VibeBuilders.ai Logo
VibeBuilders.ai

Customers

Explore resources related to customers to help implement AI solutions for your business.

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

Month 2 of building my startup after being laid off - $200 in revenue and 4 (actual) paying customers
reddit
LLM Vibe Score0
Human Vibe Score1
WhosAfraidOf_138This week

Month 2 of building my startup after being laid off - $200 in revenue and 4 (actual) paying customers

In September 2024, I got laid off from my Silicon Valley job. It fucking sucked. I took a day to be sad, then got to work - I'm not one to wallow, I prefer action. Updated my resume, hit up my network, started interviewing. During this time, I had a realization - I'm tired of depending on a single income stream. I needed to diversify. Then it hit me: I literally work with RAG (retrieval augmented generation) in AI. Why not use this knowledge to help small businesses reduce their customer service load and boost sales? One month later, Answer HQ 0.5 (the MVP) was in the hands of our first users (shoutout to these alpha testers - their feedback shaped everything). By month 2, Answer HQ 1.0 launched with four paying customers, and growing. You're probably thinking - great, another chatbot. Yes, Answer HQ is a chatbot at its core. But here's the difference: it actually works. Our paying customers are seeing real results in reducing support load, plus it has something unique - it actively drives sales by turning customer questions into conversions. How? The AI doesn't just answer questions, it naturally recommends relevant products and content (blogs, social media, etc). Since I'm targeting small business owners (who usually aren't tech wizards) and early startups, Answer HQ had to be dead simple to set up. Here's my onboarding process - just 4 steps. I've checked out competitors like Intercom and Crisp, and I can say this: if my non-tech fiancée can set up an assistant on her blog in minutes, anyone can. Key learnings so far: Building in public is powerful. I shared my journey on Threads and X, and the support for a solo founder has been amazing. AI dev tools (Cursor, Claude Sonnet 3.5) have made MVP development incredibly accessible. You can get a working prototype frontend ready in days. I don't see how traditional no-code tools can survive in this age. But.. for a production-ready product? You still need dev skills and background. Example: I use Redis for super-fast loading of configs and themes. An AI won't suggest this optimization unless you know to ask for it. Another example: Cursor + Sonnet 3.5 struggles with code bases with many files and dependencies. It will change things you don't want it to change. Unless you can read code + understand it + know what needs to be changed and not changed, you'll easily run into upper limits of what prompting alone can do. I never mention "artificial intelligence" "AI" "machine learning" or any of these buzzwords once in my copy in my landing page, docs, product, etc. There is no point. Your customers do not care that something has AI in it. AI is not the product. Solving their pain points and problems is the product. AI is simply a tool of many tools like databases, APIs, caching, system design, etc. Early on, I personally onboarded every user through video calls. Time-consuming? Yes. But it helped me deeply understand their pain points and needs. I wasn't selling tech - I was showing them solutions to their problems. Tech stack: NextJS/React/Tailwind/shadcn frontend, Python FastAPI backend. Using Supabase Postgres, Upstash Redis, and Pinecone for different data needs. Hosted on Vercel and Render.com. Customer growth: Started with one alpha tester who saw such great results (especially in driving e-commerce sales) that he insisted on paying for a full year to keep me motivated. This led to two monthly customers, then a fourth annual customer after I raised prices. My advisor actually pushed me to raise prices again, saying I was undercharging for the value provided. I have settled on my final pricing now. I am learning so much. Traditionally, I have a software development and product management background. I am weak in sales and marketing. Building that app, designing the architecture, talking to customers, etc, these are all my strong suits. I enjoy doing it too. But now I need to improve on my ability to market the startup and really start learning things like SEO, content marketing, cold outreach, etc. I enjoying learning new skills. Happy to answer any questions about the journey so far!

I got 400+ new customers in first 48 hours after launch!!!!
reddit
LLM Vibe Score0
Human Vibe Score0.333
iamjasonlevinThis week

I got 400+ new customers in first 48 hours after launch!!!!

Yesterday I launched my new software and got 400+ customers in 48 hours. I'm gonna break down the product and my launch strategy. What is it? Remember when Elon was taking over Twitter and he emailed the CEO of Twitter Parag Agrawal saying “What did you get done this week?” Well I turned this idea into a software lol. A couple months ago, I had a realization while talking with some friends: I love asking ChatGPT for business advice, but I never remember to actually do it. Now what if there was a pro-active AI business coach that checked in on me every week? Something to keep me accountable and track my progress building my empire. It could have a database where I could see my progress every single week!!! And what if this AI business coach was a simple email that says “What did you get done this week?” So I built this: Elon Email. A weekly 1-on-1 with Elon Musk Every Sunday night for the last month, I’ve been getting a weekly email from Elon Musk saying “What did you get done this week?” I take a few minutes to write back with everything I got done that week: new revenue metrics, a list of the new features I shipped, new employees onboarded, number of workouts, exciting calls and collaboration opportunities, etc. Then an AI trained on Elon would give me tailored advice all in my email. And here's the best part. Rather than a nice friendly soft-spoken AI, I prompted the AI to be as savage and ruthless as Elon with its business advice. And it actually worked. One user said "it's like a slap in the face". I knew with 2025 New Years resolutions coming, I needed to launch it ASAP so I pushed through an all-nighter on Friday and got it launched today. Launch strategy: \> Focus on X (fka Twitter) as main source. I have 31,000 followers on X from the last few years building startups, so I posted my launch this morning there. X is Elon's social media network now so I didn't waste time on other platforms. I basically didn't look up from my phone for like 12 hours (my wife was pissed at me because we're technically on vacation but yolo) and I commented, engaged, and DMed with everyone I could. It paid off with 50,000+ views on the post and nearly 300 likes so far. \> Purposely exclude people. Yes, I know this sounds weird, but you need to purposely exclude some people to focus on the people who will actually use your product. I know a lot of people hate Elon and will hate me for making this. I don't care. I only care about the people who will actually use it aka my customers. The same thing with making it a "savage AI". I know there will be some people who prefer a nice friendly soft AI, but that's not my customer base. The internet is big enough you can find your customer base but you've gotta be willing to exclude some people to speak to the right people! \> Free tier. The weekly Elon email and AI reply is free. I also have a paid tier for a daily email and database access. I know I'm technically losing money on API fees for the free email and AI requests, but it's a loss leader, the costs are actually quite minimal since it's only 1 API request/week, and some % will convert and already have. Doing free was worth it to give people a chance to try it. I hope this helps with your next launch!!!

How to get your first 10 customers with cold email
reddit
LLM Vibe Score0
Human Vibe Score0.905
LieIgnorant6304This week

How to get your first 10 customers with cold email

Cold email is an insane channel for growth, especially for bootstrapped startups as it's very low cost but completely scalable. Yet there's a huge difference between blind cold emailing and crafting personalized outreach for select individuals. The latter is a legit channel which makes many businesses scale in short amounts of time (i.e. see Alex Hormozi’s ‘$100 Million Dollar Offer’). My goal here is to help other founders do what I did but quicker. So you can learn faster. And then teach me something new too. These are the step-by-step lessons I've learnt as a bootstrapped founder, showing you how to use cold email to get your first customers: Find your leads Write engaging email copy Personalize your outreach Send emails Scale up Find your leads This is a key step. Once you figure out exactly who you want to target and where to find them, you'll be printing money. There's a few different ways to go about finding valuable leads. The secret? Keep testing different approaches until you strike gold. First, dedicate some time every day to find and organise leads. Then, keep an eye on your numbers and bounce rates. If something's not working, switch it up. Stick with what's bringing in results and ditch what's not. It's all about staying flexible and learning as you go. Apollo.io is a great starting point as an effective lead source. Their tool allows you to specify filters including job titles, location, company size, industry, keywords, technologies, and revenue. Get specific with your searches to find your ideal customers. Once you have some results you can save and export them, you'll get a list of contact information including name, email, company, LinkedIn, ready to be verified and used. LinkedIn Sales Navigator is another good source. You can either do manual searches or use a scraper to automate the process. The scrapers I'd recommend checking out are FindyMail and Evaboot. As with Apollo, it's best to get very specific with your targeting so you know the prospect will be interested in your offer. BuiltWith is more expensive but ideal if you're targeting competitors. With BuiltWith you can build lists based on what technologies companies are using. For example if you're selling a Shopify app, you'd want to know websites or stores using Shopify, and reach out to them. The best lead sources will always be those that haven't been contacted a lot in the past. If you are able to find places where your target audience uniquely hangs out, and you can get their company website domains, they have the potential to be scrapped, and you have a way to personalize like "I spotted your comment on XYZ website". Once you've got your leads, keep them organized. Set up folders for different niches, countries, company sizes, so you can review what works and what doesn't. One more thing – before you start firing off emails, make sure those addresses are verified. Always use an email verifier to clean up your list and avoid bounces that may affect your sending reputation, and land you in the spam folder. I use Neverbounce for this but there are other tools available. Write engaging email copy Writing a good copy that gets replies is difficult, it changes depending on your offer/audience and nobody knows what's going to work. The best approach is to keep testing different targeting and messaging until you find what works. However, there are some key rules to stick to that I've outlined. For the subject line, keep it short and personalized. Try to write something that sparks interest, and mention the recipients name: Thought you’d like this {{first name}} {{firstName}} - quick question For the email body it's best to use a framework of personalization, offer, then call to action. Personalization is an entire subject in its own right, which I've covered below. In short, a personalized email opener is the best way to grab their attention, and let them know the email is relevant to them and to keep reading. Take it from Alex Hormozi and his $100M Offers playbook – your offer is very important to get right. Make sure your offer hits the mark for your target audience, and get as specific as possible. For example: I built a SaaS shopify app for small ecommerce businesses selling apparel that doubles your revenue in 60-days or your money back. We developed a cold email personalization tool for lead generation agencies that saves hundreds of hours, and can 3x your reply rate. Lastly, the CTA. The goal here isn't to get sign-ups directly from your first email. It's better to ask a brief question about whether the prospect would be interested in learning more. Something very low friction, that warrants a response. Some examples might include: Would you be interested in learning more about this? Can we connect a bit more on this? Mind if I send over a loom I recorded for you? Never send any links in the first email. You've reached out to this person because you have good reason to believe they'd find real value in your offer, and you want to verify if that's the case. After you get one reply, this is a great positive signal and from there you can send a link, book a call, provide a free resource, whatever makes sense based on their response. Personalize your outreach Personalization is one of the most important parts of the process to get right. Your recipient probably receives a multitude of emails every day, how can you make yours stand out, letting them know you've done your research, and that your email is relevant to them? Personalizing each email ensures you get more positive replies, and avoid spam filters, as your email is unique and hasn't been copied and pasted a million times over. The goal is to spark the recipient's interest, and let them know that you're contacting them for good reason. You might mention a recent achievement, blog post or product release that led you to reach out to the prospect specifically. For example: Your post on "Doing Nothing" gave me a good chuckle. Savvy marketing on Cadbury's part. Saw that you've been at Google for just under a year now as a new VP of sales. Spotted that you've got over 7 years of experience in the digital marketing space. Ideally you'll mention something specifically about the prospect or their company that relates to your offer. The downside to personalization is that it's hard to get right, and very time consuming at scale, but totally worth it. Full disclosure, me and my partner Igor just launched our new startup ColdClicks which uses AI to generate hyper-personalized email openers at scale. We built the tool as we were sending hundreds of emails a day, and personalizing every individual email took hours out of our day. ColdClicks automates this process, saving you time and getting you 2-3x more replies. Send emails At this stage you've decided on who you're targeting, you've mined some leads, and written copy. Now it's time to get sending. You can do this manually by copy and pasting each message, but one of the reasons cold email is so powerful is that it's scalable. When you build a process that gets customers, you'll want to send as many emails as you can to your target market. To get started quickly, you can use a mail-merge gmail tool, the best I've used is Maileteor. With Maileteor you upload your lead data to Google sheets, set-up an email template and Mailmetor will send out emails every day automatically. In your template you can define variables including name, company, and personalization to ensure your email is unique for each recipient. Alternatively, you may opt for a more comprehensive tool such as Instantly. Instantly includes unlimited email sending and accounts. There's more initial setup involved as you'll need to set-up Google workspace, buy sending domains, and warm up your email accounts, but when you become familiar with the process you can build a powerful lead generation / customer acquisition machine. Some key points to note, it's very important to warm up any new email accounts you set up. Warmup is the process of gradually establishing a positive reputation with email service providers like Gmail or Yahoo. Make sure to set up DKIM and DMARC on those new email accounts too, to maximise your chances of landing in the inbox. Scale up Once you've found a process that works, good things happen, and it becomes a numbers game. As you get replies and start to see new users signing up, you'll want to scale the process and send more emails. It's straightforward to add new sending accounts in a sending tool like Instantly, and you'll want to broaden your targeting when mining to test new markets. Unfortunately, sending more emails usually comes with a drop in reply rate as you have less time to personalize your messaging for each recipient. This is where ColdClicks shines. The tool allows you to upload thousands of leads and generate perfectly relevant email personalizations for every lead in your list, then export to your favorite sending tool. The examples I listed above in the personalization section were all generated by ColdClicks. Wrapping it up Cold email is an amazing way to validate your product and get new customers. The channel gets a bad rap, but there's a huge difference between blind cold emailing and crafting personalized outreach for individuals who will find value in your product. It's perfect for bootstrapped founders due to its affordability and scalability, and it's the driver of growth for many SaaS businesses. Time to get your first 10 customers! As you start sending, make it a habit to regularly check for new leads. Always experiment with market/messaging, track every campaign so you can learn what's working and iterate, and when you do get positive responses, reply as soon as you can!

7 free ways to find customers
reddit
LLM Vibe Score0
Human Vibe Score1
doublescoop24This week

7 free ways to find customers

You do not need to burn thousands on paid ads to find customers. Most businesses think ads are the only way to get customers. They spend huge amounts on Google and Facebook ads with low conversion rates and end up desperate when the money runs out. Here are some FREE strategies that work way better: Be where your customers already hang out Monitor platforms like Reddit, LinkedIn, Facebook groups and other online communities where your target audience discusses their problems. Look for people actively seeking solutions you provide. The conversion rate is much higher because these are people already looking for what you sell. Create content that solves real problems Create blog posts, videos, or social content that addresses specific pain points your audience has. I started writing detailed guides about problems I knew my customers faced and they began finding me organically through search. Strategic partnerships with complementary businesses I connected with businesses that served the same customers but offered different products. We created joint social posts and shared each other's content at zero cost. This opened up their audience to me and vice versa. Get interviewed on podcasts This one surprised me. Many niche industry podcasts need guests constantly. I reached out offering specific topics I could speak on with value for their audience. This positioned me as an expert while reaching new potential customers. Build in public Sharing your journey building your product creates a following of interested people. I posted weekly updates on X about challenges and wins, which created a small but engaged community before we even launched. Leverage personal networks properly Not by spamming friends, but by asking for specific introductions to people who might genuinely benefit from what you offer. One quality introduction beats 100 cold emails. Create free tools or resources This is one of the most effective strategies. You can easily build these free tools using AI now. I built a simple calculator that helped people in my industry solve a common problem. It generated leads because users found it valuable and shared it. The most important thing I learned is that these methods actually produce higher quality customers. They come to you already understanding the value you provide, which means better conversion rates and longer customer relationships. It takes more patience than ads, but the ROI is significantly better in the long run. Plus, these strategies help you understand your customers better, which improves everything else in your business.

AI Content Campaign Got 4M impressions, Thousands of Website Views, Hundreds of Customers for About $100 — This is the future of marketing
reddit
LLM Vibe Score0
Human Vibe Score0.857
adamkstinsonThis week

AI Content Campaign Got 4M impressions, Thousands of Website Views, Hundreds of Customers for About $100 — This is the future of marketing

Alright. So, a few months ago I tested a marketing strategy for a client that I’ve sense dedicated my life to developing on. The Idea was to take the clients Pillar content (their YouTube videos) and use AI to rewrite the content for all the viable earned media channels (mainly Reddit). The campaign itself was moderately successful. To be specific, after one month it became their 2nd cheapest customer acquisition cost (behind their organic YouTube content). But there is a lot to be done to improve the concept. I will say, having been in growth marketing for a decade, I felt like I had hit something big with the concept. I’m going to detail how I built that AI system, and what worked well and what didn’t here. Hopefully you guys will let me know what you think and whether or not there is something here to keep working on. DEFINING THE GOAL Like any good startup, their marketing budget was minimal. They wanted to see results, fast and cheap. Usually, marketers like me hate to be in this situation because getting results usually either takes time or it takes money. But you can get results fast and cheap if you focus on an earned media strategy - basically getting featured in other people’s publication. The thing is these strategies are pretty hard to scale or grow over time. That was a problem for future me though. I looked through their analytics and saw they were getting referral traffic from Reddit - it was their 5th or 6th largest source of traffic - and they weren’t doing any marketing on the platform. It was all digital word of mouth there. It kind of clicked for me there, that Reddit might be the place to start laying the ground work. So with these considerations in mind the goal became pretty clear: Create content for relevant niche communities on Reddit with the intent of essentially increasing brand awareness. Use an AI system to repurpose their YouTube videos to keep the cost of producing unique content for each subreddit really low. THE HIGH-LEVEL STRATEGY I knew that there are huge amounts of potential customers on Reddit (About 12M people in all the relevant communities combined) AND that most marketers have a really tough time with the platform. I also knew that any earned media strategy, Reddit or not, means Click Through Rates on our content would be extremely low. A lot of people see this as a Reddit specific problem because you can’t self-promote on the platform, but really you have to keep self-promotion to a minimum with any and all earned media. This basically meant we had to get a lot of impressions to make up for it. The thing about Reddit is if your post absolutely crushes it, it can get millions of views. But crushing it is very specific to what the expectations are of that particular subreddit. So we needed to make content that was specifically written for that Subreddit. With that I was able to essentially design how this campaign would work: We would put together a list of channels (specifically subreddits to start) that we wanted to create content for. For each channel, we would write a content guideline that details out how to write great content for this subreddit. These assets would be stored in an AirTable base, along with the transcripts of the YouTube videos that were the base of our content. We would write and optimize different AI Prompts that generated different kinds of posts (discussion starters about a stock, 4-5 paragraph stock analysis, Stock update and what it means, etc…) We would build an automation that took the YouTube transcripts, ran each prompt on it, and then edited each result to match the channel writing guidelines. And then we would find a very contextual way to leave a breadcrumb back to the client. Always as part of the story of the content. At least, this is how I originally thought things would go. CHOOSING THE RIGHT SUBREDDITS Picking the right communities was vital. Here’s the basic rubric we used to pick and prioritize them: • Relevance: We needed communities interested in stock analysis, personal finance, or investing. • Subreddit Size vs. Engagement: Large subreddits offer more potential impressions but can be less focused. Smaller subreddits often have higher engagement rates. • Content Feasibility: We had to ensure we could consistently create high-value posts for each chosen subreddit. We started with about 40 possibilities, then narrowed it down to four or five that consistently delivered upvotes and user signups. CREATING CHANNEL-SPECIFIC GUIDES By the end, creating channel specific writing guidelines looked like a genius decision. Here’s how we approached it and used AI to get it done quickly: Grabbed Top Posts: We filtered the subreddit’s top posts (change filter to “Top” and then “All Time”) of all time to see the kinds of content that performed best Compiled The Relevant Posts: We took the most relevant posts to what we were trying to do and put them all on one document (basically created one document per subreddit that just had the top 10 posts in that subreddit). Had AI Create Writing Guideline Based On Posts: For each channel, we fed the document with the 10 posts with the instructions “Create a writing guideline for this subreddit based on these high performing posts. I had to do some editing on each guideline but this worked pretty well and saved a lot of time. Each subreddit got a custom guideline, and we put these inside the “Channels” table of the AirTable base we were developing with these assets. BUILDING THE AI PROMPTS THAT GENERATED CONTENT Alright this is probably the most important section so I’ll be detailed. Essentially, we took all the assets we developed up until this point, and used them to create unique posts for each channel. This mean each AI prompt was about 2,000 words of context and produced about a 500-word draft. There was a table in our AirTable where we stored the prompts, as I alluded to earlier. And these were basically the instructions for each prompt. More specifically, they detailed out our expectations for the post. In other words, there were different kinds of posts that performed well on each channel. For example, you can write a post that’s a list of resources (5 tools we used to…), or a how to guide (How we built…), etc.. Those weren’t the specific ones we used, but just wanted to really explain what I meant there. That actual automation that generated the content worked as follows: New source content (YouTube video transcript) was added to the Source Content table. This triggered the Automation. The automation grabbed all the prompts in the prompt table. For each prompt in the prompt table, we sent a prompt to OpenAI (gpt-4o) that contained first the prompt and also the source content. Then, for each channel that content prompt could be used on, we sent another prompt to OpenAI that revised the result of the first prompt based on the specific channel guidelines. The output of that prompt was added to the Content table in AirTable. To be clear, our AirTable had 4 tables: Content Channels Prompts Source Content The Source Content, Prompts, and Channel Guidelines were all used in the prompt that generated content. And the output was put in the Content table. Each time the automation ran, the Source Content was turned into about 20 unique posts, each one a specific post type generated for a specific channel. In other words, we were create a ton of content. EDITING & REFINING CONTENT The AI drafts were never perfect. Getting them Reddit-ready took editing and revising The main things I had to go in and edit for were: • Tone Adjustments: We removed excessively cliche language. The AI would say silly things like “Hello fellow redditors!” which sound stupid. • Fact-Checking: Financial data can be tricky. We discovered AI often confused figures, so we fact check all stock related metrics. Probably something like 30-40% error rate here. Because the draft generation was automated, that made the editing and getting publish ready the human bottleneck. In other words, after creating the system I spent basically all my time reviewing the content. There were small things I could do to make this more efficient, but not too much. The bigger the model we used, the less editing the content needed. THE “BREADCRUMB” PROMOTION STRATEGY No where in my prompt to the AI did I mention that we were doing any marketing. I just wanted the AI to focus on creating content that would do well on the channel. So in the editing process I had to find a way to promote the client. I called it a breadcrumb strategy once and that stuck. Basically, the idea was to never overtly promote anything. Instead find a way to leave a breadcrumb that leads back to the client, and let the really interested people follow the trail. Note: this is supposed to be how we do all content marketing. Some examples of how we did this were: Shared Visuals with a Subtle Watermark: Because our client’s product offered stock data, we’d often include a chart or graph showing a company’s financial metric with the client’s branding in the corner. Added Supporting Data from Client’s Website: If we mentioned something like a company’s cash flow statement, we could link to that company’s cash flow statement on the client’s website. It worked only because there was a lot of data on the client’s website that wasn’t gated. These tactics were really specific to the client. Which is should be. For other companies I would rethink what tactics I use here. THE RESULTS I’m pretty happy with the results • Impressions: – Early on posts averaged \~30,000 apiece, but after about a month of optimization, we hit \~70,000 impressions average. Over about two months, we reached 4 million total impressions. • Signups: – In their signups process there was one of those “Where did you find us?” questions and the amount of people who put Reddit jumped into the few hundred a month. Precise tracking of this is impossible. • Cost Efficiency (This is based on what I charged, and not the actual cost of running the campaign which is about $100/mo): – CPM (cost per thousand impressions) was about $0.08, which is far better than most paid channels. – Cost per free user: \~$8-10. After about a 10% conversion rate to a paid plan, our cost per paying user was $80–$100—well below the client’s previous $300–$400. HIGHLIGHTS: WHAT WORKED Subreddit-Specific Content: – Tailoring each post’s format and length to the audience norms boosted engagement. Worked out really well. 1 post got over 1M views alone. We regularly had posts that had hundreds of thousands. Breadcrumbs: – We never had anyone call us out for promoting. And really we weren’t. Our first priority was writing content that would crush on that subreddit. Using the Founder’s Existing Material: – The YouTube transcripts grounded the AI’s content in content we already made. This was really why we were able to produce so much content. CHALLENGES: WHAT DIDN’T WORK AI is still off: – Maybe it’s expecting too much, but still I wish the AI had done a better job. I editing a lot of content. Human oversight was critical. Scheduling all the content was a pain: – Recently I automated this pretty well. But at first I was scheduling everything manually and scheduling a hundred or so posts was a hassle. Getting Data and Analytics: – Not only did we have not very good traffic data, but the data from reddit had to be collected manually. Will probably automate this in the future. COST & TIME INVESTMENT Setup: The setup originally took me a couple weeks. I’ve since figured out how to do much faster (about 1 week). AirTable Setup here was easy and the tools costs $24/mo so not bad. ChatGPT costs were pretty cheap. Less than $75 per month. I’ve sense switched to using o1 which is much more expensive but saves me a lot of editing time Human Editing: Because this is the human part of the process and everything else was automated it mean by default all my time was spent editing content. Still this was a lot better than creating content from scratch probably by a factor of 5 or 10. The main expense was paying an editor (or using your own time) to refine posts. Worth it? Yes even with the editing time I was able to generate way more content that I would have otherwise. LESSONS & ACTIONABLE TAKEAWAYS Reddit as a Growth Channel: – If you genuinely respect each subreddit’s culture, you can achieve massive reach on a tight budget. AI + Human Collaboration: – AI excels at first drafts, but human expertise is non-negotiable for polishing and ensuring factual integrity. Soft Promotion Wins: – The “breadcrumb” approach paid off. It might feel like too light a touch, but is crucial for Reddit communities. Create once, repurpose as many times as possible: – If you have blog posts, videos, podcasts, or transcripts, feed them into AI to keep your message accurate and brand-consistent. CONCLUSION & NEXT STEPS If you try a similar approach: • Begin with smaller tests in a few niches to learn what resonates. • Create a clear “channel guide” for each community. • Carefully fact-check AI-generated posts. • Keep brand mentions low-key until you’ve established credibility.

In 2018, I started an AI chatbot company...today, we have over 4000 paying customers and ChatGPT is changing EVERYTHING
reddit
LLM Vibe Score0
Human Vibe Score1
Millionaire_This week

In 2018, I started an AI chatbot company...today, we have over 4000 paying customers and ChatGPT is changing EVERYTHING

Intro: 5 years ago, my co-founders and I ventured into the space of AI chatbots and started our first truly successful company. Never in a million years did I see myself in this business and we truly stumbled upon the opportunity by chance. Prior to that, we ran a successful lead generation business and questioned whether a simple ai chat product would increase our online conversions. Of the 3 co-founders, I was skeptical that it would, but the data was clear that we had something that really worked. We built a really simple MVP version of the product and gave it to some of our top lead buyers who saw even better conversion improvements on their own websites. In just a matter of weeks, a new business opportunity was born and a major pivot away from our lead generation business started. Our growth story: Startup growth is really interesting and in most cases, founders aren't really educated on what a typical growth curve looks like. While we hear about "hockey stick" growth curves, it's really atypical to actually see or experience this. From my experience, growth curves take place in a "stair curve". For example, you can scrap your way to a $100k run rate without much process or tracking. You can even get to $1 million ARR being super disorganized. As you start going beyond $1M ARR, things start to break and growth can flatten out while you put new processes and systems in place. Eventually you'll get to $2M or 3M with your new strategy and then things start breaking again. I've seen the process repeat itself and as you increase your ARR, the processes and systems become more difficult to work through...mainly because more people get involved and the product becomes more complex. When you do end up cracking the code in each step, the growth accelerates faster and faster before things start to break down and flatten out again. Without getting too much into the numbers, here were some of our initial levers for growth: Our first "stair" step was to leverage our existing customer base from our prior lead generation business. Having prior business relationships and a proven track record made it really simple to have conversations with people who already trusted us to try something new that we had to offer. Stair #2 was to build out a partner channel. Since our chat product involved a web developer or agency installing the chat on client sites, we partnered with these developers and agencies to leverage their already existing customer bases. We essentially piggy-backed off of their relationships and gave them a cut of the revenue. We built an internal partner tracking portal which took 6+ months, but it was well worth it. Stair #3 was our most expensive step, biggest headache, but added the most revenue. After COVID, we had and SDR/Account Executive sales team of roughly 30 people. It added revenue fast, but the payback periods were 12+ months so we had to cut back on this strategy after exhausting our universe of clients. Stair #4 involves a variety of paid advertisement strategies with product changes and the introduction of new onboarding features. We're in the middle of this stair and hope it's multiple years before things breakdown again. Don't give up I know it sounds really cliché, but the #1 indicator of success is doing the really boring stuff day in and day out and making incremental improvements. As the weeks, months, and years pass by, you will slowly gain domain expertise and start to see the gaps in the market that can set you apart from your competition. It's so hard for founders to stay focused and not get distracted so I would say it's equally as important to have co-founders who hold each other accountable on what your collective goals are. How GPT is changing everything I could write pages and pages about how GPT is going to change how the world operates, but I'll keep it specific to our business and chatbots. In 2021, we built an industry specific AI model that did a great job of classifying intents which allowed us to train future actions during a chat. It was a great advancement in our customer's industry at the time. With GPT integrated into our system, that training process that would take an employee hours to do, can be done in 5 minutes. The model is also cheaper than our own and more accurate. Because of these training improvements, we have been able to conduct research that is allowing us to leverage GPT models like no one else in the industry. This is both in the realm of chat and also training during onboarding. I really want to refrain from sharing our company, but if you are interested in seeing a model trained for your specific company or website, just PM me your link and I'll send you a free testing link with a model fully trained for your site to play around with. Where we are headed and the dangers of AI The level of advancement in AI is not terribly dangerous in its current state. I'm sure you've heard it before, but those who leverage the technology today will be the ones who get ahead. In the coming years, AI will inevitably replace a large percentage of human labor. This will be great for overall value creation and productivity for the world, but the argument that humans have always adapted and new jobs will be created is sadly not going to be as relevant in this case. As the possibility of AGI becomes a reality in the coming years or decades, productivity through AI will be off the charts. There is a major risk that human innovation and creative thinking will be completely stalled...human potential as we know it will be capped off and there will need to be major economic reform for displaced workers. This may not happen in the next 5 or 10 years, but you would be naïve not to believe the world we live in today will not be completely different in 20 to 30 years. Using AI to create deepfakes, fake voice agents, scam the unsuspecting, or exploit technical vulnerabilities are just a few other examples I could write about, but don't want to go into to much detail for obvious reasons. Concluding If you found the post interesting or you have any questions, please don't hesitate to ask. I'll do my best to answer whatever questions come from this! ​ \*EDIT: Wasn't expecting this sort of response. I posted this right before I went to sleep so I'll get to responding soon.

