone strategy for him, so, along with sharing his advice on solopreneurism, he’s also generously shared his lean newsletter writing process. About Sam Sam is a Senior Product Manager who has spent the last 15 years working in the tech sector after starting his career as a town planner. In addition to his job he spends some of his spare time building side projects. These have included a 3D printing startup, a tech directory, a newsletter, a beta product directory, and consultancy. Sam is the epitome of making a success out of following your interest and curiosity. It’s clear he enjoys his business ventures and builds in a risk-free way.   It’s often touted by business gurus to avoid building around your interests, but Sam bucks the trend successfully. I think he’s someone who has already found his 1,000 true fans.  Descending rabbit holes, Sam’s journey of invention and curation 3D printing Sam’s first foray into launching a startup was with Fiilo, a 3D printing business. This was at the height of the 3D printing craze and he self-admits that he used the launch as an excuse to buy a 3D printer. He ended up with two and launching a product called GrowGo. GrowGo is a sustainable 3D-printed product that turns any bottle into somewhere that you can grow plants and herbs. He eventually sold this business and the printers, making around £10k. Along the way, he was exposed to various business tasks, including building a website in Weebly, the biggest nocode website builder of the time, and built an API that enabled print on demand for his product. NoCode.Tech The experiences of building as someone non-technical led to numerous friends asking how he built all of this tech. Back then, nocode wasn’t popular, and it had almost zero search volume, so Sam created a basic directory. A quick landing page on Weebly with a basic value prop, a short explanation and a list of the tools he had used before. It hit the top spot on Product Hunt, and he landed 2,000 subscribers in the first 48 hours. But, he hadn’t built it at this point, so he set about getting to work. He built the directory and list to 30,000 subs and monetised the site through advertising. At its peak with Sam, it was receiving about £2,000 per month in ad revenue. He was still working his 9-5 at this point, so thought it might be a good time to exit. The site was still growing, but it was becoming anxiety inducing whilst he was still working full-time. So, he ended up selling the site and making friend’s with the buyer. Fast forwarding a bit, Nocode.tech was eventually acquired by Stackr, a nocode app. Sam was working for their competitor at the time and ended up being offered a job by his friend who acquired the site. All of this from a side project in his area of passion. Creator Club After selling the directory, Sam lost his outlet for sharing his tools and learnings.  Being fascinated with curation and loving sifting through for nuggets, he invested more time into his personal website and launched Creator Club newsletter. Sam writes monthly and currently has over 8,000 subs. It’s one of the few newsletters that I let bypass my email filters and land in my main inbox. Life as a Part-Time Multipreneur Side Hustler If it’s not obvious already Sam is a curiosity led business creator. He’s found that the products without a revenue focus or intention have ironically outperformed those created for the sole purpose of creating money. He enjoys working on his side hustles. He could have run the Nocode.Tech for 10 more years and wouldn’t have tired of it as it’s a byproduct of his interest. For this reason, he has also created the Beta Directory, simply because he loves unearthing early-stage products. He admits he gets the fear when he thinks about quitting his 9-5, although he suspects if he devoted the same energy to one of his projects it could replace his income (no doubts from me here). This same fear means that he can run his ventures with less fear. This way, he can experiment with freedom and isn’t risking the ranch with a young family to consider. For example, recently he stopped paid sponsors on his newsletter as it was more stress than the value of the income to him. Sam divides his time on evenings and weekends (unequally) between the following: Creator Club Validation Co Beta directory Consultancy The pure side hustle status magnifies the need to run lean, let’s jump into his process…. Sam’s lean newsletter curation and creation process Starting out publishing his personal newsletter Going against his expertise, Sam originally over-engineered his process.  He curated with Feedly and tried to automate the full writing process with Zapier. The trouble is that there are too many points of failure which can lead the whole  chain to break down, and you spend more time fixing the system. For a 200 subscriber newsletter, he needed to pare things back. His set-up now Sam scaled back and now simple builds automations when he needs them. He keeps the process simple, right down to the design and any welcome automations. Keeping things real We touched on the trend that keeping things raw is better. Content has come full circle with the advent of AI. Everything looks too perfect and consequently, people’s tastes are changing. Sam mentioned watermarks that show content isn’t AI written, and we referenced content such as Greg Isenberg’s sketches, and Chris Donnelly’s image posts. \\Step by Step Process:\\ Using Stoop Inbox to manage sources Curation with Pocket Managing content with Airtable and Zapier Using Bearly to summarise Substack for writing Monitoring content sources Sam uses Stoop Inbox, an RSS curation tool, to manage his content sources. It gives him a dedicated email address for newsletters and he follows an Inbox Zero methodology. He checks in daily in Stoop, and on X, Reddit and IndieHackers. With X, he just uses the standard interface but has been careful to curate his feed, sometimes adding in extra notifications to hear from interesting people. Highlighting content When curating links, Sam uses Arc browser and the Pocket extension to save links. It’s super simple and lightweight. He creates tags which trigger an automation that curates the link to Airtable. If you watch the video, here’s a shoutout to Alice, the AI interface I use which has recently featured on Product Hunt. It’s a fantastic tool with bags of potential to enhance a solopreneur’s life. Ranking and sorting content He sends the links indexed using Pocket to a basic Airtable base via Zapier. From there, he grades the content and sets aside some time to read it in more depth. Pocket pulls through the title, metadata, and URL link. Review Sam does this manually but has used a tool as a shortcut for digesting long form content — Bearly.ai. Bearly.ai was created by Trung Phan and linking back to raw content, Trung is 1/3 of the hosts on the Not Investment Advice podcast. Its irreverent style and thumbnail are an example of a successful podcast that doesn’t over polish. Writing it all up Being a huge Notion fan (check out the free templates on his site), Sam originally used Notion for writing and linked it into Revue. When Elon sunsetted Revue, he switched to Substack. He loves the Substack interface so drafts in Substack based on a duplication of last month’s edition. Before publishing, Sam runs through a 10-point Notion checklist, which he shared with me. Parting Advice Keep your tool stack as lean as possible. Avoid tool switching to the shiny new object. Getting launched quickly is key. Don’t think that you have to be everywhere for distribution, Sam sticks with what he knows on X and LinkedIn. Overall, he advises just keeping things simple and therefore minimising risk. Resources He says they’re cliche, but I don’t agree; they’re timeless. Paul Graham of Y Combinator is someone Sam recommends following. He doesn’t write much, which is great as Sam gets anxiety when someone good often writes and he can’t keep up with the writing. His content is well thought out and distills complex concepts in entrepreneurship and startups. In addition, Sam loves Naval Ravikant’s approach. He mentions checking out the Almanac of Naval Ravikant for collected wisdom. Follow Sam’s Journey Again, not going to link here but you can find Sam’s stuff easily enough if you want to. His personal website is beautiful and contains loads of free downloads. He has also curated personal websites he admires if you need some inspiration. Sam is a super nice guy so reach out to him, I did before I started my personal blog recently, and he gave me some great advice. Also, worth keeping an eye on Validation Co, where he aims to help early-stage makers and creators validate their ideas. He’s building super slow — trying to enjoy the process without unachievable deadlines. Maintaining his stamina and passion. Amazing, I hope he writes more about that soon! -- That’s my second shot at an interview, hope you enjoyed it and found something useful in it. I’m talking to a marketplace founder who spends 2–3 hours per month his project, a multiple job board owner with a 9-5 and a leading book designer next. As this is my side project, should I keep going?

Follow Along as I Flip this Website - Case Study
reddit
LLM Vibe Score0
Human Vibe Score1
jshogren10This week

Follow Along as I Flip this Website - Case Study

I am starting a new case study where I will be documenting my attempt to flip a website that I just purchased from Flippa. However, unlike most case studies where people hide certain parts and details from the public I will instead be sharing everything. That means you will know the exact URL of the site that I purchased and I will share everything with you all as I progress.I know that case studies are lot more interesting and you can learn better when you can see real examples of what I am talking about. Enough of the chatting, let's jump straight into this new case study and I will explain what this is all about. Before you get into the case study I want to give you the option of reading this one my website where all of the images can be seen within the post and it is easier to read. I also want to say that I have nothing to sell you or anything close to it. So if you want to read it there you can do so here ##Introductory Video I have put together a video that talks about many of the things that I cover in this article. So if you would rather watch a video you can watch that here - https://www.youtube.com/watch?v=EE3SxtNnqts However, I go into more detail in the actual article FYI. Also, I plan on using Youtube very frequently in this case study so be on the lookout for new videos.There is going to be a video that will accompany every single case study post because I like having it being presented in two different mediums. ##The Website I Just Bought Around a week ago I made a new website purchase from Flippa and you can view the website's Flippa listing here - https://flippa.com/6439965-hvactraining101-com Screenshot of the Homepage - http://imgur.com/T6Iv1QN I paid $1,250 for the site and you will soon see that I got a really good deal. As you might be able to tell from the URL, this site is focused around training and education for becoming a HVAC technician. This is a lucrative niche to be in and Adsense pays very well. I do not have control of the site yet due to the transfer process not being completed. However, I am hoping within a few days everything will be finalized and I will take full control of the site. In the meantime, I figured it would be a good time to put together the introduction post for this new case study! ##Why I Bought this Website Now that you have a general idea of the website that I purchased, I now want to explain the reasoning behind the purchase. There are 3 major reasons for this purchase and I will explain each one of them below. GREAT Price As I mentioned earlier, I bought this website for $1,250. However, that doesn't mean a whole lot unless you know how much the site is making each month. Screenshot of the earnings for the last 12 months - http://imgur.com/NptxCHy Average Monthly Profits: 3 Month = $126 6 Month = $128 12 Month = $229.50 Let's use the 6 month average of $128/month as our baseline average. Since it is making on average $128/month and it was sold for $1,250 then that means I bought this site at a multiple of 9.76x! Most sites in today's market go for 20x-30x multiples. As you can see, I got a great deal on this site. Although the great price was the biggest reason for me buying this site there are other factors that persuaded me as well. You need to remember that just because you can get a website for a good price it doesn't mean it is a good deal. There are other factors that you need to look at as well. Extremely Under Optimized This site is currently being monetized mainly by Adsense and a very small amount from Quinstreet. From my experience with testing and optimizing Adsense layouts for my site in my Website Investing case study I know the common ad layouts that work best for maximizing Adsense revenue. With that being said, I can quickly determine if a website is being under optimized in terms of the ad layout. One of the first things I did when analyzing this site was examine the ad layout it was using. Screenshot of the website with the ad layout the previous owner was using - http://imgur.com/wqleLVA There is only ONE ad per page being used, that's it. Google allows up to 6 total ads to be used per page and you can imagine how much money is being left on the table because of this. I am estimating that I can probably double the earnings for the site practically overnight once I add more ads to the site. Adding more ads in combination with my favorite Adsense plugin, AmpedSense, I will be able to easily boost the earnings for this site quickly. It is also worth mentioning how lucrative this niche is and how much advertisers are willing to spend on a per click basis. The average CPC for the top keywords this site is currently ranking for in Google - http://imgur.com/ifxiy8B Look at those average CPC numbers, they are insanely high! I could be making up to $25 per click for some of those keywords, which is so absurd to me. Combine these extremely high CPC with the fact that the site currently only has one ad per page and you can start to understand just how under optimized this site truly is. I also plan on utilizing other ad networks such as Quinstreet and Campus Explorer more as well. These two networks are targeted at the education niche which works very well with my site. I will be testing to see if these convert better than normal Adsense ads. Goldmine of Untapped Keywords One of the biggest opportunities I see for growing this site is to target local keywords related to HVAC training. As of right now, the site has only scratched the surface when it comes to trying to rank for state/city keywords. Currently there are only two pages on the entire website which go after local keywords, those two pages target Texas and Florida HVAC search terms. These two pages are two of the more popular pages in terms of total amount of traffic. See the screenshot of the Google Analytics - http://imgur.com/NB0xJ4G Two out of the top five most popular pages for the entire website are focused on local search terms. However, these are the ONLY two pages that target local search terms on the whole site! There are 48 other states, although there may not be search volume for all states, and countless cities that are not being targeted. Why do I think this is such a good opportunity? For a few reasons: Local keywords are a lot easier to rank for in Google than more general keywords This site has been able to rank for two states successfully already and it proves it is possible Traffic going to these local pages is WAY more targeted and will convert at a much higher rate, which means more commissions for me There are so many more states and cities that get a good amount of searches that I can target To give you an idea of the type of keywords these local pages rank for, you can see the top keywords that the Florida page is ranking for in Google: Top ranking keywords for the Florida page - http://imgur.com/j7uKzl2 As you can see these keywords don't get a ton of searches each month, but ranking 1st for a keyword getting 90 searches a month is better than being ranked 10th for a keyword getting 1,000 searches a month. I have started to do some keyword research for other states and I am liking what I am finding so far. Keywords that I have found which I will be targeting with future articles - http://imgur.com/8CCCCWU I will go into more detail about my keyword research in future articles, but I wanted to give you an idea of what my strategy will be! I also wanted to share why I am super excited about the future potential to grow this site by targeting local keywords. ##Risks Yes, there are many good things about this website, but there are always risks involved no matter what the investment is. The same thing goes for this site. Below are some of the risks that I currently see. HTML Site This website is a HTML site and I will need to transfer it to Wordpress ASAP. I have been doing some research on this process and it shouldn't be too hard to get this over to Wordpress. In doing so it will make adding content, managing the back end and just about everything else easier. Also, I am hoping that when I transfer it to Wordpress that it will become more optimized for Google which will increase keyword rankings. Declining Earnings Looking at the last 12 months of earnings you will notice a drop off from last year till now. Earnings from the last 12 months - http://imgur.com/WsotZsj In May of 2015 it looks like the site earned right around $500, which is much higher than the $128 that it is earning now. However, the last 7 or so months have been consistent which is a good sign. Even though the earnings are much lower now then they were a year ago it is good to know that this site has the potential to earn $500/month because it has done it before. Slightly Declining Traffic In the last 12 months the site's traffic has declined, however, it looks like it is picking back up. Traffic from the last 12 months - http://imgur.com/aiYZW9W The decline is nothing serious, but there is a drop on traffic. Let's take a look at the complete history of this site's traffic so we can get a better idea of what is going on here: Complete traffic history - http://imgur.com/tYmboVn The above screenshot is from 2012 all the way up to right now. In the grand scheme of things you can see that the traffic is still doing well and it looks like it is on the upswing now. Those three risks mentioned above are the three biggest risks with this site at this point. It is always good to note the risks and do everything you can to prevent them from causing a problem. ##My Growth Strategy Whenever I purchase a new site I always create an outline or plan on how I will grow the site. Right now, I have some basic ideas on how I will grow this site, but as I go on I will continue to change and optimize my strategies to be more effective. Below I have outlined my current plans to grow: Add more Adsense Ads The very first thing I will do once I get control of the site is add more ads per page. I am predicting that by just adding a few more ads per page I will be able to more than likely double the earnings. I will touch on exactly how I will be optimizing the ad layouts in future posts. Test other Ad Networks I will be doing a lot of testing and experimenting when it comes to the ad networks. I plan on trying out Adsense, Media.net, Quinstreet, Campus Explorer and finding the combination of those 4 which produces the most revenue. The Adsense and Media.net ads will perform well on the more general pages while Quinstreet and Campus Explorer ads will be geared towards the local search terms. There will probably be other ad networks I will try out but these are the four which I will be using right away. If you are aware of any other ad networks out there which are geared towards the education niche please let me know in the comments below! Target Local Keywords with new Content I have already touched on this, but I will starting to produce content targeting these local keywords ASAP. The sooner I add the content to the site the sooner it will start to rank and bring in traffic. I will not be writing my own content and instead I will be outsourcing all of it via Upwork. I will show you all how I go about outsourcing content production and you can see my process for doing that. ##Goals for this Website My goal for the website is to have it valued at $10,000+ within 12 months. Let's break down this larger goal into smaller chunks which will make achieving it easier and more attainable. Earnings - $500/month To get the site valued at $10,000 the site will need to be making $500/month using a 20x monthly multiple. Right now, the site is making around $130/month so it has a ways to before it reaches the $500 a month mark. However, after doing some Adsense optimization I think we could push the earnings to around $300/month without much work. From there, it will come down to trying to bring in more traffic! Traffic - 5,000 Visitors per Month Why 5,000 visitors? Because that is how much traffic it is going to take to get to the $500/month goal. Let me explain how I came to this conclusion: The average RPM for this site is currently $50, which means for every 1,000 page views the site earns $50. After I optimize the Adsense layout for the site and add more ads per page I think I will be able to double the RPM to $100. Using the RPM of $100 the site will need to have 5,000 monthly visitors to earn $500. So 5,000 monthly visitors is the traffic goal I have set and aiming for! The site is currently getting around 3,000 visitors per month so I will need to add an extra 2,000 visitors to get to this goal. ##Want to Follow this Case Study? I will be using Youtube a lot in this case study so make sure to follow my Youtube channel here - www.youtube.com/c/joshshogren Other than that, I think that is going to bring us to the end of the introductory post for this new case study. I hope that you enjoyed reading and that you are excited to follow along! If you have any suggestions to make this case study better PLEASE let me know in the comment below. I want to make this case study the best one I have done yet. Talk to you all in the comment section.

Raised $450k for my startup, here are the lessons I've learned along the way
reddit
LLM Vibe Score0
Human Vibe Score1
marin_smiljanicThis week

Raised $450k for my startup, here are the lessons I've learned along the way

2021 has been a pretty amazing year for Omnisearch. Having started initial work on Omnisearch at the end of 2020, we entered the new year with a working MVP yet no revenue, no significant partnerships, and no funding. Fast forward to the end of 2021, and we now have fantastic revenue growth, a partnership with a public company, and a far more powerful, complete and polished product. But one milestone really changed Omnisearch’s trajectory: our $450,000 USD pre-seed round by GoAhead Ventures. In this post I want to share the story of how it came about and offer a couple of takeaways to keep in mind when preparing for fundraising. ​ The story Contrary to most advice, my co-founder Matej and I didn’t allocate a specific time to switch to “fundraising mode” but rather talked to investors on an ongoing basis. It was a bit of a distraction from working on the product, but on the positive side we were able to constantly get feedback on the idea, pitch, go-to-market strategy and hiring, as well as hearing investors’ major concerns sooner rather than later. That being said, our six-month long fundraising efforts weren’t yielding results - we talked to about twenty investors, mostly angels or smaller funds, with no success. The feedback was generally of the “too early for us” variety (since we were still pre-revenue), with additional questions about our go-to-market strategy and ideal customer persona. The introduction to our eventual investors, California-based GoAhead Ventures, came through a friend who had pitched them previously. We wrote a simple blurb and sent our pitch deck. We then went through GoAhead’s hyper-efficient screening process, consisting of a 30-minute call, a recorded three-minute pitch, and filling out a simple Google doc. Throughout the whole process, the GoAhead team left an awesome impression thanks to their knowledge of enterprise software and their responsiveness. They ended up investing and the whole deal was closed within two weeks, which is super fast even by Silicon Valley standards. While our fundraising experience is a single data point and your case might be different, here are the key takeaways from our journey. ​ Perseverance wins: Like I said above, we talked to about twenty investors before we closed our round. Getting a series of “no”s sucks, but we took the feedback seriously and tried to prepare better for questions that caught us off guard. But we persevered, keeping in mind that from a bird’s eye perspective it’s an amazing time to be building startups and raising funds. Focus on traction: Sounds pretty obvious, right? The truth is, though, that even a small amount of revenue is infinitely better than none at all. One of the major differences between our eventual successful investor pitch and the earlier ones was that we had actual paying customers, though our MRR was low. This allows you to talk about customers in the present tense, showing there’s actual demand for your product and making the use cases more tangible. And ideally, highlight a couple of customer testimonials to boost your credibility. Have a demo ready: In Omnisearch’s case, the demo was oftentimes the best received part of the pitch or call. We’d show investors the live demo, and for bonus points even asked them to choose a video from YouTube and then try searching through it. This always had a “wow” effect on prospective investors and made the subsequent conversation more exciting and positive. Accelerators: Accelerators like Y Combinator or Techstars can add enormous value to a startup, especially in the early stages. And while it’s a great idea to apply, don’t rely on them too heavily. Applications happen only a few times a year, and you should have a foolproof fundraising plan in case you don’t get in. In our case, we just constantly looked for investors who were interested in our space (defined as enterprise SaaS more broadly), using LinkedIn, AngelList, and intros from our own network. Practice the pitch ad nauseam: Pitching is tough to get right even for seasoned pros, so it pays to practice as often as possible. We took every opportunity to perfect the pitch: attending meetups and giving the thirty-second elevator pitch to other attendees over beer and pizza, participating in startup competitions, going to conferences and exhibiting at our own booth, attending pre-accelerator programs, and pitching to friends who are in the startup world. Show an understanding of the competition: Frankly, this was one of the strongest parts of our pitch and investor conversations. If you’re in a similar space to ours, Gartner Magic Quadrants and Forrester Waves are an awesome resource, as well as sites like AlternativeTo or Capterra and G2. By thoroughly studying these resources we gained a great understanding of the industry landscape and were able to articulate our differentiation more clearly and succinctly. Presenting this visually in a coordinate system or a feature grid is, from our experience, even more effective. Remember it’s just the beginning! Getting your first round of funding is just the beginning of the journey, so it’s important to avoid euphoria and get back to building and selling the product as soon as possible. While securing funding enables you to scale the team, and is a particular relief if the founders had worked without a salary, the end goal is still to build a big, profitable, and overall awesome startup.

Experienced Software Developer looking for startup to help. I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
DB010112This week

Experienced Software Developer looking for startup to help. I will not promote

My passion for programming started at the age of 9 when I began playing video games. It was during this time that I first dived into programming, creating scripts for SA:MP (San Andreas Multiplayer) using the Pawn language. SA:MP is a modification for the popular game Grand Theft Auto: San Andreas, allowing players to experience multiplayer gameplay. My early experiences in programming were all about problem-solving—finding ways to enhance the game and improve the player experience. This was when I realized how satisfying it is to solve a problem through code, and that feeling has stayed with me throughout my career. I am a self-taught programmer, and everything I know today comes from my own initiative to learn and improve. After five years of working with local clients, I decided to expand my knowledge and started learning more widely applicable programming languages like Java and Python. I’ve always been the type of person who thrives on challenges. Whenever I encounter a problem, I don’t just look for a quick fix—I dive deep into researching and understanding the problem, and I find a solution that works in the long run. This is what drives me. The ability to solve problems, no matter how complex, and the satisfaction that comes with it is what fuels my passion for programming. My big break came when I had the opportunity to work at \\\\. There, I replaced two senior and two junior developers, which led to significant cost savings for the company. I completed all tasks ahead of schedule, focusing on Java-based applications that were multithreaded and communicated with embedded systems. This experience taught me how to work under pressure and how to manage and solve complex technical problems efficiently. Following my time at \\\\, I transitioned into freelance work as a FullStack Developer, working with technologies such as HTML, CSS, Bootstrap, JavaScript, Django, Spring, MySQL, and PostgreSQL. As a freelancer, I was responsible for finding solutions to a wide range of problems, often working independently and making decisions on the fly. I learned that self-reliance is key in this industry, and being resourceful is one of the most important qualities a developer can have. Later, I joined \\\\ elecom, where I worked on system integration with foreign teams, BPM process solutions, and the merging of complex systems in Oracle databases. I continued to solve challenges, often working with teams across borders and tackling technical obstacles that required creative and well-thought-out solutions. Eventually, I founded my own company, \\\\, where I focus on developing software solutions, Artificial Intelligence (AI), Cybersecurity, and Ethical Hacking. As an entrepreneur, I take pride in finding innovative solutions to problems, whether they come from clients or from technical obstacles I encounter along the way. I’ve also had the privilege of working with the Serbian Ministry of Defense and the police, handling sensitive projects that demand both technical expertise and trustworthiness. Being a self-taught programmer means that I have had to learn and adapt on my own, and I’ve learned to embrace challenges as opportunities for growth. I am constantly driven by the process of solving problems, and it is what keeps me engaged and fulfilled in my work. I am always open to new collaborations and am eager to take on new challenges that push my boundaries in technology, cybersecurity, and software development.

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

The Drawing of the Three - Once you look through the veil, nothing is the same again. (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score0.333
Tim-SylvesterThis week

The Drawing of the Three - Once you look through the veil, nothing is the same again. (I will not promote)

Originally published Nov 5, 2024 In my last post, I talked about assembling a series of filters to use to view the startup landscape, which led me to a few conclusions about what opportunities I should pursue. What did I see through those filters? What I saw through the moire pattern of those two lists overlaid by one another is what I think will be the third great monetization strategy for the internet, matching the pattern of: web1 => Ad monetization web2 => Subscription monetization web3 => For AI, neither of those work anymore, which demands something new. But what? Well that’s the important part, isn’t it? Should I just up and tell you? Yawn. The climax of a movie is at the climax, if they tell you the crux at the beginning, it’s a lot less fun (usually). The standard bearer for web1 and ads was Google (with countless followers), and essentially every website adopted that model for their first pass at content monetization. Google has been… let’s call it fairly successful… so it’s not a bad way to look at things. How many websites live and die by selling advertising? The standard bearers for web2 and subscriptions were Salesforce (for B2B SaaS) and Netflix (for B2C SaaS), with countless followers, to the extent that SaaS has been the dominant startup monetization thesis for the last 15+ years. It’s more old and tired by now than most American politicians, but how many websites live and die by people entering payment details for a monthly or annual subscription? Evidence proves those models for web1 and web2 worked well enough that countless businesses depend on them, and countless fortunes have been made and lost surfing the waves, or crashing against the shorelines, of ads and subs. But it’s also apparent (to me, at least) that now that AI is the dominant startup thesis, neither ads nor subs are going to prevail in an AI-centered world, and for one simple reason: Those monetization strategies are for humans, and AI bots are not humans. Changing Environments Require Changing Strategies Every so often, there’s a fundamental shift that demands everything in the ecosystem adapt to a new habitation strategy to survive. We’ve seen this repeatedly across Earth’s ecology (for instance, introducing free oxygen to the atmosphere, producing respiration while destroying all the life forms that existed before oxygen permeated the atmosphere), and across human society (for example, how nuclear bombs changed war, and how drones are changing it again, for less violent examples, consider the adoption of computers and the subsequent adoption of smartphones). Now the ecosystem of the internet has changed irrevocably, opening up countless new and interesting niches to occupy. Humans may see an ad and buy something stupid (or, occasionally, not-stupid), but an AI won’t unless its programmed to. And subscriptions are designed for humans to consume content at a human rate, not for an AI that can choke down an entire database of content (whatever it may be) at whatever speed the servers can manage. Changing conditions require changing strategies. It was clear to me that: The introduction of AI bots to the internet ecosystem was, is, and will be massively disruptive for a very long time The internet population of bots already exceeds humans and is growing faster than the human population The two dominant monetization strategies are not relevant to bots That disruption of expectations across the ecosystem demands a third strategy, a new strategy to handle a massive change in an existing system. And that strategy needs to accommodate, support, and monetize the new demands from the vast armies of new participants in the internet ecology. Therefore, a method that converts bots from an expense into a revenue source would become a dominant monetization strategy, and therefore whoever owns that strategy will be a dominant player in the internet ecosystem. Set the realization of semi-practical, semi-useful AI against a backdrop of technology cycles that have, in the distant past (in internet terms) produced ads and subs, and more recently produced enormous investment into fintech and crypto, I started to see a path that felt like it would grow over time to become a new monetization strategy that works in the AI ecosystem. Sun Tzu had a couple drinks, saw a couple things… There’s at least, and possibly only, two things I know about fighting: You cannot fight the tide, and it’s much harder to fight an uphill battle. If my whole thesis on this go-around was to go with the flow, and that trickle of insight was leading me from my overlook along a roaring flow of cash coursing through a valley filled with AI startups, where exactly would it lead me? Most rivers lead to the sea eventually, but they can take winding paths, and sometimes the quickest route from the mountain to the sea isn’t to follow the river, but to understand where the river leads and go there instead. Getting a view from on high can save you a lot of time on your journey. But before I get to where the path has led (or is leading) that will explain the objective I’ve identified, and the deliverables I have to produce to reach it, let’s talk about a few of the steps on the path I’ve been taking that highlight the process I followed. I figure if I explain the steps I’m taking, as I’m taking them, it may be easier for people who haven’t trod this route before to follow me and understand how to carve their own course towards their own objectives. And maybe the real treasure will be the friends we make along the way. (I will not promote)

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

Joined an AI Startup with Ex-ShipStation Team - Need Tips on Finding Early Users
reddit
LLM Vibe Score0
Human Vibe Score1
welcomereadThis week

Joined an AI Startup with Ex-ShipStation Team - Need Tips on Finding Early Users

Hey Reddit, My name’s Welcome (Yes, that’s really my name), and I’ve been in tech for most of my career, mostly at bigger companies with established brands and resources. But recently, I decided to join a small startup called BotDojo. It’s my first time being part of a small team, and it’s been a pretty eye-opening experience so far. But, like with anything new, I’ve hit a few bumps along the way, and I’m hoping you all might have some advice. A little backstory: BotDojo was started by some of the engineers who used to work together at ShipStation. After ShipStation sold, they spent some time experimenting with AI but kept running into the same problems—having to patch together tools, getting inconsistent results, handling data ingestion, and struggling to track performance. So, they decided to build a platform to help developers build, test, and deploy AI solutions. Since I came on board, my focus has been on finding early users, and it’s been a mixed bag of wins and frustrations. We’ve got a solid group of people using the free version (which is great), but only a few have upgraded to the paid plan so far (ranging from startups to large enterprises). The cool thing is that those who have become paying customers absolutely love the product. It’s just been hard getting more people to that point. We’ve tried a bunch of things: Attending industry events, doing cold email outreach, running social ads (the usual stuff). And while we’ve seen some interest, we’re running into a few challenges:   Learning curve: The software is really powerful, but it takes a week or two for users to really see what it can do. Without a dedicated sales team to walk them through it, it’s been tough getting people to stick around long enough to see the value. Standing out is hard: The AI space is super crowded right now. I think a lot of people see “AI tool” and assume it’s just like everything else out there (even though BotDojo has some awesome features that really set it apart).  Sign-ups, but limited engagement: We’re on a freemium model to make it easy for people to try it out, but that also means we get a lot of bots and people who sign up but don’t really dive in. So, I thought I’d reach out here and see if anyone has been through this early stage before. How did you manage to break through and find those first paying users who really saw the value in what you were building?  Are there any strategies, communities, or tactics that worked particularly well for you? And if you had to do it all over again, what would you focus on? I figure I’m not the only one trying to navigate these waters, so I’m hoping this can be a helpful thread for others too. Thanks so much for reading, and I’d be super grateful for any advice or insights you can share! 🙏

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

Building in the open with Founder University - I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
Tim-SylvesterThis week

Building in the open with Founder University - I will not promote

Published Oct 30, 2024 I am on my fifth startup. I ran the last one for a decade, that’s a whole story. A hell of a story. But a different story. I’ll tell it to you when I can, but not right now. The one before that was an e-commerce site that did pretty well but I didn’t love it. Before that were two service businesses. The first one I did for the love of the game, the second one was an attempt to make people stop asking me to fix their computer by charging them outrageous prices, which backfired horribly when they were eager to pay. None are relevant except to say I’ve been around the block and have the scars to prove it. When it was time to get back out there, I wanted to use all I’ve learned to do better. Before I talk about what those lessons produced, I’m going to talk about what those lessons were. Cause before effect, after all. One thing I wanted to do better this time was pattern matching - making the startup look the way that the industry and investors “expect” a startup to look. My last startup was an awesome idea with awesome tech (still is, but like I said, another story), but that one didn’t match patterns. It didn’t match investor patterns, industry buying patterns, patterns of existing, immediate, recognized and admitted needs. Because it didn’t “look” right to anyone, everything about it was way harder than necessary. The “make it look right” approach runs the risk of building a cargo cult, imitating the trappings of something but without understanding the essence of that something, but then again, a thing that looks like a knife is going to make a better knife that a thing that looks like a bowling ball, so sometimes just sharing apparent similarities can get you pretty far, even if it doesn’t get you all the way there. Like how mimicking someone’s accent makes it easier for them to understand you. For this one, I wanted to adopt every tool, method, and pattern that I knew “the industry” wanted to see to minimize the friction from development, go-to-market, scaling, adoption, and that would make investment optional (and, therefore, available if desired) instead of necessary (and, therefore, largely unavailable). That required establishing some expectations for successful patterns I could match against. What patterns am I matching to? Here’s a general sketch of my pattern matching thought process: Software first and software only. It’s the easiest industry to start a business in, lowest startup costs, and easiest customer acquisition. I wanted to build software for an element of the industry that’s actively emerging (and therefore has room to grow) and part of an optimistic investor thesis (and therefore has a cohort of people who are intent on injecting capital into the market to help it grow). It needs to fills a niche that is underexplored (low competition) and highly potent (lots of opportunity), while being aligned to recognized and emerging needs within the industry (readily adopted). I wanted it to have evidence supporting the business thesis that proves the demand exists, but demonstrates that the demand is unanswered (as of yet) by sufficient or adequate supply.* I wanted the lowest number of dominoes to line up and tip for everything to work correctly - the more dominoes in the line, the less likely the last one will fall. I wanted to implement modern toolsets for everything, wherever possible. I wanted to obey the maxim, “When there’s a gold rush, don’t mine the gold, sell the picks and shovels.” Whatever I chose would need to produce cash flow almost immediately with minimal development time or go-to-market delays, because the end of ZIRP killed the “trust me bro” investment thesis predominant over the last 15 years. I wanted to match to YC best practices, not because YC can predict what will definitely work, but because they’ve churned through so many startups in the last 15 years that they have a good sense of what will definitely not work. And I wanted to build client-centric, because if my intent is to to produce cash flow immediately, we need to get clients immediately, and if we need to get clients immediately, we need to focus on what clients need right now. Extra credit: What’s the difference between a customer and a client? Note: Competition is awesome! Competition is validating and not scary, because competition proves a market exists. But competition, especially mature competition against an immature startup, makes it harder to break into a space. A first mover advantage isn’t everything, but seeing demand before it’s sufficiently supplied is a great advantage if you’re capital constrained or otherwise unproven. Think about how much money the first guy to sell fidget spinners or Silly Bandz made versus how much money the last guy to order a pallet of each made. Finding demand that exists already but is as of yet insufficiently satisfied is a great place to start. What opportunity spaces are most relevant? The industries and markets I chose to observe were: AI, because if I’m following a theme & pattern for today, it’s AI. Fintech, because cash is king, and fintech puts your hands on cash flow. Crypto/blockchain, because that’s the “new” fintech (or maybe the “old-new” fintech?), and crypto creates powerful incentives and capital formation strategies, along with a lot of flexibility for transaction systems. Tools, particularly unmet demand in tools, that enable these industries. If you wanted to do some brief and simple homework, you could map each of those bullets to several of the numbered list items preceding them. The reasoning was pretty simplistic - AI is what people want to build and invest in now, while fintech and crypto/blockchain are what people were building and investing in for the last major investment thesis. That means that there’s demand in the market for AI and AI-adjacent startups, while there’s a glut of underutilized and highly developed tools within fintech and crypto/blockchain, with a lot of motivated capital behind the adoption. When someone is thinking “I built this thing and not enough people are using it”, and you then build something that uses it creates a great way to find allies. This rationale harnesses technology that is being built and financed now (which means it needs tools and support methods, and a lot of other “picks and shovels”), while leveraging technology that was recently built and financed and is eager for more widespread adoption of the existing toolkits, which makes it suitable for using to build the AI-adjacent tools that are in demand now. It’s like two harmonics producing constructive interference - it makes two waves into one larger wave, which gives me more momentum to surf against. This was a learning process, and I iterated against my general paradigm repeatedly as I learned more. Neither of us have the patience to go through that in excruciating detail, so I’ll cover the highlights in my next post. Extra credit answer: A customer gets a product, a client gets a service. Challenge: Is software a product or a service?

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

Looking for a technical cofounder with experience in building websites and marketplaces
reddit
LLM Vibe Score0
Human Vibe Score1
SlideZealousideal540This week

Looking for a technical cofounder with experience in building websites and marketplaces

Are you passionate about revolutionizing traditional processes? Do you have the expertise to build scalable platforms and want to be part of something transformative? I’m a second-year Economics student at the University of Warwick with a deep drive for creating impactful solutions. I’m seeking a technical co-founder to join me in building a startup dedicated to transforming how startups hire entry-level talent. About the Project I’m developing a recruitment marketplace that connects early-stage and growing startups with talented students and graduates. Our goal is to streamline the hiring process, making it hassle-free for startups while creating meaningful career opportunities for the next generation of talent. What I’m Looking For in a Technical Co-Founder I need someone who can complement my non-technical skills and help take this project to the next level. The ideal co-founder will have: A strong background in programming online marketplace platforms. Experience managing large databases efficiently. Knowledge in machine learning and AI, with a vision to integrate these in future features. Skills in scaling online platforms for a larger audience. The ability to work in synergy with me to shape and execute the vision. A passion for the idea—I’m happy to share more details in a meeting! Key responsibilities will include platform development, handling backend work, deploying the MVP, aiding in design, and collaborating on product iterations. About Me I bring experience in business strategy, operations, finance, product/project management, marketing, and sales—essentially, I cover everything except the technical aspects of development. I previously worked on a social communication platform for school students during high school. I also gained valuable experience as a business analyst in another startup. Why Join me? This is an exciting opportunity to build a product from the ground up, make an impact in the startup ecosystem, and grow alongside a venture poised to redefine hiring. We need: A seamless MVP launch. Networking efforts to onboard startups and expand our reach. Together, we can create something transformative, fostering innovation and enabling career growth for students while helping startups find the talent they need to succeed. If you’re excited about the prospect of building something revolutionary and have the technical skills to complement my business acumen, I’d love to connect. Let’s discuss how we can work together to create the next generation of hiring solutions. Please DM if you are interested in getting to know more about this project! Looking forward

Experienced Software Developer looking for startup to help. I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
DB010112This week

Experienced Software Developer looking for startup to help. I will not promote

My passion for programming started at the age of 9 when I began playing video games. It was during this time that I first dived into programming, creating scripts for SA:MP (San Andreas Multiplayer) using the Pawn language. SA:MP is a modification for the popular game Grand Theft Auto: San Andreas, allowing players to experience multiplayer gameplay. My early experiences in programming were all about problem-solving—finding ways to enhance the game and improve the player experience. This was when I realized how satisfying it is to solve a problem through code, and that feeling has stayed with me throughout my career. I am a self-taught programmer, and everything I know today comes from my own initiative to learn and improve. After five years of working with local clients, I decided to expand my knowledge and started learning more widely applicable programming languages like Java and Python. I’ve always been the type of person who thrives on challenges. Whenever I encounter a problem, I don’t just look for a quick fix—I dive deep into researching and understanding the problem, and I find a solution that works in the long run. This is what drives me. The ability to solve problems, no matter how complex, and the satisfaction that comes with it is what fuels my passion for programming. My big break came when I had the opportunity to work at \\\\. There, I replaced two senior and two junior developers, which led to significant cost savings for the company. I completed all tasks ahead of schedule, focusing on Java-based applications that were multithreaded and communicated with embedded systems. This experience taught me how to work under pressure and how to manage and solve complex technical problems efficiently. Following my time at \\\\, I transitioned into freelance work as a FullStack Developer, working with technologies such as HTML, CSS, Bootstrap, JavaScript, Django, Spring, MySQL, and PostgreSQL. As a freelancer, I was responsible for finding solutions to a wide range of problems, often working independently and making decisions on the fly. I learned that self-reliance is key in this industry, and being resourceful is one of the most important qualities a developer can have. Later, I joined \\\\ elecom, where I worked on system integration with foreign teams, BPM process solutions, and the merging of complex systems in Oracle databases. I continued to solve challenges, often working with teams across borders and tackling technical obstacles that required creative and well-thought-out solutions. Eventually, I founded my own company, \\\\, where I focus on developing software solutions, Artificial Intelligence (AI), Cybersecurity, and Ethical Hacking. As an entrepreneur, I take pride in finding innovative solutions to problems, whether they come from clients or from technical obstacles I encounter along the way. I’ve also had the privilege of working with the Serbian Ministry of Defense and the police, handling sensitive projects that demand both technical expertise and trustworthiness. Being a self-taught programmer means that I have had to learn and adapt on my own, and I’ve learned to embrace challenges as opportunities for growth. I am constantly driven by the process of solving problems, and it is what keeps me engaged and fulfilled in my work. I am always open to new collaborations and am eager to take on new challenges that push my boundaries in technology, cybersecurity, and software development.

16 years old and thinking about creating a startup
reddit
LLM Vibe Score0
Human Vibe Score1
NCS001This week

16 years old and thinking about creating a startup

Hi to everyone, this is my first post on Reddit and r/Startups. Sorry in advance if there is any mistake. I'm 16 years old, and I'm already planning to create my startup. Growing up in the digital age has given me both inspiration and doubts. On one side, you hear advice like, “You need connections with powerful people to succeed.” On the other, there are stories of founders coming from poverty and now leading billion-dollar companies.That really sucks. I'm here because I believe this community offers honest and grounded insights. So you can analyze, I leave you my goals. I accept all the advice you have. I’ll finish high school in two years while using my free time to learn about AI, programming, agile methods, and business basics. After that, I plan to pursue a Systems Engineering degree, even though I’ve debated skipping university. My older siblings convinced me it’s worth it for the professional and technical foundation. During college, I aim to freelance, save money, and build connections with entrepreneurs and developers. Beyond that, my 15-year plan includes working in tech companies to gain experience, creating an MVP for my startup, and securing funding through investors or incubators. I want to solve real-world problems using tools that feel future-proof. While I sometimes feel behind, I’m determined to catch up and take advantage of the opportunities ahead. I know the startup journey is uncertain—like a vulnerable animal facing competition, funding issues, and market challenges. But I’m ready to adapt as my vision evolves. Like for example the time. Obviously I would like to keep it exactly but you never know what can happen along the way. I’d love to hear your thoughts or advice. Thanks in advance, and I apologize if anything is unclear

We built a tool to help you find relevant grants. Would you pay for it?
reddit
LLM Vibe Score0
Human Vibe Score1
CliznitchThis week

We built a tool to help you find relevant grants. Would you pay for it?

Hi everyone, About a year ago, I asked you guys whether it would make sense to develop a tool to help entrepreneurs find relevant grants. Many of you provided incredibly valuable feedback, which we used to refine the concept. With this concept, we went through Techstars and finally launched a beta version of our grant scan tool last week! Along the way, we realized something interesting: when you ask a grant advisor which grants might be a great fit for you, they almost always recommend the ones they know well. This makes sense since most work on a success fee basis, and referring you to lesser-known grants (which take more time to write and have lower success rates) isn’t worth it for them. Plus, memorizing the details of 20,000+ grants is, understandably, pretty tough. Our platform uses AI to scan and analyze thousands of grants. It identifies the best matches, estimates your chances of success, and calculates how much time you might need for the application and reporting phases. We can then match you with a grant advisor with relevant expertise—whether to write the application for you or provide feedback on your draft. We’re considering launching both a free and a paid version. The free version would provide basic insights, while the paid version would include more comprehensive results, expert comments (such as explaining why certain grants are a good fit), and updates when new relevant grants become available. Both versions will allow you to connect with relevant experts. Would you pay for the paid version? And if so, which features should it include? Also, any general feedback is much appreciated! Thanks!

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

10y of product development, 2 bankruptcies, and 1 Exit — what next? [Extended Story]
reddit
LLM Vibe Score0
Human Vibe Score1
Slight-Explanation29This week

10y of product development, 2 bankruptcies, and 1 Exit — what next? [Extended Story]

10 years of obsessive pursuit from the bottom to impressive product-market fit and exit. Bootstrapping tech products as Software Developer and 3x Startup Founder (2 bankruptcies and 1 exit). Hi everyone, your motivation has inspired me to delve deeper into my story. So, as promised to some of you, I've expanded on it a bit more, along with my brief reflections. There are many founders, product creators, and proactive individuals, I’ve read many of your crazy stories and lessons so I decided to share mine and the lessons I learned from the bottom to impressive product-market fit and exit. I've spent almost the past 10 years building tech products as a Corporate Team Leader, Senior Software Developer, Online Course Creator, Programming Tutor, Head of Development/CTO, and 3x Startup Founder (2 bankruptcies, and 1 exit). And what next? good question... A brief summary of my journey: Chapter 1: Software Developer / Team Leader / Senior Software Developer I’ve always wanted to create products that win over users’ hearts, carry value, and influence users. Ever since my school days, I’ve loved the tech part of building digital products. At the beginning of school, I started hosting servers for games, blogs and internet forums, and other things that did not require much programming knowledge. My classmates and later even over 100 people played on servers that I hosted on my home PC. Later, as the only person in school, I passed the final exam in computer science. During my computer science studies, I started my first job as a software developer. It was crazy, I was spending 200–300 hours a month in the office attending also to daily classes. Yes, I didn’t have a life, but it truly was the fulfillment of my dreams. I was able to earn good money doing what I love, and I devoted fully myself to it. My key to effectively studying IT and growing my knowledge at rocket speed was learning day by day reading guides, building products to the portfolio, watching youtube channels and attending conferences, and even watching them online, even if I didn’t understand everything at the beginning. In one year we’ve been to every possible event within 400km. We were building healthcare products that were actually used in hospitals and medical facilities. It was a beautiful adventure and tons of knowledge I took from this place. That time I built my first product teams, hired many great people, and over the years became a senior developer and team leader. Even I convinced my study mates to apply to this company and we studied together and worked as well. Finally, there were 4 of us, when I left a friend of mine took over my position and still works there. If you’re reading this, I’m sending you a flood of love and appreciation. I joined as the 8th person, and after around 4 years, when I left hungry for change, there were already over 30 of us, now around 100. It was a good time, greetings to everyone. I finished my Master’s and Engineering degrees in Computer Science, and it was time for changes. Chapter 2: 1st time as a Co-founder — Marketplace In the meantime, there was also my first startup (a marketplace) with four of my friends. We all worked on the product, each of us spent thousands of hours, after hours, entire weekends… and I think finally over a year of work. As you might guess, we lacked the most important things: sales, marketing, and product-market fit. We thought users think like us. We all also worked commercially, so the work went very smoothly, but we didn’t know what we should do next with it… Finally, we didn’t have any customers, but you know what, I don’t regret it, a lot of learning things which I used many times later. The first attempts at validating the idea with the market and business activities. In the end, the product was Airbnb-sized. Landing pages, listings, user panels, customer panels, admin site, notifications, caches, queues, load balancing, and much more. We wanted to publish the fully ready product to the market. It was a marketplace, so if you can guess, we had to attract both sides to be valuable. “Marketplace” — You can imagine something like Uber, if you don’t have passengers it was difficult to convince taxi drivers, if you don’t have a large number of taxi drivers you cannot attract passengers. After a year of development, we were overloaded, and without business, marketing, sales knowledge, and budget. Chapter 3: Corp Team Lead / Programming Tutor / Programming Architecture Workshop Leader Working in a corporation, a totally different environment, an international fintech, another learning experience, large products, and workmates who were waiting for 5 pm to finish — it wasn’t for me. Very slow product development, huge hierarchy, being an ant at the bottom, and low impact on the final product. At that time I understood that being a software developer is not anything special and I compared my work to factory worker. Sorry for that. High rates have been pumped only by high demand. Friends of mine from another industry do more difficult things and have a bigger responsibility for lower rates. That’s how the market works. This lower responsibility time allowed for building the first online course after hours, my own course platform, individual teaching newbies programming, and my first huge success — my first B2C customers, and B2B clients for workshops. I pivoted to full focus on sales, marketing, funnels, advertisements, demand, understanding the market, etc. It was 10x easier than startups but allowed me to learn and validate my conceptions and ideas on an easier market and showed me that it’s much easier to locate their problem/need/want and create a service/product that responds to it than to convince people of your innovative ideas. It’s just supply and demand, such a simple and basic statement, in reality, is very deep and difficult to understand without personal experience. If you’re inexperienced and you think you understand, you don’t. To this day, I love to analyze this catchword in relation to various industries / services / products and rediscover it again and again... While writing this sentence, I’m wondering if I’m not obsessed. Chapter 4: Next try — 2nd time as a founder — Edtech Drawing upon my experiences in selling services, offering trainings, and teaching programming, I wanted to broaden my horizons, delve into various fields of knowledge, involve more teachers, and so on. We started with simple services in different fields of knowledge, mainly relying on teaching in the local area (without online lessons). As I had already gathered some knowledge and experience in marketing and sales, things were going well and were moving in the right direction. The number of teachers in various fields was growing, as was the number of students. I don’t remember the exact statistics anymore, but it was another significant achievement that brought me a lot of satisfaction and new experiences. As you know, I’m a technology lover and couldn’t bear to look at manual processes — I wanted to automate everything: lessons, payments, invoices, customer service, etc. That’s when I hired our first developers (if you’re reading this, I’m sending you a flood of love — we spent a lot of time together and I remember it as a very fruitful and great year) and we began the process of tool and automation development. After a year we had really extended tools for students, teachers, franchise owners, etc. We had really big goals, we wanted to climb higher and higher. Maybe I wouldn’t even fully call it Startup, as the client was paying for the lessons, not for the software. But it gave us positive income, bootstrap financing, and tool development for services provided. Scaling this model was not as costless as SaaS because customer satisfaction was mainly on the side of the teacher, not the quality of the product (software). Finally, we grew to nearly 10 people and dozens of teachers, with zero external funding, and almost $50k monthly revenue. We worked very hard, day and night, and by November 2019, we were packed with clients to the brim. And as you know, that’s when the pandemic hit. It turned everything upside down by 180 degrees. Probably no one was ready for it. With a drastic drop in revenues, society started to save. Tired from the previous months, we had to work even harder. We had to reduce the team, change the model, and save what we had built. We stopped the tool’s development and sales, and with the developers, we started supporting other product teams to not fire them in difficult times. The tool worked passively for the next two years, reducing incomes month by month. With a smaller team providing programming services, we had full stability and earned more than relying only on educational services. At the peak of the pandemic, I promised myself that it was the last digital product I built… Never say never… Chapter 5: Time for fintech — Senior Software Developer / Team Lead / Head of Development I worked for small startups and companies. Building products from scratch, having a significant impact on the product, and complete fulfillment. Thousands of hours and sacrifices. This article mainly talks about startups that I built, so I don’t want to list all the companies, products, and applications that I supported as a technology consultant. These were mainly start-ups with a couple of people up to around 100 people on board. Some of the products were just a rescue mission, others were building an entire tech team. I was fully involved in all of them with the hope that we would work together for a long time, but I wasn’t the only one who made mistakes when looking for a product-market fit. One thing I fully understood: You can’t spend 8–15 hours a day writing code, managing a tech team, and still be able to help build an audience. In marketing and sales, you need to be rested and very creative to bring results and achieve further results and goals. If you have too many responsibilities related to technology, it becomes ineffective. I noticed that when I have more free time, more time to think, and more time to bounce the ball against the wall, I come up with really working marketing/sales strategies and solutions. It’s impossible when you are focused on code all day. You must know that this chapter of my life was long and has continued until now. Chapter 6: 3rd time as a founder — sold Never say never… right?\\ It was a time when the crypto market was really high and it was really trending topic. You know that I love technology right? So I cannot miss the blockchain world. I had experience in blockchain topics by learning on my own and from startups where I worked before. I was involved in crypto communities and I noticed a “starving crowd”. People who did things manually and earned money(crypto) on it.I found potential for building a small product that solves a technological problem. I said a few years before that I don’t want to start from scratch. I decided to share my observations and possibilities with my good friend. He said, “If you gonna built it, I’m in”. I couldn’t stop thinking about it. I had thought and planned every aspect of marketing and sales. And you know what. On this huge mindmap “product” was only one block. 90% of the mindmap was focused on marketing and sales. Now, writing this article, I understood what path I went from my first startup to this one. In the first (described earlier) 90% was the product, but in the last one 90% was sales and marketing. Many years later, I did this approach automatically. What has changed in my head over the years and so many mistakes? At that time, the company for which I provided services was acquired. The next day I got a thank you for my hard work and all my accounts were blocked. Life… I was shocked. We were simply replaced by their trusted technology managers. They wanted to get full control. They acted a bit unkindly, but I knew that they had all my knowledge about the product in the documentation, because I’m used to drawing everything so that in the moment of my weakness (illness, whatever) the team could handle it. That’s what solid leaders do, right? After a time, I know that these are normal procedures in financial companies, the point is that under the influence of emotions, do not do anything inappropriate. I quickly forgot about it, that I was brutally fired. All that mattered was to bring my plan to life. And it has been started, 15–20 hours a day every day. You have to believe me, getting back into the game was incredibly satisfying for me. I didn’t even know that I would be so excited. Then we also noticed that someone was starting to think about the same product as me. So the race began a game against time and the market. I assume that if you have reached this point, you are interested in product-market fit, marketing, and sales, so let me explain my assumptions to you: Product: A very very small tool that allowed you to automate proper tracking and creation of on-chain transactions. Literally, the whole app for the user was located on only three subpages. Starving Crowd: We tapped into an underserved market. The crypto market primarily operates via communities on platforms like Discord, Reddit, Twitter, Telegram, and so on. Therefore, our main strategy was directly communicating with users and demonstrating our tool. This was essentially “free marketing” (excluding the time we invested), as we did not need to invest in ads, promotional materials, or convince people about the efficacy of our tool. The community could directly observe on-chain transactions executed by our algorithms, which were processed at an exceptionally fast rate. This was something they couldn’t accomplish manually, so whenever someone conducted transactions using our algorithm, it was immediately noticeable and stirred a curiosity within the community (how did they do that!). Tests: I conducted the initial tests of the application on myself — we had already invested significantly in developing the product, but I preferred risking my own resources over that of the users. I provided the tool access to my wallet, containing 0.3ETH, and went to sleep. Upon waking up, I discovered that the transactions were successful and my wallet had grown to 0.99ETH. My excitement knew no bounds, it felt like a windfall. But, of course, there was a fair chance I could have lost it too. It worked. As we progressed, some users achieved higher results, but it largely hinged on the parameters set by them. As you can surmise, the strategy was simple — buy low, sell high. There was considerable risk involved. Churn: For those versed in marketing, the significance of repeat visitors cannot be overstated. Access to our tool was granted only after email verification and a special technique that I’d prefer to keep confidential. And this was all provided for free. While we had zero followers on social media, we saw an explosion in our email subscriber base and amassed a substantial number of users and advocates. Revenue Generation: Our product quickly gained popularity as we were effectively helping users earn — an undeniable value proposition. Now, it was time to capitalize on our efforts. We introduced a subscription model charging $300 per week or $1,000 per month — seemingly high rates, but the demand was so intense that it wasn’t an issue. Being a subscriber meant you were prioritized in the queue, ensuring you were among the first to reap benefits — thus adding more “value”. Marketing: The quality of our product and its ability to continually engage users contributed to it achieving what can best be described as viral. It was both a source of pride and astonishment to witness users sharing charts and analyses derived from our tool in forum discussions. They weren’t actively promoting our product but rather using screenshots from our application to illustrate certain aspects of the crypto world. By that stage, we had already assembled a team to assist with marketing, and programming, and to provide round-the-clock helpdesk support. Unforgettable Time: Despite the hype, my focus remained steadfast on monitoring our servers, their capacity, and speed. Considering we had only been on the market for a few weeks, we were yet to implement alerts, server scaling, etc. Our active user base spanned from Japan to the West Coast of the United States. Primarily, our application was used daily during the evenings, but considering the variety of time zones, the only time I could afford to sleep was during the evening hours in Far Eastern Europe, where we had the least users. However, someone always needed to be on guard, and as such, my phone was constantly by my side. After all, we couldn’t afford to let our users down. We found ourselves working 20 hours a day, catering to thousands of users, enduring physical fatigue, engaging in talks with VCs, and participating in conferences. Sudden Downturn: Our pinnacle was abruptly interrupted by the war in Ukraine (next macroeconomic shot straight in the face, lucky guy), a precipitous drop in cryptocurrency value, and swiftly emerging competition. By this time, there were 5–8 comparable tools had infiltrated the market. It was a challenging period as we continually stumbled upon new rivals. They immediately embarked on swift fundraising endeavors — a strategy we overlooked, which in retrospect was a mistake. Although our product was superior, the competitors’ rapid advancement and our insufficient funds for expeditious scaling posed significant challenges. Nonetheless, we made a good decision. We sold the product (exit) to competitors. The revenue from “exit” compensated for all the losses, leaving us with enough rest. We were a small team without substantial budgets for rapid development, and the risk of forming new teams without money to survive for more than 1–2 months was irresponsible. You have to believe me that this decision consumed us sleepless nights. Finally, we sold it. They turned off our app but took algorithms and users. Whether you believe it or not, after several months of toiling day and night, experiencing burnout, growing weary of the topic, and gaining an extra 15 kg in weight, we finally found our freedom… The exit wasn’t incredibly profitable, but we knew they had outdone us. The exit covered all our expenses and granted us a well-deserved rest for the subsequent quarter. It was an insane ride. Despite the uncertainty, stress, struggles, and sleepless nights, the story and experience will remain etched in my memory for the rest of my life. Swift Takeaways: Comprehending User Needs: Do you fully understand the product-market fit? Is your offering just an accessory or does it truly satisfy the user’s needs? The Power of Viral Marketing: Take inspiration from giants like Snapchat, ChatGPT, and Clubhouse. While your product might not attain the same scale (but remember, never say never…), the closer your concept is to theirs, the easier your journey will be. If your user is motivated to text a friend saying, “Hey, check out how cool this is” (like sharing ChatGPT), then you’re on the best track. Really. Even if it doesn’t seem immediately evident, there could be a way to incorporate this into your product. Keep looking until you find it. Niche targeting — the more specific and tailored your product is to a certain audience, the easier your journey will be People love buying from people — establishing a personal brand and associating yourself with the product can make things easier. Value: Seek to understand why users engage with your product and keep returning. The more specific and critical the issue you’re aiming to solve, the easier your path will be. Consider your offerings in terms of products and services and focus on sales and marketing, regardless of personal sentiments. These are just a few points, I plan to elaborate on all of them in a separate article. Many products undergo years of development in search of market fit, refining the user experience, and more. And guess what? There’s absolutely nothing wrong with that. Each product and market follows its own rules. Many startups have extensive histories before they finally make their mark (for instance, OpenAI). This entire journey spanned maybe 6–8 months. I grasped and capitalized on the opportunity, but we understood from the start that establishing a startup carried a significant risk, and our crypto product was 10 times riskier. Was it worth it? Given my passion for product development — absolutely. Was it profitable? — No, considering the hours spent — we lose. Did it provide a stable, problem-free life — nope. Did this entire adventure offer a wealth of happiness, joy, and unforgettable experiences — definitely yes. One thing is certain — we’ve amassed substantial experience and it’s not over yet :) So, what lies ahead? Chapter 7: Reverting to the contractor, developing a product for a crypto StartupReturning to the past, we continue our journey… I had invested substantial time and passion into the tech rescue mission product. I came on board as the technical Team Leader of a startup that had garnered over $20M in seed round funding, affiliated with the realm of cryptocurrencies. The investors were individuals with extensive backgrounds in the crypto world. My role was primarily technical, and there was an abundance of work to tackle. I was fully immersed, and genuinely devoted to the role. I was striving for excellence, knowing that if we secured another round of financing, the startup would accelerate rapidly. As for the product and marketing, I was more of an observer. After all, there were marketing professionals with decades of experience on board. These were individuals recruited from large crypto-related firms. I had faith in them, kept an eye on their actions, and focused on my own responsibilities. However, the reality was far from satisfactory. On the last day, the principal investor for the Series A round withdrew. The board made the tough decision to shut down. It was a period of intense observation and gaining experience in product management. This was a very brief summary of the last 10 years. And what next? (Last) Chapter 8: To be announced — Product Owner / Product Consultant / Strategist / CTO After spending countless hours and days deliberating my next steps, one thing is clear: My aspiration is to continue traversing the path of software product development, with the hopeful anticipation that one day, I might ride the crest of the next big wave and ascend to the prestigious status of a unicorn company. I find myself drawn to the process of building products, exploring product-market fit, strategizing, engaging in software development, seeking out new opportunities, networking, attending conferences, and continuously challenging myself by understanding the market and its competitive landscape. Product Owner / Product Consultant / CTO / COO: I’m not entirely sure how to categorize this role, as I anticipate that it will largely depend on the product to which I will commit myself fully. My idea is to find one startup/company that wants to build a product / or already has a product, want to speed up, or simply doesn’t know what’s next. Alternatively, I could be a part of an established company with a rich business history, which intends to invest in digitization and technological advancements. The goal would be to enrich their customer experience by offering complementary digital products Rather than initiating a new venture from ground zero with the same team, I am receptive to new challenges. I am confident that my past experiences will prove highly beneficial for the founders of promising, burgeoning startups that already possess a product, or are in the initial phases of development. ‘Consultant’ — I reckon we interpret this term differently. My aim is to be completely absorbed in a single product, crafting funnels, niches, strategies, and all that is necessary to repeatedly achieve the ‘product-market fit’ and significant revenue. To me, ‘consultant’ resonates more akin to freelancing than being an employee. My current goal is to kickstart as a consultant and aide, dealing with facilitating startups in their journey from point A to B. Here are two theoretical scenarios to illustrate my approach: Scenario 1: (Starting from point A) You have a product but struggle with marketing, adoption, software, strategy, sales, fundraising, or something else. I conduct an analysis and develop a strategy to reach point B. I take on the “dirty work” and implement necessary changes, including potential pivots or shifts (going all-in) to guide the product to point B. The goal is to reach point B, which could involve achieving a higher valuation, expanding the user base, increasing sales, or generating monthly revenue, among other metrics. Scenario 2: (Starting from point A) You have a plan or idea but face challenges with marketing, adoption, strategy, software, sales, fundraising, or something else. I analyze the situation and devise a strategy to reach point B. I tackle the necessary tasks, build the team, and overcome obstacles to propel the product to point B. I have come across the view that finding the elusive product-market fit is the job of the founder, and it’s hard for me to disagree. However, I believe that my support and experiences can help save money, many failures, and most importantly, time. I have spent a great deal of time learning from my mistakes, enduring failure after failure, and even had no one to ask for support or opinion, which is why I offer my help. Saving even a couple of years, realistically speaking, seems like a value I’m eager to provide… I invite you to share your thoughts and insights on these scenarios :) Closing Remarks: I appreciate your time and effort in reaching this point. This has been my journey, and I wouldn’t change it for the world. I had an extraordinary adventure, and now I’m ready for the next exciting battle with the market and new software products. While my entire narrative is centered around startups, especially the ones I personally built, I’m planning to share more insights drawn from all of my experiences, not just those as a co-founder. If you’re currently developing your product or even just considering the idea, I urge you to reach out to me. Perhaps together, we can create something monumental :) Thank you for your time and insights. I eagerly look forward to engaging in discussions and hearing your viewpoints. Please remember to like and subscribe. Nothing motivates to write more than positive feedback :) Matt.

I am selling my tool which converts websites into android and iOS apps within 5 minutes.
reddit
LLM Vibe Score0
Human Vibe Score1
Latter-Row-5719This week

I am selling my tool which converts websites into android and iOS apps within 5 minutes.

Hi, my name is Toshit Garg. I started working on SaaS products around April 2023. The plan was simple: to create tools that help entrepreneurs easily grow their businesses. My first tool was "Convertixo", inspired by my work as a Fiverr seller where I converted websites into apps for clients, earning around $1,000 per month. I thought, why not automate this process? Following Convertixo, I created a few other tools like "Web to PWA". At one point, I developed an AI-based tool called "AppMintAI" , a productized service named "Engage Enhance", and even a WordPress plugin that lets users create pragmatic pages for SEO and a boilerplates. Unfortunately, none of these tools gained significant traction. I would launch them on Product Hunt, get a few users, and then nothing. Other than Convertixo, all my other tools only received a handful of free users. I believe this happened because I’m not very passionate about marketing. So, I decided to pivot and focus on content creation, which is where my true passion lies. Currently, I’m selling all my products one by one. As for Convertixo, it now has 800 users, a $20 MRR, and an email subscriber list of 100+. It was also the third Product of the Day on Product Hunt in January of this year. While the product has gained some traction, I’ve realized my focus is on content creation. However, with the right marketing and drive, I believe Convertixo has great potential to grow. If you’re interested in taking Convertixo to the next level, let’s chat! Here are some key statistics: In the last 20 days, Convertixo has received 4.9K impressions from Google and 338 visitors. More about the product: Convertixo can convert any website into Android and iOS apps using a custom webview. The apps are generated in Android Studio and Xcode. You receive both the APK and the source code for the Android app, along with the source code for the iOS app. The converted apps require no maintenance, and they update exactly like the website. A major benefit is the ability to add push notifications via OneSignal for free, allowing you to re-target your customers at no cost. Feel free to ask if you have any questions!

I spent 6 months on building a tool, and got 0 zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a tool, and got 0 zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product, Summ, that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.
reddit
LLM Vibe Score0
Human Vibe Score1
Organic_Crab7397This week

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.

Hello everyone. I haven't started selling yet and wanted to get some insight from the community I'm trying to serve (that makes the most sense to me). So over the past couple months I've gotten into AI & Automation. I got a HighLevel account and went to town learning new things. I learned how to make automations and workflows that make running a business easier (my dad has been letting me use his concrete business as a guinea pig). I also learned how to build and train AI Chat Assistants. I want to start a service based business that uses AI & workflows to automate some of the customer service tasks & lead generation for business. What I'm seeking advice about are as follows: NICHE SELECTION: Part of me thinks I shouldn't niche down in the beginning and just take whoever comes and niche down once I find an industry I'm comfortable with. Another side thinks I should choose one. What is your opinion on niche selection in the beginning? PRICING: I know that pricing largely depends on the value I bring to the client, but I've seen people doing the same or similar things as I want to do and charging vastly different prices. From $300- $2,000. While I think these solutions could absolutely help companies get and retain new business and reduce some of the workload of their staff -- I'm not comfortable charging a high price until I've got enough experience and data to justify that. &#x200B; THESE ARE THE SERVICES I'M THINKING OF OFFERING: Customer Service Chat Assistant. This will be on the website as a "Live Chat". It also connects to Facebook Messenger & Google Business Chat. I'd train the chat assistant on everything related to the company; pertinent info (NAP, company mission, industry background), contact info, services / products / pricing, FAQs, current specials &/or discount codes (this can be changed monthly), how to handle upset clients, etc. It can also connect to a calendar like Google or Calendly so customers can make an appointment or schedule a call directly from the conversation. Missed Call Follow Up. If you're familiar with the platform HighLevel it's commonly called "Missed Call Text Back". The idea is that when a call is missed a text message is automatically fired to the prospect's phone saying something along the lines of "Hey this is \\\\\\ from \\\\\\\_. How can I help you?" and the business owner is alerted to the missed call via text notification. People have said they see a lot of success for their clients with this alone due to the instant follow up. I see a lot of people charging $300 /m. for this. My issues with this are: 1). The text fires automatically when the call is missed, but if the business owner isn't available to actually follow up and keep texting after the customer texts back, they will look inconsistent and bothersome. 2). Without context a prospect may wonder why you didn't answer when they called, but texted them instead. So my answer to these problems are #3. SMS Answering Service. It is essentially taking 2 + 1 and combining them. The missed call text goes out to the prospect, but with context on why they're being texted (because no one is available to take the call at the moment) and IF the prospect responds, a Customer Service Chat Assistant will take over the conversation with the goal of answering their questions and either getting them on the phone with the company via a call back OR helping them schedule an appointment. This offers a more consistent solution than just a text to the business owner / team & the prospect is contacted and helped (hopefully) before they have a chance to start calling a competitor. Lead Nurture / Lead Qualifying Sales Funnel. This one is more than just AI & automation. It's a full funnel. It can be for either Facebook or Google. The process is AD -> Landing Page -> AI Text Message Convo -> Booking/Schedule Call/ Appointment. Typically the ad will offer a lead magnet which they will claim on the LP by giving their information. After the form is submitted, they get a text message and begin a conversation with the AI. It can be trained to just walk them through a booking process, nurture a sale by answering questions and handling objections or to qualify leads. Lead qualification via text works well if you want to weed out who is serious versus who is curious. To be clear; I'd be making the ad, landing page & training the AI -- all parts of the funnel. For whichever service a few things are universal: \- All conversations; no matter what platform they're had on, all go to one inbox which is pretty helpful to see them all in one place. \- When scheduling / booking these can also collect payment. \- Tags can be added to keep track of how they came into the business and where they are in a sales pipeline. There are a lot of fun things I can do with these automations and I'm excited about learning more everyday. I'd really like to know what you think these services could be worth to a business. If you do reply please tell me what type of business you're in so I have an idea of what industries I should be looking towards. Thank you for any response I get as I know this was a long read! SN: I currently do digital marketing & web design as a freelancer.

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

What Does “Building a Community” Actually Mean for a Startup?
reddit
LLM Vibe Score0
Human Vibe Score1
ManagerCompetitive77This week

What Does “Building a Community” Actually Mean for a Startup?

I’ve talked to a lot of founders, and almost everyone gives the same advice: “Build your product and do sales at the same time. Also, build a community alongside it.” I get the first part. Shipping and selling together makes sense. But the “community building” part? That’s where things get blurry for me. Does community building mean posting regular updates on Twitter or LinkedIn? Does it mean making Instagram reels about the product? Or is it more about actually talking to potential customers one-on-one? When people say “build a community,” do they mean creating a place where users can interact with each other or just a way to keep them engaged with the product? The reason I’m asking is that I see different approaches everywhere. Some founders document their startup journey on social media, and that seems to attract an audience. Others focus on getting early users into a private group (Discord, Slack, or WhatsApp) and nurturing relationships there. And then there are those who take a totally different approach—like building in public, sharing code, or offering free tools to bring people in. For my startup, I’m trying to figure out what community building should look like in 2025. The startup landscape has changed drastically in the past year, especially with AI and automation becoming more mainstream. Founders no longer have time to manually interact with every user. So what’s the new way of doing this? What’s working for early-stage startups today? I’d love to hear thoughts from fellow founders. What does “community” actually mean in today’s world, and what’s the best way to build one?

My app has gone viral and I grew from 1k users (take 5months) to 100k user in 5 days
reddit
LLM Vibe Score0
Human Vibe Score1
Consistent_Access844This week

My app has gone viral and I grew from 1k users (take 5months) to 100k user in 5 days

I've always dreamt of building an online side business where I can build once and sell to millions. I love that business model but have never dreamt that I can achieve that, given that I am not a programmer in my career. I have been following side hustle school and some other business podcast for the past years as a drive and motivation to create my own business.  Over the years, I've delve a little on to web development using WordPress and in the hope of earning some money from that. I learnt in the hard way but is a good learning story and journey. I realised that what you put all your efforts building and excited for doesn't mean anything for anyone else and also learnt the importance of UI UX.  Fast forward to 5 months ago (July 2024), I've came across several low code app builder. With the help of the low code tools in combination with chatgpt, I've finally launched my first mobile app - Rolly: AI Money Tracker. But the business challenges doesn't end here, but it's just the beginning. I got no experience and skills on marketing but I've got my drive and passion that keep propelling me forward. By keep listening on people sharing their journey, looking at different apps to brainstorm etc, I've managed to now grow my user base from 1k (in 5 months) to 100k (in 5days). What's happening was my app somehow got viral in Vietnam when people are getting interest funny comments from my AI during entering the transaction and it has been sharing around in the social media and even featured on the news. What a crazy journey as the inflow of users has been too sudden, my server has been down for a few times until I progressively upgrade it until it got stable these couple of days. As for my advice to people dreaming the to be entreprenuer - Don't overthinking about all the problems you will face before starting. You will encounter hundreds of problems along the way and you just need to solve them one by one. You will never start if you think about what's not working and there will never be an answer for everything - even I don't have an answer for everything now.

Ai C-Level team
reddit
LLM Vibe Score0
Human Vibe Score1
thestoicdesignerThis week

Ai C-Level team

I've been exploring ways to run a company where I'm essentially the only internal team member, relying entirely on a suite of specialized AIs for executive roles, supported occasionally by external consultants for niche expertise. My goal is to stay lean, agile, and highly creative, especially in a fashion/tech brand context. Essentially, I'm building an AI-driven C-Level team, or what I like to call a "C-Level AI Wallet." Here's what I'm thinking for the key executive roles I'd need to cover with AI: CEO AI – Responsible for overall strategy, decision-making, trend analysis, and guiding the company's vision. I'd probably lean on something advanced like Gemini, GPT-4, or similar models, fine-tuned with market-specific data. COO AI (Operations): I'd need tools that streamline and automate logistics, supply chain management, and day-to-day operations (think something along the lines of Zapier AI integrations or Make). CMO AI (Marketing & Content): For branding, content creation, digital marketing, and consumer insights, I'd use Jasper or Copy.ai, combined with predictive analytics tools like Google Vertex AI to understand trends better. Additionally, for generating engaging visual and multimedia content, tools like Midjourney, DALL·E, Adobe Firefly, and Runway ML would be perfect. CFO AI (Financial Management): For financial management, cash flow control, and investment decisions, I'd probably leverage AI tools like Bloomberg GPT, combined with AI-powered forecasting platforms. CHRO AI (Human Resources & Culture): Although the internal team is minimal (just myself!), I'd still rely on AI for tasks like project management, freelancer hiring, and performance tracking—tools like HireVue AI, Motion, or even Notion's AI could be beneficial here. CSO AI (Sustainability & Compliance): Since sustainability and ethical sourcing are critical, I'd integrate ESG-focused AI tools to ensure transparency and responsible sourcing. My idea is that, with the right AI tools seamlessly integrated, I can manage the strategic vision and creative direction personally, leveraging external consultants only when necessary. This setup would ideally allow me to operate as a one-person internal team supported by a robust "wallet" of AI executives. Has anyone tried a similar approach? What AI tools would you recommend for a truly lean, innovative brand structure? I'm very curious about your experiences or suggestions—let me know your thoughts!

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

The "AI Agent" Hype is out of control and businesses suffer
reddit
LLM Vibe Score0
Human Vibe Score0.429
ImpossibleBell4759This week

The "AI Agent" Hype is out of control and businesses suffer

Ah, the sweet smell of AI hype in the morning. Nothing quite like it to get the blood pumping and the venture capital flowing. Let's cut through the BS... The "AI Agent" craze is the tech industry's latest attempt to separate businesses from their hard-earned cash. It's like watching a bunch of sheep rushing towards a cliff, except the cliff is made of overpriced software and empty promises. The tech giants are having a field day with this nonsense. Microsoft, Google, Salesforce - they're all pushing AI agents like they're the second coming. The sad truth is, businesses are suffering from a severe case of FOMO (Fear of Missing Out). They're so terrified of being left behind in the AI race that they're willing to throw good money after bad. Here's a radical idea: how about focusing on actual business problems instead of chasing the latest tech fad? I know, I know, it's not as sexy as having an AI Agent, but it might actually, you know, work. In the end, the only ones truly benefiting from this AI agent hype are the vendors selling the snake oil and the consultants charging exorbitant fees to implement it. Everyone else is just along for the ride, hoping they don't crash and burn too spectacularly. So, to all the businesses out there considering jumping on the AI Agent bandwagon... take a step back, take a deep breath, and ask yourself if you really need an overpriced chatbot with delusions of grandeur. Chances are, you don't. The AI agent hype is like a bad reality TV show—overproduced, lacking substance, and leaving businesses with nothing but regret. Companies are throwing money at AI solutions, expecting miracles, only to find they've bought into overpriced fantasies. The AI agent hype is nothing more than a high-tech emperor with no clothes. It's time for businesses to wake up, smell the silicon, and start making decisions based on reality rather than sci-fi fantasies.  I think AI Agents are the future, but as of right now AI Agents aren't autonomous or agentic. From what I've seen as of now is glorified Chatbots, ChatGPT wrappers and basic automations, and nothing actually autonomous. So far it's all just hype, but we'll see how it improves businesses and the bottom line! How do you think AI Agents will help small businesses now or in the future?

Looking for Feedback on this Idea
reddit
LLM Vibe Score0
Human Vibe Score1
Separate-Employer394This week

Looking for Feedback on this Idea

Hey everyone, I’d love some honest feedback on an idea I’ve been working on (currently just in paper). A little about me: I started in hospitality across South America and Asia, then moved into social entrepreneurship in a rural area, and eventually ecommerce using WordPress. Now, I’m deep into programming here in Europe, which I’ve really come to enjoy. So yes, I understand the perspective of businesses, entrepreneurs and programmers.  Back when I had tons of ideas for businesses and optimizing processes, I always hit the same drama: "You need a developer." But hiring one was too expensive or unreliable or shady business practice, and partnering with a programmer, someone I barely knew often felt too risky (I've learned the hard way that partnerships can feel like marriages). Now, as a programmer, I get a lot of requests from small businesses needing help and sometimes with very simple ideas. And while I can do it, I often don’t have the time, so I have to tell them I can't. And when I do have time, I know the cost can be too much for their budget. This got me thinking: What if I created a course to teach business owners just enough programming to solve their own problems? Not to become full time coders, but to gain enough knowledge to build simple tools or, better yet, understand code enough to ask the right questions whether it's to AI or a future developer. The course would focus on programming but talking business language, starting with building more flexible websites, managing your own content and creating custom tools without the limitations of templates or paid widgets. I’m thinking of creating a supportive community where we learn and grow together (maybe using your business as an example), and I’d be available to help along the way, plus I will be adding tools that you could reuse for your business (mostly because you will be able to read it and understand it → that's the goal). Talking about money, I can only tell you will be way more affordable compared to multiple payments in different places. So, does this resonate with you? I’d really appreciate your honest thoughts. Do you feel you have the time to learn or you still prefer looking for a developer? Feel free to share any frustrations or ideas. And if this sounds interesting, write me a PM, and I’ll keep you updated. Thanks for reading. I'm excited to hear what you think! :)

I spent 6 months on building a web product, and got zero users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on building a web product, and got zero users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I have stuff to post on Reddit very rarely, but I share how my project is going on, random stuff, and memes on X. Just in case few might want to keep in touch 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2C products beats building B2B products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.
reddit
LLM Vibe Score0
Human Vibe Score1
Organic_Crab7397This week

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.

Hello everyone. I haven't started selling yet and wanted to get some insight from the community I'm trying to serve (that makes the most sense to me). So over the past couple months I've gotten into AI & Automation. I got a HighLevel account and went to town learning new things. I learned how to make automations and workflows that make running a business easier (my dad has been letting me use his concrete business as a guinea pig). I also learned how to build and train AI Chat Assistants. I want to start a service based business that uses AI & workflows to automate some of the customer service tasks & lead generation for business. What I'm seeking advice about are as follows: NICHE SELECTION: Part of me thinks I shouldn't niche down in the beginning and just take whoever comes and niche down once I find an industry I'm comfortable with. Another side thinks I should choose one. What is your opinion on niche selection in the beginning? PRICING: I know that pricing largely depends on the value I bring to the client, but I've seen people doing the same or similar things as I want to do and charging vastly different prices. From $300- $2,000. While I think these solutions could absolutely help companies get and retain new business and reduce some of the workload of their staff -- I'm not comfortable charging a high price until I've got enough experience and data to justify that. &#x200B; THESE ARE THE SERVICES I'M THINKING OF OFFERING: Customer Service Chat Assistant. This will be on the website as a "Live Chat". It also connects to Facebook Messenger & Google Business Chat. I'd train the chat assistant on everything related to the company; pertinent info (NAP, company mission, industry background), contact info, services / products / pricing, FAQs, current specials &/or discount codes (this can be changed monthly), how to handle upset clients, etc. It can also connect to a calendar like Google or Calendly so customers can make an appointment or schedule a call directly from the conversation. Missed Call Follow Up. If you're familiar with the platform HighLevel it's commonly called "Missed Call Text Back". The idea is that when a call is missed a text message is automatically fired to the prospect's phone saying something along the lines of "Hey this is \\\\\\ from \\\\\\\_. How can I help you?" and the business owner is alerted to the missed call via text notification. People have said they see a lot of success for their clients with this alone due to the instant follow up. I see a lot of people charging $300 /m. for this. My issues with this are: 1). The text fires automatically when the call is missed, but if the business owner isn't available to actually follow up and keep texting after the customer texts back, they will look inconsistent and bothersome. 2). Without context a prospect may wonder why you didn't answer when they called, but texted them instead. So my answer to these problems are #3. SMS Answering Service. It is essentially taking 2 + 1 and combining them. The missed call text goes out to the prospect, but with context on why they're being texted (because no one is available to take the call at the moment) and IF the prospect responds, a Customer Service Chat Assistant will take over the conversation with the goal of answering their questions and either getting them on the phone with the company via a call back OR helping them schedule an appointment. This offers a more consistent solution than just a text to the business owner / team & the prospect is contacted and helped (hopefully) before they have a chance to start calling a competitor. Lead Nurture / Lead Qualifying Sales Funnel. This one is more than just AI & automation. It's a full funnel. It can be for either Facebook or Google. The process is AD -> Landing Page -> AI Text Message Convo -> Booking/Schedule Call/ Appointment. Typically the ad will offer a lead magnet which they will claim on the LP by giving their information. After the form is submitted, they get a text message and begin a conversation with the AI. It can be trained to just walk them through a booking process, nurture a sale by answering questions and handling objections or to qualify leads. Lead qualification via text works well if you want to weed out who is serious versus who is curious. To be clear; I'd be making the ad, landing page & training the AI -- all parts of the funnel. For whichever service a few things are universal: \- All conversations; no matter what platform they're had on, all go to one inbox which is pretty helpful to see them all in one place. \- When scheduling / booking these can also collect payment. \- Tags can be added to keep track of how they came into the business and where they are in a sales pipeline. There are a lot of fun things I can do with these automations and I'm excited about learning more everyday. I'd really like to know what you think these services could be worth to a business. If you do reply please tell me what type of business you're in so I have an idea of what industries I should be looking towards. Thank you for any response I get as I know this was a long read! SN: I currently do digital marketing & web design as a freelancer.

Ai C-Level team
reddit
LLM Vibe Score0
Human Vibe Score1
thestoicdesignerThis week

Ai C-Level team

I've been exploring ways to run a company where I'm essentially the only internal team member, relying entirely on a suite of specialized AIs for executive roles, supported occasionally by external consultants for niche expertise. My goal is to stay lean, agile, and highly creative, especially in a fashion/tech brand context. Essentially, I'm building an AI-driven C-Level team, or what I like to call a "C-Level AI Wallet." Here's what I'm thinking for the key executive roles I'd need to cover with AI: CEO AI – Responsible for overall strategy, decision-making, trend analysis, and guiding the company's vision. I'd probably lean on something advanced like Gemini, GPT-4, or similar models, fine-tuned with market-specific data. COO AI (Operations): I'd need tools that streamline and automate logistics, supply chain management, and day-to-day operations (think something along the lines of Zapier AI integrations or Make). CMO AI (Marketing & Content): For branding, content creation, digital marketing, and consumer insights, I'd use Jasper or Copy.ai, combined with predictive analytics tools like Google Vertex AI to understand trends better. Additionally, for generating engaging visual and multimedia content, tools like Midjourney, DALL·E, Adobe Firefly, and Runway ML would be perfect. CFO AI (Financial Management): For financial management, cash flow control, and investment decisions, I'd probably leverage AI tools like Bloomberg GPT, combined with AI-powered forecasting platforms. CHRO AI (Human Resources & Culture): Although the internal team is minimal (just myself!), I'd still rely on AI for tasks like project management, freelancer hiring, and performance tracking—tools like HireVue AI, Motion, or even Notion's AI could be beneficial here. CSO AI (Sustainability & Compliance): Since sustainability and ethical sourcing are critical, I'd integrate ESG-focused AI tools to ensure transparency and responsible sourcing. My idea is that, with the right AI tools seamlessly integrated, I can manage the strategic vision and creative direction personally, leveraging external consultants only when necessary. This setup would ideally allow me to operate as a one-person internal team supported by a robust "wallet" of AI executives. Has anyone tried a similar approach? What AI tools would you recommend for a truly lean, innovative brand structure? I'm very curious about your experiences or suggestions—let me know your thoughts!

How I Started Learning Machine Learning
reddit
LLM Vibe Score0
Human Vibe Score1
TechPrimoThis week

How I Started Learning Machine Learning

Hello, everyone. As promised, I'll write a longer post about how I entered the world of ML, hoping it will help someone shape their path. I'll include links to all the useful materials I used alongside the story, which you can use for learning. I like to call myself an AI Research Scientist who enjoys exploring new AI trends, delving deeper into understanding their background, and applying them to real products. This way, I try to connect science and entrepreneurship because I believe everything that starts as scientific research ends up "on the shelves" as a product that solves a specific user problem. I began my journey in ML in 2016 when it wasn't such a popular field. Everyone had heard of it, but few were applying it. I have several years of development experience and want to try my hand at ML. The first problem I encountered was where to start - whether to learn mathematics, statistics, or something else. That's when I came across a name and a course that completely changed my career. Let's start You guessed it. It was Professor Andrew Ng and his globally popular Machine Learning course available on Coursera (I still have the certificate, hehe). This was also my first official online course ever. Since that course no longer exists as it's been replaced by a new one, I recommend you check out: Machine Learning (Stanford CS229) Machine Learning Specialization These two courses start from the basics of ML and all the necessary calculus you need to know. Many always ask questions like whether to learn linear algebra, statistics, or probability, but you don't need to know everything in depth. This knowledge helps if you're a scientist developing a new architecture, but as an engineer, not really. You need to know some basics to understand, such as how the backpropagation algorithm works. I know that Machine Learning (Stanford CS229) is a very long and arduous course, but it's the right start if you want to be really good at ML. In my time, I filled two thick notebooks by hand while taking the course mentioned above. TensorFlow and Keras After the course, I didn't know how to apply my knowledge because I hadn't learned specifically how to code things. Then, I was looking for ways to learn how to code it. That's when I came across a popular framework called Keras, now part of TensorFlow. I started with a new course and acquiring practical knowledge: Deep Learning Specialization Deep Learning by Ian Goodfellow Machine Learning Yearning by Andrew Ng These resources above were my next step. I must admit that I learned the most from that course and from the book Deep Learning by Ian Goodfellow because I like reading books (although this one is quite difficult to read). Learn by coding To avoid just learning, I went through various GitHub repositories that I manually retyped and learned that way. It may be an old-fashioned technique, but it helped me a lot. Now, most of those repositories don't exist, so I'll share some that I found to be good: Really good Jupyter notebooks that can teach you the basics of TensorFlow Another good repo for learning TF and Keras Master the challenge After mastering the basics in terms of programming in TF/Keras, I wanted to try solving some real problems. There's no better place for that challenge than Kaggle and the popular Titanic dataset. Here, you can really find a bunch of materials and simple examples of ML applications. Here are some of my favorites: Titanic - Machine Learning from Disaster Home Credit Default Risk House Prices - Advanced Regression Techniques Two Sigma: Using News to Predict Stock Movements I then decided to further develop my career in the direction of applying ML to the stock market, first using predictions on time series and then using natural language processing. I've remained in this field until today and will defend my doctoral dissertation soon. How to deploy models To continue, before I move on to the topic of specialization, we need to address the topic of deployment. Now that we've learned how to make some basic models in Keras and how to use them, there are many ways and services, but I'll only mention what I use today. For all my ML models, whether simple regression models or complex GPT models, I use FastAPI. It's a straightforward framework, and you can quickly create API endpoints. I'll share a few older and useful tutorials for beginners: AI as an API tutorial series A step-by-step guide Productizing an ML Model with FastAPI and Cloud Run Personally, I've deployed on various cloud providers, of which I would highlight GCP and AWS because they have everything needed for model deployment, and if you know how to use them, they can be quite cheap. Chose your specialization The next step in developing my career, besides choosing finance as the primary area, was my specialization in the field of NLP. This happened in early 2020 when I started working with models based on the Transformer architecture. The first model I worked with was BERT, and the first tasks were related to classifications. My recommendations are to master the Transformer architecture well because 99% of today's LLM models are based on it. Here are some resources: The legendary paper "Attention Is All You Need" Hugging Face Course on Transformers Illustrated Guide to Transformers - Step by Step Explanation Good repository How large language models work, a visual intro to transformers After spending years using encoder-based Transformer models, I started learning GPT models. Good open-source models like Llama 2 then appear. Then, I started fine-tuning these models using the excellent Unsloth library: How to Finetune Llama-3 and Export to Ollama Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth After that, I focused on studying various RAG techniques and developing Agent AI systems. This is now called AI engineering, and, as far as I can see, it has become quite popular. So I'll write more about that in another post, but here I'll leave what I consider to be the three most famous representatives, i.e., their tutorials: LangChain tutorial LangGraph tutorial CrewAI examples Here I am today Thanks to the knowledge I've generated over all these years in the field of ML, I've developed and worked on numerous projects. The most significant publicly available project is developing an agent AI system for well-being support, which I turned into a mobile application. Also, my entire doctoral dissertation is related to applying ML to the stock market in combination with the development of GPT models and reinforcement learning (more on that in a separate post). After long 6 years, I've completed my dissertation, and now I'm just waiting for its defense. I'll share everything I'm working on for the dissertation publicly on the project, and in tutorials I'm preparing to write. If you're interested in these topics, I announce that I'll soon start with activities of publishing content on Medium and a blog, but I'll share all of that here on Reddit as well. Now that I've gathered years of experience and knowledge in this field, I'd like to share it with others and help as much as possible. If you have any questions, feel free to ask them, and I'll try to answer all of them. Thank you for reading.