Created the Shopify Alternative in a 3rd world country “I will not promote”
reddit
LLM Vibe Score0
Human Vibe Score1
uwalkirunThis week

Created the Shopify Alternative in a 3rd world country “I will not promote”

Built a Shopify alternative I’ve been a long-time follower of this subreddit and have always valued the insights shared here. Today, I’m reaching out to share our story and seek advice or guidance on potential next steps for our business. Four years ago, we set out to build a local e-commerce platform tailored to the unique challenges of operating in a third-world country where global solutions like Shopify fall short. Shopify, while a fantastic platform, doesn’t provide localized support or integrations here, and the costs of running a Shopify store are prohibitively high due to: The need for multiple apps to replicate basic functionality Expensive international support calls or long chat queues Higher payment gateway fees (no Shopify Pay) USD-only subscription payments, which incur additional bank conversion fees And more We built a solution that addresses these pain points, and today, we’re proud to have over 4,000 merchants on our platform, with 1,600+ paying customers. We’re processing over $1 million per month across 50,000+ orders, which translates to a significant impact in our local economy. As experienced founders, we’ve managed our financials meticulously, allowing us to thrive while many local competitors have shut down. However, scaling in our current economic climate has been challenging, and raising capital has proven to be incredibly tough. We’re exploring strategic options, including potential partnerships, acquisitions, or investments. For example, we believe our platform could be an attractive opportunity for a player like Shopify or another company looking to expand into emerging markets. I’m reaching out to this community to ask: Are there doors we haven’t knocked on? Are there opportunities or strategies we might be overlooking? Any advice, introductions, or insights would be immensely appreciated. Thank you for taking the time to read this, and I look forward to any feedback or ideas you might have! [post refined by AI]

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

Joined an AI Startup with Ex-ShipStation Team - Need Tips on Finding Early Users
reddit
LLM Vibe Score0
Human Vibe Score1
welcomereadThis week

Joined an AI Startup with Ex-ShipStation Team - Need Tips on Finding Early Users

Hey Reddit, My name’s Welcome (Yes, that’s really my name), and I’ve been in tech for most of my career, mostly at bigger companies with established brands and resources. But recently, I decided to join a small startup called BotDojo. It’s my first time being part of a small team, and it’s been a pretty eye-opening experience so far. But, like with anything new, I’ve hit a few bumps along the way, and I’m hoping you all might have some advice. A little backstory: BotDojo was started by some of the engineers who used to work together at ShipStation. After ShipStation sold, they spent some time experimenting with AI but kept running into the same problems—having to patch together tools, getting inconsistent results, handling data ingestion, and struggling to track performance. So, they decided to build a platform to help developers build, test, and deploy AI solutions. Since I came on board, my focus has been on finding early users, and it’s been a mixed bag of wins and frustrations. We’ve got a solid group of people using the free version (which is great), but only a few have upgraded to the paid plan so far (ranging from startups to large enterprises). The cool thing is that those who have become paying customers absolutely love the product. It’s just been hard getting more people to that point. We’ve tried a bunch of things: Attending industry events, doing cold email outreach, running social ads (the usual stuff). And while we’ve seen some interest, we’re running into a few challenges:   Learning curve: The software is really powerful, but it takes a week or two for users to really see what it can do. Without a dedicated sales team to walk them through it, it’s been tough getting people to stick around long enough to see the value. Standing out is hard: The AI space is super crowded right now. I think a lot of people see “AI tool” and assume it’s just like everything else out there (even though BotDojo has some awesome features that really set it apart).  Sign-ups, but limited engagement: We’re on a freemium model to make it easy for people to try it out, but that also means we get a lot of bots and people who sign up but don’t really dive in. So, I thought I’d reach out here and see if anyone has been through this early stage before. How did you manage to break through and find those first paying users who really saw the value in what you were building?  Are there any strategies, communities, or tactics that worked particularly well for you? And if you had to do it all over again, what would you focus on? I figure I’m not the only one trying to navigate these waters, so I’m hoping this can be a helpful thread for others too. Thanks so much for reading, and I’d be super grateful for any advice or insights you can share! 🙏

No revenue for 6 months, then signed $10k MRR in 2 weeks with a new strategy. Here’s what I changed.
reddit
LLM Vibe Score0
Human Vibe Score0.6
xoyourwifeThis week

No revenue for 6 months, then signed $10k MRR in 2 weeks with a new strategy. Here’s what I changed.

This is my first company so I made A LOT of mistakes when starting out. I'll explain everything I did that worked so you don't have to waste your time either. For context, I built a SaaS tool that helps companies scale their new client outreach 10x (at human quality with AI) so they can secure more sales meetings. Pricing I started out pricing it way too low (1/10 as much as competitors) so that it'd be easier to get customers in the beginning. This is a HUGE mistake and wasted me a bunch of time. First, this low pricing meant that I was unable to pay for the tools I needed to make sure my product could be great. I was forced to use low-quality databases, AI models, sending infrastructure -- you name it. Second, my customers were less invested in the product, and I received less input from them to make the product better. None ended up converting from my free trial because my product sucked, and I couldn't even get good feedback from them. I decided to price my product much higher, which allowed me to use best-in class tools to make my product actually work well. Outreach Approach The only issue is that it's a lot harder to get people to pay $500/month than $50/month. I watched every single video on the internet about cold email for getting B2B clients and built up an outbound MACHINE for sending thousands of emails a day. I tried all the top recommended sales email formats and tricks (intro, painpoint, testimonial, CTA, etc). Nothing. I could send 1k emails and get a few out of office responses and a handful of 'F off' responses. I felt bad and decided I couldn't just spam the entire world and expect to make any progress. I decided I needed to take a step back and learn from people who'd succeeded before in sales. I started manually emailing CEOs/founders that fit my customer profile with personal messages asking for feedback on my product -- not even trying to sell them anything. Suddenly I was getting 4-6 meetings a day and just trying to learn from them (turns out people love helping others). And without even prompting, many of them said 'hey, I actually could use this for my own sales' and asked how they could start trying it out. That week I signed 5 clients between $500-$4k/month (depending how many contacts they want to reach). I then taught my product to do outreach the same way I did that worked (include company signals, make sure the person is a great match with web research, and DONT TALK SALESY). Now, 6 of my first 10 clients (still figuring out who it works for, lol) have converted from the free trial and successfully used it to book sales meetings. I'm definitely still learning, but this one change in my sales approach changed everything for me, so I wanted to share. If anyone has any other tips/advice that changed their business's sales, would love to hear!

Upselling from $8/mo to $2k/mo
reddit
LLM Vibe Score0
Human Vibe Score1
Afraid-Astronomer130This week

Upselling from $8/mo to $2k/mo

I just closed a client for $1947/mo. But 5 months ago he was spending only $8/mo. Most customers have way more purchasing power than you think. Unlock it with the power of stacking. Here's my 3-steps stacking formula: Step 1 - Build trust with a low-ticket product In a world full of scams and deceit, building trust is damn hard. The best way to combat skepticism is through a free or low-ticket product, where you can go above and beyond to demonstrate your credibility. When I first onboarded this client onto my SaaS, an AI to help you with HARO link-building, my product was at a very early stage with many rough edges. He gave me lots of great feedback. I implemented his suggestions the same day and got more feedback from him. After a couple of back-and-forths, I established myself as a trustworthy hustler, instead of just a stranger online. This is easy to do for an agile startup but impossible for big companies, so make good use of opportunities like this to build long-term relationships. Turn your customers into raving fans. Step 2 - Validate a mid-ticket offer Three months into his subscription, he told me he wanted to cancel. When digging into the why, he suggested a performance-based DFY service to remove all the work on his end. Inspired by his suggestion, I took on him and 6 other clients for $237, a one-time package for 1 backlink. It's sold through my newsletter email blast to 300 subscribers, with a total CAC of $0. I wrote about the details of this launch in another long form. At this price range, impulsive purchases can still happen if you have a strong offer and good copywriting. Use this mid-ticket offer to validate your offer and positioning, build out a team, and establish trust. We went beyond the 1 link for almost all our clients, including this one in particular. For $237, we got him on Forbes, HubSpot, 2 DR50+ sites, and a few other smaller media outlets. By doing this, we further built trust into the relationship and established authority in what we do. Step 3 - Create a high-ticket subscription-based offer By now, you'll hopefully have built enough trust to get through the skepticism filter for something high-ticket. Now, it's time to develop an offer that amplifies your previous one. Something that allows you to let your clients achieve their goals to the maximum extent. For me, this is pitching every relevant media query on every platform for this client every day, to leverage HARO link-building to its full extent, all for a fixed price of $1947/mo. This customized offer is based on direct client feedback, isn't publicized on our website, but we're confident it will directly contribute to achieving this client's goal. A subscription-based offer is much superior because it allows you to create a stable source of revenue, especially at the early stage. That's how I created 3 different offers to solve the same problem for one client. By stacking each offer on top of the previous one, I was able to guide clients from one option to the next. This formula isn't some new rocket science I came up with. It's proven over and over again by other agency owners building in public, like Nick from Baked Design who started with a $9 design kit and now sells $9k/mo design subscriptions at $1M ARR. By stacking offers, you position yourself as a committed partner in your client's long-term success. Lastly, I want to address a common objection: "My customers can't afford $2k/month." But consider this: most people are reading your site on their $3000 MacBook or $1000 iPhone. It's not that they lack the funds, it's more likely that your service isn't meeting their expectations. Talk to them to discover the irresistible offer they'll gladly pay for. Update: lots of DM asking about more specifics so I wrote about it here. https://coldstartblueprint.com/p/ai-agent-email-list-building

AI will obsolete most young vertical SAAS startups, I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
Few_Incident4781This week

AI will obsolete most young vertical SAAS startups, I will not promote

This is an unpopular opinion, but living in New York City and working with a ton of vertical SaaS startups, meaning basically database wrapper startups that engineer workflows for specific industries and specific users, what they built was at one point in time kind of innovative, or their edge was the fact that they built these like very specific workflows. And so a lot of venture capital and seed funding has gone into these types of startups. But with AI, those database wrapper startups are basically obsolete. I personally feel like all of these companies are going to have to shift like quickly to AI or watch all of their edge and what value they bring to the table absolutely evaporate. It's something that I feel like it's not currently being priced in and no one really knows how to price, but it's going to be really interesting to watch as more software becomes generated and workflows get generated. I’m not saying these companies are worth nothing, but their products need to be completely redone EDIT: for people not understanding: The UX is completely different from traditional vertical saas. Also in real world scenarios, AI does not call the same APIs as the front end. The data handling and validation is different. It’s 50% rebuild. Then add in the technical debt, the fact that they might need a different tech stack to build agents correctly, different experience in their engineers. the power struggles that occur inside companies that need a huge change like this could tank the whole thing alone. It can be done, but these companies are vulnerable. The edge they have is working with existing customers to get it right. But they basically blew millions on a tech implementation that’s not as relevant going forwards. Investors maybe better served putting money into a fresh cap table

Non-technical founders with experienced outside vendor — ok?
reddit
LLM Vibe Score0
Human Vibe Score0
Secure-Proof-4872This week

Non-technical founders with experienced outside vendor — ok?

I’m a non-technical cofounder of early stage startup. (“Non-technical” but I’ve developed multimedia courseware and led teams in the past (LMS, edu content, no code). My question: how crucial is it that my other biz founder and I have a technical co-founder for our data- and AI-driven product rather than use an experienced vendor whose team has been doing machine learning and AI for 10 years? During our manual work as consultants we have identified a problem in a niche market that can be solved via a combo of hard-to-gather data and AI (and other market-specific stuff that that we will train our LLM on). We’ve done market research, designed and validated the solution with potential customers in numerous interviews via click-through prototypes/wireframes, quantified TAM, SAM, SOM, written biz plan, etc. We have deep experience in our market having proven expertise over years. But as we’ve been learning about fundraising (we hope to begin a seed round in early 2025) we continually hear about the importance of technical cofounder. We get it— but our product will only be half-developed by a technical dev team. The other aspect to the product is: gathering hard to find data, and figuring out relationships in the data — that we will do via mapping work with a cohort with unique expertise in our niche market. Also our outside vendor is very reputable with years’ experience in AI and machine learning prior to the latest gen-AI craze — he’s not a newbie and has an established dev team. And our platform is not a consumer product but a more complicated SaaS product. Like, you can’t just code it by yourself. Sure, in the long run we can hire/bring everything in house, but would investors shy away from working with us if our short-term dev effort does not have a “technical” co-founder? Thanks for your thoughts.

Competing with much bigger companies that have lame products? How do I market and carve out a niche? (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
YoKevinTrueThis week

Competing with much bigger companies that have lame products? How do I market and carve out a niche? (I will not promote)

I've been working on a product for the last few months that competes with CapCut, Adobe Premier, Veed, Descript, DaVinci Resolve, etc. Basically, it's a fancy video editor. (no link and I will not promote but just some background context) I'm very technical and started creating videos for TikTok but really wanted to take my game to the next level. My channel sort of blew up on me in the first month and I was able to get 2M views and 10k followers. My initial thinking was that I was going to use AI to make video editing fancy/faster and sort of have this as a "script" that I used personally. Basically, give myself a serious competitive advantage. However, it sort of spiraled out of control! What started off as a weekend project, turned into 2 weekends, which turned into about 2 months of continuous hacking. If I'm going to spend a significant amount of time on this, I might as well try to productize it and try to at least make enough money that I break even on my time. The thing I'm worried about, in the back of my mind, is that if I shop this, that my competitors, with their signifiant resources, could clone what I'm doing quickly. However, at the same time, why haven't they done so already? I mean maybe I have a better understanding of the market than they do because they don't actually use their products. I know that sounds like a bit of a cop out in a way but there are plenty of entrepreneurs who have started companies and crushed it just because they were heads down and focused. Another problem I face, is that I think VCs may not be super excited about this because it's B2C-ish and it's not in a super exciting space. Maybe you could say it's in the AI video space, and they're excited about AI video, but it's just an AI video editor, not fully creating AI videos from scratch like SORA. I think since I blew up my TikTok feed before, that I could do it again, and if I get 2M views, and I have a outro on my video, that I could start to convert some of these as customers. Especially, if I started to create videos for creators which is more focused on the target market. So without funding, can I really tackle these existing competitors? PS. "I will not promote" but I have to talk about this somewhat abstractly but I won't link to anything.

How to start online business in 7 days ?
reddit
LLM Vibe Score0
Human Vibe Score1
Prior-Inflation8755This week

How to start online business in 7 days ?

Easy to do now. There are several tips that I can give you to start your own digital business. 1) Solve your own problem. If you use the Internet, you know that there are a lot of problems that need to be solved. But focus on your problem first. Once you can figure it out and solve your problem. You can move on to solving people's problems. Ideally, to use tools and technology you know. If you don't know, use NO-CODE tools to build it. For example, if you need to create a website, use landing page builder. If you want to automate your own work, like booking meetings, use Zapier to automate tasks. If you want to create a game, sure, use AI Tools to solve it. I don't care what you will use. Use whatever you want. All I want from you is to solve that problem. 2) After solving your own problem. You can focus on people's problems. Because if you can't solve your own shit, why do you want to solve others problems? Remember that always. If you need to build e-commerce, use Shopify. If you need to build a directory, use directory builder. If you need to build landing pages, use landing page builders. Rule of thumb: Niche, Niche, Niche. Try to focus on a specific niche, solve their problem, and make money on it. Then only thinking about exploring new opportunities. You can use No-Code builders or AI tools or hire developers or hire agencies to do it. It depends on your choice. If you are good at coding, build on your own or delegate to a developer or agency. If you have enough time, use AI Tools to build your own thing. If you want to solve a common problem but with a different perspective, yeah, sure, use No-Code builders for that. 3) Digital business works exactly the same as offline business with one difference. You can move a lot faster, build a lot faster, risk a lot faster, fail a lot faster, earn a lot faster, sell a lot faster, and scale a lot faster. In one week, you can build e-commerce. In the second week, you can build SaaS. In the third week, you can build an AI agent. In the fourth week, you can build your own channel on social media. 4) It gives more power. With great power comes great responsibility. From day one, invest in SEO, social media presence, traffic, and acquiring customers. Don't focus on tech stuff. Don't focus on tools. Focus on the real problem: • Traffic • Marketing • Sales • Conversion rate

10y of product development, 2 bankruptcies, and 1 Exit — what next? [Extended Story]
reddit
LLM Vibe Score0
Human Vibe Score1
Slight-Explanation29This week

10y of product development, 2 bankruptcies, and 1 Exit — what next? [Extended Story]

10 years of obsessive pursuit from the bottom to impressive product-market fit and exit. Bootstrapping tech products as Software Developer and 3x Startup Founder (2 bankruptcies and 1 exit). Hi everyone, your motivation has inspired me to delve deeper into my story. So, as promised to some of you, I've expanded on it a bit more, along with my brief reflections. There are many founders, product creators, and proactive individuals, I’ve read many of your crazy stories and lessons so I decided to share mine and the lessons I learned from the bottom to impressive product-market fit and exit. I've spent almost the past 10 years building tech products as a Corporate Team Leader, Senior Software Developer, Online Course Creator, Programming Tutor, Head of Development/CTO, and 3x Startup Founder (2 bankruptcies, and 1 exit). And what next? good question... A brief summary of my journey: Chapter 1: Software Developer / Team Leader / Senior Software Developer I’ve always wanted to create products that win over users’ hearts, carry value, and influence users. Ever since my school days, I’ve loved the tech part of building digital products. At the beginning of school, I started hosting servers for games, blogs and internet forums, and other things that did not require much programming knowledge. My classmates and later even over 100 people played on servers that I hosted on my home PC. Later, as the only person in school, I passed the final exam in computer science. During my computer science studies, I started my first job as a software developer. It was crazy, I was spending 200–300 hours a month in the office attending also to daily classes. Yes, I didn’t have a life, but it truly was the fulfillment of my dreams. I was able to earn good money doing what I love, and I devoted fully myself to it. My key to effectively studying IT and growing my knowledge at rocket speed was learning day by day reading guides, building products to the portfolio, watching youtube channels and attending conferences, and even watching them online, even if I didn’t understand everything at the beginning. In one year we’ve been to every possible event within 400km. We were building healthcare products that were actually used in hospitals and medical facilities. It was a beautiful adventure and tons of knowledge I took from this place. That time I built my first product teams, hired many great people, and over the years became a senior developer and team leader. Even I convinced my study mates to apply to this company and we studied together and worked as well. Finally, there were 4 of us, when I left a friend of mine took over my position and still works there. If you’re reading this, I’m sending you a flood of love and appreciation. I joined as the 8th person, and after around 4 years, when I left hungry for change, there were already over 30 of us, now around 100. It was a good time, greetings to everyone. I finished my Master’s and Engineering degrees in Computer Science, and it was time for changes. Chapter 2: 1st time as a Co-founder — Marketplace In the meantime, there was also my first startup (a marketplace) with four of my friends. We all worked on the product, each of us spent thousands of hours, after hours, entire weekends… and I think finally over a year of work. As you might guess, we lacked the most important things: sales, marketing, and product-market fit. We thought users think like us. We all also worked commercially, so the work went very smoothly, but we didn’t know what we should do next with it… Finally, we didn’t have any customers, but you know what, I don’t regret it, a lot of learning things which I used many times later. The first attempts at validating the idea with the market and business activities. In the end, the product was Airbnb-sized. Landing pages, listings, user panels, customer panels, admin site, notifications, caches, queues, load balancing, and much more. We wanted to publish the fully ready product to the market. It was a marketplace, so if you can guess, we had to attract both sides to be valuable. “Marketplace” — You can imagine something like Uber, if you don’t have passengers it was difficult to convince taxi drivers, if you don’t have a large number of taxi drivers you cannot attract passengers. After a year of development, we were overloaded, and without business, marketing, sales knowledge, and budget. Chapter 3: Corp Team Lead / Programming Tutor / Programming Architecture Workshop Leader Working in a corporation, a totally different environment, an international fintech, another learning experience, large products, and workmates who were waiting for 5 pm to finish — it wasn’t for me. Very slow product development, huge hierarchy, being an ant at the bottom, and low impact on the final product. At that time I understood that being a software developer is not anything special and I compared my work to factory worker. Sorry for that. High rates have been pumped only by high demand. Friends of mine from another industry do more difficult things and have a bigger responsibility for lower rates. That’s how the market works. This lower responsibility time allowed for building the first online course after hours, my own course platform, individual teaching newbies programming, and my first huge success — my first B2C customers, and B2B clients for workshops. I pivoted to full focus on sales, marketing, funnels, advertisements, demand, understanding the market, etc. It was 10x easier than startups but allowed me to learn and validate my conceptions and ideas on an easier market and showed me that it’s much easier to locate their problem/need/want and create a service/product that responds to it than to convince people of your innovative ideas. It’s just supply and demand, such a simple and basic statement, in reality, is very deep and difficult to understand without personal experience. If you’re inexperienced and you think you understand, you don’t. To this day, I love to analyze this catchword in relation to various industries / services / products and rediscover it again and again... While writing this sentence, I’m wondering if I’m not obsessed. Chapter 4: Next try — 2nd time as a founder — Edtech Drawing upon my experiences in selling services, offering trainings, and teaching programming, I wanted to broaden my horizons, delve into various fields of knowledge, involve more teachers, and so on. We started with simple services in different fields of knowledge, mainly relying on teaching in the local area (without online lessons). As I had already gathered some knowledge and experience in marketing and sales, things were going well and were moving in the right direction. The number of teachers in various fields was growing, as was the number of students. I don’t remember the exact statistics anymore, but it was another significant achievement that brought me a lot of satisfaction and new experiences. As you know, I’m a technology lover and couldn’t bear to look at manual processes — I wanted to automate everything: lessons, payments, invoices, customer service, etc. That’s when I hired our first developers (if you’re reading this, I’m sending you a flood of love — we spent a lot of time together and I remember it as a very fruitful and great year) and we began the process of tool and automation development. After a year we had really extended tools for students, teachers, franchise owners, etc. We had really big goals, we wanted to climb higher and higher. Maybe I wouldn’t even fully call it Startup, as the client was paying for the lessons, not for the software. But it gave us positive income, bootstrap financing, and tool development for services provided. Scaling this model was not as costless as SaaS because customer satisfaction was mainly on the side of the teacher, not the quality of the product (software). Finally, we grew to nearly 10 people and dozens of teachers, with zero external funding, and almost $50k monthly revenue. We worked very hard, day and night, and by November 2019, we were packed with clients to the brim. And as you know, that’s when the pandemic hit. It turned everything upside down by 180 degrees. Probably no one was ready for it. With a drastic drop in revenues, society started to save. Tired from the previous months, we had to work even harder. We had to reduce the team, change the model, and save what we had built. We stopped the tool’s development and sales, and with the developers, we started supporting other product teams to not fire them in difficult times. The tool worked passively for the next two years, reducing incomes month by month. With a smaller team providing programming services, we had full stability and earned more than relying only on educational services. At the peak of the pandemic, I promised myself that it was the last digital product I built… Never say never… Chapter 5: Time for fintech — Senior Software Developer / Team Lead / Head of Development I worked for small startups and companies. Building products from scratch, having a significant impact on the product, and complete fulfillment. Thousands of hours and sacrifices. This article mainly talks about startups that I built, so I don’t want to list all the companies, products, and applications that I supported as a technology consultant. These were mainly start-ups with a couple of people up to around 100 people on board. Some of the products were just a rescue mission, others were building an entire tech team. I was fully involved in all of them with the hope that we would work together for a long time, but I wasn’t the only one who made mistakes when looking for a product-market fit. One thing I fully understood: You can’t spend 8–15 hours a day writing code, managing a tech team, and still be able to help build an audience. In marketing and sales, you need to be rested and very creative to bring results and achieve further results and goals. If you have too many responsibilities related to technology, it becomes ineffective. I noticed that when I have more free time, more time to think, and more time to bounce the ball against the wall, I come up with really working marketing/sales strategies and solutions. It’s impossible when you are focused on code all day. You must know that this chapter of my life was long and has continued until now. Chapter 6: 3rd time as a founder — sold Never say never… right?\\ It was a time when the crypto market was really high and it was really trending topic. You know that I love technology right? So I cannot miss the blockchain world. I had experience in blockchain topics by learning on my own and from startups where I worked before. I was involved in crypto communities and I noticed a “starving crowd”. People who did things manually and earned money(crypto) on it.I found potential for building a small product that solves a technological problem. I said a few years before that I don’t want to start from scratch. I decided to share my observations and possibilities with my good friend. He said, “If you gonna built it, I’m in”. I couldn’t stop thinking about it. I had thought and planned every aspect of marketing and sales. And you know what. On this huge mindmap “product” was only one block. 90% of the mindmap was focused on marketing and sales. Now, writing this article, I understood what path I went from my first startup to this one. In the first (described earlier) 90% was the product, but in the last one 90% was sales and marketing. Many years later, I did this approach automatically. What has changed in my head over the years and so many mistakes? At that time, the company for which I provided services was acquired. The next day I got a thank you for my hard work and all my accounts were blocked. Life… I was shocked. We were simply replaced by their trusted technology managers. They wanted to get full control. They acted a bit unkindly, but I knew that they had all my knowledge about the product in the documentation, because I’m used to drawing everything so that in the moment of my weakness (illness, whatever) the team could handle it. That’s what solid leaders do, right? After a time, I know that these are normal procedures in financial companies, the point is that under the influence of emotions, do not do anything inappropriate. I quickly forgot about it, that I was brutally fired. All that mattered was to bring my plan to life. And it has been started, 15–20 hours a day every day. You have to believe me, getting back into the game was incredibly satisfying for me. I didn’t even know that I would be so excited. Then we also noticed that someone was starting to think about the same product as me. So the race began a game against time and the market. I assume that if you have reached this point, you are interested in product-market fit, marketing, and sales, so let me explain my assumptions to you: Product: A very very small tool that allowed you to automate proper tracking and creation of on-chain transactions. Literally, the whole app for the user was located on only three subpages. Starving Crowd: We tapped into an underserved market. The crypto market primarily operates via communities on platforms like Discord, Reddit, Twitter, Telegram, and so on. Therefore, our main strategy was directly communicating with users and demonstrating our tool. This was essentially “free marketing” (excluding the time we invested), as we did not need to invest in ads, promotional materials, or convince people about the efficacy of our tool. The community could directly observe on-chain transactions executed by our algorithms, which were processed at an exceptionally fast rate. This was something they couldn’t accomplish manually, so whenever someone conducted transactions using our algorithm, it was immediately noticeable and stirred a curiosity within the community (how did they do that!). Tests: I conducted the initial tests of the application on myself — we had already invested significantly in developing the product, but I preferred risking my own resources over that of the users. I provided the tool access to my wallet, containing 0.3ETH, and went to sleep. Upon waking up, I discovered that the transactions were successful and my wallet had grown to 0.99ETH. My excitement knew no bounds, it felt like a windfall. But, of course, there was a fair chance I could have lost it too. It worked. As we progressed, some users achieved higher results, but it largely hinged on the parameters set by them. As you can surmise, the strategy was simple — buy low, sell high. There was considerable risk involved. Churn: For those versed in marketing, the significance of repeat visitors cannot be overstated. Access to our tool was granted only after email verification and a special technique that I’d prefer to keep confidential. And this was all provided for free. While we had zero followers on social media, we saw an explosion in our email subscriber base and amassed a substantial number of users and advocates. Revenue Generation: Our product quickly gained popularity as we were effectively helping users earn — an undeniable value proposition. Now, it was time to capitalize on our efforts. We introduced a subscription model charging $300 per week or $1,000 per month — seemingly high rates, but the demand was so intense that it wasn’t an issue. Being a subscriber meant you were prioritized in the queue, ensuring you were among the first to reap benefits — thus adding more “value”. Marketing: The quality of our product and its ability to continually engage users contributed to it achieving what can best be described as viral. It was both a source of pride and astonishment to witness users sharing charts and analyses derived from our tool in forum discussions. They weren’t actively promoting our product but rather using screenshots from our application to illustrate certain aspects of the crypto world. By that stage, we had already assembled a team to assist with marketing, and programming, and to provide round-the-clock helpdesk support. Unforgettable Time: Despite the hype, my focus remained steadfast on monitoring our servers, their capacity, and speed. Considering we had only been on the market for a few weeks, we were yet to implement alerts, server scaling, etc. Our active user base spanned from Japan to the West Coast of the United States. Primarily, our application was used daily during the evenings, but considering the variety of time zones, the only time I could afford to sleep was during the evening hours in Far Eastern Europe, where we had the least users. However, someone always needed to be on guard, and as such, my phone was constantly by my side. After all, we couldn’t afford to let our users down. We found ourselves working 20 hours a day, catering to thousands of users, enduring physical fatigue, engaging in talks with VCs, and participating in conferences. Sudden Downturn: Our pinnacle was abruptly interrupted by the war in Ukraine (next macroeconomic shot straight in the face, lucky guy), a precipitous drop in cryptocurrency value, and swiftly emerging competition. By this time, there were 5–8 comparable tools had infiltrated the market. It was a challenging period as we continually stumbled upon new rivals. They immediately embarked on swift fundraising endeavors — a strategy we overlooked, which in retrospect was a mistake. Although our product was superior, the competitors’ rapid advancement and our insufficient funds for expeditious scaling posed significant challenges. Nonetheless, we made a good decision. We sold the product (exit) to competitors. The revenue from “exit” compensated for all the losses, leaving us with enough rest. We were a small team without substantial budgets for rapid development, and the risk of forming new teams without money to survive for more than 1–2 months was irresponsible. You have to believe me that this decision consumed us sleepless nights. Finally, we sold it. They turned off our app but took algorithms and users. Whether you believe it or not, after several months of toiling day and night, experiencing burnout, growing weary of the topic, and gaining an extra 15 kg in weight, we finally found our freedom… The exit wasn’t incredibly profitable, but we knew they had outdone us. The exit covered all our expenses and granted us a well-deserved rest for the subsequent quarter. It was an insane ride. Despite the uncertainty, stress, struggles, and sleepless nights, the story and experience will remain etched in my memory for the rest of my life. Swift Takeaways: Comprehending User Needs: Do you fully understand the product-market fit? Is your offering just an accessory or does it truly satisfy the user’s needs? The Power of Viral Marketing: Take inspiration from giants like Snapchat, ChatGPT, and Clubhouse. While your product might not attain the same scale (but remember, never say never…), the closer your concept is to theirs, the easier your journey will be. If your user is motivated to text a friend saying, “Hey, check out how cool this is” (like sharing ChatGPT), then you’re on the best track. Really. Even if it doesn’t seem immediately evident, there could be a way to incorporate this into your product. Keep looking until you find it. Niche targeting — the more specific and tailored your product is to a certain audience, the easier your journey will be People love buying from people — establishing a personal brand and associating yourself with the product can make things easier. Value: Seek to understand why users engage with your product and keep returning. The more specific and critical the issue you’re aiming to solve, the easier your path will be. Consider your offerings in terms of products and services and focus on sales and marketing, regardless of personal sentiments. These are just a few points, I plan to elaborate on all of them in a separate article. Many products undergo years of development in search of market fit, refining the user experience, and more. And guess what? There’s absolutely nothing wrong with that. Each product and market follows its own rules. Many startups have extensive histories before they finally make their mark (for instance, OpenAI). This entire journey spanned maybe 6–8 months. I grasped and capitalized on the opportunity, but we understood from the start that establishing a startup carried a significant risk, and our crypto product was 10 times riskier. Was it worth it? Given my passion for product development — absolutely. Was it profitable? — No, considering the hours spent — we lose. Did it provide a stable, problem-free life — nope. Did this entire adventure offer a wealth of happiness, joy, and unforgettable experiences — definitely yes. One thing is certain — we’ve amassed substantial experience and it’s not over yet :) So, what lies ahead? Chapter 7: Reverting to the contractor, developing a product for a crypto StartupReturning to the past, we continue our journey… I had invested substantial time and passion into the tech rescue mission product. I came on board as the technical Team Leader of a startup that had garnered over $20M in seed round funding, affiliated with the realm of cryptocurrencies. The investors were individuals with extensive backgrounds in the crypto world. My role was primarily technical, and there was an abundance of work to tackle. I was fully immersed, and genuinely devoted to the role. I was striving for excellence, knowing that if we secured another round of financing, the startup would accelerate rapidly. As for the product and marketing, I was more of an observer. After all, there were marketing professionals with decades of experience on board. These were individuals recruited from large crypto-related firms. I had faith in them, kept an eye on their actions, and focused on my own responsibilities. However, the reality was far from satisfactory. On the last day, the principal investor for the Series A round withdrew. The board made the tough decision to shut down. It was a period of intense observation and gaining experience in product management. This was a very brief summary of the last 10 years. And what next? (Last) Chapter 8: To be announced — Product Owner / Product Consultant / Strategist / CTO After spending countless hours and days deliberating my next steps, one thing is clear: My aspiration is to continue traversing the path of software product development, with the hopeful anticipation that one day, I might ride the crest of the next big wave and ascend to the prestigious status of a unicorn company. I find myself drawn to the process of building products, exploring product-market fit, strategizing, engaging in software development, seeking out new opportunities, networking, attending conferences, and continuously challenging myself by understanding the market and its competitive landscape. Product Owner / Product Consultant / CTO / COO: I’m not entirely sure how to categorize this role, as I anticipate that it will largely depend on the product to which I will commit myself fully. My idea is to find one startup/company that wants to build a product / or already has a product, want to speed up, or simply doesn’t know what’s next. Alternatively, I could be a part of an established company with a rich business history, which intends to invest in digitization and technological advancements. The goal would be to enrich their customer experience by offering complementary digital products Rather than initiating a new venture from ground zero with the same team, I am receptive to new challenges. I am confident that my past experiences will prove highly beneficial for the founders of promising, burgeoning startups that already possess a product, or are in the initial phases of development. ‘Consultant’ — I reckon we interpret this term differently. My aim is to be completely absorbed in a single product, crafting funnels, niches, strategies, and all that is necessary to repeatedly achieve the ‘product-market fit’ and significant revenue. To me, ‘consultant’ resonates more akin to freelancing than being an employee. My current goal is to kickstart as a consultant and aide, dealing with facilitating startups in their journey from point A to B. Here are two theoretical scenarios to illustrate my approach: Scenario 1: (Starting from point A) You have a product but struggle with marketing, adoption, software, strategy, sales, fundraising, or something else. I conduct an analysis and develop a strategy to reach point B. I take on the “dirty work” and implement necessary changes, including potential pivots or shifts (going all-in) to guide the product to point B. The goal is to reach point B, which could involve achieving a higher valuation, expanding the user base, increasing sales, or generating monthly revenue, among other metrics. Scenario 2: (Starting from point A) You have a plan or idea but face challenges with marketing, adoption, strategy, software, sales, fundraising, or something else. I analyze the situation and devise a strategy to reach point B. I tackle the necessary tasks, build the team, and overcome obstacles to propel the product to point B. I have come across the view that finding the elusive product-market fit is the job of the founder, and it’s hard for me to disagree. However, I believe that my support and experiences can help save money, many failures, and most importantly, time. I have spent a great deal of time learning from my mistakes, enduring failure after failure, and even had no one to ask for support or opinion, which is why I offer my help. Saving even a couple of years, realistically speaking, seems like a value I’m eager to provide… I invite you to share your thoughts and insights on these scenarios :) Closing Remarks: I appreciate your time and effort in reaching this point. This has been my journey, and I wouldn’t change it for the world. I had an extraordinary adventure, and now I’m ready for the next exciting battle with the market and new software products. While my entire narrative is centered around startups, especially the ones I personally built, I’m planning to share more insights drawn from all of my experiences, not just those as a co-founder. If you’re currently developing your product or even just considering the idea, I urge you to reach out to me. Perhaps together, we can create something monumental :) Thank you for your time and insights. I eagerly look forward to engaging in discussions and hearing your viewpoints. Please remember to like and subscribe. Nothing motivates to write more than positive feedback :) Matt.