How I Started Learning Machine Learning
reddit
LLM Vibe Score0
Human Vibe Score1
TechPrimoThis week

How I Started Learning Machine Learning

Hello, everyone. As promised, I'll write a longer post about how I entered the world of ML, hoping it will help someone shape their path. I'll include links to all the useful materials I used alongside the story, which you can use for learning. I like to call myself an AI Research Scientist who enjoys exploring new AI trends, delving deeper into understanding their background, and applying them to real products. This way, I try to connect science and entrepreneurship because I believe everything that starts as scientific research ends up "on the shelves" as a product that solves a specific user problem. I began my journey in ML in 2016 when it wasn't such a popular field. Everyone had heard of it, but few were applying it. I have several years of development experience and want to try my hand at ML. The first problem I encountered was where to start - whether to learn mathematics, statistics, or something else. That's when I came across a name and a course that completely changed my career. Let's start You guessed it. It was Professor Andrew Ng and his globally popular Machine Learning course available on Coursera (I still have the certificate, hehe). This was also my first official online course ever. Since that course no longer exists as it's been replaced by a new one, I recommend you check out: Machine Learning (Stanford CS229) Machine Learning Specialization These two courses start from the basics of ML and all the necessary calculus you need to know. Many always ask questions like whether to learn linear algebra, statistics, or probability, but you don't need to know everything in depth. This knowledge helps if you're a scientist developing a new architecture, but as an engineer, not really. You need to know some basics to understand, such as how the backpropagation algorithm works. I know that Machine Learning (Stanford CS229) is a very long and arduous course, but it's the right start if you want to be really good at ML. In my time, I filled two thick notebooks by hand while taking the course mentioned above. TensorFlow and Keras After the course, I didn't know how to apply my knowledge because I hadn't learned specifically how to code things. Then, I was looking for ways to learn how to code it. That's when I came across a popular framework called Keras, now part of TensorFlow. I started with a new course and acquiring practical knowledge: Deep Learning Specialization Deep Learning by Ian Goodfellow Machine Learning Yearning by Andrew Ng These resources above were my next step. I must admit that I learned the most from that course and from the book Deep Learning by Ian Goodfellow because I like reading books (although this one is quite difficult to read). Learn by coding To avoid just learning, I went through various GitHub repositories that I manually retyped and learned that way. It may be an old-fashioned technique, but it helped me a lot. Now, most of those repositories don't exist, so I'll share some that I found to be good: Really good Jupyter notebooks that can teach you the basics of TensorFlow Another good repo for learning TF and Keras Master the challenge After mastering the basics in terms of programming in TF/Keras, I wanted to try solving some real problems. There's no better place for that challenge than Kaggle and the popular Titanic dataset. Here, you can really find a bunch of materials and simple examples of ML applications. Here are some of my favorites: Titanic - Machine Learning from Disaster Home Credit Default Risk House Prices - Advanced Regression Techniques Two Sigma: Using News to Predict Stock Movements I then decided to further develop my career in the direction of applying ML to the stock market, first using predictions on time series and then using natural language processing. I've remained in this field until today and will defend my doctoral dissertation soon. How to deploy models To continue, before I move on to the topic of specialization, we need to address the topic of deployment. Now that we've learned how to make some basic models in Keras and how to use them, there are many ways and services, but I'll only mention what I use today. For all my ML models, whether simple regression models or complex GPT models, I use FastAPI. It's a straightforward framework, and you can quickly create API endpoints. I'll share a few older and useful tutorials for beginners: AI as an API tutorial series A step-by-step guide Productizing an ML Model with FastAPI and Cloud Run Personally, I've deployed on various cloud providers, of which I would highlight GCP and AWS because they have everything needed for model deployment, and if you know how to use them, they can be quite cheap. Chose your specialization The next step in developing my career, besides choosing finance as the primary area, was my specialization in the field of NLP. This happened in early 2020 when I started working with models based on the Transformer architecture. The first model I worked with was BERT, and the first tasks were related to classifications. My recommendations are to master the Transformer architecture well because 99% of today's LLM models are based on it. Here are some resources: The legendary paper "Attention Is All You Need" Hugging Face Course on Transformers Illustrated Guide to Transformers - Step by Step Explanation Good repository How large language models work, a visual intro to transformers After spending years using encoder-based Transformer models, I started learning GPT models. Good open-source models like Llama 2 then appear. Then, I started fine-tuning these models using the excellent Unsloth library: How to Finetune Llama-3 and Export to Ollama Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth After that, I focused on studying various RAG techniques and developing Agent AI systems. This is now called AI engineering, and, as far as I can see, it has become quite popular. So I'll write more about that in another post, but here I'll leave what I consider to be the three most famous representatives, i.e., their tutorials: LangChain tutorial LangGraph tutorial CrewAI examples Here I am today Thanks to the knowledge I've generated over all these years in the field of ML, I've developed and worked on numerous projects. The most significant publicly available project is developing an agent AI system for well-being support, which I turned into a mobile application. Also, my entire doctoral dissertation is related to applying ML to the stock market in combination with the development of GPT models and reinforcement learning (more on that in a separate post). After long 6 years, I've completed my dissertation, and now I'm just waiting for its defense. I'll share everything I'm working on for the dissertation publicly on the project, and in tutorials I'm preparing to write. If you're interested in these topics, I announce that I'll soon start with activities of publishing content on Medium and a blog, but I'll share all of that here on Reddit as well. Now that I've gathered years of experience and knowledge in this field, I'd like to share it with others and help as much as possible. If you have any questions, feel free to ask them, and I'll try to answer all of them. Thank you for reading.

[Help Needed] Developing an AI to Play Mini Metro – Struggling with Data Extraction & Strategy method
reddit
LLM Vibe Score0
Human Vibe Score1
Primary_Cheesecake63This week

[Help Needed] Developing an AI to Play Mini Metro – Struggling with Data Extraction & Strategy method

Hello everyone ! First of all, please excuse my English if i do mistakes, as it is not my native language and I am not necessarily comfortable with it :) Regarding this project, I will explain my initial intention. I know very little about coding, but I enjoy it and have had some Python lessons, along with a few small personal projects for fun, mostly using YouTube tutorials. Nothing too advanced... However, now I want to take it to the next level. Since I have some familiarity with coding, I’ve wanted to work on artificial intelligence for a while. I have never coded AI myself, but I enjoy downloading existing projects (for chess, checkers, cat-and-mouse games, etc.), testing their limits, and understanding how they work. One of my favorite strategy game genres is management games, especially Mini Metro. Given its relatively simple mechanics, I assumed there would already be AI projects for it. But to my surprise, I could only find mods that add maps ! I admit that I am neither the best nor the most patient researcher, so I haven’t spent hours searching, but the apparent lack of projects for this game struck me. Maybe the community is just small ? I haven't looked deeply into it. So, I got it into my head to create my own AI. After all, everything is on the internet, and perseverance is key ! However, perseverance alone is not enough when you are not particularly experienced, so I am turning to the community to find knowledgeable people who can help me. The First Obstacle: Getting Game Data I quickly realized that the biggest challenge is that Mini Metro does not have an accessible API (at least, not one I could find). This means I cannot easily extract game data. My initial idea was to have an AI analyze the game, think about the best move, and then write out the actions to be performed, instead of coding a bot that directly manipulates the game. But first, I needed a way to retrieve and store game data. Attempt #1: Image Recognition (Failed) Since there was no API, I tried using image recognition to gather game data. Unfortunately, it was a disaster. I used mss for screenshots ,Tesseract for OCR, andNumPy to manipulate images in the HSV color space but it produced unreliable results : It detected many false positives (labeling empty spaces as stations) It failed to consistently detect numbers (scores or resources like trains and lines) Dotted bridge indicators over rivers were misinterpreted as stations While I could detect stations, lines, and moving trains, the data was chaotic and unreliable Attempt #2: Manual Data Entry (Partially Successful but Impractical) Since image recognition was unreliable, I decided to manually update the game data in real-time. I created a script that : Displays an overlay when I press Shift+R. Allows me to manually input stations, lines, and other game elements. Saves the current state when I press Shift+R again, so I can resume playing. Implements a simple resource management system (trains, lines, etc.). This works better than image recognition because I control the input, but I’m running into serious limitations : Some game mechanics are hard to implement manually (adding a station in the middle of a line, extending the correct line when two lines overlap at a station) Keeping track of station demands (the shapes passengers want to travel to) becomes overwhelming as the game progresses Updating the score in real-time is practically impossible manually, and the score is essential for training an AI (for my reward systems) My Dilemma At this point, I am unsure of how to proceed. My questions for the community : Am I going in the right direction? Should I continue improving my manual tracking system or is it a dead end? Should I have persevered with image recognition instead? Is there a better way to extract game data that I haven’t thought of? I would appreciate any guidance or ideas. Thanks in advance ! if you need more info, i have posted my codes here : https://github.com/Dmsday/mini\metro\data\analyzer (for the image detection version I'm not sure that it's the latest version aka the most "functional" version that I could do because I think I deleted it out of boredom...)

Sophomore computer science student, looking at ISLP vs ESL vs mlcourse.ai
reddit
LLM Vibe Score0
Human Vibe Score1
OneTrueDuceThis week

Sophomore computer science student, looking at ISLP vs ESL vs mlcourse.ai

For background, I am currently a computer science sophomore, with intermediate skills in Python and C++. I have taken university courses on data structure and algorithms, calc 1-3, linear algebra, and an introductory stat course (which covered confidence interval, Z and T sample test, and hypothesis testing). I also have read up to Chapter 5 of the MML book and am currently self-studying probability theory (through STAT 110 video and textbook by Joe Blitzstein). I have done a few beginner ML projects with Tensorflow and scikit-learn, but most of the work is in EDA and feature engineering, while the ML model is just a black box that I plug and chug. So now, I want to learn how to implement ML models from scratch. I've been skimming over ISLP, which many people online recommended, but it seems that while it talks about mathematical equations used, I don't really get to implement it; as the labs are a lot of importing an already implemented model then plug and chug. So now, I am looking at ESL, which I believe is the more detailed and mathematically rigorous version of ISL. However, there aren't any labs or code along to ease beginners in (which I somewhat understand given the intended audience of the book). Another option I am looking at is mlcourse.ai, which seems to cover mathematics and has some lab/code along for it. But it doesn't seem to span as many subjects as ESL does. Given these options, I am unsure of which one to pick, should I first finish my self-study on probability theory and then Chapters 6-8 of MML? Then should I do ISLP first or just get into ESL? Or maybe I should do mlcourse.ai first then into ESL? Or should I just do the ML course/book along with the maths? In addition, there is also the data science + feature engineering stuff which I wonder if I should study more about. Sorry if this seems like a mess, there are just so many things to ML that I am kinda overwhelmed.

Neural Networks you can try to implement from scratch (for beginners)
reddit
LLM Vibe Score0
Human Vibe Score1
axetobe_MLThis week

Neural Networks you can try to implement from scratch (for beginners)

I was reading a tweet talking about how useful it is to implement neural networks from scratch. How it allowed for a greater understanding of the topic. The author said he found it more useful than other people explaining the concept to him. While I disagree with the author’s opinion that it stops the need for explanations. It certainly does help the understanding of one’s model. I recommend giving it a go. In the blog post, I will suggest which models you should try to implement from scratch using NumPy or your favourite library. Also, I will link to some accompanying resources. Simple Feedforward Network This is the most famous example because it’s so simple. But allows you to learn so much. I heard about this idea from Andrew Trask. It also helped me think about implementing networks from scratch in general. In the Feedforward network, you will be using NumPy. As you won't need Pytorch or TensorFlow. To do the heavy-lifting for complex calculations. You can simply create a Numpy Array for training and testing data. You can also create a nonlinear function using Numpy. Then work out the error rate between the layer’s guess and real data. Resource for this task: https://iamtrask.github.io/2015/07/12/basic-python-network/ Follow this tutorial. It does a much better job of explaining how to do this in NumPy. With code examples to follow. Feedforward Network with Gradient Descent This is an extension of the network above. In this network, we allow the model to optimise its weights. This can also be done in NumPy. Resource for this task: https://iamtrask.github.io/2015/07/27/python-network-part2/ A follow-on from the previous article. Pytorch version of Perceptrons and Multi-layered Perceptrons. Here will go up a level by using a library. Examples I'm using will be done in Pytorch. But you can use whatever library you prefer. When implementing these networks, you learn how much a library does the work for you. Recourses for the task: https://medium.com/@tomgrek/building-your-first-neural-net-from-scratch-with-pytorch-56b0e9c84d54 https://becominghuman.ai/pytorch-from-first-principles-part-ii-d37529c57a62 K Means Clustering Yes, this does not count as a neural network. But a traditional machine learning algorithm is still very useful. As this is non deep learning algorithm it should be easier to understand. This can be done just using NumPy or Pandas depending on the implementation. Recourse for this task: https://www.machinelearningplus.com/predictive-modeling/k-means-clustering/ http://madhugnadig.com/articles/machine-learning/2017/03/04/implementing-k-means-clustering-from-scratch-in-python.html https://gdcoder.com/implementation-of-k-means-from-scratch-in-python-9-lines/ There are quite a few choices to choose from. So pick whatever implementation helps you understand the concepts better. These networks or models should be simple enough that you won't get lost trying to implement them. But still, help learn a few stuff along the way. \- If you found this post useful, then check out my mailing list where I write more stuff like this.

How I Built an Agentic Marketing Campaign Strategist
reddit
LLM Vibe Score0
Human Vibe Score1
AniketWorkThis week

How I Built an Agentic Marketing Campaign Strategist

Marketing at Scale: How One AI System Replaces Hundreds of Strategy Hours Article https://i.redd.it/uekqj3zmerme1.gif https://i.redd.it/30rk23zmerme1.gif https://preview.redd.it/fk1t53zmerme1.png?width=797&format=png&auto=webp&s=d07f473a9556fbd38885b3a2f862101d9b25424e https://preview.redd.it/n84113zmerme1.jpg?width=1914&format=pjpg&auto=webp&s=f42679269a1003e1c8d6501dd2d53e10db745bba https://preview.redd.it/l13ae3zmerme1.jpg?width=791&format=pjpg&auto=webp&s=ecab3c295c2a416bc0fed8c62fecbe3321e37093 TL;DR This article guides you through building an AI-powered marketing strategist using Python. It combines vector databases, language models, and PDF generation to create customized marketing strategies automatically. I’ll show you the complete system architecture, from storing marketing knowledge to generating professional strategy documents, with practical code examples you can implement today. Perfect for marketers and developers looking to leverage AI for business growth. Introduction Welcome to the exciting intersection of marketing and artificial intelligence! In today’s digital world, creating effective marketing campaigns requires deep expertise, market research, and creative thinking. But what if you could automate parts of this process? That’s exactly what I set out to build: an AI system that generates comprehensive marketing strategies tailored to specific products, audiences, and budgets. What’s This Article About? This article walks you through the creation of an AI-powered marketing strategist that combines the retrieval of relevant marketing knowledge with advanced language generation to produce detailed campaign strategies. The system I built uses Retrieval-Augmented Generation (RAG), which enhances AI outputs by grounding them in specific knowledge sources. Here’s how it works: You provide a simple campaign description (like “a new eco-friendly water bottle targeting millennials with a budget of $50,000”) The system searches a knowledge base of marketing principles and best practices It then uses a language model to craft a comprehensive strategy that includes campaign objectives, target audience analysis, channel selection, content ideas, budget allocation, and measurement KPIs Finally, it generates a professional PDF document with your complete marketing strategy The beauty of this approach is that it combines the creativity and adaptability of AI with established marketing frameworks, ensuring the strategies are both innovative and grounded in proven principles. Why Read It? AI is rapidly transforming how businesses operate, and marketing is at the forefront of this revolution. According to recent studies, companies that effectively leverage AI in their marketing efforts see significant improvements in customer engagement, conversion rates, and ROI. Even if you’re not building a system for a real company right now, understanding how to implement AI in marketing processes gives you valuable skills and insights. This article provides a practical example of how AI can: Save marketers countless hours of research and strategy development Ensure consistency in marketing approaches across different campaigns Generate creative ideas that might not have been considered otherwise Scale marketing expertise across an organization By following along, you’ll gain hands-on experience with technologies like vector databases, language models, and automated document generation — all skills that are increasingly valuable in today’s business environment.

How I Built an Agentic Marketing Campaign Strategist
reddit
LLM Vibe Score0
Human Vibe Score1
AniketWorkThis week

How I Built an Agentic Marketing Campaign Strategist

Marketing at Scale: How One AI System Replaces Hundreds of Strategy Hours Article https://i.redd.it/uekqj3zmerme1.gif https://i.redd.it/30rk23zmerme1.gif https://preview.redd.it/fk1t53zmerme1.png?width=797&format=png&auto=webp&s=d07f473a9556fbd38885b3a2f862101d9b25424e https://preview.redd.it/n84113zmerme1.jpg?width=1914&format=pjpg&auto=webp&s=f42679269a1003e1c8d6501dd2d53e10db745bba https://preview.redd.it/l13ae3zmerme1.jpg?width=791&format=pjpg&auto=webp&s=ecab3c295c2a416bc0fed8c62fecbe3321e37093 TL;DR This article guides you through building an AI-powered marketing strategist using Python. It combines vector databases, language models, and PDF generation to create customized marketing strategies automatically. I’ll show you the complete system architecture, from storing marketing knowledge to generating professional strategy documents, with practical code examples you can implement today. Perfect for marketers and developers looking to leverage AI for business growth. Introduction Welcome to the exciting intersection of marketing and artificial intelligence! In today’s digital world, creating effective marketing campaigns requires deep expertise, market research, and creative thinking. But what if you could automate parts of this process? That’s exactly what I set out to build: an AI system that generates comprehensive marketing strategies tailored to specific products, audiences, and budgets. What’s This Article About? This article walks you through the creation of an AI-powered marketing strategist that combines the retrieval of relevant marketing knowledge with advanced language generation to produce detailed campaign strategies. The system I built uses Retrieval-Augmented Generation (RAG), which enhances AI outputs by grounding them in specific knowledge sources. Here’s how it works: You provide a simple campaign description (like “a new eco-friendly water bottle targeting millennials with a budget of $50,000”) The system searches a knowledge base of marketing principles and best practices It then uses a language model to craft a comprehensive strategy that includes campaign objectives, target audience analysis, channel selection, content ideas, budget allocation, and measurement KPIs Finally, it generates a professional PDF document with your complete marketing strategy The beauty of this approach is that it combines the creativity and adaptability of AI with established marketing frameworks, ensuring the strategies are both innovative and grounded in proven principles. Why Read It? AI is rapidly transforming how businesses operate, and marketing is at the forefront of this revolution. According to recent studies, companies that effectively leverage AI in their marketing efforts see significant improvements in customer engagement, conversion rates, and ROI. Even if you’re not building a system for a real company right now, understanding how to implement AI in marketing processes gives you valuable skills and insights. This article provides a practical example of how AI can: Save marketers countless hours of research and strategy development Ensure consistency in marketing approaches across different campaigns Generate creative ideas that might not have been considered otherwise Scale marketing expertise across an organization By following along, you’ll gain hands-on experience with technologies like vector databases, language models, and automated document generation — all skills that are increasingly valuable in today’s business environment.

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?
reddit
LLM Vibe Score0
Human Vibe Score1
Prudent_Ad_3114This week

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?

Ok... So look... This one is pretty crazy... I'm building an Ai Interface that knows me better than I know myself - Check, lots of people have this, either in reality with employees and family members, or with ai intelligence. But it doesn't just know Me... It knows how to talk with Me. It understands my language, because I've trained it to. I've also trained it to translate that to all my clients and HumanAgents, soon to become RobotAgents... The RESULT: I can literally just spend 1-18 hours talking to it, and things get DONE. Most of that time, I just say EXECUTE, or ENGAGE, or DRAFT, or DISPATCH. I feel like a secret agent communicating in codes with his agency 😂 Not great for the paranoiac in me, but it's easy to get that part under control, ya'll. It's like having a team of 10,000 people, all available 24/7, all perfectly synchronised to each other's communication styles, preferences and ultimately: WHAT DO YOU NEED ME TO DO. At the end of the it all, having run my single COMMAND through a thousand of those people, a Document is prepared that outlines the next 3 stages of the plan, along with instructions to the whole team for how to ENACT it. Sounds rather grand and wonderful... Even when I simply use it to help me come up with a filing system for my creative work... \\\\\\\\\\\\\\\\\\\\\\ Here's my current VISION, why I'm doing this AND why I'm doing it publicly despite it being top secret. VISION To create an army of User-Owned and Operated "AiSuperAgencies" which gather intelligence on the user, securely file and analyse it, and then construct a sub-army of agents and tools that work together to produce the desired output, for any Function in the Personal and Professional Lives of EVERYONE, EVERYWHERE, in 3-5 Years. To start, I'm building it for me and the 5-10 cleaners who've made it to Level 1 in my access system. They were sick of toxic employers, tyrannical agencies and greedy customers. They gathered around us (many came in, many went out, few stayed, took about a year for our core team of 3 Level 2 Cleaners. My goal has always been to never employ anyone. Just me, my Partner and the Cleaners. All Shared Owners in the system for delivering the right cleaner to the right house in our town, at the right time and without any dramas or arguments... I have a personal talent for resolving disputes, which has made working for and buying from my business a mostly enjoyable and upbeat experience, with a touch of mystery and a feeling that you're part of something big! It is a business that ran on Me. I put in my time, every day, building automated tool after automated tool. Hiring a contractor to do a job, scratching my head when it didn't add enough value to pay for itself, then just doing it myself again. I wanted to solve that problem. I'm trusting that the few who hear about it who actually see the potential, will just come join us, no dramas, just cool people partnering up! And those that don't, won't. No one could steal it, because it's Mine, and I'll just change the keys anyway loser! Enjoy digging through my past, you lunatic! I'm out here living Now. Anyways... It's lonely around here. I have a cleaning business that I run from my laptop, which means I can live anywhere, but I still had this big problem of time... NOT ENOUGH Oh Wait. It's Here.

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?
reddit
LLM Vibe Score0
Human Vibe Score1
Prudent_Ad_3114This week

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?

Ok... So look... This one is pretty crazy... I'm building an Ai Interface that knows me better than I know myself - Check, lots of people have this, either in reality with employees and family members, or with ai intelligence. But it doesn't just know Me... It knows how to talk with Me. It understands my language, because I've trained it to. I've also trained it to translate that to all my clients and HumanAgents, soon to become RobotAgents... The RESULT: I can literally just spend 1-18 hours talking to it, and things get DONE. Most of that time, I just say EXECUTE, or ENGAGE, or DRAFT, or DISPATCH. I feel like a secret agent communicating in codes with his agency 😂 Not great for the paranoiac in me, but it's easy to get that part under control, ya'll. It's like having a team of 10,000 people, all available 24/7, all perfectly synchronised to each other's communication styles, preferences and ultimately: WHAT DO YOU NEED ME TO DO. At the end of the it all, having run my single COMMAND through a thousand of those people, a Document is prepared that outlines the next 3 stages of the plan, along with instructions to the whole team for how to ENACT it. Sounds rather grand and wonderful... Even when I simply use it to help me come up with a filing system for my creative work... \\\\\\\\\\\\\\\\\\\\\\ Here's my current VISION, why I'm doing this AND why I'm doing it publicly despite it being top secret. VISION To create an army of User-Owned and Operated "AiSuperAgencies" which gather intelligence on the user, securely file and analyse it, and then construct a sub-army of agents and tools that work together to produce the desired output, for any Function in the Personal and Professional Lives of EVERYONE, EVERYWHERE, in 3-5 Years. To start, I'm building it for me and the 5-10 cleaners who've made it to Level 1 in my access system. They were sick of toxic employers, tyrannical agencies and greedy customers. They gathered around us (many came in, many went out, few stayed, took about a year for our core team of 3 Level 2 Cleaners. My goal has always been to never employ anyone. Just me, my Partner and the Cleaners. All Shared Owners in the system for delivering the right cleaner to the right house in our town, at the right time and without any dramas or arguments... I have a personal talent for resolving disputes, which has made working for and buying from my business a mostly enjoyable and upbeat experience, with a touch of mystery and a feeling that you're part of something big! It is a business that ran on Me. I put in my time, every day, building automated tool after automated tool. Hiring a contractor to do a job, scratching my head when it didn't add enough value to pay for itself, then just doing it myself again. I wanted to solve that problem. I'm trusting that the few who hear about it who actually see the potential, will just come join us, no dramas, just cool people partnering up! And those that don't, won't. No one could steal it, because it's Mine, and I'll just change the keys anyway loser! Enjoy digging through my past, you lunatic! I'm out here living Now. Anyways... It's lonely around here. I have a cleaning business that I run from my laptop, which means I can live anywhere, but I still had this big problem of time... NOT ENOUGH Oh Wait. It's Here.

Building a No-Code AI Customer Service Tool While Working 9-5 | All real - No BS
reddit
LLM Vibe Score0
Human Vibe Score1
Content_Limit_9723This week

Building a No-Code AI Customer Service Tool While Working 9-5 | All real - No BS

I want to share my journey of building Chaterimo, my first revenue-generating side project that I've been working on for the past 1.5 years alongside my day job. What started as a solution to make AI chatbots more accessible has grown to over 300 signups, 30 paying customers, and 50,000+ customer queries handled. The Problem I Wanted to Solve: It started with my father's business struggling with customer service - hiring staff was expensive and they would eventually leave, creating a constant cycle of training new people. I decided to help by building a livechat chatbot powered by AI to handle customer queries. The first version was basic (running on ChatGPT-3 with 4k tokens), but it worked! Seeing its success at my father's business, I realized this could help many other businesses too. As I kept improving it and adding features, I expanded to focus on e-commerce stores facing similar challenges. What Makes Chaterimo Different: True no-code setup: Install and run in seconds Choice of AI Models: ChatGPT by default, with options for Claude and the latest Gemini Flexible API Integration: Bring your own API keys for cheaper, unlimited messaging Smart Context Understanding: Can search Google or scan the current webpage to provide relevant answers Lead Generation: Capture and manage potential customer information Rich Integrations: Works with Shopify, Facebook Messenger, and Make for automation Customizable Bot Personality: Edit your chatbot's role and behavior through system prompts The Journey: This is my first side project that's actually generating revenue ($500+ MRR), unlike my previous "just for fun" projects. The past 1.5 years have been a learning experience, balancing development with a full-time job. What started as a simple idea has evolved based on real user feedback and needs. Current Metrics: 300+ total signups 30 paying customers 50,000+ customer queries successfully handled by AI $500+ monthly recurring revenue All while maintaining a 9-5 job Some Things I've Learned: Focus on making things simpler, not adding more features Listen to users - they'll tell you what they really need Flexibility matters - letting users use their own API keys was a game-changer Building something you believe in makes all the difference I'm still actively improving Chaterimo based on feedback. If you're running a website or e-commerce store and want to try it out, I'd love to hear your thoughts. What's Next: I'm focused on making the onboarding even smoother and adding more customization options while keeping the core simplicity that makes Chaterimo work. Would love to hear your thoughts or answer any questions! Has anyone else built successful side projects while working full-time? What were your biggest learnings?

ChatPDF and PDF.ai are making millions using open source tech... here's the code
reddit
LLM Vibe Score0
Human Vibe Score1
Level-Thought6152This week

ChatPDF and PDF.ai are making millions using open source tech... here's the code

Why "copy" an existing product? The best SaaS products weren’t the first of their kind - think Slack, Shopify, Zoom, Dropbox, or HubSpot. They didn’t invent team communication, e-commerce, video conferencing, cloud storage, or marketing tools; they just made them better. What is a "Chat with PDF" SaaS? These are AI-powered PDF assistants that let you upload a PDF and ask questions about its content. You can summarize articles, extract key details from a contract, analyze a research paper, and more. To see this in action or dive deeper into the tech behind it, check out this YouTube video. Let's look at the market Made possible by advances in AI like ChatGPT and Retrieval-Augmented Generation (RAG), PDF chat tools started gaining traction in early 2023 and have seen consistent growth in market interest, which is currently at an all-time high (source:google trends) Keywords like "chat PDF" and "PDF AI" get between 1 to 10 million searches every month (source:keyword planner), with a broad target audience that includes researchers, students, and professionals across various industries. Leaders like PDF.ai and ChatPDF have already gained millions of users within a year of launch, driven by the growing market demand, with paid users subscribing at around $20/month. Alright, so how do we build this with open source? The core tech for most PDF AI tools are based on the same architecture. You generate text embeddings (AI-friendly text representations; usually via OpenAI APIs) for the uploaded PDF’s chapters/topics and store them in a vector database (like Pinecone). Now, every time the user asks a question, a similarity search is performed to find the most similar PDF topics from the vector database. The selected topic contents are then sent to an LLM (like ChatGPT) along with the question, which generates a contextual answer! Here are some of the best open source implementations for this process: GPT4 & LangChain Chatbot for large PDF docs by Mayo Oshin MultiPDF Chat App by Alejandro AO PDFToChat by Hassan El Mghari Worried about building signups, user management, payments, etc.? Here are my go-to open-source SaaS boilerplates that include everything you need out of the box: SaaS Boilerplate by Remi Wg Open SaaS by wasp-lang A few ideas to stand out from the noise: Here are a few strategies that could help you differentiate and achieve product market fit (based on the pivot principles from The Lean Startup by Eric Ries): Narrow down your target audience for a personalized UX: For instance, an exam prep assistant for students with study notes and quiz generator; or a document due diligence and analysis tool for lawyers. Add unique features to increase switching cost: You could autogenerate APIs for the uploaded PDFs to enable remote integrations (eg. support chatbot knowledge base); or build in workflow automation features for bulk analyses of PDFs. Offer platform level advantages: You could ship a native mobile/desktop apps for a more integrated UX; or (non-trivial) offer private/offline support by replacing the APIs with local open source deployments (eg. llama for LLM, an embedding model from the MTEB list, and FAISS for vector search). TMI? I’m an ex-AI engineer and product lead, so don’t hesitate to reach out with any questions! P.S. I've started a free weekly newsletter to share open-source/turnkey resources behind popular products (like this one). If you’re a founder looking to launch your next product without reinventing the wheel, please subscribe :)

I retired at 32 from my side project. Here's the path I took.
reddit
LLM Vibe Score0
Human Vibe Score1
inputoriginThis week

I retired at 32 from my side project. Here's the path I took.

EDIT 2: Thanks for the award kind stranger! I've stopped responding to reddit comments for this post. I'm adding an FAQ to the original post based on the most common high quality questions. If you have a question that you're dying to know the answer to and that only I can help you with (vs. Google, ChatGPT, etc.), DM me. EDIT: I love how controversial this post has become (50% upvote rate), and only in this subreddit (vs. other subreddits that I posted the same content in). I trust that the open-minded half of you will find something useful in this post and my other posts and comments. I retired at 32 years old, in large part thanks to a B2C SaaS app that I developed on my own. Now, I don't have to work in order to cover my living expenses, and wouldn't have to work for quite a while. In other words, I can finally sip mai tais at the beach. I've condensed how I got there into this post. First, a super simplified timeline of events, followed by some critical details. Timeline 2013 Graduated college in the US 2013 Started first corporate job 2013 Started side project (B2C app) that would eventually lead to my retirement 2020 Started charging for use of my B2C app (was free, became freemium) 2021 Quit my last corporate job 2022 Retired: time freedom attained Details First, some summary statistics of my path to retirement: 9 years: time between graduating college and my retirement. 8 years: total length of my career where I worked at some corporate day job. 7 years: time it took my B2C app to make its first revenue dollar 2 years: time between my first dollar of SaaS revenue and my retirement. "Something something overnight success a decade in the making". I got extremely lucky on my path to retirement, both in terms of the business environment I was in and who I am as a person. I'd also like to think that some of the conscious decisions I made along the way contributed to my early retirement. Lucky Breaks Was born in the US middle class. Had a natural affinity for computer programming and entrepreneurial mindset (initiative, resourcefulness, pragmatism, courage, growth mindset). Had opportunities to develop these mindsets throughout life. Got into a good college which gave me the credentials to get high paying corporate jobs. Was early to a platform that saw large adoption (see "barnacle on whale" strategy). Business niche is shareworthy: my SaaS received free media. Business niche is relatively stable, and small enough to not be competitive. "Skillful" Decisions I decided to spend the nights and weekends of my early career working on side projects in the hopes that one would hit. I also worked a day job to support myself and build my savings. My launch funnel over roughly 7 years of working on side projects: Countless side projects prototyped. 5 side projects publically launched. 2 side projects made > $0. 1 side project ended up becoming the SaaS that would help me retire. At my corporate day jobs, I optimized for learning and work-life balance. My learning usually stalled after a year or two at one company, so I’d quit and find another job. I invested (and continute to do so) in physical and mental wellbeing via regular workouts, meditation, journaling, traveling, and good food. My fulfilling non-work-life re-energized me for my work-life, and my work-life supported my non-work-life: a virtuous cycle. I automated the most time-consuming aspects of my business (outside of product development). Nowadays, I take long vacations and work at most 20 hours a week / a three-day work week . I decided to keep my business entirely owned and operated by me. It's the best fit for my work-style (high autonomy, deep focus, fast decision-making) and need to have full creative freedom and control. I dated and married a very supportive and inspiring partner. I try not to succumb to outrageous lifestyle creep, which keeps my living expenses low and drastically extends my burn-rate. Prescription To share some aphorisms I’ve leaned with the wantrepreneurs or those who want to follow a similar path: Maximize your at bats, because you only need one hit. Bias towards action. Launch quickly. Get your ideas out into the real world for feedback. Perfect is the enemy of good. If you keep swinging and improving, you'll hit the ball eventually. Keep the big picture in mind. You don't necessarily need a home-run to be happy: a base hit will often do the job. Think about what matters most to you in life: is it a lot of money or status? Or is it something more satisfying, and often just as if not more attainable, like freedom, loving relationships, or fulfillment? Is what you’re doing now a good way to get what you want? Or is there a better way? At more of a micro-level of "keep the big picture in mind", I often see talented wantrepreneurs get stuck in the weeds of lower-level optimizations, usually around technical design choices. They forget (or maybe subconsciously avoid) the higher-level and more important questions of customer development, user experience, and distribution. For example: “Are you solving a real problem?” or “Did you launch an MVP and what did your users think?” Adopt a growth mindset. Believe that you are capable of learning whatever you need to learn in order to do what you want to do. The pain of regret is worse than the pain of failure. I’ve noticed that fear of failure is the greatest thing holding people back from taking action towards their dreams. Unless failure means death in your case, a debilitating fear of failure is a surmountable mental block. You miss 100% of the shots you don't take. When all is said and done, we often regret the things we didn't do in life than the things we did. There’s more to life than just work. Blasphemous (at least among my social circle)! But the reality is that many of the dying regret having worked too much in their lives. As Miss Frizzle from The Magic Schoolbus says: "Take chances, make mistakes, get messy!" Original post

Day 1 of my BIP for my AdonisJS Boilerplate (turbosaas) [Built in public]
reddit
LLM Vibe Score0
Human Vibe Score0.5
Ok_Bread_6005This week

Day 1 of my BIP for my AdonisJS Boilerplate (turbosaas) [Built in public]

Hello everyone, here is day 1 (not really, I started a bit earlier) of my project: A boilerplate using AdonisJS, Inertia What technologies are used/present? AdonisJS Inertia Stripe OpenAI TailwindCSS Vite (React) Why? Firstly, I want to save time when launching my projects, and I think you do too, so I've included as many relevant features as possible. I'm tired of seeing attitudes like 'develop your SaaS in 1 hour and produce terrible code!' The purpose of this codebase is to provide the highest quality code possible and to maintain that standard throughout the development process. You might spend an extra 20 minutes doing things right, but you'll save 2 hours on refactoring. And no, you won't have to pay for updates. (WTF by the way?) Why these technologies? I've seen a lot of NextJS for boilerplates, and I've also used NextJS before, but I quickly abandoned it. It quickly becomes a mess You lose track of what is what, and start doing anything Every update breaks your application Whereas with AdonisJS, life is beautiful. There are plenty of community packages already available, and everything you need is here. What am I offering? Authentication: Social authentication, OTP, Magic Links, and credentials, along with complete account management features like password recovery. Payment & Mailing Integration: Seamless integration from start to finish, with multiple options to choose from. Detailed Documentation: Thorough explanations of every aspect, covering even the smallest, potentially confusing details in the code. Maintainable & Scalable Code: Organized by features, allowing you to easily drag and drop features to extend functionality. Developer Tools: Handy commands for generating new features and automatically adding necessary imports; a complete config to enable/disable a feature in less than 10 seconds... Pre-made Pages: Ready-to-use pages such as an admin dashboard for tasks like automatically updating products on Stripe. Extensive Component Library: A variety of components to streamline development. I've designed this boilerplate to be as developer-friendly and robust as possible, aiming to support maintainability and scalability from the get-go. Summary of today and previous days Day 2 Stripe is a nightmare to set up if you've never done it before, it quickly becomes tedious. But I've finally finished setting everything up: one-time payments, subscriptions, and subscription updates. It was complicated. Today I finally implemented the 'forgot password' option, and I've completed all the authentication by adding magic links (working with OTP). I also set up automatic deployment with GitHub Actions, and everything works well. The build runs with the action to ensure everything goes smoothly, then using SSH, I pull the project, build it, and launch it. Tomorrow: What I want to do tomorrow Tomorrow, I want to create the blog, because yes, I want to include a blog as well, and especially complete it as soon as possible so it can be available on turbosaas(dot)dev, and write my build in public. It will probably use markdown. Thank you for reading this short build in public, you can also check out how it's going on turbosaas(dot)dev.

I made a super niche app for sailors and scaled it to 500k downloads
reddit
LLM Vibe Score0
Human Vibe Score0.5
TechPrimoThis week

I made a super niche app for sailors and scaled it to 500k downloads

I started developing this app in 2016, and it was my first app ever. I already had several years of programming experience. Since I was studying maritime navigation, I came up with the idea of creating a maritime app to help students with various nautical calculations and learn maritime regulations. Although I had no experience in mobile app development, I chose the Ionic framework and started development gradually. First Version The first version took me about four months to develop because I literally had to learn everything from scratch: how to develop mobile apps, how to publish them, and everything needed to enable downloads on the app stores. Many of you might recognize me from my story about developing Sintelly and its late monetization. I made the same mistake with this maritime app. At that time, in my country, there was no possibility of earning through in-app purchases, only through ad displays. Since the app was predominantly downloaded in countries like India, the Philippines, and Indonesia, the ad revenue was quite low, and after some time, I removed the ads. Abandonment and Realization As I started developing other apps, this one fell into obscurity. I even just remembered that I needed to renew the domain, which resulted in losing it. The domain buyer tried to sell it back to me for years for $20k, which was absurd. All this led me to rebrand and start working on this app again. Interestingly, during these 8 years, the app never showed a declining trend in installations or active users. I'll share some numbers to give you insight: Total installations (Android + iOS): 501,000 Active installations (Android): 48,000 Monthly active users: 20,000 Average rating: Android 4.8, iOS 4.7 When I considered these numbers, I realized they weren't bad at all and that I was far ahead of most competitors. This led to my decision to rebrand and create a new website. I quickly built the website using WordPress and published lots of existing content from the app. What surprises me is that today, after a year and a half, the website has about 8-10k monthly organic visits. Choosing a Direction Based on all this, I decided it was time to create a Premium version and start selling the app. Since I've been working with AI for many years (which I've written about here), I started thinking about using AI to help seafarers speed up some of their tasks. This led to the idea of creating a multi-agent system equipped with numerous tools to help seafarers. I developed various agents with functionalities, including retrieving maritime weather information, locating and tracking ships, doing various nautical calculations, calculating the shortest maritime routes and unit conversions, and learning about all courses and maritime regulations. All this required considerable work, but thanks to tools like Cursor and Claude, I implemented it in less than four weeks. Last week, I published this new version and started selling subscriptions, and I can already boast that I've earned slightly over $100. This isn't much, but I'm happy to see my first app generating some income, which I always thought impossible. Along this journey, I learned many lessons, and the most important one is to never give up or write off a product. With a little effort, everything can be brought back to life and secure at least some passive income, enough for your morning coffee. Additionally, I learned how to develop mobile apps, which has shaped my career since then. If it weren't for this app, I probably would never have become a developer. I have numerous plans for what to add next and how to improve. I'll base everything on AI features and push the app in that direction.

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I very rarely have stuff to post on Reddit, but I share how my project is going on, just random stuff, and memes on X. In case few might want to keep up 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2B products beats building B2C products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

ChatPDF and PDF.ai are making millions using open source tech... here's the code
reddit
LLM Vibe Score0
Human Vibe Score1
Level-Thought6152This week

ChatPDF and PDF.ai are making millions using open source tech... here's the code

Why "copy" an existing product? The best SaaS products weren’t the first of their kind - think Slack, Shopify, Zoom, Dropbox, or HubSpot. They didn’t invent team communication, e-commerce, video conferencing, cloud storage, or marketing tools; they just made them better. What is a "Chat with PDF" SaaS? These are AI-powered PDF assistants that let you upload a PDF and ask questions about its content. You can summarize articles, extract key details from a contract, analyze a research paper, and more. To see this in action or dive deeper into the tech behind it, check out this YouTube video. Let's look at the market Made possible by advances in AI like ChatGPT and Retrieval-Augmented Generation (RAG), PDF chat tools started gaining traction in early 2023 and have seen consistent growth in market interest, which is currently at an all-time high (source:google trends) Keywords like "chat PDF" and "PDF AI" get between 1 to 10 million searches every month (source:keyword planner), with a broad target audience that includes researchers, students, and professionals across various industries. Leaders like PDF.ai and ChatPDF have already gained millions of users within a year of launch, driven by the growing market demand, with paid users subscribing at around $20/month. Alright, so how do we build this with open source? The core tech for most PDF AI tools are based on the same architecture. You generate text embeddings (AI-friendly text representations; usually via OpenAI APIs) for the uploaded PDF’s chapters/topics and store them in a vector database (like Pinecone). Now, every time the user asks a question, a similarity search is performed to find the most similar PDF topics from the vector database. The selected topic contents are then sent to an LLM (like ChatGPT) along with the question, which generates a contextual answer! Here are some of the best open source implementations for this process: GPT4 & LangChain Chatbot for large PDF docs by Mayo Oshin MultiPDF Chat App by Alejandro AO PDFToChat by Hassan El Mghari Worried about building signups, user management, payments, etc.? Here are my go-to open-source SaaS boilerplates that include everything you need out of the box: SaaS Boilerplate by Remi Wg Open SaaS by wasp-lang A few ideas to stand out from the noise: Here are a few strategies that could help you differentiate and achieve product market fit (based on the pivot principles from The Lean Startup by Eric Ries): Narrow down your target audience for a personalized UX: For instance, an exam prep assistant for students with study notes and quiz generator; or a document due diligence and analysis tool for lawyers. Add unique features to increase switching cost: You could autogenerate APIs for the uploaded PDFs to enable remote integrations (eg. support chatbot knowledge base); or build in workflow automation features for bulk analyses of PDFs. Offer platform level advantages: You could ship a native mobile/desktop apps for a more integrated UX; or (non-trivial) offer private/offline support by replacing the APIs with local open source deployments (eg. llama for LLM, an embedding model from the MTEB list, and FAISS for vector search). TMI? I’m an ex-AI engineer and product lead, so don’t hesitate to reach out with any questions! P.S. I've started a free weekly newsletter to share open-source/turnkey resources behind popular products (like this one). If you’re a founder looking to launch your next product without reinventing the wheel, please subscribe :)

How should I implement this local ai into my project?
reddit
LLM Vibe Score0
Human Vibe Score1
TrustingmeerkatThis week

How should I implement this local ai into my project?

I’m currently building a system that takes the text content of news articles about cocktail competitions and then attempts to extract a JSON object from it via using phi4 local ai model. I’m developing it alongside Claude in a project and we’ve built so far a series of qualifying questions that is prompted to phi4 and it’s answered are formatted to JSON I’m attempting to one shot each answer with the specific question and content of the article by asking the same question to phi4 3 times and picking majority answer. Then, the flow of questions are conditional so that the ai is provided a set of questions based on previous answers. I’m getting decent results and anecdotally it’s about 50% correct. So I think I need to begin prompt engineering to get better. Except, I’m wondering if there’s a way to automate these iterations a bit? Currently I’m pasting code and results into 01 preview and asking for detailed analysis, then passing this back into Claude for code revisions all manually. I guess I should design an accuracy test (again with ai) across 10 or so random articles at a time and a/b test until we get something we’re happy with? Does anyone else have any suggestions? I also previously attempted to one shot the entire JSON object rather than elect to flow through a bunch of questions except that didn’t work so well and decided to pivot rather than keep trying to optimise it.

New Year Resolution: I Will Generate Some Viable SaaS Ideas AND Help You Become a Brand New AI Startup Founder Within 7 Days
reddit
LLM Vibe Score0
Human Vibe Score1
BaronofEssexThis week

New Year Resolution: I Will Generate Some Viable SaaS Ideas AND Help You Become a Brand New AI Startup Founder Within 7 Days

Over the Christmas period, I conceived and debuted on some reddit communities, The 7-Day Startup Challenge. The feedback I got from the various communities have been nothing short of fantastic! The 7-Day Startup Challenge simply means leveraging the power of no code platforms like Bubble, Flutterflow, Glide, Thunkable, Softr etc. along with AI APIs to build a functioning MicroSaaS/SaaS within 7 days. I can tailor this around your interests or hobbies so you are more passionate about your new startup. Whether you're a startup novice or a veteran, I am happy to work with you every step of the way. I will work with you from validating and refining your idea(s) to building and publishing your app! I can even work with you on a viable marketing strategy that will help fetch your new startup some revenue within the next 10 to 45 days. Here's what I will provide as part of The 7-Day Startup Challenge A fully validated and refined version of your idea described in technical terms in a shared document A startup name, domain and logo (if you don't have one already) A landing page to capture pre-sign ups, generate some early buzz and index your app on search engines Figma files showing the design of your app(s) Web app (dependent on whether your startup idea requires a web app or a mobile app instead)) iOS app (dependent on whether your startup idea requires a web app or a mobile app instead) Android app (dependent on whether your startup idea requires a web app or a mobile app instead) 1-month of in scope support to fix any bugs and address any issues An outlined marketing strategy you can implement to grow your startup both short and long term. As per tentative timelines, you can expect the following deliverables on schedule Day 1: Secure digital assets such as domain name, hosting, logo etc.; deliver validated and refined version of your startup idea Day 2-3: Landing page & Figma files Day 1-5/6: Build your apps (web app and/or iOS and Android app) Day 6: Evaluations and review if necessary; demo day Day 7: Live launch on web; publish on Android and iOS app stores PS: For more sophisticated ideas (non MicroSaaS), kindly allow approx. 30 days for delivery. I can be as hands on or hands off as you wish. Meaning I can do all the work whilst you sit back and wait for the results OR I can work with you every step of the way to deliver on your demands. For high potential startup ideas, I can partner with you long term to build them out together. I have to be selective because I'm unable to partner together on every single idea out there. Outside of a partnership, all the digital assets (startup name, logo, web app, mobile app etc.) are 100% owned by you. If building an AI SaaS startup via the outlined strategy sounds intriguing enough to you, feel free to send me a DM with any questions you have!

I am building my agency to help founders build AI startups after 2 successful AI SaaS exits and 4 failures
reddit
LLM Vibe Score0
Human Vibe Score1
_Gautam19This week

I am building my agency to help founders build AI startups after 2 successful AI SaaS exits and 4 failures

Hey everyone, I have been building AI products before ChatGPT was launched. In these years, I have managed to launch, scale and exit 2 SaaS products successfully. Today I am launching a new service offering - Query Labs - Helping you build AI agents for your startups. Like all my previous products, I will be building this in public and share my learning along the way. Here's what I have built so far : Microsponsors ( Fail ) My first product ever. I tried to create a marketplace for newsletter writers to find sponsorship opportunity. Got a few very big newsletter listed on the marketplace as well. However, building marketplace is tough. I found it very difficult to bring in sponsors. Ended up shutting it down, AI Query (Exit - Pre revenue ) It was the second half of 2022 and GPT-3 was the most advance AI on the market. I decided to build a tool that can help developers and non-technical folks write SQL queries by just asking in plain english. I got my first taste of success with this. Had a decent offer even before I figured out monetisation. Accepted the offer to focus on my next product which had already started gaining traction AI Excel Bot ( Exit - Revenue Generating ) AI Excel Bot was my wild success. I had worked hard on the SEO for the site, along with the UI / UX to make it the best AI to write excel formulas and general excel task. There was already a large competitor in the market. However, the reality is that you don't need to be the top player. There is always room for multiple players to survive in a large market. You just need to find the good differentiating factor For AI Excel Bot, the differentiator was the chrome extension, that helped users access it anywhere on the internet. Scaled the product to more than 40k users at the time of exit. However, in the end I decided to exit and focus on my software service business that needed more time. Tutore AI ( Fail ) I wanted to build something useful for students to help them learn better. Tutore was my idea to build AI tools for students. I did launch quickly with multiple tools. However, wasn't motivated enough to continue with the grind. I have decided to sell the product. Have had some meetings with potential buyers but didn't agree on price. Prompt Hackers ( 1k users but no revenue ) Prompt Hackers is a directory of AI prompts for all the use cases you can image. I focused a lot on bringing traffic and newsletter subscription from the day 1. I have never had a problem bringing initial set of users to my products. Prompt Hackers was getting close to 20k page views a month. At the same time we had close to 1k newsletter subscribers. Since our target customers were people choosing to use ChatGPT / Bard instead of some specific software for their task, I built a Prompt Generation and Prompt Optimisation AI. Along with this I also created features to build private prompt library. To make the experience even better, I launched a Chrome Extension that helps users access the prompt generation AI and their prompt library while using ChatGPT. However, I couldn't figure out monetisation. I still get close to 4k page views per month with no marketing at all. There are users who use the AI tools and the prompt library feature daily. But, since I couldn't figure out monetisation, I decided to not put time into the project. There you go. These are all the products I have built in the last 3 years. I have been heavy investing myself in the latest tech in LLMs and AI agents. I know the biggest challenge for AI founders is the AI agents and backend pipelines. That's why I am launching Query Labs. To help you build the best AI implementation for your innovative AI startup. I would love to hear feedback from the community. I will be sharing my learning with my new service along the way. Thanks!

How I went from $27 to $3K as a solopreneur still in a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
jottrledThis week

How I went from $27 to $3K as a solopreneur still in a 9-5

My journey started back in November 2023. I was scrolling through Twitter and YouTube and saw a word that I had never come across before. Solopreneur. The word caught my eye. Mainly because I was pretty sure I knew what it meant even though it's not a word you'll find in the dictionary. I liked what it was describing. A solo entrepreneur. A one man business. It completely resonated with me. As a software engineer by trade I'm used to working alone, especially since the pandemic hit and we were forced to work remotely. See, I always wanted to ditch the 9-5 thing but thought that was too big and too scary for a single person to do. Surely you would need a lot of money to get started, right? Surely you would need investors? The whole concept seemed impossible to me. That was until I found all the success stories. I became obsessed with the concept of solopreneurship. As I went further down the rabbit hole I found people like Justin Welsh, Kieran Drew and Marc Louvion to name a few. All of whom have one person businesses making huge money every year. So I thought, if they can do it, why can't I? People like this have cleared the pathway for those looking to escape the 9-5 grind. I decided 2024 would be the year I try this out. My main goal for the year? Build a one man business, earn my first $ online and learn a sh\*t ton along the way. My main goal in general? Build my business to $100K per year, quit my 9-5 and live with freedom. From December 2023 to February 2024 I began brainstorming ideas. I was like a lost puppy looking for his ball. How on earth did people find good ideas? I began writing everything and anything that came to mind down in my notes app on my phone. By February I would have approximately 70 ideas. Each as weird and whacky as the other. I was skeptical though. If I went through all the trouble of building a product for one of these ideas how would I know if anyone would even be interested in using it? I got scared and took a break for a week. All these ideas seemed too big and the chance that they would take off into the atmosphere was slim (in my mind anyways). I was learning more and more about solopreneurship as the weeks went on so I decided to build a product centered around everything I was learning about. The idea was simple. Enter a business idea and use AI to give the user details about how to market it, who their target customers were, what to write on their landing page, etc. All for a measly $27 per use. I quickly built it and launched on March 3rd 2024. I posted about it on Indie Hackers, Reddit and Hacker News. I was so excited about the prospect of earning my first internet $! Surely everyone wanted to use my product! Nope...all I got was crickets. I was quickly brought back down to earth. That was until 5 days later. I looked at my phone and had a new Stripe notification! Cha-ching! My first internet $. What a feeling! That was goal number 1 complete. It would be another 6 days before I would get my second sale...and then another 15 days to get my third. It was an emotional rollercoaster. I went from feeling like quitting the 9-5 was actually possible to thinking that maybe the ups and downs aren't worth it. On one hand I had made my first internet dollar so I should my ecstatic, and don't get me wrong, I was but I wanted more. More validation that I could do this long term. By May I was starting to give up on the product. I had learned so much in the past few months about marketing, SEO, building an audience, etc. and I wanted to build something that I thought could have more success so I focused on one critical thing that I had learned about. What was it? Building a product that had SEO potential. A product that I knew hundreds of people were looking for. See this was my thinking - If I could find a keyword that people were searching for on Google hundreds/thousands of times every month and it was easy to rank high on search engines then I would go all in (in SEO land this equates to a Keyword that has a Keyword Difficulty of = 500). I began researching and found that the keyword "micro saas ideas" was being searched for around 600 times each month. Micro Saas was something that really interested me. It was perfect for solopreneurs. Small software products that 1 person could build. What's not to like if you're in the game of software and solopreneurship? Researching keywords like this became like a game for me. I was hooked. I was doing it every day, finding gems that were being searched for hundreds and thousands of times every month that still had potential. That's when I came up with my next product idea. I decided to create a database of Micro Saas Ideas all with this sort of SEO potential. See if you can build a product that you know people are looking for then that's all the validation you need. So I put this theory to the test. I created a database of Micro Saas Ideas with SEO Potential and launched it in June 2024. This time it was different. I made $700 in the first week of launching. A large contrast to my previous failed attempt at becoming the worlds greatest solopreneur. Since launch I have grown the product to $3K and I couldn't be happier. I know what you're saying, $3K isn't a lot. But it's validation. It's validation that I can earn $ online. Validation that I can grow a business and it gives me hope that one day I'll be able to quit that 9-5 grind. My plan is to keep growing the business. I expect there to be a few challenges up ahead but I'll tackle them as I go and learn from the failures and successes. I have a newsletter where I share Micro Saas Ideas with SEO potential every week which I'll leave below in the first comment. Feel free to come along for the ride. If not I hope this post brings you some value If you're thinking about starting as a solopreneur, stop thinking and start doing, you won't regret it.

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.
reddit
LLM Vibe Score0
Human Vibe Score0.667
GDbuildsGDThis week

I spent 6 months on a web app as a side project, and got 0 users. Here is my story.

Edit Thank you all so much for your time reading my story. Your support, feedback, criticism, and skepticism; all helped me a lot, and I couldn't appreciate it enough \^\_\^ I very rarely have stuff to post on Reddit, but I share how my project is going on, just random stuff, and memes on X. In case few might want to keep up 👀 TL;DR I spent 6 months on a tool that currently has 0 users. Below is what I learned during my journey, sharing because I believe most mistakes are easily avoidable. Do not overestimate your product and assume it will be an exception to fundamental principles. Principles are there for a reason. Always look for validation before you start. Avoid building products with a low money-to-effort ratio/in very competitive fields. Unless you have the means, you probably won't make it. Pick a problem space, pick your target audience, and talk to them before thinking about a solution. Identify and match their pain points. Only then should you think of a solution. If people are not overly excited or willing to pay in advance for a discounted price, it might be a sign to rethink. Sell one and only one feature at a time. Avoid everything else. If people don't pay for that one core feature, no secondary feature will change their mind. Always spend twice as much time marketing as you do building. You will not get users if they don't know it exists. Define success metrics ("1000 users in 3 months" or "$6000 in the account at the end of 6 months") before you start. If you don't meet them, strongly consider quitting the project. If you can't get enough users to keep going, nothing else matters. VALIDATION, VALIDATION, VALIDATION. Success is not random, but most of our first products will not make a success story. Know when to admit failure, and move on. Even if a product of yours doesn't succeed, what you learned during its journey will turn out to be invaluable for your future. My story So, this is the story of a product that I’ve been working on for the last 6 months. As it's the first product I’ve ever built, after watching you all from the sidelines, I have learned a lot, made many mistakes, and did only a few things right. Just sharing what I’ve learned and some insights from my journey so far. I hope that this post will help you avoid the mistakes I made — most of which I consider easily avoidable — while you enjoy reading it, and get to know me a little bit more 🤓. A slow start after many years Summ isn’t the first product I really wanted to build. Lacking enough dev skills to even get started was a huge blocker for so many years. In fact, the first product I would’ve LOVED to build was a smart personal shopping assistant. I had this idea 4 years ago; but with no GPT, no coding skills, no technical co-founder, I didn’t have the means to make it happen. I still do not know if such a tool exists and is good enough. All I wanted was a tool that could make data-based predictions about when to buy stuff (“buy a new toothpaste every three months”) and suggest physical products that I might need or be strongly interested in. AFAIK, Amazon famously still struggles with the second one. Fast-forward a few years, I learned the very basics of HTML, CSS, and Vanilla JS. Still was not there to build a product; but good enough to code my design portfolio from scratch. Yet, I couldn’t imagine myself building a product using Vanilla JS. I really hated it, I really sucked at it. So, back to tutorial hell, and to learn about this framework I just heard about: React.React introduced so many new concepts to me. “Thinking in React” is a phrase we heard a lot, and with quite good reasons. After some time, I was able to build very basic tutorial apps, both in React, and React Native; but I have to say that I really hated coding for mobile. At this point, I was already a fan of productivity apps, and had a concept for a time management assistant app in my design portfolio. So, why not build one? Surely, it must be easy, since every coding tutorial starts with a todo app. ❌ WRONG! Building a basic todo app is easy enough, but building one good enough for a place in the market was a challenge I took and failed. I wasted one month on that until I abandoned the project for good. Even if I continued working on it, as the productivity landscape is overly competitive, I wouldn’t be able to make enough money to cover costs, assuming I make any. Since I was (and still am) in between jobs, I decided to abandon the project. 👉 What I learned: Do not start projects with a low ratio of money to effort and time. Example: Even if I get 500 monthly users, 200 of which are paid users (unrealistically high number), assuming an average subscription fee of $5/m (such apps are quite cheap, mostly due to the high competition), it would make me around $1000 minus any occurring costs. Any founder with a product that has 500 active users should make more. Even if it was relatively successful, due to the high competition, I wouldn’t make any meaningful money. PS: I use Todoist today. Due to local pricing, I pay less than $2/m. There is no way I could beat this competitive pricing, let alone the app itself. But, somehow, with a project that wasn’t even functional — let alone being an MVP — I made my first Wi-Fi money: Someone decided that the domain I preemptively purchased is worth something. By this point, I had already abandoned the project, certainly wasn’t going to renew the domain, was looking for a FT job, and a new project that I could work on. And out of nowhere, someone hands me some free money — who am I not to take it? Of course, I took it. The domain is still unused, no idea why 🤔. Ngl, I still hate the fact that my first Wi-Fi money came from this. A new idea worth pursuing? Fast-forward some weeks now. Around March, I got this crazy idea of building an email productivity tool. We all use emails, yet we all hate them. So, this must be fixed. Everyone uses emails, in fact everyone HAS TO use emails. So, I just needed to build a tool and wait for people to come. This was all, really. After all, the problem space is huge, there is enough room for another product, everyone uses emails, no need for any further validation, right? ❌ WRONG ONCE AGAIN! We all hear from the greatest in the startup landscape that we must validate our ideas with real people, yet at least some of us (guilty here 🥸) think that our product will be hugely successful and prove them to be an exception. Few might, but most are not. I certainly wasn't. 👉 Lesson learned: Always validate your ideas with real people. Ask them how much they’d pay for such a tool (not if they would). Much better if they are willing to pay upfront for a discount, etc. But even this comes later, keep reading. I think the difference between “How much” and “If” is huge for two reasons: (1) By asking them for “How much”, you force them to think in a more realistic setting. (2) You will have a more realistic idea on your profit margins. Based on my competitive analysis, I already had a solution in my mind to improve our email usage standards and email productivity (huge mistake), but I did my best to learn about their problems regarding those without pushing the idea too hard. The idea is this: Generate concise email summaries with suggested actions, combine them into one email, and send it at their preferred times. Save as much as time the AI you end up with allows. After all, everyone loves to save time. So, what kind of validation did I seek for? Talked with only a few people around me about this crazy, internet-breaking idea. The responses I got were, now I see, mediocre; no one got excited about it, just said things along the lines of “Cool idea, OK”. So, any reasonable person in this situation would think “Okay, not might not be working”, right? Well, I did not. I assumed that they were the wrong audience for this product, and there was this magical land of user segments waiting eagerly for my product, yet unknowingly. To this day, I still have not reached this magical place. Perhaps, it didn’t exist in the first place. If I cannot find it, whether it exists or not doesn’t matter. I am certainly searching for it. 👉 What I should have done: Once I decide on a problem space (time management, email productivity, etc.), I should decide on my potential user segments, people who I plan to sell my product to. Then I should go talk to those people, ask them about their pains, then get to the problem-solving/ideation phase only later. ❗️ VALIDATION COMES FROM THE REALITY OUTSIDE. What validation looks like might change from product to product; but what invalidation looks like is more or less the same for every product. Nico Jeannen told me yesterday “validation = money in the account” on Twitter. This is the ultimate form of validation your product could get. If your product doesn’t make any money, then something is invalidated by reality: Your product, you, your idea, who knows? So, at this point, I knew a little bit of Python from spending some time in tutorial hell a few years ago, some HTML/CSS/JS, barely enough React to build a working app. React could work for this project, but I needed easy-to-implement server interactivity. Luckily, around this time, I got to know about this new gen of indie hackers, and learned (but didn’t truly understand) about their approach to indie hacking, and this library called Nextjs. How good Next.js still blows my mind. So, I was back to tutorial hell once again. But, this time, with a promise to myself: This is the last time I would visit tutorial hell. Time to start building this "ground-breaking idea" Learning the fundamentals of Next.js was easier than learning of React unsurprisingly. Yet, the first time I managed to run server actions on Next.js was one of the rarest moments that completely blew my mind. To this day, I reject the idea that it is something else than pure magic under its hood. Did I absolutely need Nextjs for this project though? I do not think so. Did it save me lots of time? Absolutely. Furthermore, learning Nextjs will certainly be quite helpful for other projects that I will be tackling in the future. Already got a few ideas that might be worth pursuing in the head in case I decide to abandon Summ in the future. Fast-forward few weeks again: So, at this stage, I had a barely working MVP-like product. Since the very beginning, I spent every free hour (and more) on this project as speed is essential. But, I am not so sure it was worth it to overwork in retrospect. Yet, I know I couldn’t help myself. Everything is going kinda smooth, so what’s the worst thing that could ever happen? Well, both Apple and Google announced their AIs (Apple Intelligence and Google Gemini, respectively) will have email summarization features for their products. Summarizing singular emails is no big deal, after all there were already so many similar products in the market. I still think that what truly matters is a frictionless user experience, and this is why I built this product in a certain way: You spend less than a few minutes setting up your account, and you get to enjoy your email summaries, without ever visiting its website again. This is still a very cool concept I really like a lot. So, at this point: I had no other idea that could be pursued, already spent too much time on this project. Do I quit or not? This was the question. Of course not. I just have to launch this product as quickly as possible. So, I did something right, a quite rare occurrence I might say: Re-planned my product, dropped everything secondary to the core feature immediately (save time on reading emails), tried launching it asap. 👉 Insight: Sell only one core feature at one time. Drop anything secondary to this core feature. Well, my primary occupation is product design. So one would expect that a product I build must have stellar design. I considered any considerable time spent on design at this stage would be simply wasted. I still think this is both true and wrong: True, because if your product’s core benefits suck, no one will care about your design. False, because if your design looks amateurish, no one will trust you and your product. So, I always targeted an average level design with it and the way this tool works made it quite easy as I had to design only 2 primary pages: Landing page and user portal (which has only settings and analytics pages). However, even though I knew spending time on design was not worth much of my time, I got a bit “greedy”: In fact, I redesigned those pages three times, and still ended up with a so-so design that I am not proud of. 👉 What I would do differently: Unless absolutely necessary, only one iteration per stage as long as it works. This, in my mind, applies to everything. If your product’s A feature works, then no need to rewrite it from scratch for any reason, or even refactor it. When your product becomes a success, and you absolutely need that part of your codebase to be written, do so, but only then. Ready to launch, now is th etime for some marketing, right? By July 26, I already had a “launchable” product that barely works (I marked this date on a Notion docs, this is how I know). Yet, I had spent almost no time on marketing, sales, whatever. After all, “You build and they will come”. Did I know that I needed marketing? Of course I did, but knowingly didn’t. Why, you might ask. Well, from my perspective, it had to be a dev-heavy product; meaning that you spend most of your time on developing it, mostly coding skills. But, this is simply wrong. As a rule of thumb, as noted by one of the greatests, Marc Louvion, you should spend at least twice of the building time on marketing. ❗️ Time spent on building \* 2 people don’t know your product > they don’t use your product > you don’t get users > you don’t make money Easy as that. Following the same reasoning, a slightly different approach to planning a project is possible. Determine an approximate time to complete the project with a high level project plan. Let’s say 6 months. By the reasoning above, 2 months should go into building, and 4 into marketing. If you need 4 months for building instead of 2, then you need 8 months of marketing, which makes the time to complete the project 12 months. If you don’t have that much time, then quit the project. When does a project count as completed? Well, in reality, never. But, I think we have to define success conditions even before we start for indie projects and startups; so we know when to quit when they are not met. A success condition could look like “Make $6000 in 12 months” or “Have 3000 users in 6 months”. It all depends on the project. But, once you set it, it should be set in stone: You don’t change it unless absolutely necessary. I suspect there are few principles that make a solopreneur successful; and knowing when to quit and when to continue is definitely one of them. Marc Louvion is famously known for his success, but he got there after failing so many projects. To my knowledge, the same applies to Nico Jeannen, Pieter Levels, or almost everyone as well. ❗️ Determining when to continue even before you start will definitely help in the long run. A half-aed launch Time-leap again. Around mid August, I “soft launched” my product. By soft launch, I mean lazy marketing. Just tweeting about it, posting it on free directories. Did I get any traffic? Surely I did. Did I get any users? Nope. Only after this time, it hit me: “Either something is wrong with me, or with this product” Marketing might be a much bigger factor for a project’s success after all. Even though I get some traffic, not convincing enough for people to sign up even for a free trial. The product was still perfect in my eyes at the time (well, still is ^(\_),) so the right people are not finding my product, I thought. Then, a question that I should have been asking at the very first place, one that could prevent all these, comes to my mind: “How do even people search for such tools?” If we are to consider this whole journey of me and my so-far-failed product to be an already destined failure, one metric suffices to show why. Search volume: 30. Even if people have such a pain point, they are not looking for email summaries. So, almost no organic traffic coming from Google. But, as a person who did zero marketing on this or any product, who has zero marketing knowledge, who doesn’t have an audience on social media, there is not much I could do. Finally, it was time to give up. Or not… In my eyes, the most important element that makes a founder (solo or not) successful (this, I am not by any means) is to solve problems. ❗️ So, the problem was this: “People are not finding my product by organic search” How do I make sure I get some organic traffic and gets more visibility? Learn digital marketing and SEO as much as I can within very limited time. Thankfully, without spending much time, I came across Neil Patel's YT channel, and as I said many times, it is an absolute gold mine. I learned a lot, especially about the fundamentals, and surely it will be fruitful; but there is no magic trick that could make people visit your website. SEO certainly helps, but only when people are looking for your keywords. However, it is truly a magical solution to get in touch with REAL people that are in your user segments: 👉 Understand your pains, understand their problems, help them to solve them via building products. I did not do this so far, have to admit. But, in case you would like to have a chat about your email usage, and email productivity, just get in touch; I’d be delighted to hear about them. Getting ready for a ProductHunt launch The date was Sept 1. And I unlocked an impossible achievement: Running out of Supabase’s free plan’s Egres limit while having zero users. I was already considering moving out of their Cloud server and managing a Supabase CLI service on my Hetzner VPS for some time; but never ever suspected that I would have to do this quickly. The cheapest plan Supabase offers is $25/month; yet, at that point, I am in between jobs for such a long time, basically broke, and could barely afford that price. One or two months could be okay, but why pay for it if I will eventually move out of their Cloud service? So, instead of paying $25, I spent two days migrating out of Supabase Cloud. Worth my time? Definitely not. But, when you are broke, you gotta do stupid things. This was the first time that I felt lucky to have zero users: I have no idea how I would manage this migration if I had any. I think this is one of the core tenets of an indie hacker: Controlling their own environment. I can’t remember whose quote this is, but I suspect it was Naval: Entrepreneurs have an almost pathological need to control their own fate. They will take any suffering if they can be in charge of their destiny, and not have it in somebody else’s hands. What’s truly scary is, at least in my case, we make people around us suffer at the expense of our attempting to control our own fates. I know this period has been quite hard on my wife as well, as I neglected her quite a bit, but sadly, I know that this will happen again. It is something that I can barely help with. Still, so sorry. After working the last two weeks on a ProductHunt Launch, I finally launched it this Tuesday. Zero ranking, zero new users, but 36 kind people upvoted my product, and many commented and provided invaluable feedback. I couldn't be more grateful for each one of them 🙏. Considering all these, what lies in the future of Summ though? I have no idea, to be honest. On one hand, I have zero users, have no job, no income. So, I need a way to make money asap. On the other hand, the whole idea of it revolves around one core premise (not an assumption) that I am not so willing to share; and I couldn’t have more trust in it. This might not be the best iteration of it, however I certainly believe that email usage is one of the best problem spaces one could work on. 👉 But, one thing is for certain: I need to get in touch with people, and talk with them about this product I built so far. In fact, this is the only item on my agenda. Nothing else will save my brainchild <3. Below are some other insights and notes that I got during my journey; as they do not 100% fit into this story, I think it is more suitable to list them here. I hope you enjoyed reading this. Give Summ a try, it comes with a generous free trial, no credit card required. Some additional notes and insights: Project planning is one of the most underestimated skills for solopreneurs. It saves you enormous time, and helps you to keep your focus up. Building B2B products beats building B2C products. Businesses are very willing to pay big bucks if your product helps them. On the other hand, spending a few hours per user who would pay $5/m probably is not worth your time. It doesn’t matter how brilliant your product is if no one uses it. If you cannot sell a product in a certain category/niche (or do not know how to sell it), it might be a good idea not to start a project in it. Going after new ideas and ventures is quite risky, especially if you don’t know how to market it. On the other hand, an already established category means that there is already demand. Whether this demand is sufficient or not is another issue. As long as there is enough demand for your product to fit in, any category/niche is good. Some might be better, some might be worse. Unless you are going hardcore B2B, you will need people to find your product by means of organic search. Always conduct thorough keyword research as soon as possible.

Solo Entrepreneurs, This One’s for You! After Studying 15+ AI Directories, I’m Building a New Hub for AI, SaaS, and Tools (but the concept is unique)—Submit Yours for FREE 🚀 (Big Companies, Please Stay Away)
reddit
LLM Vibe Score0
Human Vibe Score0
foundertanmayThis week

Solo Entrepreneurs, This One’s for You! After Studying 15+ AI Directories, I’m Building a New Hub for AI, SaaS, and Tools (but the concept is unique)—Submit Yours for FREE 🚀 (Big Companies, Please Stay Away)

I’ve been in your shoes—tight budgets, limited resources, and a constant search for marketing solutions that actually work. Lately, I’ve been checking out more than 15 AI directories here on Reddit, and honestly, they all seem to have the same issues. They’re cluttered, confusing, and often filled with sponsored listings that don’t really help anyone. This got me thinking: if these tools aren’t helping users, how can any of our tools succeed? After a lot of thought (and some serious brainstorming), I’ve come up with an idea that I think could be a game-changer. This isn’t just another directory. I’m aiming to build something that’s genuinely useful for solo entrepreneurs and regular users alike. My goal is to create a platform that people actually want to use, because when that happens, your tools get natural, organic exposure. I’m also planning to integrate AI into the platform to make it even more powerful. I can’t spill all the details just yet If you want to get in early, I’m offering to add your tools to the platform for free, especially if you’re a solo entrepreneur. I’m still working out the details, but I’m aiming to launch within the next 1-2 months. Here’s how you can get involved: comment below with the name of your SaaS, AI, or tool, along with a short description of why it’s helpful and why it should be included. I haven’t finalized the domain yet, but for now, I’m planning to host it on my subdomain: toolkit dot unwiring dot tech

I’ve built a gaming recommendation and exploration platform called Which Game Next
reddit
LLM Vibe Score0
Human Vibe Score0.714
kasperooThis week

I’ve built a gaming recommendation and exploration platform called Which Game Next

Hello there! Me and a few of my best friends are software engineers, and we’ve been working part-time on developing a side project for the past 12 months. It’s called www.whichgamenext.com, and we’ve recently launched into open beta for everyone to check out. Your feedback would be invaluable to us! Our aim has been to build a gaming recommendation engine, alongside providing market oversight for where you can legally and officially purchase or obtain modern games from multiple stores and/or subscriptions. It’s often difficult to figure out what you have access to if you only have a single specific subscription, like Game Pass PC, or if you’re only interested in games on GOG/Nintendo (what a mix!). We started by identifying the available digital stores and subscriptions and slowly compiling our database using multiple automated services to gather data on these games. Think JustWatch, but for games! One major service we’ve partnered with is IGDB, which has been supplying us with JSON data dumps that served as the initial seed for our game data. A massive thank you to them for their continued support! With the data in place, we’ve been focusing on exploring new features. So far, this has included private and public user-generated lists, personal backlog tracking, and the ability to like or dislike games. We’re now improving our recommendation engine, tackling the complexities that come with it, and having a lot of fun along the way. We’re utilising modern AI strategies and solving fascinating problems related to large-scale data aggregation. We truly can’t wait to share this fantastic work! In addition to this, you can soon expect curated collections, articles about games, and supporting links to help you make informed, unbiased purchasing decisions. Your shared data will drive the recommendations. But it doesn’t stop there—we have plenty of other features on our radar, such as importing games from your favourite stores, syncing your gameplay time, surfacing data like “How Long to Beat,” and creating new and exciting ways to interact with this growing community! This is a passion project created by a group of gamers who want to spend their time and money wisely, without purchasing biases. Since it’s a side project, we mostly work on it at night, but we’re excited to grow the community, share our vision, and, who knows, maybe one day make it our full-time job! Let’s dive into the technical details: • Monorepo architecture: This speeds up development by sharing libraries, living style guides, configs, etc. Nx.js has been brilliant, enabling us to create a dependency graph of changes and only build/deploy what’s modified in a PR. • AWS: We’re using the free tier (with a few exceptions where we pay for smaller services). Achieving self-sufficiency is critical for us. Additionally, we applied to the AWS Startup Foundation programme and received $1,000 in AWS credits, which has been incredibly helpful! • Infrastructure: Fully deployed as code with Terraform. • Backends: Built using Express and Nest.js, split into around 40 projects and counting! Each project plays a unique role in gathering and syncing game data. • Scalability: Designed from the ground up, utilising AWS Lambdas with auto-scaling and load balancing. • Databases: We use Postgres with RDS and DynamoDB for storing various data. • Frontend stack: Built with React, Next.js, Tailwind, Zustand, TanStack Query, Jest, and Storybook. • CI/CD: Managed with GitHub Actions and Amplify hooks for deploying the frontends. • Admin portal: We’ve built a bespoke CMS to control the main website. It synchronises with external services, tracks game data changes, and allows us to selectively apply ‘patches’ from sites like IGDB. The system also includes data override and rollback capabilities, ensuring we maintain control over game data. • Automation: Partially automated, so manual intervention is rarely needed. • Scraping tools: Fully integrated into the admin portal with log trail capabilities. • Cloudflare: Used for on-the-fly image transformations; we’re considering moving to it full-time as our CDN for free WebP conversions. • Authentication: Handled by Cognito, with a custom frontend built from scratch. Key learnings so far: • AWS cold starts: Not ideal! While the platform is still new, we ping endpoints to keep them responsive. This won’t be an issue once traffic increases. • Lambda memory matters: We learned the hard way that low-memory configurations can delay responses by 2-3 seconds. • DynamoDB partition keys: If not designed correctly from the start, you might have to start over (yes, we’ve been there!). • GitHub Actions: Setting up node\_modules cache reuse takes time, but it’s worth it—don’t give up! We don’t know where this project will take us yet, but it’s been a fantastic journey so far. We’ve learned a lot, explored technologies we don’t typically use in our day jobs, and built something we’re genuinely passionate about. Your feedback would mean the world to us. What do you think of what we’ve done so far? What would you like to see added? Is this a service you’d use? Do you see the value in it as we do? Thanks for reading, and we hope to see you in the comments! (or our newly created /r/whichgamenext

I built an AI social monitoring that looks for relevant posts, not just keywords
reddit
LLM Vibe Score0
Human Vibe Score1
Chunky_CheezeThis week

I built an AI social monitoring that looks for relevant posts, not just keywords

Hey everyone! I've been working on a side project that I'm excited to share with you all—it's called BillyBuzz What is BillyBuzz? BillyBuzz is an AI-powered social monitoring tool that helps businesses spot and analyze relevant conversations on social media platforms, starting with Reddit. It surfaces the most promising leads directly to your Slack channels, email, or Discord, so you don't have to spend hours scrolling through threads. Why I Built It I was spending a ton of time searching for relevant posts in niche subreddits for another product I was working to get off the ground. It was not only time-consuming but also distracting (you know how easy it is to fall into a Reddit rabbit hole). I couldn't find any existing tool that did more than basic keyword searches—which wasn't enough, especially if your brand name has multiple meanings (like "Apple"). So, I decided to build BillyBuzz. It uses AI to understand your business, products, target audience, and value proposition, alongside specific keywords you might want to include. This way, it finds posts where you can genuinely contribute by introducing your product. I used BillyBuzz for a previous product launch and managed to grow it to over $80k/month in volume within about 3 months, purely through Reddit engagement. How It Works Add Information About Your Business: Input details about your business and products. Select Subreddits to Monitor: Choose the subreddits relevant to your niche. Receive Timely Alerts: Get notified via Slack, email, or Discord when relevant posts are identified. Features AI-Powered Relevancy Scoring: Goes beyond keywords by understanding the context to identify truly relevant opportunities. Subreddit Tracking: Monitor specific subreddits with AI-recommended keywords tailored to your company's needs. Real-Time Alerts: Checks for new relevant conversations every 15 minutes, so you can engage at the perfect time. Automated Categorization (Coming Soon): The AI will categorize conversations into topics like competitors, customer complaints, and more. Who It's For BillyBuzz is designed for startup founders, growth marketers, and small business owners who are tech-savvy and focused on scaling their operations. If you're looking to save time and engage more effectively with your target audience on social media, this might be up your alley. Looking for Feedback I'm sharing this here because I'd love to get your thoughts, feedback, or any suggestions you might have. If you're interested in checking it out, you can find more info here: https://billybuzz.com. Feel free to ask me anything or share your experiences with similar challenges!

0-20+ faceless AI automated YouTube channels in 1 year - my process and tools
reddit
LLM Vibe Score0
Human Vibe Score1
thewolfofsloveniaThis week

0-20+ faceless AI automated YouTube channels in 1 year - my process and tools

First of all before diving deep into this process (scroll a bit below) I have to say something that everyone keeps asking me, is it profitable? Yes. It's by far my most profitable venture outside of my regular 9-5... But it took a lot of work, delegation and building processes to get here. So the one thing I would love to get out of this post - if you have any insights, feedback or tools I might be missing out post them below and let's help each other out. Now, how you can get started with (AI) YouTube automation: Pick a topic that is BOTH: a) in demand b) interesting to you & you have knowledge about Do everything yourself at first - delegate later No one cares about the videos as much as you do, so make sure to nail the ideation, scripts, editing, format and packaging yourself first. Now that we got that out of the way: Use this workflow: VidIQ - outliers sections is pure gold, I use it all the time to find trending video packaging, topics, etc. ChatGPT or Claude - high level video ideas at scale and your assistant (I use projects inside ChatGPT and its really good at managing and prioritizing). If you are using it for scripts please for the love of god, make final edits yourself by hand. Add character, personal insights, ideas, etc. Katalist AI - all in one video generator tool I use to quickly go from video idea to script, storyboard, AI voiceover and then final visuals. It's surprisingly good and to make a decent video it only takes about 1-2 hours in TOTAL. Once you understand how it works and have a process, delegate to tech savvy VAs / content creators for $5-$15/hour and you have final, good quality videos for less than $30. Pikzels / Krea AI - your AI thumbnail generator, I dont remember the last time we used Photoshop outside of quick text or image edits. Its basically AI image manipulation at scale and it costs 10-30x less than a human thumbnail designer and the thumbnails are really good. VidIQ+TubeBuddy - titles & optimization, but you have to know that most of the views come usually from recommended, so dont over obsess and add 392x keywords in your title and description. Its all about the packaging. Now whats left is track performance & iterate - it's practically impossible to nail it the first few times, but each video you make look at the data (not just in YT studio) and UNDERSTAND why it did not perform as well as you thought it would. Regarding monetization, adsense sucks - sell digital products. If I was relying on adsense alone I would never ever be profitable, but selling mini digital products and mentioning CTAs in the actual video not just in the description makes this super profitable and scaleable, especially since video production is so cheap. Final thoughts: (AI) YouTube automation absolutely works, but it’s not an overnight success or a total hands-off cashcow machine. It’s a real business and you need systems, consistent effort, iteration, failing and learning along the way. If you’ve got any tips, hidden gems or tools I might be missing, drop them below & let’s help each other out.

I retired at 32 from my side project. Here's the path I took.
reddit
LLM Vibe Score0
Human Vibe Score1
inputoriginThis week

I retired at 32 from my side project. Here's the path I took.

EDIT 2: Thanks for the award kind stranger! I've stopped responding to reddit comments for this post. I'm adding an FAQ to the original post based on the most common high quality questions. If you have a question that you're dying to know the answer to and that only I can help you with (vs. Google, ChatGPT, etc.), DM me. EDIT: I love how controversial this post has become (50% upvote rate), and only in this subreddit (vs. other subreddits that I posted the same content in). I trust that the open-minded half of you will find something useful in this post and my other posts and comments. I retired at 32 years old, in large part thanks to a B2C SaaS app that I developed on my own. Now, I don't have to work in order to cover my living expenses, and wouldn't have to work for quite a while. In other words, I can finally sip mai tais at the beach. I've condensed how I got there into this post. First, a super simplified timeline of events, followed by some critical details. Timeline 2013 Graduated college in the US 2013 Started first corporate job 2013 Started side project (B2C app) that would eventually lead to my retirement 2020 Started charging for use of my B2C app (was free, became freemium) 2021 Quit my last corporate job 2022 Retired: time freedom attained Details First, some summary statistics of my path to retirement: 9 years: time between graduating college and my retirement. 8 years: total length of my career where I worked at some corporate day job. 7 years: time it took my B2C app to make its first revenue dollar 2 years: time between my first dollar of SaaS revenue and my retirement. "Something something overnight success a decade in the making". I got extremely lucky on my path to retirement, both in terms of the business environment I was in and who I am as a person. I'd also like to think that some of the conscious decisions I made along the way contributed to my early retirement. Lucky Breaks Was born in the US middle class. Had a natural affinity for computer programming and entrepreneurial mindset (initiative, resourcefulness, pragmatism, courage, growth mindset). Had opportunities to develop these mindsets throughout life. Got into a good college which gave me the credentials to get high paying corporate jobs. Was early to a platform that saw large adoption (see "barnacle on whale" strategy). Business niche is shareworthy: my SaaS received free media. Business niche is relatively stable, and small enough to not be competitive. "Skillful" Decisions I decided to spend the nights and weekends of my early career working on side projects in the hopes that one would hit. I also worked a day job to support myself and build my savings. My launch funnel over roughly 7 years of working on side projects: Countless side projects prototyped. 5 side projects publically launched. 2 side projects made > $0. 1 side project ended up becoming the SaaS that would help me retire. At my corporate day jobs, I optimized for learning and work-life balance. My learning usually stalled after a year or two at one company, so I’d quit and find another job. I invested (and continute to do so) in physical and mental wellbeing via regular workouts, meditation, journaling, traveling, and good food. My fulfilling non-work-life re-energized me for my work-life, and my work-life supported my non-work-life: a virtuous cycle. I automated the most time-consuming aspects of my business (outside of product development). Nowadays, I take long vacations and work at most 20 hours a week / a three-day work week . I decided to keep my business entirely owned and operated by me. It's the best fit for my work-style (high autonomy, deep focus, fast decision-making) and need to have full creative freedom and control. I dated and married a very supportive and inspiring partner. I try not to succumb to outrageous lifestyle creep, which keeps my living expenses low and drastically extends my burn-rate. Prescription To share some aphorisms I’ve leaned with the wantrepreneurs or those who want to follow a similar path: Maximize your at bats, because you only need one hit. Bias towards action. Launch quickly. Get your ideas out into the real world for feedback. Perfect is the enemy of good. If you keep swinging and improving, you'll hit the ball eventually. Keep the big picture in mind. You don't necessarily need a home-run to be happy: a base hit will often do the job. Think about what matters most to you in life: is it a lot of money or status? Or is it something more satisfying, and often just as if not more attainable, like freedom, loving relationships, or fulfillment? Is what you’re doing now a good way to get what you want? Or is there a better way? At more of a micro-level of "keep the big picture in mind", I often see talented wantrepreneurs get stuck in the weeds of lower-level optimizations, usually around technical design choices. They forget (or maybe subconsciously avoid) the higher-level and more important questions of customer development, user experience, and distribution. For example: “Are you solving a real problem?” or “Did you launch an MVP and what did your users think?” Adopt a growth mindset. Believe that you are capable of learning whatever you need to learn in order to do what you want to do. The pain of regret is worse than the pain of failure. I’ve noticed that fear of failure is the greatest thing holding people back from taking action towards their dreams. Unless failure means death in your case, a debilitating fear of failure is a surmountable mental block. You miss 100% of the shots you don't take. When all is said and done, we often regret the things we didn't do in life than the things we did. There’s more to life than just work. Blasphemous (at least among my social circle)! But the reality is that many of the dying regret having worked too much in their lives. As Miss Frizzle from The Magic Schoolbus says: "Take chances, make mistakes, get messy!" Original post

I recreated a voice AI that 2x’d booked calls in 30 days for a business
reddit
LLM Vibe Score0
Human Vibe Score1
cowanscorpThis week

I recreated a voice AI that 2x’d booked calls in 30 days for a business

I’ve been fascinated by AI and specifically how different businesses have leveraged it to eliminate time consuming tasks. I recently came across a case study where a voice agent helped a business double their booked calls and conversions in 30 days and wanted to try and recreate something similar. I’ve added the case study below along with a number to the demo voice agent I created to see if this is something people would really be interested in. This tech is improving really fast and I’m looking to dive deeper into this space. Case Study A family owned HVAC company was having challenges managing the volume of customer calls, including after hours and weekend calls, leading to missed opportunities and unmanaged leads. Building a call support team would have proved to be more expensive than they’d like. Solution With some help, the company implemented an AI system to autonomously handle calls, collect customer needs, and alert service technicians via SMS, with capabilities for live call transfers. Impact Within the first week, the company saw a 20% increase in bookings and conversions. The system's efficiency in capturing leads and managing tasks enabled the staff to handle more leads and outsource overflow. Details The AI integration included custom features like a Service Titan integration, live call transfers, SMS/email alerts, calendar and CRM integration, and Zapier automation. Results The company doubled its booked calls and conversions in 30 days through these AI call agents. With the average service visit in the U.S. being around $250, and the average unit install being around $4500 this quickly led to increased revenue as well as time savings and reduced churn. Here’s the number to the demo agent I created: +1 (714) 475-7285 I’d love to hear some honest thoughts on it and what industry you think could benefit the most from something like this.

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days
reddit
LLM Vibe Score0
Human Vibe Score1
Will_feverThis week

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days

AI has always intrigued me, especially when it comes to automating repetitive tasks and streamlining business operations. Recently, I found a compelling case study about a voice agent that significantly enhanced customer service and lead capture for a plumbing company. Motivated by the potential of this technology, I decided to build a similar system to see how it could be adapted for other industries. I’ve added the case study below along with a number to the demo voice agent I created to see if this is something people would really be interested in. AI technology is advancing rapidly, and I’m excited to dive deeper into this space. Case Study A family-owned plumbing business was facing challenges managing a high volume of customer calls. They were missing potential leads, particularly during after-hours and weekends, which meant lost revenue opportunities. Hiring a dedicated call support team was considered but deemed too expensive and hard to scale. Solution To solve these issues, the company deployed an AI-powered voice agent capable of handling calls autonomously. The system collected essential customer information, identified service needs, and sent real-time alerts to service technicians via SMS. It also had the ability to transfer calls to human agents if necessary, ensuring a seamless experience for customers. Impact The AI voice agent quickly proved its worth by streamlining call management and improving response times. With the AI handling routine inquiries and initial call filtering, the plumbing business saw a noticeable improvement in how quickly they could respond to customer needs. Details The AI-powered voice agent included several advanced features designed to optimize customer service: Answer Calls Anytime: Ensured every call received a friendly and professional response, regardless of the time of day. Spot Emergencies Fast: Quickly identified high-priority issues that required urgent attention. Collect Important Info: Accurately recorded critical customer details to facilitate seamless follow-ups and service scheduling. Send Alerts Right Away: Immediately notified service technicians about emergencies, enabling faster response times. Live Transfers: Live call transfer options when human assistance was needed. Results The AI-powered voice agent delivered measurable improvements across key performance metrics: 100% Call Answer Rate: No missed calls ensured that every customer inquiry was addressed promptly. 5-minute Emergency Response Time: The average response time for urgent calls was reduced significantly. 30% Increase in Lead Capture: The business saw more qualified leads, improving their chances of conversion. 25% Improvement in Resource Efficiency: Better allocation of resources allowed the team to focus on high-priority tasks. By implementing the AI-powered voice agent, the plumbing business enhanced its ability to capture more leads and provide better service to its customers. The improved call handling efficiency helped reduce missed opportunities and boosted overall customer satisfaction. Here’s the number to the demo agent I created: +1 (210) 405-0982 I’d love to hear some honest thoughts on it and which industries you think could benefit the most from this technology.

I recreated a voice AI that 2x’d booked calls in 30 days for a business
reddit
LLM Vibe Score0
Human Vibe Score1
cowanscorpThis week

I recreated a voice AI that 2x’d booked calls in 30 days for a business

I’ve been fascinated by AI and specifically how different businesses have leveraged it to eliminate time consuming tasks. I recently came across a case study where a voice agent helped a business double their booked calls and conversions in 30 days and wanted to try and recreate something similar. I’ve added the case study below along with a number to the demo voice agent I created to see if this is something people would really be interested in. This tech is improving really fast and I’m looking to dive deeper into this space. Case Study A family owned HVAC company was having challenges managing the volume of customer calls, including after hours and weekend calls, leading to missed opportunities and unmanaged leads. Building a call support team would have proved to be more expensive than they’d like. Solution With some help, the company implemented an AI system to autonomously handle calls, collect customer needs, and alert service technicians via SMS, with capabilities for live call transfers. Impact Within the first week, the company saw a 20% increase in bookings and conversions. The system's efficiency in capturing leads and managing tasks enabled the staff to handle more leads and outsource overflow. Details The AI integration included custom features like a Service Titan integration, live call transfers, SMS/email alerts, calendar and CRM integration, and Zapier automation. Results The company doubled its booked calls and conversions in 30 days through these AI call agents. With the average service visit in the U.S. being around $250, and the average unit install being around $4500 this quickly led to increased revenue as well as time savings and reduced churn. Here’s the number to the demo agent I created: +1 (714) 475-7285 I’d love to hear some honest thoughts on it and what industry you think could benefit the most from something like this.

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days
reddit
LLM Vibe Score0
Human Vibe Score1
Will_feverThis week

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days

AI has always intrigued me, especially when it comes to automating repetitive tasks and streamlining business operations. Recently, I found a compelling case study about a voice agent that significantly enhanced customer service and lead capture for a plumbing company. Motivated by the potential of this technology, I decided to build a similar system to see how it could be adapted for other industries. I’ve added the case study below along with a number to the demo voice agent I created to see if this is something people would really be interested in. AI technology is advancing rapidly, and I’m excited to dive deeper into this space. Case Study A family-owned plumbing business was facing challenges managing a high volume of customer calls. They were missing potential leads, particularly during after-hours and weekends, which meant lost revenue opportunities. Hiring a dedicated call support team was considered but deemed too expensive and hard to scale. Solution To solve these issues, the company deployed an AI-powered voice agent capable of handling calls autonomously. The system collected essential customer information, identified service needs, and sent real-time alerts to service technicians via SMS. It also had the ability to transfer calls to human agents if necessary, ensuring a seamless experience for customers. Impact The AI voice agent quickly proved its worth by streamlining call management and improving response times. With the AI handling routine inquiries and initial call filtering, the plumbing business saw a noticeable improvement in how quickly they could respond to customer needs. Details The AI-powered voice agent included several advanced features designed to optimize customer service: Answer Calls Anytime: Ensured every call received a friendly and professional response, regardless of the time of day. Spot Emergencies Fast: Quickly identified high-priority issues that required urgent attention. Collect Important Info: Accurately recorded critical customer details to facilitate seamless follow-ups and service scheduling. Send Alerts Right Away: Immediately notified service technicians about emergencies, enabling faster response times. Live Transfers: Live call transfer options when human assistance was needed. Results The AI-powered voice agent delivered measurable improvements across key performance metrics: 100% Call Answer Rate: No missed calls ensured that every customer inquiry was addressed promptly. 5-minute Emergency Response Time: The average response time for urgent calls was reduced significantly. 30% Increase in Lead Capture: The business saw more qualified leads, improving their chances of conversion. 25% Improvement in Resource Efficiency: Better allocation of resources allowed the team to focus on high-priority tasks. By implementing the AI-powered voice agent, the plumbing business enhanced its ability to capture more leads and provide better service to its customers. The improved call handling efficiency helped reduce missed opportunities and boosted overall customer satisfaction. Here’s the number to the demo agent I created: +1 (210) 405-0982 I’d love to hear some honest thoughts on it and which industries you think could benefit the most from this technology.

Introducing Novus – an AI-powered QA agent that automates testing for your web apps!
reddit
LLM Vibe Score0
Human Vibe Score1
namish800This week

Introducing Novus – an AI-powered QA agent that automates testing for your web apps!

Hello, I'm excited to introduce a project I've been working on—an AI-powered QA agent designed to streamline and enhance the testing process for web applications. Here's how it works: Key Features: Natural Language Test Definitions: You can define the behavior you want to validate using plain English. Automated Navigation and Validation: The agent autonomously navigates your web app and checks if the specified behavior functions as expected. Comprehensive Reporting: After execution, it provides detailed reports, including step-by-step actions, screenshots, and video recordings.​ How It Works: Define Behavior: Describe the functionality you want to test in simple English.​ Run Test: The agent interprets your description, interacts with your web app accordingly, and validates the outcomes. Review Results: Access detailed reports that include all actions taken, along with visual documentation like screenshots and videos.​ Current Capabilities: Dashboard for Test Management: Create and manage multiple test suites and individual tests through an intuitive interface.​ Visual Regression Analysis: Utilize visual artifacts to perform regression analysis and ensure UI consistency.​ Future Plans: Intelligent Reporting: Implement advanced reporting features to provide deeper insights and analytics. Enhanced Visual Regression: Develop more sophisticated tools for detecting and analyzing visual discrepancies.​ I'm eager to hear your thoughts and feedback. What challenges do you face in QA testing? How do you see AI tools fitting into your workflow? Let's discuss! Here's the demo of what I've built so far https://www.loom.com/share/11b1dd4d18124f9a8032ae81e9cbdab4?sid=56237f10-cffd-4394-b080-0a3fb5ef4b01 Note: This project is currently in development, and I'm actively seeking input to refine and enhance its features.

[P] Building an Reinforcement Learning Agent to play The Legend of Zelda
reddit
LLM Vibe Score0
Human Vibe Score1
DarkAutumnThis week

[P] Building an Reinforcement Learning Agent to play The Legend of Zelda

A year go I started trying to use PPO to play the original Legend of Zelda, and I was able to train a model to beat the first boss after a few months of work. I wanted to share the project just for show and tell. I'd love to hear feedback and suggestions as this is just a hobby project. I don't do this for a living. The code for that lives in the original-design branch of my Triforce repo. I'm currently tinkering with new designs so the main branch is much less stable. Here's a video of the agent beating the first dungeon, which was trained with 5,000,000+ steps. At 38 seconds, you can see it learned that it's invulnerable at the screen edge, and it exploits that to avoid damage from a projectile. At 53 seconds it steps up to avoid damage from an unblockable projectile, even though it takes a -0.06 penalty for moving the wrong way (taking damage would be a larger penalty.) At 55 seconds it walks towards the rock projectile to block it. And so on, lots of little things the model does is easy to miss if you don't know the game inside and out. As a TLDR, here's an early version of my new (single) model. This doesn't make it quite as far, but if you watch closely it's combat is already far better, and is only trained on 320,000 steps (~6% of the steps the first model was trained on). This is pretty far along from my very first model. Original Design I got the original project working using stable-baselines's PPO and default neural network (Shared NatureCNN, I believe). SB was great to get started but ultimately stifling. In the new version of the project I've implemented PPO from scratch with torch with my own simple neural network similar to stable-baseline's default. I'm playing with all kinds of changes and designs now that I have more flexibility and control. Here is my rough original design: Overall Strategy My first pass through this project was basically "imagine playing Zelda with your older sibling telling you where to go and what to do". I give the model an objective vector which points to where I want it to go on the screen (as a bird flies, the agent still had to learn path finding to avoid damage and navigate around the map). This includes either point at the nearest enemy I want it to kill or a NSEW vector if it's supposed to move to the next room. Due a few limitations with stable-baselines (especially around action masking), I ended up training unique models for traversing the overworld vs the dungeon (since they have entirely different tilesets). I also trained a different model for when we have sword beams vs not. In the video above you can see what model is being used onscreen. In my current project I've removed this objective vector as it felt too much like cheating. Instead I give it a one-hot encoded objective (move north to the next room, pickup items, kill enemies, etc). So far it's working quite well without that crutch. The new project also does a much better job of combat even without multiple models to handle beams vs not. Observation/Action Space Image - The standard neural network had a really tough time being fed the entire screen. No amount of training seemed to help. I solved this by creating a viewport around Link that keeps him centered. This REALLY helped the model learn. I also had absolutely zero success with stacking frames to give Link a way to see enemy/projectile movement. The model simply never trained with stable-baselines when I implemented frame stacking and I never figured out why. I just added it to my current neural network and it seems to be working... Though my early experiments show that giving it 3 frames (skipping two in between, so frames curr, curr-3, curr-6) doesn't really give us that much better performance. It might if I took away some of the vectors. We'll see. Vectors - Since the model cannot see beyond its little viewport, I gave the model a vector to the closest item, enemy, and projectile onscreen. This made it so the model can shoot enemies across the room outside of its viewport. My new model gives it multiple enemies/items/projectiles and I plan to try to use an attention mechanism as part of the network to see if I can just feed it all of that data. Information - It also gets a couple of one-off datapoints like whether it currently has sword beams. The new model also gives it a "source" room (to help better understand dungeons where we have to backtrack), and a one-hot encoded objective. Action Space My original project just has a few actions, 4 for moving in the cardinal directions and 4 for attacking in each direction (I also added bombs but never spent any time training it). I had an idea to use masking to help speed up training. I.E. if link bumps into a wall, don't let him move in that direction again until he moves elsewhere, as the model would often spend an entire memory buffer running headlong straight into a wall before an update...better to do it once and get a huge negative penalty which is essentially the same result but faster. Unfortunately SB made it really annoying architecturally to pass that info down to the policy layer. I could have hacked it together, but eventually I just reimplemented PPO and my own neural network so I could properly mask actions in the new version. For example, when we start training a fresh model, it cannot attack when there aren't enemies on screen and I can disallow it from leaving certain areas. The new model actually understands splitting swinging the sword short range vs firing sword beams as two different actions, though I haven't yet had a chance to fully train with the split yet. Frameskip/Cooldowns - In the game I don't use a fixed frame skip for actions. Instead I use the internal ram state of game to know when Link is animation locked or not and only allow the agent to take actions when it's actually possible to give meaningful input to the game. This greatly sped up training. We also force movement to be between tiles on the game map. This means that when the agent decides to move it loses control for longer than a player would...a player can make more split second decisions. This made it easier to implement movement rewards though and might be something to clean up in the future. Other interesting details Pathfinding - To facilitate rewards, the original version of this project used A* to pathfind from link to what he should be doing. Here's a video of it in action. This information wasn't giving to the model directly but instead the agent would only be given the rewards if it exactly followed that path or the transposed version of it. It would also pathfind around enemies and not walk through them. This was a nightmare though. The corner cases were significant, and pushing Link towards enemies but not into them was really tricky. The new verison just uses a wavefront algorithm. I calculate a wave from the tiles we want to get to outwards, then make sure we are following the gradient. Also calculating the A* around enemies every frame (even with caching) was super slow. Wavefront was faster, especially because I give the new model no special rewards for walking around enemies...faster to compute and it has to learn from taking damage or not. Either way, the both the old and new models successfully learned how to pathfind around danger and obstacles, with or without the cheaty objective vector. Rewards - I programmed very dense rewards in both the old and new model. At basically every step, the model is getting rewarded or punished for something. I actually have some ideas I can't wait to try out to make the rewards more sparse. Or maybe we start with dense rewards for the first training, then fine-tune the model with sparser rewards. We'll see. Predicting the Future - Speaking of rewards. One interesting wrinkle is that the agent can do a lot of things that will eventually deal damage but not on that frame. For example, when Link sets a bomb it takes several seconds before it explodes, killing things. This can be a massive reward or penalty since he spent an extremely valuable resource, but may have done massive damage. PPO and other RL propagates rewards backwards, of course, but that spike in reward could land on a weird frame where we took damage or moved in the wrong direction. I probably could have just not solved that problem and let it shake out over time, but instead I used the fact that we are in an emulator to just see what the outcome of every decision is. When planting a bomb, shooting sword beams, etc, we let the game run forward until impact, then rewind time and reward the agent appropriately, continuing on from when we first paused. This greatly speeds up training, even if it's expensive to do this savestate, play forward, restore state. Neural Networks - When I first started this project (knowing very little about ML and RL), I thought most of my time would be tuning the shape of the neural network that we are using. In reality, the default provided by stable-baselines and my eventual reimplemnentation has been enough to make massive progress. Now that I have a solid codebase though, I really want to revisit this. I'd like to see if trying CoordConvs and similar networks might make the viewport unncessary. Less interesting details/thoughts Hyperparameters - Setting the entropy coefficinet way lower helped a TON in training stable models. My new PPO implementation is way less stable than stable-baselines (ha, imagine that), but still converges most of the time. Infinite Rewards - As with all reinforcement learning, if you give some way for the model to get infinite rewards, it will do just that and nothing else. I spent days, or maybe weeks tweaking reward functions to just get it to train and not find a spot on the wall it could hump for infinite rewards. Even just neutral rewards, like +0.5 moving forward and -0.5 for moving backwards, would often result in a model that just stepped left, then right infinitely. There has to be a real reward or punishment (non-neutral) for forward progress. Debugging Rewards - In fact, building a rewards debugger was the only way I made progress in this project. If you are tackling something this big, do that very early. Stable-Retro is pretty great - Couldn't be happier with the clean design for implementing emulation for AI. Torch is Awesome - My early versions heavily used numpy and relied on stable-baselines, with its multiproc parallelization support. It worked great. Moving the project over to torch was night and day though. It gave me so much more flexibility, instant multithreading for matrix operations. I have a pretty beefy computer and I'm almost at the same steps per second as 20 proc stable-retro/numpy. Future Ideas This has already gone on too long. I have some ideas for future projects, but maybe I'll just make them another post when I actually do them. Special Thanks A special thanks to Brad Flaugher for help with the early version of this, Fiskbit from the Zelda1 speedrunning community for help pulling apart the raw assembly to build this thing, and MatPoliquin for maintaining Stable-Retro. Happy to answer any questions, really I just love nerding out about this stuff.

0-20+ faceless AI automated YouTube channels in 1 year - my process and tools
reddit
LLM Vibe Score0
Human Vibe Score1
thewolfofsloveniaThis week

0-20+ faceless AI automated YouTube channels in 1 year - my process and tools

First of all before diving deep into this process (scroll a bit below) I have to say something that everyone keeps asking me, is it profitable? Yes. It's by far my most profitable venture outside of my regular 9-5... But it took a lot of work, delegation and building processes to get here. So the one thing I would love to get out of this post - if you have any insights, feedback or tools I might be missing out post them below and let's help each other out. Now, how you can get started with (AI) YouTube automation: Pick a topic that is BOTH: a) in demand b) interesting to you & you have knowledge about Do everything yourself at first - delegate later No one cares about the videos as much as you do, so make sure to nail the ideation, scripts, editing, format and packaging yourself first. Now that we got that out of the way: Use this workflow: VidIQ - outliers sections is pure gold, I use it all the time to find trending video packaging, topics, etc. ChatGPT or Claude - high level video ideas at scale and your assistant (I use projects inside ChatGPT and its really good at managing and prioritizing). If you are using it for scripts please for the love of god, make final edits yourself by hand. Add character, personal insights, ideas, etc. Katalist AI - all in one video generator tool I use to quickly go from video idea to script, storyboard, AI voiceover and then final visuals. It's surprisingly good and to make a decent video it only takes about 1-2 hours in TOTAL. Once you understand how it works and have a process, delegate to tech savvy VAs / content creators for $5-$15/hour and you have final, good quality videos for less than $30. Pikzels / Krea AI - your AI thumbnail generator, I dont remember the last time we used Photoshop outside of quick text or image edits. Its basically AI image manipulation at scale and it costs 10-30x less than a human thumbnail designer and the thumbnails are really good. VidIQ+TubeBuddy - titles & optimization, but you have to know that most of the views come usually from recommended, so dont over obsess and add 392x keywords in your title and description. Its all about the packaging. Now whats left is track performance & iterate - it's practically impossible to nail it the first few times, but each video you make look at the data (not just in YT studio) and UNDERSTAND why it did not perform as well as you thought it would. Regarding monetization, adsense sucks - sell digital products. If I was relying on adsense alone I would never ever be profitable, but selling mini digital products and mentioning CTAs in the actual video not just in the description makes this super profitable and scaleable, especially since video production is so cheap. Final thoughts: (AI) YouTube automation absolutely works, but it’s not an overnight success or a total hands-off cashcow machine. It’s a real business and you need systems, consistent effort, iteration, failing and learning along the way. If you’ve got any tips, hidden gems or tools I might be missing, drop them below & let’s help each other out.

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.
reddit
LLM Vibe Score0
Human Vibe Score0.6
AlexSnakeKingThis week

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.

TD;LR: At Company A, Team X does advanced analytics using on-prem ERP tools and older programming languages. Their tools work very well and are designed based on very deep business and domain expertise. Team Y is a new and ambitious Data Science team that thinks they can replace Team X's tools with a bunch of R scripts and a custom built ML platform. Their models are simplistic, but more "fashionable" compared to the econometric models used by Team X, and team Y benefits from the ML/DS moniker so leadership is allowing Team Y to start a large scale overhaul of the analytics platform in question. Team Y doesn't have the experience for such a larger scale transformation, and is refusing to collaborate with team X. This project is very likely going to fail, and cause serious harm to the company as a whole financially and from a people perspective. I argue that this is not just because of bad leadership, but also because of various trends and mindsets in the DS community at large. Update (Jump to below the line for the original story): Several people in the comments are pointing out that this just a management failure, not something due to ML/DS, and that you can replace DS with any buzz tech and the story will still be relevant. My response: Of course, any failure at an organization level is ultimately a management failure one way or the other. Moreover, it is also the case that ML/DS when done correctly, will always improve a company's bottom line. There is no scenario where the proper ML solution, delivered at a reasonable cost and in a timely fashion, will somehow hurt the company's bottom line. My point is that in this case management is failing because of certain trends and practices that are specific to the ML/DS community, namely: The idea that DS teams should operate independently of tech and business orgs -- too much autonomy for DS teams The disregard for domain knowledge that seems prevalent nowadays thanks to the ML hype, that DS can be generalists and someone with good enough ML chops can solve any business problem. That wasn't the case when I first left academia for the industry in 2009 (back then nobody would even bother with a phone screen if you didn't have the right domain knowledge). Over reliance on resources who check all the ML hype related boxes (knows Python, R, Tensorflow, Shiny, etc..., has the right Coursera certifications, has blogged on the topic, etc...), but are lacking in depth of experience. DS interviews nowadays all seem to be: Can you tell me what a p-value is? What is elastic net regression? Show me how to fit a model in sklearn? How do you impute NAs in an R dataframe? Any smart person can look those up on Stackoverflow or Cross-Validated,.....Instead teams should be asking stuff like: why does portfolio optimization use QP not LP? How does a forecast influence a customer service level? When should a recommendation engine be content based and when should it use collaborative filtering? etc... (This is a true story, happening to the company I currently work for. Names, domains, algorithms, and roles have been shuffled around to protect my anonymity)  Company A has been around for several decades. It is not the biggest name in its domain, but it is a well respected one. Risk analysis and portfolio optimization have been a core of Company A's business since the 90s. They have a large team of 30 or so analysts who perform those tasks on a daily basis. These analysts use ERP solutions implemented for them by one the big ERP companies (SAP, Teradata, Oracle, JD Edwards,...) or one of the major tech consulting companies (Deloitte, Accenture, PWC, Capgemini, etc...) in collaboration with their own in house engineering team. The tools used are embarrassingly old school: Classic RDBMS running on on-prem servers or maybe even on mainframes, code written in COBOL, Fortran, weird proprietary stuff like ABAP or SPSS.....you get the picture. But the models and analytic functions were pretty sophisticated, and surprisingly cutting edge compared to the published academic literature. Most of all, they fit well with the company's enterprise ecosystem, and were honed based on years of deep domain knowledge.  They have a tech team of several engineers (poached from the aforementioned software and consulting companies) and product managers (who came from the experienced pools of analysts and managers who use the software, or poached from business rivals) maintaining and running this software. Their technology might be old school, but collectively, they know the domain and the company's overall architecture very, very well. They've guided the company through several large scale upgrades and migrations and they have a track record of delivering on time, without too much overhead. The few times they've stumbled, they knew how to pick themselves up very quickly. In fact within their industry niche, they have a reputation for their expertise, and have very good relations with the various vendors they've had to deal with. They were the launching pad of several successful ERP consulting careers.  Interestingly, despite dealing on a daily basis with statistical modeling and optimization algorithms, none of the analysts, engineers, or product managers involved describe themselves as data scientists or machine learning experts. It is mostly a cultural thing: Their expertise predates the Data Science/ML hype that started circa 2010, and they got most of their chops using proprietary enterprise tools instead of the open source tools popular nowadays. A few of them have formal statistical training, but most of them came from engineering or domain backgrounds and learned stats on the fly while doing their job. Call this team "Team X".  Sometime around the mid 2010s, Company A started having some serious anxiety issues: Although still doing very well for a company its size, overall economic and demographic trends were shrinking its customer base, and a couple of so called disruptors came up with a new app and business model that started seriously eating into their revenue. A suitable reaction to appease shareholders and Wall Street was necessary. The company already had a decent website and a pretty snazzy app, what more could be done? Leadership decided that it was high time that AI and ML become a core part of the company's business. An ambitious Manager, with no science or engineering background, but who had very briefly toyed with a recommender system a couple of years back, was chosen to build a data science team, call it team "Y" (he had a bachelor's in history from the local state college and worked for several years in the company's marketing org). Team "Y" consists mostly of internal hires who decided they wanted to be data scientists and completed a Coursera certification or a Galvanize boot camp, before being brought on to the team, along with a few of fresh Ph.D or M.Sc holders who didn't like academia and wanted to try their hand at an industry role. All of them were very bright people, they could write great Medium blog posts and give inspiring TED talks, but collectively they had very little real world industry experience. As is the fashion nowadays, this group was made part of a data science org that reported directly to the CEO and Board, bypassing the CIO and any tech or business VPs, since Company A wanted to claim the monikers "data driven" and "AI powered" in their upcoming shareholder meetings. In 3 or 4 years of existence, team Y produced a few Python and R scripts. Their architectural experience  consisted almost entirely in connecting Flask to S3 buckets or Redshift tables, with a couple of the more resourceful ones learning how to plug their models into Tableau or how to spin up a Kuberneties pod.  But they needn't worry: The aforementioned manager, who was now a director (and was also doing an online Masters to make up for his qualifications gap and bolster his chances of becoming VP soon - at least he now understands what L1 regularization is), was a master at playing corporate politics and self-promotion. No matter how few actionable insights team Y produced or how little code they deployed to production, he always had their back and made sure they had ample funding. In fact he now had grandiose plans for setting up an all-purpose machine learning platform that can be used to solve all of the company's data problems.  A couple of sharp minded members of team Y, upon googling their industry name along with the word "data science", realized that risk analysis was a prime candidate for being solved with Bayesian models, and there was already a nifty R package for doing just that, whose tutorial they went through on R-Bloggers.com. One of them had even submitted a Bayesian classifier Kernel for a competition on Kaggle (he was 203rd on the leaderboard), and was eager to put his new-found expertise to use on a real world problem. They pitched the idea to their director, who saw a perfect use case for his upcoming ML platform. They started work on it immediately, without bothering to check whether anybody at Company A was already doing risk analysis. Since their org was independent, they didn't really need to check with anybody else before they got funding for their initiative. Although it was basically a Naive Bayes classifier, the term ML was added to the project tile, to impress the board.  As they progressed with their work however, tensions started to build. They had asked the data warehousing and CA analytics teams to build pipelines for them, and word eventually got out to team X about their project. Team X was initially thrilled: They offered to collaborate whole heartedly, and would have loved to add an ML based feather to their already impressive cap. The product owners and analysts were totally onboard as well: They saw a chance to get in on the whole Data Science hype that they kept hearing about. But through some weird mix of arrogance and insecurity, team Y refused to collaborate with them or share any of their long term goals with them, even as they went to other parts of the company giving brown bag presentations and tutorials on the new model they created.  Team X got resentful: from what they saw of team Y's model, their approach was hopelessly naive and had little chances of scaling or being sustainable in production, and they knew exactly how to help with that. Deploying the model to production would have taken them a few days, given how comfortable they were with DevOps and continuous delivery (team Y had taken several months to figure out how to deploy a simple R script to production). And despite how old school their own tech was, team X were crafty enough to be able to plug it in to their existing architecture. Moreover, the output of the model was such that it didn't take into account how the business will consume it or how it was going to be fed to downstream systems, and the product owners could have gone a long way in making the model more amenable to adoption by the business stakeholders. But team Y wouldn't listen, and their leads brushed off any attempts at communication, let alone collaboration. The vibe that team Y was giving off was "We are the cutting edge ML team, you guys are the legacy server grunts. We don't need your opinion.", and they seemed to have a complete disregard for domain knowledge, or worse, they thought that all that domain knowledge consisted of was being able to grasp the definitions of a few business metrics.  Team X got frustrated and tried to express their concerns to leadership. But despite owning a vital link in Company A's business process, they were only \~50 people in a large 1000 strong technology and operations org, and they were several layers removed from the C-suite, so it was impossible for them to get their voices heard.  Meanwhile, the unstoppable director was doing what he did best: Playing corporate politics. Despite how little his team had actually delivered, he had convinced the board that all analysis and optimization tasks should now be migrated to his yet to be delivered ML platform. Since most leaders now knew that there was overlap between team Y and team X's objectives, his pitch was no longer that team Y was going to create a new insight, but that they were going to replace (or modernize) the legacy statistics based on-prem tools with more accurate cloud based ML tools. Never mind that there was no support in the academic literature for the idea that Naive Bayes works better than the Econometric approaches used by team X, let alone the additional wacky idea that Bayesian Optimization would definitely outperform the QP solvers that were running in production.  Unbeknownst to team X, the original Bayesian risk analysis project has now grown into a multimillion dollar major overhaul initiative, which included the eventual replacement of all of the tools and functions supported by team X along with the necessary migration to the cloud. The CIO and a couple of business VPs are on now board, and tech leadership is treating it as a done deal. An outside vendor, a startup who nobody had heard of, was contracted to help build the platform, since team Y has no engineering skills. The choice was deliberate, as calling on any of the established consulting or software companies would have eventually led leadership to the conclusion that team X was better suited for a transformation on this scale than team Y.  Team Y has no experience with any major ERP deployments, and no domain knowledge, yet they are being tasked with fundamentally changing the business process that is at the core of Company A's business. Their models actually perform worse than those deployed by team X, and their architecture is hopelessly simplistic, compared to what is necessary for running such a solution in production.  Ironically, using Bayesian thinking and based on all the evidence, the likelihood that team Y succeeds is close to 0%. At best, the project is going to end up being a write off of 50 million dollars or more. Once the !@#$!@hits the fan, a couple of executive heads are going to role, and dozens of people will get laid off. At worst, given how vital risk analysis and portfolio optimization is to Company A's revenue stream, the failure will eventually sink the whole company. It probably won't go bankrupt, but it will lose a significant portion of its business and work force. Failed ERP implementations can and do sink large companies: Just see what happened to National Grid US, SuperValu or Target Canada.  One might argue that this is more about corporate disfunction and bad leadership than about data science and AI. But I disagree. I think the core driver of this debacle is indeed the blind faith in Data Scientists, ML models and the promise of AI, and the overall culture of hype and self promotion that is very common among the ML crowd.  We haven't seen the end of this story: I sincerely hope that this ends well for the sake of my colleagues and all involved. Company A is a good company, and both its customers and its employees deserver better. But the chances of that happening are negligible given all the information available, and this failure will hit my company hard.

[D] Overwhelmed by fast advances in recent weeks
reddit
LLM Vibe Score0
Human Vibe Score1
iamx9000againThis week

[D] Overwhelmed by fast advances in recent weeks

I was watching the GTC keynote and became entirely overwhelmed by the amount of progress achieved from last year. I'm wondering how everyone else feels. &#x200B; Firstly, the entire ChatGPT, GPT-3/GPT-4 chaos has been going on for a few weeks, with everyone scrambling left and right to integrate chatbots into their apps, products, websites. Twitter is flooded with new product ideas, how to speed up the process from idea to product, countless promp engineering blogs, tips, tricks, paid courses. &#x200B; Not only was ChatGPT disruptive, but a few days later, Microsoft and Google also released their models and integrated them into their search engines. Microsoft also integrated its LLM into its Office suite. It all happenned overnight. I understand that they've started integrating them along the way, but still, it seems like it hapenned way too fast. This tweet encompases the past few weeks perfectly https://twitter.com/AlphaSignalAI/status/1638235815137386508 , on a random Tuesday countless products are released that seem revolutionary. &#x200B; In addition to the language models, there are also the generative art models that have been slowly rising in mainstream recognition. Now Midjourney AI is known by a lot of people who are not even remotely connected to the AI space. &#x200B; For the past few weeks, reading Twitter, I've felt completely overwhelmed, as if the entire AI space is moving beyond at lightning speed, whilst around me we're just slowly training models, adding some data, and not seeing much improvement, being stuck on coming up with "new ideas, that set us apart". &#x200B; Watching the GTC keynote from NVIDIA I was again, completely overwhelmed by how much is being developed throughout all the different domains. The ASML EUV (microchip making system) was incredible, I have no idea how it does lithography and to me it still seems like magic. The Grace CPU with 2 dies (although I think Apple was the first to do it?) and 100 GB RAM, all in a small form factor. There were a lot more different hardware servers that I just blanked out at some point. The omniverse sim engine looks incredible, almost real life (I wonder how much of a domain shift there is between real and sim considering how real the sim looks). Beyond it being cool and usable to train on synthetic data, the car manufacturers use it to optimize their pipelines. This change in perspective, of using these tools for other goals than those they were designed for I find the most interesting. &#x200B; The hardware part may be old news, as I don't really follow it, however the software part is just as incredible. NVIDIA AI foundations (language, image, biology models), just packaging everything together like a sandwich. Getty, Shutterstock and Adobe will use the generative models to create images. Again, already these huge juggernauts are already integrated. &#x200B; I can't believe the point where we're at. We can use AI to write code, create art, create audiobooks using Britney Spear's voice, create an interactive chatbot to converse with books, create 3D real-time avatars, generate new proteins (?i'm lost on this one), create an anime and countless other scenarios. Sure, they're not perfect, but the fact that we can do all that in the first place is amazing. &#x200B; As Huang said in his keynote, companies want to develop "disruptive products and business models". I feel like this is what I've seen lately. Everyone wants to be the one that does something first, just throwing anything and everything at the wall and seeing what sticks. &#x200B; In conclusion, I'm feeling like the world is moving so fast around me whilst I'm standing still. I want to not read anything anymore and just wait until everything dies down abit, just so I can get my bearings. However, I think this is unfeasible. I fear we'll keep going in a frenzy until we just burn ourselves at some point. &#x200B; How are you all fairing? How do you feel about this frenzy in the AI space? What are you the most excited about?

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call
reddit
LLM Vibe Score0
Human Vibe Score1
noiseinvacuumThis week

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call

During the recent earnings call, Mark Zuckerberg answered a question from Eric Sheridan of Goldman Sachs on Meta's AI strategy, opportunities to integrate into products, and why they open source models and how it would benefit their business. I found the reasoning to be very sound and promising for the OSS and AI community. The biggest risk from AI, in my opinion, is not the doomsday scenarios that intuitively come to mind but rather that the most powerful AI systems will only be accessible to the most powerful and resourceful corporations. Quote copied from Ben Thompson's write up on Meta's earning in his Stratechery blog post which goes beyond AI. It's behind a paywall but I highly recommend it personally. Some noteworthy quotes that signal the thought process at Meta FAIR and more broadly We’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon We would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that. ...lead us to do more work in terms of open sourcing, some of the lower level models and tools Open sourcing low level tools make the way we run all this infrastructure more efficient over time. On PyTorch: It’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. I would expect us to be pushing and helping to build out an open ecosystem. For all the negative that comes out of the popular discourse on Meta, I think their work to open source key tech tools over the last 10 years has been exceptional, here's hoping it continues into this decade of AI and pushes other tech giants to also realize the benefits of Open Source. Full Transcript: Right now most of the companies that are training large language models have business models that lead them to a closed approach to development. I think there’s an important opportunity to help create an open ecosystem. If we can help be a part of this, then much of the industry will standardize on using these open tools and help improve them further. So this will make it easier for other companies to integrate with our products and platforms as we enable more integrations, and that will help our products stay at the leading edge as well. Our approach to AI and our infrastructure has always been fairly open. We open source many of our state of the art models so people can experiment and build with them. This quarter we released our LLaMa LLM to researchers. It has 65 billion parameters but outperforms larger models and has proven quite popular. We’ve also open-sourced three other groundbreaking visual models along with their training data and model weights — Segment Anything, DinoV2, and our Animated Drawings tool — and we’ve gotten positive feedback on all of those as well. I think that there’s an important distinction between the products we offer and a lot of the technical infrastructure, especially the software that we write to support that. And historically, whether it’s the Open Compute project that we’ve done or just open sourcing a lot of the infrastructure that we’ve built, we’ve historically open sourced a lot of that infrastructure, even though we haven’t open sourced the code for our core products or anything like that. And the reason why I think why we do this is that unlike some of the other companies in the space, we’re not selling a cloud computing service where we try to keep the different software infrastructure that we’re building proprietary. For us, it’s way better if the industry standardizes on the basic tools that we’re using and therefore we can benefit from the improvements that others make and others’ use of those tools can, in some cases like Open Compute, drive down the costs of those things which make our business more efficient too. So I think to some degree we’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon, and that creates different incentives for us. So overall, I think that that’s going to lead us to do more work in terms of open sourcing, some of the lower level models and tools. But of course, a lot of the product work itself is going to be specific and integrated with the things that we do. So it’s not that everything we do is going to be open. Obviously, a bunch of this needs to be developed in a way that creates unique value for our products, but I think in terms of the basic models, I would expect us to be pushing and helping to build out an open ecosystem here, which I think is something that’s going to be important. On the AI tools, and we have a bunch of history here, right? So if you if you look at what we’ve done with PyTorch, for example, which has generally become the standard in the industry as a tool that a lot of folks who are building AI models and different things in that space use, it’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. So the tool chain is the same. So when they create some innovation, we can easily integrate it into the things that we’re doing. When we improve something, it improves other products too. Because it’s integrated with our technology stack, when there are opportunities to make integrations with products, it’s much easier to make sure that developers and other folks are compatible with the things that we need in the way that our systems work. So there are a lot of advantages, but I view this more as a kind of back end infrastructure advantage with potential integrations on the product side, but one that should hopefully enable us to stay at the leading edge and integrate more broadly with the community and also make the way we run all this infrastructure more efficient over time. There are a number of models. I just gave PyTorch as an example. Open Compute is another model that has worked really well for us in this way, both to incorporate both innovation and scale efficiency into our own infrastructure. So I think that there’s, our incentives I think are basically aligned towards moving in this direction. Now that said, there’s a lot to figure out, right? So when you asked if there are going to be other opportunities, I hope so. I can’t speak to what all those things might be now. This is all quite early in getting developed. The better we do at the foundational work, the more opportunities I think that will come and present themselves. So I think that that’s all stuff that we need to figure out. But at least at the base level, I think we’re generally incentivized to move in this direction. And we also need to figure out how to go in that direction over time. I mean, I mentioned LLaMA before and I also want to be clear that while I’m talking about helping contribute to an open ecosystem, LLaMA is a model that we only really made available to researchers and there’s a lot of really good stuff that’s happening there. But a lot of the work that we’re doing, I think, we would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that.

[D] Playing big league at home on a budget?
reddit
LLM Vibe Score0
Human Vibe Score0.778
ballerburg9005This week

[D] Playing big league at home on a budget?

I am a hobbyist and my Nvidia 660 is 10 years old and only has 2GB. Obviously that isn't going to cut it nowadays anymore. I am thinking about options here. I don't have thousands and thousands of dollars. And I highly doubt that spending close to a thousand dollars on a brand new card is still viable in 2020-2022. I wanted to use Wavenet today and then found out about Melnet. I mean, maybe I could run Wavenet but nobody in their right mind wants to after hearing Melnet results. On Github this one guy complained he couldn't get his implementation to work due to OOM with 2x 2080 RTX, which he bought solely for this purpose. Then on the other repo the guy casually mentioned that tier XY doesn't fit with some 10 year old lowfi dataset, even with batch size 1, on a 16GB Tesla P100. The wisdom for OOM has always been "decrease batch size". But as far as I can tell, for most of any of the interesting stuff in the last 8 years or so you simply can't decrease batch size. Either because batch sizes are already so tiny, or because the code is written in a way that would require you to somehow turn it inside out, probably involving extreme knowledge of higher mathematics. I am a hobbyist, not a researcher. I am happy if I crudely can grasp what is going on. Most of anything in the field suffers from exactly the same issue: It simply won't run without utterly absurd amounts of VRAM. So what about buying shitty cheapo AMD GPUs with lots of VRAM? This seems to be the sensible choice if you want to be able to run anything noteworthy at all that comes up in the next 2 years and maybe beyond. People say, don't but AMD its slow and it sucks, but those are apparently the same people that buy a 16GB Titan GPU for $1500 three times on Ebay without hesitation, when there are also 16GB AMD GPUs for $300. How much slower are AMD GPUs really? Let's say they are 5 times cheaper so they could be just 5 times slower. So I have to train my model over night instead of seeing the result in the afternoon. That would be totally awesome!; given that the alternative is to buy a $300 Nvidia GPU, which has maybe 4 or 6GB and simply can't run the code without running out of memory. And say $300 is not enough, let's buy a $700 RTX 3080. It still only has 10GB of VRAM not even 16GB. Then its just as useless! What's the point of buying a fast GPU if it can't even run the code? I don't know how much slower AMD GPUs really are. Maybe they are not 5x but 50x slower. Then of course training a model that was developed on some 64GB Tesla might take month and years. But maybe speed is not the issue, only memory. I have seen some stuff even being optimized for CPU, apparently because there weren't any big enough GPUs around. I don't really know how viable that can be (it seems rarely if ever it is), I have no experience. And what about renting AWS? Let's say, I am a beginner and I want to toy around for a week and probably max out 4 Teslas like 80% of the time without really getting anywhere. How expensive is that? $25, $50, $100, $500? (Found the answer: fucking $2000 https://aws.amazon.com/ec2/instance-types/p3/ ) Ok, so AWS is bullshit, here its 6x cheaper: https://vast.ai/console/create/ . They don't really have 4x 16GB V100 though, just one V100. $0.5 per hour 24 7 = $84 per month (there are more hidden cost like bandwidth, it doesn't seem to be huge but I never used this so don't take it at face value). On AWS the same is over $3 per hour. So a day is $12, this could be viable! (look at calculation below). There really isn't much info on the net about hardware requirements and performance for machine learning stuff. What bothers me the most is that people seem to be very ignorant of the VRAM issue. Either because they aren't looking ahead of what might come in 1-2 years. Or because they are simply so rich they have no issue spending thousands and thousands of dollars every year instead of just 500 every couple of years. Or maybe they are both. So, yeah, what are your thoughts? Here is what I found out just today: Until 2 years ago, tensorflow and pytorch wouldn't work with AMD cards, but this has changed. https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html For older cards though, ROCm only works with certain CPUs: it needs PCIe 3.0 with atomics (see: https://github.com/RadeonOpenCompute/ROCm ). So you can't simply buy any 16GB card for $300 on Ebay like I suggested, even if it supports ROCm, because it will only work for "newer" PCs. The newer GFX9 AMD cards (like Radeon VII and Vega) don't suffer from this problem and work with PCIe 2.0 again... Although I have seen 16GB Vega cards for like $350 on Ebay, I think that is a pretty rare catch. However looking 1-2 years in the future, this is great because Radeon VII prices will be hugely inflated by Nvidia 3000 series hype (maybe down to $180 even) and maybe the next gen cards from AMD even have 24 or 32GB for $500-$1000 and can still run on old machines. According to this https://arxiv.org/pdf/1909.06842.pdf Radeon VII 16GB performs only half as good as Tesla V100 16GB, whereas V100 should be roughly along the lines of 11GB RTX 2080 Ti. So you could say that you get half the RAM, double the speed, double the price. I am not sure though if that holds. I think they were putting 16GB in those cards trying to push it for ML with ROCm, clearly addressing the problem of the time, but no one really jumped on the train and now Resnet shrinks RAM but needs more processing power. So they released 8GB cards again with slightly better performance, and I guess we are lucky if the next generation even has 16GB because games probably don't need it at all. Still though with Revnets and everything said in the comments, I think on a budget you are better on the safe side buying the card with the most amount of VRAM, rather than the most performance. Tomorrow some paper might come out that uses another method, then you can't trick-shrink your network anymore and then everyone needs to buy big ass cards again like it used to be and can do nothing but throw their fancy faster cards in the dumpster. Also the huge bulk of ML currently focuses on image processing, while sound has only been gaining real momentum recently and this will be followed by video processing and eventually human-alike thought processes that sit atop of all that and have not even been tackled yet. Its a rapidly evolving field, hard to predict what will come and stay. Running out of VRAM means total hardware failure, running slower just means waiting longer. If you just buy the newest card every year, its probably save to buy the fast card because things won't change that fast after all. If you buy a new card every 4 years or longer then just try to get as much VRAM as possible. Check this out: https://www.techspot.com/news/86811-gigabyte-accidentally-reveals-rtx-3070-16gb-rtx-3080.html There will be a 3070 16GB version! Let's compare renting one V100 at $12/day vs. buying a 3070 Ti 16GB: The 2080 Ti was 1.42x the price of the regular 2080 and released the next summer. So let's assume the same will be true to the 3070 Ti so it will cost $700. That is $30/month & $1.88/day for two years - $15/month & $0.94/day in four years (by which time you can probably rent some 32GB Tesla card for the same price and nothing recent runs on less anymore). If you max out your setup 24/7 all year, then power cost obviously becomes a huge factor to that figure. In my country running at 500W cost $4.21/day, or $1.60 / 9hrs overnight. If you live elsewhere it might be as much as a quarter of that price. Of course your PC may run 10h a day anyway, so its maybe just 300W plus, and an older graphics card is inefficient for games it eats more Watts to do the same things so you save some there as well. There is a lot to take into account if comparing. Anyway, factoring in power cost, to break even with buying the card vs. renting within two years, you would have to use it for at least 4 days a month, or almost 2 weeks every 3 month. If you use it less than that, you maybe have a nice new graphics card and less hassle with pushing stuff back and forth onto servers all the time. But it would have been more economic to rent. So renting isn't that bad after all. Overall if you are thinking about having this as your hobby, you could say that it will cost you at least $30 per month, if not $50 or more (when keeping up to date with cards every 2 instead of 4 years + using it more cost more power). I think that is quite hefty. Personally I am not even invested enough into this even if it wasn't over my finances. I want a new card of course and also play some new games, but I don't really need to. There are a lot of other (more) important things I am interested in, that are totally free.

[D] The current and future state of AI/ML is shockingly demoralizing with little hope of redemption
reddit
LLM Vibe Score0
Human Vibe Score1
Flaky_Suit_8665This week

[D] The current and future state of AI/ML is shockingly demoralizing with little hope of redemption

I recently encountered the PaLM (Scaling Language Modeling with Pathways) paper from Google Research and it opened up a can of worms of ideas I’ve felt I’ve intuitively had for a while, but have been unable to express – and I know I can’t be the only one. Sometimes I wonder what the original pioneers of AI – Turing, Neumann, McCarthy, etc. – would think if they could see the state of AI that we’ve gotten ourselves into. 67 authors, 83 pages, 540B parameters in a model, the internals of which no one can say they comprehend with a straight face, 6144 TPUs in a commercial lab that no one has access to, on a rig that no one can afford, trained on a volume of data that a human couldn’t process in a lifetime, 1 page on ethics with the same ideas that have been rehashed over and over elsewhere with no attempt at a solution – bias, racism, malicious use, etc. – for purposes that who asked for? When I started my career as an AI/ML research engineer 2016, I was most interested in two types of tasks – 1.) those that most humans could do but that would universally be considered tedious and non-scalable. I’m talking image classification, sentiment analysis, even document summarization, etc. 2.) tasks that humans lack the capacity to perform as well as computers for various reasons – forecasting, risk analysis, game playing, and so forth. I still love my career, and I try to only work on projects in these areas, but it’s getting harder and harder. This is because, somewhere along the way, it became popular and unquestionably acceptable to push AI into domains that were originally uniquely human, those areas that sit at the top of Maslows’s hierarchy of needs in terms of self-actualization – art, music, writing, singing, programming, and so forth. These areas of endeavor have negative logarithmic ability curves – the vast majority of people cannot do them well at all, about 10% can do them decently, and 1% or less can do them extraordinarily. The little discussed problem with AI-generation is that, without extreme deterrence, we will sacrifice human achievement at the top percentile in the name of lowering the bar for a larger volume of people, until the AI ability range is the norm. This is because relative to humans, AI is cheap, fast, and infinite, to the extent that investments in human achievement will be watered down at the societal, educational, and individual level with each passing year. And unlike AI gameplay which superseded humans decades ago, we won’t be able to just disqualify the machines and continue to play as if they didn’t exist. Almost everywhere I go, even this forum, I encounter almost universal deference given to current SOTA AI generation systems like GPT-3, CODEX, DALL-E, etc., with almost no one extending their implications to its logical conclusion, which is long-term convergence to the mean, to mediocrity, in the fields they claim to address or even enhance. If you’re an artist or writer and you’re using DALL-E or GPT-3 to “enhance” your work, or if you’re a programmer saying, “GitHub Co-Pilot makes me a better programmer?”, then how could you possibly know? You’ve disrupted and bypassed your own creative process, which is thoughts -> (optionally words) -> actions -> feedback -> repeat, and instead seeded your canvas with ideas from a machine, the provenance of which you can’t understand, nor can the machine reliably explain. And the more you do this, the more you make your creative processes dependent on said machine, until you must question whether or not you could work at the same level without it. When I was a college student, I often dabbled with weed, LSD, and mushrooms, and for a while, I thought the ideas I was having while under the influence were revolutionary and groundbreaking – that is until took it upon myself to actually start writing down those ideas and then reviewing them while sober, when I realized they weren’t that special at all. What I eventually determined is that, under the influence, it was impossible for me to accurately evaluate the drug-induced ideas I was having because the influencing agent the generates the ideas themselves was disrupting the same frame of reference that is responsible evaluating said ideas. This is the same principle of – if you took a pill and it made you stupider, would even know it? I believe that, especially over the long-term timeframe that crosses generations, there’s significant risk that current AI-generation developments produces a similar effect on humanity, and we mostly won’t even realize it has happened, much like a frog in boiling water. If you have children like I do, how can you be aware of the the current SOTA in these areas, project that 20 to 30 years, and then and tell them with a straight face that it is worth them pursuing their talent in art, writing, or music? How can you be honest and still say that widespread implementation of auto-correction hasn’t made you and others worse and worse at spelling over the years (a task that even I believe most would agree is tedious and worth automating). Furthermore, I’ve yet to set anyone discuss the train – generate – train - generate feedback loop that long-term application of AI-generation systems imply. The first generations of these models were trained on wide swaths of web data generated by humans, but if these systems are permitted to continually spit out content without restriction or verification, especially to the extent that it reduces or eliminates development and investment in human talent over the long term, then what happens to the 4th or 5th generation of models? Eventually we encounter this situation where the AI is being trained almost exclusively on AI-generated content, and therefore with each generation, it settles more and more into the mean and mediocrity with no way out using current methods. By the time that happens, what will we have lost in terms of the creative capacity of people, and will we be able to get it back? By relentlessly pursuing this direction so enthusiastically, I’m convinced that we as AI/ML developers, companies, and nations are past the point of no return, and it mostly comes down the investments in time and money that we’ve made, as well as a prisoner’s dilemma with our competitors. As a society though, this direction we’ve chosen for short-term gains will almost certainly make humanity worse off, mostly for those who are powerless to do anything about it – our children, our grandchildren, and generations to come. If you’re an AI researcher or a data scientist like myself, how do you turn things back for yourself when you’ve spent years on years building your career in this direction? You’re likely making near or north of $200k annually TC and have a family to support, and so it’s too late, no matter how you feel about the direction the field has gone. If you’re a company, how do you standby and let your competitors aggressively push their AutoML solutions into more and more markets without putting out your own? Moreover, if you’re a manager or thought leader in this field like Jeff Dean how do you justify to your own boss and your shareholders your team’s billions of dollars in AI investment while simultaneously balancing ethical concerns? You can’t – the only answer is bigger and bigger models, more and more applications, more and more data, and more and more automation, and then automating that even further. If you’re a country like the US, how do responsibly develop AI while your competitors like China single-mindedly push full steam ahead without an iota of ethical concern to replace you in numerous areas in global power dynamics? Once again, failing to compete would be pre-emptively admitting defeat. Even assuming that none of what I’ve described here happens to such an extent, how are so few people not taking this seriously and discounting this possibility? If everything I’m saying is fear-mongering and non-sense, then I’d be interested in hearing what you think human-AI co-existence looks like in 20 to 30 years and why it isn’t as demoralizing as I’ve made it out to be. &#x200B; EDIT: Day after posting this -- this post took off way more than I expected. Even if I received 20 - 25 comments, I would have considered that a success, but this went much further. Thank you to each one of you that has read this post, even more so if you left a comment, and triply so for those who gave awards! I've read almost every comment that has come in (even the troll ones), and am truly grateful for each one, including those in sharp disagreement. I've learned much more from this discussion with the sub than I could have imagined on this topic, from so many perspectives. While I will try to reply as many comments as I can, the sheer comment volume combined with limited free time between work and family unfortunately means that there are many that I likely won't be able to get to. That will invariably include some that I would love respond to under the assumption of infinite time, but I will do my best, even if the latency stretches into days. Thank you all once again!

[P] Jarvislabs.ai - An Affordable GPU Cloud with Fast launch, Pause and Resume. Scale GPUs post creation. A100/RTX6K/RTX5K
reddit
LLM Vibe Score0
Human Vibe Score1
vishnu_subramaniannThis week

[P] Jarvislabs.ai - An Affordable GPU Cloud with Fast launch, Pause and Resume. Scale GPUs post creation. A100/RTX6K/RTX5K

For the last few years, I have been learning and practicing Deep Learning. Participated in several Kaggle competitions and won few medals. During all these years, I tried several cloud platforms and on-premise systems. Some of them offered simplicity, flexibility, and affordability. But very few to none offered all of these in one platform. After struggling with different platforms, I know what I would need as a DL researcher. That gave birth to jarvislabs.ai with the aim of being simple and affordable. I along with my friends started working on this project a year back. Due to Covid, executing the project became more challenging. As first-time entrepreneurs, we underestimated the complexity of the problem at hand but with persistence, we were able to launch a beta version of the product in December 2020. With some of the amazing feedback from our early adopters, we have been able to make the product smoother. We would love to invite you all to come and try the platform. Features 1 click Jupyter Lab < \[30 seconds\] Pause the instance and Resume from where you left. SSH to the instance. Scale GPUs, storage and change GPU type on resume. Auto-Pause using jarviscloud.pause() in your code, so you can catch up some good night’s sleep while your model trains. Pay per usage – Minute Billing \[After first 15 minutes\] Competitive pricing \[Lowest to our Knowledge\]. &#x200B; Pricing |GPU Type|GPU RAM|Price -$/hr| |:-|:-|:-| |RTX 5000|16 GB|0.49| |RTX 6000|24 GB|0.99| |A100|40 GB|2.39| &#x200B; Talk to us We will be happy to assist you in spinning your first instance and many more. You can use one of these platforms to reach us. Chat option on cloud.jarvislabs.ai Email us - hello@jarvislabs.ai Comment here. We have come a long way, but we understand that a lot more has to be done. We have listed down all the upcoming product features here. Deep learning and AI are evolving and how we would use the cloud platforms could evolve in the coming years. Understanding this, we develop in the open by constantly keeping in touch with our users. Please help us in shaping Jarvislabs.ai with any valuable suggestions/feedback.

[N] TheSequence Scope: When it comes to machine learning, size matters: Microsoft's DeepSpeed framework, which can train a model with up to a trillion parameters
reddit
LLM Vibe Score0
Human Vibe Score1
KseniaseThis week

[N] TheSequence Scope: When it comes to machine learning, size matters: Microsoft's DeepSpeed framework, which can train a model with up to a trillion parameters

Hi there! Offering to your attention the latest edition of a weekly ML-newsletter that focusing on three things: impactful ML research papers, cool ML tech solutions, and ML use cases supported by investors. Please, see it below. Reddit is a new thing for me, and I've been struggling a bit with it, so please don't judge me too harsh for this promotion. This weekly digest is free and I hope you'd find the format convenient for you. Your feedback is very appreciated, and please feel free to sign up if you like it. 📝 Editorial  The recent emergence of pre-trained language models and transformer architectures pushed the creation of larger and larger machine learning models. Google’s BERT presented attention mechanism and transformer architecture possibilities as the “next big thing” in ML, and the numbers seem surreal. OpenAI’s GPT-2 set a record by processing 1.5 billion parameters, followed by Microsoft’s Turing-NLG, which processed 17 billion parameters just to see the new GPT-3 processing an astonishing 175 billion parameters. To not feel complacent, just this week Microsoft announced a new release of its DeepSpeed framework (which powers Turing-NLG), which can train a model with up to a trillion parameters. That sounds insane but it really isn’t.   What we are seeing is a consequence of several factors. First, computation power and parallelization techniques have evolved to a point where it is relatively easy to train machine learning models in large clusters of machines. Second and most importantly, in the current state of machine learning, larger models have regularly outperformed smaller and more specialized models. Knowledge reusability methods like transfer learning are still in very nascent stages. As a result, it’s really hard to build small models that can operate in uncertain environments. Furthermore, as models like GPT-3 and Turing-NLG have shown, there is some unexplainable magic that happens after models go past a certain size. Many of the immediate machine learning problems might be solved by scaling the current generation of neural network architectures. Plain and simple, when it comes to machine learning, size matters.   We would love to hear your opinions about the debate between broader-larger vs. smaller and more specialized models.   Leave a comment Now, to the most important developments in the AI industry this week 🔎 ML Research GPT-3 Falls Short in Machine Comprehension Proposed by researchers from a few major American universities, a 57-task test to measure models’ ability to reason poses challenges even for sophisticated models like GPT-3 ->read more in the original paper Better Text Summarization OpenAI published a paper showing a reinforcement learning with human feedback technique that can surpass supervised models ->read more on OpenAI blog Reinforcement Learning with Offline Datasets Researchers from the Berkeley AI Research (BAIR) Lab published a paper unveiling a method that uses offline datasets to improve reinforcement learning models->read more on BAIR blog 🤖 Cool AI Tech Releases New Version of DeepSpeed Microsoft open-sourced a new version of DeepSpeed, an open-source library for parallelizable training that can scale up to models with 1 trillion parameters->read more on Microsoft Research blog 💸 Money in AI AI-powered customer experience management platform Sprinklr has raised $200 million (kudos to our subscribers from Sprinklr 👏). Sprinklr's “AI listening processing” solution allows companies to get structured and meaningful sentiments and insights from unstructured customer data that comes from public conversations on different websites and social platforms. Xometry, an on-demand industrial parts marketplace, raises $75 million in Series E funding. The company provides a digital way of creating the right combination of buyers and manufacturers. Another example of AI implementation into matching two sides for a deal. Real estate tech company Orchard raises $69 million in its recent funding round. Orchard aims to digitize the whole real estate market, by developing a solution that combines machine learning and rapid human assistance to smooth the search, match the right deal, and simplify buying and selling relationships. Cybersecurity startup Pcysys raised $25 million in its funding round. Pcysys’ platform, which doesn’t require installation or network reconfiguration, uses algorithms to scan and “ethically” attack enterprise networks. Robotics farming company Iron Ox raised $20 million in a funding round. The system of farming robots is still semi-autonomous, the company’s goal is to become fully autonomous.  Insurtech company Descartes Underwriting raised $18.5 million. The company applies AI and machine learning technologies to climate risk predicting and insurance underwriting. Legaltech startup ThoughtRiver raised $10 million in its Series A round. Its AI solution applied to contract pre-screening aims to boost operational efficiency. Medtech startup Skin Analytics raised $5.1 million in Series A funding. Skin Analytics has developed a clinically validated AI system that can identify not only the important skin cancers but also precancerous lesions that can be treated, as well as a range of lesions that are benign. Amazon, along with several government organizations and three other industry partners, helped fund the National Science Foundation, a high-priority AI research initiative. The amount of funding is not disclosed. The content of TheSequence is written by Jesus Rodriguez, one of the most-read contributors to KDNuggets and TDS. You can check his Medium here.

[D] Last Week in Medical AI: Top LLM Research Papers/Models (December 7 - December 14, 2024)
reddit
LLM Vibe Score0
Human Vibe Score0
aadityauraThis week

[D] Last Week in Medical AI: Top LLM Research Papers/Models (December 7 - December 14, 2024)

[\[D\] Last Week in Medical AI: Top LLM Research Papers\/Models \(December 7 - December 14, 2024\)](https://preview.redd.it/o23fp3csj07e1.jpg?width=1280&format=pjpg&auto=webp&s=69e19fc351b3aa5e34c4c00e66245583f88bd9bb) Medical LLM & Other Models PediaBench: Chinese Pediatric LLM This paper introduces PediaBench, the first Chinese pediatric dataset for evaluating Large Language Model (LLM) question-answering performance, containing 4,565 objective and 1,632 subjective questions across 12 disease groups. BiMediX: Bilingual Medical LLM This paper introduces BiMediX, the first bilingual (English-Arabic) medical Mixture of Experts LLM, along with BiMed1.3M, a 1.3M bilingual medical instruction dataset with over 632M tokens used for training. Diverse medical knowledge integration This paper introduces BiMediX2, a bilingual (Arabic-English) Large Multimodal Model (LMM) based on Llama3.1 architecture, trained on 1.6M medical interaction samples. BRAD: Digital Biology Language Model This paper introduces BRAD (Bioinformatics Retrieval Augmented Digital assistant), an LLM-powered chatbot and agent system integrating various bioinformatics tools. MMedPO: Vision-Language Medical LLM This paper introduces MMedPO, a multimodal medical preference optimization approach to improve factual accuracy in Medical Large Vision-Language Models (Med-LVLMs) by addressing modality misalignment. Frameworks & Methodologies \- TOP-Training: Medical Q&A Framework \- Hybrid RAG: Secure Medical Data Management \- Zero-Shot ATC Clinical Coding \- Chest X-Ray Diagnosis Architecture \- Medical Imaging AI Democratization Benchmarks & Evaluations \- KorMedMCQA: Korean Healthcare Licensing Benchmark \- Large Language Model Medical Tasks \- Clinical T5 Model Performance Study \- Radiology Report Quality Assessment \- Genomic Analysis Benchmarking LLM Applications \- TCM-FTP: Herbal Prescription Prediction \- LLaSA: Activity Analysis via Sensors \- Emergency Department Visit Predictions \- Neurodegenerative Disease AI Diagnosis \- Kidney Disease Explainable AI Model Ethical AI & Privacy \- Privacy-Preserving LLM Mechanisms \- AI-Driven Digital Organism Modeling \- Biomedical Research Automation \- Multimodality in Medical Practice Full thread in detail: https://x.com/OpenlifesciAI/status/1867999825721242101

[D] AI regulation: a review of NTIA's "AI Accountability Policy" doc
reddit
LLM Vibe Score0
Human Vibe Score0.667
elehman839This week

[D] AI regulation: a review of NTIA's "AI Accountability Policy" doc

How will governments respond to the rapid rise of AI? How can sensible regulation keep pace with AI technology? These questions interest many of us! One early US government response has come from the National Telecommunications and Information Administration (NTIA). Specifically, the NTIA published an "AI Accountability Policy Request for Comment" on April 11, 2023. I read the NTIA document carefully, and I'm sharing my observations here for others interested in AI regulation. You can, of course, read the original materials and form your own opinions. Moreover, you can share those opinions not only on this post, but also with the NTIA itself until June 12, 2023. As background, the NTIA (homepage, Wikipedia) consists of a few hundred people within the Department of Commerce. The official mission of the NTIA is "advising the President on telecommunications and information policy issues". Topics covered by NTIA include broadband internet access, spectrum management, internet health, and now artificial intelligence. I do not know whether the NTIA will ultimately drive thinking around AI regulation in the United States or they are just a spunky lot who got something on paper early. The NTIA document is not a specific policy proposal, but rather a thoughtful discussion of AI regulation, followed by a long list of questions on which the NTIA seeks input. This format seems appropriate right now, as we're all trying to make sense of a fast-changing world. The NTIA document leans heavily on two others: the Blueprint for an AI Bill of Rights from the White House Office of Science and Technology and the AI Risk Management Framework from the National Institute of Standards and Technology (NIST). Without going into these two in depth, even tiny snippets convey their differing audiences and flavors: White House Blueprint: "You should be protected from safe and ineffective systems." NIST Framework: "Risk refers to the composite measure of an event’s probability of occurring and the magnitude or degree of the consequences of the corresponding event." Now, turning back to the NTIA document itself, I'll comment on three aspects (1) scope, (2) problems addressed, and (3) solutions contemplated. Scope is critical to understanding the NTIA document, and is probably worth keeping in mind in all near-term discussion of AI regulation. Over the past several years, at least two different technologies have been called "AI". The document mentions both, but the emphasis is NOT on the one you're probably thinking about. In more detail: A few years ago, regulators began scrutinizing "automated decisions systems", which passed as "AI" in those ancient times. An example would be an ML model used by a bank to decide whether or not you get a loan. That model might take in all sorts of information about you, combine it in mysterious ML ways, and reject your loan request. Then you might wonder, "Did that system effectively use my address and name to deduce that I am black and then reject my loan request on the basis of race?" There is some evidence of that happening, and this seems like an injustice. So perhaps such systems should be audited and certified so people know this won't happen. This is the focus of the document. These days, AI more commonly refers to open-ended systems that can engage on a wide range of topics and approximate human intelligence. The document briefly mentions generative AI models, large language models, ChatGPT, and "foundational models" (sic), but this is not the focus. The passing mentions may obscure this, unfortunately. In my opinion, these two notions of "AI" are radically different, and many of the differences matter from a regulatory perspective. Yet NTIA lumps both under a sweeping definition of an "AI system" as "an engineered or machine-based system that can, for a given set of objectives, generate outputs such as predictions, recommendations, or decisions influencing real or virtual environments." (Hmm, this includes my Magic 8-Ball…) Keep scope in mind as we turn to the next aspect: the problems under discussion. Now, NTIA's goal is to solicit input, so considering a wide range of potential problems associated with AI makes sense. Consistent with that, the document refers to democratic values, civil rights, civil liberties, and privacy. And citing the NIST doc, NTIA vaguely notes "a wide range of potential AI risks". Also, AI systems should be "valid and reliable, safe, secure and resilient, accountable and transparent, explainable and interpretable, privacy-enhanced, and fair with their harmful bias managed". And they should call their mothers \every\ week. (Okay, I made that one up.) A few comments on this formulation of the problem. First, these concerns feel more applicable to older-style AI. This includes automated decisions systems, like for a bank loan or for a prison parole recommendation. Sure, I believe such systems should operate in ways consistent with our consensus societal values, and further regulation may be needed to achieve that. But, hello! There's also another, newer class of AI that poses additional challenges. And I don't see those discussed in the NTIA document. Such challenges might include: People losing jobs because AI takes their work. Ensuring malicious people don't use AI tools to wreak havoc on the world. Sorting out intellectual property issues around AI to ensure both rapid progress in the field and respect for creators' rights. Ensuring laws appropriately assign culpability to humans when AIs cause harm. Planning for an incident analogous to the first internet worm, where an AI goes rogue, wreaks some havoc, and everyone is shocked (before it happens 28,385 more times). Bottom line: when I cntrl-F the doc for "robotic overlords", I get zero hits. ZERO. This is why I now believe scope is so important when considering efforts to regulate AI: are we talking about old-school AI or 2023-era AI or what? Because they are pretty different. The last aspect I'll address is the solutions contemplated. Again, NTIA's goal is to stimulate discussion, not propose something specific. Nevertheless, there is a strong push in one particular direction: unlike, "robotic overlord", the word "audit" appears more than 100 times along with many instances of "assessment" and "certification". On one hand, this approach makes sense. Suppose you want to ensure that a bank loan system is fair, that a social media platform isn't spreading misinformation, that a search engine is returning accurate results, etc. Then someone, somewhere has to assess or audit that system and look for problems. That audit might be done by the creator of the system or a third-party auditing agency. Such audits could be incentivized by mandates, prizes, or shiny gold stars. The government might help by fostering development of auditing tools and data. The NTIA is open to all such possibilities and seeks input on how to proceed. On the other hand, this seems like a tactic best suited to automated decision systems operated by financial institutions, government agencies, and the like. Such formal processes seem a poor fit for the current AI wave. For example: Auditing will take time and money. That's something a bank might pay for a system that will run for years. For something fine-tuned over the weekend at a startup or by some guy living in his mother's basement, that's probably not going to happen. Auditing a straightforward decision system seems far easier than assessing an open-ended AI. Beyond basic practicality, the AI could be taught to lie when it senses an audit. Also, auditing procedures (like the NTIA doc itself) will presumably be online, which means that AIs will read them and could potentially respond. Most current ML models fix parameters after training, but I think we'll soon see some models whose parameters evolve as they engage with the world. Auditing such a system that varies continuously over time seems especially difficult. Auditing a foundation model probably tells you little about derivative models. A sweet-hearted model can surely be made into monster with moderate additional training; you don't need to teach the model new cognitive skills, just repurpose existing ones to new ends. More generally, auditing doesn't address many of my concerns about AI regulation (see list above). For example, auditing sort of assumes a basically responsible actor (bank, government agency, big tech company), but AI could be misused by malicious people who, naturally, will not seek a responsible outside assessment. In any case, for both old-school and modern AI, auditing is only one line of defense, and that's not enough. You can audit until you're blue in the face, stuff will still get through, and AI systems will still cause some harm. So what's the next line of defense? For example, is our legal system ready to sensibly assign culpability to humans for AI-related incidents? In summary, the critical problem with the NTIA document is that it creates a largely false appearance of US government engagement with the new class of AI technology. As a result, people could wrongly believe that the US government is already responding to the rise of AI, and fail to advocate for actual, effective engagement. That said, the NTIA document does address important issues around a prominent technology sometimes (formerly?) called "AI". Even there, however, the proposed approach (auditing) seems like an overly-fragile, single line of defense.

[N] Inside DeepMind's secret plot to break away from Google
reddit
LLM Vibe Score0
Human Vibe Score0
MassivePellfishThis week

[N] Inside DeepMind's secret plot to break away from Google

Article https://www.businessinsider.com/deepmind-secret-plot-break-away-from-google-project-watermelon-mario-2021-9 by Hugh Langley and Martin Coulter For a while, some DeepMind employees referred to it as "Watermelon." Later, executives called it "Mario." Both code names meant the same thing: a secret plan to break away from parent company Google. DeepMind feared Google might one day misuse its technology, and executives worked to distance the artificial-intelligence firm from its owner for years, said nine current and former employees who were directly familiar with the plans. This included plans to pursue an independent legal status that would distance the group's work from Google, said the people, who asked not to be identified discussing private matters. One core tension at DeepMind was that it sold the business to people it didn't trust, said one former employee. "Everything that happened since that point has been about them questioning that decision," the person added. Efforts to separate DeepMind from Google ended in April without a deal, The Wall Street Journal reported. The yearslong negotiations, along with recent shake-ups within Google's AI division, raise questions over whether the search giant can maintain control over a technology so crucial to its future. "DeepMind's close partnership with Google and Alphabet since the acquisition has been extraordinarily successful — with their support, we've delivered research breakthroughs that transformed the AI field and are now unlocking some of the biggest questions in science," a DeepMind spokesperson said in a statement. "Over the years, of course we've discussed and explored different structures within the Alphabet group to find the optimal way to support our long-term research mission. We could not be prouder to be delivering on this incredible mission, while continuing to have both operational autonomy and Alphabet's full support." When Google acquired DeepMind in 2014, the deal was seen as a win-win. Google got a leading AI research organization, and DeepMind, in London, won financial backing for its quest to build AI that can learn different tasks the way humans do, known as artificial general intelligence. But tensions soon emerged. Some employees described a cultural conflict between researchers who saw themselves firstly as academics and the sometimes bloated bureaucracy of Google's colossal business. Others said staff were immediately apprehensive about putting DeepMind's work under the control of a tech giant. For a while, some employees were encouraged to communicate using encrypted messaging apps over the fear of Google spying on their work. At one point, DeepMind's executives discovered that work published by Google's internal AI research group resembled some of DeepMind's codebase without citation, one person familiar with the situation said. "That pissed off Demis," the person added, referring to Demis Hassabis, DeepMind's CEO. "That was one reason DeepMind started to get more protective of their code." After Google restructured as Alphabet in 2015 to give riskier projects more freedom, DeepMind's leadership started to pursue a new status as a separate division under Alphabet, with its own profit and loss statement, The Information reported. DeepMind already enjoyed a high level of operational independence inside Alphabet, but the group wanted legal autonomy too. And it worried about the misuse of its technology, particularly if DeepMind were to ever achieve AGI. Internally, people started referring to the plan to gain more autonomy as "Watermelon," two former employees said. The project was later formally named "Mario" among DeepMind's leadership, these people said. "Their perspective is that their technology would be too powerful to be held by a private company, so it needs to be housed in some other legal entity detached from shareholder interest," one former employee who was close to the Alphabet negotiations said. "They framed it as 'this is better for society.'" In 2017, at a company retreat at the Macdonald Aviemore Resort in Scotland, DeepMind's leadership disclosed to employees its plan to separate from Google, two people who were present said. At the time, leadership said internally that the company planned to become a "global interest company," three people familiar with the matter said. The title, not an official legal status, was meant to reflect the worldwide ramifications DeepMind believed its technology would have. Later, in negotiations with Google, DeepMind pursued a status as a company limited by guarantee, a corporate structure without shareholders that is sometimes used by nonprofits. The agreement was that Alphabet would continue to bankroll the firm and would get an exclusive license to its technology, two people involved in the discussions said. There was a condition: Alphabet could not cross certain ethical redlines, such as using DeepMind technology for military weapons or surveillance. In 2019, DeepMind registered a new company called DeepMind Labs Limited, as well as a new holding company, filings with the UK's Companies House showed. This was done in anticipation of a separation from Google, two former employees involved in those registrations said. Negotiations with Google went through peaks and valleys over the years but gained new momentum in 2020, one person said. A senior team inside DeepMind started to hold meetings with outside lawyers and Google to hash out details of what this theoretical new formation might mean for the two companies' relationship, including specifics such as whether they would share a codebase, internal performance metrics, and software expenses, two people said. From the start, DeepMind was thinking about potential ethical dilemmas from its deal with Google. Before the 2014 acquisition closed, both companies signed an "Ethics and Safety Review Agreement" that would prevent Google from taking control of DeepMind's technology, The Economist reported in 2019. Part of the agreement included the creation of an ethics board that would supervise the research. Despite years of internal discussions about who should sit on this board, and vague promises to the press, this group "never existed, never convened, and never solved any ethics issues," one former employee close to those discussions said. A DeepMind spokesperson declined to comment. DeepMind did pursue a different idea: an independent review board to convene if it were to separate from Google, three people familiar with the plans said. The board would be made up of Google and DeepMind executives, as well as third parties. Former US president Barack Obama was someone DeepMind wanted to approach for this board, said one person who saw a shortlist of candidates. DeepMind also created an ethical charter that included bans on using its technology for military weapons or surveillance, as well as a rule that its technology should be used for ways that benefit society. In 2017, DeepMind started a unit focused on AI ethics research composed of employees and external research fellows. Its stated goal was to "pave the way for truly beneficial and responsible AI." A few months later, a controversial contract between Google and the Pentagon was disclosed, causing an internal uproar in which employees accused Google of getting into "the business of war." Google's Pentagon contract, known as Project Maven, "set alarm bells ringing" inside DeepMind, a former employee said. Afterward, Google published a set of principles to govern its work in AI, guidelines that were similar to the ethical charter that DeepMind had already set out internally, rankling some of DeepMind's senior leadership, two former employees said. In April, Hassabis told employees in an all-hands meeting that negotiations to separate from Google had ended. DeepMind would maintain its existing status inside Alphabet. DeepMind's future work would be overseen by Google's Advanced Technology Review Council, which includes two DeepMind executives, Google's AI chief Jeff Dean, and the legal SVP Kent Walker. But the group's yearslong battle to achieve more independence raises questions about its future within Google. Google's commitment to AI research has also come under question, after the company forced out two of its most senior AI ethics researchers. That led to an industry backlash and sowed doubt over whether it could allow truly independent research. Ali Alkhatib, a fellow at the Center for Applied Data Ethics, told Insider that more public accountability was "desperately needed" to regulate the pursuit of AI by large tech companies. For Google, its investment in DeepMind may be starting to pay off. Late last year, DeepMind announced a breakthrough to help scientists better understand the behavior of microscopic proteins, which has the potential to revolutionize drug discovery. As for DeepMind, Hassabis is holding on to the belief that AI technology should not be controlled by a single corporation. Speaking at Tortoise's Responsible AI Forum in June, he proposed a "world institute" of AI. Such a body might sit under the jurisdiction of the United Nations, Hassabis theorized, and could be filled with top researchers in the field. "It's much stronger if you lead by example," he told the audience, "and I hope DeepMind can be part of that role-modeling for the industry."

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call
reddit
LLM Vibe Score0
Human Vibe Score1
noiseinvacuumThis week

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call

During the recent earnings call, Mark Zuckerberg answered a question from Eric Sheridan of Goldman Sachs on Meta's AI strategy, opportunities to integrate into products, and why they open source models and how it would benefit their business. I found the reasoning to be very sound and promising for the OSS and AI community. The biggest risk from AI, in my opinion, is not the doomsday scenarios that intuitively come to mind but rather that the most powerful AI systems will only be accessible to the most powerful and resourceful corporations. Quote copied from Ben Thompson's write up on Meta's earning in his Stratechery blog post which goes beyond AI. It's behind a paywall but I highly recommend it personally. Some noteworthy quotes that signal the thought process at Meta FAIR and more broadly We’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon We would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that. ...lead us to do more work in terms of open sourcing, some of the lower level models and tools Open sourcing low level tools make the way we run all this infrastructure more efficient over time. On PyTorch: It’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. I would expect us to be pushing and helping to build out an open ecosystem. For all the negative that comes out of the popular discourse on Meta, I think their work to open source key tech tools over the last 10 years has been exceptional, here's hoping it continues into this decade of AI and pushes other tech giants to also realize the benefits of Open Source. Full Transcript: Right now most of the companies that are training large language models have business models that lead them to a closed approach to development. I think there’s an important opportunity to help create an open ecosystem. If we can help be a part of this, then much of the industry will standardize on using these open tools and help improve them further. So this will make it easier for other companies to integrate with our products and platforms as we enable more integrations, and that will help our products stay at the leading edge as well. Our approach to AI and our infrastructure has always been fairly open. We open source many of our state of the art models so people can experiment and build with them. This quarter we released our LLaMa LLM to researchers. It has 65 billion parameters but outperforms larger models and has proven quite popular. We’ve also open-sourced three other groundbreaking visual models along with their training data and model weights — Segment Anything, DinoV2, and our Animated Drawings tool — and we’ve gotten positive feedback on all of those as well. I think that there’s an important distinction between the products we offer and a lot of the technical infrastructure, especially the software that we write to support that. And historically, whether it’s the Open Compute project that we’ve done or just open sourcing a lot of the infrastructure that we’ve built, we’ve historically open sourced a lot of that infrastructure, even though we haven’t open sourced the code for our core products or anything like that. And the reason why I think why we do this is that unlike some of the other companies in the space, we’re not selling a cloud computing service where we try to keep the different software infrastructure that we’re building proprietary. For us, it’s way better if the industry standardizes on the basic tools that we’re using and therefore we can benefit from the improvements that others make and others’ use of those tools can, in some cases like Open Compute, drive down the costs of those things which make our business more efficient too. So I think to some degree we’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon, and that creates different incentives for us. So overall, I think that that’s going to lead us to do more work in terms of open sourcing, some of the lower level models and tools. But of course, a lot of the product work itself is going to be specific and integrated with the things that we do. So it’s not that everything we do is going to be open. Obviously, a bunch of this needs to be developed in a way that creates unique value for our products, but I think in terms of the basic models, I would expect us to be pushing and helping to build out an open ecosystem here, which I think is something that’s going to be important. On the AI tools, and we have a bunch of history here, right? So if you if you look at what we’ve done with PyTorch, for example, which has generally become the standard in the industry as a tool that a lot of folks who are building AI models and different things in that space use, it’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. So the tool chain is the same. So when they create some innovation, we can easily integrate it into the things that we’re doing. When we improve something, it improves other products too. Because it’s integrated with our technology stack, when there are opportunities to make integrations with products, it’s much easier to make sure that developers and other folks are compatible with the things that we need in the way that our systems work. So there are a lot of advantages, but I view this more as a kind of back end infrastructure advantage with potential integrations on the product side, but one that should hopefully enable us to stay at the leading edge and integrate more broadly with the community and also make the way we run all this infrastructure more efficient over time. There are a number of models. I just gave PyTorch as an example. Open Compute is another model that has worked really well for us in this way, both to incorporate both innovation and scale efficiency into our own infrastructure. So I think that there’s, our incentives I think are basically aligned towards moving in this direction. Now that said, there’s a lot to figure out, right? So when you asked if there are going to be other opportunities, I hope so. I can’t speak to what all those things might be now. This is all quite early in getting developed. The better we do at the foundational work, the more opportunities I think that will come and present themselves. So I think that that’s all stuff that we need to figure out. But at least at the base level, I think we’re generally incentivized to move in this direction. And we also need to figure out how to go in that direction over time. I mean, I mentioned LLaMA before and I also want to be clear that while I’m talking about helping contribute to an open ecosystem, LLaMA is a model that we only really made available to researchers and there’s a lot of really good stuff that’s happening there. But a lot of the work that we’re doing, I think, we would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that.

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.
reddit
LLM Vibe Score0
Human Vibe Score0.6
AlexSnakeKingThis week

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.

TD;LR: At Company A, Team X does advanced analytics using on-prem ERP tools and older programming languages. Their tools work very well and are designed based on very deep business and domain expertise. Team Y is a new and ambitious Data Science team that thinks they can replace Team X's tools with a bunch of R scripts and a custom built ML platform. Their models are simplistic, but more "fashionable" compared to the econometric models used by Team X, and team Y benefits from the ML/DS moniker so leadership is allowing Team Y to start a large scale overhaul of the analytics platform in question. Team Y doesn't have the experience for such a larger scale transformation, and is refusing to collaborate with team X. This project is very likely going to fail, and cause serious harm to the company as a whole financially and from a people perspective. I argue that this is not just because of bad leadership, but also because of various trends and mindsets in the DS community at large. Update (Jump to below the line for the original story): Several people in the comments are pointing out that this just a management failure, not something due to ML/DS, and that you can replace DS with any buzz tech and the story will still be relevant. My response: Of course, any failure at an organization level is ultimately a management failure one way or the other. Moreover, it is also the case that ML/DS when done correctly, will always improve a company's bottom line. There is no scenario where the proper ML solution, delivered at a reasonable cost and in a timely fashion, will somehow hurt the company's bottom line. My point is that in this case management is failing because of certain trends and practices that are specific to the ML/DS community, namely: The idea that DS teams should operate independently of tech and business orgs -- too much autonomy for DS teams The disregard for domain knowledge that seems prevalent nowadays thanks to the ML hype, that DS can be generalists and someone with good enough ML chops can solve any business problem. That wasn't the case when I first left academia for the industry in 2009 (back then nobody would even bother with a phone screen if you didn't have the right domain knowledge). Over reliance on resources who check all the ML hype related boxes (knows Python, R, Tensorflow, Shiny, etc..., has the right Coursera certifications, has blogged on the topic, etc...), but are lacking in depth of experience. DS interviews nowadays all seem to be: Can you tell me what a p-value is? What is elastic net regression? Show me how to fit a model in sklearn? How do you impute NAs in an R dataframe? Any smart person can look those up on Stackoverflow or Cross-Validated,.....Instead teams should be asking stuff like: why does portfolio optimization use QP not LP? How does a forecast influence a customer service level? When should a recommendation engine be content based and when should it use collaborative filtering? etc... (This is a true story, happening to the company I currently work for. Names, domains, algorithms, and roles have been shuffled around to protect my anonymity)  Company A has been around for several decades. It is not the biggest name in its domain, but it is a well respected one. Risk analysis and portfolio optimization have been a core of Company A's business since the 90s. They have a large team of 30 or so analysts who perform those tasks on a daily basis. These analysts use ERP solutions implemented for them by one the big ERP companies (SAP, Teradata, Oracle, JD Edwards,...) or one of the major tech consulting companies (Deloitte, Accenture, PWC, Capgemini, etc...) in collaboration with their own in house engineering team. The tools used are embarrassingly old school: Classic RDBMS running on on-prem servers or maybe even on mainframes, code written in COBOL, Fortran, weird proprietary stuff like ABAP or SPSS.....you get the picture. But the models and analytic functions were pretty sophisticated, and surprisingly cutting edge compared to the published academic literature. Most of all, they fit well with the company's enterprise ecosystem, and were honed based on years of deep domain knowledge.  They have a tech team of several engineers (poached from the aforementioned software and consulting companies) and product managers (who came from the experienced pools of analysts and managers who use the software, or poached from business rivals) maintaining and running this software. Their technology might be old school, but collectively, they know the domain and the company's overall architecture very, very well. They've guided the company through several large scale upgrades and migrations and they have a track record of delivering on time, without too much overhead. The few times they've stumbled, they knew how to pick themselves up very quickly. In fact within their industry niche, they have a reputation for their expertise, and have very good relations with the various vendors they've had to deal with. They were the launching pad of several successful ERP consulting careers.  Interestingly, despite dealing on a daily basis with statistical modeling and optimization algorithms, none of the analysts, engineers, or product managers involved describe themselves as data scientists or machine learning experts. It is mostly a cultural thing: Their expertise predates the Data Science/ML hype that started circa 2010, and they got most of their chops using proprietary enterprise tools instead of the open source tools popular nowadays. A few of them have formal statistical training, but most of them came from engineering or domain backgrounds and learned stats on the fly while doing their job. Call this team "Team X".  Sometime around the mid 2010s, Company A started having some serious anxiety issues: Although still doing very well for a company its size, overall economic and demographic trends were shrinking its customer base, and a couple of so called disruptors came up with a new app and business model that started seriously eating into their revenue. A suitable reaction to appease shareholders and Wall Street was necessary. The company already had a decent website and a pretty snazzy app, what more could be done? Leadership decided that it was high time that AI and ML become a core part of the company's business. An ambitious Manager, with no science or engineering background, but who had very briefly toyed with a recommender system a couple of years back, was chosen to build a data science team, call it team "Y" (he had a bachelor's in history from the local state college and worked for several years in the company's marketing org). Team "Y" consists mostly of internal hires who decided they wanted to be data scientists and completed a Coursera certification or a Galvanize boot camp, before being brought on to the team, along with a few of fresh Ph.D or M.Sc holders who didn't like academia and wanted to try their hand at an industry role. All of them were very bright people, they could write great Medium blog posts and give inspiring TED talks, but collectively they had very little real world industry experience. As is the fashion nowadays, this group was made part of a data science org that reported directly to the CEO and Board, bypassing the CIO and any tech or business VPs, since Company A wanted to claim the monikers "data driven" and "AI powered" in their upcoming shareholder meetings. In 3 or 4 years of existence, team Y produced a few Python and R scripts. Their architectural experience  consisted almost entirely in connecting Flask to S3 buckets or Redshift tables, with a couple of the more resourceful ones learning how to plug their models into Tableau or how to spin up a Kuberneties pod.  But they needn't worry: The aforementioned manager, who was now a director (and was also doing an online Masters to make up for his qualifications gap and bolster his chances of becoming VP soon - at least he now understands what L1 regularization is), was a master at playing corporate politics and self-promotion. No matter how few actionable insights team Y produced or how little code they deployed to production, he always had their back and made sure they had ample funding. In fact he now had grandiose plans for setting up an all-purpose machine learning platform that can be used to solve all of the company's data problems.  A couple of sharp minded members of team Y, upon googling their industry name along with the word "data science", realized that risk analysis was a prime candidate for being solved with Bayesian models, and there was already a nifty R package for doing just that, whose tutorial they went through on R-Bloggers.com. One of them had even submitted a Bayesian classifier Kernel for a competition on Kaggle (he was 203rd on the leaderboard), and was eager to put his new-found expertise to use on a real world problem. They pitched the idea to their director, who saw a perfect use case for his upcoming ML platform. They started work on it immediately, without bothering to check whether anybody at Company A was already doing risk analysis. Since their org was independent, they didn't really need to check with anybody else before they got funding for their initiative. Although it was basically a Naive Bayes classifier, the term ML was added to the project tile, to impress the board.  As they progressed with their work however, tensions started to build. They had asked the data warehousing and CA analytics teams to build pipelines for them, and word eventually got out to team X about their project. Team X was initially thrilled: They offered to collaborate whole heartedly, and would have loved to add an ML based feather to their already impressive cap. The product owners and analysts were totally onboard as well: They saw a chance to get in on the whole Data Science hype that they kept hearing about. But through some weird mix of arrogance and insecurity, team Y refused to collaborate with them or share any of their long term goals with them, even as they went to other parts of the company giving brown bag presentations and tutorials on the new model they created.  Team X got resentful: from what they saw of team Y's model, their approach was hopelessly naive and had little chances of scaling or being sustainable in production, and they knew exactly how to help with that. Deploying the model to production would have taken them a few days, given how comfortable they were with DevOps and continuous delivery (team Y had taken several months to figure out how to deploy a simple R script to production). And despite how old school their own tech was, team X were crafty enough to be able to plug it in to their existing architecture. Moreover, the output of the model was such that it didn't take into account how the business will consume it or how it was going to be fed to downstream systems, and the product owners could have gone a long way in making the model more amenable to adoption by the business stakeholders. But team Y wouldn't listen, and their leads brushed off any attempts at communication, let alone collaboration. The vibe that team Y was giving off was "We are the cutting edge ML team, you guys are the legacy server grunts. We don't need your opinion.", and they seemed to have a complete disregard for domain knowledge, or worse, they thought that all that domain knowledge consisted of was being able to grasp the definitions of a few business metrics.  Team X got frustrated and tried to express their concerns to leadership. But despite owning a vital link in Company A's business process, they were only \~50 people in a large 1000 strong technology and operations org, and they were several layers removed from the C-suite, so it was impossible for them to get their voices heard.  Meanwhile, the unstoppable director was doing what he did best: Playing corporate politics. Despite how little his team had actually delivered, he had convinced the board that all analysis and optimization tasks should now be migrated to his yet to be delivered ML platform. Since most leaders now knew that there was overlap between team Y and team X's objectives, his pitch was no longer that team Y was going to create a new insight, but that they were going to replace (or modernize) the legacy statistics based on-prem tools with more accurate cloud based ML tools. Never mind that there was no support in the academic literature for the idea that Naive Bayes works better than the Econometric approaches used by team X, let alone the additional wacky idea that Bayesian Optimization would definitely outperform the QP solvers that were running in production.  Unbeknownst to team X, the original Bayesian risk analysis project has now grown into a multimillion dollar major overhaul initiative, which included the eventual replacement of all of the tools and functions supported by team X along with the necessary migration to the cloud. The CIO and a couple of business VPs are on now board, and tech leadership is treating it as a done deal. An outside vendor, a startup who nobody had heard of, was contracted to help build the platform, since team Y has no engineering skills. The choice was deliberate, as calling on any of the established consulting or software companies would have eventually led leadership to the conclusion that team X was better suited for a transformation on this scale than team Y.  Team Y has no experience with any major ERP deployments, and no domain knowledge, yet they are being tasked with fundamentally changing the business process that is at the core of Company A's business. Their models actually perform worse than those deployed by team X, and their architecture is hopelessly simplistic, compared to what is necessary for running such a solution in production.  Ironically, using Bayesian thinking and based on all the evidence, the likelihood that team Y succeeds is close to 0%. At best, the project is going to end up being a write off of 50 million dollars or more. Once the !@#$!@hits the fan, a couple of executive heads are going to role, and dozens of people will get laid off. At worst, given how vital risk analysis and portfolio optimization is to Company A's revenue stream, the failure will eventually sink the whole company. It probably won't go bankrupt, but it will lose a significant portion of its business and work force. Failed ERP implementations can and do sink large companies: Just see what happened to National Grid US, SuperValu or Target Canada.  One might argue that this is more about corporate disfunction and bad leadership than about data science and AI. But I disagree. I think the core driver of this debacle is indeed the blind faith in Data Scientists, ML models and the promise of AI, and the overall culture of hype and self promotion that is very common among the ML crowd.  We haven't seen the end of this story: I sincerely hope that this ends well for the sake of my colleagues and all involved. Company A is a good company, and both its customers and its employees deserver better. But the chances of that happening are negligible given all the information available, and this failure will hit my company hard.

[D] Overwhelmed by fast advances in recent weeks
reddit
LLM Vibe Score0
Human Vibe Score1
iamx9000againThis week

[D] Overwhelmed by fast advances in recent weeks

I was watching the GTC keynote and became entirely overwhelmed by the amount of progress achieved from last year. I'm wondering how everyone else feels. &#x200B; Firstly, the entire ChatGPT, GPT-3/GPT-4 chaos has been going on for a few weeks, with everyone scrambling left and right to integrate chatbots into their apps, products, websites. Twitter is flooded with new product ideas, how to speed up the process from idea to product, countless promp engineering blogs, tips, tricks, paid courses. &#x200B; Not only was ChatGPT disruptive, but a few days later, Microsoft and Google also released their models and integrated them into their search engines. Microsoft also integrated its LLM into its Office suite. It all happenned overnight. I understand that they've started integrating them along the way, but still, it seems like it hapenned way too fast. This tweet encompases the past few weeks perfectly https://twitter.com/AlphaSignalAI/status/1638235815137386508 , on a random Tuesday countless products are released that seem revolutionary. &#x200B; In addition to the language models, there are also the generative art models that have been slowly rising in mainstream recognition. Now Midjourney AI is known by a lot of people who are not even remotely connected to the AI space. &#x200B; For the past few weeks, reading Twitter, I've felt completely overwhelmed, as if the entire AI space is moving beyond at lightning speed, whilst around me we're just slowly training models, adding some data, and not seeing much improvement, being stuck on coming up with "new ideas, that set us apart". &#x200B; Watching the GTC keynote from NVIDIA I was again, completely overwhelmed by how much is being developed throughout all the different domains. The ASML EUV (microchip making system) was incredible, I have no idea how it does lithography and to me it still seems like magic. The Grace CPU with 2 dies (although I think Apple was the first to do it?) and 100 GB RAM, all in a small form factor. There were a lot more different hardware servers that I just blanked out at some point. The omniverse sim engine looks incredible, almost real life (I wonder how much of a domain shift there is between real and sim considering how real the sim looks). Beyond it being cool and usable to train on synthetic data, the car manufacturers use it to optimize their pipelines. This change in perspective, of using these tools for other goals than those they were designed for I find the most interesting. &#x200B; The hardware part may be old news, as I don't really follow it, however the software part is just as incredible. NVIDIA AI foundations (language, image, biology models), just packaging everything together like a sandwich. Getty, Shutterstock and Adobe will use the generative models to create images. Again, already these huge juggernauts are already integrated. &#x200B; I can't believe the point where we're at. We can use AI to write code, create art, create audiobooks using Britney Spear's voice, create an interactive chatbot to converse with books, create 3D real-time avatars, generate new proteins (?i'm lost on this one), create an anime and countless other scenarios. Sure, they're not perfect, but the fact that we can do all that in the first place is amazing. &#x200B; As Huang said in his keynote, companies want to develop "disruptive products and business models". I feel like this is what I've seen lately. Everyone wants to be the one that does something first, just throwing anything and everything at the wall and seeing what sticks. &#x200B; In conclusion, I'm feeling like the world is moving so fast around me whilst I'm standing still. I want to not read anything anymore and just wait until everything dies down abit, just so I can get my bearings. However, I think this is unfeasible. I fear we'll keep going in a frenzy until we just burn ourselves at some point. &#x200B; How are you all fairing? How do you feel about this frenzy in the AI space? What are you the most excited about?