36 startup ideas found by analyzing podcasts (problem, solution & source episode)
reddit
LLM Vibe Score0
Human Vibe Score1
joepigeonThis week

36 startup ideas found by analyzing podcasts (problem, solution & source episode)

Hey, I've been a bit of a podcast nerd for a long time. Around a year ago I began experimenting with transcription of podcasts for a SaaS I was running. I realized pretty quickly that there's a lot of knowledge and value in podcast discussions that is for all intents and purposes entirely unsearchable or discoverable to most people. I ended up stopping work on that SaaS product (party for lack of product/market fit, and partly because podcasting was far more interesting), and focusing on the podcast technology full-time instead. I'm a long-time lurker and poster of r/startups and thought this would make for some interesting content and inspiration for folks. Given I'm in this space, have millions of transcripts, and transcribe thousands daily... I've been exploring fun ways to expose some of the interesting knowledge and conversations taking place that utilize our own data/API. I'm a big fan of the usual startup podcasts (My First Million, Greg Isenberg, etc. etc.) and so I built an automation that turns all of the startup ideas discussed into a weekly email digest. I always struggle to listen to as many episodes as I'd actually like to, so I thought I'd summarise the stuff I care about instead (startup opportunities being discussed). I thought it would be interesting to post some of the ideas extracted so far. They range from being completely whacky and blue sky, to pretty boring but realistic. A word of warning before anyone complains – this is a big mixture of tech, ai, non-tech, local services, etc. ideas: Some of the ideas are completely mundane, but realistic (e.g. local window cleaning service) Some of the ideas are completely insane, blue sky, but sound super interesting Here's the latest 36 ideas: |Idea Name|Problem|Solution|Source| |:-|:-|:-|:-| |SalesForce-as-a-Service - White Label Enterprise Sales Teams|White-label enterprise sales teams for B2B SaaS. Companies need sales but can't hire/train. Recruit retail sellers, train for tech, charge 30% of deals closed.|Create a white-label enterprise sales team by recruiting natural salespeople from retail and direct sales backgrounds (e.g. mall kiosks, cutco knives). Train them specifically in B2B SaaS sales techniques and processes. Offer this trained sales force to tech companies on a contract basis.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |TechButler - Mobile Device Maintenance Service|Mobile tech maintenance service. Clean/optimize devices, improve WiFi, basic support. $100/visit to homes. Target affluent neighborhoods.|Mobile tech support service providing in-home device cleaning, optimization, and setup. Focus on common issues like WiFi improvement, device maintenance, and basic tech support.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |MemoryBox - At-Home Video Digitization Service|Door-to-door VHS conversion service. Parents have boxes of old tapes. Pick up, digitize, deliver. $30/tape with minimum order. Going extinct.|Door-to-door VHS to digital conversion service that handles everything from pickup to digital delivery. Make it extremely convenient for customers to preserve their memories.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |Elite Match Ventures - Success-Based Luxury Matchmaking|High-end matchmaking for 50M+ net worth individuals. Only charge $1M+ when they get married. No upfront fees. Extensive vetting process.|Premium matchmaking service exclusively for ultra-high net worth individuals with a pure contingency fee model - only get paid ($1M+) upon successful marriage. Focus on quality over quantity with extensive vetting and personalized matching.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |LocalHost - Simple Small Business Websites|Simple WordPress sites for local businesses. $50/month includes hosting, updates, security. Target restaurants and shops. Recurring revenue play.|Simplified web hosting and WordPress management service targeting local small businesses. Focus on basic sites with standard templates, ongoing maintenance, and reliable support for a fixed monthly fee.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |VoiceJournal AI - Voice-First Smart Journaling|Voice-to-text journaling app with AI insights. 8,100 monthly searches. $15/month subscription. Partners with journaling YouTubers.|AI-powered journaling app that combines voice recording, transcription, and intelligent insights. Users can speak their thoughts, which are automatically transcribed and analyzed for patterns, emotions, and actionable insights.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |AIGenAds - AI-Generated UGC Content Platform|AI platform turning product briefs into UGC-style video ads. Brands spending $500/video for human creators. Generate 100 variations for $99/month.|AI platform that generates UGC-style video ads using AI avatars and scripting. System would allow rapid generation of multiple ad variations at a fraction of the cost. Platform would use existing AI avatar technology combined with script generation to create authentic-looking testimonial-style content.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |InfographAI - Automated Infographic Generation Platform|AI turning blog posts into branded infographics. Marketers spending hours on design. $99/month unlimited generation.|AI-powered platform that automatically converts blog posts and articles into visually appealing infographics. System would analyze content, extract key points, and generate professional designs using predefined templates and brand colors.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |KidFinance - Children's Financial Education Entertainment|Children's media franchise teaching financial literacy. Former preschool teacher creating 'Dora for money'. Books, videos, merchandise potential.|Character-driven financial education content for kids, including books, videos, and potentially TV show. Focus on making money concepts fun and memorable.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |FinanceTasker - Daily Financial Task Challenge|Free 30-day financial challenge with daily action items. People overwhelmed by money management. Makes $500k/year through books, speaking, and premium membership.|A free 30-day financial challenge delivering one simple, actionable task per day via email. Each task includes detailed scripts and instructions. Participants join a Facebook community for support and accountability. The program focuses on quick wins to build momentum. Automated delivery allows scaling.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |FinanceAcademy - Expert Financial Training Platform|Premium financial education platform. $13/month for expert-led courses and live Q&As. 4000+ members generating $40k+/month.|Premium membership site with expert-led courses, live Q&As, and community support. Focus on specific topics like real estate investing, business creation, and advanced money management.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |SecurityFirst Compliance - Real Security + Compliance Platform|Security-first compliance platform built by hackers. Companies spending $50k+ on fake security. Making $7M/year showing why current solutions don't work.|A compliance platform built by security experts that combines mandatory compliance requirements with real security measures. The solution includes hands-on security testing, expert guidance, and a focus on actual threat prevention rather than just documentation. It merges traditional compliance workflows with practical security implementations.|In the Pit with Cody Schneider| |LinkedInbound - Automated Professional Visibility Engine|LinkedIn automation for inbound job offers. Professionals spending hours on manual outreach. $99/month per job seeker.|Automated system for creating visibility and generating inbound interest on LinkedIn through coordinated profile viewing and engagement. Uses multiple accounts to create visibility patterns that trigger curiosity and inbound messages.|In the Pit with Cody Schneider| |ConvoTracker - Community Discussion Monitoring Platform|Community discussion monitoring across Reddit, Twitter, HN. Companies missing sales opportunities. $499/month per brand tracked.|Comprehensive monitoring system that tracks competitor mentions and industry discussions across multiple platforms (Reddit, Twitter, Hacker News, etc.) with automated alerts and engagement suggestions.|In the Pit with Cody Schneider| |ContentAds Pro - Smart Display Ad Implementation|Display ad implementation service for content creators. Bloggers losing thousands in ad revenue monthly. Makes $3-5k per site setup plus ongoing optimization fees.|Implementation of professional display advertising through networks like Mediavine that specialize in optimizing ad placement and revenue while maintaining user experience. Include features like turning off ads for email subscribers and careful placement to minimize impact on core metrics.|The Side Hustle Show - "636: Is Business Coaching Worth It? A Look Inside the last 12 months of Side Hustle Nation"| |MoneyAppReviews - Professional Side Hustle App Testing|Professional testing service for money-making apps. People wasting time on low-paying apps. Makes $20k/month from affiliate commissions and ads.|Professional app testing service that systematically reviews money-making apps and creates detailed, honest reviews including actual earnings data, time investment, and practical tips.|The Side Hustle Show - "636: Is Business Coaching Worth It? A Look Inside the last 12 months of Side Hustle Nation"| |LightPro - Holiday Light Installation Service|Professional Christmas light installation service. Homeowners afraid of ladders. $500-2000 per house plus storage.|Professional Christmas light installation service targeting residential and commercial properties. Full-service offering including design, installation, maintenance, removal and storage. Focus on safety and premium aesthetic results.|The Side Hustle Show - "639: 30 Ways to Make Extra Money for the Holidays"| |FocusMatch - Research Participant Marketplace|Marketplace connecting companies to paid research participants. Companies spending weeks finding people. $50-150/hour per study.|Online platform connecting companies directly with paid research participants. Participants create detailed profiles and get matched to relevant studies. Companies get faster access to their target demographic while participants earn money sharing opinions.|The Side Hustle Show - "639: 30 Ways to Make Extra Money for the Holidays"| |SolarShine Pro - Specialized Solar Panel Cleaning Service|Solar panel cleaning service using specialized equipment. Panels lose 50% efficiency when dirty. $650 per job, automated scheduling generates $18k/month from repeat customers.|Professional solar panel cleaning service using specialized deionized water system and European cleaning equipment. Includes automated 6-month scheduling, professional liability coverage, and warranty-safe cleaning processes. Service is bundled with inspection and performance monitoring.|The UpFlip Podcast - "156. $18K/Month with This ONE Service — Niche Business Idea"| |ExteriorCare Complete - One-Stop Exterior Maintenance Service|One-stop exterior home cleaning service (solar, windows, gutters, bird proofing). Automated scheduling. $650 average ticket. 60% repeat customers on 6-month contracts.|All-in-one exterior cleaning service offering comprehensive maintenance packages including solar, windows, gutters, roof cleaning and bird proofing. Single point of contact, consistent quality, and automated scheduling for all services.|The UpFlip Podcast - "156. $18K/Month with This ONE Service — Niche Business Idea"| |ContentMorph - Automated Cross-Platform Content Adaptation|AI platform converting blog posts into platform-optimized social content. Marketing teams spending 5hrs/post on manual adaptation. $199/mo per brand with 50% margins.|An AI-powered platform that automatically transforms long-form content (blog posts, podcasts, videos) into platform-specific formats (Instagram reels, TikToks, tweets). The system would preserve brand voice while optimizing for each platform's unique requirements and best practices.|Entrepreneurs on Fire - "Digital Threads: The Entrepreneur Playbook for Digital-First Marketing with Neal Schaffer"| |MarketerMatch - Verified Digital Marketing Talent Marketplace|Marketplace for pre-vetted digital marketing specialists. Entrepreneurs spending 15hrs/week on marketing tasks. Platform takes 15% commission averaging $900/month per active client.|A specialized marketplace exclusively for digital marketing professionals, pre-vetted for specific skills (video editing, social media, SEO, etc.). Platform includes skill verification, portfolio review, and specialization matching.|Entrepreneurs on Fire - "Digital Threads: The Entrepreneur Playbook for Digital-First Marketing with Neal Schaffer"| |Tiger Window Cleaning - Premium Local Window Service|Local window cleaning service targeting homeowners. Traditional companies charging 2x market rate. Making $10k/month from $200 initial investment.|Local window cleaning service combining competitive pricing ($5/pane), excellent customer service, and quality guarantees. Uses modern tools like water-fed poles for efficiency. Implements systematic approach to customer communication and follow-up.|The Side Hustle Show - "630: How this College Student’s Side Hustle Brings in $10k a Month"| |RealViz3D - Real Estate Visualization Platform|3D visualization service turning architectural plans into photorealistic renderings for real estate agents. Agents struggling with unbuilt property sales. Making $30-40k/year per operator.|Professional 3D modeling and rendering service that creates photorealistic visualizations of properties before they're built or renovated. The service transforms architectural plans into immersive 3D representations that show lighting, textures, and realistic details. This helps potential buyers fully understand and connect with the space before it physically exists.|Side Hustle School - "#2861 - TBT: An Architect’s Side Hustle in 3D Real Estate Modeling"| |Somewhere - Global Talent Marketplace|Platform connecting US companies with vetted overseas talent. Tech roles costing $150k locally filled for 50% less. Grew from $15M to $52M valuation in 9 months.|Platform connecting US companies with pre-vetted overseas talent at significantly lower rates while maintaining high quality. Handles payments, contracts, and quality assurance to remove friction from global hiring.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |GymLaunch - Rapid Gym Turnaround Service|Consultants flying to struggling gyms to implement proven member acquisition systems. Gym owners lacking sales expertise. Made $100k in first 21 days.|Expert consultants fly in to implement proven member acquisition systems, train staff, and rapidly fill gyms with new members. The service combines sales training, marketing automation, and proven conversion tactics to transform struggling gyms into profitable businesses within weeks.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |PublishPlus - Publishing Backend Monetization|Backend monetization system for publishing companies. One-time customers becoming recurring revenue. Grew business from $2M to $110M revenue.|Add complementary backend products and services to increase customer lifetime value. Develop software tools and additional services that natural extend from initial publishing product. Focus on high-margin recurring revenue streams.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |WelcomeBot - Automated Employee Onboarding Platform|Automated employee welcome platform. HR teams struggling with consistent onboarding. $99/month per 100 employees.|An automated onboarding platform that creates personalized welcome experiences through pre-recorded video messages, scheduled check-ins, and automated swag delivery. The platform would ensure consistent high-quality onboarding regardless of timing or location.|Entrepreneurs on Fire - "Free Training on Building Systems and Processes to Scale Your Business with Chris Ronzio: An EOFire Classic from 2021"| |ProcessBrain - Business Knowledge Documentation Platform|SaaS platform turning tribal knowledge into documented processes. Business owners spending hours training new hires. $199/month per company.|A software platform that makes it easy to document and delegate business processes and procedures. The platform would include templates, guided documentation flows, and tools to easily share and update procedures. It would help businesses create a comprehensive playbook of their operations.|Entrepreneurs on Fire - "Free Training on Building Systems and Processes to Scale Your Business with Chris Ronzio: An EOFire Classic from 2021"| |TradeMatch - Modern Manufacturing Job Marketplace|Modern job board making manufacturing sexy again. Factory jobs paying $40/hr but can't recruit. $500 per successful referral.|A specialized job marketplace and recruitment platform focused exclusively on modern manufacturing and trade jobs. The platform would combine TikTok-style content marketing, referral programs, and modern UX to make manufacturing jobs appealing to Gen Z and young workers. Would leverage existing $500 referral fees and industry demand.|My First Million - "He Sold His Company For $15M, Then Got A Job At McDonald’s"| |GroundLevel - Executive Immersion Program|Structured program putting CEOs in front-line jobs. Executives disconnected from workers. $25k per placement.|A structured program that places executives and founders in front-line jobs (retail, warehouse, service) for 2-4 weeks with documentation and learning framework. Similar to Scott Heiferman's McDonald's experience but productized.|My First Million - "He Sold His Company For $15M, Then Got A Job At McDonald’s"| |OneStepAhead - Micro-Mentorship Marketplace|Marketplace for 30-min mentorship calls with people one step ahead. Professionals seeking specific guidance. Takes 15% of session fees.|MicroMentor Marketplace - Platform connecting people with mentors who are just one step ahead in their journey for focused, affordable micro-mentorship sessions.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |VulnerableLeader - Leadership Authenticity Training Platform|Leadership vulnerability training platform. Leaders struggling with authentic communication. $2k/month per company subscription.|Leadership Vulnerability Platform - A digital training platform combining assessment tools, guided exercises, and peer support to help leaders develop authentic communication skills. The platform would include real-world scenarios, video coaching, and measurable metrics for tracking leadership growth through vulnerability.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |NetworkAI - Smart Network Intelligence Platform|AI analyzing your network to find hidden valuable connections. Professionals missing opportunities in existing contacts. $49/month per user.|AI Network Navigator - Smart tool that analyzes your professional network across platforms, identifies valuable hidden connections, and suggests specific actionable ways to leverage relationships for mutual benefit.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |Porch Pumpkins - Seasonal Decoration Service|Full-service porch pumpkin decoration. Homeowners spend $300-1350 per season. One operator making $1M in 8 weeks seasonal revenue.|Full-service seasonal porch decoration service focused on autumn/Halloween, including design, installation, maintenance, and removal. Offering premium curated pumpkin arrangements with various package tiers.|My First Million - "The guy who gets paid $80K/yr to do nothing"| |Silent Companion - Professional Presence Service|Professional silent companions for lonely people. Huge problem in Japan/globally. $68/session, $80k/year per companion. Non-sexual, just presence.|A professional companion service where individuals can rent a non-judgmental, quiet presence for various activities. The companion provides silent company without the pressure of conversation or social performance. They accompany clients to events, meals, or just sit quietly together.|My First Million - "The guy who gets paid $80K/yr to do nothing"| Hope this is useful. If anyone would like to ensure I include any particular podcasts or episodes etc. in future posts, very happy to do so. I'll generally send \~5 ideas per week in a short weekly digest format (you can see the format I'd usually use in here: podcastmarketwatch.beehiiv.com). I find it mindblowing that the latest models with large context windows make it even possible to analyze full transcripts at such scale. It's a very exciting time we're living through! Would love some feedback on this stuff, happy to iterate and improve the analysis/ideas... or create a new newsletter on a different topic if anyone would like. Cheers!

The Cold-Calling AI Project I'm Working On Just Got Some Angel Investment!
reddit
LLM Vibe Score0
Human Vibe Score1
GrowthGetThis week

The Cold-Calling AI Project I'm Working On Just Got Some Angel Investment!

Hey y'all. The AI cold calling startup I've been working on for 3-4 months now just got a $2,500 angel investment, and we have 2 current customers, a credit card processing broker and a hospital equipment rental company based out of Texas. We have around $1,500 revenue so far, but we're having lots of trouble fulfilling the contracts because our tech just isn't "there" yet. I'm the Chief Tech Officer, and I'm also running some operations. The other main person in this is the CEO who has a strong sales background and came up with the idea. I've been working purely remotely, and it's great having some income because I'm stuck at home because I'm disabled, basically... ​ We're using 11labs, openai, google speech to text, and a sh\*tty online dialer right now to run the first MVP which runs locally on our "botrunners" computers, and we're developing a web app with django python + javascript react. Our plan is, after we get the webapp working better, to hire more botrunners for $3 per hour from countries like Phillipines and India, and we're going to try to track all the actions the botrunners take to be able to train the AI to run it fully automated. The biggest problem we're facing right now with the tech is reducing latency, it started at 27 seconds to get a response and I've been able to get it down to 6 seconds, but people are still hanging up. We're trying several ways to mitigate this, including having pre-rendered speech playing something like "Okay" or "As an artificial representative, I'm still learning to be quicker on the pickup. We appreciate your patience." One of the industries we want to target is international web development and digital marketing companies, and we want to use the bot to cold-call businesses to pitch them our services. The goal is to replace $30 an hour cold-callers from the USA with $3 per hour total-cost automation. Apparently the CEO was given a $5 million valuation from the strength of the MVP from a VC. Our investment so far was at a $300k valuation tho. It's exciting. Trying to get Twilio working to be able to make calls programmatically instead of using our hacky workaround. Let me know if you have any questions. I just wanted to share this awesome news!

Voice AI Isn’t Just for Big Brands – Here’s How Startups Can Use It (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Altruistic_Bid_3044This week

Voice AI Isn’t Just for Big Brands – Here’s How Startups Can Use It (I will not promote)

When you think about Voice AI, it’s easy to picture massive companies like Amazon or Google pouring millions into complex systems. But it isn’t just for the big guys anymore. Startups can use it too, and it doesn’t have to cost a fortune. Why Startups Should Care About Voice AI Voice AI used to be expensive and complicated, but that’s changed a lot. Today, even small startups can use it to save time, cut costs, and make customers happier—all without needing a massive budget. If you think that repetitive tasks are eating up your team’s time, or if customers are getting frustrated by slow responses, Voice AI can help. And it’s not just for call centers or tech giants. Startups can benefit from it just as much, if not more. 3 Practical Ways Startups Can Use Voice AI Automated Scheduling and Appointment Setting Whether it’s booking meetings, setting reminders, or rescheduling, Voice AI can handle it all. This is especially useful for service-based startups, like healthcare clinics, legal firms, or consulting agencies. Answering Frequently Asked Questions (FAQs) Every startup gets repetitive questions—“What are your hours?” “What’s your refund policy?” Instead of answering the same things over and over, Voice AI can automate it. Order Tracking and Status Updates For e-commerce startups, Voice AI can provide real-time order updates without involving a human. Customers get quick answers, and your team can focus on more important tasks. Simple Workflow: How It Works Customer Initiates Call Customer calls the business for scheduling, FAQs, or order updates. Voice AI Answers AI responds with a natural, human-like voice. AI Handles the Request Schedules appointments, answers FAQs, or provides order updates. Integration and Confirmation Syncs with calendars or order management systems. Confirms booking or provides tracking info. Call Ends Customer gets what they need without waiting. Team stays focused on higher-priority tasks. If the fear is that Voice AI will sound robotic or annoy customers, it’s worth reconsidering. Today’s tech is way more natural and human-like than it used to be. You can use free trial of platforms like Retell AI or Play AI or Bland AI (I will not promote) Would it make sense for your startup to try Voice AI?

A Structured Approach to Ideation and Validation (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

A Structured Approach to Ideation and Validation (I will not promote)

Hi all, I used to work in VC and wanted to share some startup knowledge and insights from startup founders I know. Recently, I interviewed a friend of mine who built an AI Robotics startup ("Hivebotics") that creates automated toilet-cleaning robots. I can't post the full article because of Reddit's word limit, so I'll be posting it in sections here instead. This first section of the transcript goes through his approach to ideation and validation. Enjoy and let me know what you think! (I will not promote) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ (1) Ideation and Validation Problem-Market-Solution Framework I like to think of startup ideation and validation using this framework: Problem– What exactly are you solving? Observation– How you identify a problem to work on User Research– How you further understand that problem Market– Is there a large enough market for solving this problem? Size– How many people experience this same problem? Demand– How many of those people are willing to pay for the solution? Solution– Your answer to the problem Desirability– Whether people actually want your solution Feasibility– Whether building the solution is practical and realistic Viability– Whether your solution can generate revenue Problem You always need to start problem-first, which is something that was really drilled into me during my time at Stanford. Too often, founders rush to build solutions first—apps or products they find exciting—without confirming whether there's any real demand for it. The first step is always to identify a specific problem, then further understand its scale, urgency and further details by talking to potential users. Observation– To find problems, observation is key. People may not even realise the inefficiencies in their processes until you point them out. That’s why interviews and field research are so important. There are problems all around us, so it's simply a matter of going out, paying attention and being attuned to them as they occur. User Research– To further understand the problem, conducting user research by interviewing potential customers is essential. Personally, I like to use the "Mom Test" when I conduct interviews to avoid biased and generic feedback. Don’t just ask theoretical questions and avoid being too specific—observe how your potential users work, ask about pain points, and use broad, open-ended questions to ensure you aren't leading them to a specific answer. Market Once you've found an actual problem and talked to enough potential users to really understand its specific pain points, the next step is to determine the market size and demand for a solution. Size– Determining the market size is essential because it determines whether or not it's commercially worthwhile to pursue the problem and develop a solution for it. You need to determine if there are enough potential customers out there experiencing this problem to gauge the market size. There's no secret strategy for this; you have to interview as many potential users as possible to confirm that it's a widespread problem in the industry. Demand– Make sure that you're working on a problem that people will gladly pay to have solved. Even if the problem is large enough, you have to make sure it's painful enough to warrant a paid solution. If many people experience the same problem, but aren't willing to pay for a solution, then you don't have a market and should look for a different problem to validate. Another way of looking at it is that your true market size is the number of potential customers actually willing to pay* for the solution to the problem, not the number of people simply experiencing the same problem. Solution When validating a potential solution to the problem, I would look at the 3 factors of desirability, feasibility and viability. Desirability– the degree to which a solution appeals to people and fulfills their wants and needs. Without strong desirability, even the most technically advanced or economically practical product is unlikely to succeed. The best way to test this is to secure financial commitments early on during the proof-of-concept stage. Most people are polite, so they may simply tell you that your startup's product is good even if it's not. However, if they're actually willing to pay for the solution, this is actual evidence of your product's desirability. Don't just ask people if they would pay for it; actually see whether they will pay for it. Feasibility– whether a product can be built using existing technical capabilities. A lack of feasibility makes it challenging or impossible to develop the product, no matter how appealing it might be to users or how promising its financial prospects are. This is just a matter of conducting initial research and actually trying to build a prototype, which will inform you whether the fully-realised product is truly feasible. Viability– the product's ability to generate sustainable financial returns. Without financial viability, the business supporting the product cannot endure, even if the product is highly appealing to users and technically achievable. Here, you need to look at your unit economics, development costs and other expenses to determine the viability of your solution. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Hope you enjoyed reading this; let me know your honest thoughts in the comments and I'll try to improve how I interview founders based on those!

I am selling my tool which converts websites into android and iOS apps within 5 minutes.
reddit
LLM Vibe Score0
Human Vibe Score1
Latter-Row-5719This week

I am selling my tool which converts websites into android and iOS apps within 5 minutes.

Hi, my name is Toshit Garg. I started working on SaaS products around April 2023. The plan was simple: to create tools that help entrepreneurs easily grow their businesses. My first tool was "Convertixo", inspired by my work as a Fiverr seller where I converted websites into apps for clients, earning around $1,000 per month. I thought, why not automate this process? Following Convertixo, I created a few other tools like "Web to PWA". At one point, I developed an AI-based tool called "AppMintAI" , a productized service named "Engage Enhance", and even a WordPress plugin that lets users create pragmatic pages for SEO and a boilerplates. Unfortunately, none of these tools gained significant traction. I would launch them on Product Hunt, get a few users, and then nothing. Other than Convertixo, all my other tools only received a handful of free users. I believe this happened because I’m not very passionate about marketing. So, I decided to pivot and focus on content creation, which is where my true passion lies. Currently, I’m selling all my products one by one. As for Convertixo, it now has 800 users, a $20 MRR, and an email subscriber list of 100+. It was also the third Product of the Day on Product Hunt in January of this year. While the product has gained some traction, I’ve realized my focus is on content creation. However, with the right marketing and drive, I believe Convertixo has great potential to grow. If you’re interested in taking Convertixo to the next level, let’s chat! Here are some key statistics: In the last 20 days, Convertixo has received 4.9K impressions from Google and 338 visitors. More about the product: Convertixo can convert any website into Android and iOS apps using a custom webview. The apps are generated in Android Studio and Xcode. You receive both the APK and the source code for the Android app, along with the source code for the iOS app. The converted apps require no maintenance, and they update exactly like the website. A major benefit is the ability to add push notifications via OneSignal for free, allowing you to re-target your customers at no cost. Feel free to ask if you have any questions!

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

After building an AI Co-founder to solve my startup struggles, I realized we might be onto something bigger. What problems would you want YOUR AI Co-founder to solve?
reddit
LLM Vibe Score0
Human Vibe Score0
Consistent_Yak6765This week

After building an AI Co-founder to solve my startup struggles, I realized we might be onto something bigger. What problems would you want YOUR AI Co-founder to solve?

A few days ago, I shared my entrepreneurial journey and the endless loop of startup struggles I was facing. The response from the community was overwhelming, and it validated something I had stumbled upon while trying to solve my own problems. In just a matter of days, we've built out the core modules I initially used for myself, deep market research capabilities, automated outreach systems, and competitor analysis. It's surreal to see something born out of personal frustration turning into a tool that others might actually find valuable. But here's where it gets interesting (and where I need your help). While we're actively onboarding users for our alpha test, I can't shake the feeling that we're just scratching the surface. We've built what helped me, but what would help YOU? When you're lying awake at 3 AM, stressed about your startup, what tasks do you wish you could delegate to an AI co-founder who actually understands context and can take meaningful action? Of course, it's not a replacement for an actual AI cofounder, but using our prior entrepreneurial experience and conversations with other folks, we understand that OUTREACH and SALES might actually be a big problem statement we can go deeper on as it naturally helps with the following: Idea Validation - Testing your assumptions with real customers before building Pricing strategy - Understanding what the market is willing to pay Product strategy - Getting feedback on features and roadmap Actually revenue - Converting conversations into real paying customers I'm not asking you to imagine some sci-fi scenario, we've already built modules that can: Generate comprehensive 20+ page market analysis reports with actionable insights Handle customer outreach Monitor competitors and target accounts, tracking changes in their strategy Take supervised actions based on the insights gathered (Manual effort is required currently) But what else should it do? What would make you trust an AI co-founder with parts of your business? Or do you think this whole concept is fundamentally flawed? I'm committed to building this the right way, not just another AI tool or an LLM Wrapper, but an agentic system that can understand your unique challenges and work towards overcoming them. Whether you think this is revolutionary or ridiculous, I want to hear your honest thoughts. But more importantly, I want to hear your unfiltered feedback in the comments. What would make this truly valuable for YOU? Edit 1: The AI cofounder will take no equity in your startup.

The Cold-Calling AI Project I'm Working On Just Got Some Angel Investment!
reddit
LLM Vibe Score0
Human Vibe Score1
GrowthGetThis week

The Cold-Calling AI Project I'm Working On Just Got Some Angel Investment!

Hey y'all. The AI cold calling startup I've been working on for 3-4 months now just got a $2,500 angel investment, and we have 2 current customers, a credit card processing broker and a hospital equipment rental company based out of Texas. We have around $1,500 revenue so far, but we're having lots of trouble fulfilling the contracts because our tech just isn't "there" yet. I'm the Chief Tech Officer, and I'm also running some operations. The other main person in this is the CEO who has a strong sales background and came up with the idea. I've been working purely remotely, and it's great having some income because I'm stuck at home because I'm disabled, basically... ​ We're using 11labs, openai, google speech to text, and a sh\*tty online dialer right now to run the first MVP which runs locally on our "botrunners" computers, and we're developing a web app with django python + javascript react. Our plan is, after we get the webapp working better, to hire more botrunners for $3 per hour from countries like Phillipines and India, and we're going to try to track all the actions the botrunners take to be able to train the AI to run it fully automated. The biggest problem we're facing right now with the tech is reducing latency, it started at 27 seconds to get a response and I've been able to get it down to 6 seconds, but people are still hanging up. We're trying several ways to mitigate this, including having pre-rendered speech playing something like "Okay" or "As an artificial representative, I'm still learning to be quicker on the pickup. We appreciate your patience." One of the industries we want to target is international web development and digital marketing companies, and we want to use the bot to cold-call businesses to pitch them our services. The goal is to replace $30 an hour cold-callers from the USA with $3 per hour total-cost automation. Apparently the CEO was given a $5 million valuation from the strength of the MVP from a VC. Our investment so far was at a $300k valuation tho. It's exciting. Trying to get Twilio working to be able to make calls programmatically instead of using our hacky workaround. Let me know if you have any questions. I just wanted to share this awesome news!

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote )
I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
vishwa1238This week

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote ) I will not promote

I will not promote I don’t even know where to start, but I just feel completely stuck right now. I’m 20 years oldI don’t even know where to start, but I just feel completely stuck right now. I’m 20 years old, have been grinding non-stop for months, and it feels like I have nothing to show for it. I built an AI agent that automates workflows for businesses. I can build tech, but I can’t sell. That’s been my biggest realization recently—I thought building would be enough, but it’s not. I need customers, I need a co-founder, I need to figure out the business side… and I have no idea how. I applied to YC, IVI at ISB, and EF, met a lot of insanely smart people—some were impressed with me and my work, but they were wiser, more experienced, and honestly, just better at all of this than I am. It made me realize how much I don’t know. I got rejected from YC & IVI. 💔 YC didn’t even give much feedback—just a standard rejection. 💔 IVI told me: “You're too young, you need more experience, and you should work with a team before trying to start something.” That hit me hard. I had already been struggling to find a co-founder, and this just made me wonder if I even belong in this space yet. The Frustrating Part? I KNOW my tool Has a Unique Edge. I’m not just another AI automation tool—I know my tool has a strong USP that competitors lack. It has the potential to be an AI employee for businesses, not just another workflow tool. But I still haven’t built the “perfect product” I originally envisioned. And that’s what’s eating at me. I see what it COULD be, but I haven’t made it happen yet. At the same time, the competition in the AI agent space is exploding. YC-backed companies are working on AI agent startups. OpenAI is making huge progress with Operator. Competitors are moving fast, while I feel stuck. I’ve delayed development because I’m unsure whether to double down, pivot, or just move on entirely. Where I’m Stuck Right Now 🔹 Do I keep pushing and try to crack sales somehow? 🔹 Do I join a startup as a founding engineer to get experience, make connections, and learn sales before trying again? 🔹 Do I move to Bangalore, meet founders, and figure out what’s next? 🔹 Do I pivot to something nicher instead of competing in the AI agent race? If so, how do I even find a niche worth pursuing? 🔹 Do I even belong in startups? Or am I just forcing something that’s not working? I feel stuck in a weird middle zone where I’m not a beginner, but I’m also not successful. I’ve done enough to see what’s possible, but not enough to make it real. Every rejection makes me question if I’m even on the right path. I don’t know if I’m posting this for advice or just to get it out of my system. Maybe both. Has anyone else felt like this before? If you’ve been in this situation—how did you figure out whether to keep going or move on? TL;DR: I’m 20, built an AI agent for automating workflows, got rejected from YC & IVI, met insanely smart and experienced people, realized I can build tech but can’t sell, struggling to find a co-founder, AI agent competition is growing, delaying development, confused about the future—don’t know whether to double down, pivot, or move on. The frustrating part? I\ know I have a unique edge that others lack, but I still haven’t built the perfect product I originally envisioned.* edit: removed the tool's name

From Running a $350M Startup to Failing Big and Rediscovering What Really Matters in Life ❤️
reddit
LLM Vibe Score0
Human Vibe Score1
Disastrous-Airport88This week

From Running a $350M Startup to Failing Big and Rediscovering What Really Matters in Life ❤️

This is my story. I’ve always been a hustler. I don’t remember a time I wasn’t working since I was 14. Barely slept 4 hours a night, always busy—solving problems, putting out fires. After college (LLB and MBA), I was lost. I tried regular jobs but couldn’t get excited, and when I’m not excited, I spiral. But I knew entrepreneurship; I just didn’t realize it was an option for adults. Then, in 2017 a friend asked me to help with their startup. “Cool,” I thought. Finally, a place where I could solve problems all day. It was a small e-commerce idea, tackling an interesting angle. I worked 17-hour days, delivering on a bike, talking to customers, vendors, and even random people on the street. Things moved fast. We applied to Y Combinator, got in, and raised $18M before Demo Day even started. We grew 100% month-over-month. Then came another $40M, and I moved to NYC. Before I knew it, we had 1,000 employees and raised $80M more. I was COO, managing 17 direct reports (VPs of Ops, Finance, HR, Data, and more) and 800 indirect employees. On the surface, I was on top of the world. But in reality, I was at rock bottom. I couldn’t sleep, drowning in anxiety, and eventually ended up on antidepressants. Then 2022 hit. We needed to raise $100M, but we couldn’t. In three brutal months, we laid off 900 people. It was the darkest period of my life. I felt like I’d failed everyone—myself, investors, my company, and my team. I took a year off. Packed up the car with my wife and drove across Europe, staying in remote places, just trying to calm my nervous system. I couldn’t speak to anyone, felt ashamed, and battled deep depression. It took over a year, therapy, plant medicine, intense morning routines, and a workout regimen to get back on my feet, physically and mentally. Now, I’m on the other side. In the past 6 months, I’ve been regaining my mojo, with a new respect for who I am and why I’m here. I made peace with what I went through over those 7 years—the lessons, the people, the experiences. I started reconnecting with my community, giving back. Every week, I have conversations with young founders, offering direction, or even jumping in to help with their operations. It’s been a huge gift. I also began exploring side projects. I never knew how to code, but I’ve always had ideas. Recent advances in AI gave me the push I needed. I built my first app, as my first attempt at my true passion—consumer products for kids. Today, I feel wholesome about my journey. I hope others can see that too. ❤️ EDIT: Wow, I didn’t expect this post to resonate with so many people. A lot of you have DM’d me, and I’ll try to respond. Just a heads-up, though—I’m juggling consulting and new projects, so I can’t jump on too many calls. Since I’m not promoting anything, I won’t be funneling folks to my page, so forgive me if I don’t get back to everyone. Anyway, it’s amazing to connect with so many of you. I’d love to write more, so let me know what topics you’d be interested in!

After building an AI Co-founder to solve my startup struggles, I realized we might be onto something bigger. What problems would you want YOUR AI Co-founder to solve?
reddit
LLM Vibe Score0
Human Vibe Score0
Consistent_Yak6765This week

After building an AI Co-founder to solve my startup struggles, I realized we might be onto something bigger. What problems would you want YOUR AI Co-founder to solve?

A few days ago, I shared my entrepreneurial journey and the endless loop of startup struggles I was facing. The response from the community was overwhelming, and it validated something I had stumbled upon while trying to solve my own problems. In just a matter of days, we've built out the core modules I initially used for myself, deep market research capabilities, automated outreach systems, and competitor analysis. It's surreal to see something born out of personal frustration turning into a tool that others might actually find valuable. But here's where it gets interesting (and where I need your help). While we're actively onboarding users for our alpha test, I can't shake the feeling that we're just scratching the surface. We've built what helped me, but what would help YOU? When you're lying awake at 3 AM, stressed about your startup, what tasks do you wish you could delegate to an AI co-founder who actually understands context and can take meaningful action? Of course, it's not a replacement for an actual AI cofounder, but using our prior entrepreneurial experience and conversations with other folks, we understand that OUTREACH and SALES might actually be a big problem statement we can go deeper on as it naturally helps with the following: Idea Validation - Testing your assumptions with real customers before building Pricing strategy - Understanding what the market is willing to pay Product strategy - Getting feedback on features and roadmap Actually revenue - Converting conversations into real paying customers I'm not asking you to imagine some sci-fi scenario, we've already built modules that can: Generate comprehensive 20+ page market analysis reports with actionable insights Handle customer outreach Monitor competitors and target accounts, tracking changes in their strategy Take supervised actions based on the insights gathered (Manual effort is required currently) But what else should it do? What would make you trust an AI co-founder with parts of your business? Or do you think this whole concept is fundamentally flawed? I'm committed to building this the right way, not just another AI tool or an LLM Wrapper, but an agentic system that can understand your unique challenges and work towards overcoming them. Whether you think this is revolutionary or ridiculous, I want to hear your honest thoughts. But more importantly, I want to hear your unfiltered feedback in the comments. What would make this truly valuable for YOU? Edit 1: The AI cofounder will take no equity in your startup.

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote )
I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
vishwa1238This week

Feeling stuck—built a startup, got rejected from YC & IVI, met smarter people, and now I don’t know what to do. ( i will not promote ) I will not promote

I will not promote I don’t even know where to start, but I just feel completely stuck right now. I’m 20 years oldI don’t even know where to start, but I just feel completely stuck right now. I’m 20 years old, have been grinding non-stop for months, and it feels like I have nothing to show for it. I built an AI agent that automates workflows for businesses. I can build tech, but I can’t sell. That’s been my biggest realization recently—I thought building would be enough, but it’s not. I need customers, I need a co-founder, I need to figure out the business side… and I have no idea how. I applied to YC, IVI at ISB, and EF, met a lot of insanely smart people—some were impressed with me and my work, but they were wiser, more experienced, and honestly, just better at all of this than I am. It made me realize how much I don’t know. I got rejected from YC & IVI. 💔 YC didn’t even give much feedback—just a standard rejection. 💔 IVI told me: “You're too young, you need more experience, and you should work with a team before trying to start something.” That hit me hard. I had already been struggling to find a co-founder, and this just made me wonder if I even belong in this space yet. The Frustrating Part? I KNOW my tool Has a Unique Edge. I’m not just another AI automation tool—I know my tool has a strong USP that competitors lack. It has the potential to be an AI employee for businesses, not just another workflow tool. But I still haven’t built the “perfect product” I originally envisioned. And that’s what’s eating at me. I see what it COULD be, but I haven’t made it happen yet. At the same time, the competition in the AI agent space is exploding. YC-backed companies are working on AI agent startups. OpenAI is making huge progress with Operator. Competitors are moving fast, while I feel stuck. I’ve delayed development because I’m unsure whether to double down, pivot, or just move on entirely. Where I’m Stuck Right Now 🔹 Do I keep pushing and try to crack sales somehow? 🔹 Do I join a startup as a founding engineer to get experience, make connections, and learn sales before trying again? 🔹 Do I move to Bangalore, meet founders, and figure out what’s next? 🔹 Do I pivot to something nicher instead of competing in the AI agent race? If so, how do I even find a niche worth pursuing? 🔹 Do I even belong in startups? Or am I just forcing something that’s not working? I feel stuck in a weird middle zone where I’m not a beginner, but I’m also not successful. I’ve done enough to see what’s possible, but not enough to make it real. Every rejection makes me question if I’m even on the right path. I don’t know if I’m posting this for advice or just to get it out of my system. Maybe both. Has anyone else felt like this before? If you’ve been in this situation—how did you figure out whether to keep going or move on? TL;DR: I’m 20, built an AI agent for automating workflows, got rejected from YC & IVI, met insanely smart and experienced people, realized I can build tech but can’t sell, struggling to find a co-founder, AI agent competition is growing, delaying development, confused about the future—don’t know whether to double down, pivot, or move on. The frustrating part? I\ know I have a unique edge that others lack, but I still haven’t built the perfect product I originally envisioned.* edit: removed the tool's name

I am considering starting a SaaS business that automates the creation of long-form SEO-optimized blog posts. Is this something you would find useful, as a business owner?
reddit
LLM Vibe Score0
Human Vibe Score1
What_The_HexThis week

I am considering starting a SaaS business that automates the creation of long-form SEO-optimized blog posts. Is this something you would find useful, as a business owner?

Trying to gauge the general interest level, from other entrepreneurs/business owners. The idea is, a tool that automates the process of creating long-form SEO optimized blog posts to promote your business -- perhaps creating entire batches of such posts, all from just one button click. Like if you could just describe your business, click a button, and BAM, it just outputs like an entire month's worth of absolutely fire SEO-optimized long-form blog posts? That would be super fucking convenient. Yes you can use ChatGPT for this, but the character limits make it so it can only output very short posts. Otherwise it requires first asking for an outline, then getting the different sections piecemeal and pasting it all together yourself. Still super time-consuming to do it that way. A GPT-based solution could probably automate the process I've hit upon in my own SEO blog-posting workflow -- where I output not just finished long-form blog posts, but also convert them into SEO-optimized HTML code so you can just paste it into your blog post website and have all the header tags etc set up for optimal SEO/keyword ranking purposes. Biggest counter-argument I make against this is, there are undoubtedly lots of companies already offering this. Doesn't mean I can't make money doing it. I just don't like entering super crowded marketplaces. Other main argument I have is, if I used my OpenAI account for this, there's the risk of some malicious/idiot user firing prompts that violate the OpenAI ToS and get me banned. I COULD have them input their own OpenAI API tokens, but that just adds adoption/usage barriers that would make it way harder to market/acquire initial customers. I guess I could sanitize the user inputs as a pre-processing step to block any obscene prompts or anything like that, but still, it's a risk. Let me know your thoughts on this idea. ASSUMING it worked effectively -- and made it very easy for you to just describe your business offerings / value propositions / target market(s), then get genuinely useful long-form SEO-optimized blog posts, is this something you'd be willing to pay for? If so, what dollar amount, to you, would seem reasonable? It would probably just be hosted on a website. Then you'd just copy the outputted final result for use as needed on your website. That would be the simplest way to do it. Technically it could function as like, a plugin for specific websites that maybe auto-posts them for you too -- it would be simpler, on my end, to start out doing this on a standalone website. (Might also make it easier to allow users to try it out, on first visit.) One last point -- MAYBE it would have an optional intermediate step, where it would first output the planned outline for the blog post, allowing you to pop in, quickly modify that, add your own thoughts / valuable ideas (to help make the blog post more unique, truly useful for readers, more your own) -- THEN you could finalize it and hit submit. Again, that's the workflow I've hit upon in my own semi-automated blog-posting workflow, and it's led to some pretty useful long-form content that isn't just, boring garbage, but contains lots of genuinely useful ideas that I would include in my own uniquely-created blog posts on the subject. But instead of me taking the time to write it, I just kinda toss in a few quickly typed out ideas to expand upon, and ChatGPT does the rest. Imagine that kind of optional / customizable workflow, but the rest of it is fully automated. OR you could just get the fully automated blog posts with no revisions on your part. Thanks!

Good at coding, bad at marketing. Summary
reddit
LLM Vibe Score0
Human Vibe Score0.4
Official-DATSThis week

Good at coding, bad at marketing. Summary

Hello. I posted a question on what to do if you are good at coding but bad at marketing four days ago, and I received so many responses and tips. The original post is here. I was really glad and excited to read comments. To return the favor to the community and add some more value, I’ve summarized all the comments I got on the original post. Here are they, with my personal comments on some of the advice I got. You’ll never believe it, but the most common advice was to learn. Really, the first and only thing you should start with if you’re bad at marketing is learning. Yet learning could be different. I highlighted 5 main areas. Educate yourself on general questions. Learn more about some basics. For example, start by finding out what the 4P’s of marketing are, and afterward, you’ll inevitably run into YouTube videos, seminars, Udemy courses, or any other resource that resonates with you on some ideas/avenues you could pursue. Read books and watch videos. There are tons of books on marketing and sales. People shared in the comments books by Dan Kennedy and “Cashvertising”, written by Drew Eric Whitman. (I’ve never heard of them, but already ordered on Amazon). For sales, the most common idea was to start with YouTube videos. For example, Alex Hormozi videos and Startup school delivered by Ycombinator videos. Check out Indie Hackers and scrutinize it for a piece of good advice from developers in the same situation. Also, there was advice to follow up and read some guy on Twitter. (Don't want to get unfairly banned from here, so won't post it) Educate yourself and hire a professional or find a co-founder to help you: Hire a seasoned marketer in this field to help you out. He will help you achieve cost-efficient scales. But it could be a real problem to find the right person. Marketing agencies are expensive. Try to look on LinkedIn or among your acquaintances. Look for professionals with credentials or extensive experience. Seek marketing referrals from startups of a similar size/industry. If you don't have those, try to bring a trusted/experienced marketer friend into the intro meetings to help assess whether the service provider knows what they are doing. Talented freelancers can often get the job done for less than hiring an entire agency. Look for a co-founder who is savvy in marketing, passionate, and ready to work hard towards mutual success. Educate and DIY Being the face of your business is way better than having faceless communication. The startup checklist is made based on the comments is next: At least have your product defined. Define your target audience. Set up the goals you want to achieve. Make domain expertise and understand the market and the direction of its development. The next stage is answering tricky questions: Have you created a business model? How do you plan to compete? What’s your unique selling point? How much do you plan to budget for marketing? Are you planning to work alone, or will you need other devs? Then you start thinking about clients… You need the exposure to truly understand the customer's pain points and build a product that they love. You need to think about how your clients would think, and you should tailor each step you take for them. Get feedback from your early users if you already have a product. Interview your potential customers to learn how they buy. This will help you narrow your choice of marketing channels. Get your product or service used by several startups and help them achieve their goals. Endorsements are very valuable marketing assets. You need a landing to validate your value proposition and start sending traffic, or you can run meta instant form campaigns... It would depend on the category of your startup. You need a benchmark of the competition's ads both in Meta and Google, blog posts, domain authority, their landing page, and average search volumes. Do affiliate marketing for your product since it's an effective strategy. Educate and use AI tools for dealing with marketing. Build an LLM-based product to automate marketing. (Sounds like an idea for a startup, right?) Learn following ChatGPT advice. In 1–3 months, you will be another updated person. Look at marketowl, an AI marketing department for startups and microbusinesses that have no budget or time to do marketing. It will automate the basic tasks your business needs, but it doesn't require your marketing expertise. Check out AI tools that are delivering very good marketing content (gocharlie, jasper, copyai). Educate yourself and run socials Start a blog or YouTube channel where you can share your expertise in coding or anything else you are good at and how your product simplifies life. Engage with your audience on social media platforms like Instagram and LinkedIn, where you can showcase your industry knowledge. Start a page on Twitter and an account on Reddit. Follow and read subreddits and pages where your potential customers are. Learn the pain from the inside. Do not simply promote, people will lose interest immediately. Start by taking focused time to create informational content, so people will eventually be naturally intrigued by what you do and want to support you when they start to “know” you. Educate your potential users about the value of your product. Create content based on what ideal customers are asking at the various stages of marketing. e.g., if they are at the beginning of the process, they may use basic language; if they are further down the process, maybe they’ll be specific. Try to get on podcasts and build as many social links as you can. In other words, don’t live in a shell! Post regularly, and eventually you’ll find sites or people that are willing to promote for you. I omitted here all personal help offers and newsletters, however you could find them in the original post. Hope that will be helpful!

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.
reddit
LLM Vibe Score0
Human Vibe Score1
Organic_Crab7397This week

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.

Hello everyone. I haven't started selling yet and wanted to get some insight from the community I'm trying to serve (that makes the most sense to me). So over the past couple months I've gotten into AI & Automation. I got a HighLevel account and went to town learning new things. I learned how to make automations and workflows that make running a business easier (my dad has been letting me use his concrete business as a guinea pig). I also learned how to build and train AI Chat Assistants. I want to start a service based business that uses AI & workflows to automate some of the customer service tasks & lead generation for business. What I'm seeking advice about are as follows: NICHE SELECTION: Part of me thinks I shouldn't niche down in the beginning and just take whoever comes and niche down once I find an industry I'm comfortable with. Another side thinks I should choose one. What is your opinion on niche selection in the beginning? PRICING: I know that pricing largely depends on the value I bring to the client, but I've seen people doing the same or similar things as I want to do and charging vastly different prices. From $300- $2,000. While I think these solutions could absolutely help companies get and retain new business and reduce some of the workload of their staff -- I'm not comfortable charging a high price until I've got enough experience and data to justify that. ​ THESE ARE THE SERVICES I'M THINKING OF OFFERING: Customer Service Chat Assistant. This will be on the website as a "Live Chat". It also connects to Facebook Messenger & Google Business Chat. I'd train the chat assistant on everything related to the company; pertinent info (NAP, company mission, industry background), contact info, services / products / pricing, FAQs, current specials &/or discount codes (this can be changed monthly), how to handle upset clients, etc. It can also connect to a calendar like Google or Calendly so customers can make an appointment or schedule a call directly from the conversation. Missed Call Follow Up. If you're familiar with the platform HighLevel it's commonly called "Missed Call Text Back". The idea is that when a call is missed a text message is automatically fired to the prospect's phone saying something along the lines of "Hey this is \\\\\\ from \\\\\\\_. How can I help you?" and the business owner is alerted to the missed call via text notification. People have said they see a lot of success for their clients with this alone due to the instant follow up. I see a lot of people charging $300 /m. for this. My issues with this are: 1). The text fires automatically when the call is missed, but if the business owner isn't available to actually follow up and keep texting after the customer texts back, they will look inconsistent and bothersome. 2). Without context a prospect may wonder why you didn't answer when they called, but texted them instead. So my answer to these problems are #3. SMS Answering Service. It is essentially taking 2 + 1 and combining them. The missed call text goes out to the prospect, but with context on why they're being texted (because no one is available to take the call at the moment) and IF the prospect responds, a Customer Service Chat Assistant will take over the conversation with the goal of answering their questions and either getting them on the phone with the company via a call back OR helping them schedule an appointment. This offers a more consistent solution than just a text to the business owner / team & the prospect is contacted and helped (hopefully) before they have a chance to start calling a competitor. Lead Nurture / Lead Qualifying Sales Funnel. This one is more than just AI & automation. It's a full funnel. It can be for either Facebook or Google. The process is AD -> Landing Page -> AI Text Message Convo -> Booking/Schedule Call/ Appointment. Typically the ad will offer a lead magnet which they will claim on the LP by giving their information. After the form is submitted, they get a text message and begin a conversation with the AI. It can be trained to just walk them through a booking process, nurture a sale by answering questions and handling objections or to qualify leads. Lead qualification via text works well if you want to weed out who is serious versus who is curious. To be clear; I'd be making the ad, landing page & training the AI -- all parts of the funnel. For whichever service a few things are universal: \- All conversations; no matter what platform they're had on, all go to one inbox which is pretty helpful to see them all in one place. \- When scheduling / booking these can also collect payment. \- Tags can be added to keep track of how they came into the business and where they are in a sales pipeline. There are a lot of fun things I can do with these automations and I'm excited about learning more everyday. I'd really like to know what you think these services could be worth to a business. If you do reply please tell me what type of business you're in so I have an idea of what industries I should be looking towards. Thank you for any response I get as I know this was a long read! SN: I currently do digital marketing & web design as a freelancer.

What Does “Building a Community” Actually Mean for a Startup?
reddit
LLM Vibe Score0
Human Vibe Score1
ManagerCompetitive77This week

What Does “Building a Community” Actually Mean for a Startup?

I’ve talked to a lot of founders, and almost everyone gives the same advice: “Build your product and do sales at the same time. Also, build a community alongside it.” I get the first part. Shipping and selling together makes sense. But the “community building” part? That’s where things get blurry for me. Does community building mean posting regular updates on Twitter or LinkedIn? Does it mean making Instagram reels about the product? Or is it more about actually talking to potential customers one-on-one? When people say “build a community,” do they mean creating a place where users can interact with each other or just a way to keep them engaged with the product? The reason I’m asking is that I see different approaches everywhere. Some founders document their startup journey on social media, and that seems to attract an audience. Others focus on getting early users into a private group (Discord, Slack, or WhatsApp) and nurturing relationships there. And then there are those who take a totally different approach—like building in public, sharing code, or offering free tools to bring people in. For my startup, I’m trying to figure out what community building should look like in 2025. The startup landscape has changed drastically in the past year, especially with AI and automation becoming more mainstream. Founders no longer have time to manually interact with every user. So what’s the new way of doing this? What’s working for early-stage startups today? I’d love to hear thoughts from fellow founders. What does “community” actually mean in today’s world, and what’s the best way to build one?

The Advantages of a Custom CRM Solution
reddit
LLM Vibe Score0
Human Vibe Score-1
NeerajKumarChaurasiaThis week

The Advantages of a Custom CRM Solution

The growth in the global CRM market continues to accelerate. According to techspective, the global CRM market is now worth \~ $40B USD and is expected to surpass $80B USD by 2025. Despite this phenomenal growth, the CRM market is still dominated by off-the-shelf solutions that are “cookie-cutter” in design and that provide little to no options for customization. These non-customized CRM solutions can significantly inhibit an enterprise’s ability to maximize the advantages of CRM adoption and to realize a robust ROI. As a result, companies are increasingly opting for digital CRM solutions that are customized to meet the unique needs of the enterprise. What is driving the increased demand for custom CRM solutions? What are some of the inherent advantages of a custom CRM solution when compared to a typical off-the-shelf product? Off-the-Shelf CRM Solutions – the Limitations Static CRM solutions are inflexible and self-limiting. Enterprises saddled with these cookie-cutter solutions increasingly report a consistent listing of issues that limit business growth.  These include…. A lack of real-time visibility into shifting customer trends and demands Delayed reaction to coordination of internal resources to meet changing business conditions Lost business opportunities due to lack of flexible, and real-time, opportunity lifecycle management Reporting and dashboarding capabilities that are slow, static, and disconnected Poor quote-to-cash performance that degrades financial performance A CRM investment that delivers poor ROI and that cannot grow with the enterprise All of the above can combine to limit the enterprise’s ability to fully capitalize on its hard-won business opportunities and, over time, limit its ability to create new opportunities. A Customized CRM – What is it? What is a “customized CRM”? Simply put, it is a holistic CRM solution that has been specifically tailored for the individual enterprise. The provider of a truly customized CRM solution will deliver a solution that has been designed to meet the specific—and unique—demands and objectives of the enterprise. A tailored CRM solution will address the enterprise’s sales and operational requirements as well as its customer experience objectives. Unlike standard off-the-shelf CRM providers, a provider of enterprise-grade custom CRM solutions will employ a comprehensive project discovery and requirements gathering process. This is an integral process that provides the foundation for the development of a custom solution that will provide the enterprise with long term flexibility and scalability. A customized digital CRM solution can provide distinct competitive advantages; including: Dynamic, Flexible, Powerful, Real-Time Management and Engagement A customized, technology\-fueled, CRM solution provides the enterprise with the means with which to dynamically engage with customers in ways that build customer loyalty, generate market growth, and drive strong financial performance. Distinct advantages include: Real-time sales opportunity tracking. Helps eliminate lost opportunities due to slow or inadequate reaction. Customized, AI and IoT-fueled, data analytics. A customized CRM solution can be designed to deliver real-time insights. Allows the enterprise to anticipate, and then satisfy, the needs of the customer. Customizable Dashboards and Reports. Widget-based, customized, dashboards and reports that provide real-time data and actionable insights. Sales process automation. Intelligent Workflow-based automation and control of critical sales processes. Increases overall operational efficiency. Outstanding ROI. A custom CRM solution typically delivers superior ROI when compared to off-the-shelf CRM products. Enterprises today spend considerable time, money, and effort in the development of customer relationships. For many enterprises, the continued use of CRM solutions that are rigid and outdated can prove to be impediments to business growth. When considering investment in a new CRM solution any enterprise will be well served by full consideration of a CRM solution that can be fully customized to meet its long-range requirements.

Struggling with my dog-themed clothing store – How can I make it better?
reddit
LLM Vibe Score0
Human Vibe Score1
BirnenHansThis week

Struggling with my dog-themed clothing store – How can I make it better?

TL;DR: I own a dog-inspired store that’s struggling to make sales. I need your honest feedback to make it better. Hey reddit, I’m turning to you because I really need your honest feedback. I run a small online shop, dogloverclothing.com, where I sell dog-inspired fashion items and accessories (product list is growing). I poured my heart into creating it because I’m a huge dog lover (I own a Corgi and a Beagle), and I thought there must be others out there who’d resonate with the style of my designs. I truly believe my shop is fun and creative and I thought other dog lovers would easily connect with the dog-theme behind it. But I’m struggling. I’ve only made 1-2 sales a year and I feel like I’ve hit a wall. Let me be completely transparent about my situation: I have a small child who needs my care in the afternoons. I work part-time in the mornings, and the only time I'm able to work on my shop is in the evenings (once all the usual household chaos is settled) or on weekends. That gives me maybe 1-2 hours a day to focus on this project. I don’t have the money or time for big ad campaigns, influencer cooperations, daily social media activity, or even professional photoshoots for my products. My visuals are mostly created with AI tools, stock imagery, and mockup generators, but I think they look professional enough to be converting. I tried small ad campaigns, and while I got a few sales, the ad costs ended up being higher than my revenue, so I had to stop. I also tried organic Social Media activity, but the time I put into that did not turn into any traffic, followers or sales, so I also stopped that. I know that putting myself/my face out there on social media could help, but I’m not comfortable showing my face or apartment in videos or ads. I could do flatlays or simple videos with the products I have at home. Right now, I’m putting all my energy into SEO, hoping to attract organic traffic and customers. Otherwise, I feel stuck with marketing. I want to make the most of the limited time and resources I have. My dream definitely isn’t to get rich here from this shop. I would love to make an extra $300-500 a month to make life a little easier for my family, while fulfilling my creative streak – and that's about it. I’m not sure if that’s even realistic, but it’s what keeps me going. So, guys: What do you think I’m doing wrong or could do better? Is it the designs? The pricing? The website layout? The lack of time/lack of money? How can I make this work with my limited time and resources? Are there any affordable, creative marketing strategies you’d recommend for someone in my shoes? Is my goal of $300-500/month realistic for a store like mine? I’m open to all your ideas, tips, and even brutal honesty. This isn’t just a business for me, it’s my passion project, and I’d love to make it somewhat of sustainable. I’m not here to sell you something. I’m here to learn. I know Reddit doesn’t hold back, and that’s what I need. Can you take a look at my site, tell me what you think, and help me figure out why this dream hasn’t taken off yet? I know running a business is tough, and I deeply admire everyone in this community who’s making it work. I’d love to hear your insights, experiences, and even your tough love if that’s what it takes to get my dream back on track. Thank you so much for taking the time to read this and for any advice you can offer!

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?
reddit
LLM Vibe Score0
Human Vibe Score-0.333
12131415161718190This week

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?

I have a roster of a few home service companies (plumbers, roofers, landscapers, etc.) that I do freelance marketing for. Lately, the owners I work with have developed a serious case of AI shiny object syndrome. They’re bombarding me with links to scammy IG ads for “game-changing” AI tools they think will save their businesses overnight. Even talking about replacing their CSRs with "virtual agents". This will obviously lead to some terrible customer experiences, but all they can see is dollar signs at the prospect of laying off that part of their labor force. If I keep pushing back and pointing out how short sighted some of these ideas are, they’ll eventually find someone else that will implement them. So, I’m trying to get out in front of this a little bit and find any AI tools that don’t suck—something I can pitch back to them that’s actually useful and not just a fancy new way to ruin their customer experience. Then when they brag to their other buddies in the trades about how "cutting edge" their business is, it will be in part because of me, not in spite of me. Any suggestions for AI tools that: Help small service businesses without completely alienating their customers? Automate repetitive tasks in a way that doesn’t scream “this was done by a robot”? Aren’t just some scammy overpriced subscription service with a flashy demo? If you’ve actually used something that works, I’d love to hear about it. Honestly, the bar is low. Just help me stop these guys from accidentally burning their businesses down with bad AI ideas.