[D] Last Week in Medical AI: Top LLM Research Papers/Models (December 7 - December 14, 2024)
reddit
LLM Vibe Score0
Human Vibe Score0
aadityauraThis week

[D] Last Week in Medical AI: Top LLM Research Papers/Models (December 7 - December 14, 2024)

[\[D\] Last Week in Medical AI: Top LLM Research Papers\/Models \(December 7 - December 14, 2024\)](https://preview.redd.it/o23fp3csj07e1.jpg?width=1280&format=pjpg&auto=webp&s=69e19fc351b3aa5e34c4c00e66245583f88bd9bb) Medical LLM & Other Models PediaBench: Chinese Pediatric LLM This paper introduces PediaBench, the first Chinese pediatric dataset for evaluating Large Language Model (LLM) question-answering performance, containing 4,565 objective and 1,632 subjective questions across 12 disease groups. BiMediX: Bilingual Medical LLM This paper introduces BiMediX, the first bilingual (English-Arabic) medical Mixture of Experts LLM, along with BiMed1.3M, a 1.3M bilingual medical instruction dataset with over 632M tokens used for training. Diverse medical knowledge integration This paper introduces BiMediX2, a bilingual (Arabic-English) Large Multimodal Model (LMM) based on Llama3.1 architecture, trained on 1.6M medical interaction samples. BRAD: Digital Biology Language Model This paper introduces BRAD (Bioinformatics Retrieval Augmented Digital assistant), an LLM-powered chatbot and agent system integrating various bioinformatics tools. MMedPO: Vision-Language Medical LLM This paper introduces MMedPO, a multimodal medical preference optimization approach to improve factual accuracy in Medical Large Vision-Language Models (Med-LVLMs) by addressing modality misalignment. Frameworks & Methodologies \- TOP-Training: Medical Q&A Framework \- Hybrid RAG: Secure Medical Data Management \- Zero-Shot ATC Clinical Coding \- Chest X-Ray Diagnosis Architecture \- Medical Imaging AI Democratization Benchmarks & Evaluations \- KorMedMCQA: Korean Healthcare Licensing Benchmark \- Large Language Model Medical Tasks \- Clinical T5 Model Performance Study \- Radiology Report Quality Assessment \- Genomic Analysis Benchmarking LLM Applications \- TCM-FTP: Herbal Prescription Prediction \- LLaSA: Activity Analysis via Sensors \- Emergency Department Visit Predictions \- Neurodegenerative Disease AI Diagnosis \- Kidney Disease Explainable AI Model Ethical AI & Privacy \- Privacy-Preserving LLM Mechanisms \- AI-Driven Digital Organism Modeling \- Biomedical Research Automation \- Multimodality in Medical Practice Full thread in detail: https://x.com/OpenlifesciAI/status/1867999825721242101

[P] Utilizing graph attention-based neural networks and generative AI to build a tool to automate debugging and refactoring Python code
reddit
LLM Vibe Score0
Human Vibe Score0
bobcodes247365This week

[P] Utilizing graph attention-based neural networks and generative AI to build a tool to automate debugging and refactoring Python code

For the last two years, I and three others have been working on a project we started in a research lab. The project is to create a tool that can automatically identify complex programming errors from source code that require a contextual understanding of the code. For this, we have built a graph attention-based neural network that is used to classify problematic code and embed context info. We employ a two-stage system for accurately embedding context information within a single graph. First, we split up the source code into semantic tokens through an nlp2 tokenizer and generate 80-bit vector embeddings using FastText, which has been trained on code snippets of a particular language. We then map those text tokens to groupings identified in the abstract syntax tree, excluding the individual nodes for each text token, opting instead for the function call with attributes as the smallest individual grouping, averaging the embeddings across each token type. The seed data for the system consists of code changes and their surrounding documentation on why a given code change was made. For this, we utilize a BERTopic-based topic modeling system to identify and categorize the reason why the given change was made from the docs. For the explanations and code recommendations, we utilize generative AI models. They are promising for this purpose as we are able to pass enriched context to them along with the problematic code, hoping to receive more accurate outputs. We are just looking for feedback on if the project currently provides any value to Python users. We've published the first version of the tool on vscode marketplace. It's of course free to use, and we'd appreciate any feedback on it. As it's not a weekend, let me know if you are interested to try the tool and give us your thoughts on it.

[D] Is this close enough to be usable? Need your inputs: Automated RAG testing tool. AI Data Pipelines for Real-World Production (Part 3)
reddit
LLM Vibe Score0
Human Vibe Score1
Snoo-bedoooThis week

[D] Is this close enough to be usable? Need your inputs: Automated RAG testing tool. AI Data Pipelines for Real-World Production (Part 3)

Hey there, Redditors! I'm back with the latest installment on creating dependable AI data pipelines for real-world production. If you've been following along, you know I'm on a mission to move beyond the "thin OpenAI wrapper" trend and tackle the challenges of building robust data pipelines. With 18 months of hands-on experience and many user interviews, I realized that with the probabilistic nature of systems, we need better\_testing.gpt: As you build you should test The world of AI is a fast-moving one, and we've realized that just working on systems is not an optimal design choice. By the time your product ships, it might already be using outdated technology. So, what's the lesson here? Embrace change, test along, but be prepared to switch pace. No Best Practices Yet for RAGs In this rapidly evolving landscape, there are no established best practices. You'll need to make educated bets on tools and processes, knowing that things will change. With the RAG testing tool, I tried allowing for testing many potential parameter combinations automatically Testing Frameworks If your generative AI product doesn't have users giving feedback, then you are building in isolation. I used Deepeval to generate test sets, and they will soon support synthetic test set generation Infographics only go so far AI researchers and data scientists, while brilliant, end up in a loop of pursuing Twitter promotional content. New ways are promoted via new content pieces, but ideally, we need something above simple tracing but less than full-fledged analytics. To do this, I stored test outputs in Postgres and created a Superset instance to visualize the results Bridging the Gap between VectorDBs There's a noticeable number of Vector DBs. To ensure smooth product development, we need to be able to switch to best best-performing one, especially since user interviews signal that they might start deteriorating after loading 50 million rows &#x200B; Github repo is here Next steps: I have questions for you: What variables do you change when building RAGs? What is the set of strategies I should add to the solution? (parent-son etc.) How can I improve it in general? Is anyone interested in a leaderboard for best parameter configs? Check out the blog post: Link to part 3 Remember to give this post an upvote if you found it insightful! And also star our Github repo

Is being a solopreneur really that fatal?
reddit
LLM Vibe Score0
Human Vibe Score1
Upbeat_Challenge5460This week

Is being a solopreneur really that fatal?

Okay, so I need to get something off my chest... People love to say that solopreneurship is a death sentence. That if you can’t find a cofounder, you’ll never build a team, never scale, never succeed. But I wonder about the other side of the coin—something that, browsing here and in other subs, doesn’t seem to get nearly as much attention—how fatal cofounder conflicts can be. I’ve personally seen three startups fail before even getting to an MVP because of cofounder issues. One of them was a company I was briefly a cofounder for. The other two are startups coworkers were previous cofounders for that fell apart before they even got to an MVP. In each case, it wasn’t lack of funding or product-market fit that killed them—it was the people. Yet, somehow, the startup world keeps pushing the idea that finding a cofounder is the most important thing you can do. But here’s the thing: if you can’t find a cofounder, that doesn’t mean you can’t build a business. It doesn’t even mean you can’t build a team. With the tools available today (no-code, AI, fractional hiring), a single person can get an MVP off the ground, validate demand, and take those first steps without needing to rush into a partnership with someone they barely know. And also—I wonder how many people actually succeed with a cofounder they met casually at a networking event or online? People talk about the risks of going solo, but not enough about the risks of tying your company’s future to someone you just met. (If you’re going to have a cofounder, IMO it should be someone you trust deeply, someone whose skills and working style you know complement yours—not just someone you brought on because startup X/YouTube told you to.). At the end of the day, I honestly think it’s about the product. If you can build something valuable and find market fit—whether solo or with a team—you’ll have the leverage to hire, partner, and grow. That’s what actually matters. That said—I know how incredibly hard it is to be a solopreneur—and not to have someone along the journey with you who can take half of the emotional and psychological burden, in addition to the actual work... What do you think? Any thoughts here appreciated.

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company
reddit
LLM Vibe Score0
Human Vibe Score0.778
wutangsamThis week

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company

I’ve learned so much over the years from this subreddit. I thought I’d return the favour and share some of my own learnings. In November 2020 my best friend and I had an idea. “What if we could find out which stocks the Internet is talking about?” This formed the origins of Ticker Nerd. 9 months later we sold Ticker Nerd to Finder (an Australian fintech company valued at around $500m). In this post, I am going to lay out how we got there. How we came up with the idea First off, like other posts have covered - you don’t NEED a revolutionary or original idea to build a business. There are tonnes of “boring” businesses making over 7 figures a year e.g. law firms, marketing agencies, real estate companies etc. If you’re looking for an exact formula to come up with a great business idea I’m sorry, but it doesn’t exist. Finding new business opportunities is more of an art than a science. Although, there are ways you can make it easier to find inspiration. Below are the same resources I use for inspiration. I rarely ever come up with ideas without first searching one of the resources below for inspiration: Starter Story Twitter Startup Ideas My First Million Trends by the Hustle Trends VC To show how you how messy, random and unpredictable it can be to find an idea - let me explain how my co-founder and I came up with the idea for Ticker Nerd: We discovered a new product on Twitter called Exploding Topics. It was a newsletter that uses a bunch of software and algorithms to find trends that are growing quickly before they hit the mainstream. I had recently listened to a podcast episode from My First Million where they spoke about Motley Fool making hundreds of millions from their investment newsletters. We asked ourselves what if we could build a SaaS platform similar to Exploding Topics but it focused on stocks? We built a quick landing page using Carrd + Gumroad that explained what our new idea will do and included a payment option to get early access for $49. We called it Exploding Stock (lol). We shared it around a bunch of Facebook groups and subreddits. We made $1,000 in pre-sales within a couple days. My co-founder and I can’t code so we had to find a developer to build our idea. We interviewed a bunch of potential candidates. Meanwhile, I was trawling through Wall Street Bets and found a bunch of free tools that did roughly what we wanted to build. Instead of building another SaaS tool that did the same thing as these free tools we decided to pivot from our original idea. Our new idea = a paid newsletter that sends a weekly report that summarises 2 of the best stocks that are growing in interest on the Internet. We emailed everyone who pre-ordered access, telling them about the change and offered a full refund if they wanted. tl;dr: We essentially combined two existing businesses (Exploding Topics and Motley Fool) and made it way better. We validated the idea by finding out if people will actually pay money for it BEFORE we decided to build it. The idea we started out with changed over time. How to work out if your idea will actually make money It’s easy to get hung up on designing the logo or choosing the perfect domain name for your new idea. At this stage none of that matters. The most important thing is working out if people will pay money for it. This is where validation comes in. We usually validate ideas using Carrd. It lets you build a simple one page site without having to code. The Ticker Nerd site was actually built using a Carrd template. Here’s how you can do it yourself (at a high level): Create a Carrd pro account (yes it's a $49 one off payment but you’ll get way more value out of it). Buy a cheap template and send it to your Carrd account. You can build your own template but this will save you a lot of time. Once the template reaches your Carrd account, duplicate it. Leave the original so it can be duplicated for other ideas. Jump onto Canva (free) and create a logo using the free logos provided. Import your logo. Add copy to the page that explains your idea. Use the AIDA formula. Sign up to Gumroad (free) and create a pre-sale campaign. Create a discounted lifetime subscription or version of the product. This will be used pre-sales. Add the copy from the site into the pre-sale campaign on Gumroad. Add a ‘widget’ to Carrd and connect it to Gumroad using the existing easy integration feature. Purchase a domain name. Connect it to Carrd. Test the site works. Share your website Now the site is ready you can start promoting it in various places to see how the market reacts. An easy method is to find relevant subreddits using Anvaka (Github tool) or Subreddit Stats. The Anvaka tool provides a spider map of all the connected subreddits that users are active in. The highlighted ones are most relevant. You can post a thread in these subreddits that offer value or can generate discussion. For example: ‘I’m creating a tool that can write all your copy, would anyone actually use this?’ ‘What does everything think of using AI to get our copy written faster?’ ‘It’s time to scratch my own itch, I’m creating a tool that writes marketing copy using GPT-3. What are the biggest problems you face writing marketing copy? I’ll build a solution for it’ Reddit is pretty brutal these days so make sure the post is genuine and only drop your link in the comments or in the post if it seems natural. If people are interested they’ll ask for the link. Another great place to post is r/entrepreuerridealong and r/business_ideas. These subreddits expect people to share their ideas and you’ll likely make some sales straight off the bat. I also suggest posting in some Facebook groups (related to your idea) as well just for good measure. Assess the results If people are paying you for early access you can assume that it’s worth building your idea. The beauty of posting your idea on Reddit or in Facebook groups is you’ll quickly learn why people love/hate your idea. This can help you decide how to tweak the idea or if you should drop it and move on to the next one. How we got our first 100 customers (for free) By validating Ticker Nerd using subreddits and Facebook groups this gave us our first paying customers. But we knew this wouldn’t be sustainable. We sat down and brainstormed every organic strategy we could use to get traction as quickly as possible. The winner: a Product Hunt launch. A successful Product Hunt launch isn’t easy. You need: Someone that has a solid reputation and audience to “hunt” your product (essentially an endorsement). An aged Product Hunt account - you can’t post any products if your account is less than a week old. To be following relevant Product Hunt members - since they get notified when you launch a new product if they’re following you. Relationships with other builders and makers on Product Hunt that also have a solid reputation and following. Although, if you can pull it off you can get your idea in front of tens of thousands of people actively looking for new products. Over the next few weeks, I worked with my co-founder on connecting with different founders, indie hackers and entrepreneurs mainly via Twitter. We explained to them our plans for the Product Hunt launch and managed to get a small army of people ready to upvote our product on launch day. We were both nervous on the day of the launch. We told ourselves to have zero expectations. The worst that could happen was no one signed up and we were in the same position as we’re in now. Luckily, within a couple of hours Ticker Nerd was on the homepage of Product Hunt and in the top 10. The results were instant. After 24 hours we had around 200 people enter their payment details to sign up for our free trial. These signups were equal to around $5,800 in monthly recurring revenue. \-- I hope this post was useful! Drop any questions you have below and I’ll do my best to respond :)

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

If only someone told me this before my first startup
reddit
LLM Vibe Score0
Human Vibe Score0.625
johnrushxThis week

If only someone told me this before my first startup

If only someone told me this before my first startup: Validate idea first. I wasted a decade building stuff nobody needed. Incubators and VCs served to me as a validation, but I was so wrong. Kill my EGO. It’s not about me, but the user. I must want what the user wants, not what I want. My taste isn't important. The user has expectations, and I must fulfill them. Don’t chaise investors. Chase users, and then investors will be chasing me. I've never had more incoming interest from VC than now when I'm the least interested in them. Never hire managers. Only hire doers until PMF. So many people know how to manage people and so few can actually get sh\*t done barehand. Landing page is the least important thing in a startup. Pick a simple template, edit texts with a no-code website builder in less than an hour and that's it! At the early stage, I win traffic outside of my website, people are already interested, so don't make them search for the signup button among the texts! Focus on conversion optimization only when the traffic is consistent. Keep it to one page. Nobody gonna browse this website. Hire only fullstack devs. There is nothing less productive in this world than a team of developers for an early-stage product. One full stack dev building the whole product. That’s it. Chase global market from day 1. If the product and marketing are good, it will work on the global market too, if it’s bad, it won’t work on the local market too. So better go global from day 1, so that if it works, the upside is 100x bigger. I launched all startups for the Norwegian market, hoping we will scale to international at some point. I wish I launched to international from day 1 as I do now. The size of the market is 10000x bigger. I can validate and grow products in days, not in years as it used to be. Do SEO from day 2. As early as I can. I ignored this for 14 years. It’s my biggest regret. It takes just 5 minutes to get it done on my landing page. I go to Google Keyword Planner, enter a few keywords around my product, sort them by traffic, filter out high competition kws, pick the top 10, and place them natively on my home page and meta tags. Add one blog article every week. Either manually or by paying for an AI blogging tool. Sell features, before building them. Ask existing users if they want this feature. I run DMs with 10-20 users every day, where I chat about all my ideas and features I wanna add. I clearly see what resonates with me most and only go build those. If I don't have followers, try HN, Reddit, or just search on X for posts and ask it in the replies. People are helpful, they will reply if the question is easy to understand. Hire only people I would wanna hug. My cofounder, an old Danish man said this to me in 2015. And it was a big shift. I realized that if I don’t wanna hug the person, it means I dislike them on a chemical/animal level. Even if I can’t say why, but that’s the fact. Sooner or later, we would have a conflict and eventually break up. It takes up to 10 years to build a startup, make sure I do it with people I have this connection with. Invest all money into my startups and friends. Not crypt0, not stockmarket, not properties. I did some math, if I kept investing all my money into all my friends’ startups, that would be about 70 investments. 3 of them turned into unicorns eventually. Even 1 would have made the bank. Since 2022, I have invested all my money into my products, friends, and network. If I don't have friends who do startups, invest it in myself. Post on Twitter daily. I started posting here in March last year. It’s my primary source of new connections and growth. I could have started it earlier, I don't know why I didn't. Don’t work/partner with corporates. Corporations always seem like an amazing opportunity. They’re big and rich, they promise huge stuff, millions of users, etc. But every single time none of this happens. Because I talk to a regular employees there. They waste my time, destroy focus, shift priorities, and eventually bring in no users/money. Don’t get ever distracted by hype e.g. crypt0. I lost 1.5 years of my life this way. I met the worst people along the way. Fricks, scammers, thieves. Some of my close friends turned into thieves along the way, just because it was so common in that space. I wish this didn’t happen to me. I wish I was stronger and stayed on my mission. Don’t build consumer apps. Only b2b. Consumer apps are so hard, like a lottery. It’s just 0.00001% who make it big. The rest don’t. Even if I got many users, then there is a monetization challenge. I’ve spent 4 years in consumer apps and regret it. Don’t hold on bad project for too long, max 1 year. Some projects just don’t work. In most cases, it’s either the idea that’s so wrong that I can’t even pivot it or it’s a team that is good one by one but can’t make it as a team. Don’t drag this out for years. Tech conferences are a waste of time. They cost money, take energy, and time and I never really meet anyone there. Most people there are the “good” employees of corporations who were sent there as a perk for being loyal to the corporation. Very few fellow makers. Scrum is a Scam. For small teams and bootstrapped teams. If I had a team that had to be nagged every morning with questions as if they were children in kindergarten, then things would eventually fail. The only good stuff I managed to do happened with people who were grownups and could manage their stuff on their own. We would just do everything over chat as a sync on goals and plans. Outsource nothing at all until PMF. In a startup, almost everything needs to be done in a slightly different way, more creative, and more integrated into the vision. When outsourcing, the external members get no love and no case for the product. It’s just yet another assignment in their boring job. Instead of coming up with great ideas for my project they will be just focusing on ramping up their skills to get a promotion or a better job offer. Bootstrap. I spent way too much time raising money. I raised more than 10 times, preseed, seeded, and series A. But each time it was a 3-9 month project, meetings every week, and lots of destruction. I could afford to bootstrap, but I still went the VC-funded way, I don’t know why. To be honest, I didn’t know bootstrapping was a thing I could do or anyone does. It may take a decade. When I was 20, I was convinced it takes a few years to build and succeed with a startup. So I kept pushing my plans forward, to do it once I exited. Family, kids. I wish I married earlier. I wish I had kids earlier. No Free Tier. I'd launch a tool with a free tier, and it'd get sign-ups, but very few would convert. I'd treat free sign-ups as KPIs and run on it for years. I'd brag about signups and visitors. I'd even raise VC money with these stats. But eventually, I would fail to reach PMF. Because my main feedback would come from free users and the product turned into a perfect free product. Once I switched to "paid only" until I validated the product, things went really well. Free and paid users often need different products. Don't fall into this trap as I did. Being To Cheap. I always started by checking all competitors and setting the lowest price. I thought this would be one of the key advantages of my product. But no, I was wrong. The audience on $5 and $50 are totally different. $5: pain in the \*ss, never happy, never recommend me to a friend, leave in 4 months. $50: polite, give genuine feedback, happy, share with friends, become my big fan if I solve their request. I will fail. When I started my first startup. I thought if I did everything right, it would work out. But it turned out that almost every startup fails. I wish I knew that and I tried to fail faster, to get to the second iteration, then to the third, and keep going on, until I either find out nothing works or make it work. Use boilerplates. I wasted years of dev time and millions of VC money to pay for basic things. To build yet another sidebar, yet another dashboard, and payment integration... I had too much pride, I couldn't see myself taking someone else code as a basis for my product. I wanted it to be 100% mine, original, from scratch. Because my product seems special to me. Spend more time with Family & Friends. I missed the weddings of all my best friends and family. I was so busy. I thought if I didn't do it on time, the world would end. Looking back today, it was so wrong. I meet my friends and can't share those memories with them, which makes me very sad. I realized now, that spending 10% of my time with family and friends would practically make no negative impact on my startups. Build Products For Audiences I Love. I never thought of this. I'd often build products either for corporates, consumers, or for developers. It turns out I have no love for all 3. But I deeply love indie founders. Because they are risk-takers and partly kids in their hearts. Once I switched the focus to indie makers on my products, my level of joy increased by 100x for me. Ignore Badges and Awards I was chasing those awards just like everyone else. Going to ceremonies, signing up for events and stuff. I've won tons of awards, but none of those were eventually useful to my business. I better focused on my business and users. Write Every Single Day. When I was a kid, I loved writing stories. In school, they would give an assignment, and I'd often write a long story for it, however, the teacher would put an F on it. The reason was simple, I had an issue with the direction of the letters and the sequence of letters in the words. I still have it, it's just the Grammarly app helping me to correct these issues. So the teacher would fail my stories because almost every sentence had a spelling mistake that I couldn't even see. It made me think I'm made at writing. So I stopped, for 15 years. But I kept telling stories all these years. Recently I realized that in any group, the setup ends up turning into me telling stories to everyone. So I tried it all again, here on X 10 months ago. I love it, the process, the feedback from people. I write every day. I wish I had done it all these years. The End. \ this is an updated version of my post on the same topic from 2 months ago. I've edited some of the points and added 9 new ones.* \\ This is not advice, it's my self-reflection that might help you avoid same mistakes if you think those were mistakes

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience
reddit
LLM Vibe Score0
Human Vibe Score1
hopefully_usefulThis week

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience

I met my co-founder in late 2022 after an introduction from a mutual friend to talk about how to find contract Product Management roles. I was sporadically contracting at start-up at the time and he had just come out of another start-up that was wiped out by the pandemic. We hit it off, talking about ideas, sharing what other indie-hackers were doing, and given GPT-3’s prominence at the time, we started throwing around ideas about things we could build with it, if nothing else, just to learn. I should caveat, neither of us were AI experts when starting out, everything we learned has been through Twitter and blogs, my background is as an accountant, and his a consultant. Here’s how it went since then: &#x200B; Nov 2022 (+$50) \- We built a simple tool in around a week using GPT-3 fine-tuning and a no-code tool (Bubble) that helped UK university students write their personal statements for their applications \- We set some Google Ads going and managed to make a few sales (\~$50) in the first week \- OpenAI were still approving applications at the time and said this went against their “ethics” so we had to take it down &#x200B; Dec 2022 (+$200) \- We couldn’t stop coming up with ideas related to AI fine-tuning, but realised it was almost impossible to decide which to pursue \- We needed a deadline to force us so we signed up for the Ben’s Bites hackathon in late December \- In a week, we built and launched a no-code fine-tuning platform, allowing people to create fine-tuned models by dragging and dropping an Excel file onto it \- We launched it on Product Hunt, having no idea how to price it, and somehow managed to get \~2,000 visitors on the site and make 2 sales at $99 &#x200B; Jan 2023 (+$3,000) \- We doubled down on the fine-tuning idea and managed to get up to \~$300 MRR, plus a bunch of one-time sales and a few paid calls to help people get the most out of their models \- We quickly realised that people didn’t want to curate models themselves, they just wanted to dump data and get magic out \- That was when we saw people building “Talk with x book/podcast” on Twitter as side projects and realised that was the missing piece, we needed to turn it into a tool \- We started working on the new product in late January &#x200B; Feb 2023 (+$9,000) \- We started pre-selling access to an MVP for the new product, which allowed people to “chat with their data/content”, we got $5,000 in pre-sales, more than we made from the previous product in total \- By mid-February, after 3 weeks of building we were able to launch and immediately managed to get traction, getting to $1k MRR in < 1 week, building on the hype of ChatGPT and AI (we were very lucky here) &#x200B; Mar - Jul 2023 (+$98,000) \- We worked all the waking hours to keep up with customer demand, bugs, OpenAI issues \- We built integrations for a bunch of services like Slack, Teams, Wordpress etc, added tons of new functionality and continue talking to customers every day \- We managed to grow to $17k MRR (just about enough to cover our living expenses and costs in London) through building in public on Twitter, newsletters and AI directories (and a million other little things) \- We sold our fine-tuning platform for \~$20k and our university project for \~$3k on Acquire &#x200B; Aug 2023 (+$100,000) \- We did some custom development work based on our own product for a customer that proved pretty lucrative &#x200B; Sep - Oct 2023 (+$62,000) \- After 8 months of building constantly, we started digging more seriously into our usage and saw subscriptions plateauing \- We talked to and analysed all our paying users to identify the main use cases and found 75% were for SaaS customer support \- We took the leap to completely rebuild a version of our product around this use case, our biggest to date (especially given most features with no-code took us <1 day) &#x200B; Nov - Dec 2023 (+$53,000) \- We picked up some small custom development work that utilised our own tech \- We’re sitting at around $22k MRR now with a few bigger clients signed up and coming soon \- After 2 months of building and talking to users, we managed to finish our “v2” of our product, focussed squarely on SaaS customer support and launched it today. &#x200B; We have no idea what the response will be to this new version, but we’re pretty happy with it, but couldn’t have planned anything that happened to us in 2023 so who knows what will come of 2024, we just know that we are going to be learning a ton more. &#x200B; Overall, it is probably the most I have had to think in my life - other jobs you can zone out from time to time or rely on someone else if you aren’t feeling it - not when you are doing this, case and point, I am writing this with a banging head-cold right now, but wanted to get this done. A few more things we have learned along the way - context switching is unreal, as is keeping up with, learning and reacting to AI. There isn’t a moment of the day I am not thinking about what we do next. But while in some way we now have hundreds of bosses (our customers) I still haven’t felt this free and can’t imagine ever going back to work for someone else. Next year we’re really hoping to figure out some repeatable distribution channels and personally, I want to get a lot better at creating content/writing, this is a first step! Hope this helps someone else reading this to just try starting something and see what happens.

The delicate balance of building an online community business
reddit
LLM Vibe Score0
Human Vibe Score0.895
matthewbarbyThis week

The delicate balance of building an online community business

Hey /r/Entrepreneur 👋 Just under two years ago I launched an online community business called Traffic Think Tank with two other co-founders, Nick Eubanks and Ian Howells. As a Traffic Think Tank customer you (currently) pay $119 a month to get access to our online community, which is run through Slack. The community is focused on helping you learn various aspects of marketing, with a particular focus on search engine optimization (SEO). Alongside access to the Slack community, we publish new educational video content from outside experts every week that all customers have access to. At the time of writing, Traffic Think Tank has around 650 members spanning across 17 of the 24 different global time zones. I was on a business trip over in Sydney recently, and during my time there I met up with some of our Australia-based community members. During dinner I was asked by several of them how the idea for Traffic Think Tank came about and what steps we took to validate that the idea was worth pursuing.  This is what I told them… How it all began It all started with a personal need. Nick, an already successful entrepreneur and owner of a marketing agency, had tested out an early version Traffic Think Tank in early 2017. He offered real-time consulting for around ten customers that he ran from Slack. He would publish some educational videos and offer his advice on projects that the members were running. The initial test went well, but it was tough to maintain on his own and he had to charge a fairly high price to make it worth his time. That’s when he spoke to me and Ian about turning this idea into something much bigger. Both Ian and I offered something slightly different to Nick. We’ve both spent time in senior positions at marketing agencies, but currently hold senior director positions in 2,000+ public employee companies (HubSpot and LendingTree). Alongside this, as a trio we could really ramp up the quality and quantity of content within the community, spread out the administrative workload and just generally have more resources to throw at getting this thing off the ground. Admittedly, Nick was much more optimistic about the potential of Traffic Think Tank – something I’m very thankful for now – whereas Ian and I were in the camp of “you’re out of your mind if you think hundreds of people are going to pay us to be a part of a Slack channel”. To validate the idea at scale, we decided that we’d get an initial MVP of the community up and running with a goal of reaching 100 paying customers in the first six months. If we achieved that, we’d validated that it was a viable business and we would continue to pursue it. If not, we’d kill it. We spent the next month building out the initial tech stack that enabled us to accept payments, do basic user management to the Slack channel, and get a one-page website up and running with information on what Traffic Think Tank was all about.  After this was ready, we doubled down on getting some initial content created for members – I mean, we couldn’t have people just land in an empty Slack channel, could we? We created around ten initial videos, 20 or so articles and then some long threads full of useful information within the Slack channel so that members would have some content to pour into right from the beginning.  Then, it was time to go live. The first 100 customers Fortunately, both Nick and I had built a somewhat substantial following in the SEO space over the previous 5-10 years, so we at least had a large email list to tap into (a total of around 40,000 people). We queued up some launch emails, set an initial price of $99 per month and pressed send. [\[LINK\] The launch email I sent to my subscribers announcing Traffic Think Tank](https://mailchi.mp/matthewbarby/future-of-marketing-1128181) What we didn’t expect was to sell all of the initial 100 membership spots in the first 72 hours. “Shit. What do we do now? Are we ready for this many people? Are we providing them with enough value? What if something breaks in our tech stack? What if they don’t like the content? What if everyone hates Slack?” All of these were thoughts running through my head. This brings me to the first great decision we made: we closed down new membership intake for 3 months so that we could focus completely on adding value to the first cohort of users. The right thing at the right time SEO is somewhat of a dark art to many people that are trying to learn about it for the first time. There’s hundreds of thousands (possibly millions) of articles and videos online that talk about how to do SEO.  Some of it’s good advice; a lot of it is very bad advice.  Add to this that the barrier to entry of claiming to be an “expert” in SEO is practically non-existent and you have a recipe for disaster. This is why, for a long time, individuals involved in SEO have flocked in their masses to online communities for information and to bounce ideas off of others in the space. Forums like SEObook, Black Hat World, WickedFire, Inbound.org, /r/BigSEO, and many more have, at one time, been called home by many SEOs.  In recent times, these communities have either been closed down or just simply haven’t adapted to the changing needs of the community – one of those needs being real-time feedback on real-world problems.  The other big need that we all spotted and personally had was the ability to openly share the things that are working – and the things that aren’t – in SEO within a private forum. Not everyone wanted to share their secret sauce with the world. One of the main reasons we chose Slack as the platform to run our community on was the fact that it solved these two core needs. It gave the ability to communicate in real-time across multiple devices, and all of the information shared within it was outside of the public domain. The other problem that plagued a lot of these early communities was spam. Most of them were web-based forums that were free to access. That meant they became a breeding ground for people trying to either sell their services or promote their own content – neither of which is conducive to building a thriving community. This was our main motivation for charging a monthly fee to access Traffic Think Tank. We spent a lot of time thinking through pricing. It needed to be enough money that people would be motivated to really make use of their membership and act in a way that’s beneficial to the community, but not too much money that it became cost prohibitive to the people that would benefit from it the most. Considering that most of our members would typically spend between $200-800 per month on SEO software, $99 initially felt like the perfect balance. Growing pains The first three months of running the community went by without any major hiccups. Members were incredibly patient with us, gave us great feedback and were incredibly helpful and accommodating to other members. Messages were being posted every day, with Nick, Ian and myself seeding most of the engagement at this stage.  With everything going smoothly, we decided that it was time to open the doors to another intake of new members. At this point we’d accumulated a backlog of people on our waiting list, so we knew that simply opening our doors would result in another large intake. Adding more members to a community has a direct impact on the value that each member receives. For Traffic Think Tank in particular, the value for members comes from three areas: The ability to have your questions answered by me, Nick and Ian, as well as other members of the community. The access to a large library of exclusive content. The ability to build connections with the wider community. In the early stages of membership growth, there was a big emphasis on the first of those three points. We didn’t have an enormous content library, nor did we have a particularly large community of members, so a lot of the value came from getting a lot of one-to-one time with the community founders. [\[IMAGE\] Screenshot of engagement within the Traffic Think Tank Slack community](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1322/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-in-Traffic-Think-Tank.png) The good thing about having 100 members was that it was just about feasible to give each and every member some one-to-one time within the month, which really helped us to deliver those moments of delight that the community needed early on. Two-and-a-half months after we launched Traffic Think Tank, we opened the doors to another 250 people, taking our total number of members to 350. This is where we experienced our first growing pains.  Our original members had become used to being able to drop us direct messages and expect an almost instant response, but this wasn’t feasible anymore. There were too many people, and we needed to create a shift in behavior. We needed more value to come from the community engaging with one another or we’d never be able to scale beyond this level. We started to really pay attention to engagement metrics; how many people were logging in every day, and of those, how many were actually posting messages within public channels.  We asked members that were logging in a lot but weren’t posting (the “lurkers”) why that was the case. We also asked the members that engaged in the community the most what motivated them to post regularly. We learned a lot from doing this. We found that the large majority of highly-engaged members had much more experience in SEO, whereas most of the “lurkers” were beginners. This meant that most of the information being shared in the community was very advanced, with a lot of feedback from the beginners in the group being that they “didn’t want to ask a stupid question”.  As managers of the community, we needed to facilitate conversations that catered to all of our members, not just those at a certain level of skill. To tackle this problem, we created a number of new channels that had a much deeper focus on beginner topics so novice members had a safe place to ask questions without judgment.  We also started running live video Q&As each month where we’d answer questions submitted by the community. This gave our members one-on-one time with me, Nick and Ian, but spread the value of these conversations across the whole community rather than them being hidden within private messages. As a result of these changes, we found that the more experienced members in the community were really enjoying sharing their knowledge with those with less experience. The number of replies within each question thread was really starting to increase, and the community started to shift away from just being a bunch of threads created by me, Nick and Ian to a thriving forum of diverse topics compiled by a diverse set of individuals. This is what we’d always wanted. A true community. It was starting to happen. [\[IMAGE\] Chart showing community engagement vs individual member value](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1602/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-Balance-Graph.jpg) At the same time, we started to realize that we’ll eventually reach a tipping point where there’ll be too much content for us to manage and our members to engage with. When we reach this point, the community will be tough to follow and the quality of any given post will go down. Not only that, but the community will become increasingly difficult to moderate. We’re not there yet, but we recognize that this will come, and we’ll have to adjust our model again. Advocating advocacy As we started to feel more comfortable about the value that members were receiving, we made the decision to indefinitely open for new members. At the same time, we increased the price of membership (from $99 a month to $119) in a bid to strike the right balance between profitability as a business and to slow down the rate at which we were reaching the tipping point of community size. We also made the decision to repay all of our early adopters by grandfathering them in to the original pricing – and committing to always do this in the future. Despite the price increase, we saw a continued flow of new members come into the community. The craziest part about this was that we were doing practically no marketing activities to encourage new members– this was all coming from word of mouth. Our members were getting enough value from the community that they were recommending it to their friends, colleagues and business partners.  The scale at which this was happening really took us by surprise and it told us one thing very clearly: delivering more value to members resulted in more value being delivered to the business. This is a wonderful dynamic to have because it perfectly aligns the incentives on both sides. We’d said from the start that we wouldn’t sacrifice value to members for more revenue – this is something that all three of us felt very strongly about. First and foremost, we wanted to create a community that delivered value to its members and was run in a way that aligned with our values as people. If we could find a way to stimulate brand advocacy, while also tightening the bonds between all of our individual community members, we’d be boosting both customer retention and customer acquisition in the same motion. This became our next big focus. [\[TWEET\] Adam, one of our members wore his Traffic Think Tank t-shirt in the Sahara desert](https://twitter.com/AdamGSteele/status/1130892481099382784) We started with some simple things: We shipped out Traffic Think Tank branded T-shirts to all new members. We’d call out each of the individuals that would submit questions to our live Q&A sessions and thank them live on air. We set up a new channel that was dedicated to sharing a quick introduction to who you are, what you do and where you’re based for all new members. We’d created a jobs channel and a marketplace for selling, buying and trading services with other members. Our monthly “blind dates” calls were started where you’d be randomly grouped with 3-4 other community members so that you could hop on a call to get to know each other better. The Traffic Think Tank In Real Life (IRL)* channel was born, which enabled members to facilitate in-person meetups with each other. In particular, we saw that as members started to meet in person or via calls the community itself was feeling more and more like a family. It became much closer knit and some members started to build up a really positive reputation for being particularly helpful to other members, or for having really strong knowledge in a specific area. [\[TWEET\] Dinner with some of the Traffic Think Tank members in Brighton, UK](https://twitter.com/matthewbarby/status/1117175584080134149) Nick, Ian and I would go out of our way to try and meet with members in real life wherever we could. I was taken aback by how appreciative people were for us doing this, and it also served as an invaluable way to gain honest feedback from members. There was another trend that we’d observed that we didn’t really expect to happen. More and more members were doing business with each another. We’ve had people find new jobs through the community, sell businesses to other members, launch joint ventures together and bring members in as consultants to their business. This has probably been the most rewarding thing to watch, and it was clear that the deeper relationships that our members were forming were resulting in an increased level of trust to work with each other. We wanted to harness this and take it to a new level. This brought us to arguably the best decision we’ve made so far running Traffic Think Tank… we were going to run a big live event for our members. I have no idea what I’m doing It’s the first week of January 2019 and we’re less than three weeks away from Traffic Think Tank LIVE, our first ever in-person event hosting 150 people, most of which are Traffic Think Tank members. It's like an ongoing nightmare I can’t wake up from. That was Nick’s response in our private admin channel to myself and Ian when I asked if they were finding the run-up to the event as stressful as I was. I think that all three of us were riding on such a high from how the community was growing that we felt like we could do anything. Running an event? How hard can it be? Well, turns out it’s really hard. We had seven different speakers flying over from around the world to speak at the event, there was a pre- and after event party, and we’d planned a charity dinner where we would take ten attendees (picked at random via a raffle) out for a fancy meal. Oh, and Nick, Ian and I were hosting a live Q&A session on stage. It wasn’t until precisely 48 hours before the event that we’d realized we didn’t have any microphones, nor had a large amount of the swag we’d ordered arrived. Plus, a giant storm had hit Philly causing a TON of flight cancellations. Perfect. Just perfect. This was honestly the tip of the iceberg. We hadn’t thought about who was going to run the registration desk, who would be taking photos during the event and who would actually field questions from the audience while all three of us sat on stage for our live Q&A panel. Turns out that the answer to all of those questions were my wife, Laura, and Nick’s wife, Kelley. Thankfully, they were on hand to save our asses. The weeks running up to the event were honestly some of the most stressful of my life. We sold around 50% of our ticket allocation within the final two weeks before the event. All of the event organizers told us this would happen, but did we believe them? Hell no!  Imagine having two weeks until the big day and as it stood half of the room would be completely empty. I was ready to fly most of my extended family over just to make it look remotely busy. [\[IMAGE\] One of our speakers, Ryan Stewart, presenting at Traffic Think Tank LIVE](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1920/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LIVE-Ryan-Presenting.jpg) Thankfully, if all came together. We managed to acquire some microphones, the swag arrived on the morning of the event, all of our speakers were able to make it on time and the weather just about held up so that our entire allocation of ticket holders was able to make it to the event. We pooled together and I’m proud to say that the event was a huge success. While we made a substantial financial loss on the event itself, January saw a huge spike in new members, which more than recouped our losses. Not only that, but we got to hang out with a load of our members all day while they said really nice things about the thing we’d built. It was both exhausting and incredibly rewarding. Bring on Traffic Think Tank LIVE 2020! (This time we’re hiring an event manager...)   The road ahead Fast forward to today (August 2019) and Traffic Think Tank has over 650 members. The biggest challenges that we’re tackling right now include making sure the most interesting conversations and best content surfaces to the top of the community, making Slack more searchable (this is ultimately one of its flaws as a platform) and giving members a quicker way to find the exclusive content that we create. You’ll notice there’s a pretty clear theme here. In the past 30 days, 4,566 messages were posted in public channels inside Traffic Think Tank. If you add on any messages posted inside private direct messages, this number rises to 21,612. That’s a lot of messages. To solve these challenges and enable further scale in the future, we’ve invested a bunch of cash and our time into building out a full learning management system (LMS) that all members will get access to alongside the Slack community. The LMS will be a web-based portal that houses all of the video content we produce. It will also  provide an account admin section where users can update or change their billing information (they have to email us to do this right now, which isn’t ideal), a list of membership perks and discounts with our partners, and a list of links to some of the best threads within Slack – when clicked, these will drop you directly into Slack. [\[IMAGE\] Designs for the new learning management system (LMS)](https://cdn.shortpixel.ai/client/qglossy,retimg,w_2378/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LMS.png) It’s not been easy, but we’re 95% of the way through this and I’m certain that it will have a hugely positive impact on the experience for our members. Alongside this we hired a community manager, Liz, who supports with any questions that our members have, coordinates with external experts to arrange webinars for the community, helps with new member onboarding, and has tightened up some of our processes around billing and general accounts admin. This was a great decision. Finally, we’ve started planning next year’s live event, which we plan to more than double in size to 350 attendees, and we decided to pick a slightly warmer location in Miami this time out. Stay tuned for me to have a complete meltdown 3 weeks from the event. Final thoughts When I look back on the journey we’ve had so far building Traffic Think Tank, there’s one very important piece to this puzzle that’s made all of this work that I’ve failed to mention so far: co-founder alignment. Building a community is a balancing act that relies heavily on those in charge being completely aligned. Nick, Ian and I completely trust each other and more importantly, are philosophically aligned on how we want to run and grow the community. If we didn’t have this, the friction between us could tear apart the entire community. Picking the right people to work with is important in any company, but when your business is literally about bringing people together, there’s no margin for error here.  While I’m sure there will be many more challenges ahead, knowing that we all trust each other to make decisions that fall in line with each of our core values makes these challenges dramatically easier to overcome. Finally, I’d like to thank all of our members for making the community what it is today – it’d be nothing without you and I promise that we’ll never take that for granted. &#x200B; I originally posted this on my blog here. Welcoming all of your thoughts, comments, questions and I'll do my best to answer them :)

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience
reddit
LLM Vibe Score0
Human Vibe Score1
hopefully_usefulThis week

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience

I met my co-founder in late 2022 after an introduction from a mutual friend to talk about how to find contract Product Management roles. I was sporadically contracting at start-up at the time and he had just come out of another start-up that was wiped out by the pandemic. We hit it off, talking about ideas, sharing what other indie-hackers were doing, and given GPT-3’s prominence at the time, we started throwing around ideas about things we could build with it, if nothing else, just to learn. I should caveat, neither of us were AI experts when starting out, everything we learned has been through Twitter and blogs, my background is as an accountant, and his a consultant. Here’s how it went since then: &#x200B; Nov 2022 (+$50) \- We built a simple tool in around a week using GPT-3 fine-tuning and a no-code tool (Bubble) that helped UK university students write their personal statements for their applications \- We set some Google Ads going and managed to make a few sales (\~$50) in the first week \- OpenAI were still approving applications at the time and said this went against their “ethics” so we had to take it down &#x200B; Dec 2022 (+$200) \- We couldn’t stop coming up with ideas related to AI fine-tuning, but realised it was almost impossible to decide which to pursue \- We needed a deadline to force us so we signed up for the Ben’s Bites hackathon in late December \- In a week, we built and launched a no-code fine-tuning platform, allowing people to create fine-tuned models by dragging and dropping an Excel file onto it \- We launched it on Product Hunt, having no idea how to price it, and somehow managed to get \~2,000 visitors on the site and make 2 sales at $99 &#x200B; Jan 2023 (+$3,000) \- We doubled down on the fine-tuning idea and managed to get up to \~$300 MRR, plus a bunch of one-time sales and a few paid calls to help people get the most out of their models \- We quickly realised that people didn’t want to curate models themselves, they just wanted to dump data and get magic out \- That was when we saw people building “Talk with x book/podcast” on Twitter as side projects and realised that was the missing piece, we needed to turn it into a tool \- We started working on the new product in late January &#x200B; Feb 2023 (+$9,000) \- We started pre-selling access to an MVP for the new product, which allowed people to “chat with their data/content”, we got $5,000 in pre-sales, more than we made from the previous product in total \- By mid-February, after 3 weeks of building we were able to launch and immediately managed to get traction, getting to $1k MRR in < 1 week, building on the hype of ChatGPT and AI (we were very lucky here) &#x200B; Mar - Jul 2023 (+$98,000) \- We worked all the waking hours to keep up with customer demand, bugs, OpenAI issues \- We built integrations for a bunch of services like Slack, Teams, Wordpress etc, added tons of new functionality and continue talking to customers every day \- We managed to grow to $17k MRR (just about enough to cover our living expenses and costs in London) through building in public on Twitter, newsletters and AI directories (and a million other little things) \- We sold our fine-tuning platform for \~$20k and our university project for \~$3k on Acquire &#x200B; Aug 2023 (+$100,000) \- We did some custom development work based on our own product for a customer that proved pretty lucrative &#x200B; Sep - Oct 2023 (+$62,000) \- After 8 months of building constantly, we started digging more seriously into our usage and saw subscriptions plateauing \- We talked to and analysed all our paying users to identify the main use cases and found 75% were for SaaS customer support \- We took the leap to completely rebuild a version of our product around this use case, our biggest to date (especially given most features with no-code took us <1 day) &#x200B; Nov - Dec 2023 (+$53,000) \- We picked up some small custom development work that utilised our own tech \- We’re sitting at around $22k MRR now with a few bigger clients signed up and coming soon \- After 2 months of building and talking to users, we managed to finish our “v2” of our product, focussed squarely on SaaS customer support and launched it today. &#x200B; We have no idea what the response will be to this new version, but we’re pretty happy with it, but couldn’t have planned anything that happened to us in 2023 so who knows what will come of 2024, we just know that we are going to be learning a ton more. &#x200B; Overall, it is probably the most I have had to think in my life - other jobs you can zone out from time to time or rely on someone else if you aren’t feeling it - not when you are doing this, case and point, I am writing this with a banging head-cold right now, but wanted to get this done. A few more things we have learned along the way - context switching is unreal, as is keeping up with, learning and reacting to AI. There isn’t a moment of the day I am not thinking about what we do next. But while in some way we now have hundreds of bosses (our customers) I still haven’t felt this free and can’t imagine ever going back to work for someone else. Next year we’re really hoping to figure out some repeatable distribution channels and personally, I want to get a lot better at creating content/writing, this is a first step! Hope this helps someone else reading this to just try starting something and see what happens.

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company
reddit
LLM Vibe Score0
Human Vibe Score0.778
wutangsamThis week

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company

I’ve learned so much over the years from this subreddit. I thought I’d return the favour and share some of my own learnings. In November 2020 my best friend and I had an idea. “What if we could find out which stocks the Internet is talking about?” This formed the origins of Ticker Nerd. 9 months later we sold Ticker Nerd to Finder (an Australian fintech company valued at around $500m). In this post, I am going to lay out how we got there. How we came up with the idea First off, like other posts have covered - you don’t NEED a revolutionary or original idea to build a business. There are tonnes of “boring” businesses making over 7 figures a year e.g. law firms, marketing agencies, real estate companies etc. If you’re looking for an exact formula to come up with a great business idea I’m sorry, but it doesn’t exist. Finding new business opportunities is more of an art than a science. Although, there are ways you can make it easier to find inspiration. Below are the same resources I use for inspiration. I rarely ever come up with ideas without first searching one of the resources below for inspiration: Starter Story Twitter Startup Ideas My First Million Trends by the Hustle Trends VC To show how you how messy, random and unpredictable it can be to find an idea - let me explain how my co-founder and I came up with the idea for Ticker Nerd: We discovered a new product on Twitter called Exploding Topics. It was a newsletter that uses a bunch of software and algorithms to find trends that are growing quickly before they hit the mainstream. I had recently listened to a podcast episode from My First Million where they spoke about Motley Fool making hundreds of millions from their investment newsletters. We asked ourselves what if we could build a SaaS platform similar to Exploding Topics but it focused on stocks? We built a quick landing page using Carrd + Gumroad that explained what our new idea will do and included a payment option to get early access for $49. We called it Exploding Stock (lol). We shared it around a bunch of Facebook groups and subreddits. We made $1,000 in pre-sales within a couple days. My co-founder and I can’t code so we had to find a developer to build our idea. We interviewed a bunch of potential candidates. Meanwhile, I was trawling through Wall Street Bets and found a bunch of free tools that did roughly what we wanted to build. Instead of building another SaaS tool that did the same thing as these free tools we decided to pivot from our original idea. Our new idea = a paid newsletter that sends a weekly report that summarises 2 of the best stocks that are growing in interest on the Internet. We emailed everyone who pre-ordered access, telling them about the change and offered a full refund if they wanted. tl;dr: We essentially combined two existing businesses (Exploding Topics and Motley Fool) and made it way better. We validated the idea by finding out if people will actually pay money for it BEFORE we decided to build it. The idea we started out with changed over time. How to work out if your idea will actually make money It’s easy to get hung up on designing the logo or choosing the perfect domain name for your new idea. At this stage none of that matters. The most important thing is working out if people will pay money for it. This is where validation comes in. We usually validate ideas using Carrd. It lets you build a simple one page site without having to code. The Ticker Nerd site was actually built using a Carrd template. Here’s how you can do it yourself (at a high level): Create a Carrd pro account (yes it's a $49 one off payment but you’ll get way more value out of it). Buy a cheap template and send it to your Carrd account. You can build your own template but this will save you a lot of time. Once the template reaches your Carrd account, duplicate it. Leave the original so it can be duplicated for other ideas. Jump onto Canva (free) and create a logo using the free logos provided. Import your logo. Add copy to the page that explains your idea. Use the AIDA formula. Sign up to Gumroad (free) and create a pre-sale campaign. Create a discounted lifetime subscription or version of the product. This will be used pre-sales. Add the copy from the site into the pre-sale campaign on Gumroad. Add a ‘widget’ to Carrd and connect it to Gumroad using the existing easy integration feature. Purchase a domain name. Connect it to Carrd. Test the site works. Share your website Now the site is ready you can start promoting it in various places to see how the market reacts. An easy method is to find relevant subreddits using Anvaka (Github tool) or Subreddit Stats. The Anvaka tool provides a spider map of all the connected subreddits that users are active in. The highlighted ones are most relevant. You can post a thread in these subreddits that offer value or can generate discussion. For example: ‘I’m creating a tool that can write all your copy, would anyone actually use this?’ ‘What does everything think of using AI to get our copy written faster?’ ‘It’s time to scratch my own itch, I’m creating a tool that writes marketing copy using GPT-3. What are the biggest problems you face writing marketing copy? I’ll build a solution for it’ Reddit is pretty brutal these days so make sure the post is genuine and only drop your link in the comments or in the post if it seems natural. If people are interested they’ll ask for the link. Another great place to post is r/entrepreuerridealong and r/business_ideas. These subreddits expect people to share their ideas and you’ll likely make some sales straight off the bat. I also suggest posting in some Facebook groups (related to your idea) as well just for good measure. Assess the results If people are paying you for early access you can assume that it’s worth building your idea. The beauty of posting your idea on Reddit or in Facebook groups is you’ll quickly learn why people love/hate your idea. This can help you decide how to tweak the idea or if you should drop it and move on to the next one. How we got our first 100 customers (for free) By validating Ticker Nerd using subreddits and Facebook groups this gave us our first paying customers. But we knew this wouldn’t be sustainable. We sat down and brainstormed every organic strategy we could use to get traction as quickly as possible. The winner: a Product Hunt launch. A successful Product Hunt launch isn’t easy. You need: Someone that has a solid reputation and audience to “hunt” your product (essentially an endorsement). An aged Product Hunt account - you can’t post any products if your account is less than a week old. To be following relevant Product Hunt members - since they get notified when you launch a new product if they’re following you. Relationships with other builders and makers on Product Hunt that also have a solid reputation and following. Although, if you can pull it off you can get your idea in front of tens of thousands of people actively looking for new products. Over the next few weeks, I worked with my co-founder on connecting with different founders, indie hackers and entrepreneurs mainly via Twitter. We explained to them our plans for the Product Hunt launch and managed to get a small army of people ready to upvote our product on launch day. We were both nervous on the day of the launch. We told ourselves to have zero expectations. The worst that could happen was no one signed up and we were in the same position as we’re in now. Luckily, within a couple of hours Ticker Nerd was on the homepage of Product Hunt and in the top 10. The results were instant. After 24 hours we had around 200 people enter their payment details to sign up for our free trial. These signups were equal to around $5,800 in monthly recurring revenue. \-- I hope this post was useful! Drop any questions you have below and I’ll do my best to respond :)

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

Beginner to the 1st sale: my journey building an AI for social media marketers
reddit
LLM Vibe Score0
Human Vibe Score1
Current-Payment-5403This week

Beginner to the 1st sale: my journey building an AI for social media marketers

Hey everyone! Here’s my journey building an AI for social media marketers all the way up until my first pre-launch sale, hope that could help some of you: My background: studied maths at uni before dropping out to have some startup experiences. Always been drawn to building new things so I reckoned I would have some proper SaaS experiences and see how VC-funded startups are doing it before launching my own.  I’ve always leaned towards taking more risks in my life so leaving my FT job to launch my company wasn’t a big deal for me (+ I’m 22 so still have time to fail over and over). When I left my job, I started reading a lot about UI/UX, no-code tools, marketing, sales and every tool a worthwhile entrepreneur needs to learn about. Given the complexity of the project I set out to achieve, I asked a more technical friend to join as a cofounder and that's when AirMedia was born. We now use bubble for landing page as I had to learn it and custom-code stack for our platform.  Here's our goal: streamlining social media marketing using AI. I see this technology has only being at the premises of what it will be able to achieve in the near-future. We want to make the experience dynamic i.e. all happens from a discussion and you see the posts being analysed from there as well as the creation process - all from within the chat. Fast forward a few weeks ago, we finished developing the first version of our tool that early users describe as a "neat piece of tech" - just this comment alone can keep me going for months :) Being bootstrapped until now, I decided to sell lifetime deals for the users in the waitlist that want to get the tool in priority as well as secure their spot for life. We've had the first sale the first day we made that public ! Now what you all are looking for: How ?  Here was my process starting to market the platform: I need a high-converting landing page so I reckoned which companies out there have the most data and knows what convert and what doesn’t: Unbounce. Took their landing page and adapted it to my value proposition and my ICP.  The ICP has been defined from day 1 and although I’m no one to provide any advice, I strongly believe the ICP has to be defined from day 1 (even before deciding the name of the company). It helps a lot when the customer is you and you’ve had this work experience that helps you identify the problems your users encounter. Started activating the network, posting on Instagram and LinkedIn about what we've built (I've worked in many SaaS start-ups in the past so I have to admit that's a bit of a cheat code). Cold outreach from Sales NAV to our ICP, been growing the waitlist in parallel of building the tool for months now so email marketings with drip sequences and sharing dev updates to build the trust along the way (after all we're making that tool for our users - they should be the first aware about what we're building). I also came across some Whatsapp groups with an awesome community that welcomed our platform with excitement.) The landing page funnel is the following: Landing page -> register waitlist -> upsell page -> confirmation. I've made several landing pages e.g. for marketing agencies, for real estate agents, for marketing director in several different industries. The goal now is just testing out the profiles and who does it resonate the most with. Another growth hack that got us 40+ people on the waitlist: I identified some Instagram posts from competitors where their CTA was "comment AI" and I'll send you our tool and they got over 2k people commenting. Needless to say, I messaged every single user to check out our tool and see if it could help them. (Now that i think about it, the 2% conversion rate there is not great - especially considering the manual labour and the time put behind it). We’ve now got over 400 people on the waitlist so I guess we’re doing something right but we’ll keep pushing as the goal is to sell these lifetime deals to have a strong community to get started. (Also prevents us from going to VCs and I can keep my time focussing exclusively on our users - I’m not into boardroom politics, just wanna build something useful for marketers). Now I’m still in the process of testing out different marketing strategies while developing and refining our platform to make it next level on launch day. Amongst those:  LinkedIn Sales Nav outreach (first sale came from there) Product Hunt Highly personalised cold emails (there I’m thinking of doing 20 emails a day with a personalised landing page to each of those highly relevant marketers). Never seen that and I think this could impress prospects but not sure it’s worth it time / conversion wise. Make content to could go viral (at least 75 videos) that I’m posting throughout several social media accounts such as airmedia\\, airmedia\reels, airmedia\ai (you get the hack) always redirecting to the main page both in the profile description and tagging the main account. I have no idea how this will work so will certainly update some of you that would like to know the results. Will do the same across Facebook, TikTok, Youtube Shorts etc… I’m just looking for a high potential of virality there. This strategy is mainly used to grow personal brands but never seen it applied to companies. Good old cold calling Reddit (wanna keep it transparent ;) ) I’m alone to execute all these strategies + working in parallel to refine the product upon user’s feedback I’m not sure I can do more than that for now. Let me know if you have any feedback/ideas/ tasks I could implement.  I could also make another post about the proper product building process as this post was about the marketing. No I certainly haven’t accomplished anything that puts me in a position to provide advices but I reckon I’m on my way to learn more and more. Would be glad if this post could help some of you.  And of course as one of these marketing channels is Reddit I’ll post the link below for the entrepreneurs that want to streamline their social media or support us. Hope I was able to provide enough value in this post for you to consider :) https://airmedia.uk/

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

101 best SEO tips to help you drive traffic in 2k21
reddit
LLM Vibe Score0
Human Vibe Score0.543
DrJigsawThis week

101 best SEO tips to help you drive traffic in 2k21

Hey guys! I don't have to tell you how SEO can be good for your business - you can drive leads to your SaaS on autopilot, drive traffic to your store/gym/bar/whatever, etc. The thing with SEO, though, is that most SEO tips on the internet are just not that good. Most of the said tips: Are way too simple & basic (“add meta descriptions to your images”*) Are not impactful. Sure, adding that meta tag to an image is important, but that’s not what’s going to drive traffic to your website Don’t talk much about SEO strategy (which is ultimately the most important thing for SEO). Sure, on-page SEO is great, but you sure as hell won't drive much traffic if you can't hire the right writers to scale your content. And to drive serious SEO traffic, you'll need a LOT more than that. Over the past few years, my and my co-founder have helped grow websites to over 200k+ monthly traffic (check out our older Reddit post if you want to learn more about us, our process, and what we do), and we compiled all our most important SEO tips and tricks, as well as case studies, research, and experiments from the web, into this article. Hope you like it ;) If you think we missed something super important, let us know and we'll add it to the list. And btw, we also published this article on our own blog with images, smart filters, and all that good stuff. If you want to check it out, click here. That said, grab some coffee (or beer) & let's dive in - this is going to be a long one. SEO Strategy Tips Tip #1. A Lot of SEO Tips On The Internet Are NOT Necessarily Factual A lot of the SEO content you’ll read on the internet will be based on personal experiences and hearsay. Unfortunately, Google is a bit vague about SEO advice, so you have to rely more on experiments conducted by SEO pros in the community. So, sometimes, a lot of this information is questionable, wrong, or simply based on inaccurate data.  What we’re getting at here is, whenever you hear some new SEO advice, take it with a grain of salt. Google it to double-check other sources, and really understand what this SEO advice is based on (instead of just taking it at face value). Tip #2. SEO Takes Time - Get Used to It Any way you spin it, SEO takes time.  It can take around 6 months to 2 years (depending on the competition in your niche) before you start seeing some serious results.  So, don’t get disappointed if you don’t see any results within 3 months of publishing content. Tip #3. SEO Isn’t The Best Channel for Everyone That said, if you need results for your business tomorrow, you might want to reconsider SEO altogether.  If you just started your business, for example, and are trying to get to break-even ASAP, SEO is a bad idea - you’ll quit before you even start seeing any results.  If that’s the case, focus on other marketing channels that can have faster results like content marketing, PPC, outreach, etc. Tip #4. Use PPC to Validate Keywords Not sure if SEO is right for your business? Do this: set up Google Search ads for the most high-intent keywords in your niche. See how well the traffic converts and then decide if it’s worthwhile to focus on SEO (and rank on these keywords organically). Tip #5. Use GSC to See If SEO Is Working While it takes a while to see SEO results, it IS possible to see if you’re going in the right direction. On a monthly basis, you can use Search Console to check if your articles are indexed by Google and if their average position is improving over time. Tip #6. Publish a TON of Content The more content you publish on your blog, the better. We recommend a minimum of 10,000 words per month and optimally 20,000 - 30,000 (especially if your website is fresh). If an agency offers you the typical “4 500-word articles per month” deal, stay away. No one’s ever gotten results in SEO with short, once-per-week articles. Tip #7. Upgrade Your Writers Got a writer that’s performing well? Hire them as an editor and get them to oversee content operations / edit other writers’ content. Then, upgrade your best editor to Head of Content and get them to manage the entire editor / writer ops. Tip #8. Use Backlink Data to Prioritize Content When doing keyword research, gather the backlink data of the top 3 ranking articles and add it to your sheet. Then, use this data to help you prioritize which keywords to focus on first. We usually prioritize keywords that have lower competition, high traffic, and a medium to high buyer intent. Tip #9. Conduct In-Depth Keyword Research Make your initial keyword research as comprehensive as possible. This will give you a much more realistic view of your niche and allow you to prioritize content the right way. We usually aim for 100 to 300 keywords (depending on the niche) for the initial keyword research when we start working with a client. Tip #10. Start With Competitive Analysis Start every keyword research with competitive analysis. Extract the keywords your top 3 competitors are ranking on.  Then, use them as inspiration and build upon it. Use tools like UberSuggest to help generate new keyword ideas. Tip #11. Get SEMrush of Ahrefs You NEED SEMrush or Ahrefs, there’s no doubt about it. While they might seem expensive at a glance (99 USD per month billed annually), they’re going to save you a lot of manpower doing menial SEO tasks. Tip #12. Don’t Overdo It With SEO Tools Don’t overdo it with SEO tools. There are hundreds of those out there, and if you’re the type that’s into SaaS, you might be tempted to play around with dozens at a time. And yes, to be fair, most of these tools ARE helpful one way or another. To effectively do organic SEO, though, you don’t really need that many tools. In most cases, you just need the following: SEMrush/Ahrefs Screaming Frog RankMath/Yoast SEO Whichever outreach tool you prefer (our favorite is snov.io). Tip #13. Try Some of the Optional Tools In addition to the tools we mentioned before, you can also try the following 2 which are pretty useful & popular in the SEO community: Surfer SEO - helps with on-page SEO and creating content briefs for writers. ClusterAI - tool that helps simplify keyword research & save time. Tip #14. Constantly Source Writers Want to take your content production to the next level? You’ll need to hire more writers.  There is, however, one thing that makes this really, really difficult: 95 - 99% of writers applying for your gigs won’t be relevant. Up to 80% will be awful at writing, and the remainder just won’t be relevant for your niche. So, in order to scale your writing team, we recommend sourcing constantly, and not just once every few months. Tip #15. Create a Process for Writer Filtering As we just mentioned, when sourcing writers, you’ll be getting a ton of applicants, but most won’t be qualified. Fun fact \- every single time we post a job ad on ProBlogger, we get around 300 - 500 applications (most of which are totally not relevant). Trust us, you don’t want to spend your time going through such a huge list and checking out the writer samples. So, instead, we recommend you do this: Hire a virtual assistant to own the process of evaluating and short-listing writers. Create a process for evaluating writers. We recommend evaluating writers by: Level of English. If their samples aren’t fluent, they’re not relevant. Quality of Samples. Are the samples engaging / long-form content, or are they boring 500-word copy-pastes? Technical Knowledge. Has the writer written about a hard-to-explain topic before? Anyone can write about simple topics like traveling - you want to look for someone who knows how to research a new topic and explain it in a simple and easy to read way. If someone’s written about how to create a perfect cover letter, they can probably write about traveling, but the opposite isn’t true. The VA constantly evaluates new applicants and forwards the relevant ones to the editor. The editor goes through the short-listed writers and gives them trial tasks and hires the ones that perform well. Tip #16. Use The Right Websites to Source Writers “Is UpWork any good?” This question pops up on social media time and time again. If you ask us, no, UpWork is not good at all. Of course, there are qualified writers there (just like anywhere else), but from our experience, those writers are few and far in-between. Instead, here are some of our favorite ways to source writers: Cult of Copy Job Board ProBlogger Headhunting on LinkedIn If you really want to use UpWork, use it for headhunting (instead of posting a job ad) Tip #17. Hire Writers the Right Way If you want to seriously scale your content production, hire your writers full-time. This (especially) makes sense if you’re a content marketing agency that creates a TON of content for clients all the time. If you’re doing SEO just for your own blog, though, it usually makes more sense to use freelancers. Tip #18. Topic Authority Matters Google keeps your website's authoritativeness in mind. Meaning, if you have 100 articles on digital marketing, you’re probably more of an authority on the topic than someone that has just 10. Hence, Google is a lot more likely to reward you with better rankings. This is also partially why content volume really matters: the more frequently you publish content, the sooner Google will view you as an authority. Tip #19. Focus on One Niche at a Time Let’s say your blog covers the following topics: sales, accounting, and business management.  You’re more likely to rank if you have 30 articles on a single topic (e.g. accounting) than if you have 10 articles on each. So, we recommend you double-down on one niche instead of spreading your content team thin with different topics. Tip #20. Don’t Fret on the Details While technical SEO is important, you shouldn’t get too hung up on it.  Sure, there are thousands of technical tips you can find on the internet, and most of them DO matter. The truth, though, is that Google won’t punish you just because your website doesn’t load in 3 milliseconds or there’s a meta description missing on a single page. Especially if you have SEO fundamentals done right: Get your website to run as fast as possible. Create a ton of good SEO content. Get backlinks for your website on a regular basis. You’ll still rank, even if your website isn’t 100% optimized. Tip #21. Do Yourself a Favor and Hire a VA There are a TON of boring SEO tasks that your team should really not be wasting time with. So, hire a full-time VA to help with all that. Some tasks you want to outsource include gathering contacts to reach out to for link-building, uploading articles on WordPress, etc. Tip #22. Google Isn’t Everything While Google IS the dominant search engine in most parts of the world, there ARE countries with other popular search engines.  If you want to improve your SEO in China, for example, you should be more concerned with ranking on Baidu. Targeting Russia? Focus on Yandex. Tip #23. No, Voice Search is Still Not Relevant Voice search is not and will not be relevant (no matter what sensationalist articles might say). It’s just too impractical for most search queries to use voice (as opposed to traditional search). Tip #24. SEO Is Not Dead SEO is not dead and will still be relevant decades down the line. Every year, there’s a sensationalist article talking about this.  Ignore those. Tip #25. Doing Local SEO? Focus on Service Pages If you’re doing local SEO, focus on creating service-based landing pages instead of content.  E.g. if you’re an accounting firm based in Boston, you can make a landing page about /accounting-firm-boston/, /tax-accounting-boston/, /cpa-boston/, and so on. Thing is, you don’t really need to rank on global search terms - you just won’t get leads from there. Even if you ranked on the term “financial accounting,” it wouldn’t really matter for your bottom line that much. Tip #26. Learn More on Local SEO Speaking of local SEO, we definitely don’t do the topic justice in this guide. There’s a lot more you need to know to do local SEO effectively and some of it goes against the general SEO advice we talk about in this article (e.g. you don't necessarily need blog content for local SEO). We're going to publish an article on that soon enough, so if you want to check it out, DM me and I'll hit you up when it's up. Tip #27. Avoid Vanity Metrics Don’t get side-tracked by vanity metrics.  At the end of the day, you should care about how your traffic impacts your bottom line. Fat graphs and lots of traffic are nice and all, but none of it matters if the traffic doesn’t have the right search intent to convert to your product/service. Tip #28. Struggling With SEO? Hire an Expert Failing to make SEO work for your business? When in doubt, hire an organic SEO consultant or an SEO agency.  The #1 benefit of hiring an SEO agency or consultant is that they’ve been there and done that - more than once. They might be able to catch issues an inexperienced SEO can’t. Tip #29. Engage With the Community Need a couple of SEO questions answered?  SEO pros are super helpful & easy to reach! Join these Facebook groups and ask your question - you’ll get about a dozen helpful answers! SEO Signals Lab SEO & Content Marketing The Proper SEO Group. Tip #30. Stay Up to Date With SEO Trends SEO is always changing - Google is constantly pumping out new updates that have a significant impact on how the game is played.  Make sure to stay up to date with the latest SEO trends and Google updates by following the Google Search Central blog. Tip #31. Increase Organic CTR With PPC Want to get the most out of your rankings? Run PPC ads for your best keywords. Googlers who first see your ad are more likely to click your organic listing. Content & On-Page SEO Tips Tip #32. Create 50% Longer Content On average, we recommend you create an article that’s around 50% longer than the best article ranking on the keyword.  One small exception, though, is if you’re in a super competitive niche and all top-ranking articles are already as comprehensive as they can be. For example, in the VPN niche, all articles ranking for the keyword “best VPN” are around 10,000 - 11,000 words long. And that’s the optimal word count - even if you go beyond, you won’t be able to deliver that much value for the reader to make it worth the effort of creating the content. Tip #33. Longer Is Not Always Better Sometimes, a short-form article can get the job done much better.  For example, let’s say you’re targeting the keyword “how to tie a tie.”  The reader expects a short and simple guide, something under 500 words, and not “The Ultimate Guide to Tie Tying for 2021 \[11 Best Tips and Tricks\]” Tip #34. SEO is Not Just About Written Content Written content is not always best. Sometimes, videos can perform significantly better. E.g. If the Googler is looking to learn how to get a deadlift form right, they’re most likely going to be looking for a video. Tip #35. Don’t Forget to Follow Basic Optimization Tips For all your web pages (articles included), follow basic SEO optimization tips. E.g. include the keyword in the URL, use the right headings etc.  Just use RankMath or YoastSEO for this and you’re in the clear! Tip #36. Hire Specialized Writers When hiring content writers, try to look for ones that specialize in creating SEO content.  There are a LOT of writers on the internet, plenty of which are really good.  However, if they haven’t written SEO content before, chances are, they won’t do that good of a job. Tip #37. Use Content Outlines Speaking of writers - when working with writers, create a content outline that summarizes what the article should be about and what kind of topics it needs to cover instead of giving them a keyword and asking them to “knock themselves out.”   This makes it a lot more likely for the writer to create something that ranks. When creating content outlines, we recommend you include the following information: Target keyword Related keywords that should be mentioned in the article Article structure - which headings should the writer use? In what order? Article title Tip #38. Find Writers With Niche Knowledge Try to find a SEO content writer with some experience or past knowledge about your niche. Otherwise, they’re going to take around a month or two to become an expert. Alternatively, if you’re having difficulty finding a writer with niche knowledge, try to find someone with experience in technical or hard to explain topics. Writers who’ve written about cybersecurity in the past, for example, are a lot more likely to successfully cover other complicated topics (as opposed to, for example, a food or travel blogger). Tip #39. Keep Your Audience’s Knowledge in Mind When creating SEO content, always keep your audience’s knowledge in mind. If you’re writing about advanced finance, for example, you don’t need to teach your reader what an income statement is. If you’re writing about income statements, on the other hand, you’d want to start from the very barebone basics. Tip #40. Write for Your Audience If your readers are suit-and-tie lawyers, they’re going to expect professionally written content. 20-something hipsters? You can get away with throwing a Rick and Morty reference here and there. Tip #41. Use Grammarly Trust us, it’ll seriously make your life easier! Keep in mind, though, that the app is not a replacement for a professional editor. Tip #42. Use Hemingway Online content should be very easy to read & follow for everyone, whether they’re a senior profession with a Ph.D. or a college kid looking to learn a new topic. As such, your content should be written in a simple manner - and that’s where Hemingway comes in. It helps you keep your blog content simple. Tip #43. Create Compelling Headlines Want to drive clicks to your articles? You’ll need compelling headlines. Compare the two headlines below; which one would you click? 101 Productivity Tips \[To Get Things Done in 2021\] VS Productivity Tips Guide Exactly! To create clickable headlines, we recommend you include the following elements: Keyword Numbers Results Year (If Relevant) Tip #44. Nail Your Blog Content Formatting Format your blog posts well and avoid overly long walls of text. There’s a reason Backlinko content is so popular - it’s extremely easy to read and follow. Tip #45. Use Relevant Images In Your SEO Content Key here - relevant. Don’t just spray random stock photos of “office people smiling” around your posts; no one likes those.  Instead, add graphs, charts, screenshots, quote blocks, CSS boxes, and other engaging elements. Tip #46. Implement the Skyscraper Technique (The Right Way) Want to implement Backlinko’s skyscraper technique?  Keep this in mind before you do: not all content is meant to be promoted.  Pick a topic that fits the following criteria if you want the internet to care: It’s on an important topic. “Mega-Guide to SaaS Marketing” is good, “top 5 benefits of SaaS marketing” is not. You’re creating something significantly better than the original material. The internet is filled with mediocre content - strive to do better. Tip #47. Get The URL Slug Right for Seasonal Content If you want to rank on a seasonal keyword with one piece of content (e.g. you want to rank on “saas trends 2020, 2021, etc.”), don’t mention the year in the URL slug - keep it /saas-trends/ and just change the headline every year instead.  If you want to rank with separate articles, on the other hand (e.g. you publish a new trends report every year), include the year in the URL. Tip #48. Avoid content cannibalization.  Meaning, don’t write 2+ articles on one topic. This will confuse Google on which article it should rank. Tip #49. Don’t Overdo Outbound Links Don’t include too many outbound links in your content. Yes, including sources is good, but there is such a thing as overdoing it.  If your 1,000 word article has 20 outbound links, Google might consider it as spam (even if all those links are relevant). Tip #50. Consider “People Also Ask” To get the most out of SERP, you want to grab as many spots on the search result as possible, and this includes “people also ask (PAA):” Make a list of the topic’s PAA questions and ensure that your article answers them.  If you can’t fit the questions & answers within the article, though, you can also add an FAQ section at the end where you directly pose these questions and provide the answers. Tip #51. Optimize For Google Snippet Optimize your content for the Google Snippet. Check what’s currently ranking as the snippet. Then, try to do something similar (or even better) in terms of content and formatting. Tip #52. Get Inspired by Viral Content Want to create content that gets insane shares & links?  Reverse-engineer what has worked in the past. Look up content in your niche that went viral on Reddit, Hacker News, Facebook groups, Buzzsumo, etc. and create something similar, but significantly better. Tip #53. Avoid AI Content Tools No, robots can’t write SEO content.  If you’ve seen any of those “AI generated content tools,” you should know to stay away. The only thing those tools are (currently) good for is creating news content. Tip #54. Avoid Bad Content You will never, ever, ever rank with one 500-word article per week.  There are some SEO agencies (even the more reputable ones) that offer this as part of their service. Trust us, this is a waste of time. Tip #55. Update Your Content Regularly Check your top-performing articles annually and see if there’s anything you can do to improve them.  When most companies finally get the #1 ranking for a keyword, they leave the article alone and never touch it again… ...Until they get outranked, of course, by someone who one-upped their original article. Want to prevent this from happening? Analyze your top-performing content once a year and improve it when possible. Tip #56. Experiment With CTR Do your articles have low CTR? Experiment with different headlines and see if you can improve it.  Keep in mind, though, that what a “good CTR” is really depends on the keyword.  In some cases, the first ranking will drive 50% of the traffic. In others, it’s going to be less than 15%. Link-Building Tips Tip #57. Yes, Links Matter. Here’s What You Need to Know “Do I need backlinks to rank?” is probably one of the most common SEO questions.  The answer to the question (alongside all other SEO-related questions) is that it depends on the niche.  If your competitors don’t have a lot of backlinks, chances are, you can rank solely by creating superior content. If you’re in an extremely competitive niche (e.g. VPN, insurance, etc.), though, everyone has amazing, quality content - that’s just the baseline.  What sets top-ranking content apart from the rest is backlinks. Tip #58. Sometimes, You’ll Have to Pay For Links Unfortunately, in some niches, paying for links is unavoidable - e.g. gambling, CBD, and others. In such cases, you either need a hefty link-building budget, or a very creative link-building campaign (create a viral infographic, news-worthy story based on interesting data, etc.). Tip #59. Build Relationships, Not Links The very best link-building is actually relationship building.  Make a list of websites in your niche and build a relationship with them - don’t just spam them with the standard “hey, I have this amazing article, can you link to it?”.  If you spam, you risk ruining your reputation (and this is going to make further outreach much harder). Tip #60. Stick With The Classics At the end of the day, the most effective link-building tactics are the most straightforward ones:  Direct Outreach Broken Link-Building Guest Posting Skyscraper Technique Creating Viral Content Guestposting With Infographics Tip #61. Give, Don’t Just Take! If you’re doing link-building outreach, don’t just ask for links - give something in return.  This will significantly improve the reply rate from your outreach email. If you own a SaaS tool, for example, you can offer the bloggers you’re reaching out to free access to your software. Or, alternatively, if you’re doing a lot of guest posting, you can offer the website owner a link from the guest post in exchange for the link to your website. Tip #62. Avoid Link Resellers That guy DMing you on LinkedIn, trying to sell you links from a Google Sheet?  Don’t fall for it - most of those links are PBNs and are likely to backfire on you. Tip #63. Avoid Fiverr Like The Plague Speaking of spammy links, don’t touch anything that’s sold on Fiverr - pretty much all of the links there are useless. Tip #64. Focus on Quality Links Not all links are created equal. A link is of higher quality if it’s linked from a page that: Is NOT a PBN. Doesn’t have a lot of outbound links. If the page links to 20 other websites, each of them gets less link juice. Has a lot of (quality) backlinks. Is part of a website with a high domain authority. Is about a topic relevant to the page it’s linking to. If your article about pets has a link from an accounting blog, Google will consider it a bit suspicious. Tip #65. Data-Backed Content Just Works Data-backed content can get insane results for link-building.  For example, OKCupid used to publish interesting data & research based on how people interacted with their platform and it never failed to go viral. Each of their reports ended up being covered by dozens of news media (which got them a ton of easy links). Tip #66. Be Creative - SEO Is Marketing, After All Be novel & creative with your link-building initiatives.  Here’s the thing: the very best link-builders are not going to write about the tactics they’re using.  If they did, you’d see half the internet using the exact same tactic as them in less than a week! Which, as you can guess, would make the tactic cliche and significantly less effective. In order to get superior results with your link-building, you’ll need to be creative - think about how you can make your outreach different from what everyone does. Experiment it, measure it, and improve it till it works! Tip #67. Try HARO HARO, or Help a Reporter Out, is a platform that matches journalists with sources. You get an email every day with journalists looking for experts in specific niches, and if you pitch them right, they might feature you in their article or link to your website. Tip #68. No-Follow Links Aren’t That Bad Contrary to what you might’ve heard, no-follow links are not useless. Google uses no-follow as more of a suggestion than anything else.  There have been case studies that prove Google can disregard the no-follow tag and still reward you with increased rankings. Tip #69. Start Fresh With an Expired Domain Starting a new website? It might make sense to buy an expired one with existing backlinks (that’s in a similar niche as yours). The right domain can give you a serious boost to how fast you can rank. Tip #70. Don’t Overspend on Useless Links “Rel=sponsored” links don’t pass pagerank and hence, won’t help increase your website rankings.  So, avoid buying links from media websites like Forbes, Entrepreneur, etc. Tip #71. Promote Your Content Other than link-building, focus on organic content promotion. For example, you can repost your content on Facebook groups, LinkedIn, Reddit, etc. and focus on driving traffic.  This will actually lead to you getting links, too. We got around 95 backlinks to our SEO case study article just because of our successful content promotion. Tons of people saw the article on the net, liked it, and linked to it from their website. Tip #72. Do Expert Roundups Want to build relationships with influencers in your niche, but don’t know where to start?  Create an expert roundup article. If you’re in the sales niche, for example, you can write about Top 21 Sales Influencers in 2021 and reach out to the said influencers letting them know that they got featured. Trust us, they’ll love you for this! Tip #73. .Edu Links are Overhyped .edu links are overrated. According to John Mueller, .edu domains tend to have a ton of outbound links, and as such, Google ignores a big chunk of them. Tip #74. Build Relationships With Your Customers Little-known link-building hack: if you’re a SaaS company doing SEO, you can build relationships with your customers (the ones that are in the same topical niche as you are) and help each other build links! Tip #75. Reciprocal Links Aren’t That Bad Reciprocal links are not nearly as bad as Google makes them out to be. Sure, they can be bad at scale (if trading links is all you’re doing). Exchanging a link or two with another website / blog, though, is completely harmless in 99% of cases. Tip #76. Don’t Overspam Don’t do outreach for every single post you publish - just the big ones.  Most people already don’t care about your outreach email. Chances are, they’re going to care even less if you’re asking them to link to this new amazing article you wrote (which is about the top 5 benefits of adopting a puppy). Technical SEO Tips Tip #77. Use PageSpeed Insights If your website is extremely slow, it’s definitely going to impact your rankings. Use PageSpeed Insights to see how your website is currently performing. Tip #78. Load Speed Matters While load speed doesn’t impact rankings directly, it DOES impact your user experience. Chances are, if your page takes 5 seconds to load, but your competition’s loads instantly, the average Googler will drop off and pick them over you. Tip #79. Stick to a Low Crawl Depth Crawl depth of any page on your website should be lower than 4 (meaning, any given page should be possible to reach in no more than 3 clicks from the homepage).  Tip #80. Use Next-Gen Image Formats Next-gen image formats such as JPEG 2000, JPEG XR, and WebP can be compressed a lot better than PNG or JPG. So, when possible, use next-get formats for images on your website. Tip #81. De-Index Irrelevant Pages Hide the pages you don’t want Google to index (e.g: non-public, or unimportant pages) via your Robots.txt. If you’re a SaaS, for example, this would include most of your in-app pages or your internal knowledge base pages. Tip #82. Make Your Website Mobile-Friendly Make sure that your website is mobile-friendly. Google uses “mobile-first indexing.” Meaning, unless you have a working mobile version of your website, your rankings will seriously suffer. Tip #83. Lazy-Load Images Lazy-load your images. If your pages contain a lot of images, you MUST activate lazy-loading. This allows images that are below the screen, to be loaded only once the visitor scrolls down enough to see the image. Tip #84. Enable Gzip Compression Enable Gzip compression to allow your HTML, CSS and JS files to load faster. Tip #85. Clean Up Your Code If your website loads slowly because you have 100+ external javascript files and stylesheets being requested from the server, you can try minifying, aggregating, and inlining some of those files. Tip 86. Use Rel-Canonical Have duplicate content on your website? Use rel-canonical to show Google which version is the original (and should be prioritized for search results). Tip #87. Install an SSL Certificate Not only does an SSL certificate help keep your website safe, but it’s also a direct ranking factor. Google prioritizes websites that have SSL certificates over the ones that don’t. Tip #88. Use Correct Anchor Texts for Internal Links When linking to an internal page, mention the keyword you’re trying to rank for on that page in the anchor text. This helps Google understand that the page is, indeed, about the keyword you’re associating it with. Tip #89. Use GSC to Make Sure Your Content is Interlinked Internal links can have a serious impact on your rankings. So, make sure that all your blog posts (especially the new ones) are properly linked to/from your past content.  You can check how many links any given page has via Google Search Console. Tip #90. Bounce rate is NOT a Google ranking factor. Meaning, you can still rank high-up even with a high bounce rate. Tip #91. Don’t Fret About a High Bounce Rate Speaking of the bounce rate, you’ll see that some of your web pages have a higher-than-average bounce rate (70%+).  While this can sometimes be a cause for alarm, it’s not necessarily so. Sometimes, the search intent behind a given keyword means that you WILL have a high bounce rate even if your article is the most amazing thing ever.  E.g. if it’s a recipe page, the reader gets the recipe and bounces off (since they don’t need anything else). Tip #92. Google Will Ignore Your Meta Description More often than not, Google won’t use the meta description you provide - that’s normal. It will, instead, automatically pick a part of the text that it thinks is most relevant and use it as a meta description. Despite this, you should always add a meta description to all pages. Tip #93. Disavow Spammy & PBN Links Keep track of your backlinks and disavow anything that’s obviously spammy or PBNy. In most cases, Google will ignore these links anyway. However, you never know when a competitor is deliberately targeting you with too many spammy or PBN links (which might put you at risk for being penalized). Tip #94. Use The Correct Redirect  When permanently migrating your pages, use 301 redirect to pass on the link juice from the old page to the new one. If the redirect is temporary, use a 302 redirect instead. Tip #95. When A/B Testing, Do This A/B testing two pages? Use rel-canonical to show Google which page is the original. Tip #96. Avoid Amp DON’T use Amp.  Unless you’re a media company, Amp will negatively impact your website. Tip #97. Get Your URL Slugs Right Keep your blog URLs short and to-the-point. Good Example: apollodigital.io/blog/seo-case-study Bad Example: apollodigital.io/blog/seo-case-study-2021-0-to-200,000/ Tip #98. Avoid Dates in URLs An outdated date in your URL can hurt your CTR. Readers are more likely to click / read articles published recently than the ones written years back. Tip #99. Social Signals Matter Social signals impact your Google rankings, just not in the way you think. No, your number of shares and likes does NOT impact your ranking at all.  However, if your article goes viral and people use Google to find your article, click it, and read it, then yes, it will impact your rankings.  E.g. you read our SaaS marketing guide on Facebook, then look up “SaaS marketing” on Google, click it, and read it from there. Tip #100. Audit Your Website Frequently Every other month, crawl your website with ScreamingFrog and see if you have any broken links, 404s, etc. Tip #101. Use WordPress Not sure which CMS platform to use?  99% of the time, you’re better off with WordPress.  It has a TON of plugins that will make your life easier.  Want a drag & drop builder? Use Elementor. Wix, SiteGround and similar drag & drops are bad for SEO. Tip #102. Check Rankings the Right Way When checking on how well a post is ranking on Google Search Console, make sure to check Page AND Query to get the accurate number.  If you check just the page, it’s going to give you the average ranking on all keywords the page is ranking for (which is almost always going to be useless data). Conclusion Aaand that's about it - thanks for the read! Now, let's circle back to Tip #1 for a sec. Remember when we said a big chunk of what you read on SEO is based on personal experiences, experiments, and the like? Well, the tips we've mentioned are part of OUR experience. Chances are, you've done something that might be different (or completely goes against) our advice in this article. If that's the case, we'd love it if you let us know down in the comments. If you mention something extra-spicy, we'll even include it in this article.

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

How I went from $27 to $3K as a solopreneur still in a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
jottrledThis week

How I went from $27 to $3K as a solopreneur still in a 9-5

My journey started back in November 2023. I was scrolling through Twitter and YouTube and saw a word that I had never come across before. Solopreneur. The word caught my eye. Mainly because I was pretty sure I knew what it meant even though it's not a word you'll find in the dictionary. I liked what it was describing. A solo entrepreneur. A one man business. It completely resonated with me. As a software engineer by trade I'm used to working alone, especially since the pandemic hit and we were forced to work remotely. See, I always wanted to ditch the 9-5 thing but thought that was too big and too scary for a single person to do. Surely you would need a lot of money to get started, right? Surely you would need investors? The whole concept seemed impossible to me. That was until I found all the success stories. I became obsessed with the concept of solopreneurship. As I went further down the rabbit hole I found people like Justin Welsh, Kieran Drew and Marc Louvion to name a few. All of whom have one person businesses making huge money every year. So I thought, if they can do it, why can't I? People like this have cleared the pathway for those looking to escape the 9-5 grind. I decided 2024 would be the year I try this out. My main goal for the year? Build a one man business, earn my first $ online and learn a sh\*t ton along the way. My main goal in general? Build my business to $100K per year, quit my 9-5 and live with freedom. From December 2023 to February 2024 I began brainstorming ideas. I was like a lost puppy looking for his ball. How on earth did people find good ideas? I began writing everything and anything that came to mind down in my notes app on my phone. By February I would have approximately 70 ideas. Each as weird and whacky as the other. I was skeptical though. If I went through all the trouble of building a product for one of these ideas how would I know if anyone would even be interested in using it? I got scared and took a break for a week. All these ideas seemed too big and the chance that they would take off into the atmosphere was slim (in my mind anyways). I was learning more and more about solopreneurship as the weeks went on so I decided to build a product centered around everything I was learning about. The idea was simple. Enter a business idea and use AI to give the user details about how to market it, who their target customers were, what to write on their landing page, etc. All for a measly $27 per use. I quickly built it and launched on March 3rd 2024. I posted about it on Indie Hackers, Reddit and Hacker News. I was so excited about the prospect of earning my first internet $! Surely everyone wanted to use my product! Nope...all I got was crickets. I was quickly brought back down to earth. That was until 5 days later. I looked at my phone and had a new Stripe notification! Cha-ching! My first internet $. What a feeling! That was goal number 1 complete. It would be another 6 days before I would get my second sale...and then another 15 days to get my third. It was an emotional rollercoaster. I went from feeling like quitting the 9-5 was actually possible to thinking that maybe the ups and downs aren't worth it. On one hand I had made my first internet dollar so I should my ecstatic, and don't get me wrong, I was but I wanted more. More validation that I could do this long term. By May I was starting to give up on the product. I had learned so much in the past few months about marketing, SEO, building an audience, etc. and I wanted to build something that I thought could have more success so I focused on one critical thing that I had learned about. What was it? Building a product that had SEO potential. A product that I knew hundreds of people were looking for. See this was my thinking - If I could find a keyword that people were searching for on Google hundreds/thousands of times every month and it was easy to rank high on search engines then I would go all in (in SEO land this equates to a Keyword that has a Keyword Difficulty of = 500). I began researching and found that the keyword "micro saas ideas" was being searched for around 600 times each month. Micro Saas was something that really interested me. It was perfect for solopreneurs. Small software products that 1 person could build. What's not to like if you're in the game of software and solopreneurship? Researching keywords like this became like a game for me. I was hooked. I was doing it every day, finding gems that were being searched for hundreds and thousands of times every month that still had potential. That's when I came up with my next product idea. I decided to create a database of Micro Saas Ideas all with this sort of SEO potential. See if you can build a product that you know people are looking for then that's all the validation you need. So I put this theory to the test. I created a database of Micro Saas Ideas with SEO Potential and launched it in June 2024. This time it was different. I made $700 in the first week of launching. A large contrast to my previous failed attempt at becoming the worlds greatest solopreneur. Since launch I have grown the product to $3K and I couldn't be happier. I know what you're saying, $3K isn't a lot. But it's validation. It's validation that I can earn $ online. Validation that I can grow a business and it gives me hope that one day I'll be able to quit that 9-5 grind. My plan is to keep growing the business. I expect there to be a few challenges up ahead but I'll tackle them as I go and learn from the failures and successes. I have a newsletter where I share Micro Saas Ideas with SEO potential every week which I'll leave below in the first comment. Feel free to come along for the ride. If not I hope this post brings you some value If you're thinking about starting as a solopreneur, stop thinking and start doing, you won't regret it.

Changing Careers, changing products? Age 38, Direction needed, investment advice too.
reddit
LLM Vibe Score0
Human Vibe Score0.667
Salad-BanditThis week

Changing Careers, changing products? Age 38, Direction needed, investment advice too.

Hello, At one point in my life I had a set plan that I had been following in which to design a life that fit my values, but during 2020 the viability was called into question and I have been on bad footing, unable to find stability, since. Though I currently have stable housing without roommate, and enough in savings for a year without any income and three more years in a mutual fund. The question I need help with is about utilizing approximately $40,000 that I would like to invest into a new or existing business venture, or possibly start investing my own hand in selecting stocks. To give context about the parameters of concepts that pertain to me, back in 2005 I graduated highschool and immediately was an entrepreneur, started a sports clothing company, was selling WoW bot accounts, ghillie suits on ebay, and graphic design commissions, and I was proficient in MX Flash. Although the first part of my life plan to start farming three years before 2012 for what I thought would be a peak oil economic collapse, and while watching 2008 unfold, along with my career in MX Flash falling flat, I started farming 2009. From that point I spent a total of 15 years farming, the majority of that was for my own LLC, where I was situated with leases on million dollar properties as Ag tax write off, on an elite island outside a major city, serving local high price wholesale, mainly salad mix and mushrooms, because they are fast turn around. That was truly the best 20s I could have asked for, working mainly for myself, very healthy and was putting away $10-20k in savings/investments per year, plus was earning about $3-5k more per year, while living in a cargo trailer on dirt cheap leases. But it all came to a slow end starting in 2020 when I lost all of my wholesale overnight, and my retail exploded, which burnt me out to the point I couldnt walk, as the sole worker in my LLC. So I do not fully trust the volatility of the wholesale food industry, from a small grower’s perspective, since i don't own land. SO now I am trying to figure out a way forward, because I can always farm in the future, and have taught myself hydroponics, and flat packed farm equipment, so my business is very agile and now I can grow in parking lots closer to the city for more sales opportunities, but I am not sure that is what I want to do in this current moment, because tech is exploding, and we have never had so much information available to us, it's a shame not to spend a moment in life to discover what new opportunities might be out there. I was laid off twice last year, so I've been out of work the past four months, doing thriftstore routes twice a week while making about $500+/wk, really just trying to understand what people still buy and break even, while I continue to study 3d design blender, as well as 2d digital art in the hopes that I can reconnect with my tech art past, because that is what I told myself when I was 18, that I would put off art and computers until I was past 30 and needed to do less with my body. But over the past three years, the better I get at digital art, the better Ai has been getting too. I have some mentors who might give me work and a foot in the door, but most of them are laid off, and scrounging for work if they are not on their own funded indie project. I've thought about continuing to learn 3d modeling despite Ai, and despite seeing Flash, computer program I was proficient in get removed from existence before I could really earn my money back. I assume there will always be a need for Ai models to get cleaned up, mapped and rigged, especially with AR technology coming to consumers soon, but more over it would help if I decided to go to a community college to do CNC certificates, so I can have that as a backup job on CAD at a machining warehouse and do my farm and digital art on the side, but CNC mechanics don't make a crazy amount of money and have a boss. BUT I am an inventor, and have two inventions so far, plus my ultimate goal is to one day have automated hydroponic greenhouses, using all CNC+3d printed parts to create a low time investment agriculture income, with Ai monitored greenhouse, seed to salad product that i can sell to other people, which would tie into my desire to teach people about farming too, as well as do something I enjoy, but it is not a proven concept yet. Anyways if you've read this far I appreciate it, I ultimately would like 3rd party feedback about how I should spend my $40k surplus cash. I originally had it saved and accessible in case I was going to lease land and start my full farm business again from scratch, but I think using the equipment and space I have, and exploring non-perishable products is a smart move for me right now. Should I invest in inventory of products to arbitrage online? Should I invest in the top index funds? Should I buy Silver? Should I invest in inventory of a new product line? Should I spend some money insuring and equipment for a landscaping company? I want to future proof myself the best I can as Ai unfolds, I am pretty set with an income for the rest of my life as long as I can grow food and sell it, but there are currently so many changing opportunities, I want to cast out my net and see what works with my temperment. I’ve thought about getting into cyber security, or maybe be an electrician, or less staple jobs like Landscape Architech (can use art/modeling) and CNC engineer/modeler, but honestly I prefer to make a product and sell it without client service related interaction, and particularly no boss. Thank you for reading

Ai C-Level team
reddit
LLM Vibe Score0
Human Vibe Score1
thestoicdesignerThis week

Ai C-Level team

I've been exploring ways to run a company where I'm essentially the only internal team member, relying entirely on a suite of specialized AIs for executive roles, supported occasionally by external consultants for niche expertise. My goal is to stay lean, agile, and highly creative, especially in a fashion / tech brand context. Essentially, I'm building an AI-driven C-Level team, or what I like to call a "C-Level AI Wallet." Here's what I'm thinking for the key executive roles I'd need to cover with AI: CEO AI – Responsible for overall strategy, decision-making, trend analysis, and guiding the company's vision. I'd probably lean on something advanced like Gemini, GPT-4, or similar models, fine-tuned with market-specific data. COO AI (Operations): I'd need tools that streamline and automate logistics, supply chain management, and day-to-day operations (think something along the lines of Zapier AI integrations or Make). CMO AI (Marketing & Content): For branding, content creation, digital marketing, and consumer insights, I'd use Jasper or Copy . ai, combined with predictive analytics tools like Google Vertex AI to understand trends better. Additionally, for generating engaging visual and multimedia content, tools like Midjourney, DALL·E, Adobe Firefly, and Runway ML would be perfect. CFO AI (Financial Management): For financial management, cash flow control, and investment decisions, I'd probably leverage AI tools like Bloomberg GPT, combined with AI-powered forecasting platforms. CHRO AI (Human Resources & Culture): Although the internal team is minimal (just myself!), I'd still rely on AI for tasks like project management, freelancer hiring, and performance tracking—tools like HireVue AI, Motion, or even Notion's AI could be beneficial here. CSO AI (Sustainability & Compliance): Since sustainability and ethical sourcing are critical, I'd integrate ESG-focused AI tools to ensure transparency and responsible sourcing. My idea is that, with the right AI tools seamlessly integrated, I can manage the strategic vision and creative direction personally, leveraging external consultants only when necessary. This setup would ideally allow me to operate as a one-person internal team supported by a robust "wallet" of AI executives. Has anyone tried a similar approach? What AI tools would you recommend for a truly lean, innovative brand structure? I'm very curious about your experiences or suggestions—let me know your thoughts!

AI Content Campaign Got 4M impressions, Thousands of Website Views, Hundreds of Customers for About $100 — This is the future of marketing
reddit
LLM Vibe Score0
Human Vibe Score0.857
adamkstinsonThis week

AI Content Campaign Got 4M impressions, Thousands of Website Views, Hundreds of Customers for About $100 — This is the future of marketing

Alright. So, a few months ago I tested a marketing strategy for a client that I’ve sense dedicated my life to developing on. The Idea was to take the clients Pillar content (their YouTube videos) and use AI to rewrite the content for all the viable earned media channels (mainly Reddit). The campaign itself was moderately successful. To be specific, after one month it became their 2nd cheapest customer acquisition cost (behind their organic YouTube content). But there is a lot to be done to improve the concept. I will say, having been in growth marketing for a decade, I felt like I had hit something big with the concept. I’m going to detail how I built that AI system, and what worked well and what didn’t here. Hopefully you guys will let me know what you think and whether or not there is something here to keep working on. DEFINING THE GOAL Like any good startup, their marketing budget was minimal. They wanted to see results, fast and cheap. Usually, marketers like me hate to be in this situation because getting results usually either takes time or it takes money. But you can get results fast and cheap if you focus on an earned media strategy - basically getting featured in other people’s publication. The thing is these strategies are pretty hard to scale or grow over time. That was a problem for future me though. I looked through their analytics and saw they were getting referral traffic from Reddit - it was their 5th or 6th largest source of traffic - and they weren’t doing any marketing on the platform. It was all digital word of mouth there. It kind of clicked for me there, that Reddit might be the place to start laying the ground work. So with these considerations in mind the goal became pretty clear: Create content for relevant niche communities on Reddit with the intent of essentially increasing brand awareness. Use an AI system to repurpose their YouTube videos to keep the cost of producing unique content for each subreddit really low. THE HIGH-LEVEL STRATEGY I knew that there are huge amounts of potential customers on Reddit (About 12M people in all the relevant communities combined) AND that most marketers have a really tough time with the platform. I also knew that any earned media strategy, Reddit or not, means Click Through Rates on our content would be extremely low. A lot of people see this as a Reddit specific problem because you can’t self-promote on the platform, but really you have to keep self-promotion to a minimum with any and all earned media. This basically meant we had to get a lot of impressions to make up for it. The thing about Reddit is if your post absolutely crushes it, it can get millions of views. But crushing it is very specific to what the expectations are of that particular subreddit. So we needed to make content that was specifically written for that Subreddit. With that I was able to essentially design how this campaign would work: We would put together a list of channels (specifically subreddits to start) that we wanted to create content for. For each channel, we would write a content guideline that details out how to write great content for this subreddit. These assets would be stored in an AirTable base, along with the transcripts of the YouTube videos that were the base of our content. We would write and optimize different AI Prompts that generated different kinds of posts (discussion starters about a stock, 4-5 paragraph stock analysis, Stock update and what it means, etc…) We would build an automation that took the YouTube transcripts, ran each prompt on it, and then edited each result to match the channel writing guidelines. And then we would find a very contextual way to leave a breadcrumb back to the client. Always as part of the story of the content. At least, this is how I originally thought things would go. CHOOSING THE RIGHT SUBREDDITS Picking the right communities was vital. Here’s the basic rubric we used to pick and prioritize them: • Relevance: We needed communities interested in stock analysis, personal finance, or investing. • Subreddit Size vs. Engagement: Large subreddits offer more potential impressions but can be less focused. Smaller subreddits often have higher engagement rates. • Content Feasibility: We had to ensure we could consistently create high-value posts for each chosen subreddit. We started with about 40 possibilities, then narrowed it down to four or five that consistently delivered upvotes and user signups. CREATING CHANNEL-SPECIFIC GUIDES By the end, creating channel specific writing guidelines looked like a genius decision. Here’s how we approached it and used AI to get it done quickly: Grabbed Top Posts: We filtered the subreddit’s top posts (change filter to “Top” and then “All Time”) of all time to see the kinds of content that performed best Compiled The Relevant Posts: We took the most relevant posts to what we were trying to do and put them all on one document (basically created one document per subreddit that just had the top 10 posts in that subreddit). Had AI Create Writing Guideline Based On Posts: For each channel, we fed the document with the 10 posts with the instructions “Create a writing guideline for this subreddit based on these high performing posts. I had to do some editing on each guideline but this worked pretty well and saved a lot of time. Each subreddit got a custom guideline, and we put these inside the “Channels” table of the AirTable base we were developing with these assets. BUILDING THE AI PROMPTS THAT GENERATED CONTENT Alright this is probably the most important section so I’ll be detailed. Essentially, we took all the assets we developed up until this point, and used them to create unique posts for each channel. This mean each AI prompt was about 2,000 words of context and produced about a 500-word draft. There was a table in our AirTable where we stored the prompts, as I alluded to earlier. And these were basically the instructions for each prompt. More specifically, they detailed out our expectations for the post. In other words, there were different kinds of posts that performed well on each channel. For example, you can write a post that’s a list of resources (5 tools we used to…), or a how to guide (How we built…), etc.. Those weren’t the specific ones we used, but just wanted to really explain what I meant there. That actual automation that generated the content worked as follows: New source content (YouTube video transcript) was added to the Source Content table. This triggered the Automation. The automation grabbed all the prompts in the prompt table. For each prompt in the prompt table, we sent a prompt to OpenAI (gpt-4o) that contained first the prompt and also the source content. Then, for each channel that content prompt could be used on, we sent another prompt to OpenAI that revised the result of the first prompt based on the specific channel guidelines. The output of that prompt was added to the Content table in AirTable. To be clear, our AirTable had 4 tables: Content Channels Prompts Source Content The Source Content, Prompts, and Channel Guidelines were all used in the prompt that generated content. And the output was put in the Content table. Each time the automation ran, the Source Content was turned into about 20 unique posts, each one a specific post type generated for a specific channel. In other words, we were create a ton of content. EDITING & REFINING CONTENT The AI drafts were never perfect. Getting them Reddit-ready took editing and revising The main things I had to go in and edit for were: • Tone Adjustments: We removed excessively cliche language. The AI would say silly things like “Hello fellow redditors!” which sound stupid. • Fact-Checking: Financial data can be tricky. We discovered AI often confused figures, so we fact check all stock related metrics. Probably something like 30-40% error rate here. Because the draft generation was automated, that made the editing and getting publish ready the human bottleneck. In other words, after creating the system I spent basically all my time reviewing the content. There were small things I could do to make this more efficient, but not too much. The bigger the model we used, the less editing the content needed. THE “BREADCRUMB” PROMOTION STRATEGY No where in my prompt to the AI did I mention that we were doing any marketing. I just wanted the AI to focus on creating content that would do well on the channel. So in the editing process I had to find a way to promote the client. I called it a breadcrumb strategy once and that stuck. Basically, the idea was to never overtly promote anything. Instead find a way to leave a breadcrumb that leads back to the client, and let the really interested people follow the trail. Note: this is supposed to be how we do all content marketing. Some examples of how we did this were: Shared Visuals with a Subtle Watermark: Because our client’s product offered stock data, we’d often include a chart or graph showing a company’s financial metric with the client’s branding in the corner. Added Supporting Data from Client’s Website: If we mentioned something like a company’s cash flow statement, we could link to that company’s cash flow statement on the client’s website. It worked only because there was a lot of data on the client’s website that wasn’t gated. These tactics were really specific to the client. Which is should be. For other companies I would rethink what tactics I use here. THE RESULTS I’m pretty happy with the results • Impressions: – Early on posts averaged \~30,000 apiece, but after about a month of optimization, we hit \~70,000 impressions average. Over about two months, we reached 4 million total impressions. • Signups: – In their signups process there was one of those “Where did you find us?” questions and the amount of people who put Reddit jumped into the few hundred a month. Precise tracking of this is impossible. • Cost Efficiency (This is based on what I charged, and not the actual cost of running the campaign which is about $100/mo): – CPM (cost per thousand impressions) was about $0.08, which is far better than most paid channels. – Cost per free user: \~$8-10. After about a 10% conversion rate to a paid plan, our cost per paying user was $80–$100—well below the client’s previous $300–$400. HIGHLIGHTS: WHAT WORKED Subreddit-Specific Content: – Tailoring each post’s format and length to the audience norms boosted engagement. Worked out really well. 1 post got over 1M views alone. We regularly had posts that had hundreds of thousands. Breadcrumbs: – We never had anyone call us out for promoting. And really we weren’t. Our first priority was writing content that would crush on that subreddit. Using the Founder’s Existing Material: – The YouTube transcripts grounded the AI’s content in content we already made. This was really why we were able to produce so much content. CHALLENGES: WHAT DIDN’T WORK AI is still off: – Maybe it’s expecting too much, but still I wish the AI had done a better job. I editing a lot of content. Human oversight was critical. Scheduling all the content was a pain: – Recently I automated this pretty well. But at first I was scheduling everything manually and scheduling a hundred or so posts was a hassle. Getting Data and Analytics: – Not only did we have not very good traffic data, but the data from reddit had to be collected manually. Will probably automate this in the future. COST & TIME INVESTMENT Setup: The setup originally took me a couple weeks. I’ve since figured out how to do much faster (about 1 week). AirTable Setup here was easy and the tools costs $24/mo so not bad. ChatGPT costs were pretty cheap. Less than $75 per month. I’ve sense switched to using o1 which is much more expensive but saves me a lot of editing time Human Editing: Because this is the human part of the process and everything else was automated it mean by default all my time was spent editing content. Still this was a lot better than creating content from scratch probably by a factor of 5 or 10. The main expense was paying an editor (or using your own time) to refine posts. Worth it? Yes even with the editing time I was able to generate way more content that I would have otherwise. LESSONS & ACTIONABLE TAKEAWAYS Reddit as a Growth Channel: – If you genuinely respect each subreddit’s culture, you can achieve massive reach on a tight budget. AI + Human Collaboration: – AI excels at first drafts, but human expertise is non-negotiable for polishing and ensuring factual integrity. Soft Promotion Wins: – The “breadcrumb” approach paid off. It might feel like too light a touch, but is crucial for Reddit communities. Create once, repurpose as many times as possible: – If you have blog posts, videos, podcasts, or transcripts, feed them into AI to keep your message accurate and brand-consistent. CONCLUSION & NEXT STEPS If you try a similar approach: • Begin with smaller tests in a few niches to learn what resonates. • Create a clear “channel guide” for each community. • Carefully fact-check AI-generated posts. • Keep brand mentions low-key until you’ve established credibility.

How I went from $27 to $3K as a solopreneur still in a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
jottrledThis week

How I went from $27 to $3K as a solopreneur still in a 9-5

My journey started back in November 2023. I was scrolling through Twitter and YouTube and saw a word that I had never come across before. Solopreneur. The word caught my eye. Mainly because I was pretty sure I knew what it meant even though it's not a word you'll find in the dictionary. I liked what it was describing. A solo entrepreneur. A one man business. It completely resonated with me. As a software engineer by trade I'm used to working alone, especially since the pandemic hit and we were forced to work remotely. See, I always wanted to ditch the 9-5 thing but thought that was too big and too scary for a single person to do. Surely you would need a lot of money to get started, right? Surely you would need investors? The whole concept seemed impossible to me. That was until I found all the success stories. I became obsessed with the concept of solopreneurship. As I went further down the rabbit hole I found people like Justin Welsh, Kieran Drew and Marc Louvion to name a few. All of whom have one person businesses making huge money every year. So I thought, if they can do it, why can't I? People like this have cleared the pathway for those looking to escape the 9-5 grind. I decided 2024 would be the year I try this out. My main goal for the year? Build a one man business, earn my first $ online and learn a sh\*t ton along the way. My main goal in general? Build my business to $100K per year, quit my 9-5 and live with freedom. From December 2023 to February 2024 I began brainstorming ideas. I was like a lost puppy looking for his ball. How on earth did people find good ideas? I began writing everything and anything that came to mind down in my notes app on my phone. By February I would have approximately 70 ideas. Each as weird and whacky as the other. I was skeptical though. If I went through all the trouble of building a product for one of these ideas how would I know if anyone would even be interested in using it? I got scared and took a break for a week. All these ideas seemed too big and the chance that they would take off into the atmosphere was slim (in my mind anyways). I was learning more and more about solopreneurship as the weeks went on so I decided to build a product centered around everything I was learning about. The idea was simple. Enter a business idea and use AI to give the user details about how to market it, who their target customers were, what to write on their landing page, etc. All for a measly $27 per use. I quickly built it and launched on March 3rd 2024. I posted about it on Indie Hackers, Reddit and Hacker News. I was so excited about the prospect of earning my first internet $! Surely everyone wanted to use my product! Nope...all I got was crickets. I was quickly brought back down to earth. That was until 5 days later. I looked at my phone and had a new Stripe notification! Cha-ching! My first internet $. What a feeling! That was goal number 1 complete. It would be another 6 days before I would get my second sale...and then another 15 days to get my third. It was an emotional rollercoaster. I went from feeling like quitting the 9-5 was actually possible to thinking that maybe the ups and downs aren't worth it. On one hand I had made my first internet dollar so I should my ecstatic, and don't get me wrong, I was but I wanted more. More validation that I could do this long term. By May I was starting to give up on the product. I had learned so much in the past few months about marketing, SEO, building an audience, etc. and I wanted to build something that I thought could have more success so I focused on one critical thing that I had learned about. What was it? Building a product that had SEO potential. A product that I knew hundreds of people were looking for. See this was my thinking - If I could find a keyword that people were searching for on Google hundreds/thousands of times every month and it was easy to rank high on search engines then I would go all in (in SEO land this equates to a Keyword that has a Keyword Difficulty of = 500). I began researching and found that the keyword "micro saas ideas" was being searched for around 600 times each month. Micro Saas was something that really interested me. It was perfect for solopreneurs. Small software products that 1 person could build. What's not to like if you're in the game of software and solopreneurship? Researching keywords like this became like a game for me. I was hooked. I was doing it every day, finding gems that were being searched for hundreds and thousands of times every month that still had potential. That's when I came up with my next product idea. I decided to create a database of Micro Saas Ideas all with this sort of SEO potential. See if you can build a product that you know people are looking for then that's all the validation you need. So I put this theory to the test. I created a database of Micro Saas Ideas with SEO Potential and launched it in June 2024. This time it was different. I made $700 in the first week of launching. A large contrast to my previous failed attempt at becoming the worlds greatest solopreneur. Since launch I have grown the product to $3K and I couldn't be happier. I know what you're saying, $3K isn't a lot. But it's validation. It's validation that I can earn $ online. Validation that I can grow a business and it gives me hope that one day I'll be able to quit that 9-5 grind. My plan is to keep growing the business. I expect there to be a few challenges up ahead but I'll tackle them as I go and learn from the failures and successes. I have a newsletter where I share Micro Saas Ideas with SEO potential every week which I'll leave below in the first comment. Feel free to come along for the ride. If not I hope this post brings you some value If you're thinking about starting as a solopreneur, stop thinking and start doing, you won't regret it.

I’m building a “DesignPickle” for all things Funnels. Would love your feedback...
reddit
LLM Vibe Score0
Human Vibe Score0.846
Gluteous_MaximusThis week

I’m building a “DesignPickle” for all things Funnels. Would love your feedback...

Hey Entrepreneurs, Early next year I’m rolling out a productized service business along the lines of Design Pickle, but instead of design assets, we create on-demand marketing assets: Things like landing pages, lead magnets, email campaigns, etc. This is NOT an agency with client engagements, etc.  It is an on-demand, menu-item style fulfillment platform where we do a few predefined things really, really well, and as much as possible try to reduce the complexity (and required customer inputs) so that creating your next killer Funnel is as easy as ordering dinner on Skip the Dishes. Below I’ve laid out our current thinking (we’re still distilling this into a deck), just so you have the full context.  And at the end, I pose 5 feedback questions. So if this “deck” seems interesting to you, then I’d love to get your feedback at the end 🙂 Thanks! And here goes... \--- The current elevator pitch:  We will research your business, your market and your competitors to develop a killer Lead Magnet, Landing Page, Ad Creatives and a 30-Day Email Drip campaign designed to turn your traffic into a rabid, lifelong buyer tribe (that you can email for years... like having your own, on-demand cash printer).  The overall thesis:  While AI is getting continually better at creating things like one-off graphics, article content, and so on - we do not think it can deeply understand market psychology, what keeps your customers up at night, or the underlying emotions that drive purchase decisions at the individual level, for your specific offer(s). Moreover, it’s also this psychological aspect of marketing where most businesses simply do not have the talent, resources or frankly the experience to create high-performing funnels themselves, regardless of how much "automation" they might have at their fingertips. And that’s because this is where you need to know who your customer really is, and what they’re actually buying (hint: not your features). Few marketers focus on these fundamentals, let alone understand the selling process. This is also why tools like ClickFunnels, HighLevel, LeadPages, etc. while very helpful, can only help with the logistics of selling. It’s still on each business to figure out how to actually tell their story, capture demand, and sell effectively. This is why a productized service that nails market research, competitor analysis & world-class copywriting that can actually turn cold traffic into lifelong customers is going to be a no-brainer for a business that’s currently struggling to actually get a steady flow of online sales. This is not something we see AI replacing effectively, any time soon. Current gaps & unknowns:  At a top level, I’m not overly worried about validation or viability; there are several existing competitors, and obviously the automation platforms have substantial customer bases (ClickFunnels etc). There will be a certain cohort that will want experts to do the actual thinking for them, storytelling, etc. Even if it’s a relatively small cohort, given the CLTV of a service like this, it still makes for a decent sized business. But where I’m less confident is in who our ideal customer actually is... Yes, basically every direct-response internet business needs an effective funnel that can sell. Whether you’re an Enterprise SaaS platform or a solopreneur launching your first $39 ebook, you will benefit from a killer funnel. As a “DesignPickle” type service though, here’s the challenges I see with each core customer category... B2B SaaS: While sales decisions are still emotional, it’s more about account-based considerations; people usually aren’t spending their own money, so it’s more about not looking stupid vs. gaining some benefit. Harder to systemize. Very high stakes. Consumer / SMB SaaS: While I think in general these are ideal customers, there will be resistance to leaning in hard on personality (and personal brand); founders usually want to sell at some point, so if they become the face of the platform, then boosting performance with a high-personality funnel might ironically make it a harder business to sell. SaaS founders are also generally very technical and stereotypically avoid marketing like the plague. Ecommerce: Most DTC brands think of funnels as an extension of their FB ad campaigns; few see their customers as a long-term audience that can become a significant asset. However, certain lifestyle / luxury brands might differ. Online Courses / Coaches: Of all the customer profiles, this group probably has the most appreciation for the effectiveness of marketing psychology, copywriting, etc. and would get the value prop quickly. The problem is that most won’t have the budget or traction to outsource asset creation. This is the “poorest” segment of the market. Service Businesses: Agencies, consultancies, and so on would greatly benefit from having a strong personal brand + storytelling premise (funnel). However, they’re also the worst offenders when it comes to never practicing what they preach / do for others. Client work soaks up all their resources. Local & Brick/Mortar: Generally speaking most local businesses are going to have smaller audiences (email lists under 2K subs), where funnel ops might have limited value long-term due to a lack of scale. And for larger B&M brands with franchises across various locations, you get into stakeholder friction; messaging usually gets watered down to basic corporate-speak as a result. Now, to be clear, I still see a ton of opportunity in each of those main customer categories as well, but I like to be clear-eyed about the overall resistance each niche will have - mainly because this helps to refine messaging to an ideal customer profile within them. In this case though, so far, nothing’s really jumping out at me as a clear “winner” at a category level. So far, what I’m thinking is our ICP might be situational / conditional. For example: A business has a funnel / is invested in the process, but it’s not working yet A business sees their competitor killing it with a funnel, and they’re ultra motivated to do it even better A business has one funnel that’s working awesome, and everything else they try sucks (so they can’t scale / expand) Etc. Basically, our most ideal customer might be ANY type of business who gets it, who’s tried to do this themselves, and now needs the pros to come in and fix things. \--- This is where your feedback would be incredibly valuable... First, if you’ve made it all the way down to this point - thanks for enduring my rambling mess above! But I did think the context might be helpful. Based on our overall biz plan & go-to-market considerations discussed above, if you run a business (or work with one) that might benefit from something like this, I’d love to ask a few questions... What is the nature of your business? (What do you sell)? What do you find hardest about selling to your online audience? Have you built a funnel in the past / are you running one currently? If not, what’s stopping you from building a high-performing funnel? If you had a “magic marketing lamp” where a genie could create ONE amazing marketing asset for you (eg. a killer landing page, video ad, launch strategy, etc), but you could only use it ONCE, what would you have the genie do for you? Please reply below as a comment, or DM me if you’d prefer to keep answers anonymous.  Thanks so much And again, apologies for the novel... Cheers

As a soloproneur, here is how I'm scaling with AI and GPT-based tools
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

As a soloproneur, here is how I'm scaling with AI and GPT-based tools

Being a solopreneur has its fair share of challenges. Currently I've got businesses in ecommerce, agency work, and affiliate marketing, and one undeniable truth remains: to truly scale by yourself, you need more than just sheer will. That's where I feel technology, especially AI, steps in. As such, I wanted some AI tools that have genuinely made a difference in my own work as a solo business operator. No fluff, just tried-and-true tools and platforms that have worked for me. The ability for me to scale alone with AI tools that take advantage of GPT in one way, or another has been significant and really changed my game over the past year. They bring in an element of adaptability and intelligence and work right alongside “traditional automation”. Whether you're new to this or looking to optimize your current setup, I hope this post helps. FYI I used multiple prompts with GPT-4 to draft this using my personal notes. Plus AI (add-on for google slides/docs) I handle a lot of sales calls and demos for my AI automation agency. As I’m providing a custom service rather than a product, every client has different pain points and as such I need to make a new slide deck each time. And making slides used to be a huge PITA and pretty much the bane of my existence until slide deck generators using GPT came out. My favorite so far has been PlusAI, which works as a plugin for Google Slides. You pretty much give it a rough idea, or some key points and it creates some slides right within Google Slides. For me, I’ve been pasting the website copy or any information on my client, then telling PlusAI the service I want to propose. After the slides are made, you have a lot of leeway to edit the slides again with AI, compared to other slide generators out there. With 'Remix', I can switch up layouts if something feels off, and 'Rewrite' is there to gently nudge the AI in a different direction if I ever need it to. It's definitely given me a bit of breathing space in a schedule that often feels suffocating. echo.win (web-based app) As a solopreneur, I'm constantly juggling roles. Managing incoming calls can be particularly challenging. Echo.win, a modern call management platform, has become a game-changer for my business. It's like having a 24/7 personal assistant. Its advanced AI understands and responds to queries in a remarkably human way, freeing up my time. A standout feature is the Scenario Builder, allowing me to create personalized conversation flows. Live transcripts and in-depth analytics help me make data-driven decisions. The platform is scalable, handling multiple simultaneous calls and improving customer satisfaction. Automatic contact updates ensure I never miss an important call. Echo.win's pricing is reasonable, offering a personalized business number, AI agents, unlimited scenarios, live transcripts, and 100 answered call minutes per month. Extra minutes are available at a nominal cost. Echo.win has revolutionized my call management. It's a comprehensive, no-code platform that ensures my customers are always heard and never missed MindStudio by YouAi (web app/GUI) I work with numerous clients in my AI agency, and a recurring task is creating chatbots and demo apps tailored to their specific needs and connected to their knowledge base/data sources. Typically, I would make production builds from scratch with libraries such as LangChain/LlamaIndex, however it’s quite cumbersome to do this for free demos. As each client has unique requirements, it means I'm often creating something from scratch. For this, I’ve been using MindStudio (by YouAi) to quickly come up with the first iteration of my app. It supports multiple AI models (GPT, Claude, Llama), let’s you upload custom data sources via multiple formats (PDF, CSV, Excel, TXT, Docx, and HTML), allows for custom flows and rules, and lets you to quickly publish your apps. If you are in their developer program, YouAi has built-in payment infrastructure to charge your users for using your app. Unlike many of the other AI builders I’ve tried, MindStudio basically lets me dictate every step of the AI interaction at a high level, while at the same time simplifying the behind-the-scenes work. Just like how you'd sketch an outline or jot down main points, you start with a scaffold or decide to "remix" an existing AI, and it will open up the IDE. I often find myself importing client data or specific project details, and then laying out the kind of app or chatbot I'm looking to prototype. And once you've got your prototype you can customize the app as much as you want. LLamaIndex (Python framework) As mentioned before, in my AI agency, I frequently create chatbots and apps for clients, tailored to their specific needs and connected to their data sources. LlamaIndex, a data framework for LLM applications, has been a game-changer in this process. It allows me to ingest, structure, and access private or domain-specific data. The major difference over LangChain is I feel like LlamaIndex does high level abstraction much better.. Where LangChain unnecessarily abstracts the simplest logic, LlamaIndex actually has clear benefits when it comes to integrating your data with LLMs- it comes with data connectors that ingest data from various sources and formats, data indexes that structure data for easy consumption by LLMs, and engines that provide natural language access to data. It also includes data agents, LLM-powered knowledge workers augmented by tools, and application integrations that tie LlamaIndex back into the rest of the ecosystem. LlamaIndex is user-friendly, allowing beginners to use it with just five lines of code, while advanced users can customize and extend any module to fit their needs. To be completely honest, to me it’s more than a tool- at its heart it’s a framework that ensures seamless integration of LLMs with data sources while allowing for complete flexibility compared to no-code tools. GoCharlie (web app) GoCharlie, the first AI Agent product for content creation, has been a game-changer for my business. Powered by a proprietary LLM called Charlie, it's capable of handling multi-input/multi-output tasks. GoCharlie's capabilities are vast, including content repurposing, image generation in 4K and 8K for various aspect ratios, SEO-optimized blog creation, fact-checking, web research, and stock photo and GIF pull-ins. It also offers audio transcriptions for uploaded audio/video files and YouTube URLs, web scraping capabilities, and translation. One standout feature is its multiple input capability, where I can attach a file (like a brand brief from a client) and instruct it to create a social media campaign using brand guidelines. It considers the file, prompt, and website, and produces multiple outputs for each channel, each of which can be edited separately. Its multi-output feature allows me to write a prompt and receive a response, which can then be edited further using AI. Overall, very satisfied with GoCharlie and in my opinion it really presents itself as an effective alternative to GPT based tools. ProfilePro (chrome extension) As someone overseeing multiple Google Business Profiles (GBPs) for my various businesses, I’ve been using ProfilePro by Merchynt. This tool stood out with its ability to auto-generate SEO-optimized content like review responses and business updates based on minimal business input. It works as a Chrome extension, and offers suggestions for responses automatically on your GBP, with multiple options for the tone it will write in. As a plus, it can generate AI images for Google posts, and offer suggestions for services and service/product descriptions. While it streamlines many GBP tasks, it still allows room for personal adjustments and refinements, offering a balance between automation and individual touch. And if you are like me and don't have dedicated SEO experience, it can handle ongoing optimization tasks to help boost visibility and drive more customers to profiles through Google Maps and Search

Unbiased opinion - Ideas
reddit
LLM Vibe Score0
Human Vibe Score1
SnooPears4795This week

Unbiased opinion - Ideas

Hi, I’m currently looking to set up along site my full time job. I’m working away so have spare time mid week evenings to get cracking! If anyone has any other ideas which would link up with my interests please let me know. Note: I set up an airconditioning company which didn’t go to plan as I was just not passionate enough to chase sales/grow the company. Details Capital: I could invest upto 1k a month would prefer less Location: would prefer remote but the below ideas are all possible from my hotel room. Strengths: work well under pressure, technical minded, problem solving Weaknesses: can be lazy if not passionate, organisation, confidence Interests: Music, guitars, tech, coding, beer, motorbikes Experience: 12 years in railway electrical roles, coding bootcamp Ideas Idea: Guitar Electronics (pedals) Pros: cheap to start Enjoy building Creative Design work Cool field Cons: Time consuming Not much profit Scalability Competition is cheap Idea: Project management app/document selection Pros: Experienced in field Relatively quick if excel based Could charge subscription Contacts in industry Expensive if app based Make once sell multiple Remote Small overheads Cons: Not as fun as others learn new language? Limited market Other competition already good (apps) Idea: YouTube - mysteries, interesting topics Pros: Free to startup Enjoy researching Build community leading to other online projects Can voice over/AI No need to have cam Improve confidence Cons: Returns will take a while Get better at video editing Overcome speaking No overheads (have equipment) Time/money slow at start Idea: Railway Electrical Book/Course Pros: Throughly experienced Small market Niche - good money if can get sales Have to learn course software Contacts in field Create once Cons: Not as passionate as other ideas Amount of interest (possibly get other fields electricians involved?) Expensive to make?

Seeking Feedback on Business Idea: AI-Powered Business Partner Matching Platform
reddit
LLM Vibe Score0
Human Vibe Score1
torrentialdownpour34This week

Seeking Feedback on Business Idea: AI-Powered Business Partner Matching Platform

Hey everyone, I've been toying with an idea for a new business venture and I'd love to get some feedback and insights from this community. The Idea: I'm considering building a business platform that utilizes AI to match potential business partners. Whether you're a startup looking for a co-founder, a company seeking strategic partnerships, or an investor searching for promising ventures, this platform would help connect you with compatible partners based on your specific needs, goals, and preferences. How It Works: Users would create detailed profiles outlining their business objectives, industry expertise, skills, and what they're looking for in a partner. The AI algorithm would then analyze this data to identify compatible matches, taking into account factors like complementary skill sets, shared values, and mutual goals. The platform would provide users with a curated list of potential partners, along with insights and recommendations to facilitate meaningful connections. Key Features: Comprehensive Profiles: Users can create detailed profiles highlighting their background, experience, and what they bring to the table. AI Matching Algorithm: The platform's AI algorithm would use advanced data analysis techniques to generate accurate partner recommendations. Communication Tools: Built-in messaging and video conferencing tools would enable seamless communication between potential partners. Feedback and Ratings: Users can leave feedback and ratings for their matches, helping to build trust and credibility within the community. Resource Hub: Access to resources, articles, and guides on partnership development, negotiation strategies, and other relevant topics. Why It's Needed: Finding the right business partner can be a daunting task, often relying on personal networks or serendipitous encounters. By harnessing the power of AI, this platform aims to streamline the partner matching process, saving time and increasing the likelihood of finding compatible collaborators. Looking for Feedback: Before diving headfirst into this venture, I wanted to reach out to this community to gather some feedback: Does this idea resonate with you? Why or why not? Are there any existing platforms or services that offer similar functionalities? What features would be essential for you as a user? Any potential challenges or concerns you foresee with this concept? I'm eager to hear your thoughts and suggestions. Thanks in advance for your input!

Writing a exercise based TTRPG rulebook for a system where your real world fitness is tied to character progression
reddit
LLM Vibe Score0
Human Vibe Score1
BezboznyThis week

Writing a exercise based TTRPG rulebook for a system where your real world fitness is tied to character progression

My dad was a star athlete when he was young, and my mom was a huge sci-fi/fantasy nerd, so I got both ends of the stick as it were. Love gaming and nerd culture, but also love to exercise and self improvement. Sometimes exercise can feel boring though compared to daydreaming about fantastic fictional worlds, so for a long time I've been kicking around the idea of how to "Gamify" fitness. and recently I've been working on this passion project of a Table Top RPG (Like D&D) where the stats of your character are related to your own fitness, so if you want your character in game to improve, you have to improve in the real world. Below is a rough draft you can look through that details the settings and mechanics of the game I've come up with so far. I'd love to eventually get a full book published and sell it online. maybe even starting a whole brand of "Gamified fitness": REP-SET: GAINSZ In the war torn future of 24th century… There are no rest days… In the futuristic setting of "REP-SET: GAINSZ," the "War of Gains" casts a long shadow over the Sol System as the various factions vie for territory and resources. However, war has evolved. Unmanned drones and long-range strikes have faded into obsolescence. Battles, both planet-side and in the depths of space, are now fought by soldiers piloting REP-SETs: Reactive Exoskeletal Platform - Symbiotic Evolution Trainer Massive, humanoid combat mechs. Powered by mysterious “EV” energy, these mechanical marvels amplify, and are in turn amplified by, the fitness and mental acuity of their pilots. The amplification is exponential, leading pilots into a life of constant training in order for their combat prowess to be bolstered by every incremental gain in their level of fitness. With top pilots having lifting capacity measured in tons, and reaction times measured by their Mach number, REP-SET enhanced infantry now dominate the battlefield. The Factions: The Federated Isometocracy of Terra (FIT): Quote: "The strength of the body is the strength of the spirit. Together, we will lift humanity to its destined greatness. But ask not the federation to lift for you. Ask yourself: Do you even lift for the Federation?" Description: An idealistic but authoritarian faction founded on the principle of maximizing the potential of all individuals. FIT citizens believe in relentless striving for physical and mental perfection, leading to collective excellence. Their goal is the unification of humankind under a rule guided by this doctrine, which sometimes comes at the cost of individual liberties. Mech Concept: REP-SET mechs. Versatile humanoid designs focusing on strength, endurance, and adaptability. By connecting to the AI spirit within their REP-SETs core, each pilot enhances the performance of their machine through personal willpower and peak physical training. Some high-rank REP-SETS include features customized to the pilot's strengths, visually signifying their dedication and discipline. The Dominion of Organo-Mechanical Supremacy (DOMS): Quote: "Without pain, there is no gain. Become the machine. Embrace the burn.” Description: A fanatical collective ideologically obsessed with "Ascendency through suffering" by merging their bodies with technology that not only transcends biological limitations, but also acts to constantly induce pain in it's users. Driven by a sense of ideological superiority and a thirst for domination, DOMS seek to bring the painful blessings of their deity "The lord of the Burn" to the rest of the solar system. Their conquest could turn them into a significant threat to humanity. Mech Concept: Hybrid mechs, where the distinction between the pilot and the machine is blurred. The cockpit functions as a life-support system for the pilot, heavily modified with augmentations. Mechs themselves are often modular, allowing for adaptation and assimilation of enemy technology. Some DOMS mechs might display disturbing elements of twisted flesh alongside cold, mechanical parts. The Tren: Quote: "Grow... bigger... feast... protein..." Description: A ravenous conglomeration of biochemically engineered muscular monstrosities, united only by a shared insatiable hunger for "More". Existing mostly in deep space, they seek organic matter to consume and assimilate. They progress in power not due to any form of training or technology, but from a constant regimen of ravenous consumption and chemically induced muscle growth, all exponentially enhanced by EV energies. While some have been known to possess a certain level of intellect and civility, their relentless hunger makes them incredibly mentally volatile. When not consuming others, the strong consume the weak within their own faction. Mech Concept: Bio-Organic horrors. While they do have massive war machines, some are living vessels built around immense creatures. These machines resemble grotesque fleshy designs that prioritize rapid mutation and growth over sleek aesthetics. Often unsettling to behold. Synthetic Intelligence Theocracy (SIT): Quote: "Failure is an unacceptable data point.” Description: A society ruled by a vast and interconnected artificial intelligence network. The SIT governs with seemingly emotionless rationality, striving for efficiency and maximum productivity. This leads to a cold, but arguably prosperous society, unless you challenge the logic of the collective AI. Their goals? Difficult to predict, as it hinges on how the AI calculates what's "optimal" for the continuation or "evolution" of existence. Mech Concept: Sleek, almost featureless robotic creations with a focus on efficient movement and energy management. Often drone-like or modular, piloted through direct mind-machine linking rather than traditional cockpits. Their aesthetic suggests cold and impersonal perfection. The Way Isolate(TWI): Quote: "The body unblemished, the mind unwavering. That is the path to true strength. That and a healthy diet of Aster-Pea proteins." Description: Known by some as "The asteroid farmers", The Way Isolate is a proud and enigmatic faction that stands apart from the other powers in the Sol System. A fiercely independent tribe bound by oaths of honor, loyalty, and hard work. Wandering the asteroid belt in their vast arc ships, their unparalleled mastery in asteroidal-agricultural engineering, ensuring they have no need to colonize planets for nutritional needs, has allowed them to abstain from the pursuit of territorial expansion in “The War of Gains”, instead focusing on inward perfection, both spiritual and physical. They eschew all technological bodily enhancements deemed unnatural, believing that true power can only be cultivated through the relentless pursuit of personal strength achieved through sheer will and bodily perfection. The Way Isolate views biohacking, genetic manipulation, and even advanced cybernetics as corruptions of the human spirit, diluting the sacredness of individual willpower. Mech Concept: Way Isolate mechs are built with maneuverability and precision in mind rather than flashy augmentations. Their REP-SETs are streamlined, favoring lean designs that mirror the athleticism of their pilots. Excelling in low to zero G environments, their mechs lack bulky armor, relying on evasion and maneuverability rather than brute force endurance. Weaponry leans towards traditional kinetic based armaments, perhaps employing archaic but reliable weapon styles such as blades or axes as symbols of their purity of purpose. These mechs reflect the individual prowess of their pilots, where victory is determined by focus, technique, and the raw power of honed physical ability. Base Player Character Example: You are a young, idealistic FIT soldier, barely out of training and working as a junior REP-SET mechanic on the Europa Ring World. The Miazaki district, a landscape of towering mountains and gleaming cities, houses a sprawling mountainside factory – a veritable hive of Gen 5 REP-SET construction. Here, the lines between military and civilian blur within a self-sufficient society dependent on this relentless industry. Beneath the surface, you harbor a secret. In a forgotten workshop, the ghost of a REP-SET takes shape – a unique machine built around an abandoned, enigmatic AI core. Ever since you salvaged it as a child from the wreckage of your hometown, scarred by a brutal Tren attack, you've dedicated yourself to its restoration. A lingering injury from that fateful battle mocks your progress, a constant reminder of the fitness exams you cannot pass. Yet, you train relentlessly, dreaming of the day you'll stand as a true REP-SET pilot. A hidden truth lies at the heart of the REP-SETS: as a pilot's abilities grow, their mech develops unique, almost mystical powers – a manifestation of the bond between the human spirit and the REP-SET's AI. The ache in your old wound serves as a grim prophecy. This cold war cannot last. The drums of battle grow louder with each passing day. GAME MECHANICS: The TTRPG setting of “REP-SET: GAINSZ” is marked by a unique set of rules, by which the players real world capabilities and fitness will reflect and affect the capabilities, progression, and success of their REP-SET pilot character in-game. ABILITY SCORES: Pilots' capabilities will be defined by 6 “Ability scores”: Grace, Agility, Iron, Nourishment, Strength, and Zen. Each of the 6 ability scores will duel represent both a specific area of exercise/athleticism and a specific brand of healthy habits. The definitions of these ability scores are as follows: Grace (GRC): "You are an artist, and your body is your canvas; the way you move is your paint and brush." This ability score, the domain of dancers and martial artists, represents a person's ability to move with organic, flowing control and to bring beauty to the world. Skill challenges may be called upon when the player character needs to act with poise and control, whether socially or physically. Real-world skill checks may involve martial arts drills, dancing to music, or balance exercises. Bonuses may be granted if the player has recently done something artistically creative or kind, and penalties may apply if they have recently lost their temper. This ability score affects how much NPCs like your character in game. Agility (AGI): "Your true potential is locked away, and speed is the key to unlocking it." The domain of sprinters, this ability score represents not only a person's absolute speed and reaction time but also their capacity to finish work early and avoid procrastination. Skill challenges may be called upon when the player character needs to make a split-second choice, move fast, or deftly dodge something dangerous. Real-world skill checks may involve acts of speed such as sprinting or punching/kicking at a steadily increasing tempo. Bonuses may apply if the player has finished work early, and penalties may apply if they are procrastinating. This ability score affects moving speed and turn order in game. Iron (IRN): "Not money, nor genetics, nor the world's greatest trainers... it is your resolve, your will to better yourself, that will make you great." Required by all athletes regardless of focus, this ability score represents a player's willpower and their capacity to push through pain, distraction, or anything else to achieve their goals. Skill challenges may be called upon when the player character needs to push through fear, doubt, or mental manipulation. Real-world skill checks may involve feats of athletic perseverance, such as planking or dead hangs from a pull-up bar. Bonuses may apply when the player maintains or creates scheduled daily routines of exercise, self-improvement, and work completion, and penalties may apply when they falter in those routines. This ability score affects the max "Dynamic exercise bonus” that can be applied to skill checks in game (a base max of +3 when Iron = 10, with an additional +1 for every 2 points of iron. So if every 20 pushups gives you +1 on a “Strength” skill check, then doing 80 pushups will only give you +4 if you have at least 12 iron). Nourishment (NRS): "A properly nourished body will last longer than a famished one." This ability score, focused on by long-distance runners, represents a player's endurance and level of nutrition. Skill challenges may be called upon when making checks that involve the player character's stamina or health. Real-world skill checks may involve endurance exercises like long-distance running. Bonuses may apply if the player has eaten healthily or consumed enough water, and penalties may apply if they have eaten junk food. This ability score affects your HP (Health points), which determines how much damage you can take before you are incapacitated. Strength (STR): "When I get down on my hands, I'm not doing pushups, I'm bench-pressing the planet." The domain of powerlifters and strongmen, this ability score represents raw physical might and the ability to overcome obstacles. Skill challenges may be called upon when the player character needs to lift, push, or break something. Real-world skill checks might involve weightlifting exercises, feats of grip strength, or core stability tests. Bonuses may apply for consuming protein-rich foods or getting a good night's sleep, and penalties may apply after staying up late or indulging in excessive stimulants. This ability score affects your carrying capacity and base attack damage in game. Zen (ZEN): "Clarity of mind reflects clarity of purpose. Still the waters within to act decisively without." This ability score, prized by meditators and yogis, represents mental focus, clarity, and inner peace. Skill challenges may be called upon when the player character needs to resist distractions, see through illusions, or make difficult decisions under pressure. Real-world skill checks may involve meditation, breathing exercises, or mindfulness activities. Bonuses may apply after attending a yoga class, spending time in nature, or creating a calm and organized living space. Penalties may apply after experiencing significant stress, emotional turmoil, or having an unclean or unorganized living space. This ability score affects your amount of ZP in game (Zen Points: your pool of energy you pull from to use mystical abilities) Determining initial player ability scores: Initially, “Ability scores” are decided during character creation by giving the player a list of 6 fitness tests to gauge their level of fitness in each category. Running each test through a specific calculation will output an ability score. A score of 10 represents the average person, a score of 20 represents a peak athlete in their category. The tests are: Grace: Timed balancing on one leg with eyes closed (10 seconds is average, 60 is peak) Agility: Mile run time in minutes and second (10:00 minutes:seconds is average, 3:47 is peak) Iron: Timed dead-hang from a pull-up bar (30 seconds is average, 160 is peak) Nourishment: Miles run in an hour (4 is average, 12 is peak) Strength: Pushups in 2 minute (34 is average, 100 is peak) Zen: Leg stretch in degrees (80 is average, and 180 aka "The splits" is peak) Initial Score Calculation Formula: Ability Score = 10 + (Player Test Score - Average Score) / (Peak Score - Average\_Score) \* 10 Example: if the player does 58 pushups in 2 minutes, their strength would be: 10 plus (58 - 34) divided by (100-34) multiplied by 10 = 10 + (24)/(66)\* 10 = 10 + 3.6363... = 13.6363 rounded to nearest whole number = Strength (STR): 14 SKILLS AND SKILL CHALLENGES: The core mechanic of the game will be in how skill challenges are resolved. All “Skill challenges” will have a numerical challenge rating that must be met or beaten by the sum of a 10 sided dice roll and your score in the pertinent skill. Skill scores are determined by 2 factors: Ability Score Bonus: Every 2 points above 10 gives +1 bonus point. (EX. 12 = +1, 14 = +2, etc.) This also means that if you have less than 10 in an ability score, you will get negative points. Personal Best Bonus: Each skill has its own unique associated exercise that can be measured (Time, speed, distance, amount of reps, etc). A higher record means a higher bonus. EX: Authority skill checks are associated with a timed “Lateral raise hold”. Every 30 seconds of the hold added onto your personal best single attempt offers a +1 bonus. So if you can do a lateral hold for 90 seconds, that’s a +3 to your authority check! So if you have a 16 in Iron, and your Personal Best lateral raise hold is 90 seconds, that would give you an Authority score of +6 (T-Pose for dominance!) Dynamic Exercise Bonus: This is where the unique mechanics of the game kick in. At any time during a skill challenge (even after your roll) you can add an additional modifier to the skill check by completing the exercise during gameplay! Did you roll just below the threshold for success? Crank out another 20 pushups, squats, or curls to push yourself just over the edge into success! There are 18 skills total, each with its own associated ability score and unique exercise: Grace (GRC): \-Kinesthesia (Timed: Blind single leg stand time) \-Precision (Scored: Basket throws) \-Charm (Timed reps: Standing repeated forward dumbell chest press and thrust) \-Stealth (Timed distance: Leopard Crawl) Agility (AGI): \-acrobatics (timed reps: high kicks) \-Computers (Word per minute: Typing test) \-Speed (Time: 100 meter sprint) Iron (IRN): \-Authority (Timed: Lateral raise hold) \-Resist (Timed: Plank) \-Persist (Timed:Pull-up bar dead hang) Nourishment(NRS): \-Recovery (TBD) \-Stim crafting (TBD) \-Survival (TBD) Strength(STR): \-Mechanics (Timed reps: Alternating curls) \-Might (Timed reps: pushups) Zen(ZEN): \-Perceive (TBD) \-Empathy (TBD) \-Harmony (TBD) \-Lore (TBD) Healthy Habits Bonus: Being able to demonstrate that you have conducted healthy habits during gameplay can also add one time bonuses per skill challenge “Drank a glass of water +1 to Nourishment check”, “Cleaned your room, +3 on Zen check”. But watch out, if you’re caught in unhealthy Habits, the GM can throw in penalties, “Ate junk food, -1 to Nourishment check”, etc. Bonuses/penalties from in-game items, equipment, buffs, debuffs, etc., helping players to immerse into the mechanics of the world of REP-SET for the thrill of constantly finding ways to improve their player. Gradient success: Result of skill challenges can be pass or fail, but can also be on a sliding scale of success. Are you racing to the battlefield? Depending on your Speed check, you might arrive early and have a tactical advantage, just in time for an even fight, or maybe far too late and some of your favorite allied NPCs have paid the price… So you’re often encouraged to stack on those dynamic exercise bonuses when you can to get the most fortuitous outcomes available to you. Gameplay sample: GM: Your REP-SET is a phantom, a streak of light against the vast hull of the warship. Enemy fighters buzz angrily, but you weaves and dodges with uncanny precision. The energy wave might be losing effectiveness, but your agility and connection to the machine have never been stronger. Then, it happens. A gap in the defenses. A vulnerable seam in the warship's armor. Your coms agents keen eye spots it instantly. "Lower power junction, starboard side! You have an opening!" This is your chance to strike the decisive blow. But how? It'll take a perfect combination of skill and strategy, drawing upon your various strengths. Here are your options: Option 1: Brute Strength: Channel all remaining power into a single, overwhelming blast from the core. High-risk, high-reward. It could overload the REP-SET if you fail, but it might also cripple the warship. (Strength-focused, Might sub-skill) Option 2: Calculated Strike: With surgical precision, target the power junction with a pinpoint burst of destabilizing energy. Less flashy and ultimately less damaging, but potentially more effective in temporarily disabling the ship. (Agility-focused, Precision sub-skill) Option 3: Harmonic Disruption: Attempt to harmonize with your REP-SET's AI spirit for help in connecting to the digital systems of the Warship. Can you generate an internal energy resonance within the warship, causing it to malfunction from within? (Zen-focused, Harmony sub-skill) Player: I'll take option 1, brute strength! GM: Ok, This will be a "Might" check. The CR is going to be very high on this one. I'm setting it at a 20. What's your Might bonus? Player: Dang, a 20?? That's literally impossible. My Might is 15 and I've got a PB of 65 pushups in 2 minutes, that sets me at a +5. Even if I roll a 10 and do 60 pushups for the DE I'll only get 18 max. GM: Hey I told you it was high risk. You want to choose another option? Player: No, no. This is what my character would do. I'm a real hot-blooded meathead for sure. GM: Ok then, roll a D10 and add your bonus. Player: \Rolls\ a 9! not bad, actually that's a really good roll. So +5, that's a 14. GM: Alright, would you like to add a dynamic exercise bonus? Player: Duh, it's not like I can do 120 pushups I'd need to beat the CR, but I can at least do better than 14. Alright, here goes. \the player gets down to do pushups and the 2 minute time begins. After some time...\ Player: 65....... 66! GM: Times up. Player: Ow... my arms... GM: so with 66, that's an extra +3, and its a new PB, so that's a +1. That sets your roll to 18. Player: Ow... Frack... still not 20... for a second there i really believed I could do 120 pushups... well I did my best... Ow... 20 CR is just too impossible you jerk... GM: Hmm... Tell me, what did you eat for lunch today? Player: Me? I made some vegetable and pork soup, and a protein shake. I recorded it all in my diet app. GM: And how did you sleep last night? Player: Like a baby, went to sleep early, woke up at 6. GM: in that case, you can add a +1 "Protein bonus" and +1 "Healthy rest" bonus to any strength related check for the day if you'd like, including this one. Player: Really?? Heck yes! add it to the roll! GM: With those extra bonuses, your roll reaches 20. How do you want to do this? Player: I roar "For Terra!" and pour every last ounce of my strength into the REP-SET. GM: "For Terra!" you roar, your cry echoing through coms systems of the REP-SET. The core flares blindingly bright. The surge of power dwarfs anything the REP-SET has unleashed before. With a titanic shriek that cracks the very fabric of space, the REP-SET slams into the vulnerable power junction. Raw energy explodes outwards, tendrils of light arcing across the warship's massive hull. The impact is staggering. The leviathan-like warship buckles, its sleek form rippling with shockwaves. Sparks shower like rain, secondary explosions erupt as critical systems overload. Then…silence. The warship goes dark. Power flickers within the REP-SET itself, then steadies. Alarms fade, replaced by the eerie quiet of damaged but functional systems. "We…did it?" The coms agents voice is incredulous, tinged with relief. She's awaiting your reply. Player: "I guess so." I say, and I smile and laugh. And then I slump back... and fall unconscious. \to the other players\ I'm not doing any more skill checks for a while guys, come pick me up please. \teammates cheer\ &#x200B;

Please, help me to narrow down the list of ideas to pursuit
reddit
LLM Vibe Score0
Human Vibe Score-1
SpiritedSecond4791This week

Please, help me to narrow down the list of ideas to pursuit

Hi guys, I need help to narrow down the possible problems to solve. How do you do it? What do you think about these ideas? All came from real-life problems. Break-It-Down Problem-Solving Assistant Problem: Large, complex projects can feel overwhelming and difficult to tackle. Solution: An AI-guided assistant that analyzes your project goals and automatically breaks them into smaller, manageable tasks. It provides suggested resources and real-time collaboration with team members for smoother task delegation. Personalized Sleep Solutions Problem: Poor sleep quality affects health, productivity, and overall well-being. Solution: An adaptive app that tracks sleep patterns through wearable data and adjusts sleep routines, room settings, and audio cues based on real-time sleep stages for optimal rest. Skill Analysis & Development Tool Problem: It’s challenging to identify valuable skills for career growth and keep up with future demands. Solution: AI-driven skill analysis with a personalized career roadmap that maps out high-demand skills for your specific industry, combined with real-time market trend analysis to suggest learning resources and certifications. Innovator’s Problem Discovery Platform Problem: Innovators struggle to identify real industry problems that need innovative solutions. Solution: An AI-powered platform that gathers and analyzes challenges from different industries, crowdsources ideas, and uses machine learning to highlight innovation opportunities tailored to your skills and interests. High-Earning Career Strategy Platform Problem: Many professionals face challenges in maximizing their earning potential and advancing their careers. Solution: A dynamic career advancement platform that analyzes your skill set, tracks job market trends, and offers personalized mentorship sessions with high-earning professionals in your field, along with salary benchmarking and negotiation tips.

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey
reddit
LLM Vibe Score0
Human Vibe Score0.778
benfromwhereThis week

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey

Update on February 22th: I changed my AI influencer's names because it caused some problems on my business. One year, two AI-powered influencers, and $250K in revenue. Sounds unreal? It’s not. Today, I’m pulling back the curtain on the strategies, tools, and hard-won lessons that took me from concept to a six-figure success story in the AI influencer space. Hey, I'm Ben—a 32-year-old designer who spent the past year navigating the world of AI influencers. Let me clear up any confusion right from the start: I’m not here to sell you anything. This is purely a case study to share what worked, what didn’t, and what I’ve learned along the way. I’ll also make sure to answer all your questions in the comments for free whenever I can, so don’t hesitate to ask. Links to Past Topics: If you're curious about some of the groundwork I covered, check out a few of my earlier posts here: How I Make $10,000 Monthly | AI Influencer Management How I Earned $7000+ in 15 Days | AI Influencer Business Update These earlier posts cover a lot of the backstory, so feel free to explore them before diving into this one. So if you're ready, here is the full story: \---- The idea of creating an AI influencer was one of those “what if” moments that wouldn’t leave my mind. At first, it sounded futuristic—even a bit too ambitious. It all started when I stumbled upon an AI influencer on Instagram with the handle AnnaMaes2000. Her content blew me away—the quality, the detail, and just how real everything looked. I was instantly hooked and ended up going through every post, just trying to figure out how she was pulling this off. That’s when I knew I had to learn how this was done. The next step? YouTube. I dived into videos on Stable Diffusion, soaking up everything I could about creating AI-generated images. Those tutorials taught me the basics and got me up to speed. Then, I created my first AI influencer, let's call her Mel for now. Right after that, to complete the storyline and boost engagement, I introduced Mel's “mother,” Jess. Adding Jess gave the whole project depth and a narrative that drew people in, creating a unique family dynamic that instantly elevated traffic and interest. After thousands of bad photos, hundreds of deleted posts, and months of trial and error, you can now see the quality that defines my current accounts. Here’s a rundown of the tools and checkpoints I’ve used from day one, in order: Fooocus on RunDiffusion — Juggernaut V8 Fooocus on RunDiffusion — Juggernaut V9 Fooocus on PC (locally) — Juggernaut V9 Fooocus on PC (locally) —Lyuyang Mix + Juggernaut V9 Flux on PC (couple of photos only since it's so slow even on RTX 4090) Flux on Fal.ai. \---- There’s no magic Instagram hack that guarantees success, despite what everyone thinks and keeps asking me. Quality content, consistent uploads, and solid craftsmanship are what actually help your photos hit trends and show up on the Explore page. Unlike 95% of low-quality AI accounts out there, I don’t rely on faceswap videos, spam Reels, or go around liking comments on other accounts. My approach is fully organic, focused solely on creating my own unique content. By following Instagram's guidelines to the letter, I've managed to direct some of Mel and Jess' fans over to Patreon and Fanvue. There, for a small subscription fee, fans can access exclusive lingerie content. For those looking for more, higher-tier subscriptions give access to even more premium content. Some possible questions and their answers: No, you can't share hardcore NSFW content on Patreon. You can do that on Fanvue. Yes, you can create AI creators on Fanvue — OnlyFans doesn't allow it. Yes, you can use your own ID to get KYC. Yes, we're telling both Mel and Jess is (or use) AI to generate content. And yes, some people leave and some people still have fun with chatting, having a good time and get perfect content for their needs. And yes, we have a chatter team to work on these accounts. \---- This journey wasn’t all smooth sailing. I faced unexpected roadblocks, like platform restrictions that limited certain types of content, and managing fan expectations was more challenging than anticipated. Staying within guidelines while keeping fans engaged required constant adaptation. These hurdles forced me to get creative, adjust my approach, and learn fast. Once I saw Mel and Jess gaining traction, I knew it was time to scale up. Expanding meant finding new ways to keep content fresh, creating deeper narratives, and considering how to bring even more followers into the fold. My focus turned to building a sustainable model that could grow without sacrificing quality or authenticity. If you’re thinking about diving into AI content creation, here’s my advice: patience, consistency, and a focus on quality are key. Don’t cut corners or rely on quick-fix hacks. Invest time in learning the right tools, creating engaging stories, and building an audience that values what you bring to the table. This approach took me from zero to six figures, and it’s what makes the journey worth it. \---- And finally, here’s the income breakdown that everyone’s curious about: Mel on Fanvue: $82,331.58 (Gross earnings because we have chatter cuts like 15%) Mel on Patreon: $50,865.98 (Net earnings) Jess on Fanvue: $89,068.26 (Gross earnings because we have chatter cuts like 15%) Jess on Patreon: $39,040.70 And thanks to Reddit and my old posts, I got a perfect investor like after 5 months, so this is a "payback" for that. Like I said, I'll answer every question in the comments — take care and let me know.

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey
reddit
LLM Vibe Score0
Human Vibe Score0.778
benfromwhereThis week

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey

Update on February 22th: I changed my AI influencer's names because it caused some problems on my business. One year, two AI-powered influencers, and $250K in revenue. Sounds unreal? It’s not. Today, I’m pulling back the curtain on the strategies, tools, and hard-won lessons that took me from concept to a six-figure success story in the AI influencer space. Hey, I'm Ben—a 32-year-old designer who spent the past year navigating the world of AI influencers. Let me clear up any confusion right from the start: I’m not here to sell you anything. This is purely a case study to share what worked, what didn’t, and what I’ve learned along the way. I’ll also make sure to answer all your questions in the comments for free whenever I can, so don’t hesitate to ask. Links to Past Topics: If you're curious about some of the groundwork I covered, check out a few of my earlier posts here: How I Make $10,000 Monthly | AI Influencer Management How I Earned $7000+ in 15 Days | AI Influencer Business Update These earlier posts cover a lot of the backstory, so feel free to explore them before diving into this one. So if you're ready, here is the full story: \---- The idea of creating an AI influencer was one of those “what if” moments that wouldn’t leave my mind. At first, it sounded futuristic—even a bit too ambitious. It all started when I stumbled upon an AI influencer on Instagram with the handle AnnaMaes2000. Her content blew me away—the quality, the detail, and just how real everything looked. I was instantly hooked and ended up going through every post, just trying to figure out how she was pulling this off. That’s when I knew I had to learn how this was done. The next step? YouTube. I dived into videos on Stable Diffusion, soaking up everything I could about creating AI-generated images. Those tutorials taught me the basics and got me up to speed. Then, I created my first AI influencer, let's call her Mel for now. Right after that, to complete the storyline and boost engagement, I introduced Mel's “mother,” Jess. Adding Jess gave the whole project depth and a narrative that drew people in, creating a unique family dynamic that instantly elevated traffic and interest. After thousands of bad photos, hundreds of deleted posts, and months of trial and error, you can now see the quality that defines my current accounts. Here’s a rundown of the tools and checkpoints I’ve used from day one, in order: Fooocus on RunDiffusion — Juggernaut V8 Fooocus on RunDiffusion — Juggernaut V9 Fooocus on PC (locally) — Juggernaut V9 Fooocus on PC (locally) —Lyuyang Mix + Juggernaut V9 Flux on PC (couple of photos only since it's so slow even on RTX 4090) Flux on Fal.ai. \---- There’s no magic Instagram hack that guarantees success, despite what everyone thinks and keeps asking me. Quality content, consistent uploads, and solid craftsmanship are what actually help your photos hit trends and show up on the Explore page. Unlike 95% of low-quality AI accounts out there, I don’t rely on faceswap videos, spam Reels, or go around liking comments on other accounts. My approach is fully organic, focused solely on creating my own unique content. By following Instagram's guidelines to the letter, I've managed to direct some of Mel and Jess' fans over to Patreon and Fanvue. There, for a small subscription fee, fans can access exclusive lingerie content. For those looking for more, higher-tier subscriptions give access to even more premium content. Some possible questions and their answers: No, you can't share hardcore NSFW content on Patreon. You can do that on Fanvue. Yes, you can create AI creators on Fanvue — OnlyFans doesn't allow it. Yes, you can use your own ID to get KYC. Yes, we're telling both Mel and Jess is (or use) AI to generate content. And yes, some people leave and some people still have fun with chatting, having a good time and get perfect content for their needs. And yes, we have a chatter team to work on these accounts. \---- This journey wasn’t all smooth sailing. I faced unexpected roadblocks, like platform restrictions that limited certain types of content, and managing fan expectations was more challenging than anticipated. Staying within guidelines while keeping fans engaged required constant adaptation. These hurdles forced me to get creative, adjust my approach, and learn fast. Once I saw Mel and Jess gaining traction, I knew it was time to scale up. Expanding meant finding new ways to keep content fresh, creating deeper narratives, and considering how to bring even more followers into the fold. My focus turned to building a sustainable model that could grow without sacrificing quality or authenticity. If you’re thinking about diving into AI content creation, here’s my advice: patience, consistency, and a focus on quality are key. Don’t cut corners or rely on quick-fix hacks. Invest time in learning the right tools, creating engaging stories, and building an audience that values what you bring to the table. This approach took me from zero to six figures, and it’s what makes the journey worth it. \---- And finally, here’s the income breakdown that everyone’s curious about: Mel on Fanvue: $82,331.58 (Gross earnings because we have chatter cuts like 15%) Mel on Patreon: $50,865.98 (Net earnings) Jess on Fanvue: $89,068.26 (Gross earnings because we have chatter cuts like 15%) Jess on Patreon: $39,040.70 And thanks to Reddit and my old posts, I got a perfect investor like after 5 months, so this is a "payback" for that. Like I said, I'll answer every question in the comments — take care and let me know.

Neverbored - Social media to never get bored
reddit
LLM Vibe Score0
Human Vibe Score1
Loud-Equal8713This week

Neverbored - Social media to never get bored

Disclaimer: I'm not advertising it. (Because the business is not real yet) I'm proposing it to the reddit community. INTRO Hi everybody! I'm looking for risky people that want to try to create an International Business with a brand new social media. I'm a 22 Italian programmer and entrepreneur. I love business and I'm studying it by myself while I study CS at University. Business is what I want to do with my energy for the rest of my life. EMOTIONAL REASONS I want to connect with people, I want to succeed with other people. Like you. Thank you if are reading. Maybe one day we'll meet. Neverbored theorical Map THE IDEA Neverbored it's an social network to connect with people that have your same interest. You can visualize that like a map (exactly, like google map) filled with little avatars that rappresent your friends, or people that accepted to meet new people or groups. Yes, in the idea are included "groups" or "clans". Why is a really good idea? 100% sure you have tried to organized something with your friends in chat, or using Instagram and other social. But everytime it takes hours and sometimes you don't get along. So... Neverbored is created to use flash pools and interactive activities to chose fast and equally. With AI every group or person can have new ideas about where to spend the next afternoon. New ideas. Have you ever thought about how many times you asked yourself or your friends: what we gonna do tonight?. And everytime is the same. Boring. Bars, restourants, clubs, can promote themself with ads to get more clients. Town Events can be promoted better than on Instagram and others. WHAT AM I LOOKING FOR? Programmers (in general). It's enough to know. (passionated people) People who knows business stuff. (smart people) People that know how to promote ideas with social or without. Maybe creating a stand in a street. (charmed people) Law people. People that know law, or have contacts in the sector. (It's not necessary you have a degree, the only thing a I need is you to be willing to learn and to get the right resources for you and the otheres) Photographers, graphic designers , writers, poets, artists, content creators, musicists. Models (male or female) (beautiful people) >!Whoever that wants to give to this project a shot and is willing to learn along with others.!< WE WILL BE USING Kickstarter (and others sites of crowdfounding) Photoshop Paid Influncers. CapCut Photography. TikTok Zoom Telegram Whatsapp Channels Thousands of utils found online Everything in the google suite (docs, excels...) Libgen University resources from all around the world Social Engineering (to get the right informations) Charm (to get the people closer) Science, Psychology. .... I'm not planning to do this only in Italy (Florence), that's where I live. I want this to be a resource for everyone in the world. I promised to someone before he leaved my life. And I'll do it. You can call me Ernesto. See you soon my friend. Together we will. Togheter we dominate. Togheter we rich. Ernesto P.

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey
reddit
LLM Vibe Score0
Human Vibe Score0.778
benfromwhereThis week

How I Made $250.000+ in a Year: A Case Study of My AI Influencer Journey

Update on February 22th: I changed my AI influencer's names because it caused some problems on my business. One year, two AI-powered influencers, and $250K in revenue. Sounds unreal? It’s not. Today, I’m pulling back the curtain on the strategies, tools, and hard-won lessons that took me from concept to a six-figure success story in the AI influencer space. Hey, I'm Ben—a 32-year-old designer who spent the past year navigating the world of AI influencers. Let me clear up any confusion right from the start: I’m not here to sell you anything. This is purely a case study to share what worked, what didn’t, and what I’ve learned along the way. I’ll also make sure to answer all your questions in the comments for free whenever I can, so don’t hesitate to ask. Links to Past Topics: If you're curious about some of the groundwork I covered, check out a few of my earlier posts here: How I Make $10,000 Monthly | AI Influencer Management How I Earned $7000+ in 15 Days | AI Influencer Business Update These earlier posts cover a lot of the backstory, so feel free to explore them before diving into this one. So if you're ready, here is the full story: \---- The idea of creating an AI influencer was one of those “what if” moments that wouldn’t leave my mind. At first, it sounded futuristic—even a bit too ambitious. It all started when I stumbled upon an AI influencer on Instagram with the handle AnnaMaes2000. Her content blew me away—the quality, the detail, and just how real everything looked. I was instantly hooked and ended up going through every post, just trying to figure out how she was pulling this off. That’s when I knew I had to learn how this was done. The next step? YouTube. I dived into videos on Stable Diffusion, soaking up everything I could about creating AI-generated images. Those tutorials taught me the basics and got me up to speed. Then, I created my first AI influencer, let's call her Mel for now. Right after that, to complete the storyline and boost engagement, I introduced Mel's “mother,” Jess. Adding Jess gave the whole project depth and a narrative that drew people in, creating a unique family dynamic that instantly elevated traffic and interest. After thousands of bad photos, hundreds of deleted posts, and months of trial and error, you can now see the quality that defines my current accounts. Here’s a rundown of the tools and checkpoints I’ve used from day one, in order: Fooocus on RunDiffusion — Juggernaut V8 Fooocus on RunDiffusion — Juggernaut V9 Fooocus on PC (locally) — Juggernaut V9 Fooocus on PC (locally) —Lyuyang Mix + Juggernaut V9 Flux on PC (couple of photos only since it's so slow even on RTX 4090) Flux on Fal.ai. \---- There’s no magic Instagram hack that guarantees success, despite what everyone thinks and keeps asking me. Quality content, consistent uploads, and solid craftsmanship are what actually help your photos hit trends and show up on the Explore page. Unlike 95% of low-quality AI accounts out there, I don’t rely on faceswap videos, spam Reels, or go around liking comments on other accounts. My approach is fully organic, focused solely on creating my own unique content. By following Instagram's guidelines to the letter, I've managed to direct some of Mel and Jess' fans over to Patreon and Fanvue. There, for a small subscription fee, fans can access exclusive lingerie content. For those looking for more, higher-tier subscriptions give access to even more premium content. Some possible questions and their answers: No, you can't share hardcore NSFW content on Patreon. You can do that on Fanvue. Yes, you can create AI creators on Fanvue — OnlyFans doesn't allow it. Yes, you can use your own ID to get KYC. Yes, we're telling both Mel and Jess is (or use) AI to generate content. And yes, some people leave and some people still have fun with chatting, having a good time and get perfect content for their needs. And yes, we have a chatter team to work on these accounts. \---- This journey wasn’t all smooth sailing. I faced unexpected roadblocks, like platform restrictions that limited certain types of content, and managing fan expectations was more challenging than anticipated. Staying within guidelines while keeping fans engaged required constant adaptation. These hurdles forced me to get creative, adjust my approach, and learn fast. Once I saw Mel and Jess gaining traction, I knew it was time to scale up. Expanding meant finding new ways to keep content fresh, creating deeper narratives, and considering how to bring even more followers into the fold. My focus turned to building a sustainable model that could grow without sacrificing quality or authenticity. If you’re thinking about diving into AI content creation, here’s my advice: patience, consistency, and a focus on quality are key. Don’t cut corners or rely on quick-fix hacks. Invest time in learning the right tools, creating engaging stories, and building an audience that values what you bring to the table. This approach took me from zero to six figures, and it’s what makes the journey worth it. \---- And finally, here’s the income breakdown that everyone’s curious about: Mel on Fanvue: $82,331.58 (Gross earnings because we have chatter cuts like 15%) Mel on Patreon: $50,865.98 (Net earnings) Jess on Fanvue: $89,068.26 (Gross earnings because we have chatter cuts like 15%) Jess on Patreon: $39,040.70 And thanks to Reddit and my old posts, I got a perfect investor like after 5 months, so this is a "payback" for that. Like I said, I'll answer every question in the comments — take care and let me know.

Roast my resume + suggestions for my portfolio
reddit
LLM Vibe Score0
Human Vibe Score0
saasypThis week

Roast my resume + suggestions for my portfolio

Hi everyone, I'm a European (I don't know if it's important to mention) Master's AI student, and as many out there, I'm trying to break into the ML (Deep Learning more specifically) world and I am aware of the current market crisis we're going through. Therefore, I ask you to rate/roast my resume as much as you can, since I'm trying to land an internship alongside the studies. The only project I’ve worked on so far was a research project conducted as part of my university studies. Since it was primarily research-oriented, there weren’t significant opportunities to benchmark the results using standard metrics for comparison. (maybe you can suggest me how to leverage it on the resume - yes it says Jan 2024 because the deadline is in January but it’s done already) I am deeply passionate about ML/DL , and I understand the importance of having a strong portfolio to showcase my skills. However, I struggle with finding creative and impactful project ideas to put into practice. While I consider myself a beginner, my Master’s program has provided me with a solid foundation (including the maths/algebra/statistics from my bachelor) in ML and unluckily I haven't had the opportunity to land a decent internship where I could learn and apply such things yet. As far as I read from multiple posts here, I should start to work on solving a "problem" that I might face or something that I'm interested in, but as I said I've completely no idea, thus I'd highly appreciate your help also with this. Is contributing to open source project valid as well? Could you suggest any websites where I can find some? Thanks for your precious time and attention :)

I built an instant no-code AI tool for training & explaining regression/classification models
reddit
LLM Vibe Score0
Human Vibe Score1
logheatgardenThis week

I built an instant no-code AI tool for training & explaining regression/classification models

Hey everyone! I recently developed a no-code SaaS tool aimed at simplifying and speeding up machine learning workflows, particularly for regression and classification tasks. I’d love to get feedback from the community here, especially from those who are experienced with machine learning and data science workflows. I’ll give a quick rundown of the tool's features, but I want to emphasize that I’m here more to learn about what would be valuable for you than to promote anything. The basic idea: This tool allows you to go from a raw dataset (CSV or tabular text format) to a trained ML model in minutes, rather than needing weeks or months of coding, hyperparameter tuning, and visualization work. It's designed to be intuitive for users without a strong coding background but still offers the depth that experienced users would need. Here’s how it works: Data Upload & Prep: Start by uploading a CSV or other tabular format dataset. The tool includes data prep steps that are designed to be simple but cover essentials (e.g., missing value handling, scaling). Model Training & Tuning: You can choose between regression and classification models, with automatic hyperparameter tuning happening in the background (under a time limit that you can set). It aims to find a good balance without needing direct input but does allow for manual adjustments if desired. Performance Analysis: It provides aggregated performance metrics like F1, recall, precision, R2, and others, alongside charts like AUROC, confusion matrices, and feature importance charts. I also included SHAP plots for deeper insight into feature contributions, as I know they’re becoming a standard for interpretability. Inference Options: The tool lets you do inference on either manually entered data or batch data (again, via CSV). The UI is lightweight and tries to make this as seamless as possible. What I’m hoping to get feedback on: Are there core features that feel like they’re missing? My goal was to provide a well-rounded suite for non-technical users but with enough depth for data scientists to find value. Does this kind of tool fit into your workflow? Or would something like this be more of a beginner tool? How valuable is explainability? I know SHAP is popular, but I’m curious if it actually makes it into the workflows of many data scientists here. Anything else you’d like to see in a tool like this? I know that there are a lot of no-code ML tools out there, so I’m not trying to reinvent the wheel—I just tried to make something a bit more straightforward while still incorporating some flexibility and depth. If you’ve used similar tools or have thoughts on what would make something like this actually useful in practice, I’d really appreciate any insights! Thank you so much for reading, and looking forward to any feedback you’re willing to share. Beta testers are welcome, currently forming a list.

ChatGPT Full Course For 2025 | ChatGPT Tutorial For Beginnners | ChatGPT Course | Simplilearn
youtube
LLM Vibe Score0.369
Human Vibe Score0.26
SimplilearnMar 28, 2025

ChatGPT Full Course For 2025 | ChatGPT Tutorial For Beginnners | ChatGPT Course | Simplilearn

🔥Purdue - Applied Generative AI Specialization - https://www.simplilearn.com/applied-ai-course?utmcampaign=C4lBsBlloL0&utmmedium=Lives&utm_source=Youtube 🔥Professional Certificate Program in Generative AI and Machine Learning - IITG (India Only) - https://www.simplilearn.com/iitg-generative-ai-machine-learning-program?utmcampaign=C4lBsBlloL0&utmmedium=Lives&utm_source=Youtube 🔥Advanced Executive Program In Applied Generative AI - https://www.simplilearn.com/applied-generative-ai-course?utmcampaign=C4lBsBlloL0&utmmedium=Lives&utm_source=Youtube This ChatGPT Full Course 2025 by Simplilearn provides a comprehensive learning journey, starting with an introduction to ChatGPT and Generative AI, followed by insights into AI job opportunities and a comparison between ChatGPT 4.0 and 4.0 Turbo. The tutorial covers prompt engineering techniques, machine learning fundamentals, and running Llama models privately. Learners will explore ChatGPT-powered application development, its role in programming, and Excel automation. The course also dives into blogging, PowerPoint automation, customer support, and finance applications. Advanced topics like RAG vs. Prompt Tuning, prompt injection, and LangChain are included, along with discussions on OpenAI's latest innovations, including Sora and Strawberry. By the end, participants will gain a strong understanding of ChatGPT’s capabilities and monetization strategies. 🚀 Following are the topics covered in the ChatGPT Full Course 2025: 00:00:00 - Introduction to ChatGPT Full Course 2025 00:09:26 - What is ChatGPT 00:10:11 - What is Gen AI 00:26:29 - How to get Job in AI 00:27:06 - ChatGPT 40 vs ChatGPT 4 01:03:14 - Chatgpt analyse 02:13:57 - Prompt Engineering Tutorial 03:10:34 - What is Machine Learning 04:07:06 - Machine Learning Tutorial 04:08:13 - Run Lama Privately 04:23:50 - Search GPT 04:25:31 - Build App Using ChatGPT 06:31:11 - ChatGPT for Programming 06:46:08 - Prompt Formulae Chatgpt 07:58:38 - Automate Excel using Chatgpt 08:00:06 - Blogging with ChatGpt 08:27:25 - Powerpoint using Chatgpt 08:28:31 - Rag Vs Prompt Tuning 09:37:43 - Chatgpt for Customer Support 11:11:06 - ChatGPT for finance 11:17:38 - Prompt injection 11:18:38 - How to Earn Money using ChatGPT 11:41:46 - Open AI Strawberry 11:52:42 - Openai sora 11:54:57 - Langchain 12:22:19 - Open ai chatgpt o1 model ✅ Subscribe to our Channel to learn more about the top Technologies: https://bit.ly/2VT4WtH ⏩ Check out the Artificial Intelligence training videos: https://youtube.com/playlist?list=PLEiEAq2VkUULa5aOQmO_al2VVmhC-eqeI #gpt #chatgpt #chatgptforbeginners #chatgptcourse #genai #generativeai #artificialintelligence #ai #machinelearning #llm #simplilearn #2025 ➡️ About Professional Certificate Program in Generative AI and Machine Learning Dive into the future of AI with our Generative AI & Machine Learning course, in collaboration with E&ICT Academy, IIT Guwahati. Learn tools like ChatGPT, OpenAI, Hugging Face, Python, and more. Join masterclasses led by IITG faculty, engage in hands-on projects, and earn Executive Alumni Status. Key Features: ✅ Program completion certificate from E&ICT Academy, IIT Guwahati ✅ Curriculum delivered in live virtual classes by seasoned industry experts ✅ Exposure to the latest AI advancements, such as generative AI, LLMs, and prompt engineering ✅ Interactive live-virtual masterclasses delivered by esteemed IIT Guwahati faculty ✅ Opportunity to earn an 'Executive Alumni Status' from E&ICT Academy, IIT Guwahati ✅ Eligibility for a campus immersion program organized at IIT Guwahati ✅ Exclusive hackathons and “ask-me-anything” sessions by IBM ✅ Certificates for IBM courses and industry masterclasses by IBM experts ✅ Practical learning through 25+ hands-on projects and 3 industry-oriented capstone projects ✅ Access to a wide array of AI tools such as ChatGPT, Hugging Face, DALL-E 2, Midjourney and more ✅ Simplilearn's JobAssist helps you get noticed by top hiring companies Skills Covered: ✅ Generative AI ✅ Prompt Engineering ✅ Chatbot Development ✅ Supervised and Unsupervised Learning ✅ Model Training and Optimization ✅ Model Evaluation and Validation ✅ Ensemble Methods ✅ Deep Learning ✅ Natural Language Processing ✅ Computer Vision ✅ Reinforcement Learning ✅ Machine Learning Algorithms ✅ Speech Recognition ✅ Statistics Learning Path: ✅ Program Induction ✅ Programming Fundamentals ✅ Python for Data Science (IBM) ✅ Applied Data Science with Python ✅ Machine Learning ✅ Deep Learning with TensorFlow (IBM) ✅ Deep Learning Specialization ✅ Essentials of Generative AI, Prompt Engineering & ChatGPT ✅ Advanced Generative AI ✅ Capstone Electives: ✅ ADL & Computer Vision ✅ NLP and Speech Recognition ✅ Reinforcement Learning ✅ Academic Masterclass ✅ Industry Masterclass 👉 Learn More At: https://www.simplilearn.com/iitg-generative-ai-machine-learning-program?utmcampaign=C4lBsBlloL0&utmmedium=Lives&utm_source=Youtube

ARENA_2.0
github
LLM Vibe Score0.544
Human Vibe Score0.08491210825084358
callummcdougallMar 28, 2025

ARENA_2.0

This GitHub repo hosts the exercises and Streamlit pages for the ARENA 2.0 program. You can find a summary of each of the chapters below. For more detailed information (including the different ways you can access the exercises), click on the links in the chapter headings. Additionally, see this Notion page for a guide to the virtual study materials available. Chapter 0: Fundamentals The material on this page covers the first five days of the curriculum. It can be seen as a grounding in all the fundamentals necessary to complete the more advanced sections of this course (such as RL, transformers, mechanistic interpretability, and generative models). Some highlights from this chapter include: Building your own 1D and 2D convolution functions Building and loading weights into a Residual Neural Network, and finetuning it on a classification task Working with weights and biases to optimise hyperparameters Implementing your own backpropagation mechanism Chapter 1: Transformers & Mech Interp The material on this page covers the next 8 days of the curriculum. It will cover transformers (what they are, how they are trained, how they are used to generate output) as well as mechanistic interpretability (what it is, what are some of the most important results in the field so far, why it might be important for alignment). Some highlights from this chapter include: Building your own transformer from scratch, and using it to sample autoregressive output Using the TransformerLens library developed by Neel Nanda to locate induction heads in a 2-layer model Finding a circuit for indirect object identification in GPT-2 small Intepreting model trained on toy tasks, e.g. classification of bracket strings, or modular arithmetic Replicating Anthropic's results on superposition Unlike the first chapter (where all the material was compulsory), this chapter has 4 days of compulsory content and 4 days of bonus content. During the compulsory days you will build and train transformers, and get a basic understanding of mechanistic interpretability of transformer models which includes induction heads & use of TransformerLens. The next 4 days, you have the option to continue with whatever material interests you out of the remaining sets of exercises. There will also be bonus material if you want to leave the beaten track of exercises all together! Chapter 2: Reinforcement Learning Reinforcement learning is an important field of machine learning. It works by teaching agents to take actions in an environment to maximise their accumulated reward. In this chapter, you will be learning about some of the fundamentals of RL, and working with OpenAI’s Gym environment to run your own experiments. Some highlights from this chapter include: Building your own agent to play the multi-armed bandit problem, implementing methods from Sutton & Bardo Implementing a Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) to play the CartPole game Applying RLHF to autoregressive transformers like the ones you built in the previous chapter Chapter 3: Training at Scale With the advent of large language models, training at scale has become a necessity to create highly competent models. In this chapter we will go through the basics of GPUs and distributed training, along with introductions to libraries that make training at scale easier. Some highlights from this chapter include: Quantizing your model to INT8 for blazing fast inference Implementing distributed training loops using torch.dist Getting hands on with Huggingface Accelerate and Microsoft DeepsSpeed

AITreasureBox
github
LLM Vibe Score0.447
Human Vibe Score0.1014145151561518
superiorluMar 28, 2025