Here’s How Chatbots Can Boost Your Small Business
reddit
LLM Vibe Score0
Human Vibe Score1
smanwerThis week

Here’s How Chatbots Can Boost Your Small Business

Chatbots are the next big thing in the tech world that are meant for business use. Almost every business can benefit from chatbots in one way or the other. They are now everywhere – the fastest rising star are basically computer-operated machines that can play a variety of roles such as customer service representative, social media manager, personal assistant and much more. Virtually every industry is seemingly investing in it. Chatbots became the flavor of the season because of their task management and problem solving skills. This is why companies are aggressively deploying chatbots to their business strategy to make it work right. What are Chatbots – How They Can Benefit Your Small Business? In essence, chatbots are simply a computer program tailor-made to mimic conversations with the help of artificial intelligence (AI). These computer-based programs are capable enough to respond to natural language text and voice inputs in a human way. Chatbots can take over a lot of time consuming tasks, allowing project managers to focus on other important matters and take high level decisions. Chatbots are not just the next big thing for digital and tech brands, small businesses can also get the most out from them. Small businesses should get into chatbots to streamline their routine project management practices and support other business operations – thereby saving budget, time, energy, while improving ROI. If you are not completely getting into it, here are some ways that help you deploy this rising technology in order to boost your small business strategy. Instant Customer Support One of the effective ways small businesses can implement a chatbot is an immediate customer support. If you belong to an industry that offers products and services, chances are you get so many phone calls and emails to educate people. Prior to allowing customers to clog up your inbox with unlimited queries, try using a chatbot that will save your valuable time. You can simply create an immediate customer support presence for customers who engage with your chatbot. Craft answers for all the popular queries so that your project management team can focus on other complex and important issues while chatbots addressing the most commonly asked questions. Moreover, it will add a consistency to your brand voice. You can control the tone and ensure that the chatbot will deliver your crafted messages. Boost Sales Leads Generation Chatbots are not just about sharing or collecting information. They can actually boost sales. But, how? Though they can’t replace your sales and marketing team, they can smartly assist them by being an immediate point of contact. Create an automated conversation for a new visitor and it can directly influence sales. Though chatbots are rising, they will ultimately carry on artificial intelligence that is capable for gathering the data required to curate a specific set of products for customers. For instance, if a user asks the chatbot for blue shirt in cotton, the chatbot can pull items with the particular details for the user. This process is cumulative and when next time the user communicates with the chatbot, it will consider their preferences. Increase Your Business Efficiency Though chatbots can’t perform every business operation, what they can do is eliminate few of the menial but important operations. Consider all the important tasks that your employees need to perform, such as answering customer queries, compiling data for a user, filling out form etc. Most of these tasks are monotonous in nature that allows you to train your chatbot to manage all these repetitive tasks with a low risk and high return of your valuable time. Reducing Cost and Resource Consumption Like any online task management system , chatbots are great to reduce manpower. From performing as a personal assistant to a customer sales representative, you can easily cut down the total number of resources that deal with customer complaints and feedback. You can utilize a chatbot, as it can do this work easily a human would usually do. Read Full article here

The Advantages of a Custom CRM Solution
reddit
LLM Vibe Score0
Human Vibe Score-1
NeerajKumarChaurasiaThis week

The Advantages of a Custom CRM Solution

The growth in the global CRM market continues to accelerate. According to techspective, the global CRM market is now worth \~ $40B USD and is expected to surpass $80B USD by 2025. Despite this phenomenal growth, the CRM market is still dominated by off-the-shelf solutions that are “cookie-cutter” in design and that provide little to no options for customization. These non-customized CRM solutions can significantly inhibit an enterprise’s ability to maximize the advantages of CRM adoption and to realize a robust ROI. As a result, companies are increasingly opting for digital CRM solutions that are customized to meet the unique needs of the enterprise. What is driving the increased demand for custom CRM solutions? What are some of the inherent advantages of a custom CRM solution when compared to a typical off-the-shelf product? Off-the-Shelf CRM Solutions – the Limitations Static CRM solutions are inflexible and self-limiting. Enterprises saddled with these cookie-cutter solutions increasingly report a consistent listing of issues that limit business growth.  These include…. A lack of real-time visibility into shifting customer trends and demands Delayed reaction to coordination of internal resources to meet changing business conditions Lost business opportunities due to lack of flexible, and real-time, opportunity lifecycle management Reporting and dashboarding capabilities that are slow, static, and disconnected Poor quote-to-cash performance that degrades financial performance A CRM investment that delivers poor ROI and that cannot grow with the enterprise All of the above can combine to limit the enterprise’s ability to fully capitalize on its hard-won business opportunities and, over time, limit its ability to create new opportunities. A Customized CRM – What is it? What is a “customized CRM”? Simply put, it is a holistic CRM solution that has been specifically tailored for the individual enterprise. The provider of a truly customized CRM solution will deliver a solution that has been designed to meet the specific—and unique—demands and objectives of the enterprise. A tailored CRM solution will address the enterprise’s sales and operational requirements as well as its customer experience objectives. Unlike standard off-the-shelf CRM providers, a provider of enterprise-grade custom CRM solutions will employ a comprehensive project discovery and requirements gathering process. This is an integral process that provides the foundation for the development of a custom solution that will provide the enterprise with long term flexibility and scalability. A customized digital CRM solution can provide distinct competitive advantages; including: Dynamic, Flexible, Powerful, Real-Time Management and Engagement A customized, technology\-fueled, CRM solution provides the enterprise with the means with which to dynamically engage with customers in ways that build customer loyalty, generate market growth, and drive strong financial performance. Distinct advantages include: Real-time sales opportunity tracking. Helps eliminate lost opportunities due to slow or inadequate reaction. Customized, AI and IoT-fueled, data analytics. A customized CRM solution can be designed to deliver real-time insights. Allows the enterprise to anticipate, and then satisfy, the needs of the customer. Customizable Dashboards and Reports. Widget-based, customized, dashboards and reports that provide real-time data and actionable insights. Sales process automation. Intelligent Workflow-based automation and control of critical sales processes. Increases overall operational efficiency. Outstanding ROI. A custom CRM solution typically delivers superior ROI when compared to off-the-shelf CRM products. Enterprises today spend considerable time, money, and effort in the development of customer relationships. For many enterprises, the continued use of CRM solutions that are rigid and outdated can prove to be impediments to business growth. When considering investment in a new CRM solution any enterprise will be well served by full consideration of a CRM solution that can be fully customized to meet its long-range requirements.

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.
reddit
LLM Vibe Score0
Human Vibe Score1
Organic_Crab7397This week

Seeking advice from every type of business owner - if you have a moment & an opinion please chime in.

Hello everyone. I haven't started selling yet and wanted to get some insight from the community I'm trying to serve (that makes the most sense to me). So over the past couple months I've gotten into AI & Automation. I got a HighLevel account and went to town learning new things. I learned how to make automations and workflows that make running a business easier (my dad has been letting me use his concrete business as a guinea pig). I also learned how to build and train AI Chat Assistants. I want to start a service based business that uses AI & workflows to automate some of the customer service tasks & lead generation for business. What I'm seeking advice about are as follows: NICHE SELECTION: Part of me thinks I shouldn't niche down in the beginning and just take whoever comes and niche down once I find an industry I'm comfortable with. Another side thinks I should choose one. What is your opinion on niche selection in the beginning? PRICING: I know that pricing largely depends on the value I bring to the client, but I've seen people doing the same or similar things as I want to do and charging vastly different prices. From $300- $2,000. While I think these solutions could absolutely help companies get and retain new business and reduce some of the workload of their staff -- I'm not comfortable charging a high price until I've got enough experience and data to justify that. ​ THESE ARE THE SERVICES I'M THINKING OF OFFERING: Customer Service Chat Assistant. This will be on the website as a "Live Chat". It also connects to Facebook Messenger & Google Business Chat. I'd train the chat assistant on everything related to the company; pertinent info (NAP, company mission, industry background), contact info, services / products / pricing, FAQs, current specials &/or discount codes (this can be changed monthly), how to handle upset clients, etc. It can also connect to a calendar like Google or Calendly so customers can make an appointment or schedule a call directly from the conversation. Missed Call Follow Up. If you're familiar with the platform HighLevel it's commonly called "Missed Call Text Back". The idea is that when a call is missed a text message is automatically fired to the prospect's phone saying something along the lines of "Hey this is \\\\\\ from \\\\\\\_. How can I help you?" and the business owner is alerted to the missed call via text notification. People have said they see a lot of success for their clients with this alone due to the instant follow up. I see a lot of people charging $300 /m. for this. My issues with this are: 1). The text fires automatically when the call is missed, but if the business owner isn't available to actually follow up and keep texting after the customer texts back, they will look inconsistent and bothersome. 2). Without context a prospect may wonder why you didn't answer when they called, but texted them instead. So my answer to these problems are #3. SMS Answering Service. It is essentially taking 2 + 1 and combining them. The missed call text goes out to the prospect, but with context on why they're being texted (because no one is available to take the call at the moment) and IF the prospect responds, a Customer Service Chat Assistant will take over the conversation with the goal of answering their questions and either getting them on the phone with the company via a call back OR helping them schedule an appointment. This offers a more consistent solution than just a text to the business owner / team & the prospect is contacted and helped (hopefully) before they have a chance to start calling a competitor. Lead Nurture / Lead Qualifying Sales Funnel. This one is more than just AI & automation. It's a full funnel. It can be for either Facebook or Google. The process is AD -> Landing Page -> AI Text Message Convo -> Booking/Schedule Call/ Appointment. Typically the ad will offer a lead magnet which they will claim on the LP by giving their information. After the form is submitted, they get a text message and begin a conversation with the AI. It can be trained to just walk them through a booking process, nurture a sale by answering questions and handling objections or to qualify leads. Lead qualification via text works well if you want to weed out who is serious versus who is curious. To be clear; I'd be making the ad, landing page & training the AI -- all parts of the funnel. For whichever service a few things are universal: \- All conversations; no matter what platform they're had on, all go to one inbox which is pretty helpful to see them all in one place. \- When scheduling / booking these can also collect payment. \- Tags can be added to keep track of how they came into the business and where they are in a sales pipeline. There are a lot of fun things I can do with these automations and I'm excited about learning more everyday. I'd really like to know what you think these services could be worth to a business. If you do reply please tell me what type of business you're in so I have an idea of what industries I should be looking towards. Thank you for any response I get as I know this was a long read! SN: I currently do digital marketing & web design as a freelancer.

Seeking Feedback on My Business Idea – SaaS + Lead Generation for Small Businesses
reddit
LLM Vibe Score0
Human Vibe Score1
sarveshpandey89This week

Seeking Feedback on My Business Idea – SaaS + Lead Generation for Small Businesses

Edit: TL;DR I’m Sarvesh, a digital marketer with 10 years of experience in paid ads. After losing my job last year, I started freelancing and discovered how much small businesses struggle with getting reviews (Google, Yelp, TrustPilot, etc.). My Business Idea – SaaS + Paid Ads Free Plan: Businesses can track & reply to reviews across 40+ platforms in one dashboard. Paid Plan ($99/month): Automates review collection, AI-powered responses, social media posting, and spam detection. Custom Plan: Paid ads to generate leads, offered only to businesses on my paid plan for 3+ months. Goal: SaaS platform attracts users → Some upgrade to paid plan → Best clients get lead-generation help → More leads → More reviews → More organic customers → A profitable business cycle. Need Feedback: Does this idea have potential? How can I get my first beta users? Any features I should add/remove? Would love your thoughts—thanks for reading! 😊 TL: Hi everyone, I’m Sarvesh, and I’m in the process of starting my own business. Since my target audience is small businesses, I’d love to get some input, advice, or critiques from this community. A Little About Me I’ve spent the last 10 years working in paid advertising, helping medium and large businesses generate leads through Facebook and Google Ads. I also have experience running e-commerce campaigns. You can check out my background on LinkedIn: LinkedIn Profile Last year, my second daughter was born, and around the same time, my company shut down all its offices (India & UK), leaving me without a job. I decided to take a break and spend time with my wife and newborn, something I regretted not doing with my first child. By November, I started job hunting again, but in the meantime, I got some freelance work through Reddit, helping small businesses with ads for the first time. For context, in my previous jobs, I managed ad campaigns with daily budgets of £4K–£8K. Working with small businesses was a new challenge, but to my surprise, I was able to generate solid leads for beauty salons, hair salons, and nail salons, helping them grow. What stood out to me was how much impact my work had—unlike my corporate job, where I was just another person in the system, here I felt truly valued. That feeling led me to explore starting my own business. The Problem I Noticed While working with small businesses, I realized that online reviews (Google, Yelp, Trustpilot, etc.) are critical for them, yet many struggle to get them. Customers often don’t leave reviews, and employees are either too shy or don’t prioritize asking for them. This gave me an idea—to build a system that helps businesses get more genuine Google reviews from customers. I developed the system but struggled to find businesses willing to test it, even for free. My target audience is U.S. small businesses, but since I’m based in India, cold emails and Reddit outreach didn’t get much traction. My Business Idea – SaaS + Custom Plans I’m now thinking of pivoting my business model into a SaaS platform with optional paid upgrades. Here’s how it would work: Free Plan (Review Tracking & Management) Businesses can track their reviews across 40+ platforms (Google, Yelp, Facebook, Trustpilot, TripAdvisor, etc.) in one dashboard. They can reply to reviews manually from a single place instead of switching between platforms. This will be completely free forever. Paid Plan ($99/month, Plus SMS/Email Costs) For businesses that struggle to get reviews, they can upgrade to a paid plan that includes: Automated Review Requests – Automatically send review requests via SMS & email. Website Widget – Showcase 4- and 5-star reviews dynamically. Social Media Automation – Automatically post positive reviews on Facebook/Instagram. AI-Powered Responses – AI can reply to reviews automatically. Spam Detection – The system will notify businesses of suspicious reviews (but won’t take direct action). Custom Plan (Lead Generation via Paid Ads) I will personally manage paid ad campaigns to generate leads. Pricing depends on the niche, budget, and contract duration. Money-Back Guarantee – If I don’t deliver results, I refund the month’s fee. Small businesses can’t afford wasted ad spend, and I want to ensure I provide real value. Limited spots per month to maintain quality and avoid burnout. How Everything Ties Together The SaaS platform serves as a lead generation tool for my custom plans: Businesses use the free plan to track their reviews. Some upgrade to the paid plan to automate and improve reviews. A select few, after 3 months on the paid plan, can join my custom plan for paid ads to generate more leads. More leads → More reviews → Better Google Maps ranking → More organic customers → A more profitable business. Would Love Your Feedback! What do you think about this approach? Do you see potential for this business to take off? Any features I should add or remove? Any suggestions on how I can get my first beta users to test the SaaS platform? What about pricing? Do you think $99 is good pricing? I know this is a long post, but I really appreciate anyone taking the time to read and share their thoughts. Thanks in advance!

Looking to streamline and update family business
reddit
LLM Vibe Score0
Human Vibe Score1
JohACNHThis week

Looking to streamline and update family business

Hey r/smallbusiness, I’ve been working at my family’s business for six years now—joined right after college—and I’ve realized that we’re long overdue for an overhaul. I handle advertising sales, and while the business itself is solid, the way we operate is extremely outdated. Without revealing too much, we print about 180 publications, and businesses pay to have their ads featured. As a sales rep, my job includes: Renewing current advertisers Finding new customers and making sales Collecting artwork for ads Gathering billing info Laying out the ad grid with all advertisers The Problem: Everything is still done with pen and paper. We use carbon copy paper to record business details, billing info, and ad costs. One copy goes to the graphic designers, the other to billing. The billing team manually enters everything into QuickBooks, prints invoices, stuffs envelopes, and mails them out. We recently got new software that lets us send invoices via email and text through QuickBooks, which is a step in the right direction, but it’s just a small fix to a much bigger problem. What I Want to Change: Move everything onto an app or website—no more paper. Digitally layout the ad grid instead of doing it manually. (For graphics team) Collect billing info online instead of writing it down. (Obviously to get paid faster and reduce wasted labor) Automate renewal emails instead of calling every single customer. (Save time) Find more efficient ways to generate leads for new business. (Work smarter not harder) Honestly, the company still runs like my grandma set it up in the '90s, and it’s overwhelming trying to figure out where to start. If anyone has been through something similar or has advice on modernizing a business, I’d love to hear your thoughts! Happy to provide more details if needed. I’ve explored some CRMs and AI tools, but I’m sure someone here has better insights or more experience with this than I do. There are other parts of the business that need improvement, but I believe this would be a big step in the right direction. Thanks in advance!

ChatGPT for business automation (incredible new AI)
reddit
LLM Vibe Score0
Human Vibe Score1
MalachiianThis week

ChatGPT for business automation (incredible new AI)

Hey fellow small business owners! I'm curious to know how you would use ChatGPT or other AI automation tools to improve your business. For those who are not aware, recently a new chat AI was made available to the public by OpenAI, called ChatGPT. (same company that did Dall-E) In a tweet Elon Musk wrote that "ChatGPT is scary good. We are not far from dangerously strong AI." It allows anyone (regardless of tech skill) to simply type commands and it will spit out answers. It can also create actual working code. For example most tasks you do in a browser can be automated with a Python script, but it takes time and coding knowledge to create. With ChatGPT you can just tell it what you want and it will create the code! The impact for businesses is insane: 1) Your entire customer service can be easily replaced by chat bots and probably soon by AI that can speak over the phone (google showcased this in 2018, it already exists). 2) you can have the AI automate your sales process, creating a 1-on-1 conversations, at scale. It can probably also improve and optimize it's closing rate over time as it learns more about your customers. 3) It can be used to train your staff. It's really good for 1on1 instruction and teaching because it will go a the students pace and answer questions (compare that to the usual PowerPoint presentation people use) 4) Since it can create code to automate most tasks a human can do in a browser, you can create for example bots that take customer orders and automatically import them to whatever shipping system you use, send customers tracking info etc. (a lot of this stuff is done with software and APIs, but now anyone can create their own, custom solutions) I feel like we hit an inflection point in 2022 with AI and now we are beginning to see some really useful stuff coming out. Am I crazy or are we about to see a massive shift in how we do things?

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?
reddit
LLM Vibe Score0
Human Vibe Score-0.333
12131415161718190This week

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?

I have a roster of a few home service companies (plumbers, roofers, landscapers, etc.) that I do freelance marketing for. Lately, the owners I work with have developed a serious case of AI shiny object syndrome. They’re bombarding me with links to scammy IG ads for “game-changing” AI tools they think will save their businesses overnight. Even talking about replacing their CSRs with "virtual agents". This will obviously lead to some terrible customer experiences, but all they can see is dollar signs at the prospect of laying off that part of their labor force. If I keep pushing back and pointing out how short sighted some of these ideas are, they’ll eventually find someone else that will implement them. So, I’m trying to get out in front of this a little bit and find any AI tools that don’t suck—something I can pitch back to them that’s actually useful and not just a fancy new way to ruin their customer experience. Then when they brag to their other buddies in the trades about how "cutting edge" their business is, it will be in part because of me, not in spite of me. Any suggestions for AI tools that: Help small service businesses without completely alienating their customers? Automate repetitive tasks in a way that doesn’t scream “this was done by a robot”? Aren’t just some scammy overpriced subscription service with a flashy demo? If you’ve actually used something that works, I’d love to hear about it. Honestly, the bar is low. Just help me stop these guys from accidentally burning their businesses down with bad AI ideas.

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?
reddit
LLM Vibe Score0
Human Vibe Score-0.333
12131415161718190This week

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?

I have a roster of a few home service companies (plumbers, roofers, landscapers, etc.) that I do freelance marketing for. Lately, the owners I work with have developed a serious case of AI shiny object syndrome. They’re bombarding me with links to scammy IG ads for “game-changing” AI tools they think will save their businesses overnight. Even talking about replacing their CSRs with "virtual agents". This will obviously lead to some terrible customer experiences, but all they can see is dollar signs at the prospect of laying off that part of their labor force. If I keep pushing back and pointing out how short sighted some of these ideas are, they’ll eventually find someone else that will implement them. So, I’m trying to get out in front of this a little bit and find any AI tools that don’t suck—something I can pitch back to them that’s actually useful and not just a fancy new way to ruin their customer experience. Then when they brag to their other buddies in the trades about how "cutting edge" their business is, it will be in part because of me, not in spite of me. Any suggestions for AI tools that: Help small service businesses without completely alienating their customers? Automate repetitive tasks in a way that doesn’t scream “this was done by a robot”? Aren’t just some scammy overpriced subscription service with a flashy demo? If you’ve actually used something that works, I’d love to hear about it. Honestly, the bar is low. Just help me stop these guys from accidentally burning their businesses down with bad AI ideas.

The case for micro PE [x-post from r/micro_pe]
reddit
LLM Vibe Score0
Human Vibe Score0
newy66This week

The case for micro PE [x-post from r/micro_pe]

Any SMB owners considering a sale? What have your challenges been so far? \-- The high-flying venture capital party is quieting down. The pullback in the public tech valuations and high-profile failures have made venture capitalists more cautious, doing fewer deals, no doubt stemming from antsy LPs. But at the same time, real tech has been built that improves business efficiency. AI to cut costs, target customers, improve products. SaaS products to automate everything from billing to marketing. New platforms that open up new modes of customer acquisition. Some of the hyped venture-backed companies from the past decade, while not quite achieving world domination, demonstrated models that provided real value to customers. The on-demand universe - rides, rooms, meals, home services, pets, leisure, showed that customers value convenience and experience. On another front, there's a silver tsunami on the horizon as aging business owners start to cash out. Nearly 60% of private companies are run by the 55+ crowd. Trillions in assets will change hands in the next 15 years as they retire. The tech layoffs have flooded the labor market with brainpower. No shortage of sharp operators looking for their next act. Put it together and you have the ingredients for a new investment approach: micro private equity. Modest valuations, reasonable return expectations, solid companies with positive cash flow or a clear path to profitability. Maybe with debt financing or an acquisition of an existing business at the outset. More targeted, grounded bets are emerging as an alternative to the high-risk venture model. r/micro_pe

What I learn from my $200 MRR App I built 4 months ago?
reddit
LLM Vibe Score0
Human Vibe Score0.857
ricky0603This week

What I learn from my $200 MRR App I built 4 months ago?

4 month ago, I am just a 10-years experienced product manager without any software development experience. I have an $3K/month job, but I am so tired, I don’t like my life, don’t like my boss, don’t like my daily work, that make me feeling I already died however I am still living. I yearn for freedom and want to live each day the way I want to. So I quit my job, and become a Indie developer to build my own business, my own app, even my own life. I am so grateful for this time and experience, now my app reach $200 MRR, still very little compared to my previous salary, but I never regret. I have learned lots of things from this time and experience, more than I had in last 10 years. Here is the time-line of my App: \- Sep 2023: Launch first version to iOS App store \- Oct 2023: Release in-app-purchase features and have first subscriber, the revenue in October is $154 \- Nov 2023: Change from subscription to pay per use, and I did lots of marketing jobs in November, however, the revenue reduced to only $40. \- Dec 2023: Change back to subscription, and stop some invalid marketing jobs, only keep the ones that actually work. I almost did nothing in December, and the revenue come to $243. During this process, I have learned lots of things, there are some of them that I think could help you as well. Web or App My App is an iOS app that only can running on Apple’s device such like iPhone/iPad or Mac with Apple silicon. Many people ask me why my product is an iOS app not a website, because they don’t have any Apple device. It's true that promoting an app is much harder than promoting a website. However I am now very glad I made an App and not a website! If I make a website, I don't think it's possible to make $100 in the first month. My App is about keyword research, to help people find some ideas from search keyword, because every keyword people searched in Google are representing a real need of them, also can be used in SEO field. However there are a lot of website tools about keyword research, some of them are famous like Ahrefs, SEMrush… I have no intention of competing with them. Actually I don’t have any chance. While in app store, there are little apps about keyword research, each of them have terrible data and user experience, that means if my app has better data and experience that could be my chance. In fact, the App store brings me 20 organic installs a day that Google would never have been able to bring me if I had a website, at least for the first few months. Furthermore, Apple nearly did everything for developer, I don’t need to care about user login, payment and so on, Apple did everything, I just need to call their API, that save lots of time, if I build a website, I need to implement login and payment by myself, that would add some extra work. Not to mention I'd need to buy servers and domains, that would cost me a lot of money. Although Apple will take 30% of the revenue, I can live with that in the early stages because the most important thing for me is to get the product to market as soon as possible. Actually thought Apple’s SMB program, the take rate is 15% now. So Web or App is not important in the early stage, time is important, if people need my product, it's easy to make a website one. More Users or More Valuable Users In November, I notice some users would like use my app, and they were meet paywall, but they never subscribe. I provided 7 day free trail, but it seem that they don’t like it. So I decide to change subscription to pay per use. Because as a user, I don’t like subscription as well, pay per use seem like more friendly. So I change from subscription to pay per use. People can afford $9.99 to subscribe monthly for unlimited use or pay $1.99 for each data they want(First purchase is $0.99 then $1.99). I was expecting more user to pay, but it was the complete opposite! Some users who would have paid a higher subscription fee are switching to a lower priced single payment. Users are encountering paywalls more often, and each time they need to make a decision about whether or not to pay, which increases the probability that they will abandon payment. This resulted in a 75% decrease in revenue in November. In fact, the mostly of my revenue comes from a handful of long-cycle subscribers, such as annual subscription. \\Few bring in most of the revenue,\\ that is the most important thing I learned. You don't need a lot of customers, you just need more valuable ones. That's why it's only right to design a mechanism to filter out high-value customers and focus on them, all the things you want do is just let more people into the filter, and from that point of view, subscription with free trial period is the best way, even if most people don't like it. The rule of 20/80 will always be there. The most important thing is always focus on the 20 percent things and people. Effort does not always guarantee rewards. Unless one engages in deep thinking, or most efforts are invalid. I have been working very hard to promote my product for a period of time. It’s about in November. I did a lot of job, such as write script to send message to my potential clients on Fiverr, post and write comments on others post on Reddit, find related questions and answer them on Quora, post and comments on Twitte, etc. During that period, I was exhausted every day, but the outcome did not meet my expectations. There is only little growth on App installation, even less revenue than before. That make me frustrated. I finally realized that If I need to put in a tremendous amount of effort just to make a little progress, there is must something wrong. So I stop 80% of promote work I have ever did, only keep app store search ad, which will bring a installation with less than $0.5 cost. Then I dive into long time and deeply thinking, I spent more time on reading books, investigate other product with great MRR, watch interviews with people who are already living the kind of life I aspire to live, for example, u/levelsio. These things have given me great inspiration, and my life has become easier. It seems that the life I anticipated when I resigned is getting closer. I also have a clearer understanding of my app. Meanwhile, MRR has been growing. This experience let me learn that effort does not always guarantee results. Many times, our efforts are just wishful thinking, they are invalid, do the right thing after deeply thinking is more important. What Next? My goal is reach $3K MRR, as same as my job payment, I will never stop to building things, and I will keep my currently lifestyle. I still don't know how to get more people to use my app, but levelsio's interviews give me some inspiration that I can verified something by manually instead of build a software. I plan to launch a trend analysis product based on the keyword data provided by my current app. I have always wanted to combine AI to build such a product, but I didn't know how to do it. Now I intend to manually complete it first and start software development once there are paying users. If you are interested to my App, you could try it.

Feedback request: Virtual Receptionist - Phone Answering Service
reddit
LLM Vibe Score0
Human Vibe Score0
AlexDataKnowlThis week

Feedback request: Virtual Receptionist - Phone Answering Service

Hi everyone! We develop an AI solution for the Enterprise segment, aimed at managing and automating interactions with Customers (e.g. self-service customer support via telephone) I do not refer in any way to company names, products, etc... to avoid any ambiguity or distraction. ➡️ My post is aimed at exploring the point of view of an SMB regarding the problem of managing interactions with customers, for example in managing telephone calls. ⭐In particular, what do you think of traditional virtual receptionist and phone answering services? The underlying issue is valuing every call, or interaction in general. ⭐A missed or poorly managed call can be a lost opportunity (a sale, a service) or even worse, a lost customer. But often outsourcing the service also means relying on people in a call center who manage your business in parallel with many others, and you cannot be an expert in everything. Therefore, the outsourced agents will be competent on 10, 15 points. This often results in little use for the caller, which does not resolve the issue for which he called. AI is making giant strides, as is speech synthesis and speech recognition. 🚀 What do you think if you were to use AI as a virtual receptionist, or in general for call management for your business? ⭐ Points in favor? What is the most critical aspect? Typical cases: Provide information Customer service Appointment made Order management ...other? The purpose of this post is to provide food for constructive reflection, combining different visions.

ChatGPT for business automation (incredible new AI)
reddit
LLM Vibe Score0
Human Vibe Score1
MalachiianThis week

ChatGPT for business automation (incredible new AI)

Hey fellow small business owners! I'm curious to know how you would use ChatGPT or other AI automation tools to improve your business. For those who are not aware, recently a new chat AI was made available to the public by OpenAI, called ChatGPT. (same company that did Dall-E) In a tweet Elon Musk wrote that "ChatGPT is scary good. We are not far from dangerously strong AI." It allows anyone (regardless of tech skill) to simply type commands and it will spit out answers. It can also create actual working code. For example most tasks you do in a browser can be automated with a Python script, but it takes time and coding knowledge to create. With ChatGPT you can just tell it what you want and it will create the code! The impact for businesses is insane: 1) Your entire customer service can be easily replaced by chat bots and probably soon by AI that can speak over the phone (google showcased this in 2018, it already exists). 2) you can have the AI automate your sales process, creating a 1-on-1 conversations, at scale. It can probably also improve and optimize it's closing rate over time as it learns more about your customers. 3) It can be used to train your staff. It's really good for 1on1 instruction and teaching because it will go a the students pace and answer questions (compare that to the usual PowerPoint presentation people use) 4) Since it can create code to automate most tasks a human can do in a browser, you can create for example bots that take customer orders and automatically import them to whatever shipping system you use, send customers tracking info etc. (a lot of this stuff is done with software and APIs, but now anyone can create their own, custom solutions) I feel like we hit an inflection point in 2022 with AI and now we are beginning to see some really useful stuff coming out. Am I crazy or are we about to see a massive shift in how we do things?

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?
reddit
LLM Vibe Score0
Human Vibe Score-0.333
12131415161718190This week

My clients are obsessed with AI and it's driving me nuts – are there any actually useful AI tools for service businesses?

I have a roster of a few home service companies (plumbers, roofers, landscapers, etc.) that I do freelance marketing for. Lately, the owners I work with have developed a serious case of AI shiny object syndrome. They’re bombarding me with links to scammy IG ads for “game-changing” AI tools they think will save their businesses overnight. Even talking about replacing their CSRs with "virtual agents". This will obviously lead to some terrible customer experiences, but all they can see is dollar signs at the prospect of laying off that part of their labor force. If I keep pushing back and pointing out how short sighted some of these ideas are, they’ll eventually find someone else that will implement them. So, I’m trying to get out in front of this a little bit and find any AI tools that don’t suck—something I can pitch back to them that’s actually useful and not just a fancy new way to ruin their customer experience. Then when they brag to their other buddies in the trades about how "cutting edge" their business is, it will be in part because of me, not in spite of me. Any suggestions for AI tools that: Help small service businesses without completely alienating their customers? Automate repetitive tasks in a way that doesn’t scream “this was done by a robot”? Aren’t just some scammy overpriced subscription service with a flashy demo? If you’ve actually used something that works, I’d love to hear about it. Honestly, the bar is low. Just help me stop these guys from accidentally burning their businesses down with bad AI ideas.

ZeroToHeroML: Beginner-Friendly ML & AI Course (Free)
reddit
LLM Vibe Score0
Human Vibe Score0
DizDThis week

ZeroToHeroML: Beginner-Friendly ML & AI Course (Free)

Hey r/learnmachinelearning! A friend of mine, who's been a software developer at Sony for 10 years, recently expressed interest in learning Machine Learning (ML) and Artificial Intelligence (AI). Leveraging my background in ML and neural computation (learned at UCSD) to create a beginner-friendly course guiding him through the basics and into more complex projects. Foundational Concepts: Predicting House Prices (Regression): Master regression techniques to forecast housing prices based on various factors. Iris Flower Species Prediction (Classification): Learn classification algorithms by predicting flower species using the famous Iris dataset. Overcoming Overfitting: Explore methods to prevent models from overfitting and enhance their generalizability. In Progress: Customer Segmentation (Unsupervised Learning): Delve into unsupervised learning to group customers based on purchase history or demographics (valuable for targeted marketing campaigns). Deep Learning for Image Recognition: Implement Convolutional Neural Networks (CNNs) to build models that recognize objects or scenes in images. Natural Language Processing Sentiment Analysis: Analyze the sentiment (positive, negative, or neutral) expressed in text data (e.g., reviews, social media posts) using NLP techniques. Introduction to Reinforcement Learning: Get acquainted with the fundamentals of reinforcement learning by creating an agent that learns to navigate a maze. Want to Learn or Contribute? I thought I'd share ZeroToHeroML here so others who want to learn ML/AI or know someone who does can benefit from this free resource! ​ Fork the repo: https://github.com/DilrajS/ZeroToHeroML Share with others interested in ML/AI! Pull requests welcome (help the community grow!). All help is appriciated! Let's conquer ML/AI together!