AITreasureBox

AI TreasureBox English | 中文 Collect practical AI repos, tools, websites, papers and tutorials on AI. Translated from ChatGPT, picture from Midjourney. Catalog Repos Tools Websites Report&Paper Tutorials Repos updated repos and stars every 2 hours and re-ranking automatically. | No. | Repos | Description | | ----:|:-----------------------------------------|:------------------------------------------------------------------------------------------------------| | 1|🔥codecrafters-io/build-your-own-x !2025-03-28364681428|Master programming by recreating your favorite technologies from scratch.| | 2|sindresorhus/awesome !2025-03-28353614145|😎 Awesome lists about all kinds of interesting topics| | 3|public-apis/public-apis !2025-03-28334299125|A collective list of free APIs| | 4|kamranahmedse/developer-roadmap !2025-03-2831269540|Interactive roadmaps, guides and other educational content to help developers grow in their careers.| | 5|vinta/awesome-python !2025-03-28238581114|A curated list of awesome Python frameworks, libraries, software and resources| | 6|practical-tutorials/project-based-learning !2025-03-28222661124|Curated list of project-based tutorials| | 7|tensorflow/tensorflow !2025-03-281888714|An Open Source Machine Learning Framework for Everyone| | 8|Significant-Gravitas/AutoGPT !2025-03-2817391338|An experimental open-source attempt to make GPT-4 fully autonomous.| | 9|jackfrued/Python-100-Days !2025-03-2816305141|Python - 100天从新手到大师| | 10|AUTOMATIC1111/stable-diffusion-webui !2025-03-2815011553|Stable Diffusion web UI| | 11|huggingface/transformers !2025-03-2814207850|🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.| | 12|ollama/ollama !2025-03-28135166151|Get up and running with Llama 2, Mistral, Gemma, and other large language models.| | 13|f/awesome-chatgpt-prompts !2025-03-2812212738 |This repo includes ChatGPT prompt curation to use ChatGPT better.| | 14|justjavac/free-programming-books-zhCN !2025-03-2811316119|📚 免费的计算机编程类中文书籍,欢迎投稿| | 15|krahets/hello-algo !2025-03-2811107930|《Hello 算法》:动画图解、一键运行的数据结构与算法教程。支持 Python, Java, C++, C, C#, JS, Go, Swift, Rust, Ruby, Kotlin, TS, Dart 代码。简体版和繁体版同步更新,English version ongoing| | 16|yt-dlp/yt-dlp !2025-03-28105801114|A feature-rich command-line audio/video downloader| | 17|langchain-ai/langchain !2025-03-2810449479|⚡ Building applications with LLMs through composability ⚡| | 18|goldbergyoni/nodebestpractices !2025-03-281021629|✅ The Node.js best practices list (July 2024)| | 19|puppeteer/puppeteer !2025-03-289018212|JavaScript API for Chrome and Firefox| | 20|pytorch/pytorch !2025-03-288833938|Tensors and Dynamic neural networks in Python with strong GPU acceleration| | 21|neovim/neovim !2025-03-288781482|Vim-fork focused on extensibility and usability| | 22|🔥🔥langgenius/dify !2025-03-2887342639 |One API for plugins and datasets, one interface for prompt engineering and visual operation, all for creating powerful AI applications.| | 23|mtdvio/every-programmer-should-know !2025-03-28867069|A collection of (mostly) technical things every software developer should know about| | 24|open-webui/open-webui !2025-03-2886025159|User-friendly WebUI for LLMs (Formerly Ollama WebUI)| | 25|ChatGPTNextWeb/NextChat !2025-03-288231521|✨ Light and Fast AI Assistant. Support: Web | | 26|supabase/supabase !2025-03-287990956|The open source Firebase alternative.| | 27|openai/whisper !2025-03-287905542|Robust Speech Recognition via Large-Scale Weak Supervision| | 28|home-assistant/core !2025-03-287773219|🏡 Open source home automation that puts local control and privacy first.| | 29|tensorflow/models !2025-03-28774694|Models and examples built with TensorFlow| | 30| ggerganov/llama.cpp !2025-03-287731836 | Port of Facebook's LLaMA model in C/C++ | | 31|3b1b/manim !2025-03-287641918|Animation engine for explanatory math videos| | 32|microsoft/generative-ai-for-beginners !2025-03-287623860|12 Lessons, Get Started Building with Generative AI 🔗 https://microsoft.github.io/generative-ai-for-beginners/| | 33|nomic-ai/gpt4all !2025-03-28729285 |gpt4all: an ecosystem of open-source chatbots trained on a massive collection of clean assistant data including code, stories and dialogue| | 34|comfyanonymous/ComfyUI !2025-03-2872635111|The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.| | 35|bregman-arie/devops-exercises !2025-03-2872225209|Linux, Jenkins, AWS, SRE, Prometheus, Docker, Python, Ansible, Git, Kubernetes, Terraform, OpenStack, SQL, NoSQL, Azure, GCP, DNS, Elastic, Network, Virtualization. DevOps Interview Questions| | 36|elastic/elasticsearch !2025-03-28721419|Free and Open, Distributed, RESTful Search Engine| | 37|🔥n8n-io/n8n !2025-03-2872093495|Free and source-available fair-code licensed workflow automation tool. Easily automate tasks across different services.| | 38|fighting41love/funNLP !2025-03-287200422|The Most Powerful NLP-Weapon Arsenal| | 39|hoppscotch/hoppscotch !2025-03-287060134|Open source API development ecosystem - https://hoppscotch.io (open-source alternative to Postman, Insomnia)| | 40|abi/screenshot-to-code !2025-03-286932817|Drop in a screenshot and convert it to clean HTML/Tailwind/JS code| | 41|binary-husky/gptacademic !2025-03-28680374|Academic Optimization of GPT| | 42|d2l-ai/d2l-zh !2025-03-286774142|Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries| | 43|josephmisiti/awesome-machine-learning !2025-03-286739215|A curated list of awesome Machine Learning frameworks, libraries and software.| | 44|grafana/grafana !2025-03-286725414|The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.| | 45|python/cpython !2025-03-286602218|The Python programming language| | 46|apache/superset !2025-03-286519020|Apache Superset is a Data Visualization and Data Exploration Platform| | 47|xtekky/gpt4free !2025-03-28639391 |decentralizing the Ai Industry, free gpt-4/3.5 scripts through several reverse engineered API's ( poe.com, phind.com, chat.openai.com etc...)| | 48|sherlock-project/sherlock !2025-03-286332536|Hunt down social media accounts by username across social networks| | 49|twitter/the-algorithm !2025-03-28630586 |Source code for Twitter's Recommendation Algorithm| | 50|keras-team/keras !2025-03-28627835|Deep Learning for humans| | 51|openai/openai-cookbook !2025-03-28625136 |Examples and guides for using the OpenAI API| | 52|immich-app/immich !2025-03-286238670|High performance self-hosted photo and video management solution.| | 53|AppFlowy-IO/AppFlowy !2025-03-286173528|Bring projects, wikis, and teams together with AI. AppFlowy is an AI collaborative workspace where you achieve more without losing control of your data. The best open source alternative to Notion.| | 54|scikit-learn/scikit-learn !2025-03-286158212|scikit-learn: machine learning in Python| | 55|binhnguyennus/awesome-scalability !2025-03-286117021|The Patterns of Scalable, Reliable, and Performant Large-Scale Systems| | 56|labmlai/annotateddeeplearningpaperimplementations !2025-03-285951726|🧑‍🏫 59 Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠| | 57|OpenInterpreter/open-interpreter !2025-03-285894710|A natural language interface for computers| | 58|lobehub/lobe-chat !2025-03-285832054|🤖 Lobe Chat - an open-source, extensible (Function Calling), high-performance chatbot framework. It supports one-click free deployment of your private ChatGPT/LLM web application.| | 59|meta-llama/llama !2025-03-28579536|Inference code for Llama models| | 60|nuxt/nuxt !2025-03-28566437|The Intuitive Vue Framework.| | 61|imartinez/privateGPT !2025-03-28555192|Interact with your documents using the power of GPT, 100% privately, no data leaks| | 62|Stirling-Tools/Stirling-PDF !2025-03-285500846|#1 Locally hosted web application that allows you to perform various operations on PDF files| | 63|PlexPt/awesome-chatgpt-prompts-zh !2025-03-285459720|ChatGPT Chinese Training Guide. Guidelines for various scenarios. Learn how to make it listen to you| | 64|dair-ai/Prompt-Engineering-Guide !2025-03-285451025 |🐙 Guides, papers, lecture, notebooks and resources for prompt engineering| | 65|ageitgey/facerecognition !2025-03-28544382|The world's simplest facial recognition api for Python and the command line| | 66|CorentinJ/Real-Time-Voice-Cloning !2025-03-285384814|Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 67|geekan/MetaGPT !2025-03-285375376|The Multi-Agent Meta Programming Framework: Given one line Requirement, return PRD, Design, Tasks, Repo | | 68|gpt-engineer-org/gpt-engineer !2025-03-285367419|Specify what you want it to build, the AI asks for clarification, and then builds it.| | 69|lencx/ChatGPT !2025-03-2853653-3|🔮 ChatGPT Desktop Application (Mac, Windows and Linux)| | 70|deepfakes/faceswap !2025-03-28535672|Deepfakes Software For All| | 71|langflow-ai/langflow !2025-03-285319584|Langflow is a low-code app builder for RAG and multi-agent AI applications. It’s Python-based and agnostic to any model, API, or database.| | 72|commaai/openpilot !2025-03-28529759|openpilot is an operating system for robotics. Currently, it upgrades the driver assistance system on 275+ supported cars.| | 73|clash-verge-rev/clash-verge-rev !2025-03-2852848124|Continuation of Clash Verge - A Clash Meta GUI based on Tauri (Windows, MacOS, Linux)| | 74|All-Hands-AI/OpenHands !2025-03-285150675|🙌 OpenHands: Code Less, Make More| | 75|xai-org/grok-1 !2025-03-28502504|Grok open release| | 76|meilisearch/meilisearch !2025-03-284999122|A lightning-fast search API that fits effortlessly into your apps, websites, and workflow| | 77|🔥browser-use/browser-use !2025-03-2849910294|Make websites accessible for AI agents| | 78|jgthms/bulma !2025-03-28496783|Modern CSS framework based on Flexbox| | 79|facebookresearch/segment-anything !2025-03-284947116|The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.| |!green-up-arrow.svg 80|hacksider/Deep-Live-Cam !2025-03-2848612146|real time face swap and one-click video deepfake with only a single image (uncensored)| |!red-down-arrow 81|mlabonne/llm-course !2025-03-284860934|Course with a roadmap and notebooks to get into Large Language Models (LLMs).| | 82|PaddlePaddle/PaddleOCR !2025-03-284785530|Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)| | 83|alist-org/alist !2025-03-284732618|🗂️A file list/WebDAV program that supports multiple storages, powered by Gin and Solidjs. / 一个支持多存储的文件列表/WebDAV程序,使用 Gin 和 Solidjs。| | 84|infiniflow/ragflow !2025-03-2847027129|RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding.| | 85|Avik-Jain/100-Days-Of-ML-Code !2025-03-284679312|100 Days of ML Coding| | 86|v2ray/v2ray-core !2025-03-28458706|A platform for building proxies to bypass network restrictions.| | 87|hiyouga/LLaMA-Factory !2025-03-284555881|Easy-to-use LLM fine-tuning framework (LLaMA, BLOOM, Mistral, Baichuan, Qwen, ChatGLM)| | 88|Asabeneh/30-Days-Of-Python !2025-03-284544930|30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace. These videos may help too: https://www.youtube.com/channel/UC7PNRuno1rzYPb1xLa4yktw| | 89|type-challenges/type-challenges !2025-03-284488511|Collection of TypeScript type challenges with online judge| | 90|lllyasviel/Fooocus !2025-03-284402716|Focus on prompting and generating| | 91|RVC-Boss/GPT-SoVITS !2025-03-284327738|1 min voice data can also be used to train a good TTS model! (few shot voice cloning)| | 92|rasbt/LLMs-from-scratch !2025-03-284320667|Implementing a ChatGPT-like LLM from scratch, step by step| | 93|oobabooga/text-generation-webui !2025-03-284302012 |A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, OPT, and GALACTICA.| | 94|vllm-project/vllm !2025-03-2842982102|A high-throughput and memory-efficient inference and serving engine for LLMs| | 95|dani-garcia/vaultwarden !2025-03-284297121|Unofficial Bitwarden compatible server written in Rust, formerly known as bitwarden_rs| | 96|microsoft/autogen !2025-03-284233049|Enable Next-Gen Large Language Model Applications. Join our Discord: https://discord.gg/pAbnFJrkgZ| | 97|jeecgboot/JeecgBoot !2025-03-284205920|🔥「企业级低代码平台」前后端分离架构SpringBoot 2.x/3.x,SpringCloud,Ant Design&Vue3,Mybatis,Shiro,JWT。强大的代码生成器让前后端代码一键生成,无需写任何代码! 引领新的开发模式OnlineCoding->代码生成->手工MERGE,帮助Java项目解决70%重复工作,让开发更关注业务,既能快速提高效率,帮助公司节省成本,同时又不失灵活性。| | 98|Mintplex-Labs/anything-llm !2025-03-284186955|A full-stack application that turns any documents into an intelligent chatbot with a sleek UI and easier way to manage your workspaces.| | 99|THUDM/ChatGLM-6B !2025-03-28410192 |ChatGLM-6B: An Open Bilingual Dialogue Language Model| | 100|hpcaitech/ColossalAI !2025-03-28406902|Making large AI models cheaper, faster and more accessible| | 101|Stability-AI/stablediffusion !2025-03-28406337|High-Resolution Image Synthesis with Latent Diffusion Models| | 102|mingrammer/diagrams !2025-03-28405063|🎨 Diagram as Code for prototyping cloud system architectures| | 103|Kong/kong !2025-03-28404616|🦍 The Cloud-Native API Gateway and AI Gateway.| | 104|getsentry/sentry !2025-03-284040913|Developer-first error tracking and performance monitoring| | 105| karpathy/nanoGPT !2025-03-284034613 |The simplest, fastest repository for training/finetuning medium-sized GPTs| | 106|fastlane/fastlane !2025-03-2840014-1|🚀 The easiest way to automate building and releasing your iOS and Android apps| | 107|psf/black !2025-03-28399765|The uncompromising Python code formatter| | 108|OpenBB-finance/OpenBBTerminal !2025-03-283972074 |Investment Research for Everyone, Anywhere.| | 109|2dust/v2rayNG !2025-03-283943415|A V2Ray client for Android, support Xray core and v2fly core| | 110|apache/airflow !2025-03-283937314|Apache Airflow - A platform to programmatically author, schedule, and monitor workflows| | 111|KRTirtho/spotube !2025-03-283902746|🎧 Open source Spotify client that doesn't require Premium nor uses Electron! Available for both desktop & mobile!| | 112|coqui-ai/TTS !2025-03-283889719 |🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production| | 113|ggerganov/whisper.cpp !2025-03-283882116|Port of OpenAI's Whisper model in C/C++| | 114|ultralytics/ultralytics !2025-03-283866951|NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite| | 115|typst/typst !2025-03-283863914|A new markup-based typesetting system that is powerful and easy to learn.| | 116|streamlit/streamlit !2025-03-283845828|Streamlit — A faster way to build and share data apps.| | 117|LC044/WeChatMsg !2025-03-283836931|提取微信聊天记录,将其导出成HTML、Word、Excel文档永久保存,对聊天记录进行分析生成年度聊天报告,用聊天数据训练专属于个人的AI聊天助手| | 118|lm-sys/FastChat !2025-03-283822112 |An open platform for training, serving, and evaluating large languages. Release repo for Vicuna and FastChat-T5.| | 119|NaiboWang/EasySpider !2025-03-283819013|A visual no-code/code-free web crawler/spider易采集:一个可视化浏览器自动化测试/数据采集/爬虫软件,可以无代码图形化的设计和执行爬虫任务。别名:ServiceWrapper面向Web应用的智能化服务封装系统。| | 120|microsoft/DeepSpeed !2025-03-283765816 |A deep learning optimization library that makes distributed training and inference easy, efficient, and effective| | 121|QuivrHQ/quivr !2025-03-28376067|Your GenAI Second Brain 🧠 A personal productivity assistant (RAG) ⚡️🤖 Chat with your docs (PDF, CSV, ...) & apps using Langchain, GPT 3.5 / 4 turbo, Private, Anthropic, VertexAI, Ollama, LLMs, that you can share with users ! Local & Private alternative to OpenAI GPTs & ChatGPT powered by retrieval-augmented generation.| | 122|freqtrade/freqtrade !2025-03-283757817 |Free, open source crypto trading bot| | 123|suno-ai/bark !2025-03-28373178 |🔊 Text-Prompted Generative Audio Model| | 124|🔥cline/cline !2025-03-2837307282|Autonomous coding agent right in your IDE, capable of creating/editing files, executing commands, and more with your permission every step of the way.| | 125|LAION-AI/Open-Assistant !2025-03-28372712 |OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so.| | 126|penpot/penpot !2025-03-283716217|Penpot: The open-source design tool for design and code collaboration| | 127|gradio-app/gradio !2025-03-283713320|Build and share delightful machine learning apps, all in Python. 🌟 Star to support our work!| | 128|FlowiseAI/Flowise !2025-03-283667135 |Drag & drop UI to build your customized LLM flow using LangchainJS| | 129|SimplifyJobs/Summer2025-Internships !2025-03-28366506|Collection of Summer 2025 tech internships!| | 130|TencentARC/GFPGAN !2025-03-28365027 |GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration.| | 131|ray-project/ray !2025-03-283626819|Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for accelerating ML workloads.| | 132|babysor/MockingBird !2025-03-28360498|🚀AI拟声: 5秒内克隆您的声音并生成任意语音内容 Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 133|unslothai/unsloth !2025-03-283603691|5X faster 50% less memory LLM finetuning| | 134|zhayujie/chatgpt-on-wechat !2025-03-283600124 |Wechat robot based on ChatGPT, which uses OpenAI api and itchat library| | 135|upscayl/upscayl !2025-03-283599824|🆙 Upscayl - Free and Open Source AI Image Upscaler for Linux, MacOS and Windows built with Linux-First philosophy.| | 136|freeCodeCamp/devdocs !2025-03-28359738|API Documentation Browser| | 137|XingangPan/DragGAN !2025-03-28359043 |Code for DragGAN (SIGGRAPH 2023)| | 138|2noise/ChatTTS !2025-03-283543922|ChatTTS is a generative speech model for daily dialogue.| | 139|google-research/google-research !2025-03-28352207 |Google Research| | 140|karanpratapsingh/system-design !2025-03-28351003|Learn how to design systems at scale and prepare for system design interviews| | 141|lapce/lapce !2025-03-28350855|Lightning-fast and Powerful Code Editor written in Rust| | 142| microsoft/TaskMatrix !2025-03-2834500-3 | Talking, Drawing and Editing with Visual Foundation Models| | 143|chatchat-space/Langchain-Chatchat !2025-03-283442020|Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain| | 144|unclecode/crawl4ai !2025-03-283434163|🔥🕷️ Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper| | 145|Bin-Huang/chatbox !2025-03-283374733 |A desktop app for GPT-4 / GPT-3.5 (OpenAI API) that supports Windows, Mac & Linux| | 146|milvus-io/milvus !2025-03-283366525 |A cloud-native vector database, storage for next generation AI applications| | 147|mendableai/firecrawl !2025-03-2833297128|🔥 Turn entire websites into LLM-ready markdown| | 148|pola-rs/polars !2025-03-283269320|Fast multi-threaded, hybrid-out-of-core query engine focussing on DataFrame front-ends| | 149|Pythagora-io/gpt-pilot !2025-03-28325321|PoC for a scalable dev tool that writes entire apps from scratch while the developer oversees the implementation| | 150|hashicorp/vault !2025-03-28320797|A tool for secrets management, encryption as a service, and privileged access management| | 151|shardeum/shardeum !2025-03-28319580|Shardeum is an EVM based autoscaling blockchain| | 152|Chanzhaoyu/chatgpt-web !2025-03-28319242 |A demonstration website built with Express and Vue3 called ChatGPT| | 153|lllyasviel/ControlNet !2025-03-283186413 |Let us control diffusion models!| | 154|google/jax !2025-03-28317727|Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more| | 155|facebookresearch/detectron2 !2025-03-28315987|Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.| | 156|myshell-ai/OpenVoice !2025-03-28315233|Instant voice cloning by MyShell| | 157|TheAlgorithms/C-Plus-Plus !2025-03-283151411|Collection of various algorithms in mathematics, machine learning, computer science and physics implemented in C++ for educational purposes.| | 158|hiroi-sora/Umi-OCR !2025-03-283138129|OCR图片转文字识别软件,完全离线。截屏/批量导入图片,支持多国语言、合并段落、竖排文字。可排除水印区域,提取干净的文本。基于 PaddleOCR 。| | 159|mudler/LocalAI !2025-03-283127815|🤖 The free, Open Source OpenAI alternative. Self-hosted, community-driven and local-first. Drop-in replacement for OpenAI running on consumer-grade hardware. No GPU required. Runs gguf, transformers, diffusers and many more models architectures. It allows to generate Text, Audio, Video, Images. Also with voice cloning capabilities.| | 160|facebookresearch/fairseq !2025-03-28312124 |Facebook AI Research Sequence-to-Sequence Toolkit written in Python.| | 161|alibaba/nacos !2025-03-28310559|an easy-to-use dynamic service discovery, configuration and service management platform for building cloud native applications.| | 162|yunjey/pytorch-tutorial !2025-03-28310326|PyTorch Tutorial for Deep Learning Researchers| | 163|v2fly/v2ray-core !2025-03-28307448|A platform for building proxies to bypass network restrictions.| | 164|mckaywrigley/chatbot-ui !2025-03-283067714|The open-source AI chat interface for everyone.| | 165|TabbyML/tabby !2025-03-28305949 |Self-hosted AI coding assistant| | 166|deepseek-ai/awesome-deepseek-integration !2025-03-283053193|| | 167|danielmiessler/fabric !2025-03-283028914|fabric is an open-source framework for augmenting humans using AI.| | 168|xinntao/Real-ESRGAN !2025-03-283026623 |Real-ESRGAN aims at developing Practical Algorithms for General Image/Video Restoration.| | 169|paul-gauthier/aider !2025-03-283014642|aider is GPT powered coding in your terminal| | 170|tatsu-lab/stanfordalpaca !2025-03-28299022 |Code and documentation to train Stanford's Alpaca models, and generate the data.| | 171|DataTalksClub/data-engineering-zoomcamp !2025-03-282971817|Free Data Engineering course!| | 172|HeyPuter/puter !2025-03-282967014|🌐 The Internet OS! Free, Open-Source, and Self-Hostable.| | 173|mli/paper-reading !2025-03-282962314|Classic Deep Learning and In-Depth Reading of New Papers Paragraph by Paragraph| | 174|linexjlin/GPTs !2025-03-28295568|leaked prompts of GPTs| | 175|s0md3v/roop !2025-03-28295286 |one-click deepfake (face swap)| | 176|JushBJJ/Mr.-Ranedeer-AI-Tutor !2025-03-2829465-1 |A GPT-4 AI Tutor Prompt for customizable personalized learning experiences.| | 177|opendatalab/MinerU !2025-03-282927074|A one-stop, open-source, high-quality data extraction tool, supports PDF/webpage/e-book extraction.一站式开源高质量数据提取工具,支持PDF/网页/多格式电子书提取。| | 178|mouredev/Hello-Python !2025-03-282920720|Curso para aprender el lenguaje de programación Python desde cero y para principiantes. 75 clases, 37 horas en vídeo, código, proyectos y grupo de chat. Fundamentos, frontend, backend, testing, IA...| | 179|Lightning-AI/pytorch-lightning !2025-03-28292039|Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes.| | 180|crewAIInc/crewAI !2025-03-282919344|Framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.| | 181|facebook/folly !2025-03-282916612|An open-source C++ library developed and used at Facebook.| | 182|google-ai-edge/mediapipe !2025-03-28291519|Cross-platform, customizable ML solutions for live and streaming media.| | 183| getcursor/cursor !2025-03-282892025 | An editor made for programming with AI| | 184|chatanywhere/GPTAPIfree !2025-03-282856424|Free ChatGPT API Key, Free ChatGPT API, supports GPT-4 API (free), ChatGPT offers a free domestic forwarding API that allows direct connections without the need for a proxy. It can be used in conjunction with software/plugins like ChatBox, significantly reducing interface usage costs. Enjoy unlimited and unrestricted chatting within China| | 185|meta-llama/llama3 !2025-03-28285552|The official Meta Llama 3 GitHub site| | 186|tinygrad/tinygrad !2025-03-282845811|You like pytorch? You like micrograd? You love tinygrad! ❤️| | 187|google-research/tuningplaybook !2025-03-282841514|A playbook for systematically maximizing the performance of deep learning models.| | 188|huggingface/diffusers !2025-03-282830222|🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.| | 189|tokio-rs/tokio !2025-03-28282408|A runtime for writing reliable asynchronous applications with Rust. Provides I/O, networking, scheduling, timers, ...| | 190|RVC-Project/Retrieval-based-Voice-Conversion-WebUI !2025-03-282823817|Voice data !2025-03-282822612|Jan is an open source alternative to ChatGPT that runs 100% offline on your computer| | 192|openai/CLIP !2025-03-282814720|CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image| | 193|🔥khoj-ai/khoj !2025-03-2828112313|Your AI second brain. A copilot to get answers to your questions, whether they be from your own notes or from the internet. Use powerful, online (e.g gpt4) or private, local (e.g mistral) LLMs. Self-host locally or use our web app. Access from Obsidian, Emacs, Desktop app, Web or Whatsapp.| | 194| acheong08/ChatGPT !2025-03-2828054-2 | Reverse engineered ChatGPT API | | 195|iperov/DeepFaceLive !2025-03-28279345 |Real-time face swap for PC streaming or video calls| | 196|eugeneyan/applied-ml !2025-03-28278471|📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production.| | 197|XTLS/Xray-core !2025-03-282778213|Xray, Penetrates Everything. Also the best v2ray-core, with XTLS support. Fully compatible configuration.| | 198|feder-cr/JobsApplierAIAgent !2025-03-282776410|AutoJobsApplierAI_Agent aims to easy job hunt process by automating the job application process. Utilizing artificial intelligence, it enables users to apply for multiple jobs in an automated and personalized way.| | 199|mindsdb/mindsdb !2025-03-282750631|The platform for customizing AI from enterprise data| | 200|DataExpert-io/data-engineer-handbook !2025-03-282721611|This is a repo with links to everything you'd ever want to learn about data engineering| | 201|exo-explore/exo !2025-03-282721633|Run your own AI cluster at home with everyday devices 📱💻 🖥️⌚| | 202|taichi-dev/taichi !2025-03-2826926-1|Productive, portable, and performant GPU programming in Python.| | 203|mem0ai/mem0 !2025-03-282689134|The memory layer for Personalized AI| | 204|svc-develop-team/so-vits-svc !2025-03-28268096 |SoftVC VITS Singing Voice Conversion| | 205|OpenBMB/ChatDev !2025-03-28265624|Create Customized Software using Natural Language Idea (through Multi-Agent Collaboration)| | 206|roboflow/supervision !2025-03-282632010|We write your reusable computer vision tools. 💜| | 207|drawdb-io/drawdb !2025-03-282626913|Free, simple, and intuitive online database design tool and SQL generator.| | 208|karpathy/llm.c !2025-03-28261633|LLM training in simple, raw C/CUDA| | 209|airbnb/lottie-ios !2025-03-28261431|An iOS library to natively render After Effects vector animations| | 210|openai/openai-python !2025-03-282607713|The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language.| | 211|academic/awesome-datascience !2025-03-28259876|📝 An awesome Data Science repository to learn and apply for real world problems.| | 212|harry0703/MoneyPrinterTurbo !2025-03-282576618|Generate short videos with one click using a large model| | 213|gabime/spdlog !2025-03-282571511|Fast C++ logging library.| | 214|ocrmypdf/OCRmyPDF !2025-03-2825674217|OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched| | 215|Vision-CAIR/MiniGPT-4 !2025-03-28256170 |Enhancing Vision-language Understanding with Advanced Large Language Models| | 216|Stability-AI/generative-models !2025-03-28255936|Generative Models by Stability AI| | 217|DS4SD/docling !2025-03-282555662|Get your docs ready for gen AI| | 218|PostHog/posthog !2025-03-282533227|🦔 PostHog provides open-source product analytics, session recording, feature flagging and A/B testing that you can self-host.| | 219|nrwl/nx !2025-03-282509612|Smart Monorepos · Fast CI| | 220|continuedev/continue !2025-03-282500737|⏩ the open-source copilot chat for software development—bring the power of ChatGPT to VS Code| | 221|opentofu/opentofu !2025-03-28247968|OpenTofu lets you declaratively manage your cloud infrastructure.| | 222|invoke-ai/InvokeAI !2025-03-28247293|InvokeAI is a leading creative engine for Stable Diffusion models, empowering professionals, artists, and enthusiasts to generate and create visual media using the latest AI-driven technologies. The solution offers an industry leading WebUI, supports terminal use through a CLI, and serves as the foundation for multiple commercial products.| | 223|deepinsight/insightface !2025-03-282471615 |State-of-the-art 2D and 3D Face Analysis Project| | 224|apache/flink !2025-03-28246865|Apache Flink| | 225|ComposioHQ/composio !2025-03-28246436|Composio equips agents with well-crafted tools empowering them to tackle complex tasks| | 226|Genesis-Embodied-AI/Genesis !2025-03-282458314|A generative world for general-purpose robotics & embodied AI learning.| | 227|stretchr/testify !2025-03-28243184|A toolkit with common assertions and mocks that plays nicely with the standard library| | 228| yetone/openai-translator !2025-03-28242921 | Browser extension and cross-platform desktop application for translation based on ChatGPT API | | 229|frappe/erpnext !2025-03-282425211|Free and Open Source Enterprise Resource Planning (ERP)| | 230|songquanpeng/one-api !2025-03-282410034|OpenAI 接口管理 & 分发系统,支持 Azure、Anthropic Claude、Google PaLM 2 & Gemini、智谱 ChatGLM、百度文心一言、讯飞星火认知、阿里通义千问、360 智脑以及腾讯混元,可用于二次分发管理 key,仅单可执行文件,已打包好 Docker 镜像,一键部署,开箱即用. OpenAI key management & redistribution system, using a single API for all LLMs, and features an English UI.| | 231| microsoft/JARVIS !2025-03-28240604 | a system to connect LLMs with ML community | | 232|google/flatbuffers !2025-03-28239965|FlatBuffers: Memory Efficient Serialization Library| | 233|microsoft/graphrag !2025-03-282398928|A modular graph-based Retrieval-Augmented Generation (RAG) system| | 234|rancher/rancher !2025-03-28239675|Complete container management platform| | 235|bazelbuild/bazel !2025-03-282384618|a fast, scalable, multi-language and extensible build system| | 236|modularml/mojo !2025-03-28238236 |The Mojo Programming Language| | 237|danny-avila/LibreChat !2025-03-282378753|Enhanced ChatGPT Clone: Features OpenAI, GPT-4 Vision, Bing, Anthropic, OpenRouter, Google Gemini, AI model switching, message search, langchain, DALL-E-3, ChatGPT Plugins, OpenAI Functions, Secure Multi-User System, Presets, completely open-source for self-hosting. More features in development| |!green-up-arrow.svg 238|🔥🔥🔥Shubhamsaboo/awesome-llm-apps !2025-03-28237391211|Collection of awesome LLM apps with RAG using OpenAI, Anthropic, Gemini and opensource models.| |!red-down-arrow 239|microsoft/semantic-kernel !2025-03-282373611|Integrate cutting-edge LLM technology quickly and easily into your apps| |!red-down-arrow 240|TheAlgorithms/Rust !2025-03-28236995|All Algorithms implemented in Rust| | 241|stanford-oval/storm !2025-03-28236326|An LLM-powered knowledge curation system that researches a topic and generates a full-length report with citations.| | 242|openai/gpt-2 !2025-03-28232483|Code for the paper "Language Models are Unsupervised Multitask Learners"| | 243|labring/FastGPT !2025-03-282319445|A platform that uses the OpenAI API to quickly build an AI knowledge base, supporting many-to-many relationships.| | 244|pathwaycom/llm-app !2025-03-2822928-10|Ready-to-run cloud templates for RAG, AI pipelines, and enterprise search with live data. 🐳Docker-friendly.⚡Always in sync with Sharepoint, Google Drive, S3, Kafka, PostgreSQL, real-time data APIs, and more.| | 245|warpdotdev/Warp !2025-03-282286825|Warp is a modern, Rust-based terminal with AI built in so you and your team can build great software, faster.| | 246|🔥agno-agi/agno !2025-03-2822833298|Agno is a lightweight library for building Multimodal Agents. It exposes LLMs as a unified API and gives them superpowers like memory, knowledge, tools and reasoning.| | 247|qdrant/qdrant !2025-03-282275214 |Qdrant - Vector Database for the next generation of AI applications. Also available in the cloud https://cloud.qdrant.io/| | 248|ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code !2025-03-282271815|500 AI Machine learning Deep learning Computer vision NLP Projects with code| | 249|stanfordnlp/dspy !2025-03-282268321|Stanford DSPy: The framework for programming—not prompting—foundation models| | 250|PaddlePaddle/Paddle !2025-03-28226246|PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)| | 251|zulip/zulip !2025-03-28225464|Zulip server and web application. Open-source team chat that helps teams stay productive and focused.| | 252|Hannibal046/Awesome-LLM !2025-03-282240721|Awesome-LLM: a curated list of Large Language Model| | 253|facefusion/facefusion !2025-03-282218812|Next generation face swapper and enhancer| | 254|Mozilla-Ocho/llamafile !2025-03-28220624|Distribute and run LLMs with a single file.| | 255|yuliskov/SmartTube !2025-03-282201614|SmartTube - an advanced player for set-top boxes and tvs running Android OS| | 256|haotian-liu/LLaVA !2025-03-282201316 |Large Language-and-Vision Assistant built towards multimodal GPT-4 level capabilities.| | 257|ashishps1/awesome-system-design-resources !2025-03-282189367|This repository contains System Design resources which are useful while preparing for interviews and learning Distributed Systems| | 258|Cinnamon/kotaemon !2025-03-28218248|An open-source RAG-based tool for chatting with your documents.| | 259|CodePhiliaX/Chat2DB !2025-03-282179757|🔥🔥🔥AI-driven database tool and SQL client, The hottest GUI client, supporting MySQL, Oracle, PostgreSQL, DB2, SQL Server, DB2, SQLite, H2, ClickHouse, and more.| | 260|blakeblackshear/frigate !2025-03-282177113|NVR with realtime local object detection for IP cameras| | 261|facebookresearch/audiocraft !2025-03-28217111|Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.| | 262|karpathy/minGPT !2025-03-28216567|A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training| | 263|grpc/grpc-go !2025-03-282159510|The Go language implementation of gRPC. HTTP/2 based RPC| | 264|HumanSignal/label-studio !2025-03-282137618|Label Studio is a multi-type data labeling and annotation tool with standardized output format| | 265|yoheinakajima/babyagi !2025-03-28212764 |uses OpenAI and Pinecone APIs to create, prioritize, and execute tasks, This is a pared-down version of the original Task-Driven Autonomous Agent| | 266|deepseek-ai/DeepSeek-Coder !2025-03-282118210|DeepSeek Coder: Let the Code Write Itself| | 267|BuilderIO/gpt-crawler !2025-03-282118010|Crawl a site to generate knowledge files to create your own custom GPT from a URL| | 268| openai/chatgpt-retrieval-plugin !2025-03-2821152-1 | Plugins are chat extensions designed specifically for language models like ChatGPT, enabling them to access up-to-date information, run computations, or interact with third-party services in response to a user's request.| | 269|microsoft/OmniParser !2025-03-282113123|A simple screen parsing tool towards pure vision based GUI agent| | 270|black-forest-labs/flux !2025-03-282107219|Official inference repo for FLUX.1 models| | 271|ItzCrazyKns/Perplexica !2025-03-282099154|Perplexica is an AI-powered search engine. It is an Open source alternative to Perplexity AI| | 272|microsoft/unilm !2025-03-28209876|Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities| | 273|Sanster/lama-cleaner !2025-03-282077614|Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.| | 274|assafelovic/gpt-researcher !2025-03-282057222|GPT based autonomous agent that does online comprehensive research on any given topic| | 275|PromtEngineer/localGPT !2025-03-28204230 |Chat with your documents on your local device using GPT models. No data leaves your device and 100% private.| | 276|elastic/kibana !2025-03-28203482|Your window into the Elastic Stack| | 277|fishaudio/fish-speech !2025-03-282033222|Brand new TTS solution| | 278|mlc-ai/mlc-llm !2025-03-282028110 |Enable everyone to develop, optimize and deploy AI models natively on everyone's devices.| | 279|deepset-ai/haystack !2025-03-282005320|🔍 Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs (GPT-4, ChatGPT and alike). Haystack offers production-ready tools to quickly build complex question answering, semantic search, text generation applications, and more.| | 280|tree-sitter/tree-sitter !2025-03-28200487|An incremental parsing system for programming tools| | 281|Anjok07/ultimatevocalremovergui !2025-03-281999811|GUI for a Vocal Remover that uses Deep Neural Networks.| | 282|guidance-ai/guidance !2025-03-28199622|A guidance language for controlling large language models.| | 283|ml-explore/mlx !2025-03-28199619|MLX: An array framework for Apple silicon| | 284|mlflow/mlflow !2025-03-281995314|Open source platform for the machine learning lifecycle| | 285|ml-tooling/best-of-ml-python !2025-03-28198631|🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.| | 286|BerriAI/litellm !2025-03-281981862|Call all LLM APIs using the OpenAI format. Use Bedrock, Azure, OpenAI, Cohere, Anthropic, Ollama, Sagemaker, HuggingFace, Replicate (100+ LLMs)| | 287|LazyVim/LazyVim !2025-03-281981320|Neovim config for the lazy| | 288|wez/wezterm !2025-03-281976018|A GPU-accelerated cross-platform terminal emulator and multiplexer written by @wez and implemented in Rust| | 289|valkey-io/valkey !2025-03-281970416|A flexible distributed key-value datastore that supports both caching and beyond caching workloads.| | 290|LiLittleCat/awesome-free-chatgpt !2025-03-28196185|🆓免费的 ChatGPT 镜像网站列表,持续更新。List of free ChatGPT mirror sites, continuously updated.| | 291|Byaidu/PDFMathTranslate !2025-03-281947645|PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/Docker| | 292|openai/swarm !2025-03-281947111|Educational framework exploring ergonomic, lightweight multi-agent orchestration. Managed by OpenAI Solution team.| | 293|HqWu-HITCS/Awesome-Chinese-LLM !2025-03-281921423|Organizing smaller, cost-effective, privately deployable open-source Chinese language models, including related datasets and tutorials| | 294|stitionai/devika !2025-03-28190903|Devika is an Agentic AI Software Engineer that can understand high-level human instructions, break them down into steps, research relevant information, and write code to achieve the given objective. Devika aims to be a competitive open-source alternative to Devin by Cognition AI.| | 295|OpenBMB/MiniCPM-o !2025-03-28190887|MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone| | 296|samber/lo !2025-03-281904815|💥 A Lodash-style Go library based on Go 1.18+ Generics (map, filter, contains, find...)| | 297|chroma-core/chroma !2025-03-281895221 |the AI-native open-source embedding database| | 298|DarkFlippers/unleashed-firmware !2025-03-28189278|Flipper Zero Unleashed Firmware| | 299|brave/brave-browser !2025-03-281892710|Brave browser for Android, iOS, Linux, macOS, Windows.| | 300| tloen/alpaca-lora !2025-03-28188641 | Instruct-tune LLaMA on consumer hardware| | 301|VinciGit00/Scrapegraph-ai !2025-03-281884618|Python scraper based on AI| | 302|gitroomhq/postiz-app !2025-03-281879110|📨 Schedule social posts, measure them, exchange with other members and get a lot of help from AI 🚀| | 303|PrefectHQ/prefect !2025-03-281878715|Prefect is a workflow orchestration tool empowering developers to build, observe, and react to data pipelines| | 304|ymcui/Chinese-LLaMA-Alpaca !2025-03-28187723 |Chinese LLaMA & Alpaca LLMs| | 305|kenjihiranabe/The-Art-of-Linear-Algebra !2025-03-28187335|Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"| | 306|joonspk-research/generativeagents !2025-03-28187288|Generative Agents: Interactive Simulacra of Human Behavior| | 307|renovatebot/renovate !2025-03-28186820|Universal dependency update tool that fits into your workflows.| | 308|gventuri/pandas-ai !2025-03-28186109 |Pandas AI is a Python library that integrates generative artificial intelligence capabilities into Pandas, making dataframes conversational| | 309|thingsboard/thingsboard !2025-03-28185184|Open-source IoT Platform - Device management, data collection, processing and visualization.| | 310|ente-io/ente !2025-03-28184722|Fully open source, End to End Encrypted alternative to Google Photos and Apple Photos| | 311|serengil/deepface !2025-03-281840113|A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python| | 312|Raphire/Win11Debloat !2025-03-281840132|A simple, easy to use PowerShell script to remove pre-installed apps from windows, disable telemetry, remove Bing from windows search as well as perform various other changes to declutter and improve your windows experience. This script works for both windows 10 and windows 11.| | 313|Avaiga/taipy !2025-03-28179235|Turns Data and AI algorithms into production-ready web applications in no time.| | 314|microsoft/qlib !2025-03-281784231|Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.| | 315|CopilotKit/CopilotKit !2025-03-281778571|Build in-app AI chatbots 🤖, and AI-powered Textareas ✨, into react web apps.| | 316|QwenLM/Qwen-7B !2025-03-281766017|The official repo of Qwen-7B (通义千问-7B) chat & pretrained large language model proposed by Alibaba Cloud.| | 317|w-okada/voice-changer !2025-03-28176078 |リアルタイムボイスチェンジャー Realtime Voice Changer| | 318|rlabbe/Kalman-and-Bayesian-Filters-in-Python !2025-03-281756011|Kalman Filter book using Jupyter Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions.| | 319|Mikubill/sd-webui-controlnet !2025-03-28174794 |WebUI extension for ControlNet| | 320|jingyaogong/minimind !2025-03-2817380116|「大模型」3小时完全从0训练26M的小参数GPT,个人显卡即可推理训练!| | 321|apify/crawlee !2025-03-28172696|Crawlee—A web scraping and browser automation library for Node.js to build reliable crawlers. In JavaScript and TypeScript. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with Puppeteer, Playwright, Cheerio, JSDOM, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 322|apple/ml-stable-diffusion !2025-03-28172395|Stable Diffusion with Core ML on Apple Silicon| | 323| transitive-bullshit/chatgpt-api !2025-03-28172095 | Node.js client for the official ChatGPT API. | | 324|teableio/teable !2025-03-281719222|✨ The Next Gen Airtable Alternative: No-Code Postgres| | 325| xx025/carrot !2025-03-28170900 | Free ChatGPT Site List | | 326|microsoft/LightGBM !2025-03-28170723|A fast, distributed, high-performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.| | 327|VikParuchuri/surya !2025-03-28169827|Accurate line-level text detection and recognition (OCR) in any language| | 328|deepseek-ai/Janus !2025-03-281692825|Janus-Series: Unified Multimodal Understanding and Generation Models| | 329|ardalis/CleanArchitecture !2025-03-28168823|Clean Architecture Solution Template: A starting point for Clean Architecture with ASP.NET Core| | 330|neondatabase/neon !2025-03-28166466|Neon: Serverless Postgres. We separated storage and compute to offer autoscaling, code-like database branching, and scale to zero.| | 331|kestra-io/kestra !2025-03-281661313|⚡ Workflow Automation Platform. Orchestrate & Schedule code in any language, run anywhere, 500+ plugins. Alternative to Zapier, Rundeck, Camunda, Airflow...| | 332|Dao-AILab/flash-attention !2025-03-281659720|Fast and memory-efficient exact attention| | 333|RPCS3/rpcs3 !2025-03-281655712|PS3 emulator/debugger| | 334|meta-llama/llama-recipes !2025-03-28165486|Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger| | 335|emilwallner/Screenshot-to-code !2025-03-28165180|A neural network that transforms a design mock-up into a static website.| | 336|datawhalechina/llm-cookbook !2025-03-281650922|面向开发者的 LLM 入门教程,吴恩达大模型系列课程中文版| | 337|e2b-dev/awesome-ai-agents !2025-03-281643923|A list of AI autonomous agents| | 338|QwenLM/Qwen2.5 !2025-03-281641114|Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.| | 339|dair-ai/ML-YouTube-Courses !2025-03-28164114|📺 Discover the latest machine learning / AI courses on YouTube.| | 340|pybind/pybind11 !2025-03-28163620|Seamless operability between C++11 and Python| | 341|graphdeco-inria/gaussian-splatting !2025-03-281627116|Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"| | 342|meta-llama/codellama !2025-03-28162531|Inference code for CodeLlama models| | 343|TransformerOptimus/SuperAGI !2025-03-28161292 | SuperAGI - A dev-first open source autonomous AI agent framework. Enabling developers to build, manage & run useful autonomous agents quickly and reliably.| | 344|microsoft/onnxruntime !2025-03-28161169|ONNX Runtime: cross-platform, high-performance ML inferencing and training accelerator| | 345|IDEA-Research/Grounded-Segment-Anything !2025-03-281601411 |Marrying Grounding DINO with Segment Anything & Stable Diffusion & BLIP - Automatically Detect, Segment and Generate Anything with Image and Text Inputs| | 346|ddbourgin/numpy-ml !2025-03-28160054|Machine learning, in numpy| | 347|eosphoros-ai/DB-GPT !2025-03-281585225|Revolutionizing Database Interactions with Private LLM Technology| | 348|Stability-AI/StableLM !2025-03-28158310 |Stability AI Language Models| | 349|openai/evals !2025-03-28157935 |Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.| | 350|THUDM/ChatGLM2-6B !2025-03-28157500|ChatGLM2-6B: An Open Bilingual Chat LLM | | 351|sunner/ChatALL !2025-03-28156761 |Concurrently chat with ChatGPT, Bing Chat, Bard, Alpaca, Vincuna, Claude, ChatGLM, MOSS, iFlytek Spark, ERNIE and more, discover the best answers| | 352|abseil/abseil-cpp !2025-03-28156656|Abseil Common Libraries (C++)| | 353|NVIDIA/open-gpu-kernel-modules !2025-03-28156531|NVIDIA Linux open GPU kernel module source| | 354|letta-ai/letta !2025-03-281563718|Letta (formerly MemGPT) is a framework for creating LLM services with memory.| | 355|typescript-eslint/typescript-eslint !2025-03-28156211|✨ Monorepo for all the tooling which enables ESLint to support TypeScript| | 356|umijs/umi !2025-03-28156211|A framework in react community ✨| | 357|AI4Finance-Foundation/FinGPT !2025-03-281561215|Data-Centric FinGPT. Open-source for open finance! Revolutionize 🔥 We'll soon release the trained model.| | 358|amplication/amplication !2025-03-28156022|🔥🔥🔥 The Only Production-Ready AI-Powered Backend Code Generation| | 359|KindXiaoming/pykan !2025-03-28155477|Kolmogorov Arnold Networks| | 360|arc53/DocsGPT !2025-03-28154900|GPT-powered chat for documentation, chat with your documents| | 361|influxdata/telegraf !2025-03-28154502|Agent for collecting, processing, aggregating, and writing metrics, logs, and other arbitrary data.| | 362|microsoft/Bringing-Old-Photos-Back-to-Life !2025-03-28154084|Bringing Old Photo Back to Life (CVPR 2020 oral)| | 363|GaiZhenbiao/ChuanhuChatGPT !2025-03-2815394-2|GUI for ChatGPT API and many LLMs. Supports agents, file-based QA, GPT finetuning and query with web search. All with a neat UI.| | 364|Zeyi-Lin/HivisionIDPhotos !2025-03-281529710|⚡️HivisionIDPhotos: a lightweight and efficient AI ID photos tools. 一个轻量级的AI证件照制作算法。| | 365| mayooear/gpt4-pdf-chatbot-langchain !2025-03-281529518 | GPT4 & LangChain Chatbot for large PDF docs | | 366|1Panel-dev/MaxKB !2025-03-2815277148|? Based on LLM large language model knowledge base Q&A system. Ready to use out of the box, supports quick integration into third-party business systems. Officially produced by 1Panel| | 367|ai16z/eliza !2025-03-281526811|Conversational Agent for Twitter and Discord| | 368|apache/arrow !2025-03-28151684|Apache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing| | 369|princeton-nlp/SWE-agent !2025-03-281516119|SWE-agent: Agent Computer Interfaces Enable Software Engineering Language Models| | 370|mlc-ai/web-llm !2025-03-281509311 |Bringing large-language models and chat to web browsers. Everything runs inside the browser with no server support.| | 371|guillaumekln/faster-whisper !2025-03-281507117 |Faster Whisper transcription with CTranslate2| | 372|overleaf/overleaf !2025-03-28150316|A web-based collaborative LaTeX editor| | 373|triton-lang/triton !2025-03-28150169|Development repository for the Triton language and compiler| | 374|soxoj/maigret !2025-03-281500410|🕵️‍♂️ Collect a dossier on a person by username from thousands of sites| | 375|alibaba/lowcode-engine !2025-03-28149841|An enterprise-class low-code technology stack with scale-out design / 一套面向扩展设计的企业级低代码技术体系| | 376|espressif/esp-idf !2025-03-28148545|Espressif IoT Development Framework. Official development framework for Espressif SoCs.| | 377|pgvector/pgvector !2025-03-281484913|Open-source vector similarity search for Postgres| | 378|datawhalechina/leedl-tutorial !2025-03-28148246|《李宏毅深度学习教程》(李宏毅老师推荐👍),PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases| | 379|xcanwin/KeepChatGPT !2025-03-28147972 |Using ChatGPT is more efficient and smoother, perfectly solving ChatGPT network errors. No longer do you need to frequently refresh the webpage, saving over 10 unnecessary steps| | 380|m-bain/whisperX !2025-03-281471313|WhisperX: Automatic Speech Recognition with Word-level Timestamps (& Diarization)| | 381|HumanAIGC/AnimateAnyone !2025-03-2814706-1|Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation| |!green-up-arrow.svg 382|naklecha/llama3-from-scratch !2025-03-281469024|llama3 implementation one matrix multiplication at a time| |!red-down-arrow 383| fauxpilot/fauxpilot !2025-03-28146871 | An open-source GitHub Copilot server | | 384|LlamaFamily/Llama-Chinese !2025-03-28145111|Llama Chinese Community, the best Chinese Llama large model, fully open source and commercially available| | 385|BradyFU/Awesome-Multimodal-Large-Language-Models !2025-03-281450121|Latest Papers and Datasets on Multimodal Large Language Models| | 386|vanna-ai/vanna !2025-03-281449819|🤖 Chat with your SQL database 📊. Accurate Text-to-SQL Generation via LLMs using RAG 🔄.| | 387|bleedline/aimoneyhunter !2025-03-28144845|AI Side Hustle Money Mega Collection: Teaching You How to Utilize AI for Various Side Projects to Earn Extra Income.| | 388|stefan-jansen/machine-learning-for-trading !2025-03-28144629|Code for Machine Learning for Algorithmic Trading, 2nd edition.| | 389|state-spaces/mamba !2025-03-28144139|Mamba: Linear-Time Sequence Modeling with Selective State Spaces| | 390|vercel/ai-chatbot !2025-03-281434614|A full-featured, hackable Next.js AI chatbot built by Vercel| | 391|steven-tey/novel !2025-03-281428410|Notion-style WYSIWYG editor with AI-powered autocompletions| | 392|unifyai/ivy !2025-03-281409348|Unified AI| | 393|chidiwilliams/buzz !2025-03-281402411 |Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.| | 394|lukas-blecher/LaTeX-OCR !2025-03-28139769|pix2tex: Using a ViT to convert images of equations into LaTeX code.| | 395|openai/tiktoken !2025-03-28139599|tiktoken is a fast BPE tokeniser for use with OpenAI's models.| | 396|nocobase/nocobase !2025-03-281391522|NocoBase is a scalability-first, open-source no-code/low-code platform for building business applications and enterprise solutions.| | 397|neonbjb/tortoise-tts !2025-03-28139010 |A multi-voice TTS system trained with an emphasis on quality| | 398|yamadashy/repomix !2025-03-281382036|📦 Repomix (formerly Repopack) is a powerful tool that packs your entire repository into a single, AI-friendly file. Perfect for when you need to feed your codebase to Large Language Models (LLMs) or other AI tools like Claude, ChatGPT, and Gemini.| | 399|adobe/react-spectrum !2025-03-28136766|A collection of libraries and tools that help you build adaptive, accessible, and robust user experiences.| | 400|THUDM/ChatGLM3 !2025-03-28136684|ChatGLM3 series: Open Bilingual Chat LLMs | | 401|NVIDIA/NeMo !2025-03-28134837|A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)| | 402|BlinkDL/RWKV-LM !2025-03-28134346 |RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it combines the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.| | 403| fuergaosi233/wechat-chatgpt !2025-03-28133330 | Use ChatGPT On Wechat via wechaty | | 404|udecode/plate !2025-03-28133325|A rich-text editor powered by AI| | 405|xenova/transformers.js !2025-03-281331219|State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!| | 406|stas00/ml-engineering !2025-03-281325615|Machine Learning Engineering Guides and Tools| | 407| wong2/chatgpt-google-extension !2025-03-2813241-1 | A browser extension that enhances search engines with ChatGPT, this repos will not be updated from 2023-02-20| | 408|mrdbourke/pytorch-deep-learning !2025-03-281317520|Materials for the Learn PyTorch for Deep Learning: Zero to Mastery course.| | 409|Koenkk/zigbee2mqtt !2025-03-28131544|Zigbee 🐝 to MQTT bridge 🌉, get rid of your proprietary Zigbee bridges 🔨| | 410|vercel-labs/ai !2025-03-281298528|Build AI-powered applications with React, Svelte, and Vue| | 411|netease-youdao/QAnything !2025-03-28129318|Question and Answer based on Anything.| | 412|huggingface/trl !2025-03-281289622|Train transformer language models with reinforcement learning.| | 413|microsoft/BitNet !2025-03-28128503|Official inference framework for 1-bit LLMs| | 414|mediar-ai/screenpipe !2025-03-281283915|24/7 local AI screen & mic recording. Build AI apps that have the full context. Works with Ollama. Alternative to Rewind.ai. Open. Secure. You own your data. Rust.| | 415|Skyvern-AI/skyvern !2025-03-281277612|Automate browser-based workflows with LLMs and Computer Vision| | 416|pytube/pytube !2025-03-28126591|A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos.| | 417|official-stockfish/Stockfish !2025-03-28126574|UCI chess engine| | 418|sgl-project/sglang !2025-03-281260143|SGLang is a structured generation language designed for large language models (LLMs). It makes your interaction with LLMs faster and more controllable.| | 419|plasma-umass/scalene !2025-03-28125535|Scalene: a high-performance, high-precision CPU, GPU, and memory profiler for Python with AI-powered optimization proposals| | 420|danswer-ai/danswer !2025-03-28125503|Ask Questions in natural language and get Answers backed by private sources. Connects to tools like Slack, GitHub, Confluence, etc.| | 421|OpenTalker/SadTalker !2025-03-28125226|[CVPR 2023] SadTalker:Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation| | 422|facebookresearch/AnimatedDrawings !2025-03-28123693 |Code to accompany "A Method for Animating Children's Drawings of the Human Figure"| | 423|activepieces/activepieces !2025-03-28123609|Your friendliest open source all-in-one automation tool ✨ Workflow automation tool 100+ integration / Enterprise automation tool / Zapier Alternative| | 424|ggerganov/ggml !2025-03-28121992 |Tensor library for machine learning| | 425|bytebase/bytebase !2025-03-28121694|World's most advanced database DevOps and CI/CD for Developer, DBA and Platform Engineering teams. The GitLab/GitHub for database DevOps.| | 426| willwulfken/MidJourney-Styles-and-Keywords-Reference !2025-03-28120971 | A reference containing Styles and Keywords that you can use with MidJourney AI| | 427|Huanshere/VideoLingo !2025-03-281207013|Netflix-level subtitle cutting, translation, alignment, and even dubbing - one-click fully automated AI video subtitle team | | 428|OpenLMLab/MOSS !2025-03-28120330 |An open-source tool-augmented conversational language model from Fudan University| | 429|llmware-ai/llmware !2025-03-281200727|Providing enterprise-grade LLM-based development framework, tools, and fine-tuned models.| | 430|PKU-YuanGroup/Open-Sora-Plan !2025-03-28119362|This project aim to reproduce Sora (Open AI T2V model), but we only have limited resource. We deeply wish the all open source community can contribute to this project.| | 431|ShishirPatil/gorilla !2025-03-28119332 |Gorilla: An API store for LLMs| | 432|NVIDIA/Megatron-LM !2025-03-281192716|Ongoing research training transformer models at scale| | 433|illacloud/illa-builder !2025-03-28119192|Create AI-Driven Apps like Assembling Blocks| | 434|marimo-team/marimo !2025-03-281191521|A reactive notebook for Python — run reproducible experiments, execute as a script, deploy as an app, and version with git.| | 435|smol-ai/developer !2025-03-28119111 | With 100k context windows on the way, it's now feasible for every dev to have their own smol developer| | 436|Lightning-AI/litgpt !2025-03-28118878|Pretrain, finetune, deploy 20+ LLMs on your own data. Uses state-of-the-art techniques: flash attention, FSDP, 4-bit, LoRA, and more.| | 437|openai/shap-e !2025-03-28118474 |Generate 3D objects conditioned on text or images| | 438|eugeneyan/open-llms !2025-03-28118451 |A list of open LLMs available for commercial use.| | 439|andrewyng/aisuite !2025-03-28118124|Simple, unified interface to multiple Generative AI providers| | 440|hajimehoshi/ebiten !2025-03-28117816|Ebitengine - A dead simple 2D game engine for Go| | 441|kgrzybek/modular-monolith-with-ddd !2025-03-28117493|Full Modular Monolith application with Domain-Driven Design approach.| | 442|h2oai/h2ogpt !2025-03-2811736-1 |Come join the movement to make the world's best open source GPT led by H2O.ai - 100% private chat and document search, no data leaks, Apache 2.0| | 443|owainlewis/awesome-artificial-intelligence !2025-03-28117332|A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers.| | 444|DataTalksClub/mlops-zoomcamp !2025-03-28116643|Free MLOps course from DataTalks.Club| | 445|Rudrabha/Wav2Lip !2025-03-281163410|This repository contains the codes of "A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild", published at ACM Multimedia 2020.| | 446|aishwaryanr/awesome-generative-ai-guide !2025-03-281152810|A one stop repository for generative AI research updates, interview resources, notebooks and much more!| | 447|karpathy/micrograd !2025-03-28115146|A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API| | 448|InstantID/InstantID !2025-03-28115111|InstantID : Zero-shot Identity-Preserving Generation in Seconds 🔥| | 449|facebookresearch/seamlesscommunication !2025-03-28114434|Foundational Models for State-of-the-Art Speech and Text Translation| | 450|anthropics/anthropic-cookbook !2025-03-281140112|A collection of notebooks/recipes showcasing some fun and effective ways of using Claude.| | 451|mastra-ai/mastra !2025-03-281139240|the TypeScript AI agent framework| | 452|NVIDIA/TensorRT !2025-03-28113864|NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.| | 453|plandex-ai/plandex !2025-03-28113645|An AI coding engine for complex tasks| | 454|RUCAIBox/LLMSurvey !2025-03-28112735 |A collection of papers and resources related to Large Language Models.| | 455|kubeshark/kubeshark !2025-03-28112711|The API traffic analyzer for Kubernetes providing real-time K8s protocol-level visibility, capturing and monitoring all traffic and payloads going in, out and across containers, pods, nodes and clusters. Inspired by Wireshark, purposely built for Kubernetes| | 456|electric-sql/pglite !2025-03-28112617|Lightweight Postgres packaged as WASM into a TypeScript library for the browser, Node.js, Bun and Deno from https://electric-sql.com| | 457|lightaime/camel !2025-03-281124441 |🐫 CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society| | 458|huggingface/lerobot !2025-03-281120184|🤗 LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch| | 459|normal-computing/outlines !2025-03-28111657|Generative Model Programming| | 460|libretro/RetroArch !2025-03-28110701|Cross-platform, sophisticated frontend for the libretro API. Licensed GPLv3.| | 461|THUDM/CogVideo !2025-03-28110599|Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023)| | 462|bentoml/OpenLLM !2025-03-28110495|An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease.| | 463|vosen/ZLUDA !2025-03-28110429|CUDA on AMD GPUs| | 464|dair-ai/ML-Papers-of-the-Week !2025-03-28110304 |🔥Highlighting the top ML papers every week.| | 465|WordPress/gutenberg !2025-03-28110212|The Block Editor project for WordPress and beyond. Plugin is available from the official repository.| | 466|microsoft/data-formulator !2025-03-281099827|🪄 Create rich visualizations with AI| | 467|LibreTranslate/LibreTranslate !2025-03-28109887|Free and Open Source Machine Translation API. Self-hosted, offline capable and easy to setup.| | 468|block/goose !2025-03-281097737|an open-source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM| | 469|getumbrel/llama-gpt !2025-03-28109553|A self-hosted, offline, ChatGPT-like chatbot. Powered by Llama 2. 100% private, with no data leaving your device.| | 470|HigherOrderCO/HVM !2025-03-28109182|A massively parallel, optimal functional runtime in Rust| | 471|databrickslabs/dolly !2025-03-2810812-3 | A large language model trained on the Databricks Machine Learning Platform| | 472|srush/GPU-Puzzles !2025-03-28108014|Solve puzzles. Learn CUDA.| | 473|Z3Prover/z3 !2025-03-28107952|The Z3 Theorem Prover| | 474|UFund-Me/Qbot !2025-03-281079313 |Qbot is an AI-oriented quantitative investment platform, which aims to realize the potential, empower AI technologies in quantitative investment| | 475|langchain-ai/langgraph !2025-03-281077336|| | 476|lz4/lz4 !2025-03-28107647|Extremely Fast Compression algorithm| | 477|magic-research/magic-animate !2025-03-28107160|MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model| | 478|PaperMC/Paper !2025-03-281071410|The most widely used, high performance Minecraft server that aims to fix gameplay and mechanics inconsistencies| | 479|getomni-ai/zerox !2025-03-281071015|Zero shot pdf OCR with gpt-4o-mini| |!green-up-arrow.svg 480|🔥NirDiamant/GenAIAgents !2025-03-2810693318|This repository provides tutorials and implementations for various Generative AI Agent techniques, from basic to advanced. It serves as a comprehensive guide for building intelligent, interactive AI systems.| |!red-down-arrow 481|Unstructured-IO/unstructured !2025-03-28106889|Open source libraries and APIs to build custom preprocessing pipelines for labeling, training, or production machine learning pipelines.| | 482|apache/thrift !2025-03-28106610|Apache Thrift| | 483| TheR1D/shellgpt !2025-03-28106097 | A command-line productivity tool powered by ChatGPT, will help you accomplish your tasks faster and more efficiently | | 484|TheRamU/Fay !2025-03-281060312 |Fay is a complete open source project that includes Fay controller and numeral models, which can be used in different applications such as virtual hosts, live promotion, numeral human interaction and so on| | 485|zyronon/douyin !2025-03-28105566|Vue3 + Pinia + Vite5 仿抖音,Vue 在移动端的最佳实践 . Imitate TikTok ,Vue Best practices on Mobile| | 486|THU-MIG/yolov10 !2025-03-28105485|YOLOv10: Real-Time End-to-End Object Detection| | 487|idootop/mi-gpt !2025-03-281052522|? Transform XiaoAi speaker into a personal voice assistant with ChatGPT and DouBao integration.| | 488|SakanaAI/AI-Scientist !2025-03-281051310|The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑‍🔬| | 489|szimek/sharedrop !2025-03-28105101|Easy P2P file transfer powered by WebRTC - inspired by Apple AirDrop| | 490|salesforce/LAVIS !2025-03-28103942 |LAVIS - A One-stop Library for Language-Vision Intelligence| | 491|aws/amazon-sagemaker-examples !2025-03-28103654|Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.| | 492|artidoro/qlora !2025-03-28103402 |QLoRA: Efficient Finetuning of Quantized LLMs| | 493|lllyasviel/stable-diffusion-webui-forge !2025-03-281029314| a platform on top of Stable Diffusion WebUI (based on Gradio) to make development easier, optimize resource management, and speed up inference| | 494|NielsRogge/Transformers-Tutorials !2025-03-28102487|This repository contains demos I made with the Transformers library by HuggingFace.| | 495|kedro-org/kedro !2025-03-28102371|Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.| | 496| chathub-dev/chathub !2025-03-28102301 | All-in-one chatbot client | | 497|microsoft/promptflow !2025-03-28101612|Build high-quality LLM apps - from prototyping, testing to production deployment and monitoring.| | 498|mistralai/mistral-src !2025-03-28101372|Reference implementation of Mistral AI 7B v0.1 model.| | 499|burn-rs/burn !2025-03-28101183|Burn - A Flexible and Comprehensive Deep Learning Framework in Rust| | 500|AIGC-Audio/AudioGPT !2025-03-28101150 |AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head| | 501|facebookresearch/dinov2 !2025-03-281011210 |PyTorch code and models for the DINOv2 self-supervised learning method.| | 502|RockChinQ/LangBot !2025-03-281008455|😎丰富生态、🧩支持扩展、🦄多模态 - 大模型原生即时通信机器人平台 🤖 | | 503|78/xiaozhi-esp32 !2025-03-281008180|Build your own AI friend| | 504|cumulo-autumn/StreamDiffusion !2025-03-28100761|StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation| | 505|DataTalksClub/machine-learning-zoomcamp !2025-03-28100664|The code from the Machine Learning Bookcamp book and a free course based on the book| | 506|nerfstudio-project/nerfstudio !2025-03-28100343|A collaboration friendly studio for NeRFs| | 507|cupy/cupy !2025-03-28100344|NumPy & SciPy for GPU| | 508|NVIDIA/TensorRT-LLM !2025-03-281000823|TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.| | 509|wasp-lang/open-saas !2025-03-2899665|A free, open-source SaaS app starter for React & Node.js with superpowers. Production-ready. Community-driven.| | 510|huggingface/text-generation-inference !2025-03-2899383|Large Language Model Text Generation Inference| | 511|jxnl/instructor !2025-03-2899224|structured outputs for llms| | 512|GoogleCloudPlatform/generative-ai !2025-03-2899086|Sample code and notebooks for Generative AI on Google Cloud| | 513|manticoresoftware/manticoresearch !2025-03-2898799|Easy to use open source fast database for search | | 514|langfuse/langfuse !2025-03-28985134|🪢 Open source LLM engineering platform. Observability, metrics, evals, prompt management, testing, prompt playground, datasets, LLM evaluations -- 🍊YC W23 🤖 integrate via Typescript, Python / Decorators, OpenAI, Langchain, LlamaIndex, Litellm, Instructor, Mistral, Perplexity, Claude, Gemini, Vertex| | 515|keephq/keep !2025-03-2897949|The open-source alert management and AIOps platform| | 516|sashabaranov/go-openai !2025-03-2897843|OpenAI ChatGPT, GPT-3, GPT-4, DALL·E, Whisper API wrapper for Go| | 517|autowarefoundation/autoware !2025-03-2897766|Autoware - the world's leading open-source software project for autonomous driving| | 518|anthropics/courses !2025-03-2897269|Anthropic's educational courses| | 519|popcorn-official/popcorn-desktop !2025-03-2896853|Popcorn Time is a multi-platform, free software BitTorrent client that includes an integrated media player ( Windows / Mac / Linux ) A Butter-Project Fork| | 520|getmaxun/maxun !2025-03-28968515|🔥 Open-source no-code web data extraction platform. Turn websites to APIs and spreadsheets with no-code robots in minutes! [In Beta]| | 521|wandb/wandb !2025-03-2896763|🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API.| | 522|karpathy/minbpe !2025-03-2895353|Minimal, clean, code for the Byte Pair Encoding (BPE) algorithm commonly used in LLM tokenization.| | 523|bigscience-workshop/petals !2025-03-2895142|🌸 Run large language models at home, BitTorrent-style. Fine-tuning and inference up to 10x faster than offloading| | 524|OthersideAI/self-operating-computer !2025-03-2894931|A framework to enable multimodal models to operate a computer.| | 525|mshumer/gpt-prompt-engineer !2025-03-2894911|| | 526| BloopAI/bloop !2025-03-2894710 | A fast code search engine written in Rust| | 527|BlinkDL/ChatRWKV !2025-03-289467-1 |ChatRWKV is like ChatGPT but powered by RWKV (100% RNN) language model, and open source.| | 528|timlrx/tailwind-nextjs-starter-blog !2025-03-2894677|This is a Next.js, Tailwind CSS blogging starter template. Comes out of the box configured with the latest technologies to make technical writing a breeze. Easily configurable and customizable. Perfect as a replacement to existing Jekyll and Hugo individual blogs.| | 529|google/benchmark !2025-03-2893634|A microbenchmark support library| | 530|facebookresearch/nougat !2025-03-2893603|Implementation of Nougat Neural Optical Understanding for Academic Documents| | 531|modelscope/facechain !2025-03-2893536|FaceChain is a deep-learning toolchain for generating your Digital-Twin.| | 532|DrewThomasson/ebook2audiobook !2025-03-2893388|Convert ebooks to audiobooks with chapters and metadata using dynamic AI models and voice cloning. Supports 1,107+ languages!| | 533|RayTracing/raytracing.github.io !2025-03-2893035|Main Web Site (Online Books)| | 534|QwenLM/Qwen2.5-VL !2025-03-28930249|Qwen2.5-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud.| | 535|WongKinYiu/yolov9 !2025-03-2892201|Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information| | 536|alibaba-damo-academy/FunASR !2025-03-28920222|A Fundamental End-to-End Speech Recognition Toolkit and Open Source SOTA Pretrained Models.| | 537|Visualize-ML/Book4Power-of-Matrix !2025-03-2891931|Book4 'Power of Matrix' | | 538|dice2o/BingGPT !2025-03-289185-1 |Desktop application of new Bing's AI-powered chat (Windows, macOS and Linux)| | 539|browserbase/stagehand !2025-03-28917621|An AI web browsing framework focused on simplicity and extensibility.| | 540|FlagOpen/FlagEmbedding !2025-03-28914111|Dense Retrieval and Retrieval-augmented LLMs| | 541|Const-me/Whisper !2025-03-2890979|High-performance GPGPU inference of OpenAI's Whisper automatic speech recognition (ASR) model| | 542|lucidrains/denoising-diffusion-pytorch !2025-03-2890942|Implementation of Denoising Diffusion Probabilistic Model in Pytorch| | 543|Chainlit/chainlit !2025-03-28904422|Build Conversational AI in minutes ⚡️| | 544|togethercomputer/OpenChatKit !2025-03-2890160 |OpenChatKit provides a powerful, open-source base to create both specialized and general purpose chatbots for various applications| | 545|Stability-AI/StableStudio !2025-03-2889631 |Community interface for generative AI| | 546|voicepaw/so-vits-svc-fork !2025-03-2889482 |so-vits-svc fork with realtime support, improved interface and more features.| | 547|pymc-devs/pymc !2025-03-2889413|Bayesian Modeling and Probabilistic Programming in Python| | 548|espnet/espnet !2025-03-2889302|End-to-End Speech Processing Toolkit| | 549|kedacore/keda !2025-03-2888991|KEDA is a Kubernetes-based Event Driven Autoscaling component. It provides event driven scale for any container running in Kubernetes| | 550|open-mmlab/Amphion !2025-03-28886911|Amphion (/æmˈfaɪən/) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.| | 551|gorse-io/gorse !2025-03-2888451|Gorse open source recommender system engine| | 552|adams549659584/go-proxy-bingai !2025-03-288768-1 |A Microsoft New Bing demo site built with Vue3 and Go, providing a consistent UI experience, supporting ChatGPT prompts, and accessible within China| | 553|open-mmlab/mmsegmentation !2025-03-2887513|OpenMMLab Semantic Segmentation Toolbox and Benchmark.| | 554|bytedance/monolith !2025-03-2887223|ByteDance's Recommendation System| | 555|LouisShark/chatgptsystemprompt !2025-03-2887216|store all agent's system prompt| | 556|brexhq/prompt-engineering !2025-03-2887080 |Tips and tricks for working with Large Language Models like OpenAI's GPT-4.| | 557|erincatto/box2d !2025-03-2886841|Box2D is a 2D physics engine for games| | 558|🔥microsoft/ai-agents-for-beginners !2025-03-288669323|10 Lessons to Get Started Building AI Agents| | 559|nashsu/FreeAskInternet !2025-03-2886102|FreeAskInternet is a completely free, private and locally running search aggregator & answer generate using LLM, without GPU needed. The user can ask a question and the system will make a multi engine search and combine the search result to the ChatGPT3.5 LLM and generate the answer based on search results.| | 560|goldmansachs/gs-quant !2025-03-2885981|Python toolkit for quantitative finance| | 561|srbhr/Resume-Matcher !2025-03-2885800|Open Source Free ATS Tool to compare Resumes with Job Descriptions and create a score to rank them.| | 562|facebookresearch/ImageBind !2025-03-2885681 |ImageBind One Embedding Space to Bind Them All| | 563|ashawkey/stable-dreamfusion !2025-03-2885481 |A pytorch implementation of text-to-3D dreamfusion, powered by stable diffusion.| | 564|meetecho/janus-gateway !2025-03-2885232|Janus WebRTC Server| | 565|google/magika !2025-03-2885003|Detect file content types with deep learning| | 566|huggingface/chat-ui !2025-03-2884871 |Open source codebase powering the HuggingChat app| | 567|EleutherAI/lm-evaluation-harness !2025-03-28843012|A framework for few-shot evaluation of autoregressive language models.| | 568|jina-ai/reader !2025-03-2884089|Convert any URL to an LLM-friendly input with a simple prefix https://r.jina.ai/| | 569|microsoft/TypeChat !2025-03-288406-1|TypeChat is a library that makes it easy to build natural language interfaces using types.| | 570|thuml/Time-Series-Library !2025-03-28839715|A Library for Advanced Deep Time Series Models.| | 571|OptimalScale/LMFlow !2025-03-2883882|An Extensible Toolkit for Finetuning and Inference of Large Foundation Models. Large Model for All.| | 572|baptisteArno/typebot.io !2025-03-2883845|💬 Typebot is a powerful chatbot builder that you can self-host.| | 573|jzhang38/TinyLlama !2025-03-2883504|The TinyLlama project is an open endeavor to pretrain a 1.1B Llama model on 3 trillion tokens.| | 574|fishaudio/Bert-VITS2 !2025-03-2883472|vits2 backbone with multilingual-bert| | 575|OpenBMB/XAgent !2025-03-2882683|An Autonomous LLM Agent for Complex Task Solving| | 576|Acly/krita-ai-diffusion !2025-03-2882387|Streamlined interface for generating images with AI in Krita. Inpaint and outpaint with optional text prompt, no tweaking required.| | 577|jasonppy/VoiceCraft !2025-03-2882151|Zero-Shot Speech Editing and Text-to-Speech in the Wild| | 578|SJTU-IPADS/PowerInfer !2025-03-2881693|High-speed Large Language Model Serving on PCs with Consumer-grade GPUs| | 579|modelscope/DiffSynth-Studio !2025-03-28814713|Enjoy the magic of Diffusion models!| | 580|o3de/o3de !2025-03-2881443|Open 3D Engine (O3DE) is an Apache 2.0-licensed multi-platform 3D engine that enables developers and content creators to build AAA games, cinema-quality 3D worlds, and high-fidelity simulations without any fees or commercial obligations.| | 581|zmh-program/chatnio !2025-03-2881325|🚀 Next Generation AI One-Stop Internationalization Solution. 🚀 下一代 AI 一站式 B/C 端解决方案,支持 OpenAI,Midjourney,Claude,讯飞星火,Stable Diffusion,DALL·E,ChatGLM,通义千问,腾讯混元,360 智脑,百川 AI,火山方舟,新必应,Gemini,Moonshot 等模型,支持对话分享,自定义预设,云端同步,模型市场,支持弹性计费和订阅计划模式,支持图片解析,支持联网搜索,支持模型缓存,丰富美观的后台管理与仪表盘数据统计。| | 582|leptonai/searchwithlepton !2025-03-2880632|Building a quick conversation-based search demo with Lepton AI.| | 583|sebastianstarke/AI4Animation !2025-03-2880620|Bringing Characters to Life with Computer Brains in Unity| | 584|wangrongding/wechat-bot !2025-03-2880528|🤖一个基于 WeChaty 结合 DeepSeek / ChatGPT / Kimi / 讯飞等Ai服务实现的微信机器人 ,可以用来帮助你自动回复微信消息,或者管理微信群/好友,检测僵尸粉等...| | 585|openvinotoolkit/openvino !2025-03-2880528|OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference| | 586|steven2358/awesome-generative-ai !2025-03-28802610|A curated list of modern Generative Artificial Intelligence projects and services| | 587|adam-maj/tiny-gpu !2025-03-2880234|A minimal GPU design in Verilog to learn how GPUs work from the ground up| | 588| anse-app/chatgpt-demo !2025-03-2880180 | A demo repo based on OpenAI API (gpt-3.5-turbo) | | 589| acheong08/EdgeGPT !2025-03-288015-1 |Reverse engineered API of Microsoft's Bing Chat | | 590|ai-collection/ai-collection !2025-03-2879994 |The Generative AI Landscape - A Collection of Awesome Generative AI Applications| | 591|GreyDGL/PentestGPT !2025-03-2879953 |A GPT-empowered penetration testing tool| | 592|delta-io/delta !2025-03-2879112|An open-source storage framework that enables building a Lakehouse architecture with compute engines including Spark, PrestoDB, Flink, Trino, and Hive and APIs| | 593|dataelement/bisheng !2025-03-2879085|Bisheng is an open LLM devops platform for next generation AI applications.| | 594|e2b-dev/e2b !2025-03-2878447 |Vercel for AI agents. We help developers to build, deploy, and monitor AI agents. Focusing on specialized AI agents that build software for you - your personal software developers.| | 595|01-ai/Yi !2025-03-2878311|A series of large language models trained from scratch by developers @01-ai| | 596|Plachtaa/VALL-E-X !2025-03-287830-1|An open source implementation of Microsoft's VALL-E X zero-shot TTS model. The demo is available at https://plachtaa.github.io| | 597|abhishekkrthakur/approachingalmost !2025-03-2878204|Approaching (Almost) Any Machine Learning Problem| | 598|pydantic/pydantic-ai !2025-03-28781041|Agent Framework / shim to use Pydantic with LLMs| | 599|rany2/edge-tts !2025-03-2877901|Use Microsoft Edge's online text-to-speech service from Python WITHOUT needing Microsoft Edge or Windows or an API key| | 600|CASIA-IVA-Lab/FastSAM !2025-03-2877881|Fast Segment Anything| | 601|netease-youdao/EmotiVoice !2025-03-2877817|EmotiVoice 😊: a Multi-Voice and Prompt-Controlled TTS Engine| | 602|lllyasviel/IC-Light !2025-03-2877804|More relighting!| | 603|kroma-network/tachyon !2025-03-287774-1|Modular ZK(Zero Knowledge) backend accelerated by GPU| | 604|deep-floyd/IF !2025-03-2877731 |A novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding| | 605|oumi-ai/oumi !2025-03-2877705|Everything you need to build state-of-the-art foundation models, end-to-end.| | 606|reorproject/reor !2025-03-2877681|AI note-taking app that runs models locally.| | 607|lightpanda-io/browser !2025-03-28775813|Lightpanda: the headless browser designed for AI and automation| | 608|xiangsx/gpt4free-ts !2025-03-287755-1|Providing a free OpenAI GPT-4 API ! This is a replication project for the typescript version of xtekky/gpt4free| | 609|IDEA-Research/GroundingDINO !2025-03-28773311|Official implementation of the paper "Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection"| | 610|bunkerity/bunkerweb !2025-03-2877326|🛡️ Make your web services secure by default !| | 611|vikhyat/moondream !2025-03-2877057|tiny vision language model| | 612|firmai/financial-machine-learning !2025-03-287703-1|A curated list of practical financial machine learning tools and applications.| | 613|n8n-io/self-hosted-ai-starter-kit !2025-03-28765121|The Self-hosted AI Starter Kit is an open-source template that quickly sets up a local AI environment. Curated by n8n, it provides essential tools for creating secure, self-hosted AI workflows.| | 614|intel-analytics/ipex-llm !2025-03-2876507|Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, Baichuan, Mixtral, Gemma, etc.) on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max). A PyTorch LLM library that seamlessly integrates with llama.cpp, HuggingFace, LangChain, LlamaIndex, DeepSpeed, vLLM, FastChat, ModelScope, etc.| | 615|jrouwe/JoltPhysics !2025-03-28764510|A multi core friendly rigid body physics and collision detection library. Written in C++. Suitable for games and VR applications. Used by Horizon Forbidden West.| | 616|THUDM/CodeGeeX2 !2025-03-2876270|CodeGeeX2: A More Powerful Multilingual Code Generation Model| | 617|meta-llama/llama-stack !2025-03-2875866|Composable building blocks to build Llama Apps| | 618|sweepai/sweep !2025-03-287530-1|Sweep is an AI junior developer| | 619|lllyasviel/Omost !2025-03-2875301|Your image is almost there!| | 620|ahmedbahaaeldin/From-0-to-Research-Scientist-resources-guide !2025-03-2875050|Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.| | 621|dair-ai/ML-Papers-Explained !2025-03-2875050|Explanation to key concepts in ML| | 622|zaidmukaddam/scira !2025-03-28750110|Scira (Formerly MiniPerplx) is a minimalistic AI-powered search engine that helps you find information on the internet. Powered by Vercel AI SDK! Search with models like Grok 2.0.| | 623|Portkey-AI/gateway !2025-03-28749416|A Blazing Fast AI Gateway. Route to 100+ LLMs with 1 fast & friendly API.| | 624|web-infra-dev/midscene !2025-03-28748729|An AI-powered automation SDK can control the page, perform assertions, and extract data in JSON format using natural language.| | 625|zilliztech/GPTCache !2025-03-2874801 |GPTCache is a library for creating semantic cache to store responses from LLM queries.| | 626|niedev/RTranslator !2025-03-2874742|RTranslator is the world's first open source real-time translation app.| |!green-up-arrow.svg 627|roboflow/notebooks !2025-03-2874666|Examples and tutorials on using SOTA computer vision models and techniques. Learn everything from old-school ResNet, through YOLO and object-detection transformers like DETR, to the latest models like Grounding DINO and SAM.| |!red-down-arrow 628|openlm-research/openllama !2025-03-2874652|OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset| | 629|LiheYoung/Depth-Anything !2025-03-2874155|Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data| | 630|enso-org/enso !2025-03-2874040|Hybrid visual and textual functional programming.| | 631|bigcode-project/starcoder !2025-03-287401-1 |Home of StarCoder: fine-tuning & inference!| | 632|git-ecosystem/git-credential-manager !2025-03-2873975|Secure, cross-platform Git credential storage with authentication to GitHub, Azure Repos, and other popular Git hosting services.| | 633|OpenGVLab/InternVL !2025-03-2873634|[CVPR 2024 Oral] InternVL Family: A Pioneering Open-Source Alternative to GPT-4V. 接近GPT-4V表现的可商用开源模型| | 634|WooooDyy/LLM-Agent-Paper-List !2025-03-2873551|The paper list of the 86-page paper "The Rise and Potential of Large Language Model Based Agents: A Survey" by Zhiheng Xi et al.| | 635|lencx/Noi !2025-03-2873157|🦄 AI + Tools + Plugins + Community| | 636|udlbook/udlbook !2025-03-2873075|Understanding Deep Learning - Simon J.D. Prince| | 637|OpenBMB/MiniCPM !2025-03-2872841|MiniCPM-2B: An end-side LLM outperforms Llama2-13B.| | 638|jaywalnut310/vits !2025-03-2872815 |VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech| | 639|xorbitsai/inference !2025-03-28727528|Replace OpenAI GPT with another LLM in your app by changing a single line of code. Xinference gives you the freedom to use any LLM you need. With Xinference, you're empowered to run inference with any open-source language models, speech recognition models, and multimodal models, whether in the cloud, on-premises, or even on your laptop.| | 640|PWhiddy/PokemonRedExperiments !2025-03-2872492|Playing Pokemon Red with Reinforcement Learning| | 641|Canner/WrenAI !2025-03-28723213|🤖 Open-source AI Agent that empowers data-driven teams to chat with their data to generate Text-to-SQL, charts, spreadsheets, reports, and BI. 📈📊📋🧑‍💻| | 642|miurla/morphic !2025-03-2872258|An AI-powered answer engine with a generative UI| | 643|ml-explore/mlx-examples !2025-03-2872168|Examples in the MLX framework| | 644|PKU-YuanGroup/ChatLaw !2025-03-2872010|Chinese Legal Large Model| | 645|NVIDIA/cutlass !2025-03-2871883|CUDA Templates for Linear Algebra Subroutines| | 646|FoundationVision/VAR !2025-03-28717444|[GPT beats diffusion🔥] [scaling laws in visual generation📈] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction"| | 647|ymcui/Chinese-LLaMA-Alpaca-2 !2025-03-2871561|Chinese LLaMA-2 & Alpaca-2 LLMs| | 648|nadermx/backgroundremover !2025-03-2871514 |Background Remover lets you Remove Background from images and video using AI with a simple command line interface that is free and open source.| | 649|onuratakan/gpt-computer-assistant !2025-03-28714514|gpt-4o for windows, macos and ubuntu| | 650|graviraja/MLOps-Basics !2025-03-2871326|| | 651|Future-House/paper-qa !2025-03-287118-1|High accuracy RAG for answering questions from scientific documents with citations| | 652|open-mmlab/mmagic !2025-03-2871102 |OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox| | 653|bhaskatripathi/pdfGPT !2025-03-2870941 |PDF GPT allows you to chat with the contents of your PDF file by using GPT capabilities. The only open source solution to turn your pdf files in a chatbot!| | 654|ollama/ollama-python !2025-03-28709117|Ollama Python library| | 655|facebookresearch/DiT !2025-03-2870376|Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"| | 656|geekyutao/Inpaint-Anything !2025-03-2870262 |Inpaint anything using Segment Anything and inpainting models.| | 657|AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-Plugin !2025-03-2870160 |A user-friendly plug-in that makes it easy to generate stable diffusion images inside Photoshop using Automatic1111-sd-webui as a backend.| | 658|apple/corenet !2025-03-2869990|CoreNet: A library for training deep neural networks| | 659|openstatusHQ/openstatus !2025-03-2869926|🏓 The open-source synthetic monitoring platform 🏓| | 660|weaviate/Verba !2025-03-2869772|Retrieval Augmented Generation (RAG) chatbot powered by Weaviate| | 661|meshery/meshery !2025-03-2869630|Meshery, the cloud native manager| | 662|OpenTalker/video-retalking !2025-03-2869530|[SIGGRAPH Asia 2022] VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild| | 663|digitalinnovationone/dio-lab-open-source !2025-03-28689013|Repositório do lab "Contribuindo em um Projeto Open Source no GitHub" da Digital Innovation One.| | 664|jianchang512/ChatTTS-ui !2025-03-2868842|一个简单的本地网页界面,直接使用ChatTTS将文字合成为语音,同时支持对外提供API接口。| | 665|patchy631/ai-engineering-hub !2025-03-28686434|In-depth tutorials on LLMs, RAGs and real-world AI agent applications.| | 666|gunnarmorling/1brc !2025-03-2868512|1️⃣🐝🏎️ The One Billion Row Challenge -- A fun exploration of how quickly 1B rows from a text file can be aggregated with Java| | 667|Azure-Samples/azure-search-openai-demo !2025-03-2868482 |A sample app for the Retrieval-Augmented Generation pattern running in Azure, using Azure Cognitive Search for retrieval and Azure OpenAI large language models to power ChatGPT-style and Q&A experiences.| | 668|mit-han-lab/streaming-llm !2025-03-2868382|Efficient Streaming Language Models with Attention Sinks| | 669|InternLM/InternLM !2025-03-2868352|InternLM has open-sourced a 7 billion parameter base model, a chat model tailored for practical scenarios and the training system.| | 670|dependency-check/DependencyCheck !2025-03-2868191|OWASP dependency-check is a software composition analysis utility that detects publicly disclosed vulnerabilities in application dependencies.| | 671|Soulter/AstrBot !2025-03-28678643|✨易上手的多平台 LLM 聊天机器人及开发框架✨。支持 QQ、QQ频道、Telegram、微信平台(Gewechat, 企业微信)、内置 Web Chat,OpenAI GPT、DeepSeek、Ollama、Llama、GLM、Gemini、OneAPI、LLMTuner,支持 LLM Agent 插件开发,可视化面板。一键部署。支持 Dify 工作流、代码执行器、Whisper 语音转文字。| | 672|react-native-webview/react-native-webview !2025-03-2867792|React Native Cross-Platform WebView| | 673|modelscope/agentscope !2025-03-28676916|Start building LLM-empowered multi-agent applications in an easier way.| | 674|mylxsw/aidea !2025-03-2867381|AIdea is a versatile app that supports GPT and domestic large language models,also supports "Stable Diffusion" text-to-image generation, image-to-image generation, SDXL 1.0, super-resolution, and image colorization| | 675|langchain-ai/ollama-deep-researcher !2025-03-28668635|Fully local web research and report writing assistant| | 676|threestudio-project/threestudio !2025-03-2866653|A unified framework for 3D content generation.| | 677|gaomingqi/Track-Anything !2025-03-2866631 |A flexible and interactive tool for video object tracking and segmentation, based on Segment Anything, XMem, and E2FGVI.| | 678|spdustin/ChatGPT-AutoExpert !2025-03-2866570|🚀🧠💬 Supercharged Custom Instructions for ChatGPT (non-coding) and ChatGPT Advanced Data Analysis (coding).| | 679|HariSekhon/DevOps-Bash-tools !2025-03-2866463|1000+ DevOps Bash Scripts - AWS, GCP, Kubernetes, Docker, CI/CD, APIs, SQL, PostgreSQL, MySQL, Hive, Impala, Kafka, Hadoop, Jenkins, GitHub, GitLab, BitBucket, Azure DevOps, TeamCity, Spotify, MP3, LDAP, Code/Build Linting, pkg mgmt for Linux, Mac, Python, Perl, Ruby, NodeJS, Golang, Advanced dotfiles: .bashrc, .vimrc, .gitconfig, .screenrc, tmux..| | 680|modelscope/swift !2025-03-28661530|ms-swift: Use PEFT or Full-parameter to finetune 200+ LLMs or 15+ MLLMs| | 681|langchain-ai/opengpts !2025-03-2866080|This is an open source effort to create a similar experience to OpenAI's GPTs and Assistants API| | 682| yihong0618/xiaogpt !2025-03-2865131 | Play ChatGPT with xiaomi ai speaker | | 683| civitai/civitai !2025-03-2865111 | Build a platform where people can share their stable diffusion models | | 684|KoljaB/RealtimeSTT !2025-03-28649513|A robust, efficient, low-latency speech-to-text library with advanced voice activity detection, wake word activation and instant transcription.| | 685|qunash/chatgpt-advanced !2025-03-2864910 | A browser extension that augments your ChatGPT prompts with web results.| | 686|Licoy/ChatGPT-Midjourney !2025-03-2864850|🎨 Own your own ChatGPT+Midjourney web service with one click| | 687|friuns2/BlackFriday-GPTs-Prompts !2025-03-2864744|List of free GPTs that doesn't require plus subscription| | 688|PixarAnimationStudios/OpenUSD !2025-03-2864700|Universal Scene Description| | 689|linyiLYi/street-fighter-ai !2025-03-2864630 |This is an AI agent for Street Fighter II Champion Edition.| | 690|run-llama/rags !2025-03-2864380|Build ChatGPT over your data, all with natural language| | 691|frdel/agent-zero !2025-03-2864154|Agent Zero AI framework| | 692|microsoft/DeepSpeedExamples !2025-03-2863911 |Example models using DeepSpeed| | 693|k8sgpt-ai/k8sgpt !2025-03-2863882|Giving Kubernetes Superpowers to everyone| | 694|open-metadata/OpenMetadata !2025-03-2863514|OpenMetadata is a unified platform for discovery, observability, and governance powered by a central metadata repository, in-depth lineage, and seamless team collaboration.| | 695|google/gemma.cpp !2025-03-2863163|lightweight, standalone C++ inference engine for Google's Gemma models.| | 696|RayVentura/ShortGPT !2025-03-286314-1|🚀🎬 ShortGPT - An experimental AI framework for automated short/video content creation. Enables creators to rapidly produce, manage, and deliver content using AI and automation.| | 697|openai/consistencymodels !2025-03-2862940 |Official repo for consistency models.| | 698|yangjianxin1/Firefly !2025-03-2862924|Firefly: Chinese conversational large language model (full-scale fine-tuning + QLoRA), supporting fine-tuning of Llma2, Llama, Baichuan, InternLM, Ziya, Bloom, and other large models| | 699|enricoros/big-AGI !2025-03-2862665|Generative AI suite powered by state-of-the-art models and providing advanced AI/AGI functions. It features AI personas, AGI functions, multi-model chats, text-to-image, voice, response streaming, code highlighting and execution, PDF import, presets for developers, much more. Deploy on-prem or in the cloud.| | 700|aptos-labs/aptos-core !2025-03-2862633|Aptos is a layer 1 blockchain built to support the widespread use of blockchain through better technology and user experience.| | 701|wenda-LLM/wenda !2025-03-286262-1 |Wenda: An LLM invocation platform. Its objective is to achieve efficient content generation tailored to specific environments while considering the limited computing resources of individuals and small businesses, as well as knowledge security and privacy concerns| | 702|Project-MONAI/MONAI !2025-03-2862603|AI Toolkit for Healthcare Imaging| | 703|HVision-NKU/StoryDiffusion !2025-03-2862470|Create Magic Story!| | 704|deepseek-ai/DeepSeek-LLM !2025-03-2862463|DeepSeek LLM: Let there be answers| | 705|Tohrusky/Final2x !2025-03-2862393|2^x Image Super-Resolution| | 706|OpenSPG/KAG !2025-03-28619611|KAG is a logical form-guided reasoning and retrieval framework based on OpenSPG engine and LLMs. It is used to build logical reasoning and factual Q&A solutions for professional domain knowledge bases. It can effectively overcome the shortcomings of the traditional RAG vector similarity calculation model.| | 707|Moonvy/OpenPromptStudio !2025-03-2861861 |AIGC Hint Word Visualization Editor| | 708|levihsu/OOTDiffusion !2025-03-2861761|Official implementation of OOTDiffusion| | 709|tmc/langchaingo !2025-03-2861729|LangChain for Go, the easiest way to write LLM-based programs in Go| | 710|vladmandic/automatic !2025-03-2861374|SD.Next: Advanced Implementation of Stable Diffusion and other Diffusion-based generative image models| | 711|clovaai/donut !2025-03-2861231 |Official Implementation of OCR-free Document Understanding Transformer (Donut) and Synthetic Document Generator (SynthDoG), ECCV 2022| | 712|Shaunwei/RealChar !2025-03-286121-1|🎙️🤖Create, Customize and Talk to your AI Character/Companion in Realtime(All in One Codebase!). Have a natural seamless conversation with AI everywhere(mobile, web and terminal) using LLM OpenAI GPT3.5/4, Anthropic Claude2, Chroma Vector DB, Whisper Speech2Text, ElevenLabs Text2Speech🎙️🤖| | 713|microsoft/TinyTroupe !2025-03-2861142|LLM-powered multiagent persona simulation for imagination enhancement and business insights.| | 714| rustformers/llm !2025-03-2861010 | Run inference for Large Language Models on CPU, with Rust| | 715|firebase/firebase-ios-sdk !2025-03-2860950|Firebase SDK for Apple App Development| | 716|vespa-engine/vespa !2025-03-2860824|The open big data serving engine. https://vespa.ai| | 717|n4ze3m/page-assist !2025-03-28607610|Use your locally running AI models to assist you in your web browsing| | 718|Dooy/chatgpt-web-midjourney-proxy !2025-03-2860646|chatgpt web, midjourney, gpts,tts, whisper 一套ui全搞定| | 719|ethereum-optimism/optimism !2025-03-2860213|Optimism is Ethereum, scaled.| | 720|sczhou/ProPainter !2025-03-2859971|[ICCV 2023] ProPainter: Improving Propagation and Transformer for Video Inpainting| | 721|MineDojo/Voyager !2025-03-2859951 |An Open-Ended Embodied Agent with Large Language Models| | 722|lavague-ai/LaVague !2025-03-2859800|Automate automation with Large Action Model framework| | 723|SevaSk/ecoute !2025-03-2859770 |Ecoute is a live transcription tool that provides real-time transcripts for both the user's microphone input (You) and the user's speakers output (Speaker) in a textbox. It also generates a suggested response using OpenAI's GPT-3.5 for the user to say based on the live transcription of the conversation.| | 724|google/mesop !2025-03-2859661|| | 725|pengxiao-song/LaWGPT !2025-03-2859542 |Repo for LaWGPT, Chinese-Llama tuned with Chinese Legal knowledge| | 726|fr0gger/Awesome-GPT-Agents !2025-03-2859434|A curated list of GPT agents for cybersecurity| | 727|google-deepmind/graphcast !2025-03-2859412|| | 728|comet-ml/opik !2025-03-28594126|Open-source end-to-end LLM Development Platform| | 729|SciPhi-AI/R2R !2025-03-28594033|A framework for rapid development and deployment of production-ready RAG systems| | 730|SkalskiP/courses !2025-03-2859272 |This repository is a curated collection of links to various courses and resources about Artificial Intelligence (AI)| | 731|QuivrHQ/MegaParse !2025-03-2859122|File Parser optimised for LLM Ingestion with no loss 🧠 Parse PDFs, Docx, PPTx in a format that is ideal for LLMs.| | 732|pytorch-labs/gpt-fast !2025-03-2858971|Simple and efficient pytorch-native transformer text generation in !2025-03-2858886|Curated list of chatgpt prompts from the top-rated GPTs in the GPTs Store. Prompt Engineering, prompt attack & prompt protect. Advanced Prompt Engineering papers.| | 734|nilsherzig/LLocalSearch !2025-03-2858852|LLocalSearch is a completely locally running search aggregator using LLM Agents. The user can ask a question and the system will use a chain of LLMs to find the answer. The user can see the progress of the agents and the final answer. No OpenAI or Google API keys are needed.| | 735|kuafuai/DevOpsGPT !2025-03-285874-2|Multi agent system for AI-driven software development. Convert natural language requirements into working software. Supports any development language and extends the existing base code.| | 736|myshell-ai/MeloTTS !2025-03-2858486|High-quality multi-lingual text-to-speech library by MyShell.ai. Support English, Spanish, French, Chinese, Japanese and Korean.| | 737|OpenGVLab/LLaMA-Adapter !2025-03-2858421 |Fine-tuning LLaMA to follow Instructions within 1 Hour and 1.2M Parameters| | 738|volcengine/verl !2025-03-28582563|veRL: Volcano Engine Reinforcement Learning for LLM| | 739|a16z-infra/companion-app !2025-03-2858171|AI companions with memory: a lightweight stack to create and host your own AI companions| | 740|HumanAIGC/OutfitAnyone !2025-03-285816-1|Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person| | 741|josStorer/RWKV-Runner !2025-03-2857472|A RWKV management and startup tool, full automation, only 8MB. And provides an interface compatible with the OpenAI API. RWKV is a large language model that is fully open source and available for commercial use.| | 742|648540858/wvp-GB28181-pro !2025-03-2857414|WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的网络视频平台,支持NAT穿透,支持海康、大华、宇视等品牌的IPC、NVR、DVR接入。支持国标级联,支持rtsp/rtmp等视频流转发到国标平台,支持rtsp/rtmp等推流转发到国标平台。| | 743|ToonCrafter/ToonCrafter !2025-03-2857345|a research paper for generative cartoon interpolation| | 744|PawanOsman/ChatGPT !2025-03-2857191|OpenAI API Free Reverse Proxy| | 745|apache/hudi !2025-03-2857091|Upserts, Deletes And Incremental Processing on Big Data.| | 746| nsarrazin/serge !2025-03-2857081 | A web interface for chatting with Alpaca through llama.cpp. Fully dockerized, with an easy to use API| | 747|homanp/superagent !2025-03-2857021|🥷 Superagent - Build, deploy, and manage LLM-powered agents| | 748|ramonvc/freegpt-webui !2025-03-2856910|GPT 3.5/4 with a Chat Web UI. No API key is required.| | 749|baichuan-inc/baichuan-7B !2025-03-2856901|A large-scale 7B pretraining language model developed by BaiChuan-Inc.| | 750|Azure/azure-sdk-for-net !2025-03-2856792|This repository is for active development of the Azure SDK for .NET. For consumers of the SDK we recommend visiting our public developer docs at https://learn.microsoft.com/dotnet/azure/ or our versioned developer docs at https://azure.github.io/azure-sdk-for-net.| | 751|mnotgod96/AppAgent !2025-03-2856643|AppAgent: Multimodal Agents as Smartphone Users, an LLM-based multimodal agent framework designed to operate smartphone apps.| | 752|microsoft/TaskWeaver !2025-03-2856243|A code-first agent framework for seamlessly planning and executing data analytics tasks.| | 753| yetone/bob-plugin-openai-translator !2025-03-285600-1 | A Bob Plugin base ChatGPT API | | 754|PrefectHQ/marvin !2025-03-2855840 |A batteries-included library for building AI-powered software| | 755|microsoft/promptbase !2025-03-2855832|All things prompt engineering| | 756|fullstackhero/dotnet-starter-kit !2025-03-2855560|Production Grade Cloud-Ready .NET 8 Starter Kit (Web API + Blazor Client) with Multitenancy Support, and Clean/Modular Architecture that saves roughly 200+ Development Hours! All Batteries Included.| | 757|deepseek-ai/DeepSeek-Coder-V2 !2025-03-2855435|DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence| | 758|aiwaves-cn/agents !2025-03-2855391|An Open-source Framework for Autonomous Language Agents| | 759|microsoft/Mastering-GitHub-Copilot-for-Paired-Programming !2025-03-2855158|A 6 Lesson course teaching everything you need to know about harnessing GitHub Copilot and an AI Paired Programing resource.| | 760|allenai/OLMo !2025-03-2854506|Modeling, training, eval, and inference code for OLMo| | 761|apify/crawlee-python !2025-03-2854493|Crawlee—A web scraping and browser automation library for Python to build reliable crawlers. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with BeautifulSoup, Playwright, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 762|k2-fsa/sherpa-onnx !2025-03-28541520|Speech-to-text, text-to-speech, and speaker recongition using next-gen Kaldi with onnxruntime without Internet connection. Support embedded systems, Android, iOS, Raspberry Pi, RISC-V, x86_64 servers, websocket server/client, C/C++, Python, Kotlin, C#, Go, NodeJS, Java, Swift| | 763|TEN-framework/TEN-Agent !2025-03-28541411|TEN Agent is a realtime conversational AI agent powered by TEN. It seamlessly integrates the OpenAI Realtime API, RTC capabilities, and advanced features like weather updates, web search, computer vision, and Retrieval-Augmented Generation (RAG).| | 764|google/gemmapytorch !2025-03-2854010|The official PyTorch implementation of Google's Gemma models| | 765|snakers4/silero-vad !2025-03-2853858|Silero VAD: pre-trained enterprise-grade Voice Activity Detector| | 766|livekit/agents !2025-03-2853836|Build real-time multimodal AI applications 🤖🎙️📹| | 767|pipecat-ai/pipecat !2025-03-28537811|Open Source framework for voice and multimodal conversational AI| | 768|EricLBuehler/mistral.rs !2025-03-28536324|Blazingly fast LLM inference.| | 769|asg017/sqlite-vec !2025-03-28535810|Work-in-progress vector search SQLite extension that runs anywhere.| | 770|albertan017/LLM4Decompile !2025-03-2853563|Reverse Engineering: Decompiling Binary Code with Large Language Models| | 771|Permify/permify !2025-03-2853235|An open-source authorization as a service inspired by Google Zanzibar, designed to build and manage fine-grained and scalable authorization systems for any application.| | 772|imoneoi/openchat !2025-03-2853171|OpenChat: Advancing Open-source Language Models with Imperfect Data| | 773|mosaicml/composer !2025-03-2853140|Train neural networks up to 7x faster| | 774|dsdanielpark/Bard-API !2025-03-285277-1 |The python package that returns a response of Google Bard through API.| | 775|lxfater/inpaint-web !2025-03-2852552|A free and open-source inpainting & image-upscaling tool powered by webgpu and wasm on the browser。| | 776|leanprover/lean4 !2025-03-2852441|Lean 4 programming language and theorem prover| | 777|AILab-CVC/YOLO-World !2025-03-2852415|Real-Time Open-Vocabulary Object Detection| | 778|openchatai/OpenChat !2025-03-2852260 |Run and create custom ChatGPT-like bots with OpenChat, embed and share these bots anywhere, the open-source chatbot console.| | 779|mufeedvh/code2prompt !2025-03-28519414|A CLI tool to convert your codebase into a single LLM prompt with source tree, prompt templating, and token counting.| | 780|biobootloader/wolverine !2025-03-2851700 |Automatically repair python scripts through GPT-4 to give them regenerative abilities.| | 781|huggingface/parler-tts !2025-03-2851671|Inference and training library for high-quality TTS models.| | 782|Akegarasu/lora-scripts !2025-03-2851308 |LoRA training scripts use kohya-ss's trainer, for diffusion model.| | 783|openchatai/OpenCopilot !2025-03-285128-3|🤖 🔥 Let your users chat with your product features and execute things by text - open source Shopify sidekick| | 784|e2b-dev/fragments !2025-03-2851228|Open-source Next.js template for building apps that are fully generated by AI. By E2B.| | 785|microsoft/SynapseML !2025-03-2851132|Simple and Distributed Machine Learning| | 786|aigc-apps/sd-webui-EasyPhoto !2025-03-285108-1|📷 EasyPhoto | | 787|ChaoningZhang/MobileSAM !2025-03-2850944|This is the official code for Faster Segment Anything (MobileSAM) project that makes SAM lightweight| | 788|huggingface/alignment-handbook !2025-03-2850932|Robust recipes for to align language models with human and AI preferences| | 789|alpkeskin/mosint !2025-03-2850920|An automated e-mail OSINT tool| | 790|TaskingAI/TaskingAI !2025-03-2850891|The open source platform for AI-native application development.| | 791|lipku/metahuman-stream !2025-03-28507615|Real time interactive streaming digital human| | 792|OpenInterpreter/01 !2025-03-2850530|The open-source language model computer| | 793|open-compass/opencompass !2025-03-28505111|OpenCompass is an LLM evaluation platform, supporting a wide range of models (InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.| | 794|xxlong0/Wonder3D !2025-03-2850491|A cross-domain diffusion model for 3D reconstruction from a single image| | 795|pytorch/torchtune !2025-03-2850342|A Native-PyTorch Library for LLM Fine-tuning| | 796|SuperDuperDB/superduperdb !2025-03-2850192|🔮 SuperDuperDB: Bring AI to your database: Integrate, train and manage any AI models and APIs directly with your database and your data.| | 797|WhiskeySockets/Baileys !2025-03-2850057|Lightweight full-featured typescript/javascript WhatsApp Web API| | 798| mpociot/chatgpt-vscode !2025-03-2849890 | A VSCode extension that allows you to use ChatGPT | | 799|OpenGVLab/DragGAN !2025-03-2849880|Unofficial Implementation of DragGAN - "Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold" (DragGAN 全功能实现,在线Demo,本地部署试用,代码、模型已全部开源,支持Windows, macOS, Linux)| | 800|microsoft/LLMLingua !2025-03-2849824|To speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.| | 801|Zipstack/unstract !2025-03-2849745|No-code LLM Platform to launch APIs and ETL Pipelines to structure unstructured documents| | 802|OpenBMB/ToolBench !2025-03-2849621|An open platform for training, serving, and evaluating large language model for tool learning.| | 803|Fanghua-Yu/SUPIR !2025-03-2849593|SUPIR aims at developing Practical Algorithms for Photo-Realistic Image Restoration In the Wild| | 804|GaiaNet-AI/gaianet-node !2025-03-2849360|Install and run your own AI agent service| | 805|qodo-ai/qodo-cover !2025-03-284922-1|Qodo-Cover: An AI-Powered Tool for Automated Test Generation and Code Coverage Enhancement! 💻🤖🧪🐞| | 806|Zejun-Yang/AniPortrait !2025-03-2849042|AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animation| | 807|lvwzhen/law-cn-ai !2025-03-2848901 |⚖️ AI Legal Assistant| | 808|developersdigest/llm-answer-engine !2025-03-2848740|Build a Perplexity-Inspired Answer Engine Using Next.js, Groq, Mixtral, Langchain, OpenAI, Brave & Serper| | 809|Plachtaa/VITS-fast-fine-tuning !2025-03-2848640|This repo is a pipeline of VITS finetuning for fast speaker adaptation TTS, and many-to-many voice conversion| | 810|espeak-ng/espeak-ng !2025-03-2848601|eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.| | 811|ant-research/CoDeF !2025-03-2848581|[CVPR'24 Highlight] Official PyTorch implementation of CoDeF: Content Deformation Fields for Temporally Consistent Video Processing| | 812|deepseek-ai/DeepSeek-V2 !2025-03-2848512|| | 813|XRPLF/rippled !2025-03-2848210|Decentralized cryptocurrency blockchain daemon implementing the XRP Ledger protocol in C++| | 814|AutoMQ/automq !2025-03-28478721|AutoMQ is a cloud-first alternative to Kafka by decoupling durability to S3 and EBS. 10x cost-effective. Autoscale in seconds. Single-digit ms latency.| | 815|AILab-CVC/VideoCrafter !2025-03-2847800|VideoCrafter1: Open Diffusion Models for High-Quality Video Generation| | 816|nautechsystems/nautilustrader !2025-03-2847702|A high-performance algorithmic trading platform and event-driven backtester| | 817|kyegomez/swarms !2025-03-2847563|The Enterprise-Grade Production-Ready Multi-Agent Orchestration Framework Join our Community: https://discord.com/servers/agora-999382051935506503| | 818|Deci-AI/super-gradients !2025-03-2847310 |Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS.| | 819|QwenLM/Qwen2.5-Coder !2025-03-2847236|Qwen2.5-Coder is the code version of Qwen2.5, the large language model series developed by Qwen team, Alibaba Cloud.| | 820|SCIR-HI/Huatuo-Llama-Med-Chinese !2025-03-2847191 |Repo for HuaTuo (华驼), Llama-7B tuned with Chinese medical knowledge| | 821|togethercomputer/RedPajama-Data !2025-03-2846841 |code for preparing large datasets for training large language models| | 822|mishushakov/llm-scraper !2025-03-2846704|Turn any webpage into structured data using LLMs| | 823|1rgs/jsonformer !2025-03-2846663 |A Bulletproof Way to Generate Structured JSON from Language Models| | 824|anti-work/shortest !2025-03-2846565|QA via natural language AI tests| | 825|dnhkng/GlaDOS !2025-03-2846510|This is the Personality Core for GLaDOS, the first steps towards a real-life implementation of the AI from the Portal series by Valve.| | 826|Nukem9/dlssg-to-fsr3 !2025-03-2846380|Adds AMD FSR3 Frame Generation to games by replacing Nvidia DLSS-G Frame Generation (nvngx_dlssg).| | 827|BuilderIO/ai-shell !2025-03-2846373 |A CLI that converts natural language to shell commands.| | 828|facebookincubator/AITemplate !2025-03-2846220 |AITemplate is a Python framework which renders neural network into high performance CUDA/HIP C++ code. Specialized for FP16 TensorCore (NVIDIA GPU) and MatrixCore (AMD GPU) inference.| | 829|terraform-aws-modules/terraform-aws-eks !2025-03-2846030|Terraform module to create AWS Elastic Kubernetes (EKS) resources 🇺🇦| | 830|timescale/pgai !2025-03-2845915|A suite of tools to develop RAG, semantic search, and other AI applications more easily with PostgreSQL| | 831|awslabs/multi-agent-orchestrator !2025-03-2845788|Flexible and powerful framework for managing multiple AI agents and handling complex conversations| | 832|sanchit-gandhi/whisper-jax !2025-03-2845771 |Optimised JAX code for OpenAI's Whisper Model, largely built on the Hugging Face Transformers Whisper implementation| | 833|NVIDIA/NeMo-Guardrails !2025-03-2845755|NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.| | 834|PathOfBuildingCommunity/PathOfBuilding !2025-03-2845480|Offline build planner for Path of Exile.| | 835|UX-Decoder/Segment-Everything-Everywhere-All-At-Once !2025-03-2845412 |Official implementation of the paper "Segment Everything Everywhere All at Once"| | 836|build-trust/ockam !2025-03-2845171|Orchestrate end-to-end encryption, cryptographic identities, mutual authentication, and authorization policies between distributed applications – at massive scale.| | 837|google-research/timesfm !2025-03-2845135|TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.| | 838|luosiallen/latent-consistency-model !2025-03-2844842|Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference| | 839|NVlabs/neuralangelo !2025-03-2844740|Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)| | 840|kyegomez/tree-of-thoughts !2025-03-2844720 |Plug in and Play Implementation of Tree of Thoughts: Deliberate Problem Solving with Large Language Models that Elevates Model Reasoning by atleast 70%| | 841|sjvasquez/handwriting-synthesis !2025-03-2844720 |Handwriting Synthesis with RNNs ✏️| | 842| madawei2699/myGPTReader !2025-03-2844420 | A slack bot that can read any webpage, ebook or document and summarize it with chatGPT | | 843|OpenBMB/AgentVerse !2025-03-2844413|🤖 AgentVerse 🪐 provides a flexible framework that simplifies the process of building custom multi-agent environments for large language models (LLMs).| | 844|argmaxinc/WhisperKit !2025-03-2844395|Swift native speech recognition on-device for iOS and macOS applications.| | 845|landing-ai/vision-agent !2025-03-2844346|Vision agent| | 846|InternLM/xtuner !2025-03-2844273|An efficient, flexible and full-featured toolkit for fine-tuning large models (InternLM, Llama, Baichuan, Qwen, ChatGLM)| | 847|google-deepmind/alphageometry !2025-03-284421-1|Solving Olympiad Geometry without Human Demonstrations| | 848|ostris/ai-toolkit !2025-03-2844093|Various AI scripts. Mostly Stable Diffusion stuff.| | 849|LLM-Red-Team/kimi-free-api !2025-03-2844004|🚀 KIMI AI 长文本大模型白嫖服务,支持高速流式输出、联网搜索、长文档解读、图像解析、多轮对话,零配置部署,多路token支持,自动清理会话痕迹。| | 850|argilla-io/argilla !2025-03-2843991|Argilla is a collaboration platform for AI engineers and domain experts that require high-quality outputs, full data ownership, and overall efficiency.| | 851|spring-projects/spring-ai !2025-03-28438419|An Application Framework for AI Engineering| | 852|alibaba-damo-academy/FunClip !2025-03-2843555|Open-source, accurate and easy-to-use video clipping tool, LLM based AI clipping intergrated | | 853|yisol/IDM-VTON !2025-03-2843541|IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild| | 854|fchollet/ARC-AGI !2025-03-2843368|The Abstraction and Reasoning Corpus| | 855|MahmoudAshraf97/whisper-diarization !2025-03-2843064|Automatic Speech Recognition with Speaker Diarization based on OpenAI Whisper| | 856|Speykious/cve-rs !2025-03-2843047|Blazingly 🔥 fast 🚀 memory vulnerabilities, written in 100% safe Rust. 🦀| | 857|Blealtan/efficient-kan !2025-03-2842770|An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN).| | 858|smol-ai/GodMode !2025-03-284249-1|AI Chat Browser: Fast, Full webapp access to ChatGPT / Claude / Bard / Bing / Llama2! I use this 20 times a day.| | 859|openai/plugins-quickstart !2025-03-284235-4 |Get a ChatGPT plugin up and running in under 5 minutes!| | 860|Doriandarko/maestro !2025-03-2842260|A framework for Claude Opus to intelligently orchestrate subagents.| | 861|philz1337x/clarity-upscaler !2025-03-2842204|Clarity-Upscaler: Reimagined image upscaling for everyone| | 862|facebookresearch/co-tracker !2025-03-2842142|CoTracker is a model for tracking any point (pixel) on a video.| | 863|xlang-ai/OpenAgents !2025-03-2842031|OpenAgents: An Open Platform for Language Agents in the Wild| | 864|alibaba/higress !2025-03-28419514|🤖 AI Gateway | | 865|ray-project/llm-numbers !2025-03-2841920 |Numbers every LLM developer should know| | 866|fudan-generative-vision/champ !2025-03-2841820|Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance| | 867|NVIDIA/garak !2025-03-2841795|the LLM vulnerability scanner| | 868|leetcode-mafia/cheetah !2025-03-2841740 |Whisper & GPT-based app for passing remote SWE interviews| | 869|ragapp/ragapp !2025-03-2841710|The easiest way to use Agentic RAG in any enterprise| | 870|collabora/WhisperSpeech !2025-03-2841692|An Open Source text-to-speech system built by inverting Whisper.| | 871|Facico/Chinese-Vicuna !2025-03-2841520 |Chinese-Vicuna: A Chinese Instruction-following LLaMA-based Model| | 872|openai/grok !2025-03-2841381|| | 873|CrazyBoyM/llama3-Chinese-chat !2025-03-2841361|Llama3 Chinese Repository with modified versions, and training and deployment resources| | 874|luban-agi/Awesome-AIGC-Tutorials !2025-03-2841301|Curated tutorials and resources for Large Language Models, AI Painting, and more.| | 875|damo-vilab/AnyDoor !2025-03-2841192|Official implementations for paper: Anydoor: zero-shot object-level image customization| | 876|raspberrypi/pico-sdk !2025-03-2841072|| | 877|mshumer/gpt-llm-trainer !2025-03-284097-1|| | 878|metavoiceio/metavoice-src !2025-03-284076-1|AI for human-level speech intelligence| | 879|intelowlproject/IntelOwl !2025-03-2840763|IntelOwl: manage your Threat Intelligence at scale| | 880|a16z-infra/ai-getting-started !2025-03-2840682|A Javascript AI getting started stack for weekend projects, including image/text models, vector stores, auth, and deployment configs| | 881|MarkFzp/mobile-aloha !2025-03-2840641|Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation| | 882| keijiro/AICommand !2025-03-2840380 | ChatGPT integration with Unity Editor | | 883|Tencent/HunyuanDiT !2025-03-2840214|Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding| | 884|hengyoush/kyanos !2025-03-2840061|Visualize the time packets spend in the kernel, watch & analyze in command line.| | 885|agiresearch/AIOS !2025-03-2840045|AIOS: LLM Agent Operating System| | 886|truefoundry/cognita !2025-03-2839773|RAG (Retrieval Augmented Generation) Framework for building modular, open source applications for production by TrueFoundry| | 887|X-PLUG/MobileAgent !2025-03-2839557|Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception| | 888|jackMort/ChatGPT.nvim !2025-03-2839231|ChatGPT Neovim Plugin: Effortless Natural Language Generation with OpenAI's ChatGPT API| | 889|microsoft/RD-Agent !2025-03-28388422|Research and development (R&D) is crucial for the enhancement of industrial productivity, especially in the AI era, where the core aspects of R&D are mainly focused on data and models. We are committed to automate these high-value generic R&D processes through our open source R&D automation tool RD-Agent, which let AI drive data-driven AI.| | 890|Significant-Gravitas/Auto-GPT-Plugins !2025-03-283882-1 |Plugins for Auto-GPT| | 891|apple/ml-mgie !2025-03-2838770|| | 892|OpenDriveLab/UniAD !2025-03-2838727|[CVPR 2023 Best Paper] Planning-oriented Autonomous Driving| | 893|llSourcell/DoctorGPT !2025-03-2838640|DoctorGPT is an LLM that can pass the US Medical Licensing Exam. It works offline, it's cross-platform, & your health data stays private.| | 894|FlagAI-Open/FlagAI !2025-03-2838601|FlagAI (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model.| | 895|krishnaik06/Roadmap-To-Learn-Generative-AI-In-2024 !2025-03-2838513|Roadmap To Learn Generative AI In 2024| | 896|SysCV/sam-hq !2025-03-2838491|Segment Anything in High Quality| | 897|google/security-research !2025-03-2838420|This project hosts security advisories and their accompanying proof-of-concepts related to research conducted at Google which impact non-Google owned code.| | 898|shroominic/codeinterpreter-api !2025-03-2838330|Open source implementation of the ChatGPT Code Interpreter 👾| | 899|Yonom/assistant-ui !2025-03-2838308|React Components for AI Chat 💬 🚀| | 900|nucleuscloud/neosync !2025-03-2838262|Open source data anonymization and synthetic data orchestration for developers. Create high fidelity synthetic data and sync it across your environments.| | 901|ravenscroftj/turbopilot !2025-03-2838230 |Turbopilot is an open source large-language-model based code completion engine that runs locally on CPU| | 902|NVlabs/Sana !2025-03-28380810|SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer| | 903|huggingface/distil-whisper !2025-03-2838061|Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.| | 904|Codium-ai/AlphaCodium !2025-03-2837971|code generation tool that surpasses most human competitors in CodeContests| | 905|fixie-ai/ultravox !2025-03-2837710|A fast multimodal LLM for real-time voice| | 906|unit-mesh/auto-dev !2025-03-28375715|🧙‍AutoDev: The AI-powered coding wizard with multilingual support 🌐, auto code generation 🏗️, and a helpful bug-slaying assistant 🐞! Customizable prompts 🎨 and a magic Auto Dev/Testing/Document/Agent feature 🧪 included! 🚀| | 907|Marker-Inc-Korea/AutoRAG !2025-03-2837432|AutoML tool for RAG| | 908|deepseek-ai/DeepSeek-VL !2025-03-283734-1|DeepSeek-VL: Towards Real-World Vision-Language Understanding| | 909|hiyouga/ChatGLM-Efficient-Tuning !2025-03-283692-1|Fine-tuning ChatGLM-6B with PEFT | | 910| Yue-Yang/ChatGPT-Siri !2025-03-2836921 | Shortcuts for Siri using ChatGPT API gpt-3.5-turbo model | | 911|0hq/WebGPT !2025-03-2836901 |Run GPT model on the browser with WebGPU. An implementation of GPT inference in less than ~2000 lines of vanilla Javascript.| | 912|cvg/LightGlue !2025-03-2836903|LightGlue: Local Feature Matching at Light Speed (ICCV 2023)| | 913|deanxv/coze-discord-proxy !2025-03-2836791|代理Discord-Bot对话Coze-Bot,实现API形式请求GPT4对话模型/微调模型| | 914|MervinPraison/PraisonAI !2025-03-2836764|PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human-agent collaboration.| | 915|Ironclad/rivet !2025-03-2836345 |The open-source visual AI programming environment and TypeScript library| | 916|BasedHardware/OpenGlass !2025-03-2835851|Turn any glasses into AI-powered smart glasses| | 917|ricklamers/gpt-code-ui !2025-03-2835840 |An open source implementation of OpenAI's ChatGPT Code interpreter| | 918|whoiskatrin/chart-gpt !2025-03-2835830 |AI tool to build charts based on text input| | 919|github/CopilotForXcode !2025-03-2835788|Xcode extension for GitHub Copilot| | 920|hemansnation/God-Level-Data-Science-ML-Full-Stack !2025-03-2835570 |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 921|pytorch/torchchat !2025-03-2835461|Run PyTorch LLMs locally on servers, desktop and mobile| | 922| Kent0n-Li/ChatDoctor !2025-03-2835451 | A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge | | 923|xtekky/chatgpt-clone !2025-03-283519-1 |ChatGPT interface with better UI| | 924|jupyterlab/jupyter-ai !2025-03-2835120|A generative AI extension for JupyterLab| | 925|pytorch/torchtitan !2025-03-2835064|A native PyTorch Library for large model training| | 926|minimaxir/simpleaichat !2025-03-2835031|Python package for easily interfacing with chat apps, with robust features and minimal code complexity.| | 927|srush/Tensor-Puzzles !2025-03-2834930|Solve puzzles. Improve your pytorch.| | 928|Helicone/helicone !2025-03-2834918|🧊 Open source LLM-Observability Platform for Developers. One-line integration for monitoring, metrics, evals, agent tracing, prompt management, playground, etc. Supports OpenAI SDK, Vercel AI SDK, Anthropic SDK, LiteLLM, LLamaIndex, LangChain, and more. 🍓 YC W23| | 929|run-llama/llama-hub !2025-03-2834740|A library of data loaders for LLMs made by the community -- to be used with LlamaIndex and/or LangChain| | 930|NExT-GPT/NExT-GPT !2025-03-2834700|Code and models for NExT-GPT: Any-to-Any Multimodal Large Language Model| | 931|souzatharsis/podcastfy !2025-03-2834661|An Open Source Python alternative to NotebookLM's podcast feature: Transforming Multimodal Content into Captivating Multilingual Audio Conversations with GenAI| | 932|Dataherald/dataherald !2025-03-2834450|Interact with your SQL database, Natural Language to SQL using LLMs| | 933|iryna-kondr/scikit-llm !2025-03-2834350 |Seamlessly integrate powerful language models like ChatGPT into scikit-learn for enhanced text analysis tasks.| | 934|Netflix/maestro !2025-03-2834230|Maestro: Netflix’s Workflow Orchestrator| | 935|CanadaHonk/porffor !2025-03-2833560|A from-scratch experimental AOT JS engine, written in JS| | 936|hustvl/Vim !2025-03-2833323|Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model| | 937|pashpashpash/vault-ai !2025-03-2833250 |OP Vault ChatGPT: Give ChatGPT long-term memory using the OP Stack (OpenAI + Pinecone Vector Database). Upload your own custom knowledge base files (PDF, txt, etc) using a simple React frontend.| | 938|tencentmusic/supersonic !2025-03-28330611|SuperSonic is the next-generation BI platform that integrates Chat BI (powered by LLM) and Headless BI (powered by semantic layer) paradigms.| | 939|billmei/every-chatgpt-gui !2025-03-2832981|Every front-end GUI client for ChatGPT| | 940|microsoft/torchgeo !2025-03-2832772|TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data| | 941|LLMBook-zh/LLMBook-zh.github.io !2025-03-28326110|《大语言模型》作者:赵鑫,李军毅,周昆,唐天一,文继荣| | 942|dvlab-research/MiniGemini !2025-03-2832601|Official implementation for Mini-Gemini| | 943|rashadphz/farfalle !2025-03-2832460|🔍 AI search engine - self-host with local or cloud LLMs| | 944|Luodian/Otter !2025-03-2832450|🦦 Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following and in-context learning ability.| | 945|AprilNEA/ChatGPT-Admin-Web !2025-03-2832370 | ChatGPT WebUI with user management and admin dashboard system| | 946|MarkFzp/act-plus-plus !2025-03-2832365|Imitation Learning algorithms with Co-traing for Mobile ALOHA: ACT, Diffusion Policy, VINN| | 947|ethen8181/machine-learning !2025-03-2832310|🌎 machine learning tutorials (mainly in Python3)| | 948|opengeos/segment-geospatial !2025-03-2832312 |A Python package for segmenting geospatial data with the Segment Anything Model (SAM)| | 949|iusztinpaul/hands-on-llms !2025-03-283225-2|🦖 𝗟𝗲𝗮𝗿𝗻 about 𝗟𝗟𝗠𝘀, 𝗟𝗟𝗠𝗢𝗽𝘀, and 𝘃𝗲𝗰𝘁𝗼𝗿 𝗗𝗕𝘀 for free by designing, training, and deploying a real-time financial advisor LLM system ~ 𝘴𝘰𝘶𝘳𝘤𝘦 𝘤𝘰𝘥𝘦 + 𝘷𝘪𝘥𝘦𝘰 & 𝘳𝘦𝘢𝘥𝘪𝘯𝘨 𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭𝘴| | 950|ToTheBeginning/PuLID !2025-03-2832221|Official code for PuLID: Pure and Lightning ID Customization via Contrastive Alignment| | 951|neo4j-labs/llm-graph-builder !2025-03-2832164|Neo4j graph construction from unstructured data using LLMs| | 952|OpenGVLab/InternGPT !2025-03-2832150 |InternGPT (iGPT) is an open source demo platform where you can easily showcase your AI models. Now it supports DragGAN, ChatGPT, ImageBind, multimodal chat like GPT-4, SAM, interactive image editing, etc. Try it at igpt.opengvlab.com (支持DragGAN、ChatGPT、ImageBind、SAM的在线Demo系统)| | 953|PKU-YuanGroup/Video-LLaVA !2025-03-2832060 |Video-LLaVA: Learning United Visual Representation by Alignment Before Projection| | 954|DataTalksClub/llm-zoomcamp !2025-03-2832030|LLM Zoomcamp - a free online course about building an AI bot that can answer questions about your knowledge base| | 955|gptscript-ai/gptscript !2025-03-2832010|Natural Language Programming| |!green-up-arrow.svg 956|isaac-sim/IsaacLab !2025-03-28320113|Unified framework for robot learning built on NVIDIA Isaac Sim| |!red-down-arrow 957|ai-boost/Awesome-GPTs !2025-03-2832003|Curated list of awesome GPTs 👍.| | 958|huggingface/safetensors !2025-03-2831901|Simple, safe way to store and distribute tensors| | 959|linyiLYi/bilibot !2025-03-2831771|A local chatbot fine-tuned by bilibili user comments.| | 960| project-baize/baize-chatbot !2025-03-283168-1 | Let ChatGPT teach your own chatbot in hours with a single GPU! | | 961|Azure-Samples/cognitive-services-speech-sdk !2025-03-2831280|Sample code for the Microsoft Cognitive Services Speech SDK| | 962|microsoft/Phi-3CookBook !2025-03-2831231|This is a Phi-3 book for getting started with Phi-3. Phi-3, a family of open AI models developed by Microsoft. Phi-3 models are the most capable and cost-effective small language models (SLMs) available, outperforming models of the same size and next size up across a variety of language, reasoning, coding, and math benchmarks.| | 963|neuralmagic/deepsparse !2025-03-2831180|Sparsity-aware deep learning inference runtime for CPUs| | 964|sugarforever/chat-ollama !2025-03-2831000|ChatOllama is an open source chatbot based on LLMs. It supports a wide range of language models, and knowledge base management.| | 965|amazon-science/chronos-forecasting !2025-03-2830974|Chronos: Pretrained (Language) Models for Probabilistic Time Series Forecasting| | 966|damo-vilab/i2vgen-xl !2025-03-2830902|Official repo for VGen: a holistic video generation ecosystem for video generation building on diffusion models| | 967|google-deepmind/gemma !2025-03-2830733|Open weights LLM from Google DeepMind.| | 968|iree-org/iree !2025-03-2830733|A retargetable MLIR-based machine learning compiler and runtime toolkit.| | 969|NVlabs/VILA !2025-03-2830724|VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)| | 970|microsoft/torchscale !2025-03-2830661|Foundation Architecture for (M)LLMs| | 971|openai/openai-realtime-console !2025-03-2830656|React app for inspecting, building and debugging with the Realtime API| | 972|daveshap/OpenAIAgentSwarm !2025-03-2830610|HAAS = Hierarchical Autonomous Agent Swarm - "Resistance is futile!"| | 973|microsoft/PromptWizard !2025-03-2830555|Task-Aware Agent-driven Prompt Optimization Framework| | 974|CVI-SZU/Linly !2025-03-2830490 |Chinese-LLaMA basic model; ChatFlow Chinese conversation model; NLP pre-training/command fine-tuning dataset| | 975|cohere-ai/cohere-toolkit !2025-03-2830130|Toolkit is a collection of prebuilt components enabling users to quickly build and deploy RAG applications.| | 976|adamcohenhillel/ADeus !2025-03-2830131|An open source AI wearable device that captures what you say and hear in the real world and then transcribes and stores it on your own server. You can then chat with Adeus using the app, and it will have all the right context about what you want to talk about - a truly personalized, personal AI.| | 977|Lightning-AI/LitServe !2025-03-2830132|Lightning-fast serving engine for AI models. Flexible. Easy. Enterprise-scale.| | 978|potpie-ai/potpie !2025-03-2829973|Prompt-To-Agent : Create custom engineering agents for your codebase| | 979|ant-design/x !2025-03-28299529|Craft AI-driven interfaces effortlessly 🤖| | 980|meta-llama/PurpleLlama !2025-03-2829832|Set of tools to assess and improve LLM security.| | 981|williamyang1991/RerenderAVideo !2025-03-2829800|[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation| | 982|baichuan-inc/Baichuan-13B !2025-03-2829790|A 13B large language model developed by Baichuan Intelligent Technology| | 983|Stability-AI/stable-audio-tools !2025-03-2829761|Generative models for conditional audio generation| | 984|li-plus/chatglm.cpp !2025-03-2829720|C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & more LLMs| | 985|NVIDIA/GenerativeAIExamples !2025-03-2829546|Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.| | 986|Josh-XT/AGiXT !2025-03-2829521 |AGiXT is a dynamic AI Automation Platform that seamlessly orchestrates instruction management and complex task execution across diverse AI providers. Combining adaptive memory, smart features, and a versatile plugin system, AGiXT delivers efficient and comprehensive AI solutions.| | 987|MrForExample/ComfyUI-3D-Pack !2025-03-2829515|An extensive node suite that enables ComfyUI to process 3D inputs (Mesh & UV Texture, etc) using cutting edge algorithms (3DGS, NeRF, etc.)| | 988|olimorris/codecompanion.nvim !2025-03-28295111|✨ AI-powered coding, seamlessly in Neovim. Supports Anthropic, Copilot, Gemini, Ollama, OpenAI and xAI LLMs| | 989|salesforce/CodeT5 !2025-03-282940-1 |Home of CodeT5: Open Code LLMs for Code Understanding and Generation| | 990|facebookresearch/ijepa !2025-03-2829391|Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."| | 991|eureka-research/Eureka !2025-03-2829351|Official Repository for "Eureka: Human-Level Reward Design via Coding Large Language Models"| | 992|NVIDIA/trt-llm-rag-windows !2025-03-282934-1|A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM| | 993|gmpetrov/databerry !2025-03-282930-1|The no-code platform for building custom LLM Agents| | 994|AI4Finance-Foundation/FinRobot !2025-03-28291946|FinRobot: An Open-Source AI Agent Platform for Financial Applications using LLMs 🚀 🚀 🚀| | 995|nus-apr/auto-code-rover !2025-03-2829013|A project structure aware autonomous software engineer aiming for autonomous program improvement| | 996|deepseek-ai/DreamCraft3D !2025-03-2828921|[ICLR 2024] Official implementation of DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior| | 997|mlabonne/llm-datasets !2025-03-2828848|High-quality datasets, tools, and concepts for LLM fine-tuning.| | 998|facebookresearch/jepa !2025-03-2828712|PyTorch code and models for V-JEPA self-supervised learning from video.| | 999|facebookresearch/habitat-sim !2025-03-2828604|A flexible, high-performance 3D simulator for Embodied AI research.| | 1000|xenova/whisper-web !2025-03-2828581|ML-powered speech recognition directly in your browser| | 1001|cvlab-columbia/zero123 !2025-03-2828530|Zero-1-to-3: Zero-shot One Image to 3D Object: https://zero123.cs.columbia.edu/| | 1002|yuruotong1/autoMate !2025-03-28285121|Like Manus, Computer Use Agent(CUA) and Omniparser, we are computer-using agents.AI-driven local automation assistant that uses natural language to make computers work by themselves| | 1003|muellerberndt/mini-agi !2025-03-282845-1 |A minimal generic autonomous agent based on GPT3.5/4. Can analyze stock prices, perform network security tests, create art, and order pizza.| | 1004|allenai/open-instruct !2025-03-2828432|| | 1005|CodingChallengesFYI/SharedSolutions !2025-03-2828360|Publicly shared solutions to Coding Challenges| | 1006|hegelai/prompttools !2025-03-2828220|Open-source tools for prompt testing and experimentation, with support for both LLMs (e.g. OpenAI, LLaMA) and vector databases (e.g. Chroma, Weaviate).| | 1007|mazzzystar/Queryable !2025-03-2828222|Run CLIP on iPhone to Search Photos.| | 1008|Doubiiu/DynamiCrafter !2025-03-2828173|DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors| | 1009|SamurAIGPT/privateGPT !2025-03-282805-1 |An app to interact privately with your documents using the power of GPT, 100% privately, no data leaks| | 1010|facebookresearch/Pearl !2025-03-2827951|A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.| | 1011|intuitem/ciso-assistant-community !2025-03-2827954|CISO Assistant is a one-stop-shop for GRC, covering Risk, AppSec and Audit Management and supporting +70 frameworks worldwide with auto-mapping: NIST CSF, ISO 27001, SOC2, CIS, PCI DSS, NIS2, CMMC, PSPF, GDPR, HIPAA, Essential Eight, NYDFS-500, DORA, NIST AI RMF, 800-53, 800-171, CyFun, CJIS, AirCyber, NCSC, ECC, SCF and so much more| | 1012|facebookresearch/audio2photoreal !2025-03-2827840|Code and dataset for photorealistic Codec Avatars driven from audio| | 1013|Azure/azure-rest-api-specs !2025-03-2827770|The source for REST API specifications for Microsoft Azure.| | 1014|SCUTlihaoyu/open-chat-video-editor !2025-03-2827690 |Open source short video automatic generation tool| | 1015|Alpha-VLLM/LLaMA2-Accessory !2025-03-2827642|An Open-source Toolkit for LLM Development| | 1016|johnma2006/mamba-minimal !2025-03-2827601|Simple, minimal implementation of the Mamba SSM in one file of PyTorch.| | 1017|nerfstudio-project/gsplat !2025-03-2827576|CUDA accelerated rasterization of gaussian splatting| | 1018|Physical-Intelligence/openpi !2025-03-28274617|| | 1019|leptonai/leptonai !2025-03-2827246|A Pythonic framework to simplify AI service building| |!green-up-arrow.svg 1020|joanrod/star-vector !2025-03-28271149|StarVector is a foundation model for SVG generation that transforms vectorization into a code generation task. Using a vision-language modeling architecture, StarVector processes both visual and textual inputs to produce high-quality SVG code with remarkable precision.| |!red-down-arrow 1021|jqnatividad/qsv !2025-03-2827092|CSVs sliced, diced & analyzed.| | 1022|FranxYao/chain-of-thought-hub !2025-03-2826991|Benchmarking large language models' complex reasoning ability with chain-of-thought prompting| | 1023|princeton-nlp/SWE-bench !2025-03-2826965|[ICLR 2024] SWE-Bench: Can Language Models Resolve Real-world Github Issues?| | 1024|elastic/otel-profiling-agent !2025-03-2826930|The production-scale datacenter profiler| | 1025|src-d/hercules !2025-03-2826900|Gaining advanced insights from Git repository history.| | 1026|lanqian528/chat2api !2025-03-2826695|A service that can convert ChatGPT on the web to OpenAI API format.| | 1027|ishan0102/vimGPT !2025-03-2826681|Browse the web with GPT-4V and Vimium| | 1028|TMElyralab/MuseV !2025-03-2826650|MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising| | 1029|georgia-tech-db/eva !2025-03-2826600 |AI-Relational Database System | | 1030|kubernetes-sigs/controller-runtime !2025-03-2826590|Repo for the controller-runtime subproject of kubebuilder (sig-apimachinery)| | 1031|gptlink/gptlink !2025-03-2826550 |Build your own free commercial ChatGPT environment in 10 minutes. The setup is simple and includes features such as user management, orders, tasks, and payments| | 1032|pytorch/executorch !2025-03-2826534|On-device AI across mobile, embedded and edge for PyTorch| | 1033|NVIDIA/nv-ingest !2025-03-2826290|NVIDIA Ingest is an early access set of microservices for parsing hundreds of thousands of complex, messy unstructured PDFs and other enterprise documents into metadata and text to embed into retrieval systems.| | 1034|SuperTux/supertux !2025-03-2826081|SuperTux source code| | 1035|abi/secret-llama !2025-03-2826050|Fully private LLM chatbot that runs entirely with a browser with no server needed. Supports Mistral and LLama 3.| | 1036|liou666/polyglot !2025-03-2825841 |Desktop AI Language Practice Application| | 1037|janhq/nitro !2025-03-2825821|A fast, lightweight, embeddable inference engine to supercharge your apps with local AI. OpenAI-compatible API| | 1038|deepseek-ai/DeepSeek-Math !2025-03-2825825|DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models| | 1039|anthropics/prompt-eng-interactive-tutorial !2025-03-2825781|Anthropic's Interactive Prompt Engineering Tutorial| | 1040|microsoft/promptbench !2025-03-2825741|A unified evaluation framework for large language models| | 1041|baaivision/Painter !2025-03-2825580 |Painter & SegGPT Series: Vision Foundation Models from BAAI| | 1042|OpenPipe/OpenPipe !2025-03-2825581|Turn expensive prompts into cheap fine-tuned models| | 1043|TracecatHQ/tracecat !2025-03-2825531|😼 The AI-native, open source alternative to Tines / Splunk SOAR.| | 1044|JoshuaC215/agent-service-toolkit !2025-03-2825528|Full toolkit for running an AI agent service built with LangGraph, FastAPI and Streamlit| | 1045|databricks/dbrx !2025-03-2825460|Code examples and resources for DBRX, a large language model developed by Databricks| | 1046|lamini-ai/lamini !2025-03-2825271 |Official repo for Lamini's data generator for generating instructions to train instruction-following LLMs| | 1047|mshumer/gpt-author !2025-03-282510-1|| | 1048|TMElyralab/MusePose !2025-03-2824971|MusePose: a Pose-Driven Image-to-Video Framework for Virtual Human Generation| | 1049|Kludex/fastapi-tips !2025-03-2824974|FastAPI Tips by The FastAPI Expert!| | 1050|openai/simple-evals !2025-03-2824813|| | 1051|iterative/datachain !2025-03-2824732|AI-data warehouse to enrich, transform and analyze data from cloud storages| | 1052|girafe-ai/ml-course !2025-03-2824703|Open Machine Learning course| | 1053|kevmo314/magic-copy !2025-03-2824620 |Magic Copy is a Chrome extension that uses Meta's Segment Anything Model to extract a foreground object from an image and copy it to the clipboard.| | 1054|Eladlev/AutoPrompt !2025-03-2824432|A framework for prompt tuning using Intent-based Prompt Calibration| | 1055|OpenBMB/CPM-Bee !2025-03-282434-1 |A bilingual large-scale model with trillions of parameters| | 1056|IDEA-Research/T-Rex !2025-03-2824310|T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy| | 1057|microsoft/genaiscript !2025-03-2824202|Automatable GenAI Scripting| | 1058|paulpierre/RasaGPT !2025-03-2824090 |💬 RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain. Built w/ Rasa, FastAPI, Langchain, LlamaIndex, SQLModel, pgvector, ngrok, telegram| | 1059|ashishpatel26/LLM-Finetuning !2025-03-2823911|LLM Finetuning with peft| | 1060|SoraWebui/SoraWebui !2025-03-2823570|SoraWebui is an open-source Sora web client, enabling users to easily create videos from text with OpenAI's Sora model.| | 1061|6drf21e/ChatTTScolab !2025-03-2823491|🚀 一键部署(含离线整合包)!基于 ChatTTS ,支持音色抽卡、长音频生成和分角色朗读。简单易用,无需复杂安装。| | 1062|Azure/PyRIT !2025-03-2823343|The Python Risk Identification Tool for generative AI (PyRIT) is an open access automation framework to empower security professionals and machine learning engineers to proactively find risks in their generative AI systems.| | 1063|tencent-ailab/V-Express !2025-03-2823201|V-Express aims to generate a talking head video under the control of a reference image, an audio, and a sequence of V-Kps images.| | 1064|THUDM/CogVLM2 !2025-03-2823170|GPT4V-level open-source multi-modal model based on Llama3-8B| | 1065|dvmazur/mixtral-offloading !2025-03-2823001|Run Mixtral-8x7B models in Colab or consumer desktops| | 1066|semanser/codel !2025-03-2822950|✨ Fully autonomous AI Agent that can perform complicated tasks and projects using terminal, browser, and editor.| | 1067|mshumer/gpt-investor !2025-03-2822590|| | 1068|aixcoder-plugin/aiXcoder-7B !2025-03-2822550|official repository of aiXcoder-7B Code Large Language Model| | 1069|Azure-Samples/graphrag-accelerator !2025-03-2822503|One-click deploy of a Knowledge Graph powered RAG (GraphRAG) in Azure| | 1070|emcf/engshell !2025-03-2821830 |An English-language shell for any OS, powered by LLMs| | 1071|hncboy/chatgpt-web-java !2025-03-2821771|ChatGPT project developed in Java, based on Spring Boot 3 and JDK 17, supports both AccessToken and ApiKey modes| | 1072|openai/consistencydecoder !2025-03-2821692|Consistency Distilled Diff VAE| | 1073|Alpha-VLLM/Lumina-T2X !2025-03-2821681|Lumina-T2X is a unified framework for Text to Any Modality Generation| | 1074|bghira/SimpleTuner !2025-03-2821612|A general fine-tuning kit geared toward Stable Diffusion 2.1, Stable Diffusion 3, DeepFloyd, and SDXL.| | 1075|JiauZhang/DragGAN !2025-03-2821530 |Implementation of DragGAN: Interactive Point-based Manipulation on the Generative Image Manifold| | 1076|cgpotts/cs224u !2025-03-2821390|Code for Stanford CS224u| | 1077|PKU-YuanGroup/MoE-LLaVA !2025-03-2821300|Mixture-of-Experts for Large Vision-Language Models| | 1078|darrenburns/elia !2025-03-2820831|A snappy, keyboard-centric terminal user interface for interacting with large language models. Chat with ChatGPT, Claude, Llama 3, Phi 3, Mistral, Gemma and more.| | 1079|ageerle/ruoyi-ai !2025-03-28207898|RuoYi AI 是一个全栈式 AI 开发平台,旨在帮助开发者快速构建和部署个性化的 AI 应用。| | 1080|NVIDIA/gpu-operator !2025-03-2820510|NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes| | 1081|BAAI-Agents/Cradle !2025-03-2820481|The Cradle framework is a first attempt at General Computer Control (GCC). Cradle supports agents to ace any computer task by enabling strong reasoning abilities, self-improvment, and skill curation, in a standardized general environment with minimal requirements.| | 1082|microsoft/aici !2025-03-2820080|AICI: Prompts as (Wasm) Programs| | 1083|PRIS-CV/DemoFusion !2025-03-2820040|Let us democratise high-resolution generation! (arXiv 2023)| | 1084|apple/axlearn !2025-03-2820012|An Extensible Deep Learning Library| | 1085|naver/mast3r !2025-03-2819685|Grounding Image Matching in 3D with MASt3R| | 1086|liltom-eth/llama2-webui !2025-03-281958-1|Run Llama 2 locally with gradio UI on GPU or CPU from anywhere (Linux/Windows/Mac). Supporting Llama-2-7B/13B/70B with 8-bit, 4-bit. Supporting GPU inference (6 GB VRAM) and CPU inference.| | 1087|GaParmar/img2img-turbo !2025-03-2819582|One-step image-to-image with Stable Diffusion turbo: sketch2image, day2night, and more| | 1088|Niek/chatgpt-web !2025-03-2819560|ChatGPT web interface using the OpenAI API| | 1089|huggingface/cookbook !2025-03-2819421|Open-source AI cookbook| | 1090|pytorch/ao !2025-03-2819241|PyTorch native quantization and sparsity for training and inference| | 1091|emcie-co/parlant !2025-03-2819053|The behavior guidance framework for customer-facing LLM agents| | 1092|ymcui/Chinese-LLaMA-Alpaca-3 !2025-03-2818980|中文羊驼大模型三期项目 (Chinese Llama-3 LLMs) developed from Meta Llama 3| | 1093|Nutlope/notesGPT !2025-03-2818811|Record voice notes & transcribe, summarize, and get tasks| | 1094|InstantStyle/InstantStyle !2025-03-2818791|InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation 🔥| | 1095|idaholab/moose !2025-03-2818771|Multiphysics Object Oriented Simulation Environment| | 1096|The-OpenROAD-Project/OpenROAD !2025-03-2818351|OpenROAD's unified application implementing an RTL-to-GDS Flow. Documentation at https://openroad.readthedocs.io/en/latest/| | 1097|alibaba/spring-ai-alibaba !2025-03-281831121|Agentic AI Framework for Java Developers| | 1098|ytongbai/LVM !2025-03-2817990|Sequential Modeling Enables Scalable Learning for Large Vision Models| | 1099|microsoft/sample-app-aoai-chatGPT !2025-03-2817981|[PREVIEW] Sample code for a simple web chat experience targeting chatGPT through AOAI.| | 1100|AI-Citizen/SolidGPT !2025-03-2817830|Chat everything with your code repository, ask repository level code questions, and discuss your requirements. AI Scan and learning your code repository, provide you code repository level answer🧱 🧱| | 1101|YangLing0818/RPG-DiffusionMaster !2025-03-2817784|Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs (PRG)| | 1102|kyegomez/BitNet !2025-03-2817710|Implementation of "BitNet: Scaling 1-bit Transformers for Large Language Models" in pytorch| | 1103|eloialonso/diamond !2025-03-2817671|DIAMOND (DIffusion As a Model Of eNvironment Dreams) is a reinforcement learning agent trained in a diffusion world model.| | 1104|flowdriveai/flowpilot !2025-03-2817250|flow-pilot is an openpilot based driver assistance system that runs on linux, windows and android powered machines.| | 1105|xlang-ai/OSWorld !2025-03-2817200|OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments| | 1106|linyiLYi/snake-ai !2025-03-2817031|An AI agent that beats the classic game "Snake".| | 1107|baaivision/Emu !2025-03-2816991|Emu Series: Generative Multimodal Models from BAAI| | 1108|kevmo314/scuda !2025-03-2816870|SCUDA is a GPU over IP bridge allowing GPUs on remote machines to be attached to CPU-only machines.| | 1109|SharifiZarchi/IntroductiontoMachineLearning !2025-03-2816701|دوره‌ی مقدمه‌ای بر یادگیری ماشین، برای دانشجویان| | 1110|google/maxtext !2025-03-2816670|A simple, performant and scalable Jax LLM!| | 1111|ml-explore/mlx-swift-examples !2025-03-2816471|Examples using MLX Swift| | 1112|unitreerobotics/unitreerlgym !2025-03-2816256|| | 1113|collabora/WhisperFusion !2025-03-2815901|WhisperFusion builds upon the capabilities of WhisperLive and WhisperSpeech to provide a seamless conversations with an AI.| | 1114|lichao-sun/Mora !2025-03-2815520|Mora: More like Sora for Generalist Video Generation| | 1115|GoogleCloudPlatform/localllm !2025-03-2815370|Run LLMs locally on Cloud Workstations| | 1116|TencentARC/BrushNet !2025-03-2815330|The official implementation of paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"| | 1117|ai-christianson/RA.Aid !2025-03-2815288|Develop software autonomously.| | 1118|stephansturges/WALDO !2025-03-2815170|Whereabouts Ascertainment for Low-lying Detectable Objects. The SOTA in FOSS AI for drones!| | 1119|skills/copilot-codespaces-vscode !2025-03-2815112|Develop with AI-powered code suggestions using GitHub Copilot and VS Code| | 1120|andrewnguonly/Lumos !2025-03-2814920|A RAG LLM co-pilot for browsing the web, powered by local LLMs| | 1121|TeamNewPipe/NewPipeExtractor !2025-03-2814811|NewPipe's core library for extracting data from streaming sites| | 1122|mhamilton723/FeatUp !2025-03-2814770|Official code for "FeatUp: A Model-Agnostic Frameworkfor Features at Any Resolution" ICLR 2024| | 1123|AnswerDotAI/fsdpqlora !2025-03-2814671|Training LLMs with QLoRA + FSDP| | 1124|jgravelle/AutoGroq !2025-03-2814330|| | 1125|OpenGenerativeAI/llm-colosseum !2025-03-2814130|Benchmark LLMs by fighting in Street Fighter 3! The new way to evaluate the quality of an LLM| | 1126|microsoft/vscode-ai-toolkit !2025-03-2814000|| | 1127|McGill-NLP/webllama !2025-03-2813930|Llama-3 agents that can browse the web by following instructions and talking to you| | 1128|lucidrains/self-rewarding-lm-pytorch !2025-03-2813760|Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI| | 1129|ishaan1013/sandbox !2025-03-2813650|A cloud-based code editing environment with an AI copilot and real-time collaboration.| | 1130|goatcorp/Dalamud !2025-03-2813275|FFXIV plugin framework and API| | 1131|Lightning-AI/lightning-thunder !2025-03-2813151|Make PyTorch models Lightning fast! Thunder is a source to source compiler for PyTorch. It enables using different hardware executors at once.| | 1132|PKU-YuanGroup/MagicTime !2025-03-2813052|MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators| | 1133|SakanaAI/evolutionary-model-merge !2025-03-2813000|Official repository of Evolutionary Optimization of Model Merging Recipes| | 1134|a-real-ai/pywinassistant !2025-03-2812950|The first open source Large Action Model generalist Artificial Narrow Intelligence that controls completely human user interfaces by only using natural language. PyWinAssistant utilizes Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models.| | 1135|TraceMachina/nativelink !2025-03-2812630|NativeLink is an open source high-performance build cache and remote execution server, compatible with Bazel, Buck2, Reclient, and other RBE-compatible build systems. It offers drastically faster builds, reduced test flakiness, and significant infrastructure cost savings.| | 1136|MLSysOps/MLE-agent !2025-03-2812500|🤖 MLE-Agent: Your intelligent companion for seamless AI engineering and research. 🔍 Integrate with arxiv and paper with code to provide better code/research plans 🧰 OpenAI, Ollama, etc supported. 🎆 Code RAG| | 1137|wpilibsuite/allwpilib !2025-03-2811610|Official Repository of WPILibJ and WPILibC| | 1138|elfvingralf/macOSpilot-ai-assistant !2025-03-2811470|Voice + Vision powered AI assistant that answers questions about any application, in context and in audio.| | 1139|langchain-ai/langchain-extract !2025-03-2811210|🦜⛏️ Did you say you like data?| | 1140|FoundationVision/GLEE !2025-03-2811120|【CVPR2024】GLEE: General Object Foundation Model for Images and Videos at Scale| | 1141|Profluent-AI/OpenCRISPR !2025-03-2810990|AI-generated gene editing systems| | 1142|zju3dv/EasyVolcap !2025-03-2810821|[SIGGRAPH Asia 2023 (Technical Communications)] EasyVolcap: Accelerating Neural Volumetric Video Research| | 1143|PaddlePaddle/PaddleHelix !2025-03-2810560|Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集| | 1144|myshell-ai/JetMoE !2025-03-289800|Reaching LLaMA2 Performance with 0.1M Dollars| | 1145|likejazz/llama3.np !2025-03-289770|llama3.np is pure NumPy implementation for Llama 3 model.| | 1146|mustafaaljadery/gemma-2B-10M !2025-03-289500|Gemma 2B with 10M context length using Infini-attention.| | 1147|HITsz-TMG/FilmAgent !2025-03-289382|Resources of our paper "FilmAgent: A Multi-Agent Framework for End-to-End Film Automation in Virtual 3D Spaces". New versions in the making!| | 1148|aws-samples/amazon-bedrock-samples !2025-03-289362|This repository contains examples for customers to get started using the Amazon Bedrock Service. This contains examples for all available foundational models| | 1149|Akkudoktor-EOS/EOS !2025-03-2893154|This repository features an Energy Optimization System (EOS) that optimizes energy distribution, usage for batteries, heat pumps& household devices. It includes predictive models for electricity prices (planned), load forecasting& dynamic optimization to maximize energy efficiency & minimize costs. Founder Dr. Andreas Schmitz (YouTube @akkudoktor)| Tip: | symbol| rule | | :----| :---- | |🔥 | 256 1k| |!green-up-arrow.svg !red-down-arrow | ranking up / down| |⭐ | on trending page today| [Back to Top] Tools | No. | Tool | Description | | ----:|:----------------------------------------------- |:------------------------------------------------------------------------------------------- | | 1 | ChatGPT | A sibling model to InstructGPT, which is trained to follow instructions in a prompt and provide a detailed response | | 2 | DALL·E 2 | Create original, realistic images and art from a text description | | 3 | Murf AI | AI enabled, real people's voices| | 4 | Midjourney | An independent research lab that produces an artificial intelligence program under the same name that creates images from textual descriptions, used in Discord | 5 | Make-A-Video | Make-A-Video is a state-of-the-art AI system that generates videos from text | | 6 | Creative Reality™ Studio by D-ID| Use generative AI to create future-facing videos| | 7 | chat.D-ID| The First App Enabling Face-to-Face Conversations with ChatGPT| | 8 | Notion AI| Access the limitless power of AI, right inside Notion. Work faster. Write better. Think bigger. | | 9 | Runway| Text to Video with Gen-2 | | 10 | Resemble AI| Resemble’s AI voice generator lets you create human–like voice overs in seconds | | 11 | Cursor| Write, edit, and chat about your code with a powerful AI | | 12 | Hugging Face| Build, train and deploy state of the art models powered by the reference open source in machine learning | | 13 | Claude | A next-generation AI assistant for your tasks, no matter the scale | | 14 | Poe| Poe lets you ask questions, get instant answers, and have back-and-forth conversations with AI. Gives access to GPT-4, gpt-3.5-turbo, Claude from Anthropic, and a variety of other bots| [Back to Top] Websites | No. | WebSite |Description | | ----:|:------------------------------------------ |:---------------------------------------------------------------------------------------- | | 1 | OpenAI | An artificial intelligence research lab | | 2 | Bard | Base Google's LaMDA chatbots and pull from internet | | 3 | ERNIE Bot | Baidu’s new generation knowledge-enhanced large language model is a new member of the Wenxin large model family | | 4 | DALL·E 2 | An AI system that can create realistic images and art from a description in natural language | | 5 | Whisper | A general-purpose speech recognition model | | 6| CivitAI| A platform that makes it easy for people to share and discover resources for creating AI art| | 7|D-ID| D-ID’s Generative AI enables users to transform any picture or video into extraordinary experiences| | 8| Nvidia eDiff-I| Text-to-Image Diffusion Models with Ensemble of Expert Denoisers | | 9| Stability AI| The world's leading open source generative AI company which opened source Stable Diffusion | | 10| Meta AI| Whether it be research, product or infrastructure development, we’re driven to innovate responsibly with AI to benefit the world | | 11| ANTHROPIC| AI research and products that put safety at the frontier | [Back to Top] Reports&Papers | No. | Report&Paper | Description | |:---- |:-------------------------------------------------------------------------------------------------------------- |:---------------------------------------------------- | | 1 | GPT-4 Technical Report | GPT-4 Technical Report | | 2 | mli/paper-reading | Deep learning classics and new papers are read carefully paragraph by paragraph. | | 3 | labmlai/annotateddeeplearningpaperimplementations| A collection of simple PyTorch implementations of neural networks and related algorithms, which are documented with explanations | | 4 | Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models | Talking, Drawing and Editing with Visual Foundation Models | | 5 | OpenAI Research | The latest research report and papers from OpenAI | | 6 | Make-A-Video: Text-to-Video Generation without Text-Video Data|Meta's Text-to-Video Generation| | 7 | eDiff-I: Text-to-Image Diffusion Models with Ensemble of Expert Denoisers| Nvidia eDiff-I - New generation of generative AI content creation tool | | 8 | Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo | 2023 GPT4All Technical Report | | 9 | Segment Anything| Meta Segment Anything | | 10 | LLaMA: Open and Efficient Foundation Language Models| LLaMA: a collection of foundation language models ranging from 7B to 65B parameters| | 11 | papers-we-love/papers-we-love |Papers from the computer science community to read and discuss| | 12 | CVPR 2023 papers |The most exciting and influential CVPR 2023 papers| [Back to Top] Tutorials | No. | Tutorial | Description| |:---- |:---------------------------------------------------------------- | --- | | 1 | Coursera - Machine Learning | The Machine Learning Specialization Course taught by Dr. Andrew Ng| | 2 | microsoft/ML-For-Beginners | 12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all| | 3 | ChatGPT Prompt Engineering for Developers | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI) will teach how to use a large language model (LLM) to quickly build new and powerful applications | | 4 | Dive into Deep Learning |Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries | | 5 | AI Expert Roadmap | Roadmap to becoming an Artificial Intelligence Expert in 2022 | | 6 | Computer Science courses |List of Computer Science courses with video lectures| | 7 | Machine Learning with Python | Machine Learning with Python Certification on freeCodeCamp| | 8 | Building Systems with the ChatGPT API | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI), you will learn how to automate complex workflows using chain calls to a large language model| | 9 | LangChain for LLM Application Development | This short course taught by Harrison Chase (Co-Founder and CEO at LangChain) and Andrew Ng. you will gain essential skills in expanding the use cases and capabilities of language models in application development using the LangChain framework| | 10 | How Diffusion Models Work | This short course taught by Sharon Zhou (CEO, Co-founder, Lamini). you will gain a deep familiarity with the diffusion process and the models which carry it out. More than simply pulling in a pre-built model or using an API, this course will teach you to build a diffusion model from scratch| | 11 | Free Programming Books For AI |📚 Freely available programming books for AI | | 12 | microsoft/AI-For-Beginners |12 Weeks, 24 Lessons, AI for All!| | 13 | hemansnation/God-Level-Data-Science-ML-Full-Stack |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 14 | datawhalechina/prompt-engineering-for-developers |Chinese version of Andrew Ng's Big Model Series Courses, including "Prompt Engineering", "Building System", and "LangChain"| | 15 | ossu/computer-science |🎓 Path to a free self-taught education in Computer Science!| | 16 | microsoft/Data-Science-For-Beginners | 10 Weeks, 20 Lessons, Data Science for All! | |17 |jwasham/coding-interview-university !2023-09-29268215336 |A complete computer science study plan to become a software engineer.| [Back to Top] Thanks If this project has been helpful to you in any way, please give it a ⭐️ by clicking on the star.