6 principles to data architecture that facilitate innovation
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Speech36This week

6 principles to data architecture that facilitate innovation

My team and I have been re-building our company's data architecture. In the process of doing so, I got together six key principles to transforming data architectures and thought I would share them, as a strong data architecture is crucial for businesses looking to stay competitive in the digital landscape, as it improves decision-making, time to market, and data security. When executed with efficiency, a resilient data architecture unleashes unparalleled degrees of agility. Principle 1: Agility and flexibility To quickly adjust to market fluctuations, businesses must create adaptable data infrastructures that can effortlessly manage an ever-growing influx of data. To accomplish this objective, we recommend to our clients to implement Enterprise Service Bus, Enterprise Data Warehouse, and Master Data Management integrated together. ​ I believe the best option is this: \- By centralizing communication, ESB reduces the time and effort required to integrate new systems; \- EDW consolidates data from different sources, resulting in a 50% reduction in software implementation time; \- Finally, MDM ensures consistency and accuracy across the organization, leading to better decision-making and streamlined operations. Implementing these solutions can lead to reduced software implementation time, better ROI, and more manageable data architecture. By fostering a culture of collaboration and adopting modern technologies and practices, businesses can prioritize agility and flexibility in their data architecture to increase the pace of innovation. Principle 2: Modularity and reusability Data architecture that fosters modularity and reusability is essential for accelerating innovation within an organization. By breaking data architecture components into smaller, more manageable pieces, businesses can enable different teams to leverage existing architecture components, reducing redundancy and improving overall efficiency. MDM can promote modularity and reusability by creating a central repository for critical business data. This prevents duplication and errors, improving efficiency and decision-making. MDM enables a single source of truth for data, accessible across multiple systems, which promotes integration and scalability. MDM also provides standardized data models, rules, and governance policies that reduce development time, increase quality, and ensure proper management throughout the data’s lifecycle. Another way to achieve modularity in data architecture is through the use of microservices and scripts for Extract, Transform, and Load (ETL) processes. Adopting a structured methodology and framework can ensure these components are well-organized, making it easier for teams to collaborate and maintain the system. Microservices can also contribute to modularity and reusability in data architecture. These small, independent components can be developed, deployed, and scaled independently of one another. By utilizing microservices, organizations can update or replace individual components without affecting the entire system, improving flexibility and adaptability. Principle 3: Data quality and consistency The efficiency of operations depends on data’s quality, so a meticulously crafted data architecture plays a pivotal role in preserving it, empowering enterprises to make well-informed decisions based on credible information. Here are some key factors to consider that will help your company ensure quality: \- Implementing Master Data Management (MDM) – this way, by consolidating, cleansing, and standardizing data from multiple sources, your IT department will be able to create a single, unified view of the most important data entities (customers, products, and suppliers); \- Assigning data stewardship responsibilities to a small team or an individual specialist; \- Considering implementing data validation, data lineage, and data quality metrics; \- By implementing MDM and adopting a minimal data stewardship approach, organizations can maintain high-quality data that drives innovation and growth. Principle 4: Data governance Data governance is a strategic framework that goes beyond ensuring data quality and consistency. It includes ensuring data security, privacy, accessibility, regulatory compliance, and lifecycle management. Here are some key aspects of data governance: \- Implementing robust measures and controls to protect sensitive data from unauthorized access, breaches, and theft. This is only possible through including encryption, access controls, and intrusion detection systems into your company’s IT architecture; \- Adhering to data privacy regulations and guidelines, such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA); \- Defining stringent conditions for who has access to specific data assets to maintain control over data and ensure its accessibility only for legitimate purposes. Managing the entire lifecycle of data, from creation and storage to archiving and disposal, including defining policies for data retention, archiving, and deletion in compliance with legal and regulatory requirements. To facilitate effective data governance, organizations can leverage various tools and technologies, such as: \- Data cataloging tools: Solutions like Collibra, Alation, or Informatica Enterprise Data Catalog help organizations discover, understand, and manage their data assets. \- Data lineage tools: Tools like Talend, IBM InfoSphere, or Apache Atlas help track data’s origin, transformation, and usage, providing insights into data quality issues and potential areas for improvement. \- Data quality tools: Solutions like Informatica Data Quality, Trifacta, or SAS Data Quality help organizations maintain high-quality data by identifying and correcting errors, inconsistencies, and inaccuracies. \- Data security and privacy tools: Tools like Varonis, BigID, or Spirion help protect sensitive data and ensure compliance with data privacy regulations. Principle 5: Cloud-first approach A cloud-first approach prioritizes cloud-based solutions over on-premises ones when it comes to data management. Cloud-based data management pros: \- Virtually limitless scalability, so that organizations can grow and adapt to changing data requirements without significant infrastructure investments; \- The pay-as-you-go model of cloud services reduces maintenance costs usually associated with the on-premise choice; \- Greater flexibility for deploying and integrating new technologies and services; \- Cloud can be accessed from anywhere, at any time, turning team collaboration and remote work into a breeze; \- Built-in backup and disaster recovery capabilities, ensuring data safety and minimizing downtime in case of emergencies. Cloud-based data management cons: \- Cloud-first approach raises many data security, privacy, and compliance concerns; \- Transferring large data volumes to and from cloud is often time-consuming and results in increased latency for certain apps; \- Relying on a single cloud provider makes it difficult to switch them or move back to the on-premises option without significant funds and effort. Challenges that organizations that choose a cloud-first approach face: \- Integrating cloud-based systems with on-premises ones can be complex and time-consuming; \- Ensuring data governance and compliance in a multi-cloud or hybrid environment is also another problem reported by my clients. How EDW, ESB, and MDM promote cloud-first approach: A cloud-based EDW centralizes data from multiple sources, enabling a unified view of the organization’s data and simplifying data integration across cloud and on-premises systems. An ESB facilitates communication between disparate cloud and on-premises systems, streamlining data integration and promoting a modular architecture. Cloud-based MDM solutions are used for maintaining data quality and consistency across multiple data sources and environments. Principle 6: Automation and artificial intelligence Incorporating automation tools and AI technologies into data architecture can optimize processes and decision-making. Key Applications: \- Data ingestion and integration: Automation simplifies data schema updates and identifies data quality issues, while AI-assisted development helps create tailored connectors, scripts, and microservices. \- Data quality management: Machine learning algorithms improve data quality and consistency by automatically detecting and correcting inconsistencies and duplicates. \- Predictive analytics: AI and machine learning models analyze historical data to predict trends, identify opportunities, and uncover hidden patterns for better-informed decisions. How No-Code Tools and AI-Assisted Development Work: Business users define data requirements and workflows using no-code tools, enabling AI models to understand their needs. AI models process the information, generating recommendations for connector creation, ETL scripts, and microservices. Developers use AI-generated suggestions to accelerate development and tailor solutions to business needs. By combining automation, AI technologies, and no-code tools, organizations can streamline data architecture processes and bridge the gap between business users and developers, ultimately accelerating innovation. I share more tips on building an agile data architectures in my blog.

How I Built A Simple ‘BPO’ Company, All AI Employees (All Local)
reddit
LLM Vibe Score0
Human Vibe Score1
AssistanceOk2217This week

How I Built A Simple ‘BPO’ Company, All AI Employees (All Local)

Disrupting the BPO Industry: My Journey Building a Fully Automated Company with AI Employees Full Article : https://medium.com/@learn-simplified/how-i-built-a-simple-bpo-company-all-ai-employees-all-local-631e48fa908a ​ https://preview.redd.it/htjo1mancl2d1.png?width=1586&format=png&auto=webp&s=7e77f4c66e5ca55a8b0ea6969c43a458503ad921 ● What Are We Doing Today? We are building a BPO (Business Process Outsourcing) call center for an imaginary electric company called "Aniket Very General Electric Company". We will create different departments staffed by AI agents who can chat (and eventually speak in next part) with customers to answer questions, handle complaints, or provide services. ● Why Should You Read This Article? Learning how to build AI agents that can do tasks in real setting, co ordinate w/ human, AI, providing technical support will be a highly valuable skill. ● How Are We Going to Build Our All AI Employees Company? ○ We will explain what BPO and call centers are. ○ Our AI company will have departments like Customer Service, Tech Support, Billing & Payments, Outage Management, and Onboarding Customers. ○ We will use Docker containers to run the Dify AI platform as the base. ○ The AI agents will use the LLaMA-3 language model from Meta AI. ○ We may use Groq's AI accelerator chip to make LLaMA-3 faster. ○ Each department will have a knowledge base of text files that the AI agents can reference. ● Let's Get Cooking! This section provides setup instructions for installing Docker, Ollama (for running LLaMA-3), and the Dify AI platform. It also outlines the different AI agents we will create for departments like Reception, Customer Service, Billing, Tech Support, etc. ● Let's Design our Organization ○ We explain how each department's AI agents will have their own knowledge base, like an employee handbook. ○ The knowledge bases will contain policies, procedures, and other key information. ○ The AI agents can quickly reference this information to provide accurate and knowledgeable responses. ● Let's Meet Our AI Employees ○ We chose the LLaMA-3 70B model as the base for all AI agents across departments. ○ We give the AI agents customized prompts to define their personalities and roles. ○ The knowledge bases act as training materials tailored to each department. ○ In the future, AI agents could have additional tools like ticket systems and integrations. ● Let's Run Our BPO Organization Now that the AI workforce and knowledge bases are ready, we can open our BPO company and have the AI agents start handling customer inquiries across different departments like billing, tech support, outages, and new connections. ● Debugging This section highlights the importance of debugging, showing traces of how the language model understands customer queries and retrieves relevant context from knowledge bases to provide good responses. ● Future Work ○ Scale up to handle more customers using cloud services or distributed computing. ○ Move AI agents and knowledge bases to the cloud for accessibility and maintenance. ○ Fine-tune language models for better performance in each department. ○ Use scalable vector databases for faster knowledge retrieval. ○ Enable voice interfaces and computer vision for more natural interactions. ○ Implement continuous learning so AI agents can expand their knowledge over time. The article demonstrates the potential of building an actual AI-powered company and raises thought-provoking questions about the role of humans, ethics, and using AI to create a better world. ​

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?
reddit
LLM Vibe Score0
Human Vibe Score1
Prudent_Ad_3114This week

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?

Ok... So look... This one is pretty crazy... I'm building an Ai Interface that knows me better than I know myself - Check, lots of people have this, either in reality with employees and family members, or with ai intelligence. But it doesn't just know Me... It knows how to talk with Me. It understands my language, because I've trained it to. I've also trained it to translate that to all my clients and HumanAgents, soon to become RobotAgents... The RESULT: I can literally just spend 1-18 hours talking to it, and things get DONE. Most of that time, I just say EXECUTE, or ENGAGE, or DRAFT, or DISPATCH. I feel like a secret agent communicating in codes with his agency 😂 Not great for the paranoiac in me, but it's easy to get that part under control, ya'll. It's like having a team of 10,000 people, all available 24/7, all perfectly synchronised to each other's communication styles, preferences and ultimately: WHAT DO YOU NEED ME TO DO. At the end of the it all, having run my single COMMAND through a thousand of those people, a Document is prepared that outlines the next 3 stages of the plan, along with instructions to the whole team for how to ENACT it. Sounds rather grand and wonderful... Even when I simply use it to help me come up with a filing system for my creative work... \\\\\\\\\\\\\\\\\\\\\\ Here's my current VISION, why I'm doing this AND why I'm doing it publicly despite it being top secret. VISION To create an army of User-Owned and Operated "AiSuperAgencies" which gather intelligence on the user, securely file and analyse it, and then construct a sub-army of agents and tools that work together to produce the desired output, for any Function in the Personal and Professional Lives of EVERYONE, EVERYWHERE, in 3-5 Years. To start, I'm building it for me and the 5-10 cleaners who've made it to Level 1 in my access system. They were sick of toxic employers, tyrannical agencies and greedy customers. They gathered around us (many came in, many went out, few stayed, took about a year for our core team of 3 Level 2 Cleaners. My goal has always been to never employ anyone. Just me, my Partner and the Cleaners. All Shared Owners in the system for delivering the right cleaner to the right house in our town, at the right time and without any dramas or arguments... I have a personal talent for resolving disputes, which has made working for and buying from my business a mostly enjoyable and upbeat experience, with a touch of mystery and a feeling that you're part of something big! It is a business that ran on Me. I put in my time, every day, building automated tool after automated tool. Hiring a contractor to do a job, scratching my head when it didn't add enough value to pay for itself, then just doing it myself again. I wanted to solve that problem. I'm trusting that the few who hear about it who actually see the potential, will just come join us, no dramas, just cool people partnering up! And those that don't, won't. No one could steal it, because it's Mine, and I'll just change the keys anyway loser! Enjoy digging through my past, you lunatic! I'm out here living Now. Anyways... It's lonely around here. I have a cleaning business that I run from my laptop, which means I can live anywhere, but I still had this big problem of time... NOT ENOUGH Oh Wait. It's Here.

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?
reddit
LLM Vibe Score0
Human Vibe Score1
Prudent_Ad_3114This week

I'm Building an "AiExecutiveSuperAgent_Systems_Interface" between humanity and the Ai world, as well as each other... Let's Talk?

Ok... So look... This one is pretty crazy... I'm building an Ai Interface that knows me better than I know myself - Check, lots of people have this, either in reality with employees and family members, or with ai intelligence. But it doesn't just know Me... It knows how to talk with Me. It understands my language, because I've trained it to. I've also trained it to translate that to all my clients and HumanAgents, soon to become RobotAgents... The RESULT: I can literally just spend 1-18 hours talking to it, and things get DONE. Most of that time, I just say EXECUTE, or ENGAGE, or DRAFT, or DISPATCH. I feel like a secret agent communicating in codes with his agency 😂 Not great for the paranoiac in me, but it's easy to get that part under control, ya'll. It's like having a team of 10,000 people, all available 24/7, all perfectly synchronised to each other's communication styles, preferences and ultimately: WHAT DO YOU NEED ME TO DO. At the end of the it all, having run my single COMMAND through a thousand of those people, a Document is prepared that outlines the next 3 stages of the plan, along with instructions to the whole team for how to ENACT it. Sounds rather grand and wonderful... Even when I simply use it to help me come up with a filing system for my creative work... \\\\\\\\\\\\\\\\\\\\\\ Here's my current VISION, why I'm doing this AND why I'm doing it publicly despite it being top secret. VISION To create an army of User-Owned and Operated "AiSuperAgencies" which gather intelligence on the user, securely file and analyse it, and then construct a sub-army of agents and tools that work together to produce the desired output, for any Function in the Personal and Professional Lives of EVERYONE, EVERYWHERE, in 3-5 Years. To start, I'm building it for me and the 5-10 cleaners who've made it to Level 1 in my access system. They were sick of toxic employers, tyrannical agencies and greedy customers. They gathered around us (many came in, many went out, few stayed, took about a year for our core team of 3 Level 2 Cleaners. My goal has always been to never employ anyone. Just me, my Partner and the Cleaners. All Shared Owners in the system for delivering the right cleaner to the right house in our town, at the right time and without any dramas or arguments... I have a personal talent for resolving disputes, which has made working for and buying from my business a mostly enjoyable and upbeat experience, with a touch of mystery and a feeling that you're part of something big! It is a business that ran on Me. I put in my time, every day, building automated tool after automated tool. Hiring a contractor to do a job, scratching my head when it didn't add enough value to pay for itself, then just doing it myself again. I wanted to solve that problem. I'm trusting that the few who hear about it who actually see the potential, will just come join us, no dramas, just cool people partnering up! And those that don't, won't. No one could steal it, because it's Mine, and I'll just change the keys anyway loser! Enjoy digging through my past, you lunatic! I'm out here living Now. Anyways... It's lonely around here. I have a cleaning business that I run from my laptop, which means I can live anywhere, but I still had this big problem of time... NOT ENOUGH Oh Wait. It's Here.

Building a No-Code AI Customer Service Tool While Working 9-5 | All real - No BS
reddit
LLM Vibe Score0
Human Vibe Score1
Content_Limit_9723This week

Building a No-Code AI Customer Service Tool While Working 9-5 | All real - No BS

I want to share my journey of building Chaterimo, my first revenue-generating side project that I've been working on for the past 1.5 years alongside my day job. What started as a solution to make AI chatbots more accessible has grown to over 300 signups, 30 paying customers, and 50,000+ customer queries handled. The Problem I Wanted to Solve: It started with my father's business struggling with customer service - hiring staff was expensive and they would eventually leave, creating a constant cycle of training new people. I decided to help by building a livechat chatbot powered by AI to handle customer queries. The first version was basic (running on ChatGPT-3 with 4k tokens), but it worked! Seeing its success at my father's business, I realized this could help many other businesses too. As I kept improving it and adding features, I expanded to focus on e-commerce stores facing similar challenges. What Makes Chaterimo Different: True no-code setup: Install and run in seconds Choice of AI Models: ChatGPT by default, with options for Claude and the latest Gemini Flexible API Integration: Bring your own API keys for cheaper, unlimited messaging Smart Context Understanding: Can search Google or scan the current webpage to provide relevant answers Lead Generation: Capture and manage potential customer information Rich Integrations: Works with Shopify, Facebook Messenger, and Make for automation Customizable Bot Personality: Edit your chatbot's role and behavior through system prompts The Journey: This is my first side project that's actually generating revenue ($500+ MRR), unlike my previous "just for fun" projects. The past 1.5 years have been a learning experience, balancing development with a full-time job. What started as a simple idea has evolved based on real user feedback and needs. Current Metrics: 300+ total signups 30 paying customers 50,000+ customer queries successfully handled by AI $500+ monthly recurring revenue All while maintaining a 9-5 job Some Things I've Learned: Focus on making things simpler, not adding more features Listen to users - they'll tell you what they really need Flexibility matters - letting users use their own API keys was a game-changer Building something you believe in makes all the difference I'm still actively improving Chaterimo based on feedback. If you're running a website or e-commerce store and want to try it out, I'd love to hear your thoughts. What's Next: I'm focused on making the onboarding even smoother and adding more customization options while keeping the core simplicity that makes Chaterimo work. Would love to hear your thoughts or answer any questions! Has anyone else built successful side projects while working full-time? What were your biggest learnings?

I created leadsnavi that helps small businesses find quality leads without breaking the bank
reddit
LLM Vibe Score0
Human Vibe Score1
BrightCook5861This week

I created leadsnavi that helps small businesses find quality leads without breaking the bank

Hey Redditors, I’m excited to share LeadsNavi, a tool I built specifically to help small businesses and B2B professionals automatically generate leads and reach potential customers in a smarter way. After talking to a lot of small business owners, I realized how tough it is to juggle lead generation with limited resources. So, I decided to create a tool that could simplify the process and make it more accessible to those who don’t have the budget to invest in expensive solutions. What Exactly Is LeadsNavi? LeadsNavi is an intuitive, cost-effective platform that automates the process of lead generation. It's designed to make it easy for small businesses and entrepreneurs to identify quality leads and grow their customer base without the need for manual prospecting. Here’s what makes it stand out: Automatic Lead Tracking: Tracks visitors to your website and matches them with company data, so you get real insights into who’s interested in your business. AI-Powered Lead Recommendations: Based on your website’s traffic, LeadsNavi uses AI to suggest similar companies that could be interested in your product or service, helping you find new leads faster and more accurately. Affordable & Scalable: For only $49/month, you can use a highly effective tool that scales with your business. It’s designed to be affordable even for small businesses. CRM Integration: Connect your CRM to directly import leads and sync your outreach efforts. How Does It Work? LeadsNavi uses advanced algorithms to track website visitors' IP addresses and match them with a comprehensive business database. It provides details like company names, contact information, and helps you identify potential leads for follow-up. The best part? It works automatically, saving you hours of manual work and effort. Lead Identification: Get insights into which companies are visiting your website. AI-Driven Lead Recommendations: The AI analyzes your site’s traffic and suggests other companies in the same industry or with similar needs that might be a great fit for your product or service. Data-Enriched Leads: Gather real-time, actionable data on these leads to make your outreach more targeted. Easy Setup: Simply integrate with your website and CRM to start getting quality leads in minutes. Who’s It For? Small Businesses: You don’t have to be a marketing expert to generate quality leads. B2B Sales Teams: Perfect for anyone looking to target other businesses with a streamlined and automated approach. Entrepreneurs & Startups: Focus on scaling your business without worrying about lead generation overhead. Why Try It? LeadsNavi gives you the power to focus on what really matters—connecting with potential customers and scaling your business. If you’ve been struggling with finding quality leads, or if you’re just getting started, I believe LeadsNavi can help you save time, effort, and money. I’m offering a 14-day free trial, so you can see the tool in action before committing to anything. Give it a try and let me know what you think! I’d love to hear your thoughts, suggestions, and how it works for your business. https://preview.redd.it/fdwil4rssgle1.png?width=1867&format=png&auto=webp&s=eb73b41a2b7665ae1b651fe2a6b7459df6990530

How me and my team made 15+ apps and not made a single sale in 2023
reddit
LLM Vibe Score0
Human Vibe Score0.818
MichaelbetterecycleThis week

How me and my team made 15+ apps and not made a single sale in 2023

Hey, my name is Michael, I am in Auckland NZ. This year was the official beginning of my adult life. I graduated from university and started a full-time job. I’ve also really dug into indiehacking/bootstrapping and started 15 projects (and it will be at least 17 before the year ends). I think I’ve learned a lot but I consciously repeated mistakes. Upto (Nov) Discord Statuses + Your Location + Facebook Poke https://preview.redd.it/4nqt7tp2tf5c1.png?width=572&format=png&auto=webp&s=b0223484bc54b45b5c65e0b1afd0dc52f9c02ad1 This was the end of uni, I often messaged (and got messaged) requests of status and location to (and from my) friends. I thought, what if we make a social app that’s super basic and all it does is show you where your friends are? To differentiate from snap maps and others we wanted something with more privacy where you select the location. However, never finished the codebase or launched it. This is because I slowly started to realize that B2C (especially social networks) are way too hard to make into an actual business and the story with Fistbump would repeat itself. However, this decision not to launch it almost launched a curse on our team. From that point, we permitted ourselves to abandon projects even before launching. Lessons: Don’t do social networks if your goal is 10k MRR ASAP. If you build something to 90% competition ship it or you will think it’s okay to abandon projects Insight Bites (Nov) Youtube Summarizer Extension ​ https://preview.redd.it/h6drqej4tf5c1.jpg?width=800&format=pjpg&auto=webp&s=0f211456c390ac06f4fcb54aa51f9d50b0826658 Right after Upto, we started ideating and conveniently the biggest revolution in the recent history of tech was released → GPT. We instantly began ideating. The first problem we chose to use AI for is to summarize YouTube videos. Comical. Nevertheless, I am convinced we have had the best UX because you could right-click on a video to get a slideshow of insights instead of how everyone else did it. We dropped it because there was too much competition and unit economics didn’t work out (and it was a B2C). PodPigeon (Dec) Podcast → Tweet Threads https://preview.redd.it/0ukge245tf5c1.png?width=2498&format=png&auto=webp&s=23303e1cab330578a3d25cd688fa67aa3b97fb60 Then we thought, to make unit economics work we need to make this worthwhile for podcasters. This is when I got into Twitter and started seeing people summarize podcasts. Then I thought, what if we make something that converts a podcast into tweets? This was probably one of the most important projects because it connected me with Jason and Jonaed, both of whom I regularly stay in contact with and are my go-to experts on ideas related to content creation. Jonaed was even willing to buy Podpigeon and was using it on his own time. However, the unit economics still didn’t work out (and we got excited about other things). Furthermore, we got scared of the competition because I found 1 - 2 other people who did similar things poorly. This was probably the biggest mistake we’ve made. Very similar projects made 10k MRR and more, launching later than we did. We didn’t have a coherent product vision, we didn’t understand the customer well enough, and we had a bad outlook on competition and a myriad of other things. Lessons: I already made another post about the importance of outlook on competition. Do not quit just because there are competitors or just because you can’t be 10x better. Indiehackers and Bootstrappers (or even startups) need to differentiate in the market, which can be via product (UX/UI), distribution, or both. Asking Ace Intro.co + Crowdsharing ​ https://preview.redd.it/0hu2tt16tf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3d397568ef2331e78198d64fafc1a701a3e75999 As I got into Twitter, I wanted to chat with some people I saw there. However, they were really expensive. I thought, what if we made some kind of crowdfunding service for other entrepreneurs to get a private lecture from their idols? It seemed to make a lot of sense on paper. It was solving a problem (validated via the fact that Intro.co is a thing and making things cheaper and accessible is a solid ground to stand on), we understood the market (or so we thought), and it could monetize relatively quickly. However, after 1-2 posts on Reddit and Indiehackers, we quickly learned three things. Firstly, no one cares. Secondly, even if they do, they think they can get the same information for free online. Thirdly, the reasons before are bad because for the first point → we barely talked to people, and for the second people → we barely talked to the wrong people. However, at least we didn’t code anything this time and tried to validate via a landing page. Lessons Don’t give up after 1 Redditor says “I don’t need this” Don’t be scared to choose successful people as your audience. Clarito Journaling with AI analyzer https://preview.redd.it/8ria2wq6tf5c1.jpg?width=1108&format=pjpg&auto=webp&s=586ec28ae75003d9f71b4af2520b748d53dd2854 Clarito is a classic problem all amateur entrepreneurs have. It’s where you lie to yourself that you have a real problem and therefore is validated but when your team asks you how much you would pay you say I guess you will pay, maybe, like 5 bucks a month…? Turns out, you’d have to pay me to use our own product lol. We sent it off to a few friends and posted on some forums, but never really got anything tangible and decided to move away. Honestly, a lot of it is us in our own heads. We say the market is too saturated, it’ll be hard to monetize, it’s B2C, etc. Lessons: You use the Mom Test on other people. You have to do it yourself as well. However, recognizing that the Mom Test requires a lot of creativity in its investigation because knowing what questions to ask can determine the outcome of the validation. I asked myself “Do I journal” but I didn’t ask myself “How often do I want GPT to chyme in on my reflections”. Which was practically never. That being said I think with the right audience and distribution, this product can work. I just don’t know (let alone care) about the audience that much (and I thought I was one of them)/ Horns & Claw Scrapes financial news texts you whether you should buy/sell the stock (news sentiment analysis) ​ https://preview.redd.it/gvfxdgc7tf5c1.jpg?width=1287&format=pjpg&auto=webp&s=63977bbc33fe74147b1f72913cefee4a9ebec9c2 This one we didn’t even bother launching. Probably something internal in the team and also seemed too good to be true (because if this works, doesn’t that just make us ultra-rich fast?). I saw a similar tool making 10k MRR so I guess I was wrong. Lessons: This one was pretty much just us getting into our heads. I declared that without an audience it would be impossible to ship this product and we needed to start a YouTube channel. Lol, and we did. And we couldn’t even film for 1 minute. I made bold statements like “We will commit to this for at least 1 year no matter what”. Learnery Make courses about any subject https://preview.redd.it/1nw6z448tf5c1.jpg?width=1112&format=pjpg&auto=webp&s=f2c73e8af23b0a6c3747a81e785960d4004feb48 This is probably the most “successful” project we’ve made. It grew from a couple of dozen to a couple of hundred users. It has 11 buy events for $9.99 LTD (we couldn’t be bothered connecting Stripe because we thought no one would buy it anyway). However what got us discouraged from seriously pursuing it more is, that this has very low defensibility, “Why wouldn’t someone just use chatGPT?” and it’s B2C so it’s hard to monetize. I used it myself for a month or so but then stopped. I don’t think it’s the app, I think the act of learning a concept from scratch isn’t something you do constantly in the way Learnery delivers it (ie course). I saw a bunch of similar apps that look like Ass make like 10k MRR. Lessons: Don’t do B2C, or if you do, do it properly Don’t just Mixpanel the buy button, connect your Stripe otherwise, it doesn’t feel real and you won’t get momentum. I doubt anyone (even me) will make this mistake again. I live in my GPT bubble where I make assumptions that everyone uses GPT the same way and as much as I do. In reality, the argument that this has low defensibility against GPT is invalid. Platforms that deliver a differentiated UX from ChatGPT to audiences who are not tightly integrated into the habit of using ChatGPT (which is like - everyone except for SOME tech evangelists). CuriosityFM Make podcasts about any subject https://preview.redd.it/zmosrcp8tf5c1.jpg?width=638&format=pjpg&auto=webp&s=d04ddffabef9050050b0d87939273cc96a8637dc This was our attempt at making Learnery more unique and more differentiated from chatGPT. We never really launched it. The unit economics didn’t work out and it was actually pretty boring to listen to, I don’t think I even fully listened to one 15-minute episode. I think this wasn’t that bad, it taught us more about ElevenLabs and voice AI. It took us maybe only 2-3 days to build so I think building to learn a new groundbreaking technology is fine. SleepyTale Make children’s bedtime stories https://preview.redd.it/14ue9nm9tf5c1.jpg?width=807&format=pjpg&auto=webp&s=267e18ec6f9270e6d1d11564b38136fa524966a1 My 8-year-old sister gave me that idea. She was too scared of making tea and I was curious about how she’d react if she heard a bedtime story about that exact scenario with the moral that I wanted her to absorb (which is that you shouldn’t be scared to try new things ie stop asking me to make your tea and do it yourself, it’s not that hard. You could say I went full Goebbels on her). Zane messaged a bunch of parents on Facebook but no one really cared. We showed this to one Lady at the place we worked from at Uni and she was impressed and wanted to show it to her kids but we already turned off our ElevenLabs subscription. Lessons: However, the truth behind this is beyond just “you need to be able to distribute”. It’s that you have to care about the audience. I don’t particularly want to build products for kids and parents. I am far away from that audience because I am neither a kid anymore nor going to be a parent anytime soon, and my sister still asked me to make her tea so the story didn’t work. I think it’s important to ask yourself whether you care about the audience. The way you answer that even when you are in full bias mode is, do you engage with them? Are you interested in what’s happening in their communities? Are you friends with them? Etc. User Survey Analyzer Big User Survey → GPT → Insights Report Me and my coworker were chatting about AI when he asked me to help him analyze a massive survey for him. I thought that was some pretty decent validation. Someone in an actual company asking for help. Lessons Market research is important but moving fast is also important. Ie building momentum. Also don’t revolve around 1 user. This has been a problem in multiple projects. Finding as many users as possible in the beginning to talk to is key. Otherwise, you are just waiting for 1 person to get back to you. AutoI18N Automated Internationalization of the codebase for webapps This one I might still do. It’s hard to find a solid distribution strategy. However, the idea came from me having to do it at my day job. It seems a solid problem. I’d say it’s validated and has some good players already. The key will be differentiation via the simplicity of UX and distribution (which means a slightly different audience). In the backlog for now because I don’t care about the problem or the audience that much. Documate - Part 1 Converts complex PDFs into Excel https://preview.redd.it/8b45k9katf5c1.jpg?width=1344&format=pjpg&auto=webp&s=57324b8720eb22782e28794d2db674b073193995 My mom needed to convert a catalog of furniture into an inventory which took her 3 full days of data entry. I automated it for her and thought this could have a big impact but there was no distribution because there was no ICP. We tried to find the ideal customers by talking to a bunch of different demographics but I flew to Kazakhstan for a holiday and so this kind of fizzled out. I am not writing this blog post linearity, this is my 2nd hour and I am tired and don’t want to finish this later so I don’t even know what lessons I learned. Figmatic Marketplace of high-quality Figma mockups of real apps https://preview.redd.it/h13yv45btf5c1.jpg?width=873&format=pjpg&auto=webp&s=aaa2896aeac2f22e9b7d9eed98c28bb8a2d2cdf1 This was a collab between me and my friend Alex. It was the classic Clarito where we both thought we had this problem and would pay to fix it. In reality, this is a vitamin. Neither I, nor I doubt Alex have thought of this as soon as we bought the domain. We posted it on Gumroad, sent it to a bunch of forums, and called it a day. Same issue as almost all the other ones. No distribution strategy. However, apps like Mobin show us that this concept is indeed profitable but it takes time. It needs SEO. It needs a community. None of those things, me and Alex had or was interested in. However shortly after HTML → Figma came out and it’s the best plugin. Maybe that should’ve been the idea. Podcast → Course Turns Podcaster’s episodes into a course This one I got baited by Jason :P I described to him the idea of repurposing his content for a course. He told me this was epic and he would pay. Then after I sent him the demo, he never checked it out. Anyhow during the development, we realized that doesn’t actually work because A podcast doesn’t have the correct format for the course, the most you can extract are concepts and ideas, seldom explanations. Most creators want video-based courses to be hosted on Kajabi or Udemy Another lesson is that when you pitch something to a user, what you articulate is a platform or a process, they imagine an outcome. However, the end result of your platform can be a very different outcome to what they had in mind and there is even a chance that what they want is not possible. You need to understand really well what the outcome looks like before you design the process. This is a classic problem where we thought of the solution before the problem. Yes, the problem exists. Podcasters want to make courses. However, if you really understand what they want, you can see how repurposing a podcast isn’t the best way to get there. However I only really spoke to 1-2 podcasters about this so making conclusions is dangerous for this can just be another asking ace mistake with the Redditor. Documate Part 2 Same concept as before but now I want to run some ads. We’ll see what happens. https://preview.redd.it/xb3npj0ctf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3cd4884a29fd11d870d010a2677b585551c49193 In conclusion https://preview.redd.it/2zrldc9dtf5c1.jpg?width=1840&format=pjpg&auto=webp&s=2b3105073e752ad41c23f205dbd1ea046c1da7ff It doesn’t actually matter that much whether you choose to do a B2C, or a social network or focus on growing your audience. All of these can make you successful. What’s important is that you choose. If I had to summarize my 2023 in one word it’s indecision. Most of these projects succeeded for other people, nothing was as fundamentally wrong about them as I proclaimed. In reality that itself was an excuse. New ideas seduce, and it is a form of discipline to commit to a single project for a respectful amount of time. https://preview.redd.it/zy9a2vzdtf5c1.jpg?width=1456&format=pjpg&auto=webp&s=901c621227bba0feb4efdb39142f66ab2ebb86fe Distribution is not just posting on Indiehackers and Reddit. It’s an actual strategy and you should think of it as soon as you think of the idea, even before the Figma designs. I like how Denis Shatalin taught me. You have to build a pipeline. That means a reliable way to get leads, launch campaigns at them, close deals, learn from them, and optimize. Whenever I get an idea now I always try to ask myself “Where can I find 1000s leads in one day?” If there is no good answer, this is not a good project to do now. ​ https://preview.redd.it/2boh3fpetf5c1.jpg?width=1456&format=pjpg&auto=webp&s=1c0d5d7b000716fcbbb00cbad495e8b61e25be66 Talk to users before doing anything. Jumping on designing and coding to make your idea a reality is a satisfying activity in the short term. Especially for me, I like to create for the sake of creation. However, it is so important to understand the market, understand the audience, understand the distribution. There are a lot of things to understand before coding. https://preview.redd.it/lv8tt96ftf5c1.jpg?width=1456&format=pjpg&auto=webp&s=6c8735aa6ad795f216ff9ddfa2341712e8277724 Get out of your own head. The real reason we dropped so many projects is that we got into our own heads. We let the negative thoughts creep in and kill all the optimism. I am really good at coming up with excuses to start a project. However, I am equally as good at coming up with reasons to kill a project. And so you have this yin and yang of starting and stopping. Building momentum and not burning out. I can say with certainty my team ran out of juice this year. We lost momentum so many times we got burnt out towards the end. Realizing that the project itself has momentum is important. User feedback and sales bring momentum. Building also creates momentum but unless it is matched with an equal force of impact, it can stomp the project down. That is why so many of our projects died quickly after we launched. The smarter approach is to do things that have a low investment of momentum (like talking to users) but result in high impact (sales or feedback). Yes, that means the project can get invalidated which makes it more short-lived than if we built it first, but it preserves team life energy. At the end of 2023 here is a single sentence I am making about how I think one becomes a successful indiehacker. One becomes a successful Indiehacker when one starts to solve pain-killer problems in the market they understand, for an audience they care about and consistently engage with for a long enough timeframe. Therefore an unsuccessful Indiehacker in a single sentence is An unsuccessful Indiehacker constantly enters new markets they don’t understand to build solutions for people whose problems they don’t care about, in a timeframe that is shorter than than the time they spent thinking about distribution. However, an important note to be made. Life is not just about indiehacking. It’s about learning and having fun. In the human world, the best journey isn’t the one that gets you the fastest to your goals but the one you enjoy the most. I enjoyed making those silly little projects and although I do not regret them, I will not repeat the same mistakes in 2024. But while it’s still 2023, I have 2 more projects I want to do :) EDIT: For Devs, frontend is always react with vite (ts) and backend is either node with express (ts) or python. For DB either Postgres or mongo (usually Prisma for ORM). For deployment all of it is on AWS (S3, EC2). In terms of libraries/APIs Whisper.cpp is best open source for transcription Obviously the gpt apis Eleven labs for voice related stuff And other random stuff here and there

An Algorithm for Making Truly Stand-Out Advertising Content (+ something more | Part 1)
reddit
LLM Vibe Score0
Human Vibe Score1
asealey1This week

An Algorithm for Making Truly Stand-Out Advertising Content (+ something more | Part 1)

Hi everyone. my friend and I are software engineers and new to marketing. A few months ago we decided to leverage our software skills for a colleague in ecommerce. It started by implementing a Flux.1 model, then began using texture-based recreations with a canny mask, and then found that we could optimize on both with an added layer of inpainting...and the list goes on. This is the first of a series of posts here about it and I look forward to learning from your feedback. I realized that the most difficult parts of the marketing process when I started out (and most likely for other beginners too) are: Customer Acquisition Costs / Brand Differentiation: Competition is intensifying and it is getting more difficult to stand out in crowded markets and target ad spend more effectively. Maintaining Authenticity at Scale / Data Overload: Balancing growth with authenticity and leveraging available data to successfully engage with customers is a big ask. Creative Fatigue: Maintaining multiple marketing channels in hard, and it becomes harder when you're constantly demanding more and more creative content for campaigns. For 1) I tried using AI to help me summarize, systematize, and gain insights from the information available for a given brand or product (from a page link, prompt, input image, etc.). I know AI is everywhere now, many people are using it unnecessarily and many people are skeptical about it. However, I know from experience, that it is quite helpful in gaining insights/summarizing large amounts of data, and helping people make sense of the creative content, strategy, campaign, etc., that should be created. For 2) By leveraging reviews, forums, and other relevant brand information, AI is able to maintain the story that your brand currently tells, and enhance it based on how your customer base. For 3) Faster results means less creative fatigue- this translates to an easier time managing omnichannel marketing efforts and scaling advertising. If you're interested, please have a look at the result at madsimpleads.com You’ll need to log in to access the solution, and I'll add credits to your account to try it out! (we want to prevent from random people or bots using it because I'm paying to multiple providers for model access). DM me here or drop me a line at austin@madsimpleads.com if you need more. Thank you so much, I'll be happy to get your thoughts I hope the website will help with your advertising, please reach out if you like what I do and want to support the project! Disclaimers: the website looks a bit rough in terms of UI/UX, but we tried focusing on the functionality first available on mobile, works better on desktop I hope this doesn't come across as trying to advertise for my business or breaking any of the community rules. genuinely looking for feedback. Thank you

What are Boilerplates?
reddit
LLM Vibe Score0
Human Vibe Score1
Inner_Lengthiness697This week

What are Boilerplates?

What are Boilerplates? Boilerplate originally referred to the rolled steel used to make boilers for steam engines in the 19th century. Over time, the term evolved to describe any standardized piece of text or code that can be reused without significant changes. Interest in SaaS has been on the rise, and many more people now want to build products. However, building products from scratch takes a lot of time, and it can be extremely frustrating. Enter SaaS Boilerplates With the standardization of stacks and basic systems that govern SaaS tools, it has become evident that there was a need, and the time was ripe for SaaS Boilerplates. SaaS Boilerplates come with landing pages, website components, authentication modules, payment modules, and various other standard features that can save developers a significant amount of time and cost. The market is flooded with Boilerplates for various tech stacks, such as NextJS, Laravel, Swift, NuxtJS, and so forth. Pros and Cons of Boilerplates Pros Save a significant amount of time and money Reduce frustration for developers as the redundant tasks are taken care of Boilerplates often follow best practices For anywhere between $49 and $299, they provide terrific value for those looking to build something very quickly Most importantly, Boilerplates also enable aspiring founders and builders with limited technical resources or abilities to ship their products faster and more cheaply. They are beacons of hope for non-technical founders looking to build a product quickly. Cons Limited flexibility May become outdated fairly quickly Setting them up still requires time Similar landing pages and design themes can make the product look like a clone Marc Lou’s Shipfast For most of us, Marc Lou popularized the idea of SaaS Boilerplate. Marc Lou launched Shipfast in August 2023. He had built 27 projects prior to this and Shipfast was nothing but all his basic code organised properly. At that time, there were no solid NextJS boilerplates, and Shipfast just took off. He got traction via Product Hunt, Twitter and Hacker News and soon Shipfast went viral. Shipfast now generates $130K/mo, just 9 months after its launch. Marc has been building Shipfast in public, which has led to a lot of interest in SaaS Boilerplates. The market is now flooded with boilerplates for every major tech stack. Marc reaped the benefits of the first mover’s advantage as well as the social proof via his Shipfast community. I don’t think any other boilerplates are as successful as Shipfast, but there are quite a few good ones out there. Shipixen* has grossed over $20K in the 5 months Makerkit* does \~$3500/mo Moreover, there are many open-source boilerplates available for popular stacks such as NextJS. The Evolution of Boilerplates Boilerplates are quickly turning into no-code/low-code code generation tools. For instance, Shipixen allows you to generate custom code for landing pages, waitlist pages and blogs using a simple User Interface. Boilerplates are perfectly posied to sit between code and no-code. Allow the flexibility of code with the interface of a no-code tool — that will be the core value proposition of SaaS boilerplates. Should you build a Boilerplate? Well, the market is flooded, but I believe there’s still an opportunity to leverage boilerplates. You can build boilerplates for certain types of apps or tools, such as Chrome extensions Boilerplates can act as a great lead funnel for building out a great productized services business No-code/low-code code generation boilerplates can become a big thing if you can help build complex tools Niche tech stack boilerplates may still be lucrative Known strategies for successfully building a boilerplate 👇🏻 Shipfast thrives because of social proof and community SaaSRock generates most of its traffic from its Gumroad listings and blogs Usenextbase and Shipixen are being built in public Many boilerplates start with waitlists They have a very clear value proposition around saving time and cost Design & No-Code Boilerplates Here is the corrected version with improved grammar and clarity: While SaaS (code) boilerplates have become fairly popular, other types of boilerplates are emerging in the market, such as design boilerplates and no-code boilerplates. To be honest, design boilerplates have been around for a while. You will find numerous landing page packs, component libraries, and so forth. Makers are now building kits that leverage standard libraries and technologies such as Tailwind CSS, Daisy UI, and more. Nick Buzz from the famous baked.design has this *50 Landing Page Design Kit* in Tailwind CSS & Figma which is wildly popular. Lastly, there is a trend of no-code boilerplates as well. Mohit is building a Bubble Boilerplate for the popular no-code platform — Bubble. All in all, I think that people want to build products and build them fast. Boilerplates help them save a significant amount of time and cost. More importantly, boilerplates are impulse purchases for people who have not shipped but who want to ship. Introducing BuilderKit.ai We have been building AI SaaS tools for quite a while now. 10+ products across text, image, speech, RAG — we have built em all. We figured that it seems easy but actually building these so called AI Wrappers can be time consuming and frustrating — there is a lot of nuance to it. So we built BuidlerKit.ai — a NextJS SaaS Boilerpalte It takes care of everything from landing pages, authentication, dashboarding, emails, SEO to payments — everything that you need to build your tool. It also comes with 8+ production-ready apps. Moreover, the BuilderKit community is an exclusive community of AI SaaS builders (Pro Only Access) The Pre Orders are now live at https://www.builderkit.ai (First 100 Customers get $100 Off — I think we have already done \~20 odd orders since the announcement yesterday, Grab your seat asap!) Starter Plan $49, Pro Plan @ $99

Solopreneur making $40k MRR with a No Code SaaS sideproject
reddit
LLM Vibe Score0
Human Vibe Score1
bts_23This week

Solopreneur making $40k MRR with a No Code SaaS sideproject

Hey, I'm Elias and I do case studies analyzing successful startups and solopreneurs. I wanted to share the summarized version of this one with you because this entrepreneurial journey blew my mind. This post will be about FormulaBot (ExcelFormulaBot), an AI No Code SaaS founded by David Bressler back in August 2022. FormulaBot is currently making $40k MRR (monthly recurring revenue). How did the founder come up with the idea. David is a data guy who worked in analytics for several years. In July 2022, David got really interested in AI, especially ChatGPT. One night, he tried it out at home, just like we all did back in the time. But in his case, trying ChatGPT gave him a big idea. That idea ended up making him a lot of money and changing the life of 750 million people who use Excel. That night David started by asking GPT easy questions, then complex ones. Since he used Excel a lot and helped his colleagues with it, he thought about an AI that could make Excel easier, like generating formulas from text. He looked online but found nothing. Seeing a big chance, he decided to do something about it. What challenges did the founder face. But David didn’t have any idea about how to develop an app. However, with no-code tools this is not a problem anymore. He discovered Bubble, a no-code web app tool that could connect with the OpenAI API.After, learning Bubble from YouTube tutorials and through trial and error and spending his nights studying the OpenAI API documentation, he launched the first version of the app in around three weeks. Strategies that made the project successful. David validated his idea by posting about ExcelFormulaBot on a Reddit Excel subreddit, receiving surprising attention with 10,000 upvotes. This encouraged him to offer the tool for free to gather feedback. Facing a hefty $4,999 API bill after the Reddit post, David quickly monetized his product with a subscription-based SaaS website. On launch day, 82 customers signed up, surpassing his expectations. A successful Product Hunt launch followed, generating $2.4k in sales within 24 hours, and a TikTok influencer with 4.5 million followers brought in thousands of new users overnight with a viral video. Marketing approach: -Paid ads: FormulaBot boosted website traffic with Paid Ads, notably on Google Ads, prioritizing Quality Score. This ensured ads aligned better with user searches, maximizing visibility and cost-efficiency, targeting those seeking Excel formula assistance. -SEO: a) Content/Keyword optimization: FormulaBot improved its SEO by making helpful pages about Excel formulas, like guides on topics such as "How to use SUMIFS." b) Site Speed Enhancement: David boosted FormulaBot's marketing site speed by moving it from Bubble to Framer, aiming to improve user experience and SEO performance. c) On-page optimization: David optimized FormulaBot's on-page elements by adjusting title tags, meta descriptions, and content to enhance SEO performance and align with search intent. These strategic refinements aimed to address ranking declines and emphasize FormulaBot's uniqueness, ultimately improving its visibility and competitiveness in search results. -Virality: FormulaBot went viral as users found it highly useful and cool. Influencers on platforms like TikTok and Twitter shared it with their followers because they found it valuable. Offering numerous free features further enhanced its appeal. Lessons: successes and mistakes. ✅ Leverage industry expertise: David identified a problem in analytics and used his experience to start an online business addressing it, turning an industry challenge into a profitable venture. ✅ Embrace learning new skills: Despite lacking initial technical know-how, David learned what he needed to develop the software himself, demonstrating a commitment to continuous learning and adaptability crucial for success. ❌ Minimize dependency on third parties: Relying solely on the ChatGPT API poses risks for FormulaBot. Any issues with the API could disrupt functionality and limit scalability. ⁉️ Caution with free tools: Offering a free tool can attract users and drive viral growth, but converting them to paying customers is challenging. Avoid relying solely on a 100% free model unless your revenue comes from non-user sources like ads. For businesses dependent on user subscriptions or purchases, balancing user attraction with conversion challenges is crucial. How could you replicate this idea step-by-step. To replicate the success of FormulaBot and similar AI wrapper startups, it's crucial to tread carefully in a competitive market. Avoid mere replication of existing solutions unless you can offer something distinct or superior. Consider these steps to effectively develop an AI Wrapper/ChatGPT wrapper product using Bubble as a no-code tool: Design the user interface: Utilize Bubble's drag-and-drop editor to create a user-friendly interface with input fields, buttons, and result displays. Set up workflows: Define workflows to connect the interface with the ChatGPT API, enabling seamless interaction between users and the AI. Integrate the ChatGPT API: Obtain the API key from OpenAI and integrate it into your app using Bubble's API connector feature. Test and gather feedback: Thoroughly test your app, soliciting feedback to refine functionality and usability. Refine and optimize: Continuously improve your app based on user input and testing results to enhance performance and user experience. The in-depth version of the case study was originally posted here. Feel free to comment if you have any questions, and let me know which similar ideas you'd like me to analyze.

I am building my agency to help founders build AI startups after 2 successful AI SaaS exits and 4 failures
reddit
LLM Vibe Score0
Human Vibe Score1
_Gautam19This week

I am building my agency to help founders build AI startups after 2 successful AI SaaS exits and 4 failures

Hey everyone, I have been building AI products before ChatGPT was launched. In these years, I have managed to launch, scale and exit 2 SaaS products successfully. Today I am launching a new service offering - Query Labs - Helping you build AI agents for your startups. Like all my previous products, I will be building this in public and share my learning along the way. Here's what I have built so far : Microsponsors ( Fail ) My first product ever. I tried to create a marketplace for newsletter writers to find sponsorship opportunity. Got a few very big newsletter listed on the marketplace as well. However, building marketplace is tough. I found it very difficult to bring in sponsors. Ended up shutting it down, AI Query (Exit - Pre revenue ) It was the second half of 2022 and GPT-3 was the most advance AI on the market. I decided to build a tool that can help developers and non-technical folks write SQL queries by just asking in plain english. I got my first taste of success with this. Had a decent offer even before I figured out monetisation. Accepted the offer to focus on my next product which had already started gaining traction AI Excel Bot ( Exit - Revenue Generating ) AI Excel Bot was my wild success. I had worked hard on the SEO for the site, along with the UI / UX to make it the best AI to write excel formulas and general excel task. There was already a large competitor in the market. However, the reality is that you don't need to be the top player. There is always room for multiple players to survive in a large market. You just need to find the good differentiating factor For AI Excel Bot, the differentiator was the chrome extension, that helped users access it anywhere on the internet. Scaled the product to more than 40k users at the time of exit. However, in the end I decided to exit and focus on my software service business that needed more time. Tutore AI ( Fail ) I wanted to build something useful for students to help them learn better. Tutore was my idea to build AI tools for students. I did launch quickly with multiple tools. However, wasn't motivated enough to continue with the grind. I have decided to sell the product. Have had some meetings with potential buyers but didn't agree on price. Prompt Hackers ( 1k users but no revenue ) Prompt Hackers is a directory of AI prompts for all the use cases you can image. I focused a lot on bringing traffic and newsletter subscription from the day 1. I have never had a problem bringing initial set of users to my products. Prompt Hackers was getting close to 20k page views a month. At the same time we had close to 1k newsletter subscribers. Since our target customers were people choosing to use ChatGPT / Bard instead of some specific software for their task, I built a Prompt Generation and Prompt Optimisation AI. Along with this I also created features to build private prompt library. To make the experience even better, I launched a Chrome Extension that helps users access the prompt generation AI and their prompt library while using ChatGPT. However, I couldn't figure out monetisation. I still get close to 4k page views per month with no marketing at all. There are users who use the AI tools and the prompt library feature daily. But, since I couldn't figure out monetisation, I decided to not put time into the project. There you go. These are all the products I have built in the last 3 years. I have been heavy investing myself in the latest tech in LLMs and AI agents. I know the biggest challenge for AI founders is the AI agents and backend pipelines. That's why I am launching Query Labs. To help you build the best AI implementation for your innovative AI startup. I would love to hear feedback from the community. I will be sharing my learning with my new service along the way. Thanks!

How I Built a $6k/mo Business with Cold Email
reddit
LLM Vibe Score0
Human Vibe Score1
Afraid-Astronomer130This week

How I Built a $6k/mo Business with Cold Email

I scaled my SaaS to a $6k/mo business in under 6 months completely using cold email. However, the biggest takeaway for me is not a business that’s potentially worth 6-figure. It’s having a glance at the power of cold emails in the age of AI. It’s a rapidly evolving yet highly-effective channel, but no one talks about how to do it properly. Below is the what I needed 3 years ago, when I was stuck with 40 free users on my first app. An app I spent 2 years building into the void. Entrepreneurship is lonely. Especially when you are just starting out. Launching a startup feel like shouting into the dark. You pour your heart out. You think you have the next big idea, but no one cares. You write tweets, write blogs, build features, add tests. You talk to some lukewarm leads on Twitter. You do your big launch on Product Hunt. You might even get your first few sales. But after that, crickets... Then, you try every distribution channel out there. SEO Influencers Facebook ads Affiliates Newsletters Social media PPC Tiktok Press releases The reality is, none of them are that effective for early-stage startups. Because, let's face it, when you're just getting started, you have no clue what your customers truly desire. Without understanding their needs, you cannot create a product that resonates with them. It's as simple as that. So what’s the best distribution channel when you are doing a cold start? Cold emails. I know what you're thinking, but give me 10 seconds to change your mind: When I first heard about cold emailing I was like: “Hell no! I’m a developer, ain’t no way I’m talking to strangers.” That all changed on Jan 1st 2024, when I actually started sending cold emails to grow. Over the period of 6 months, I got over 1,700 users to sign up for my SaaS and grew it to a $6k/mo rapidly growing business. All from cold emails. Mastering Cold Emails = Your Superpower I might not recommend cold emails 3 years ago, but in 2024, I'd go all in with it. It used to be an expensive marketing channel bootstrapped startups can’t afford. You need to hire many assistants, build a list, research the leads, find emails, manage the mailboxes, email the leads, reply to emails, do meetings. follow up, get rejected... You had to hire at least 5 people just to get the ball rolling. The problem? Managing people sucks, and it doesn’t scale. That all changed with AI. Today, GPT-4 outperforms most human assistants. You can build an army of intelligent agents to help you complete tasks that’d previously be impossible without human input. Things that’d take a team of 10 assistants a week can now be done in 30 minutes with AI, at far superior quality with less headaches. You can throw 5000 names with website url at this pipeline and you’ll automatically have 5000 personalized emails ready to fire in 30 minutes. How amazing is that? Beyond being extremely accessible to developers who are already proficient in AI, cold email's got 3 superpowers that no other distribution channels can offer. Superpower 1/3 : You start a conversation with every single user. Every. Single. User. Let that sink in. This is incredibly powerful in the early stages, as it helps you establish rapport, bounce ideas off one another, offer 1:1 support, understand their needs, build personal relationships, and ultimately convert users into long-term fans of your product. From talking to 1000 users at the early stage, I had 20 users asking me to get on a call every week. If they are ready to buy, I do a sales call. If they are not sure, I do a user research call. At one point I even had to limit the number of calls I took to avoid burnout. The depth of the understanding of my customers’ needs is unparalleled. Using this insight, I refined the product to precisely cater to their requirements. Superpower 2/3 : You choose exactly who you talk to Unlike other distribution channels where you at best pick what someone's searching for, with cold emails, you have 100% control over who you talk to. Their company Job title Seniority level Number of employees Technology stack Growth rate Funding stage Product offerings Competitive landscape Social activity (Marital status - well, technically you can, but maybe not this one…) You can dial in this targeting to match your ICP exactly. The result is super low CAC and ultra high conversion rate. For example, My competitors are paying $10 per click for the keyword "HARO agency". I pay $0.19 per email sent, and $1.92 per signup At around $500 LTV, you can see how the first means a non-viable business. And the second means a cash-generating engine. Superpower 3/3 : Complete stealth mode Unlike other channels where competitors can easily reverse engineer or even abuse your marketing strategies, cold email operates in complete stealth mode. Every aspect is concealed from end to end: Your target audience Lead generation methods Number of leads targeted Email content Sales funnel This secrecy explains why there isn't much discussion about it online. Everyone is too focused on keeping their strategies close and reaping the rewards. That's precisely why I've chosen to share my insights on leveraging cold email to grow a successful SaaS business. More founders need to harness this channel to its fullest potential. In addition, I've more or less reached every user within my Total Addressable Market (TAM). So, if any competitor is reading this, don't bother trying to replicate it. The majority of potential users for this AI product are already onboard. To recap, the three superpowers of cold emails: You start a conversation with every single user → Accelerate to PMF You choose exactly who you talk to → Super-low CAC Complete stealth mode → Doesn’t attract competition By combining the three superpowers I helped my SaaS reach product-marketing-fit quickly and scale it to $6k per month while staying fully bootstrapped. I don't believe this was a coincidence. It's a replicable strategy for any startup. The blueprint is actually straightforward: Engage with a handful of customers Validate the idea Engage with numerous customers Scale to $5k/mo and beyond More early-stage founders should leverage cold emails for validation, and as their first distribution channel. And what would it do for you? Update: lots of DM asking about more specifics so I wrote about it here. https://coldstartblueprint.com/p/ai-agent-email-list-building

How I went from $27 to $3K as a solopreneur still in a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
jottrledThis week

How I went from $27 to $3K as a solopreneur still in a 9-5

My journey started back in November 2023. I was scrolling through Twitter and YouTube and saw a word that I had never come across before. Solopreneur. The word caught my eye. Mainly because I was pretty sure I knew what it meant even though it's not a word you'll find in the dictionary. I liked what it was describing. A solo entrepreneur. A one man business. It completely resonated with me. As a software engineer by trade I'm used to working alone, especially since the pandemic hit and we were forced to work remotely. See, I always wanted to ditch the 9-5 thing but thought that was too big and too scary for a single person to do. Surely you would need a lot of money to get started, right? Surely you would need investors? The whole concept seemed impossible to me. That was until I found all the success stories. I became obsessed with the concept of solopreneurship. As I went further down the rabbit hole I found people like Justin Welsh, Kieran Drew and Marc Louvion to name a few. All of whom have one person businesses making huge money every year. So I thought, if they can do it, why can't I? People like this have cleared the pathway for those looking to escape the 9-5 grind. I decided 2024 would be the year I try this out. My main goal for the year? Build a one man business, earn my first $ online and learn a sh\*t ton along the way. My main goal in general? Build my business to $100K per year, quit my 9-5 and live with freedom. From December 2023 to February 2024 I began brainstorming ideas. I was like a lost puppy looking for his ball. How on earth did people find good ideas? I began writing everything and anything that came to mind down in my notes app on my phone. By February I would have approximately 70 ideas. Each as weird and whacky as the other. I was skeptical though. If I went through all the trouble of building a product for one of these ideas how would I know if anyone would even be interested in using it? I got scared and took a break for a week. All these ideas seemed too big and the chance that they would take off into the atmosphere was slim (in my mind anyways). I was learning more and more about solopreneurship as the weeks went on so I decided to build a product centered around everything I was learning about. The idea was simple. Enter a business idea and use AI to give the user details about how to market it, who their target customers were, what to write on their landing page, etc. All for a measly $27 per use. I quickly built it and launched on March 3rd 2024. I posted about it on Indie Hackers, Reddit and Hacker News. I was so excited about the prospect of earning my first internet $! Surely everyone wanted to use my product! Nope...all I got was crickets. I was quickly brought back down to earth. That was until 5 days later. I looked at my phone and had a new Stripe notification! Cha-ching! My first internet $. What a feeling! That was goal number 1 complete. It would be another 6 days before I would get my second sale...and then another 15 days to get my third. It was an emotional rollercoaster. I went from feeling like quitting the 9-5 was actually possible to thinking that maybe the ups and downs aren't worth it. On one hand I had made my first internet dollar so I should my ecstatic, and don't get me wrong, I was but I wanted more. More validation that I could do this long term. By May I was starting to give up on the product. I had learned so much in the past few months about marketing, SEO, building an audience, etc. and I wanted to build something that I thought could have more success so I focused on one critical thing that I had learned about. What was it? Building a product that had SEO potential. A product that I knew hundreds of people were looking for. See this was my thinking - If I could find a keyword that people were searching for on Google hundreds/thousands of times every month and it was easy to rank high on search engines then I would go all in (in SEO land this equates to a Keyword that has a Keyword Difficulty of = 500). I began researching and found that the keyword "micro saas ideas" was being searched for around 600 times each month. Micro Saas was something that really interested me. It was perfect for solopreneurs. Small software products that 1 person could build. What's not to like if you're in the game of software and solopreneurship? Researching keywords like this became like a game for me. I was hooked. I was doing it every day, finding gems that were being searched for hundreds and thousands of times every month that still had potential. That's when I came up with my next product idea. I decided to create a database of Micro Saas Ideas all with this sort of SEO potential. See if you can build a product that you know people are looking for then that's all the validation you need. So I put this theory to the test. I created a database of Micro Saas Ideas with SEO Potential and launched it in June 2024. This time it was different. I made $700 in the first week of launching. A large contrast to my previous failed attempt at becoming the worlds greatest solopreneur. Since launch I have grown the product to $3K and I couldn't be happier. I know what you're saying, $3K isn't a lot. But it's validation. It's validation that I can earn $ online. Validation that I can grow a business and it gives me hope that one day I'll be able to quit that 9-5 grind. My plan is to keep growing the business. I expect there to be a few challenges up ahead but I'll tackle them as I go and learn from the failures and successes. I have a newsletter where I share Micro Saas Ideas with SEO potential every week which I'll leave below in the first comment. Feel free to come along for the ride. If not I hope this post brings you some value If you're thinking about starting as a solopreneur, stop thinking and start doing, you won't regret it.