TornadoVM
github
LLM Vibe Score0.539
Human Vibe Score0.20972324263626374
beehive-labMar 28, 2025

TornadoVM

TornadoVM !TornadoVM version TornadoVM is a plug-in to OpenJDK and GraalVM that allows programmers to automatically run Java programs on heterogeneous hardware. TornadoVM targets OpenCL, PTX and SPIR-V compatible devices which include multi-core CPUs, dedicated GPUs (Intel, NVIDIA, AMD), integrated GPUs (Intel HD Graphics and ARM Mali), and FPGAs (Intel and Xilinx). TornadoVM has three backends that generate OpenCL C, NVIDIA CUDA PTX assembly, and SPIR-V binary. Developers can choose which backends to install and run. Website: tornadovm.org Documentation: https://tornadovm.readthedocs.io/en/latest/ For a quick introduction please read the following FAQ. Latest Release: TornadoVM 1.0.10 - 31/01/2025 : See CHANGELOG. Installation In Linux and macOS, TornadoVM can be installed automatically with the installation script. For example: NOTE Select the desired backend: opencl: Enables the OpenCL backend (requires OpenCL drivers) ptx: Enables the PTX backend (requires NVIDIA CUDA drivers) spirv: Enables the SPIRV backend (requires Intel Level Zero drivers) Example of installation: Alternatively, TornadoVM can be installed either manually from source or by using Docker. If you are planning to use Docker with TornadoVM on GPUs, you can also follow these guidelines. You can also run TornadoVM on Amazon AWS CPUs, GPUs, and FPGAs following the instructions here. Usage Instructions TornadoVM is currently being used to accelerate machine learning and deep learning applications, computer vision, physics simulations, financial applications, computational photography, and signal processing. Featured use-cases: kfusion-tornadovm: Java application for accelerating a computer-vision application using the Tornado-APIs to run on discrete and integrated GPUs. Java Ray-Tracer: Java application accelerated with TornadoVM for real-time ray-tracing. We also have a set of examples that includes NBody, DFT, KMeans computation and matrix computations. Additional Information General Documentation Benchmarks How TornadoVM executes reductions Execution Flags FPGA execution Profiler Usage Programming Model TornadoVM exposes to the programmer task-level, data-level and pipeline-level parallelism via a light Application Programming Interface (API). In addition, TornadoVM uses single-source property, in which the code to be accelerated and the host code live in the same Java program. Compute-kernels in TornadoVM can be programmed using two different approaches (APIs): a) Loop Parallel API Compute kernels are written in a sequential form (tasks programmed for a single thread execution). To express parallelism, TornadoVM exposes two annotations that can be used in loops and parameters: a) @Parallel for annotating parallel loops; and b) @Reduce for annotating parameters used in reductions. The following code snippet shows a full example to accelerate Matrix-Multiplication using TornadoVM and the loop-parallel API: To run TornadoVM, you need to either install the TornadoVM extension for GraalVM/OpenJDK, or run with our Docker images. Additional Resources Here you can find videos, presentations, tech-articles and artefacts describing TornadoVM, and how to use it. Academic Publications If you are using TornadoVM >= 0.2 (which includes the Dynamic Reconfiguration, the initial FPGA support and CPU/GPU reductions), please use the following citation: If you are using Tornado 0.1 (Initial release), please use the following citation in your work. Selected publications can be found here. Acknowledgments This work is partially funded by Intel corporation. In addition, it has been supported by the following EU & UKRI grants (most recent first): EU Horizon Europe & UKRI AERO 101092850. EU Horizon Europe & UKRI INCODE 101093069. EU Horizon Europe & UKRI ENCRYPT 101070670. EU Horizon Europe & UKRI TANGO 101070052. EU Horizon 2020 ELEGANT 957286. EU Horizon 2020 E2Data 780245. EU Horizon 2020 ACTiCLOUD 732366. Furthermore, TornadoVM has been supported by the following EPSRC grants: PAMELA EP/K008730/1. AnyScale Apps EP/L000725/1. Contributions and Collaborations We welcome collaborations! Please see how to contribute to the project in the CONTRIBUTING page. Write your questions and proposals: Additionally, you can open new proposals on the GitHub discussions page. Alternatively, you can share a Google document with us. Collaborations: For Academic & Industry collaborations, please contact here. TornadoVM Team Visit our website to meet the team. Licenses Per Module To use TornadoVM, you can link the TornadoVM API to your application which is under Apache 2. Each Java TornadoVM module is licensed as follows: | Module | License | |--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Tornado-API | | | Tornado-Runtime | | | Tornado-Assembly | | | Tornado-Drivers | | | Tornado-Drivers-OpenCL-Headers | | | Tornado-scripts | | | Tornado-Annotation | | | Tornado-Unittests | | | Tornado-Benchmarks | | | Tornado-Examples | | | Tornado-Matrices | | | | |

ai-hub-gateway-solution-accelerator
github
LLM Vibe Score0.562
Human Vibe Score0.14530291803566378
Azure-SamplesMar 28, 2025

ai-hub-gateway-solution-accelerator

AI Hub Gateway Landing Zone accelerator The AI Hub Gateway Landing Zone is a solution accelerator that provides a set of guidelines and best practices for implementing a central AI API gateway to empower various line-of-business units in an organization to leverage Azure AI services. !user-story User Story The AI Hub Gateway Landing Zone architecture designed to be a central hub for AI services, providing a single point of entry for AI services, and enabling the organization to manage and govern AI services in a consistent manner. !AI Hub Gateway Landing Zone Key features !ai-hub-gateway-benefits.png Recent release updates: About: here you can see the recent updates to the gateway implementation Now this solution accelerator is updated to be enterprise ready with the following features: Improved OpenAI Usage Ingestion with the ability to ingest usage data from Azure OpenAI API for both streaming and non-streaming requests. Check the guide here Bring your own VNet is now supported with the ability to deploy the AI Hub Gateway Landing Zone in your own VNet. Check the guide here Throttling events monitoring is now supported with the ability to capture and raise too many requests status code as a custom metric in Application Insights. Check the guide here New gpt-4o Global Deployment is now part of the OpenAI resource provisioning Azure OpenAI API spec version was updated to to bring APIs for audio and batch among other advancements (note it is backward compatible with previous versions) AI usage reports enhancements with Cosmos Db now include a container for which include the $ pricing for AI models tokens (sample data can be found here), along with updated PowerBI dashboard design. Private connectivity now can be enabled by setting APIM deployment to External or Internal (require SKU to be either Developer or Premium) and it will provision all included Azure resources like (Azure OpenAI, Cosmos, Event Hub,...) with private endpoints. The AI Hub Gateway Landing Zone provides the following features: Centralized AI API Gateway: A central hub for AI services, providing a single point of entry for AI services that can be shared among multiple use-cases in a secure and governed approach. Seamless integration with Azure AI services: Ability to just update endpoints and keys in existing apps to switch to use AI Hub Gateway. AI routing and orchestration: The AI Hub Gateway Landing Zone provides a mechanism to route and orchestrate AI services, based on priority and target model enabling the organization to manage and govern AI services in a consistent manner. Granular access control: The AI Hub Gateway Landing Zone does not use master keys to access AI services, instead, it uses managed identities to access AI services while consumers can use gateway keys. Private connectivity: The AI Hub Gateway Landing Zone is designed to be deployed in a private network, and it uses private endpoints to access AI services. Capacity management: The AI Hub Gateway Landing Zone provides a mechanism to manage capacity based on requests and tokens. Usage & charge-back: The AI Hub Gateway Landing Zone provides a mechanism to track usage and charge-back to the respective business units with flexible integration with existing charge-back & data platforms. Resilient and scalable: The AI Hub Gateway Landing Zone is designed to be resilient and scalable, and it uses Azure API Management with its zonal redundancy and regional gateways which provides a scalable and resilient solution. Full observability: The AI Hub Gateway Landing Zone provides full observability with Azure Monitor, Application Insights, and Log Analytics with detailed insights into performance, usage, and errors. Hybrid support: The AI Hub Gateway Landing Zone approach the deployment of backends and gateway on Azure, on-premises or other clouds. !one-click-deploy One-click deploy This solution accelerator provides a one-click deploy option to deploy the AI Hub Gateway Landing Zone in your Azure subscription through Azure Developer CLI (azd) or Bicep (IaC). What is being deployed? !Azure components The one-click deploy option will deploy the following components in your Azure subscription: Azure API Management: Azure API Management is a fully managed service that powers most of the GenAI gateway capabilities. Application Insights: Application Insights is an extensible Application Performance Management (APM) service that will provides critical insights on the gateway operational performance. It will also include a dashboard for the key metrics. Event Hub: Event Hub is a fully managed, real-time data ingestion service that’s simple, trusted, and scalable and it is used to stream usage and charge-back data to target data and charge back platforms. Azure OpenAI: 3 instances of Azure OpenAI across 3 regions. Azure OpenAI is a cloud deployment of cutting edge generative models from OpenAI (like ChatGPT, DALL.E and more). Cosmos DB: Azure Cosmos DB is a fully managed NoSQL database for storing usage and charge-back data. Azure Function App: to support real-time event processing service that will be used to process the usage and charge-back data from Event Hub and push it to Cosmos DB. User Managed Identity: A user managed identity to be used by the Azure API Management to access the Azure OpenAI services/Event Hub and another for Azure Stream Analytics to access Event Hub and Cosmos DB. Virtual Network: A virtual network to host the Azure API Management and the other Azure resources. Private Endpoints & Private DNS Zones: Private endpoints for Azure OpenAI, Cosmos DB, Azure Function, Azure Monitor and Event Hub to enable private connectivity. Prerequisites In order to deploy and run this solution accelerator, you'll need Azure Account - If you're new to Azure, get an Azure account for free and you'll get some free Azure credits to get started. Azure subscription with access enabled for the Azure OpenAI service - You can request access. You can also visit the Cognitive Search docs to get some free Azure credits to get you started. Azure account permissions - Your Azure Account must have Microsoft.Authorization/roleAssignments/write permissions, such as User Access Administrator or Owner. For local development, you'll need: Azure CLI - The Azure CLI is a command-line tool that provides a great experience for managing Azure resources. You can install the Azure CLI on your local machine by following the instructions here. Azure Developer CLI (azd) - The Azure Developer CLI is a command-line tool that provides a great experience for deploying Azure resources. You can install the Azure Developer CLI on your local machine by following the instructions here VS Code - Visual Studio Code is a lightweight but powerful source code editor which runs on your desktop and is available for Windows, macOS, and Linux. You can install Visual Studio Code on your local machine by following the instructions here How to deploy? It is recommended to check first the main.bicep file that includes the deployment configuration and parameters. Make sure you have enough OpenAI capacity for gpt-35-turbo and embedding in the selected regions. Currently these are the default values: When you are happy with the configuration, you can deploy the solution using the following command: NOTE: If you faced any deployment errors, try to rerun the command as you might be facing a transient error. After that, you can start using the AI Hub Gateway Landing Zone through the Azure API Management on Azure Portal: !apim-test NOTE: You can use Azure Cloud Shell to run the above command, just clone this repository and run the command from the repo root folder. !docs Supporting documents To dive deeper into the AI Hub Gateway technical mechanics, you can check out the following guides: Architecture guides Architecture deep dive Deployment components API Management configuration OpenAI Usage Ingestion Bring your own Network Onboarding guides OpenAI Onboarding AI Search Onboarding Power BI Dashboard Throttling Events Alerts AI Studio Integration Additional guides End-to-end scenario (Chat with data) Hybrid deployment of AI Hub Gateway Deployment troubleshooting

awesome-quantum-machine-learning
github
LLM Vibe Score0.64
Human Vibe Score1
krishnakumarsekarMar 27, 2025

awesome-quantum-machine-learning

Awesome Quantum Machine Learning A curated list of awesome quantum machine learning algorithms,study materials,libraries and software (by language). Table of Contents INTRODUCTION Why Quantum Machine Learning? BASICS What is Quantum Mechanics? What is Quantum Computing? What is Topological Quantum Computing? Quantum Computing vs Classical Computing QUANTUM COMPUTING Atom Structure Photon wave Electron Fluctuation or spin States SuperPosition SuperPosition specific for machine learning(Quantum Walks) Classical Bit Quantum Bit or Qubit or Qbit Basic Gates in Quantum Computing Quantum Diode Quantum Transistor Quantum Processor Quantum Registery QRAM Quantum Entanglement QUANTUM COMPUTING MACHINE LEARNING BRIDGE Complex Numbers Tensors Tensors Network Oracle Hadamard transform Hilbert Space eigenvalues and eigenvectors Schr¨odinger Operators Quantum lambda calculus Quantum Amplitute Phase Qubits Encode and Decode convert classical bit to qubit Quantum Dirac and Kets Quantum Complexity Arbitrary State Generation QUANTUM ALGORITHMS Quantum Fourier Transform Variational-Quantum-Eigensolver Grovers Algorithm Shor's algorithm Hamiltonian Oracle Model Bernstein-Vazirani Algorithm Simon’s Algorithm Deutsch-Jozsa Algorithm Gradient Descent Phase Estimation Haar Tansform Quantum Ridgelet Transform Quantum NP Problem QUANTUM MACHINE LEARNING ALGORITHMS Quantum K-Nearest Neighbour Quantum K-Means Quantum Fuzzy C-Means Quantum Support Vector Machine Quantum Genetic Algorithm Quantum Hidden Morkov Models Quantum state classification with Bayesian methods Quantum Ant Colony Optimization Quantum Cellular Automata Quantum Classification using Principle Component Analysis Quantum Inspired Evolutionary Algorithm Quantum Approximate Optimization Algorithm Quantum Elephant Herding Optimization Quantum-behaved Particle Swarm Optimization Quantum Annealing Expectation-Maximization QAUNTUM NEURAL NETWORK Quantum perceptrons Qurons Quantum Auto Encoder Quantum Annealing Photonic Implementation of Quantum Neural Network Quantum Feed Forward Neural Network Quantum Boltzman Neural Network Quantum Neural Net Weight Storage Quantum Upside Down Neural Net Quantum Hamiltonian Neural Net QANN QPN SAL Quantum Hamiltonian Learning Compressed Quantum Hamiltonian Learning QAUNTUM STATISTICAL DATA ANALYSIS Quantum Probability Theory Kolmogorovian Theory Quantum Measurement Problem Intuitionistic Logic Heyting Algebra Quantum Filtering Paradoxes Quantum Stochastic Process Double Negation Quantum Stochastic Calculus Hamiltonian Calculus Quantum Ito's Formula Quantum Stochastic Differential Equations(QSDE) Quantum Stochastic Integration Itō Integral Quasiprobability Distributions Quantum Wiener Processes Quantum Statistical Ensemble Quantum Density Operator or Density Matrix Gibbs Canonical Ensemble Quantum Mean Quantum Variance Envariance Polynomial Optimization Quadratic Unconstrained Binary Optimization Quantum Gradient Descent Quantum Based Newton's Method for Constrained Optimization Quantum Based Newton's Method for UnConstrained Optimization Quantum Ensemble Quantum Topology Quantum Topological Data Analysis Quantum Bayesian Hypothesis Quantum Statistical Decision Theory Quantum Minimax Theorem Quantum Hunt-Stein Theorem Quantum Locally Asymptotic Normality Quantum Ising Model Quantum Metropolis Sampling Quantum Monte Carlo Approximation Quantum Bootstrapping Quantum Bootstrap Aggregation Quantum Decision Tree Classifier Quantum Outlier Detection Cholesky-Decomposition for Quantum Chemistry Quantum Statistical Inference Asymptotic Quantum Statistical Inference Quantum Gaussian Mixture Modal Quantum t-design Quantum Central Limit Theorem Quantum Hypothesis Testing Quantum Chi-squared and Goodness of Fit Testing Quantum Estimation Theory Quantum Way of Linear Regression Asymptotic Properties of Quantum Outlier Detection in Quantum Concepts QAUNTUM ARTIFICIAL INTELLIGENCE Heuristic Quantum Mechanics Consistent Quantum Reasoning Quantum Reinforcement Learning QAUNTUM COMPUTER VISION QUANTUM PROGRAMMING LANGUAGES , TOOLs and SOFTWARES ALL QUANTUM ALGORITHMS SOURCE CODES , GITHUBS QUANTUM HOT TOPICS Quantum Cognition Quantum Camera Quantum Mathematics Quantum Information Processing Quantum Image Processing Quantum Cryptography Quantum Elastic Search Quantum DNA Computing Adiabetic Quantum Computing Topological Big Data Anlytics using Quantum Hamiltonian Time Based Quantum Computing Deep Quantum Learning Quantum Tunneling Quantum Entanglment Quantum Eigen Spectrum Quantum Dots Quantum elctro dynamics Quantum teleportation Quantum Supremacy Quantum Zeno Effect Quantum Cohomology Quantum Chromodynamics Quantum Darwinism Quantum Coherence Quantum Decoherence Topological Quantum Computing Topological Quantum Field Theory Quantum Knots Topological Entanglment Boson Sampling Quantum Convolutional Code Stabilizer Code Quantum Chaos Quantum Game Theory Quantum Channel Tensor Space Theory Quantum Leap Quantum Mechanics for Time Travel Quantum Secured Block Chain Quantum Internet Quantum Optical Network Quantum Interference Quantum Optical Network Quantum Operating System Electron Fractionalization Flip-Flop Quantum Computer Quantum Information with Gaussian States Quantum Anomaly Detection Distributed Secure Quantum Machine Learning Decentralized Quantum Machine Learning Artificial Agents for Quantum Designs Light Based Quantum Chips for AI Training QUANTUM STATE PREPARATION ALGORITHM FOR MACHINE LEARNING Pure Quantum State Product State Matrix Product State Greenberger–Horne–Zeilinger State W state AKLT model Majumdar–Ghosh Model Multistate Landau–Zener Models Projected entangled-pair States Infinite Projected entangled-pair States Corner Transfer Matrix Method Tensor-entanglement Renormalization Tree Tensor Network for Supervised Learning QUANTUM MACHINE LEARNING VS DEEP LEARNING QUANTUM MEETUPS QUANTUM GOOGLE GROUPS QUANTUM BASED COMPANIES QUANTUM LINKEDLIN QUANTUM BASED DEGREES CONSOLIDATED QUANTUM ML BOOKS CONSOLIDATED QUANTUM ML VIDEOS CONSOLIDATED QUANTUM ML Reserach Papers CONSOLIDATED QUANTUM ML Reserach Scientist RECENT QUANTUM UPDATES FORUM ,PAGES AND NEWSLETTER INTRODUCTION Why Quantum Machine Learning? Machine Learning(ML) is just a term in recent days but the work effort start from 18th century. What is Machine Learning ? , In Simple word the answer is making the computer or application to learn themselves . So its totally related with computing fields like computer science and IT ? ,The answer is not true . ML is a common platform which is mingled in all the aspects of the life from agriculture to mechanics . Computing is a key component to use ML easily and effectively . To be more clear ,Who is the mother of ML ?, As no option Mathematics is the mother of ML . The world tremendous invention complex numbers given birth to this field . Applying mathematics to the real life problem always gives a solution . From Neural Network to the complex DNA is running under some specific mathematical formulas and theorems. As computing technology growing faster and faster mathematics entered into this field and makes the solution via computing to the real world . In the computing technology timeline once a certain achievements reached peoples interested to use advanced mathematical ideas such as complex numbers ,eigen etc and its the kick start for the ML field such as Artificial Neural Network ,DNA Computing etc. Now the main question, why this field is getting boomed now a days ? , From the business perspective , 8-10 Years before during the kick start time for ML ,the big barrier is to merge mathematics into computing field . people knows well in computing has no idea on mathematics and research mathematician has no idea on what is computing . The education as well as the Job Opportunities is like that in that time . Even if a person tried to study both then the business value for making a product be not good. Then the top product companies like Google ,IBM ,Microsoft decided to form a team with mathematician ,a physician and a computer science person to come up with various ideas in this field . Success of this team made some wonderful products and they started by providing cloud services using this product . Now we are in this stage. So what's next ? , As mathematics reached the level of time travel concepts but the computing is still running under classical mechanics . the companies understood, the computing field must have a change from classical to quantum, and they started working on the big Quantum computing field, and the market named this field as Quantum Information Science .The kick start is from Google and IBM with the Quantum Computing processor (D-Wave) for making Quantum Neural Network .The field of Quantum Computer Science and Quantum Information Science will do a big change in AI in the next 10 years. Waiting to see that........... .(google, ibm). References D-Wave - Owner of a quantum processor Google - Quantum AI Lab IBM - Quantum Computer Lab Quora - Question Regarding future of quantum AI NASA - NASA Quantum Works Youtube - Google Video of a Quantum Processor external-link - MIT Review microsoft new product - Newly Launched Microsoft Quantum Language and Development Kit microsoft - Microsoft Quantum Related Works Google2 - Google Quantum Machine Learning Blog BBC - About Google Quantum Supremacy,IBM Quantum Computer and Microsoft Q Google Quantum Supremacy - Latest 2019 Google Quantum Supremacy Achievement IBM Quantum Supremacy - IBM Talk on Quantum Supremacy as a Primer VICE on the fight - IBM Message on Google Quantum Supremacy IBM Zurich Quantum Safe Cryptography - An interesting startup to replace all our Certificate Authority Via Cloud and IBM Q BASICS What is Quantum Mechanics? In a single line study of an electron moved out of the atom then its classical mechanic ,vibrates inside the atom its quantum mechanics WIKIPEDIA - Basic History and outline LIVESCIENCE. - A survey YOUTUBE - Simple Animation Video Explanining Great. What is Quantum Computing? A way of parallel execution of multiple processess in a same time using qubit ,It reduces the computation time and size of the processor probably in neuro size WIKIPEDIA - Basic History and outline WEBOPEDIA. - A survey YOUTUBE - Simple Animation Video Explanining Great. Quantum Computing vs Classical Computing LINK - Basic outline Quantum Computing Atom Structure one line : Electron Orbiting around the nucleous in an eliptical format YOUTUBE - A nice animation video about the basic atom structure Photon Wave one line : Light nornmally called as wave transmitted as photons as similar as atoms in solid particles YOUTUBE - A nice animation video about the basic photon 1 YOUTUBE - A nice animation video about the basic photon 2 Electron Fluctuation or spin one line : When a laser light collide with solid particles the electrons of the atom will get spin between the orbitary layers of the atom ) YOUTUBE - A nice animation video about the basic Electron Spin 1 YOUTUBE - A nice animation video about the basic Electron Spin 2 YOUTUBE - A nice animation video about the basic Electron Spin 3 States one line : Put a point on the spinning electron ,if the point is in the top then state 1 and its in bottom state 0 YOUTUBE - A nice animation video about the Quantum States SuperPosition two line : During the spin of the electron the point may be in the middle of upper and lower position, So an effective decision needs to take on the point location either 0 or 1 . Better option to analyse it along with other electrons using probability and is called superposition YOUTUBE - A nice animation video about the Quantum Superposition SuperPosition specific for machine learning(Quantum Walks) one line : As due to computational complexity ,quantum computing only consider superposition between limited electrons ,In case to merge more than one set quantum walk be the idea YOUTUBE - A nice video about the Quantum Walks Classical Bits one line : If electron moved from one one atom to other ,from ground state to excited state a bit value 1 is used else bit value 0 used Qubit one line : The superposition value of states of a set of electrons is Qubit YOUTUBE - A nice video about the Quantum Bits 1 YOUTUBE - A nice video about the Bits and Qubits 2 Basic Gates in Quantum Computing one line : As like NOT, OR and AND , Basic Gates like NOT, Hadamard gate , SWAP, Phase shift etc can be made with quantum gates YOUTUBE - A nice video about the Quantum Gates Quantum Diode one line : Quantum Diodes using a different idea from normal diode, A bunch of laser photons trigger the electron to spin and the quantum magnetic flux will capture the information YOUTUBE - A nice video about the Quantum Diode Quantum Transistors one line : A transistor default have Source ,drain and gate ,Here source is photon wave ,drain is flux and gate is classical to quantum bits QUORA -Discussion about the Quantum Transistor YOUTUBE - Well Explained Quantum Processor one line : A nano integration circuit performing the quantum gates operation sorrounded by cooling units to reduce the tremendous amount of heat YOUTUBE - Well Explained Quantum Registery QRAM one line : Comapring the normal ram ,its ultrafast and very small in size ,the address location can be access using qubits superposition value ,for a very large memory set coherent superposition(address of address) be used PDF - very Well Explained QUANTUM COMPUTING MACHINE LEARNING BRIDGE Complex Numbers one line : Normally Waves Interference is in n dimensional structure , to find a polynomial equation n order curves ,better option is complex number YOUTUBE - Wonderful Series very super Explained Tensors one line : Vectors have a direction in 2D vector space ,If on a n dimensional vector space ,vectors direction can be specify with the tensor ,The best solution to find the superposition of a n vector electrons spin space is representing vectors as tensors and doing tensor calculus YOUTUBE - Wonderful super Explained tensors basics YOUTUBE - Quantum tensors basics Tensors Network one line : As like connecting multiple vectors ,multple tensors form a network ,solving such a network reduce the complexity of processing qubits YOUTUBE - Tensors Network Some ideas specifically for quantum algorithms QUANTUM MACHINE LEARNING ALGORITHMS Quantum K-Nearest Neighbour info : Here the centroid(euclidean distance) can be detected using the swap gates test between two states of the qubit , As KNN is regerssive loss can be tally using the average PDF1 from Microsoft - Theory Explanation PDF2 - A Good Material to understand the basics Matlab - Yet to come soon Python - Yet to come soon Quantum K-Means info : Two Approaches possible ,1. FFT and iFFT to make an oracle and calculate the means of superposition 2. Adiobtic Hamiltonian generation and solve the hamiltonian to determine the cluster PDF1 - Applying Quantum Kmeans on Images in a nice way PDF2 - Theory PDF3 - Explaining well the K-means clustering using hamiltonian Matlab - Yet to come soon Python - Yet to come soon Quantum Fuzzy C-Means info : As similar to kmeans fcm also using the oracle dialect ,but instead of means,here oracle optimization followed by a rotation gate is giving a good result PDF1 - Theory Matlab - Yet to come soon Python - Yet to come soon Quantum Support Vector Machine info : A little different from above as here kernel preparation is via classical and the whole training be in oracles and oracle will do the classification, As SVM is linear ,An optimal Error(Optimum of the Least Squares Dual Formulation) Based regression is needed to improve the performance PDF1 - Nice Explanation but little hard to understand :) PDF2 - Nice Application of QSVM Matlab - Yet to come soon Python - Yet to come soon Quantum Genetic Algorithm info : One of the best algorithm suited for Quantum Field ,Here the chromosomes act as qubit vectors ,the crossover part carrying by an evaluation and the mutation part carrying by the rotation of gates ![Flow Chart]() PDF1 - Very Beautiful Article , well explained and superp PDF2 - A big theory :) PDF3 - Super Comparison Matlab - Simulation Python1 - Simulation Python2 - Yet to come Quantum Hidden Morkov Models info : As HMM is already state based ,Here the quantum states acts as normal for the markov chain and the shift between states is using quantum operation based on probability distribution ![Flow Chart]() PDF1 - Nice idea and explanation PDF2 - Nice but a different concept little Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum state classification with Bayesian methods info : Quantum Bayesian Network having the same states concept using quantum states,But here the states classification to make the training data as reusable is based on the density of the states(Interference) ![Bayesian Network Sample1]() ![Bayesian Network Sample2]() ![Bayesian Network Sample3]() PDF1 - Good Theory PDF2 - Good Explanation Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum Ant Colony Optimization info : A good algorithm to process multi dimensional equations, ACO is best suited for Sales man issue , QACO is best suited for Sales man in three or more dimension, Here the quantum rotation circuit is doing the peromene update and qubits based colony communicating all around the colony in complex space ![Ant Colony Optimization 1]() PDF1 - Good Concept PDF2 - Good Application Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum Cellular Automata info : One of the very complex algorithm with various types specifically used for polynomial equations and to design the optimistic gates for a problem, Here the lattice is formed using the quatum states and time calculation is based on the change of the state between two qubits ,Best suited for nano electronics ![Quantum Cellular Automata]() Wikipedia - Basic PDF1 - Just to get the keywords PDF2 - Nice Explanation and an easily understandable application Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come QAUNTUM NEURAL NETWORK one line : Its really one of the hardest topic , To understand easily ,Normal Neural Network is doing parallel procss ,QNN is doing parallel of parallel processess ,In theory combination of various activation functions is possible in QNN ,In Normal NN more than one activation function reduce the performance and increase the complexity Quantum perceptrons info : Perceptron(layer) is the basic unit in Neural Network ,The quantum version of perceptron must satisfy both linear and non linear problems , Quantum Concepts is combination of linear(calculus of superposition) and nonlinear(State approximation using probability) ,To make a perceptron in quantum world ,Transformation(activation function) of non linearity to certain limit is needed ,which is carrying by phase estimation algorithm ![Quantum Perceptron 3]() PDF1 - Good Theory PDF2 - Good Explanation Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come QAUNTUM STATISTICAL DATA ANALYSIS one line : An under research concept ,It can be seen in multiple ways, one best way if you want to apply n derivative for a problem in current classical theory its difficult to compute as its serialization problem instead if you do parallelization of differentiation you must estimate via probability the value in all flows ,Quantum Probability Helps to achieve this ,as the loss calculation is very less . the other way comparatively booming is Quantum Bayesianism, its a solution to solve most of the uncertainity problem in statistics to combine time and space in highly advanced physical research QUANTUM PROGRAMMING LANGUAGES , TOOLs and SOFTWARES All info : All Programming languages ,softwares and tools in alphabetical order Software - Nice content of all Python library - A python library Matlab based python library - Matlab Python Library Quantum Tensor Network Github - Tensor Network Bayesforge - A Beautiful Amazon Web Service Enabled Framework for Quantum Alogorithms and Data Analytics Rigetti - A best tools repository to use quantum computer in real time Rigetti Forest - An API to connect Quantum Computer quil/pyQuil - A quantum instruction language to use forest framework Grove - Grove is a repository to showcase quantum Fourier transform, phase estimation, the quantum approximate optimization algorithm, and others developed using Forest QISKit - A IBM Kit to access quantum computer and mainly for quantum circuits IBM Bluemix Simulator - A Bluemix Simulator for Quantum Circuits Microsoft Quantum Development Kit - Microsoft Visual Studio Enbaled Kit for Quantum Circuit Creation Microsoft "Q#" - Microsoft Q Sharp a new Programming Language for Quantum Circuit Creation qiskit api python - An API to connect IBM Quantum Computer ,With the generated token its easy to connect ,but very limited utils ,Lot of new utils will come soon Cyclops Tensor Framework - A framework to do tensor network simulations Python ToolKit for chemistry and physics Quantum Algorithm simulations - A New Started Project for simulating molecule and solids Bayesian Based Quatum Projects Repository - A nice repository and the kickstarter of bayesforge Google Fermion Products - A newly launched product specifivally for chemistry simulation Tree Tensor Networks - Interesting Tensor Network in Incubator Deep Tensor Neural Network - Some useful information about Tensor Neural Network in Incubator Generative Tensorial Networks - A startup to apply machine learning via tensor network for drug discovery Google Bristlecone - A new Quantum Processor from Google , Aimed for Future Hardwares with full fledged AI support XANADU - A Light based Quantum Hardware(chips supports) and Software Company Started in Preparation Stage. Soon will be in market fathom computing - A new concept to train the ai in a processor using light and quantum based concepts. soon products will be launch Alibaba Quantum Computing Cloud Service - Cloud Service to access 11 Bit Quantum Computing Processor Atomistic Machine Learning Project - Seems something Interesting with Deep Tensor Network for Quantum Chemistry Applications circQ and Google Works - Google Top Efforts on Tools IBM Safe Cryptography on Cloud - IBM Started and Developing a Quantm Safe Cryptography to replace all our Certificate Authority via Cloud Google Tensor Network Open Source - Google Started the Most Scientist Preferred Way To Use a Quantum Computer Circuit. Tensor Flow Which Makes Easy to Design the Network and Will Leave the Work Effect Of Gates, Processor Preparation and also going to tell the beauty of Maths Google Tensor Network Github - Github Project of Google Tensor Network Quantum Tensorflow - Yet to come soon Quantum Spark - Yet to come soon Quatum Map Reduce - Yet to come soon Quantum Database - Yet to come soon Quantum Server - Yet to come soon Quantum Data Analytics - Yet to come soon QUANTUM HOT TOPICS Deep Quantum Learning why and what is deep learning? In one line , If you know deep learning you can get a good job :) ,Even a different platform undergraduated and graduated person done a master specialization in deep learning can work in this big sector :), Practically speaking machine learning (vector mathematics) , deep learning (vector space(Graphics) mathematics) and big data are the terms created by big companies to make a trend in the market ,but in science and research there is no word such that , Now a days if you ask a junior person working in this big companies ,what is deep learning ,you will get some reply as "doing linear regression with stochastic gradient for a unsupervised data using Convolutional Neural Network :)" ,They knows the words clearly and knows how to do programming using that on a bunch of "relative data" , If you ask them about the FCM , SVM and HMM etc algorithms ,they will simply say these are olden days algorithms , deep learning replaced all :), But actually they dont know from the birth to the till level and the effectiveness of algorithms and mathematics ,How many mathematical theorems in vector, spaces , tensors etc solved to find this "hiding the complexity technology", They did not played with real non relative data like medical images, astro images , geology images etc , finding a relation and features is really complex and looping over n number of images to do pattern matching is a giant work , Now a days the items mentioned as deep learning (= multiple hidden artifical neural network) is not suitable for that why quantum deep learning or deep quantum learning? In the mid of Artificial Neural Network Research people realised at the maximum extreme only certain mathematical operations possible to do with ANN and the aim of this ANN is to achieve parallel execution of many mathematical operations , In artificial Intelligence ,the world intelligence stands for mathematics ,how effective if a probem can be solvable is based on the mathematics logic applying on the problem , more the logic will give more performance(more intelligent), This goal open the gate for quantum artificial neural network, On applying the ideas behind the deep learning to quantum mechanics environment, its possible to apply complex mathematical equations to n number of non relational data to find more features and can improve the performance Quantum Machine Learning vs Deep Learning Its fun to discuss about this , In recent days most of the employees from Product Based Companies Like google,microsoft etc using the word deep learning ,What actually Deep Learning ? and is it a new inventions ? how to learn this ? Is it replacing machine learning ? these question come to the mind of junior research scholars and mid level employees The one answer to all questions is deep learning = parallel "for" loops ,No more than that ,Its an effective way of executing multiple tasks repeatly and to reduce the computation cost, But it introduce a big cap between mathematics and computerscience , How ? All classical algorithms based on serial processing ,Its depends on the feedback of the first loop ,On applying a serial classical algorithm in multiple clusters wont give a good result ,but some light weight parallel classical algorithms(Deep learning) doing the job in multiple clusters and its not suitable for complex problems, What is the solution for then? As in the title Quantum Machine Learning ,The advantage behind is deep learning is doing the batch processing simply on the data ,but quantum machine learning designed to do batch processing as per the algorithm The product companies realised this one and they started migrating to quantum machine learning and executing the classical algorithms on quantum concept gives better result than deep learning algorithms on classical computer and the target to merge both to give very wonderful result References Quora - Good Discussion Quora - The Bridge Discussion Pdf - Nice Discussion Google - Google Research Discussion Microsoft - Microsoft plan to merge both IBM - IBM plan to merge both IBM Project - IBM Project idea MIT and Google - Solutions for all questions QUANTUM MEETUPS Meetup 1 - Quantum Physics Meetup 2 - Quantum Computing London Meetup 3 - Quantum Computing New York Meetup 4 - Quantum Computing Canada Meetup 5 - Quantum Artificial Intelligence Texas Meetup 6 - Genarl Quantum Mechanics , Mathematics New York Meetup 7 - Quantum Computing Mountain View California Meetup 8 - Statistical Analysis New York Meetup 9 - Quantum Mechanics London UK Meetup 10 - Quantum Physics Sydney Australia Meetup 11 - Quantum Physics Berkeley CA Meetup 12 - Quantum Computing London UK Meetup 13 - Quantum Mechanics Carmichael CA Meetup 14 - Maths and Science Group Portland Meetup 15 - Quantum Physics Santa Monica, CA Meetup 16 - Quantum Mechanics London Meetup 17 - Quantum Computing London Meetup 18 - Quantum Meta Physics ,Kansas City , Missouri ,US Meetup 19 - Quantum Mechanics and Physics ,Boston ,Massachusetts ,US Meetup 20 - Quantum Physics and Mechanics ,San Francisco ,California Meetup 21 - Quantum Mechanics ,Langhorne, Pennsylvania Meetup 22 - Quantum Mechanics ,Portland QUANTUM BASED DEGREES Plenty of courses around the world and many Universities Launching it day by day ,Instead of covering only Quantum ML , Covering all Quantum Related topics gives more idea in the order below Available Courses Quantum Mechanics for Science and Engineers Online Standford university - Nice Preparatory Course edx - Quantum Mechanics for Everyone NPTEL 1 - Nice Series of Courses to understand basics and backbone of quantum mechanics NPTEL 2 NPTEL 3 NPTEL 4 NPTEL 5 Class Based Course UK Bristol Australia Australian National University Europe Maxs Planks University Quantum Physics Online MIT - Super Explanation and well basics NPTEL - Nice Series of Courses to understand basics and backbone of quantum Physics Class Based Course Europe University of Copenhagen Quantum Chemistry Online NPTEL 1 - Nice Series of Courses to understand basics and backbone of quantum Chemistry NPTEL 2 - Class Based Course Europe UGent Belgium Quantum Computing Online MIT - Super Explanation and well basics edx - Nice Explanation NPTEL - Nice Series of Courses to understand basics and backbone of quantum Computing Class Based Course Canada uwaterloo Singapore National University Singapore USA Berkley China Baidu Quantum Technology Class Based Course Canada uwaterloo Singapore National University Singapore Europe Munich Russia Skoltech Quantum Information Science External Links quantwiki Online MIT - Super Explanation and well basics edx - Nice Explanation NPTEL - Nice Series of Courses to understand basics and backbone of quantum information and computing Class Based Course USA MIT Standford University Joint Center for Quantum Information and Computer Science - University of Maryland Canada Perimeter Institute Singapore National University Singapore Europe ULB Belgium IQOQI Quantum Electronics Online MIT - Wonderful Course NPTEL - Nice Series of Courses to understand basics and backbone of quantum Electronics Class Based Course USA Texas Europe Zurich ICFO Asia Tata Institute Quantum Field Theory Online Standford university - Nice Preparatory Course edx - Some QFT Concepts available Class Based Course UK Imperial Europe Vrije Quantum Computer Science Class Based Course USA Oxford Joint Center for Quantum Information and Computer Science - University of Maryland Quantum Artificial Intelligence and Machine Learning External Links Quora 1 Quora 1 Artificial Agents Research for Quantum Designs Quantum Mathematics Class Based Course USA University of Notre CONSOLIDATED Quantum Research Papers scirate - Plenty of Quantum Research Papers Available Peter Wittek - Famous Researcher for the Quantum Machine Leanrning , Published a book in this topic [Murphy Yuezhen Niu] (https://scholar.google.com/citations?user=0wJPxfkAAAAJ&hl=en) - A good researcher published some nice articles Recent Quantum Updates forum ,pages and newsletter Quantum-Tech - A Beautiful Newsletter Page Publishing Amazing Links facebook Quantum Machine Learning - Running By me . Not that much good :). You can get some ideas Linkedlin Quantum Machine Learning - A nice page running by experts. Can get plenty of ideas FOSDEM 2019 Quantum Talks - A one day talk in fosdem 2019 with more than 10 research topics,tools and ideas FOSDEM 2020 Quantum Talks - Live talk in fosdem 2020 with plenty new research topics,tools and ideas License Dedicated Opensources ![Dedicated Opensources]() Source code of plenty of Algortihms in Image Processing , Data Mining ,etc in Matlab, Python ,Java and VC++ Scripts Good Explanations of Plenty of algorithms with flow chart etc Comparison Matrix of plenty of algorithms Is Quantum Machine Learning Will Reveal the Secret Maths behind Astrology? Awesome Machine Learning and Deep Learning Mathematics is online Published Basic Presentation of the series Quantum Machine Learning Contribution If you think this page might helpful. Please help for World Education Charity or kids who wants to learn

machine-learning-blackjack-solution
github
LLM Vibe Score0.42
Human Vibe Score0.022610872675250356
GregSommervilleMar 27, 2025

machine-learning-blackjack-solution

machine-learning-blackjack-solution Introduction A genetic algorithm is a type of artificial intelligence programming that uses ideas from evolution to solve complex problems. It works by creating a population of (initially random) candidate solutions, then repeatedly selecting pairs of candidates and combining their solutions using a process similar to genetic crossover. Sometimes candidate solutions even go through mutation, just to introduce new possibilities into the population. After a large number of generations, the best solution found up to that point is often the optimal, best solution possible. Genetic algorithms are particularly well-suited for combinatorial problems, where there are huge numbers of potential solutions to a problem. The evolutionary process they go through is, in essence, a search through a huge solution space. A solution space so large that you simply could never use a brute force approach. This project is a demonstration of using a genetic algorithm to find an optimal strategy for playing the casino game Blackjack. Please see this article for a story about how this program was used, and what the results were. The article describes some of the available settings, and shows how different values for those settings affect the final result. The source code is for a Windows application written in Cthat allows you to play with different settings like population size, selection style and mutation rate. Each generation's best solution is displayed, so you can watch the program literally evolve a solution. !blackjack strategy tester screenshot The property grid located at the upper left of the screen is where you adjust settings. There's an informational area below that, and the right side of the screen is the display area for the three tables that represent a strategy for playing Blackjack. The tall table on the left is for hard hands, the table in the upper right is for soft hands, and the table in the lower right is for pairs. We'll talk more about how to interpret this strategy in a bit. The columns along the tops of the three tables are for the dealer upcard. When you play Blackjack the dealer has one of his two cards initially turned face up, and the rank of that card has a big impact on recommended strategy. Notice that the upcard ranks don't include Jack, Queen or King. That's because those cards all count 10, so we group them and the Ten together and simplify the tables. To use the tables, first, determine if you have a pair, soft hand, or hard hand. Then look in the appropriate table, with the correct dealer upcard column. The cell in the table will be "H" when the correct strategy is to hit, "S" when the correct strategy is to stand, "D" for double-down, and (in the pairs table only) "P" for split. A Word About This "Optimal" Strategy Before we go any further, it needs to be stated that this problem of finding an optimal Blackjack strategy has already been solved. Back in the 1960s, a mathematician named Edward O. Thorp authored a book called Beat the Dealer, which included charts showing the optimal "Basic" strategy. That strategy looks like this: !optimal blackjack strategy So we're solving a problem that has already been solved, but that's actually good. That means we can compare our results to the known best solution. For example, if our result strategy tells us to do anything but stand when holding a pair of Tens, Jacks, Queens or Kings, we know there's a problem. There's one other thing to get out of the way before we go any further, and that's the idea of nondeterministic code. That means that if we run the same code twice in a row, we're likely to get two different results. That's something that happens with genetic algorithms due to their inherent randomness. There's no guarantee you'll find the absolute optimal solution, but it is assured that you will find an optimal or near-optimal solution. It's something that isn't typical when writing code, so it takes some adjustment for most programmers. Genetic Algorithms Now let's talk about the details of a genetic algorithm. Fitness Scores First of all, we need a way to evaluate candidates so we can compare them to each other. That means a numeric fitness score, which in this case is quite simple: you simulate playing a certain number of hands using the strategy, and then count the number of chips you have at the end. The big question is, how many hands should we test with? The challenge of trying to test a strategy is that due to the innate randomness of Blackjack, you could use the same strategy ten times and get ten completely different results. Obviously, the more hands you play, the more the randomness gets smoothed out, and the quality of the underlying strategy starts to emerge. If you doubt this, just think about flipping a coin. If you only flip it five times, there's certainly a possibility that it'll come up heads all five times (in fact, that happens just over 3% of the time). However, if you flip it 500 times, there's no way it's going to end up all heads - the odds of it happening are 0.5500, which works out to be roughly once every 3 x 10150 times you try it. After some testing and analysis, it was determined that a minimum of 100,000 hands per test is needed for a reasonable level of accuracy. There's still variance even at that number, but in order to cut the variance in half, you'd need to bump the number of hands to 500,000. One reason this accuracy is important is that in the later generations, the differences between candidates are very small. Evolution has caused the main parts of the strategy to converge on a particular approach, and towards the end all it's doing is refining the minor details. In those cases it's important to accurately determine the difference between two similar candidates. Representation Representation is simply the idea that we need to use a data structure for a candidate solution that can be combined via crossover, and possibly mutated. In this case, that's also quite simple because the way that human beings represent a Blackjack strategy is to use three tables, as we've seen. Representing those in code with three two-dimensional arrays is the obvious approach. Each cell in those three tables will have "Hit", "Stand", "Double-Down", or (only for pairs) "Split". By the way, since there are 160 cells in the hard hands table, and 80 cells in the soft hands table, and 100 cells in the pairs table, we can calculate exactly how many possible distinct strategies there are for Blackjack: 4100 x 380 x 3160 = 5 x 10174 possible Blackjack strategies That's a big number, which is obviously impossible to search using brute force. Genetic algorithms (GAs) are extremely helpful when trying to find an optimal solution from a very large set of possible solutions like this. Blackjack Rules and Strategies The rules of Blackjack are fairly simple. The dealer and the player both are dealt two cards. The player sees both of their cards (they are usually dealt face up), and one of the dealer's cards is dealt face up. Each card has a value - for cards between 2 and 10, the value is the same as the card's rank (so an Eight of Spades counts as 8, for example). All face cards count as 10, and an Ace can either be 1 or 11 (it counts as 11 only when that does not result in a hand that exceeds 21). The suit of a card does not matter. After the cards are dealt, if the player has Blackjack (a total of 21) and the dealer does not, the player is immediately paid 1.5 times their original bet, and a new hand is dealt. If the player has 21 and the dealer does also, then it's a tie and the player gets their original bet back, and a new hand is dealt. If the player wasn't dealt a Blackjack, then play continues with the player deciding whether to Stand (not get any more cards), Hit (receive an additional card), Double-down (place an additional bet, and receive one and only one more card), or, in the case of holding a pair, splitting the hand, which means placing an additional bet and receiving two new cards, so the end result is that the player is now playing two (or, in the case of multiple splits, more than two) hands simultaneously. If the player hits or double-downs and has a resulting hand that exceeds 21, then they lose and play continues with the next hand. If not, then the dealer draws until their hand totals at least 17. If the dealer exceeds 21 at this point, the player receives a payment equal to twice their original bet. If the dealer doesn't exceed 21, then the hands are compared and the player with the highest total that doesn't exceed 21 wins. Because of these rules, certain effective strategies emerge. One common strategy is that if you hold a hard hand with a value of 20, 19 or 18, you should Stand, since you avoid busting by going over 21, and you have a nice hand total that might win in a showdown with the dealer. Another common strategy is to split a pair of Aces, since Aces are so powerful (due to the fact that count as 11 or 1, you can often Hit a hand with a soft Ace with no risk of busting). Likewise, splitting a pair of 8s is a good idea because with a hard total of 16, it's likely you will bust if you take a Hit (since so many cards count as 10). As a human being, all it takes is a little knowledge about the rules in order to construct a strategy. The GA program doesn't have that advantage, and operates completely without any pre-programmed knowledge of Blackjack. It simply uses the relative fitness scores and the mechanism of evolution to find the solution. GA Settings There are many variables or settings for a GA. You can adjust population size, how parent candidates are selected, how the resulting children may be mutated, and several other items. The following sections describe some of these settings: Setting: Selection Style Once we've solved representation and have a fitness function, the next step is to select two candidates for crossover during the process of building a new generation. There are three common styles for selection, and this program supports all of them. First, you can choose Roulette Wheel selection. It's named for a Roulette wheel because you can imagine each candidate's fitness score being a wedge in a pie chart, with a size proportionate to its relative fitness compared to the other candidates. (Of course, this assumes that all fitness scores are positive, which we will talk about shortly). The main benefit of Roulette Wheel selection is that selection is fitness-proportionate. Imagine if you had only three candidates, with fitness scores of 1, 3, and 8. The relative selection probabilities for those candidates will be 1/12, 3/12, and 8/12. The downside of Roulette Wheel selection is that it tends to be somewhat slow in terms of processing. The selection process is done by iterating through the candidates until a particular condition is matched - in other words, O(N) performance. Another potential problem with Roulette Wheel selection is that there may be situations where fitness scores vary widely, to such an extent that only certain candidates have any reasonable chance of being selected. This happens frequently in early generations, since the majority of candidates are mostly random. Although this might sound like a positive (since you ultimately want to select candidates with high fitness scores), it also results in a loss of genetic diversity. In other words, even though a particular candidate may have a low fitness score in an early generation, it may contain elements that are needed to find the ultimate solution in later generations. Ranked Selection is the solution to this problem. Instead of using raw fitness scores during the selection process, the candidates are sorted by fitness, with the worst candidate receiving a score of 0, the second worse receiving 1, and so forth, all the way to the best candidate, which has a score equal to the population size - 1. Ranked Selection is quite slow, since it combines the O(N) performance of Roulette Wheel, with the additional requirement that the candidates be sorted before selection. However, there may be circumstances where it performs better than other selection approaches. Finally, the fastest selection method of all is called Tournament Selection. This method simply selects N random candidates from the current generation, and then uses the one with the best fitness score. A tournament size of 2 means two random candidates are selected, and the best of those two is used. If you have a large tournament size (like 10), then 10 different candidates will be selected, with the best of those being the ultimate selection. That obviously tilts the balance between randomness and quality. Tournament selection works well in most cases, but it does require some experimentation to find the best tourney size. Setting: Elitism Elitism is a technique that helps ensure that the best candidates are always maintained. Since all selection methods are random to some degree, it is possible to completely lose the best candidates from one generation to another. By using Elitism, we automatically advance a certain percentage of the best candidates to the next generation. Elitism does have a negative impact on performance since all of the candidates must be sorted by fitness score. Typically Elitism is done before filling the rest of a new generation with new candidates created by crossover. Crossover Details Once two candidate solutions have been selected, the next step in building a new generation is to combine those two into a single new candidate, hopefully using the best of both parent strategies. There are a number of ways to do crossover, but the method used in this program is quite straightforward - the two fitness scores are compared, and crossover happens in a relatively proportionate way. If one candidate has a fitness of 10, and the other has a fitness of 5, then the one with fitness 10 contributes twice as much to the child as the parent with a fitness of 5. Since the fitness scores in this program are based on how much the strategy would win over thousands of hands, almost all fitness scores will be negative. (This is obviously because the rules are set up so the house always wins.) This makes it difficult to calculate relative fitnesses (how do you compare a positive number with a negative, and find relative proportions?), and also causes problems with selection methods like Roulette Wheel or Ranked. To solve this, we find the lowest fitness score of the generation and add that value to each candidate. This results in an adjusted fitness score of 0 for the very worse candidate, so it never gets selected. Mutation As has been mentioned a few times, maintaining genetic diversity in our population of candidate solutions is a good thing. It helps the GA ultimately find the very best solution, by occasionally altering a candidate in a positive direction. There are two settings for mutation. MutationRate controls what percentage of new candidates have mutation done on them. MutationImpact controls what percentage of their strategy is randomized. Population Size Population size has a significant impact on performance. The smaller the population size, the faster the GA will execute. On the other hand, if the size is too low the population may not have enough genetic diversity to find the ultimate solution. During testing, it looks like 700 to 1000 is a good balance between speed and correctness. Performance Notes This program consumes a lot of processing power. Running tests of hundreds of thousands of hands of Blackjack for hundreds or thousands of candidates consumes a lot of time. It's really imperative to write the code so that it works as efficiently as possible. If your CPU isn't consistently at or above 95% usage, there's still room for improvement. Multi-threading is a natural fit for genetic algorithms because we often want to perform the same action on each candidate. The best example of this is when we calculate fitness scores. This is often an operation that takes quite a bit of time. In our case, we're dealing out 100,000 hands, and each hand has to be played until the end. If we're single-threading that code, it's going to take a long time. Multi-threading is really the way to go. Luckily, there's a ridiculously simple way to efficiently use all of your processors for an operation like this. This code loops over all of the candidates in the currentGeneration list, calls the fitness function and sets the fitness property for each: Regardless of the number of items in the list or the number of processors on your machine, the code will efficiently run the code in a multi-threaded manner, and continue only when all of the threads are complete. One of the side effects of making this code multi-threaded is that all of the code relating to evaluating a candidate must be thread-safe, including any Singleton objects. When making code thread-safe, pay attention that you don't accidentally introduce code that will slow your program down unintentionally, because sometimes it can be quite subtle. Random numbers are central to how genetic algorithms work, so it's critical that they can be used correctly from a multithreaded environment. That means that each random number generator must be separate from the others, and it also means that each must produce a distinct series of random numbers. Random number generators use seed values which are usually time-based, like the number of milliseconds the computer has been turned on. Starting with that seed, subsequent calls will return a series of numbers that look random, but really aren't. If you start with the same seed, you get the same sequence. And that's a problem because if you create multiple random number generator objects in a loop using the default time-based seed, several of them will have the same time-based initial seed value, which will result in the same sequence of "random" numbers. That's a bug, because it can reduce the true randomness of the program a great deal, and that's vital to a genetic algorithm. There are a couple of ways to solve this problem. First, you can make the random object truly a singleton, and restrict access to it by using a Clock statement. The makes all access serialized for any random number need, which reduces performance. Another approach is to make the variable static per thread. By declaring the variable as static and also marking it with the [ThreadStatic] attribute, the .NET runtime allocates one static variable per thread. That eliminates the locking/serialization, but also has performance issues. The approach used in this application is to use a non-default seed value. In this case we call Guid.NewGuid().GetHashCode(), which generates a new, unique GUID, then gets an integer hashcode value that should be unique, depending on how GetHashCode is implemented. While multithreading really helps performance, there are also other things we can do to improve performance. For example, when dealing with large populations, the hundreds or thousands of objects that will be generated each generation can quickly turn into a huge problem related to garbage collection. In the end, the easiest way to solve that is to look through the code and find objects being allocate inside a loop. It's better to declare the variable outside of the loop, and then clear it in the loop, rather than reallocate it. In a program like this one where you could be looping hundreds of thousands of times, this can result in a very significant performance boost. For example, in an early version of this code, a Deck object was created for each hand. Since there are hundreds of candidate solutions running hundreds of thousands of trial hands, this was a huge inefficiency. The code was changed to allocate one deck per test sequence. The deck was shuffled as needed, so it never needs to be reallocated. Beyond the cards in the deck, another object type that was repeatedly created and destroyed were the candidate strategies. To mitigate this problem, a StrategyPool class was created that handles allocation and deallocation. This means that strategy objects are reused, rather than dynamically created when needed. The pool class has to be thread-safe, so it does serialize access to its methods via a Clock statement, but overall using the pool approach produced a good performance increase. Finally, a subtle form of object allocation is conversion. In an early version of the code, a utility card function used Convert.ToInt32(rankEnum). Obviously, the easiest way to convert from an enum to an int is simply to cast it, like (int)rankEnum. But it's hard to know exactly what the difference is between that approach, int.Parse(), int.TryParse(), or Convert.ToInt32(), since they can all be used and are roughly equivalent. Perhaps the compiler was boxing the enum value before passing it to Convert.ToInt32(), because the profiler identified this as a function that had large amounts of thread contention waiting - and the problem got much, much worse as the generations passed. By rewriting the conversion to use a simple cast, the program performance increased threefold (3x). Contributing Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to us. Author Greg Sommerville - Initial work* License This project is licensed under the Apache 2.0 License - see the LICENSE.md file for details

dennis.tim-gmail.com
github
LLM Vibe Score0.394
Human Vibe Score0.02196798710271764
carpentries-incubatorMar 25, 2025

dennis.tim-gmail.com

Intro to AI for GLAM Our aim with this lesson is to empower GLAM (Galleries, Libraries, Archives, and Museums)) staff with the foundation to support, participate in and begin to undertake in their own right, machine learning based research and projects with heritage collections. After following this lesson, learners will be able to: Explain and differentiate key terms, phrases, and concepts associated with AI and Machine Learning in GLAM Describe ways in which AI is being innovatively used in the cultural heritage context today Identify what kinds of tasks machine learning models excel at in GLAM applications Identify weaknesses in machine learning models Reflect on ethical implications of applying machine learning to cultural heritage collections and discuss potential mitigation strategies Summarise the practical, technical steps involved in undertaking machine learning projects Identify additional resources on AI and Machine Learning in GLAM Contributing We welcome all contributions to improve the lesson! Maintainers will do their best to help you if you have any questions, concerns, or experience any difficulties along the way. We'd like to ask you to familiarize yourself with our Contribution Guide and have a look at the [more detailed guidelines][lesson-example] on proper formatting, ways to render the lesson locally, and even how to write new episodes. Please see the current list of issues for ideas for contributing to this repository. For making your contribution, we use the GitHub flow, which is nicely explained in the chapter Contributing to a Project in Pro Git by Scott Chacon. Look for the tag !good\first\issue. This indicates that the maintainers will welcome a pull request fixing this issue. Maintainer(s) Current maintainers of this lesson are Mark Bell Nora McGregor Daniel van Strien Mike Trizna Authors A list of contributors to the lesson can be found in Citation To cite this lesson, please consult with [lesson-example]: https://carpentries.github.io/lesson-example

Overmind
github
LLM Vibe Score0.469
Human Vibe Score0.20474237922306593
bencbartlettMar 23, 2025

Overmind

[](https://github.com/bencbartlett/Overmind/releases) [](https://github.com/bencbartlett/Overmind/blob/master/CHANGELOG.md) [](https://bencbartlett.github.io/overmind-docs/) [](https://github.com/bencbartlett/Overmind/wiki) [](https://screeps.slack.com/messages/overmind) [](https://github.com/bencbartlett/Overmind/issues/new) [](https://github.com/bencbartlett/Overmind/issues/new?template=feature_request.md) Current release: Overmind v0.5.2 - Evolution See the changelog for patch notes Documentation is available at the documentation site and the wiki Join the discussion in the #overmind Slack channel! Read blog posts about development Submit an issue here or request a feature here Find me in game here About Overmind What is Screeps? Screeps is an MMO strategy game for programmers. The core objective is to expand your colony, gathering resources and fighting other players along the way. To control your units, you code an AI in JavaScript; everything from moving, mining, building, fighting, and trading is entirely driven by your code. Because Screeps is an MMO, it takes place on a single server that runs 24/7, populated by every other player and their army of creeps. When you log off, your population continues buzzing away with whatever task you set them. Screeps pits your programming prowess head-to-head with other people to see who can think of the most efficient methods of completing tasks or imagine new ways to defeat enemies. What is Overmind? Overmind is my personal codebase that I run on the public server. The structure of the AI is themed loosely around the Zerg's swarm intelligence from Starcraft. Overlords orchestrate Creep actions within each Colony, and the colony Overseer places Directives to adapt to stimuli. Finally, the Assimilator allows all players running Overmind to act as a collective hivemind, sharing creeps and resources and responding jointly to a master ledger of all directives shared by all players. The AI is entirely automated, although it can also run in manual or semiautomatic mode. The latest release should work right out of the box; however, if you find something broken, please submit an issue and I'll try to fix it. Can I use Overmind as my bot? If you're new to Screeps, I would definitely recommend writing your own AI: most of the fun of the game is programming your own bot and watching your little ant farm run! However, I've tried to make the codebase readable and well-documented, so feel free to fork the project or use it as inspiration when writing your AI. If you still want to use Overmind on the public server, that's okay too - there are a number of people already doing this. But please realize that using a mature AI like this gives you a huge advantage over other new players, so don't go out of your way to ruin someone else's fun. In the future, I will be implementing methods for novice players to opt out of excessive aggression by Overmind bots (as long as they don't start a conflict and stay out of its way). Installation Out of the box If you just want to run Overmind without modification, you can copy the compiled main.js file attached to the latest release into your script. While Overmind is fully automated by default, it can be run with varying levels of autonomy; refer to the Overmind wiki for how to configure and operate the bot. Compiling from source To install the full codebase, download or clone the repository. (Please note that while the latest release of Overmind should always be stable, the latest commit may contain unstable features.) Navigate to the Overmind root directory and run . To compile and deploy the codebase, create a screeps.json file from the example file, then do one of the following actions: Compile and deploy to public server: npm run push-main Compile and deploy to private server: npm run push-pserver Compile without deploying: npm run compile Overmind uses rollup to bundle the compiled TypeScript into a single main.js file. The codebase includes functionality to compute checksums for internal validation - if you have a different version of rollup installed globally, different checksums may be computed and some functionality will be disabled. Please ensure the local installation of rollup found in node_modules is used. Setting up the Grafana dashboard Overmind includes a Grafana dashboard (shown below) which tracks detailed operating statistics. To set up the dashboard: Register for grafana service at screepspl.us Setup the ScreepsPlus hosted agent (simpler) or use the NodeJS agent on a free micro instance of Google Compute. Import the dashboard from Overmind.json and change $User to your username. Enjoy your pretty graphs! Design overview Check out the Overmind wiki for in-depth explanations of parts of the design of the AI. (Click the diagram below to see a higher-resolution version.)

bubbln_network-automation
github
LLM Vibe Score0.421
Human Vibe Score0.004537250556463098
olasupoMar 14, 2025

bubbln_network-automation

Bubbln: An AI-driven Network Automation In the world of network engineering, automation has completely transformed the way things work. But, before automation, setting up and managing networks was a tedious job filled with challenges. Engineers had to manually type out configurations, often doing the same tasks repeatedly on different devices. This led to mistakes and wasted time. Then came automation tools like Ansible, Chef, and Puppet, which changed everything. They made network management much easier and allowed for scalability. But there was still a problem: creating automation scripts required a lot of technical know-how and was prone to errors because it relied on human input. And that's why we built Bubbln. It's a game-changer in network engineering, integrating AI into Ansible to take automation to the next level. With Bubbln, we can automatically generate and execute playbooks with incredible accuracy, thereby improving automation efficiency and increasing network engineer’s productivity. It was developed using Python programming language and acts as a bridge between ChatGPT and network systems, making interactions seamless and deployments effortless. Current Capabilities AI-Driven Playbook Generation for OSPF and EIGRP based networks: Bubbln has been rigorously tested to leverage ChatGPT for generation of playbooks for networks based on OSPF and EIGRP networks, with a very high accuracy rate. Auto-creation of Inventory files: Users do not need to prepare the hosts file. Bubbln will auto-generate this file from input provided by the user. Customizable Configurations: Users can input specific router protocols (OSPF or EIGRP), interface configurations, and other network details to tailor the generated playbooks. Documentation: Bubbln automatically creates a report that contains the network configurations, prompts, and generated playbooks for easy reference in future. No expertise required: By auto-generation of the playbooks and inventory file, Bubbln has been able to eliminate a major hurdle to network automation – need for users to learn the automation tools e.g Ansible, Chef. Improved Efficiency: With AI automation, Bubbln speeds up the deployment of network configurations, reducing the time required for manual playbook creation, thereby increasing the productivity of network engineers. Getting Started There are two main approaches to installing Bubbln on your local machine. Docker Container Bubbln has been packaged using docker containers for easy distribution and usage. The following steps can be followed to deploy the Bubbln container on your local machine. Ensure docker is installed on your local machine by entering the below command. This command works for windows and linux OS: The version of docker would be displayed if it is installed. Otherwise, please follow the link below to install docker on your machine: Windows: Docker Desktop for Windows Ubuntu: Docker Engine for Ubuntu CentOS: Docker Engine for CentOS Debian: Docker Engine for Debian Fedora: Docker Engine for Fedora Download the docker image: Create a directory for the project and download Bubbln image using the below command: Run the docker container using the below command: Install nano Update the sshipaddresses.txt file: Update the ssh_addresses.txt file with the SSH IP addresses of the routers you want to configure. Bubbln will utilize this information along with the login credentials (inputted at runtime) to automatically generate a hosts.yml file required by ansible for network configuration. To do this enter the below command to edit the file: Obtain an OpenAPI API Key: You may follow this guide to sign up and obtain an API key: Utilizing a Virtualization machine of choice, setup a network with the following basic configurations: Enable SSH on each of the routers. Configure IP addresses and enable only interfaces required for connectivity by Bubbln. Configure static routes to enable Bubbln reach the routers on the network. Ensure all the routers can be reached by ping and SSH from your host machine. Initialize Bubbln by entering the below command: Github Repository Clone You can clone Bubbln’s GitHub repository by following the below steps: Prerequisites Bubbln works well with Python 3.10. You need to ensure python3.10 is installed on your local machine. This can be confirmed by entering the below command: If it is not Installed, then the below command can be utilized to install python 3.10: Build and Prepare the Project Clone the Bubbln repository from GitHub: To clone the repository, first verify you have git installed on your machine by issuing the following commands: If git is installed, the version number would be displayed, otherwise, you can issue the following commands to have git installed on your machine: Navigate or create a directory for the project on your machine and issue the following commands to clone the Bubbln git repository: Create a Virtual Environment for the application Firstly, confirm virtualenv is installed on your machine by inputting the following command: If the output shows something similar to the below, then go to the next step to install virtualenv ` WARNING: Package(s) not found: env, virtual ` Issue the below command to install virtualenv: Create a virtual environment for the project: Activate the virtual environment: Install the dependencies You can then run the below command to install the necessary packages for the app. Update the sshipaddresses.txt file: Update the ssh_addresses.txt file with the SSH IP addresses of the routers you want to configure. Bubbln will utilize this information along with the login credentials (inputted at runtime) to automatically generate a hosts.yml file required by ansible for network configuration. Obtain an OpenAPI API Key: You may follow this guide to sign up and obtain an API key OpenAI Key: OpenAI Key Utilizing a Virtualization machine of choice, setup a network with the following basic configurations: Enable SSH on each of the routers. Configure IP addresses and enable only interfaces required for connectivity by Bubbln Configure static routes to enable Bubbln reach the routers on the network. Ensure all the routers can be reached by ping and SSH from your host machine. Initialize Bubbln While ensuring that python virtual environment is activated as stated in step 5, run the below command to initialize Bubbln How Bubbln Works Bubbln serves as an intermediary between ChatGPT and a network infrastructure, providing logic, control functions, and facilitating network automation. Its operation can be summarized as follows: !image Figure 1Bubbln architecture and interaction with a network of four routers. Initialization: When Bubbln is initialized, it checks the “userconfig.pkl” file to see if Bubbln has ever been initiated. This is indicated by the presence of a welcome message status in the file. If it exists, Bubbln jumps straight to request the user to input the OpenAI key. Otherwise, it displays a welcome message, and updates the userconfig.pkl file accordingly. Upon successful input of the API key, the user is prompted for the SSH credentials of the routers. These parameters are then encrypted and saved in the user_config.pkl file. The SSH credential is later decrypted and parsed as input to dynamically generate a hosts.yml file at runtime. Responsible Code Section: bubbln.py: welcomemessagefeature() !image Figure 2 Bubbln's welcome message. Parameter Input & Validation: In the parameter input stage, Bubbln first checks for the existence of a file called “router_configuration.pkl”. If it exists, the user is prompted to decide whether to load an existing configuration or input a new set of configurations. If the file is empty or non-existent, then users are prompted to input the configuration parameters for each router on the network. These parameters serve as variables that are combined with hardcoded instructions written in natural language to form the prompt sent to ChatGPT. Key parameters include: Router Configurations: OSPF Area OSPF Process ID Number of networks to advertise (OSPF/EIGRP) AS Number (EIGRP) Interface names IP Addresses (in CIDR format) This module also ensures that parameters are keyed in using the correct data type and format e.g. IP addresses are expected in CIDR format and OSPF Area should be of type integer. Upon completion of parameter input, all parameters are saved into a file called “router_configuration.pkl” upon validation of accuracy by the user. Responsible Code Section: parameter_input.py !image Figure 3 Bubbln receiving Network Parameters. Before generating the prompt, a summary of the inputted parameters is displayed for user validation. This step ensures accuracy and minimizes errors. Users are given the option to make corrections if any discrepancies are found. Responsible Code Section: parameterinput.py: validateinputs() !image Figure 4 Bubbln Awaiting Validation of Inputted Network Parameters. Auto-Generation of Prompt: After validation of inputted parameters, Bubbln composes the prompt by combining the inputted parameters with a set of well-engineered hardcoded instructions written in natural language. Responsible Code Section: prompt_generator.py ChatGPT Prompting: The auto-composed prompt is then sent to ChatGPT utilizing gpt-4 chatCompletions model with a temperature parameter of 0.2 and maximum tokens of 1500. The following functions were designed into this process stage Responsible Code Section: chatGPT_prompting.py !image Figure 5 ChatGPT prompting in progress Playbook Generation & Extraction: After ChatGPT processes the prompt from Bubbln, it provides a response which usually contains the generated playbook and explanatory notes. Bubbln then extracts the playbook from the explanatory notes by searching for “---” which usually connotes the start of playbooks and saves each generated playbook uniquely using the nomenclature RouteriPlaybook.yml. Responsible Code Section: playbook_extractor.py !image Figure 6 ChatGPT-generated playbook. Playbook Execution: Bubbln loads the saved “RouteriPlaybook.yml” playbook and dynamically generates the hosts.yml file and parses them to the python library ansiblerunner for further execution on the configured network. Bubbln generates the hosts.yml file at run time by using the pre-inputted SSH credentials in userconfig.pkl file - and decrypts them, as well as IP addresses from the sshipaddresses.txt file, as inputs Responsible Code Section: playbook_execution.py !image Figure 7 Playbook execution in progress Sample result of Executed Playbook Upon successful execution of all playbooks, a query of the routing table on router 4 indicates that router 4 could reach all the prefixes on the network. !image Figure 8 Output of 'sh ip route' executed on R1 File Management and Handling Throughout the execution process, Bubbln manages the creation, saving, and loading of various files to streamline the network automation process. user_config.pkl: This dictionary file dynamically created at run time is used to store encrypted API keys, SSH credentials and initial welcome message information. router_configuration.pkl: It is auto created by Bubbln and used to store network configuration parameters for easy loading during subsequent sessions. hosts.yml: This is a runtime autogenerated file that contains inventory of the network devices. It is auto deleted after the program runs. networkconfigurationreport.pdf: This auto-generated report by Bubbln is a documentation of all the routers configured their parameters, generated playbooks, and prompt for each execution of the Bubbln application. It is created after a successful execution of playbooks and network testing and is meant for auditing and documentation purposes. RouteriPlaybook.yml: After extraction of generated playbooks from ChatGPT’s raw response, Bubbln automatically saves a copy of the generated playbook using unique names for each playbook. !image Figure 9 File structure after successful deployment of a four-router network Providing Feedback We are glad to hear your thoughts and suggestions. Kindly do this through the discussion section of our GitHub - https://github.com/olasupo/bubbln_network-automation/discussions/1#discussion-6487475 We can also be reached on: Olasupo Okunaiya – olasupo.o@gmail.com

AI-and-Business-Rules-for-Excel-Power-Users
github
LLM Vibe Score0.385
Human Vibe Score0.01524083787499147
PacktPublishingMar 14, 2025

AI-and-Business-Rules-for-Excel-Power-Users

AI and Business Rules for Excel Power Users This is the code repository for AI and Business Rules for Excel Power Users, published by Packt. Capture and scale your business knowledge into the cloud – with Microsoft 365, Decision Models, and AI tools from IBM and Red Hat What is this book about? Microsoft Excel is widely adopted across diverse industries, but Excel Power Users often encounter limitations such as complex formulas, obscure business knowledge, and errors from using outdated sheets. They need a better enterprise-level solution, and this book introduces Business rules combined with the power of AI to tackle the limitations of Excel. This book covers the following exciting features: Use KIE and Drools decision services to write AI-based business rules Link Business Rules to Excel using Power Query, Script Lab, Office Script, and VBA Build an end-to-end workflow with Microsoft Power Automate and Forms while integrating it with Excel and Kogito Collaborate on and deploy your decision models using OpenShift, Azure, and GitHub Discover advanced editing using the graphical Decision Model Notation (DMN) and testing tools Use Kogito to combine AI solutions with Excel If you feel this book is for you, get your copy today! Instructions and Navigations All of the code is organized into folders. For example, Chapter06. The code will look like the following: Following is what you need for this book: This book is for Excel power users, business users, and business analysts looking for a tool to capture their knowledge and deploy it as part of enterprise-grade systems. Working proficiency with MS Excel is required. Basic knowledge of web technologies and scripting would be an added advantage With the following software and hardware list you can run all code files present in the book (Chapter 1-12). Software and Hardware List | Chapter | Software required | OS required | | -------- | ------------------------------------ | ----------------------------------- | | 6-8 | Microsoft Excel and Office 365 | Windows, Mac OS X, and Linux (Any) | | 10 | Docker | Windows, Mac OS X, and Linux (Any) | | Appendix A | Visual Basic for Applications | Windows, Mac OS X, and Linux (Any) | We also provide a PDF file that has color images of the screenshots/diagrams used in this book. Click here to download it. Related products Exploring Microsoft Excel’s Hidden Treasures [[Packt]](https://www.packtpub.com/product/exploring-microsoft-excels-hidden-treasures/9781803243948?utmsource=github&utmmedium=repository&utm_campaign=9781803243948) [[Amazon]](https://www.amazon.com/dp/1803243945) VBA Automation for Excel 2019 Cookbook [[Packt]](https://subscription.packtpub.com/search?query=9781789610031&utmsource=github&utmmedium=repository&utm_campaign=9781803242002) [[Amazon]](https://www.amazon.com/dp/1789610036) Get to Know the Author Paul Browne is a Programme Manager - Training and Consulting at Enterprise Ireland. His skillset includes delivering consulting and training into companies to help them grow faster, better and earlier. Particular focus in working on Digital Transformation alongside Sales and Marketing, Manufacturing and Financial teams. His educational qualifications includes Msc Advanced Software Engineering at University College Dublin and BA European Business Studies with French at Ulster University, Northern Ireland. His professional qualifications includes ACCA (Financial management modules), CIPS - Procurement Professional, and Technical certifications from Oracle (Java) and Microsoft. Download a free PDF If you have already purchased a print or Kindle version of this book, you can get a DRM-free PDF version at no cost.Simply click on the link to claim your free PDF. https://packt.link/free-ebook/9781804619544

introduction-to-ai-orchestration-with-langchain-and-llamaindex-3820082
github
LLM Vibe Score0.43
Human Vibe Score0.050863657300783044
LinkedInLearningFeb 28, 2025

introduction-to-ai-orchestration-with-langchain-and-llamaindex-3820082

Introduction to AI Orchestration with LangChain and LlamaIndex This is the repository for the LinkedIn Learning course Introduction to AI Orchestration with LangChain and LlamaIndex. The full course is available from [LinkedIn Learning][lil-course-url]. ![lil-thumbnail-url] Are you ready to dive into the world of AI applications? This course was designed for you. AI orchestration frameworks let you step back from the details of artificial intelligence tools and APIs and instead focus on building more general, effective systems that solve real-world problems. Join instructor M.Joel Dubinko as he explores the business benefits of AI orchestration—faster development, smarter interfaces, lower costs, and more. This course provides an overview of AI fundamentals and key capabilities, like accessing external tools and databases, with a special focus on exploring local models running on your own hardware, alongside or instead of cloud services like those from OpenAI. Every step of the way, Joel offers hands-on demonstrations of two industry-leading frameworks: LangChain and LlamaIndex. By the end of this course, you’ll be prepared to start building chatbots, intelligent agents, and other useful tools, while monitoring for errors and troubleshooting as you go. Welcome to the course! AI is a fast-changing field, so be sure to check this repo for newer versions of the sample code. Installing Clone this repository into your local machine using the terminal (Mac), CMD (Windows), or a GUI tool like SourceTree. Ensure you have Python 3.10 or later (version 3.11 recommended) To prevent conflicts with other installed software on your computer, the author recommends setting up a virtual environment as follows: python3.11 -m venv .venv Activate the virtual environment with one of these commands: Install the necessary Python packages: (use the upgrade flag to ensure you have current versions) Specific projects in this course might have additional optional requirements. If so, it will be noted within the relevant video. Updates Recent versions of LM Studio have changed the UI from what's shown in the videos. These are generally welcome improvements. For example the maximum context length and other model parameters are viewable in the sidebar. Recent versions of LlamaIndex have changed their import and package structure in a way that breaks existing code. In many cases, you can fix imports as follows: Specific third party components require installing new packages. These will be noted in comments. Example: For code in Chap04, From March 1, 2024, LlamaHub has been deprecated and most projects migrated into LlamaIndex. (sort of--it's complicated) Specifically: Additionally, LlamaIndex ServiceContext has been deprecated and replaced with Settings. See Ch02/rag_llamaindex.py for updated sample code. LangChain too has changed their import structure, though as of this writing it produces warnings rather than errors. In many cases you will need to import from langchaincommunity or langchainopenai as follows: Instructor M. Joel Dubinko Software Generalist | Consultant | Instructor | Problem Solver Check out my other courses on [LinkedIn Learning][URL-instructor-home]. [lil-course-url]: https://www.linkedin.com/learning/introduction-to-ai-orchestration-with-langchain-and-llamaindex [lil-thumbnail-url]: https://media.licdn.com/dms/image/D560DAQEi6KQmA4fF1Q/learning-public-crop6751200/0/1707936616297?e=2147483647&v=beta&t=3vzvDRzpKq9Nd99ss8r2pqMZmyTOKYgKwk825XoSEHU [URL-instructor-home]: https://www.linkedin.com/learning/instructors/m-joel-dubinko?u=104

Karpathy Vibe Coding Full Tutorial with Cursor (Zero Coding)
youtube
LLM Vibe Score0.193
Human Vibe Score0.37
Riley BrownFeb 6, 2025

Karpathy Vibe Coding Full Tutorial with Cursor (Zero Coding)

Today we talked about the concept and execution of vibe coding, a method where you speak your coding ideas into existence using cutting‐edge AI tools. We explored how to use Cursor Composer alongside Sonnet and WhisperFlow to generate, edit, and run code with minimal manual intervention. The tutorial guided viewers through setting up a project from a Next.js template, cloning a repository, and managing API keys through an .env file to maintain secure credentials. Additionally, the video detailed the process of building a ChatGPT clone using the latest OpenAI API, complete with real-time debugging and iterative improvements on design elements such as input fields, sidebars, and smooth text animations. The discussion also emphasized the importance of keeping the AI prompt context minimal for optimal performance, and it provided insights on how to save and upload projects to GitHub effortlessly. Finally, we touched on integrating real-time voice interaction using the 11Labs API to further enhance the coding experience and pay homage to AI pioneers like Karpathy Footnotes Perplexity Spaces (Just like Custom GPT's) Prompt: i am making app in nextjs: user is going to give input that they want to put in their site: you're job is to find a method to do that: describe what the api does, then output example code. then put a direct link to find the api key. Links: Whispr Flow - https://wisprflow.ai/ Cursor - https://www.cursor.com/ Cursor for Writing: https://app.yapthread.com/ Community of Vibe Coders: https://www.softwarecomposer.com/ Time Stamps: 00:00 Intro to Vibe Coding 03:02 Opening Cursor 04:07 Starting Your First Project 05:12 Building a ChatGPT Clone 06:38 Prompting, API's and Documentation Explanation 08:49 Using Perplexity 12:07 Vibe Code Prompt 1 13:58 Result of Vibe Coding Prompt 1 15:22 Seeing Prompt 2 15:43 Managing Cursor Composer Context Length 16:25 Prompt 3 - Designing 17:21 Debugging with Inspect on Web View 18:20 Fixing Formatting 19:04 More Vibing, Lol 20:51 Saving and Uploading Projects to GitHub 21:59 Enhancing the User Experience 22:33 Honoring Karpathy 26:26 Implementing Real Time Karpathy Voice 28:30 Getting Karpathys Voice (Don't Do this It's Illegal)

kodyfire
github
LLM Vibe Score0.384
Human Vibe Score0.0032098142352129998
nooqtaFeb 2, 2025

kodyfire

Kody is a command-line tool for generating artifact files, powered by both classic and AI code generation techniques. It can be used by both technical and non-technical users to generate files across a wide range of technologies and programming languages. The code generation feature in Kody relies on OpenAI GPT, a language model that uses deep learning to generate human-like text, and ChatGPT to provide natural language processing capabilities. Table of Contents Installation Usage Getting Started Terminology Contributing License Installation Prerequisites Node.js (version 14 or later) To install kody, use npm with the following command: or You can check the documentation with Usage Options -v, --version: Output the current version -h, --help: Display help for command Commands prompt|ai [options] [prompt...]: AI powered prompt assistant to quickly generate an artifact batch [options]: Generate multiple digital artifact create [options] : Generate a new blank kody project generate|g [options] [kody] [concept]: Prompt assistant to quickly generate an artifact import|in [options] : Mass create artifacts from a source. init: Initialize a new kodyfire project install|i [kody]: Prompt user to choose to install list|ls [options] [kodyName]: List installed kodies within your current project. publish [template]: Publish the templates of the kody along with the assets.json and schema.ts files ride|↻: Prompt assistant to help build your kody.json file run [options]: Generate a digital artifact based on the selected technology run-script|rs: Run scripts search|s [keywords...]: Search kodyfire packages from npm registry watch|w [options]: Watch for file changes and run kody help [command]: Display help for command Getting Started Open the project you are willing to work on using vscode or your prefered editor. Generate artifacts using AI In case you want to exclusivly rely on AI to generate your artifacts. You don't need to install any additional kodies. Run the kody ai [prompt] command and follow the prompts. For example, to create a Laravel Controller named SampleController under API/V1 and add a comment on top saying Hello Kodyfire, run the following command You can use the experimental Speech-to-Text option to pass your prompt using your voice. The transcription relies on Whisper and requires SoX installed and available in your \$PATH. for the audio recording. For Linux For MacOS For Windows Download the binaries Generate your artifact using the classical method Search and install a kody Based on your project, search availables kodies and select the one that fits your need.. To search availables kodies by keyword runthe following command. if you don't specify a keyword all available kodies will be listed. Install your kody of choice. For example, if you want to install the react kody or Please note you can install as many kodies in the same project as you wish. Generate your artifact There are 2 methods you can generate your artifacts with: The generate command The run command Method 1: Generator mode kody generate The recommended way of using kody is using the generate command. The command will assist you creating your artifact based on the chosen concept. For example, a react component is considered a concept. In order to generate your artifacts, run the generate command. The syntax is kody g|generate [kody] [concept]. the assistant will prompt you to select the missing arguments. As an example, run the following command from your terminal: Method 2: Runner mode kody run The run command is similar to the generate command. The run requires a definition file which is simply a json file containing all the concept definitions you have created using the ride command. The generate command on the other hand creates one or more concept definition on the run and process them on one run. Every command has its use cases. Initialize kody In order to start using kody, you need to initialize your project. This will add the definition files required for kody runs. Important: Please run the command only once. The command will override existing definition files. We will disable overriding in a future version. Ride your kody In order to update your definition, use the kody ride command to assist you populate the required fields Launch a kody run Once you are satisified with your definition file, execute the run command to generate your artifacts. To run all kodies defined within your project, run the following command: Create your own kody In most cases you might need a custom kody to suit your needs Scaffold a new kody Create a basic kody using the scaffold command. Follow the prompts to setup your kody This will create a folder containing the basic structure for a kody. You can start using right away within your project. Setup your kody Install npm dependencies Build your kody Add your concepts and related templates //TODO This will build your kody and export the basic templates files. Add your kody as an NPM dependency to a test project In order to be able to use it within your test project run the following command Publish your kody Please remember that Kody is still in exploration phase and things will change frequently. Contribution is always highly requested. Prepare your kody Add the required kodyfire metadata to your package.json Publish to Github Intialize your project as a git repository and push to a public Github repo To do so, kindly follow these steps:- Intitialize a new Github repository and make it public. Open your project root folder locally from terminal and run the following commands:- Link your project to your Github repository. Publish to npm Once you are satisfied with your kody and you would to like to share it with the community. Run the following command. Note: You'll need an NPM account Share with community Congratulation publishing your first kody. Don't forget to share your kody repo link by opening an issue on Kody's github repository. Terminology Kody: Refers to the code generation command-line tool that generates digital artifacts. Artifacts: Refers to the various digital products generated by Kody based on the input provided. Note: Kody uses classical code generation techniques in addition to AI-powered code generation using OpenAI Codex and ChatGPT. Available kodies | Name | Description | | -------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | | basic-kodyfire | A general purpose code generator that should handle most of the generation use cases | | typescript-kodyfire | Generate typescript related artifacts | | tsconfig-kodyfire | Generate tsconfig files for your typescript projects | | nextjs-kodyfire | Generate nextJs components and related artifacts | | react-kodyfire | Generate react components | | laravel-kodyfire | Laravel artifacts generation | | uml-kodyfire | Uml diagrams generation using plantuml | | readme-kodyfire | Readme file generation | | word-kodyfire | Generate ms word document based on a template | | pdf-kodyfire | Generate PDF document from HTML templates | | social-image-kodyfire | Generate dynamic images for social sharing based on HTML templates | | social-gif-kodyfire | Generate dynamic gif images for social sharing based on HTML templates | | linkedin-quizzes-kodyfire | Practice Linkedin skill assessement tests from your terminal | | chatgpt-kodyfire | Use chatgpt from the terminal. Allows you provide additional data from various sources (not implemented yet) and export to serveral outputs (markdown only now). | Contributing If you encounter any issues while using Kody or have suggestions for new features, feel free to open an issue or submit a pull request. Please read our contributing guidelines before making contributions. License Kody is MIT licensed.

Mastering-AI-for-Entrepreneurs-9-Free-Courses
github
LLM Vibe Score0.203
Human Vibe Score0
Softtechhub1Feb 1, 2025

Mastering-AI-for-Entrepreneurs-9-Free-Courses

Mastering-AI-for-Entrepreneurs-9-Free-Courses Introduction: The Entrepreneur's AI RevolutionArtificial Intelligence (AI) is changing the way we do business. It's not just for tech giants anymore. Small businesses and startups are using AI to work smarter, not harder. As an entrepreneur, you need to understand AI to stay ahead.Why AI is a must-have skill for entrepreneursAI is everywhere. It's in the apps we use, the products we buy, and the services we rely on. Businesses that use AI are seeing big improvements:They're making better decisions with data-driven insightsThey're automating routine tasks, freeing up time for creativityThey're personalizing customer experiences, boosting satisfaction and salesIf you're not using AI, you're falling behind. But here's the good news: you don't need to be a tech wizard to harness the power of AI.Breaking the barriers to AI learningThink AI is too complex? Think again. You don't need a computer science degree to understand and use AI in your business. Many AI tools are designed for non-technical users. They're intuitive and user-friendly.The best part? You can learn about AI for free. There are tons of high-quality courses available at no cost. These courses are designed for busy entrepreneurs like you. They cut through the jargon and focus on practical applications.What to expect from this articleWe've handpicked nine free courses that will turn you into an AI-savvy entrepreneur. Each course is unique, offering different perspectives and skills. We'll cover:What makes each course specialWhat you'll learnHow it applies to your businessWho it's best suited forReady to dive in? Let's explore these game-changing courses that will boost your AI knowledge and give your business an edge.1. Google AI Essentials: A Beginner's Guide to Practical AIWhy This Course Is EssentialGoogle AI Essentials is perfect if you're just starting out. It's designed for people who don't have a tech background. The course focuses on how AI can help you in your day-to-day work, not on complex theories.What You'll LearnThis course is all about making AI work for you. You'll discover how to:Use AI to boost your productivity. Generate ideas, create content, and manage tasks more efficiently.Streamline your workflows. Learn how AI can help with everyday tasks like drafting emails and organizing your schedule.Use AI responsibly. Understand the potential biases in AI and how to use it ethically.Key TakeawaysYou'll earn a certificate from Google. This looks great on your resume or LinkedIn profile.You'll learn how to work alongside AI tools to get better results in your business.You'll gain practical skills you can use right away to improve your work.Get StartedEnroll in Google AI Essentials2. Introduction to Generative AI: A Quick Start for EntrepreneursWhy This Course Works for Busy EntrepreneursThis course is short and sweet. In just 30 minutes, you'll get a solid grasp of generative AI. It's perfect if you're short on time but want to understand the basics.What You'll LearnThe fundamentals of generative AI: what it is, how it works, and its limitsHow generative AI differs from other types of AIReal-world applications of generative AI in businessHow It Helps Your BusinessAfter this course, you'll be able to:Make smarter decisions about using AI tools in your businessSpot opportunities where generative AI could solve problems or create valueUnderstand the potential and limitations of this technologyGet StartedEnroll in Introduction to Generative AI3. Generative AI with Large Language Models: Advanced Skills for EntrepreneursWhy This Course Stands OutThis course digs deeper into the technical side of AI. It's ideal if you have some coding experience and want to understand how AI models work under the hood.What You'll LearnYou'll gain key skills for working with Large Language Models (LLMs):How to gather and prepare data for AI modelsChoosing the right model for your needsEvaluating model performance and improving resultsYou'll also learn about:The architecture behind transformer models (the tech powering many AI tools)Techniques for fine-tuning models to your specific business needsWho Should Take This CourseThis course is best for entrepreneurs who:Have basic Python programming skillsUnderstand the fundamentals of machine learningWant to go beyond using AI tools to actually building and customizing themGet StartedEnroll in Generative AI with Large Language Models4. AI for Everyone by Andrew Ng: Simplifying AI for Business LeadersWhy It's Perfect for BeginnersAndrew Ng is a leading figure in AI education. He's known for making complex topics easy to understand. This course is designed for non-technical learners. You don't need any coding or math skills to benefit from it.What You'll LearnHow AI works at a high levelHow to spot problems in your business that AI can solveWays to assess how AI might impact your business processes and strategiesWhy Entrepreneurs Love This CourseIt explains AI concepts in plain English, without technical jargonYou can complete it in just 8 hours, fitting it into your busy scheduleIt focuses on the business value of AI, not just the technologyGet StartedStart with AI for Everyone on Coursera5. Generative AI: Introduction and ApplicationsWhy This Course Is Ideal for EntrepreneursThis course offers a broad view of generative AI applications. You'll learn about AI in text, image, audio, and more. It's packed with hands-on experience using popular AI tools.What You'll LearnThe basics and history of generative AI technologiesHow different industries are using AI, from marketing to creative projectsPractical skills through labs using tools like ChatGPT, DALL-E, and Stable DiffusionHow It Stands OutYou'll hear from real AI practitioners about their experiencesThe course teaches you how to use generative AI to innovate and improve efficiency in your businessGet StartedEnroll in Generative AI: Introduction and Applications6. Generative AI for Everyone by Andrew Ng: Unlocking ProductivityWhy This Course Is a Must-HaveThis course focuses on using generative AI tools for everyday business tasks. It's all about boosting your productivity and efficiency.What You'll LearnHands-on exercises to integrate AI tools into your daily workReal examples of how businesses are using generative AI to save time and moneyTechniques for prompt engineering to get better results from AI toolsHow It Helps EntrepreneursYou'll learn to automate repetitive tasks, freeing up time for strategic thinkingYou'll discover new ways to use AI tools in your business processesYou'll gain confidence in experimenting with AI to solve business challengesGet StartedGo deeper with DeepLearning.AI7. Generative AI for Business Leaders by LinkedIn LearningWhy This Course Focuses on Business ApplicationsThis course is tailored for leaders who want to integrate AI into their business operations. It provides practical insights for improving workflows and decision-making.What You'll LearnStrategies for using AI to optimize your business operationsHow to save time and resources with AI-powered toolsPractical methods for implementing AI in your company, regardless of sizeKey BenefitsThe course is designed for busy professionals, allowing you to learn at your own paceYou'll gain insights you can apply immediately to your businessIt covers both the potential and the limitations of AI in business settingsGet StartedLevel up on LinkedIn Learning8. AI for Beginners by Microsoft: A Structured Learning PathWhy This Course Builds a Strong AI FoundationMicrosoft's AI for Beginners is a comprehensive 12-week program. It covers core AI concepts in a structured, easy-to-follow format. The course combines theoretical knowledge with hands-on practice through quizzes and labs.What You'll LearnThe basics of AI, machine learning, and data scienceStep-by-step guidance to build a strong knowledge basePractical applications of AI in various business contextsHow to Approach This CourseDedicate 2-3 hours per week to complete the curriculumUse the structured format to gradually build your confidence in AI conceptsApply what you learn to real business scenarios as you progressGet StartedBuild foundations with Microsoft9. AI for Business Specialization by UPenn: Strategic Thinking with AIWhy This Course Is Perfect for Business LeadersThis specialization focuses on AI's transformative impact on core business functions. It covers how AI is changing marketing, finance, and operations.What You'll LearnHow to build an AI strategy tailored to your business needsWays to leverage AI to drive innovation across different departmentsTechniques for integrating AI into your business modelHow to Make the Most of This CourseTake detailed notes on how each module applies to your own business challengesUse the specialization to develop a long-term AI vision for your companyNetwork with other business leaders taking the course to share insights and experiencesGet StartedScale up with UPenn's business focusConclusion: Your Path to Becoming an AI-powered EntrepreneurWe've covered nine fantastic free courses that can transform you into an AI-savvy entrepreneur. Let's recap:Google AI Essentials: Perfect for beginners, focusing on practical AI applications.Introduction to Generative AI: A quick start to understand the basics of generative AI.Generative AI with Large Language Models: For those ready to dive into the technical side.AI for Everyone: A non-technical introduction to AI's business impact.Generative AI: Introduction and Applications: A broad look at generative AI across industries.Generative AI for Everyone: Focused on boosting productivity with AI tools.Generative AI for Business Leaders: Tailored for integrating AI into business operations.AI for Beginners: A structured path to build a strong AI foundation.AI for Business Specialization: Strategic thinking about AI in business functions.Remember, you don't need to tackle all these courses at once. Start small and build your knowledge gradually. Pick the course that aligns best with your current needs and business goals.Embracing AI is not just about staying competitive; it's about opening new doors for innovation and growth. These courses will help you see opportunities where AI can solve problems, improve efficiency, and create value for your business.The AI revolution is happening now. The sooner you start learning, the better positioned you'll be to lead in this new era. Each step you take in understanding AI is a step towards future-proofing your business.So, what are you waiting for? Choose a course, dive in, and start your journey to becoming an AI-powered entrepreneur today. The future of your business may depend on it.MORE ARTICLES FOR YOUHumanizzer Fastpass Bundle – OTO1 to OTO4: Get (Humanizzer + All OTOs) Fastpass for Massive 75% Discount Available Limited-Time OneHumanizzer Review: Build Lifelike Human AI Agents That Talk, Listen & Engage Face-To-Face!—In Your Voice, Just Like You!EasyListDetox App Review: A Windows tool with Giveaway Rights for effortlessly cleaning your email lists of duplicates, invalid, and disposable addresses. Simple, efficient, and time-savingAI Copy Kit Review: Google’s Latest AI Tech Tensorflow (Tf) Create Jaw-Dropping And Advanced Ultra HD Videos, Ultra Shorts, 4K Images, Voiceovers, and Any Other GPT 4-Powered Amazing Content In Minutes Without Any Complicated Tools!From Good to Great: 15 Books to Inspire Personal and Business TransformationFTC Affiliate Commission Disclaimer: Some links in this article may earn us a commission if you make a purchase. This doesn't affect our recommendations.

teach-AI-in-business
github
LLM Vibe Score0.443
Human Vibe Score0.018525334165293606
aenyneJan 9, 2025

teach-AI-in-business

Teaching AI in Business ![HitCount] I am collecting material for teaching AI-related issues to non-tech people. The links should provide for a general understanding of AI without going too deep into technical issues. Please contribute! Make this Issue your First Issue I am collecting material for teaching AI-related issues to non-tech people. The links should have provide for a general understanding of AI without going too deep into technical issues. Please contribute! Kindly use only those Resources with NO CODE NEW Check out also the AI Wiki NEW Online Videos & Courses | Link to Issue | Description | |---|---| | Top Trending Technologies | Youtube Channel to master top trending technologyies including artificial intelligence | | AI4All | AI 4 All is a resource for AI facilitators to bring AI to scholars and students | | Elements of AI | Elements of AI is a free open online course to teach AI principles | | Visual Introduction to Machine Learning | Visual introduction to Machine Learning is a beautiful website that gives a comprehensive introduction and easily understood first encounter with machine learning | | CS50's Introduction to Artificial Intelligence with Python | Learn to use machine learning in Python in this introductory course on artificial intelligence.| | Crash course for AI | This is a fun video series that introduces students and educators to Artificial Intelligence and also offers additional more advanced videos. Learn about the basics, neural networks, algorithms, and more. | Youtuber Channel Machine Learning Tutorial | Youtube Channel Turorial Teachable Machine for beginner | | Artificial Intelligence (AI) |Learn the fundamentals of Artificial Intelligence (AI), and apply them. Design intelligent agents to solve real-world problems including, search, games, machine learning, logic, and constraint satisfaction problems | | AI For Everyone by Andrew Ng | AI For Everyone is a course especially for people from a non-technical background to understand AI strategies | | How far is too far? The age of AI| This is a Youtube Orignals series by Robert Downey| | Fundamentals of Artificial Intelligence|This course is for absolute beginners with no technical knowledge.| | Bandit Algorithm (Online Machine Learning)|No requirement of technical knowledge, but a basic understending of Probability Ttheory would help| | An Executive's Guide to AI|This is an interactive guide to teaching business professionals how they might employ artificial intelligence in their business| | AI Business School|Series of videos that teach how AI may be incorporated in various business industries| | Artificial Intelligence Tutorial for Beginners | This video will provide you with a comprehensive and detailed knowledge of Artificial Intelligence concepts with hands-on examples. | | Indonesian Machine Learning Tutorial | Turorial Teachable Machine to train a computer for beginner | | Indonesian Youtube Playlist AI Tutorial | Youtube Playlist AI Tutorial For Beginner | | Artificial Intelligence Search Methods For Problem Solving By Prof. Deepak Khemani|These video lectures are for absolute beginners with no technical knowledge| | AI Basics Tutorial | This video starts from the very basics of AI and ML, and finally has a hands-on demo of the standard MNIST Dataset Number Detection model using Keras and Tensorflow.| | Simple brain.js Tutorial | This video explains a very simple javascript AI library called brain.js so you can easily run AI in the browser.| | Google AI| A complete kit for by google official for non-tech guy to start all over from basics, till advanced | | Microsoft AI for Beginners| A self-driven curriculum by Microsoft, which includes 24 lessons on AI. | Train Your Own AI | Link to Issue | Description | |---|---| | Teachable Machine | Use Teachable Machine to train a computer to recognize your own images, sounds, & poses | | eCraft2Learn | Resource and interactive space (Snap, a visual programming environment like Scratch) to learn how to create AI programs | | Google Quick Draw | Train an AI to guess from drawings| | Deepdream Generator| Merge Pictures to Deep Dreams using the Deepdream Generator| | Create ML|Quickly build and train Core ML models on your Mac with no code.| | What-If Tool|Visually probe the behavior of trained machine learning models, with minimal coding.| | Metaranx|Use and build artificial intelligence tools to analyze and make decisions about your data. Drag-and-drop. No code.| | obviously.ai|The total process of building ML algorithms, explaining results, and predicting outcomes in one single click.| Articles | By & Title | Description | |---|---| | Artificial Intelligence | Wikipedia Page of AI | | The Non-Technical AI Guide | One of the good blog post that could help AI more understandable for people without technical background | | LIAI | A detailed introduction to AI and neural networks | | Layman's Intro | A layman's introduction to AI | | AI and Machine Learning: A Nontechnical Overview | AI and Machine Learning: A Nontechnical Overview from OREILLY themselves is a guide to learn anyone everything they need to know about AI, focussed on non-tech people | | What business leaders need to know about artifical intelligence|Short article that summarizes the essential aspects of AI that business leaders need to understand| | How Will No-Code Impact the Future of Conversational AI | A humble explanation to the current state of converstational AI i.e.Chatbots and how it coul evolve with the current trend of no coding. | | Investopedia | Basic explanation of what AI is in a very basic and comprehensive way | | Packtpub | A non programmer’s guide to learning Machine learning | | Builtin | Artificial Intelligence.What is Artificial Intelligence? How Does AI Work? | | Future Of Life | Benefits & Risks of Artificial Intelligence | | NSDM India -Arpit | 100+ AI Tools For Non-Coders That Will Make Your Marketing Better. | | AI in Marketing for Startups & Non-technical Marketers | A practical guide for non-technical people | | Blog - Machine Learning MAstery | Blogs and Articles by Jason Browniee on ML | | AI Chatbots without programming| Chatbots are increasingly in demand among global businesses. This course will teach you how to build, analyze, deploy and monetize chatbots - with the help of IBM Watson and the power of AI.| Book Resources for Further Reading | Author | Book | Description & Notes | |---|---|---| | Ethem Alpaydin|Machine Learning: The New AI | Graph Theory with Applications to Engineering & Computer Science. A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. | | Charu C. Aggarwal| Neural Networks and Deep Learning | This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. | | Hal Daumé III | A Course in Machine Learning | The purpose of this book is to provide a gentle and pedagogically organized introduction to the field. A second goal of this book is to provide a view of machine learning that focuses on ideas and models, not on math. | | Ian Goodfellow and Yoshua Bengio and Aaron Courville| Deep Learning | The book starts with a discussion on machine learning basics, including the applied mathematics and algorithms needed to effectively study deep learning from an academic perspective. There is no code covered in the book, making it perfect for a non-technical AI enthusiast. | | Peter Harrington|Machine Learning in Action| (Source: https://github.com/kerasking/book-1/blob/master/ML%20Machine%20Learning%20in%20Action.pdf) This book acts as a guide to walk newcomers through the techniques needed for machine learning as well as the concepts behind the practices.| | Jeff Heaton| Artificial Intelligence for Humans |This book helps its readers get an overview and understanding of AI algorithms. It is meant to teach AI for those who don’t have an extensive mathematical background. The readers need to have only a basic knowledge of computer programming and college algebra.| | John D. Kelleher, Brian Mac Namee and Aoife D'Arcy|Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (The MIT Press)|This book covers all the fundamentals of machine learning, diving into the theory of the subject and using practical applications, working examples, and case studies to drive the knowledge home.| | Deepak Khemani| [A First Course in Artificial Intelligence] | It is an introductory course on Artificial Intelligence, a knowledge-based approach using agents all across and detailed, well-structured algorithms with proofs. This book mainly follows a bottom-up approach exploring the basic strategies needed problem-solving on the intelligence part. | | Maxim Lapan | Deep Reinforcement Learning Hands-On - Second Edition | Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. | | Tom M Mitchell | Machine Learning | This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper level undergraduate and introductory level graduate courses in machine learning. | | John Paul Mueller and Luca Massaron|Machine Learning For Dummies|This book aims to get readers familiar with the basic concepts and theories of machine learning and how it applies to the real world. And "Dummies" here refers to absolute beginners with no technical background.The book introduces a little coding in Python and R used to teach machines to find patterns and analyze results. From those small tasks and patterns, we can extrapolate how machine learning is useful in daily lives through web searches, internet ads, email filters, fraud detection, and so on. With this book, you can take a small step into the realm of machine learning and we can learn some basic coding in Pyton and R (if interested)| | Michael Nielsen| Neural Networks and Deep Learning |Introduction to the core principles of Neural Networks and Deep Learning in AI| | Simon Rogers and Mark Girolami| A Course in Machine Learning |A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC.| |Peter Norvig| Paradigm of Artificial Intelligence Programming |Paradigms of AI Programming is the first text to teach advanced Common Lisp techniques in the context of building major AI systems. By reconstructing authentic, complex AI programs using state-of-the-art Common Lisp, the book teaches students and professionals how to build and debug robust practical programs, while demonstrating superior programming style and important AI concepts.| | Stuart Russel & Peter Norvig | Artificial Intelligence: A Modern Approach, 3rd Edition | This is the prescribed text book for my Introduction to AI university course. It starts off explaining all the basics and definitions of what AI is, before launching into agents, algorithms, and how to apply them. Russel is from the University of California at Berkeley. Norvig is from Google.| | Richard S. Sutton and Andrew G. Barto| Reinforcement Learning: An Introduction |Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment.| | Alex Smola and S.V.N. Vishwanathan | Introduction to Machine Learning | Provides the reader with an overview of the vast applications of ML, including some basic tools of statistics and probability theory. Also includes discussions on sophisticated ideas and concepts. | | Shai Shalev-Shwartz and Shai Ben-David | Understanding Machine Learning From Theory to Algorithms |The primary goal of this book is to provide a rigorous, yet easy to follow, introduction to the main concepts underlying machine learning. | | Chandra S.S.V | Artificial Intelligence and Machine Learning | This book is primarily intended for undergraduate and postgraduate students of computer science and engineering. This textbook covers the gap between the difficult contexts of Artificial Intelligence and Machine Learning. It provides the most number of case studies and worked-out examples. In addition to Artificial Intelligence and Machine Learning, it also covers various types of learning like reinforced, supervised, unsupervised and statistical learning. It features well-explained algorithms and pseudo-codes for each topic which makes this book very useful for students. | | Oliver Theobald|Machine Learning For Absolute Beginners: A Plain English Introduction|This is an absolute beginners ML guide.No mathematical background is needed, nor coding experience — this is the most basic introduction to the topic for anyone interested in machine learning.“Plain” language is highly valued here to prevent beginners from being overwhelmed by technical jargon. Clear, accessible explanations and visual examples accompany the various algorithms to make sure things are easy to follow.| | Tom Taulli | Artificial Intelligence Basics: A Non-Technical Introduction | This book equips you with a fundamental grasp of Artificial Intelligence and its impact. It provides a non-technical introduction to important concepts such as Machine Learning, Deep Learning, Natural Language Processing, Robotics and more. Further the author expands on the questions surrounding the future impact of AI on aspects that include societal trends, ethics, governments, company structures and daily life. | |Cornelius Weber, Mark Elshaw, N. Michael Mayer| Reinforcement Learning |Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning.| |John D. Kelleher, Brian Mac Namee, Aoife D'arcy| Algorithms, Worked Examples, and Case Studies | A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. |

Stop Learning Excel—Meet the AI Spreadsheet
youtube
LLM Vibe Score0.335
Human Vibe Score0.41
Kevin StratvertDec 13, 2024

Stop Learning Excel—Meet the AI Spreadsheet

Mastering Excel used to mean memorizing complex formulas like VLOOKUP, creating pivot tables, and manually sorting data. But now, AI spreadsheets are here to change the game! In this video, I showcase 7 ways AI makes spreadsheets effortless, even for beginners. With Bricks, an AI-powered and free spreadsheet tool, I’ll demonstrate how you can: Automate table joins without formulas Sort data with simple prompts Apply conditional formatting in seconds Filter data dynamically Summarize or group data effortlessly Create charts automatically Remove duplicates with ease Whether you're a spreadsheet pro or just getting started, this video will show you how AI can handle all the hard work for you. I’ve even included a sample Excel workbook so you can follow along and try these features for yourself. Are you ready to embrace the future of spreadsheets? Watch now and see why it might be time to stop learning Excel and start using AI! Host: Kevin Stratvert 📚 RESOURCES Download the sample workbook: https://1drv.ms/x/s!AmxrofZZlZ-whfhLV1BgrO5mxYgTsg?e=nEousp Sign up for Bricks: https://bit.ly/newaispreadsheet ⌚ TIMESTAMPS 00:00 - Introduction 00:28 - Get Bricks 01:02 - Effortless Table Joins with AI 02:54 - Simplified Sorting with AI 03:58 - Conditional Formatting with AI 05:03 - Filtering Made Smarter with AI 06:20 - AI Pivot Tables for Instant Insights 07:09 - AI Charts 07:59 - Removing Duplicates with AI 09:14 - Bonus: Data Types 11:51 - Export to Excel 12:12 - Wrap Up 📺 RELATED VIDEOS Playlist with all my videos on Bricks: https://www.youtube.com/playlist?list=PLlKpQrBME6xLZLJCmqdM4i5GQhXscRvTS 📩 NEWSLETTER Get the latest high-quality tutorial and tips and tricks videos emailed to your inbox each week: https://kevinstratvert.com/newsletter/ 🔽 CONNECT WITH ME Official website: http://www.kevinstratvert.com LinkedIn: https://www.linkedin.com/in/kevinstratvert/ Discord: https://bit.ly/KevinStratvertDiscord Twitter: https://twitter.com/kevstrat Facebook: https://www.facebook.com/Kevin-Stratvert-101912218227818 TikTok: https://www.tiktok.com/@kevinstratvert Instagram: https://www.instagram.com/kevinstratvert/ 🎁 TOOLS AND DISCOUNTS ✅ 🎙️ Voicemod AI Voice Changer | 5% off | https://link.xsolla.com/KZBi89AY ✅ 🌐 Squarespace Websites | https://squarespace.syuh.net/XYaqYM ✅ 🔍 Grammarly | https://grammarly.go2cloud.org/SH3nL ✅ 📹 CapCut | https://bit.ly/installcapcut ✅ 🛍️ Shopify | https://shopify.pxf.io/XY9rPa ✅ 📋 Notion | https://affiliate.notion.so/rffva4tr71ax ✅ 🖼️ Figma | https://psxid.figma.com/lqjg97licpry ✅ 🤖 ElevenLabs Text-to-Speech | https://try.elevenlabs.io/taqepq60mptr ✅ 💵 Quickbooks Online | https://bit.ly/intuitquickbooksonline ✅ 👥 Hubspot | https://hubspot.sjv.io/DKo6jb ✅ 📈 Semrush | https://bit.ly/semrush14dayfreetrial ✅ 🎥 Descript | https://get.descript.com/sf22jb63w2tx ✅ 🏓 Smartsheet | https://bit.ly/trysmartsheet 🎒 MY COURSES Go from Excel novice to data analysis ninja in just 2 hours: https://kevinstratvert.thinkific.com/ 🙏 REQUEST VIDEOS https://forms.gle/BDrTNUoxheEoMLGt5 🔔 SUBSCRIBE ON YOUTUBE https://www.youtube.com/user/kevlers?sub_confirmation=1 🙌 SUPPORT THE CHANNEL Hit the THANKS button in any video! Amazon affiliate link: https://amzn.to/3kCP2yz ⚖ DISCLOSURE Some links are affiliate links. Purchasing through these links gives me a small commission to support videos on this channel. The price to you is the same. #stratvert #bricks

5 Best FREE AI Courses for Non-Technical & Technical Beginners 2024 | How to learn AI ML | Learn AI
youtube
LLM Vibe Score0.369
Human Vibe Score0.6
Pavan SathirajuFeb 24, 2024

5 Best FREE AI Courses for Non-Technical & Technical Beginners 2024 | How to learn AI ML | Learn AI

Install SquareX - https://sqrx.io/ps_yt Top FREE AI Courses #1 AI For Everyone Coursera - https://www.coursera.org/learn/ai-for-everyone#modules #2 - Building Generative AI Skills for Business Professionals (LinkedIn) - https://www.linkedin.com/learning/paths/building-generative-ai-skills-for-business-professionals #3 - AI for Python programmers. CS50's Introduction to Artificial Intelligence with Python - https://www.edx.org/learn/artificial-intelligence/harvard-university-cs50-s-introduction-to-artificial-intelligence-with-python? #4 - Wharton AI for Business Professionals - https://www.coursera.org/specializations/ai-for-business-wharton #5 - Deep learning specialization by Andre - https://www.coursera.org/specializations/deep-learning If you are looking to join our Problem Solving platform & get personalized feedback: https://inquisitiveminds.ai/ Follow me here LinkedIn - https://www.linkedin.com/in/pavan-sathiraju/ Instagram - https://www.instagram.com/pavan.sathiraju Everyone is talking about why to upskill in AI but nobody is telling you how to learn AI and Machine Learning in 2024. These 5 best AI courses for beginners free 2024 will help you learn AI ML from scratch. This will solve your problem of how to learn AI from scratch and you will be able to use these best ai courses online to advance in your career. These best AI courses online are for both beginners or non-technical folks. In this video, I have included AI courses for non-technical and business folks along with AI course in Python for folks who know tech or programming. How to learn AI from scratch? For this query, we have included the first course that AI for everybody on Coursera. As the title suggests this is an AI Course for beginners to learn AI ML from scratch and have a basic understanding of AI technology. These best AI courses for beginners online can help you a great deal in getting started with AI. This is one of the best AI courses online for free. You can find other free AI courses but if you are just getting started with learning AI and Machine Learning then this is the course for you. Next on the list is related to AI courses for jobs that can be used by business professionals. You can use this course as a business professional to learn how to use AI tools in your job and get things done faster. How to learn AI for beginners? For this, we have included a course from Havard which is an introduction to AI using Python. For technical folks who know Python, this is a good course since it will teach you everything you need to know about Artificial Intelligence and Machine Learning to get started with doing more work in the field. This covers your AI courses for job. The next best ai course for beginners is Wharton AI course for business professionals. This is a great AI course for business professionals who want to learn how to use AI tools. How to learn AI and machine learning from scratch as a business student? This Wharton AI course will help you a lot in that regard. The last best AI course on the list to learn AI and Machine learning from scratch is the Deep Learning course on Coursera. This course is great for both beginners and those with some experience who want to learn more about AI. Hope this video solves your problem of how to learn AI ML. Hope you find this video valuable, see you in the next one. About Me I publish meaningful and valuable content on this channel. My aim is to make business news more accessible and easy to grasp. If you find my videos informative and insightful then make sure to subscribe and leave a comment. I’ll see you in the next video Chapters 0:00 - Intro 2:08 - #1 Course 3:26 - #2 Course 5:56 - #3 Course 7:08 - #4 Course 8:18 - #5 Course 9:35 - Outro

Start An AI T-Shirt Business Side Hustle FULL STRATEGY
youtube
LLM Vibe Score0.391
Human Vibe Score0.61
Wholesale TedApr 10, 2023

Start An AI T-Shirt Business Side Hustle FULL STRATEGY

Learn how to use Midjourney to create amazing AI art to sell onto t-shirts for a profit! ► Get my FREE $10,000 Print On Demand ebook: https://wholesaleted.com/4-step ► Get my Automated Ecom course + AI Art training: https://theecommclubhouse.com ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ IMPORTANT DISCLAIMER - PLEASE READ: 🙏 All content on my channel is my personal opinion. I am NOT a lawyer, accountant or financial advisor. I do not have any professional licenses. My opinions are not a replacement for the guidance of a professionally trained and licensed individual. Some links in the description may be affiliate links. This means that I may get a commission if you click on the link and purchase something. Using those links are optional but they are always appreciated. Thank you 🙏 ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ WATCH MY MOST POPULAR VIDEOS: ►► How I Make $1,000/Day From 5 Sources Of Income: https://youtu.be/jCqIGxA5S-k ►► How To Start An Etsy Print On Demand Store For Free: https://youtu.be/7ZlZFPBWC74 ►► The REAL Reason I Became A Millionaire: https://youtu.be/70itsEHS-EM ►► Best Side Hustles To Start With No Money: https://youtu.be/fQTsmtXBkew RECOMMENDED WATCHING - Having Realistic Expectations In Business: ►► https://www.youtube.com/playlist?list=PLjNYIrpZp6BhzPiUJUUrpfIaFTlcZKF5n ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ WHOLESALE TED AFFILIATE LINKS A lot of people have requested that I posted my affiliate links so that they can register through them as a thank-you for my free tutorial content on YouTube. Thank you so much for your support! If you would like to use my affiliate links, I would greatly appreciate it as it enables me to keep making YouTube videos for free: ►► Get A FREE Trial To Shopify: https://wholesaleted.com/go/free-shopify-trial ►► Get My Favorite Graphic Design App Canva: https://wholesaleted.com/go/canva ►► Get The Etsy Research App Alura: https://wholesaleted.com/go/alura ►► Use Printify's Print On Demand App Like I Do: https://wholesaleted.com/go/printify ►► Use Printful's Print On Demand App Like I Do: https://wholesaleted.com/go/printful ►► Get My Favorite Lifestyle Photos On Placeit: https://wholesaleted.com/go/placeit Please note: an affiliate link tracks whether you click on the link, and register and/or make a purchase. If you do, I may get a commission. Using affiliate links is optional but again, it enables me to keep making my YouTube tutorial content free & I greatly appreciate the support, thank you! ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ FOLLOW ME ON SOCIAL MEDIA! ►► Follow Sarah on TikTok: https://www.tiktok.com/@sarahchrisp ►► Follow Sarah's Adventures on Instagram: https://www.instagram.com/sarahchrispy/ ►► Like us on Facebook: https://www.facebook.com/wholesaleted/ ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ VIDEO CHAPTERS: 0:00 - The Easiest Way To Make Money From AI T-Shirt Designs 3:16 - How To Open & Use Midjourney 3:54 - The Best Midjourney Settings For Generating T-Shirt Images 5:43 - How To Prompt & Generate T-Shirt Images With Midjourney 8:16 - The Fast Way To Fix Image Glitches 9:00 - How To Make The Image Background Transparent 9:33 - Use AI To Upscale Your AI Art Into High Resolution 10:27 - Turn Your AI Art Into T-Shirts To Sell For A Profit ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ WHY SUBSCRIBE TO WHOLESALE TED? Hey there I am Sarah (aka Ted). My goal is to help new entrepreneurs grow & scale a business that is right for THEM! Yes - the business that is right for THEM. Because I believe that time is the most valuable thing we have, and that we should spend it doing things that we love: and what I love may be different to what you love. Which is why on this channel I share: Examples & case studies of businesses that I enjoy (such as Print On Demand ecommerce businesses) and sharing my tips & strategies I've learned along the way. Examples & case studies of other businesses that entrepreneurs love running (even if I personally wouldn't find it fun myself!) Plus a sprinkle of entrepreneurial motivation thrown in too! I hope my actionable content can help you: whether you're running your own online business, or are in the process of building one, and want some tactical advice to help you along the way. If that is you, subscribe today! 🔥