How me and my team made 15+ apps and not made a single sale in 2023
reddit
LLM Vibe Score0
Human Vibe Score0.818
MichaelbetterecycleThis week

How me and my team made 15+ apps and not made a single sale in 2023

Hey, my name is Michael, I am in Auckland NZ. This year was the official beginning of my adult life. I graduated from university and started a full-time job. I’ve also really dug into indiehacking/bootstrapping and started 15 projects (and it will be at least 17 before the year ends). I think I’ve learned a lot but I consciously repeated mistakes. Upto (Nov) Discord Statuses + Your Location + Facebook Poke https://preview.redd.it/4nqt7tp2tf5c1.png?width=572&format=png&auto=webp&s=b0223484bc54b45b5c65e0b1afd0dc52f9c02ad1 This was the end of uni, I often messaged (and got messaged) requests of status and location to (and from my) friends. I thought, what if we make a social app that’s super basic and all it does is show you where your friends are? To differentiate from snap maps and others we wanted something with more privacy where you select the location. However, never finished the codebase or launched it. This is because I slowly started to realize that B2C (especially social networks) are way too hard to make into an actual business and the story with Fistbump would repeat itself. However, this decision not to launch it almost launched a curse on our team. From that point, we permitted ourselves to abandon projects even before launching. Lessons: Don’t do social networks if your goal is 10k MRR ASAP. If you build something to 90% competition ship it or you will think it’s okay to abandon projects Insight Bites (Nov) Youtube Summarizer Extension ​ https://preview.redd.it/h6drqej4tf5c1.jpg?width=800&format=pjpg&auto=webp&s=0f211456c390ac06f4fcb54aa51f9d50b0826658 Right after Upto, we started ideating and conveniently the biggest revolution in the recent history of tech was released → GPT. We instantly began ideating. The first problem we chose to use AI for is to summarize YouTube videos. Comical. Nevertheless, I am convinced we have had the best UX because you could right-click on a video to get a slideshow of insights instead of how everyone else did it. We dropped it because there was too much competition and unit economics didn’t work out (and it was a B2C). PodPigeon (Dec) Podcast → Tweet Threads https://preview.redd.it/0ukge245tf5c1.png?width=2498&format=png&auto=webp&s=23303e1cab330578a3d25cd688fa67aa3b97fb60 Then we thought, to make unit economics work we need to make this worthwhile for podcasters. This is when I got into Twitter and started seeing people summarize podcasts. Then I thought, what if we make something that converts a podcast into tweets? This was probably one of the most important projects because it connected me with Jason and Jonaed, both of whom I regularly stay in contact with and are my go-to experts on ideas related to content creation. Jonaed was even willing to buy Podpigeon and was using it on his own time. However, the unit economics still didn’t work out (and we got excited about other things). Furthermore, we got scared of the competition because I found 1 - 2 other people who did similar things poorly. This was probably the biggest mistake we’ve made. Very similar projects made 10k MRR and more, launching later than we did. We didn’t have a coherent product vision, we didn’t understand the customer well enough, and we had a bad outlook on competition and a myriad of other things. Lessons: I already made another post about the importance of outlook on competition. Do not quit just because there are competitors or just because you can’t be 10x better. Indiehackers and Bootstrappers (or even startups) need to differentiate in the market, which can be via product (UX/UI), distribution, or both. Asking Ace Intro.co + Crowdsharing ​ https://preview.redd.it/0hu2tt16tf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3d397568ef2331e78198d64fafc1a701a3e75999 As I got into Twitter, I wanted to chat with some people I saw there. However, they were really expensive. I thought, what if we made some kind of crowdfunding service for other entrepreneurs to get a private lecture from their idols? It seemed to make a lot of sense on paper. It was solving a problem (validated via the fact that Intro.co is a thing and making things cheaper and accessible is a solid ground to stand on), we understood the market (or so we thought), and it could monetize relatively quickly. However, after 1-2 posts on Reddit and Indiehackers, we quickly learned three things. Firstly, no one cares. Secondly, even if they do, they think they can get the same information for free online. Thirdly, the reasons before are bad because for the first point → we barely talked to people, and for the second people → we barely talked to the wrong people. However, at least we didn’t code anything this time and tried to validate via a landing page. Lessons Don’t give up after 1 Redditor says “I don’t need this” Don’t be scared to choose successful people as your audience. Clarito Journaling with AI analyzer https://preview.redd.it/8ria2wq6tf5c1.jpg?width=1108&format=pjpg&auto=webp&s=586ec28ae75003d9f71b4af2520b748d53dd2854 Clarito is a classic problem all amateur entrepreneurs have. It’s where you lie to yourself that you have a real problem and therefore is validated but when your team asks you how much you would pay you say I guess you will pay, maybe, like 5 bucks a month…? Turns out, you’d have to pay me to use our own product lol. We sent it off to a few friends and posted on some forums, but never really got anything tangible and decided to move away. Honestly, a lot of it is us in our own heads. We say the market is too saturated, it’ll be hard to monetize, it’s B2C, etc. Lessons: You use the Mom Test on other people. You have to do it yourself as well. However, recognizing that the Mom Test requires a lot of creativity in its investigation because knowing what questions to ask can determine the outcome of the validation. I asked myself “Do I journal” but I didn’t ask myself “How often do I want GPT to chyme in on my reflections”. Which was practically never. That being said I think with the right audience and distribution, this product can work. I just don’t know (let alone care) about the audience that much (and I thought I was one of them)/ Horns & Claw Scrapes financial news texts you whether you should buy/sell the stock (news sentiment analysis) ​ https://preview.redd.it/gvfxdgc7tf5c1.jpg?width=1287&format=pjpg&auto=webp&s=63977bbc33fe74147b1f72913cefee4a9ebec9c2 This one we didn’t even bother launching. Probably something internal in the team and also seemed too good to be true (because if this works, doesn’t that just make us ultra-rich fast?). I saw a similar tool making 10k MRR so I guess I was wrong. Lessons: This one was pretty much just us getting into our heads. I declared that without an audience it would be impossible to ship this product and we needed to start a YouTube channel. Lol, and we did. And we couldn’t even film for 1 minute. I made bold statements like “We will commit to this for at least 1 year no matter what”. Learnery Make courses about any subject https://preview.redd.it/1nw6z448tf5c1.jpg?width=1112&format=pjpg&auto=webp&s=f2c73e8af23b0a6c3747a81e785960d4004feb48 This is probably the most “successful” project we’ve made. It grew from a couple of dozen to a couple of hundred users. It has 11 buy events for $9.99 LTD (we couldn’t be bothered connecting Stripe because we thought no one would buy it anyway). However what got us discouraged from seriously pursuing it more is, that this has very low defensibility, “Why wouldn’t someone just use chatGPT?” and it’s B2C so it’s hard to monetize. I used it myself for a month or so but then stopped. I don’t think it’s the app, I think the act of learning a concept from scratch isn’t something you do constantly in the way Learnery delivers it (ie course). I saw a bunch of similar apps that look like Ass make like 10k MRR. Lessons: Don’t do B2C, or if you do, do it properly Don’t just Mixpanel the buy button, connect your Stripe otherwise, it doesn’t feel real and you won’t get momentum. I doubt anyone (even me) will make this mistake again. I live in my GPT bubble where I make assumptions that everyone uses GPT the same way and as much as I do. In reality, the argument that this has low defensibility against GPT is invalid. Platforms that deliver a differentiated UX from ChatGPT to audiences who are not tightly integrated into the habit of using ChatGPT (which is like - everyone except for SOME tech evangelists). CuriosityFM Make podcasts about any subject https://preview.redd.it/zmosrcp8tf5c1.jpg?width=638&format=pjpg&auto=webp&s=d04ddffabef9050050b0d87939273cc96a8637dc This was our attempt at making Learnery more unique and more differentiated from chatGPT. We never really launched it. The unit economics didn’t work out and it was actually pretty boring to listen to, I don’t think I even fully listened to one 15-minute episode. I think this wasn’t that bad, it taught us more about ElevenLabs and voice AI. It took us maybe only 2-3 days to build so I think building to learn a new groundbreaking technology is fine. SleepyTale Make children’s bedtime stories https://preview.redd.it/14ue9nm9tf5c1.jpg?width=807&format=pjpg&auto=webp&s=267e18ec6f9270e6d1d11564b38136fa524966a1 My 8-year-old sister gave me that idea. She was too scared of making tea and I was curious about how she’d react if she heard a bedtime story about that exact scenario with the moral that I wanted her to absorb (which is that you shouldn’t be scared to try new things ie stop asking me to make your tea and do it yourself, it’s not that hard. You could say I went full Goebbels on her). Zane messaged a bunch of parents on Facebook but no one really cared. We showed this to one Lady at the place we worked from at Uni and she was impressed and wanted to show it to her kids but we already turned off our ElevenLabs subscription. Lessons: However, the truth behind this is beyond just “you need to be able to distribute”. It’s that you have to care about the audience. I don’t particularly want to build products for kids and parents. I am far away from that audience because I am neither a kid anymore nor going to be a parent anytime soon, and my sister still asked me to make her tea so the story didn’t work. I think it’s important to ask yourself whether you care about the audience. The way you answer that even when you are in full bias mode is, do you engage with them? Are you interested in what’s happening in their communities? Are you friends with them? Etc. User Survey Analyzer Big User Survey → GPT → Insights Report Me and my coworker were chatting about AI when he asked me to help him analyze a massive survey for him. I thought that was some pretty decent validation. Someone in an actual company asking for help. Lessons Market research is important but moving fast is also important. Ie building momentum. Also don’t revolve around 1 user. This has been a problem in multiple projects. Finding as many users as possible in the beginning to talk to is key. Otherwise, you are just waiting for 1 person to get back to you. AutoI18N Automated Internationalization of the codebase for webapps This one I might still do. It’s hard to find a solid distribution strategy. However, the idea came from me having to do it at my day job. It seems a solid problem. I’d say it’s validated and has some good players already. The key will be differentiation via the simplicity of UX and distribution (which means a slightly different audience). In the backlog for now because I don’t care about the problem or the audience that much. Documate - Part 1 Converts complex PDFs into Excel https://preview.redd.it/8b45k9katf5c1.jpg?width=1344&format=pjpg&auto=webp&s=57324b8720eb22782e28794d2db674b073193995 My mom needed to convert a catalog of furniture into an inventory which took her 3 full days of data entry. I automated it for her and thought this could have a big impact but there was no distribution because there was no ICP. We tried to find the ideal customers by talking to a bunch of different demographics but I flew to Kazakhstan for a holiday and so this kind of fizzled out. I am not writing this blog post linearity, this is my 2nd hour and I am tired and don’t want to finish this later so I don’t even know what lessons I learned. Figmatic Marketplace of high-quality Figma mockups of real apps https://preview.redd.it/h13yv45btf5c1.jpg?width=873&format=pjpg&auto=webp&s=aaa2896aeac2f22e9b7d9eed98c28bb8a2d2cdf1 This was a collab between me and my friend Alex. It was the classic Clarito where we both thought we had this problem and would pay to fix it. In reality, this is a vitamin. Neither I, nor I doubt Alex have thought of this as soon as we bought the domain. We posted it on Gumroad, sent it to a bunch of forums, and called it a day. Same issue as almost all the other ones. No distribution strategy. However, apps like Mobin show us that this concept is indeed profitable but it takes time. It needs SEO. It needs a community. None of those things, me and Alex had or was interested in. However shortly after HTML → Figma came out and it’s the best plugin. Maybe that should’ve been the idea. Podcast → Course Turns Podcaster’s episodes into a course This one I got baited by Jason :P I described to him the idea of repurposing his content for a course. He told me this was epic and he would pay. Then after I sent him the demo, he never checked it out. Anyhow during the development, we realized that doesn’t actually work because A podcast doesn’t have the correct format for the course, the most you can extract are concepts and ideas, seldom explanations. Most creators want video-based courses to be hosted on Kajabi or Udemy Another lesson is that when you pitch something to a user, what you articulate is a platform or a process, they imagine an outcome. However, the end result of your platform can be a very different outcome to what they had in mind and there is even a chance that what they want is not possible. You need to understand really well what the outcome looks like before you design the process. This is a classic problem where we thought of the solution before the problem. Yes, the problem exists. Podcasters want to make courses. However, if you really understand what they want, you can see how repurposing a podcast isn’t the best way to get there. However I only really spoke to 1-2 podcasters about this so making conclusions is dangerous for this can just be another asking ace mistake with the Redditor. Documate Part 2 Same concept as before but now I want to run some ads. We’ll see what happens. https://preview.redd.it/xb3npj0ctf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3cd4884a29fd11d870d010a2677b585551c49193 In conclusion https://preview.redd.it/2zrldc9dtf5c1.jpg?width=1840&format=pjpg&auto=webp&s=2b3105073e752ad41c23f205dbd1ea046c1da7ff It doesn’t actually matter that much whether you choose to do a B2C, or a social network or focus on growing your audience. All of these can make you successful. What’s important is that you choose. If I had to summarize my 2023 in one word it’s indecision. Most of these projects succeeded for other people, nothing was as fundamentally wrong about them as I proclaimed. In reality that itself was an excuse. New ideas seduce, and it is a form of discipline to commit to a single project for a respectful amount of time. https://preview.redd.it/zy9a2vzdtf5c1.jpg?width=1456&format=pjpg&auto=webp&s=901c621227bba0feb4efdb39142f66ab2ebb86fe Distribution is not just posting on Indiehackers and Reddit. It’s an actual strategy and you should think of it as soon as you think of the idea, even before the Figma designs. I like how Denis Shatalin taught me. You have to build a pipeline. That means a reliable way to get leads, launch campaigns at them, close deals, learn from them, and optimize. Whenever I get an idea now I always try to ask myself “Where can I find 1000s leads in one day?” If there is no good answer, this is not a good project to do now. ​ https://preview.redd.it/2boh3fpetf5c1.jpg?width=1456&format=pjpg&auto=webp&s=1c0d5d7b000716fcbbb00cbad495e8b61e25be66 Talk to users before doing anything. Jumping on designing and coding to make your idea a reality is a satisfying activity in the short term. Especially for me, I like to create for the sake of creation. However, it is so important to understand the market, understand the audience, understand the distribution. There are a lot of things to understand before coding. https://preview.redd.it/lv8tt96ftf5c1.jpg?width=1456&format=pjpg&auto=webp&s=6c8735aa6ad795f216ff9ddfa2341712e8277724 Get out of your own head. The real reason we dropped so many projects is that we got into our own heads. We let the negative thoughts creep in and kill all the optimism. I am really good at coming up with excuses to start a project. However, I am equally as good at coming up with reasons to kill a project. And so you have this yin and yang of starting and stopping. Building momentum and not burning out. I can say with certainty my team ran out of juice this year. We lost momentum so many times we got burnt out towards the end. Realizing that the project itself has momentum is important. User feedback and sales bring momentum. Building also creates momentum but unless it is matched with an equal force of impact, it can stomp the project down. That is why so many of our projects died quickly after we launched. The smarter approach is to do things that have a low investment of momentum (like talking to users) but result in high impact (sales or feedback). Yes, that means the project can get invalidated which makes it more short-lived than if we built it first, but it preserves team life energy. At the end of 2023 here is a single sentence I am making about how I think one becomes a successful indiehacker. One becomes a successful Indiehacker when one starts to solve pain-killer problems in the market they understand, for an audience they care about and consistently engage with for a long enough timeframe. Therefore an unsuccessful Indiehacker in a single sentence is An unsuccessful Indiehacker constantly enters new markets they don’t understand to build solutions for people whose problems they don’t care about, in a timeframe that is shorter than than the time they spent thinking about distribution. However, an important note to be made. Life is not just about indiehacking. It’s about learning and having fun. In the human world, the best journey isn’t the one that gets you the fastest to your goals but the one you enjoy the most. I enjoyed making those silly little projects and although I do not regret them, I will not repeat the same mistakes in 2024. But while it’s still 2023, I have 2 more projects I want to do :) EDIT: For Devs, frontend is always react with vite (ts) and backend is either node with express (ts) or python. For DB either Postgres or mongo (usually Prisma for ORM). For deployment all of it is on AWS (S3, EC2). In terms of libraries/APIs Whisper.cpp is best open source for transcription Obviously the gpt apis Eleven labs for voice related stuff And other random stuff here and there

I built an app to find who’s interested in your app by monitoring social media
reddit
LLM Vibe Score0
Human Vibe Score0.857
lmcaraigThis week

I built an app to find who’s interested in your app by monitoring social media

Hi everyone! I hope you’re all doing great folks! I’d love to know your thoughts about what I’ve been working on recently! 🙏 If you’re busy or wanna see the app scroll to the bottom to see the video demo, otherwise, continue reading. Very brief presentation of myself first: I’m Marvin, and I live in Florence, Italy, 👋 This year I decided to go all-in on solopreneurship, I’ve been in tech as Software Engineer first, and then in Engineering Leadership for 10+ years, I’ve always worked in startups, except for last year, when I was the Director of Engineering at the Linux Foundation. Follow me on X or subscribe to my newsletter if you’re curious about this journey. The vision Most founders start building digital startups because they love crafting and being impactful by helping other people or companies. First-time founders then face reality when they realize that nailing distribution is key. All other founders already learned this, most likely the hard way. The outcome is the same: a great product will unlikely succeed without great distribution. Letting people know about your product should be easier and not an unfair advantage. The following meme is so true, but also quite sad. I wanna help this to change by easing the marketing and distribution part. https://preview.redd.it/g52pz46upqtd1.png?width=679&format=png&auto=webp&s=cf8398a3592f25c05c396bb2ff5d028331a36315 The story behind Distribution is a huge space: lead generation, demand generation, content marketing, social media marketing, cold outreach, etc. I cannot solve everything altogether. A few months ago I was checking the traffic to a job board I own (NextCommit). That's when I noticed that the “baseline” traffic increased by almost 10x. 🤯 I started investigating why. I realized that the monthly traffic from Reddit increased from 10-ish to 350+. Yeah, the job board doesn’t get much traffic in total, but this was an interesting finding. After digging more, it seems that all that increase came from a single Reddit comment: https://www.reddit.com/r/remotework/comments/1crwcei/comment/l5fb1yy/ This is the moment when I realized two things: It’s cool that someone quoted it! Engaging with people on Reddit, even just through comments, can be VERY powerful. And this was just one single comment! https://preview.redd.it/nhxcv4h2qqtd1.png?width=1192&format=png&auto=webp&s=d31905f56ae59426108ddbb61f2d6b668eedf27a Some weeks later I started noticing a few apps like ReplyGuy. These were automatically engaging with Reddit posts identified through keywords. I decided to sign up for the free plan of ReplyGuy to know more, but many things didn’t convince me: One of the keywords I used for my job board was “remote” and that caused a lot of false positives, The generated replies were good as a kickstart, but most of the time they needed to be tuned to sound more like me. The latter is expected. In the end, the platform doesn’t know me, doesn’t know my opinions, doesn’t know my story, etc.. The only valuable feature left for me was identifying the posts, but that also didn’t work well for me due to false positives. I ended up using it after only 15 minutes. I’m not saying they did a poor job, but it was not working well for me. In the end, the product got quite some traction, so it helped confirm there’s interest in that kind of tool. What bothered me was the combination of auto-replies that felt non-authentic. It’s not that I’m against bots, automation is becoming more common, and people are getting used to it. But in this context, I believe bots should act as an extension of ourselves, enhancing our interactions rather than just generating generic responses (like tools such as HeyGen, Synthesia, PhotoAI). I’m not there yet with my app, but a lot can be done. I'd love to reach the point where a user feels confident to automate the replies because they sound as written by themselves. I then decided to start from the same space, helping engage with Reddit posts, for these reasons: I experienced myself that it can be impactful, It aligns with my vision to ease distribution, Some competitors validated that there’s interest in this specific feature and I could use it as a starting point, I’m confident I can provide a better experience even with what I already have. The current state The product currently enables you to: Create multiple projects and assign keywords, Find the posts that are relevant for engagement using a fuzzy match of keywords and post-filtered using AI to avoid false positives, Provide an analysis of each post to assess the best way to engage, Generate a helpful reply that you’d need to review and post. So currently the product is more on the demand gen side, but this is just the beginning. I’m speaking with people from Marketing, Sales, RevOps, and Growth agencies to better understand their lives, struggles, and pain points. This will help me ensure that I build a product that enables them to help users find the products they need. I’m currently looking for up to 10 people to join the closed beta for free. If you’re interested in joining or to get notified once generally available you can do it here! https://tally.so/r/3XYbj4 After the closed beta, I will start onboarding people in batches. This will let me gather feedback, iterate, and provide a great experience to everyone aligned with my vision. I’m not going to add auto-reply unless the conditions I explained above are met or someone convinces me there’s a good reason for doing so. Each batch will probably get bigger with an increasing price until I’m confident about making it generally available. The next steps The next steps will depend on the feedback I get from the customers and the learnings from the discovery calls I’m having. I will talk about future developments in another update, but I have some ideas already. Check out the demo video below, and I'd love to hear your thoughts! ❤️ Oh and BTW, the app is called HaveYouHeard! https://reddit.com/link/1fzsnrd/video/34lat9snpqtd1/player This is the link to Loom in case the upload doesn't work: https://www.loom.com/share/460c4033b1f94e3bb5e1d081a05eedfd

How to start online business in 7 days ?
reddit
LLM Vibe Score0
Human Vibe Score1
Prior-Inflation8755This week

How to start online business in 7 days ?

Easy to do now. There are several tips that I can give you to start your own digital business. 1) Solve your own problem. If you use the Internet, you know that there are a lot of problems that need to be solved. But focus on your problem first. Once you can figure it out and solve your problem. You can move on to solving people's problems. Ideally, to use tools and technology you know. If you don't know, use NO-CODE tools to build it. For example, if you need to create a website, use landing page builder. If you want to automate your own work, like booking meetings, use Zapier to automate tasks. If you want to create a game, sure, use AI Tools to solve it. I don't care what you will use. Use whatever you want. All I want from you is to solve that problem. 2) After solving your own problem. You can focus on people's problems. Because if you can't solve your own shit, why do you want to solve others problems? Remember that always. If you need to build e-commerce, use Shopify. If you need to build a directory, use directory builder. If you need to build landing pages, use landing page builders. Rule of thumb: Niche, Niche, Niche. Try to focus on a specific niche, solve their problem, and make money on it. Then only thinking about exploring new opportunities. You can use No-Code builders or AI tools or hire developers or hire agencies to do it. It depends on your choice. If you are good at coding, build on your own or delegate to a developer or agency. If you have enough time, use AI Tools to build your own thing. If you want to solve a common problem but with a different perspective, yeah, sure, use No-Code builders for that. 3) Digital business works exactly the same as offline business with one difference. You can move a lot faster, build a lot faster, risk a lot faster, fail a lot faster, earn a lot faster, sell a lot faster, and scale a lot faster. In one week, you can build e-commerce. In the second week, you can build SaaS. In the third week, you can build an AI agent. In the fourth week, you can build your own channel on social media. 4) It gives more power. With great power comes great responsibility. From day one, invest in SEO, social media presence, traffic, and acquiring customers. Don't focus on tech stuff. Don't focus on tools. Focus on the real problem: • Traffic • Marketing • Sales • Conversion rate

How me and my team made 15+ apps and not made a single sale in 2023
reddit
LLM Vibe Score0
Human Vibe Score0.818
MichaelbetterecycleThis week

How me and my team made 15+ apps and not made a single sale in 2023

Hey, my name is Michael, I am in Auckland NZ. This year was the official beginning of my adult life. I graduated from university and started a full-time job. I’ve also really dug into indiehacking/bootstrapping and started 15 projects (and it will be at least 17 before the year ends). I think I’ve learned a lot but I consciously repeated mistakes. Upto (Nov) Discord Statuses + Your Location + Facebook Poke https://preview.redd.it/4nqt7tp2tf5c1.png?width=572&format=png&auto=webp&s=b0223484bc54b45b5c65e0b1afd0dc52f9c02ad1 This was the end of uni, I often messaged (and got messaged) requests of status and location to (and from my) friends. I thought, what if we make a social app that’s super basic and all it does is show you where your friends are? To differentiate from snap maps and others we wanted something with more privacy where you select the location. However, never finished the codebase or launched it. This is because I slowly started to realize that B2C (especially social networks) are way too hard to make into an actual business and the story with Fistbump would repeat itself. However, this decision not to launch it almost launched a curse on our team. From that point, we permitted ourselves to abandon projects even before launching. Lessons: Don’t do social networks if your goal is 10k MRR ASAP. If you build something to 90% competition ship it or you will think it’s okay to abandon projects Insight Bites (Nov) Youtube Summarizer Extension ​ https://preview.redd.it/h6drqej4tf5c1.jpg?width=800&format=pjpg&auto=webp&s=0f211456c390ac06f4fcb54aa51f9d50b0826658 Right after Upto, we started ideating and conveniently the biggest revolution in the recent history of tech was released → GPT. We instantly began ideating. The first problem we chose to use AI for is to summarize YouTube videos. Comical. Nevertheless, I am convinced we have had the best UX because you could right-click on a video to get a slideshow of insights instead of how everyone else did it. We dropped it because there was too much competition and unit economics didn’t work out (and it was a B2C). PodPigeon (Dec) Podcast → Tweet Threads https://preview.redd.it/0ukge245tf5c1.png?width=2498&format=png&auto=webp&s=23303e1cab330578a3d25cd688fa67aa3b97fb60 Then we thought, to make unit economics work we need to make this worthwhile for podcasters. This is when I got into Twitter and started seeing people summarize podcasts. Then I thought, what if we make something that converts a podcast into tweets? This was probably one of the most important projects because it connected me with Jason and Jonaed, both of whom I regularly stay in contact with and are my go-to experts on ideas related to content creation. Jonaed was even willing to buy Podpigeon and was using it on his own time. However, the unit economics still didn’t work out (and we got excited about other things). Furthermore, we got scared of the competition because I found 1 - 2 other people who did similar things poorly. This was probably the biggest mistake we’ve made. Very similar projects made 10k MRR and more, launching later than we did. We didn’t have a coherent product vision, we didn’t understand the customer well enough, and we had a bad outlook on competition and a myriad of other things. Lessons: I already made another post about the importance of outlook on competition. Do not quit just because there are competitors or just because you can’t be 10x better. Indiehackers and Bootstrappers (or even startups) need to differentiate in the market, which can be via product (UX/UI), distribution, or both. Asking Ace Intro.co + Crowdsharing ​ https://preview.redd.it/0hu2tt16tf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3d397568ef2331e78198d64fafc1a701a3e75999 As I got into Twitter, I wanted to chat with some people I saw there. However, they were really expensive. I thought, what if we made some kind of crowdfunding service for other entrepreneurs to get a private lecture from their idols? It seemed to make a lot of sense on paper. It was solving a problem (validated via the fact that Intro.co is a thing and making things cheaper and accessible is a solid ground to stand on), we understood the market (or so we thought), and it could monetize relatively quickly. However, after 1-2 posts on Reddit and Indiehackers, we quickly learned three things. Firstly, no one cares. Secondly, even if they do, they think they can get the same information for free online. Thirdly, the reasons before are bad because for the first point → we barely talked to people, and for the second people → we barely talked to the wrong people. However, at least we didn’t code anything this time and tried to validate via a landing page. Lessons Don’t give up after 1 Redditor says “I don’t need this” Don’t be scared to choose successful people as your audience. Clarito Journaling with AI analyzer https://preview.redd.it/8ria2wq6tf5c1.jpg?width=1108&format=pjpg&auto=webp&s=586ec28ae75003d9f71b4af2520b748d53dd2854 Clarito is a classic problem all amateur entrepreneurs have. It’s where you lie to yourself that you have a real problem and therefore is validated but when your team asks you how much you would pay you say I guess you will pay, maybe, like 5 bucks a month…? Turns out, you’d have to pay me to use our own product lol. We sent it off to a few friends and posted on some forums, but never really got anything tangible and decided to move away. Honestly, a lot of it is us in our own heads. We say the market is too saturated, it’ll be hard to monetize, it’s B2C, etc. Lessons: You use the Mom Test on other people. You have to do it yourself as well. However, recognizing that the Mom Test requires a lot of creativity in its investigation because knowing what questions to ask can determine the outcome of the validation. I asked myself “Do I journal” but I didn’t ask myself “How often do I want GPT to chyme in on my reflections”. Which was practically never. That being said I think with the right audience and distribution, this product can work. I just don’t know (let alone care) about the audience that much (and I thought I was one of them)/ Horns & Claw Scrapes financial news texts you whether you should buy/sell the stock (news sentiment analysis) ​ https://preview.redd.it/gvfxdgc7tf5c1.jpg?width=1287&format=pjpg&auto=webp&s=63977bbc33fe74147b1f72913cefee4a9ebec9c2 This one we didn’t even bother launching. Probably something internal in the team and also seemed too good to be true (because if this works, doesn’t that just make us ultra-rich fast?). I saw a similar tool making 10k MRR so I guess I was wrong. Lessons: This one was pretty much just us getting into our heads. I declared that without an audience it would be impossible to ship this product and we needed to start a YouTube channel. Lol, and we did. And we couldn’t even film for 1 minute. I made bold statements like “We will commit to this for at least 1 year no matter what”. Learnery Make courses about any subject https://preview.redd.it/1nw6z448tf5c1.jpg?width=1112&format=pjpg&auto=webp&s=f2c73e8af23b0a6c3747a81e785960d4004feb48 This is probably the most “successful” project we’ve made. It grew from a couple of dozen to a couple of hundred users. It has 11 buy events for $9.99 LTD (we couldn’t be bothered connecting Stripe because we thought no one would buy it anyway). However what got us discouraged from seriously pursuing it more is, that this has very low defensibility, “Why wouldn’t someone just use chatGPT?” and it’s B2C so it’s hard to monetize. I used it myself for a month or so but then stopped. I don’t think it’s the app, I think the act of learning a concept from scratch isn’t something you do constantly in the way Learnery delivers it (ie course). I saw a bunch of similar apps that look like Ass make like 10k MRR. Lessons: Don’t do B2C, or if you do, do it properly Don’t just Mixpanel the buy button, connect your Stripe otherwise, it doesn’t feel real and you won’t get momentum. I doubt anyone (even me) will make this mistake again. I live in my GPT bubble where I make assumptions that everyone uses GPT the same way and as much as I do. In reality, the argument that this has low defensibility against GPT is invalid. Platforms that deliver a differentiated UX from ChatGPT to audiences who are not tightly integrated into the habit of using ChatGPT (which is like - everyone except for SOME tech evangelists). CuriosityFM Make podcasts about any subject https://preview.redd.it/zmosrcp8tf5c1.jpg?width=638&format=pjpg&auto=webp&s=d04ddffabef9050050b0d87939273cc96a8637dc This was our attempt at making Learnery more unique and more differentiated from chatGPT. We never really launched it. The unit economics didn’t work out and it was actually pretty boring to listen to, I don’t think I even fully listened to one 15-minute episode. I think this wasn’t that bad, it taught us more about ElevenLabs and voice AI. It took us maybe only 2-3 days to build so I think building to learn a new groundbreaking technology is fine. SleepyTale Make children’s bedtime stories https://preview.redd.it/14ue9nm9tf5c1.jpg?width=807&format=pjpg&auto=webp&s=267e18ec6f9270e6d1d11564b38136fa524966a1 My 8-year-old sister gave me that idea. She was too scared of making tea and I was curious about how she’d react if she heard a bedtime story about that exact scenario with the moral that I wanted her to absorb (which is that you shouldn’t be scared to try new things ie stop asking me to make your tea and do it yourself, it’s not that hard. You could say I went full Goebbels on her). Zane messaged a bunch of parents on Facebook but no one really cared. We showed this to one Lady at the place we worked from at Uni and she was impressed and wanted to show it to her kids but we already turned off our ElevenLabs subscription. Lessons: However, the truth behind this is beyond just “you need to be able to distribute”. It’s that you have to care about the audience. I don’t particularly want to build products for kids and parents. I am far away from that audience because I am neither a kid anymore nor going to be a parent anytime soon, and my sister still asked me to make her tea so the story didn’t work. I think it’s important to ask yourself whether you care about the audience. The way you answer that even when you are in full bias mode is, do you engage with them? Are you interested in what’s happening in their communities? Are you friends with them? Etc. User Survey Analyzer Big User Survey → GPT → Insights Report Me and my coworker were chatting about AI when he asked me to help him analyze a massive survey for him. I thought that was some pretty decent validation. Someone in an actual company asking for help. Lessons Market research is important but moving fast is also important. Ie building momentum. Also don’t revolve around 1 user. This has been a problem in multiple projects. Finding as many users as possible in the beginning to talk to is key. Otherwise, you are just waiting for 1 person to get back to you. AutoI18N Automated Internationalization of the codebase for webapps This one I might still do. It’s hard to find a solid distribution strategy. However, the idea came from me having to do it at my day job. It seems a solid problem. I’d say it’s validated and has some good players already. The key will be differentiation via the simplicity of UX and distribution (which means a slightly different audience). In the backlog for now because I don’t care about the problem or the audience that much. Documate - Part 1 Converts complex PDFs into Excel https://preview.redd.it/8b45k9katf5c1.jpg?width=1344&format=pjpg&auto=webp&s=57324b8720eb22782e28794d2db674b073193995 My mom needed to convert a catalog of furniture into an inventory which took her 3 full days of data entry. I automated it for her and thought this could have a big impact but there was no distribution because there was no ICP. We tried to find the ideal customers by talking to a bunch of different demographics but I flew to Kazakhstan for a holiday and so this kind of fizzled out. I am not writing this blog post linearity, this is my 2nd hour and I am tired and don’t want to finish this later so I don’t even know what lessons I learned. Figmatic Marketplace of high-quality Figma mockups of real apps https://preview.redd.it/h13yv45btf5c1.jpg?width=873&format=pjpg&auto=webp&s=aaa2896aeac2f22e9b7d9eed98c28bb8a2d2cdf1 This was a collab between me and my friend Alex. It was the classic Clarito where we both thought we had this problem and would pay to fix it. In reality, this is a vitamin. Neither I, nor I doubt Alex have thought of this as soon as we bought the domain. We posted it on Gumroad, sent it to a bunch of forums, and called it a day. Same issue as almost all the other ones. No distribution strategy. However, apps like Mobin show us that this concept is indeed profitable but it takes time. It needs SEO. It needs a community. None of those things, me and Alex had or was interested in. However shortly after HTML → Figma came out and it’s the best plugin. Maybe that should’ve been the idea. Podcast → Course Turns Podcaster’s episodes into a course This one I got baited by Jason :P I described to him the idea of repurposing his content for a course. He told me this was epic and he would pay. Then after I sent him the demo, he never checked it out. Anyhow during the development, we realized that doesn’t actually work because A podcast doesn’t have the correct format for the course, the most you can extract are concepts and ideas, seldom explanations. Most creators want video-based courses to be hosted on Kajabi or Udemy Another lesson is that when you pitch something to a user, what you articulate is a platform or a process, they imagine an outcome. However, the end result of your platform can be a very different outcome to what they had in mind and there is even a chance that what they want is not possible. You need to understand really well what the outcome looks like before you design the process. This is a classic problem where we thought of the solution before the problem. Yes, the problem exists. Podcasters want to make courses. However, if you really understand what they want, you can see how repurposing a podcast isn’t the best way to get there. However I only really spoke to 1-2 podcasters about this so making conclusions is dangerous for this can just be another asking ace mistake with the Redditor. Documate Part 2 Same concept as before but now I want to run some ads. We’ll see what happens. https://preview.redd.it/xb3npj0ctf5c1.jpg?width=1456&format=pjpg&auto=webp&s=3cd4884a29fd11d870d010a2677b585551c49193 In conclusion https://preview.redd.it/2zrldc9dtf5c1.jpg?width=1840&format=pjpg&auto=webp&s=2b3105073e752ad41c23f205dbd1ea046c1da7ff It doesn’t actually matter that much whether you choose to do a B2C, or a social network or focus on growing your audience. All of these can make you successful. What’s important is that you choose. If I had to summarize my 2023 in one word it’s indecision. Most of these projects succeeded for other people, nothing was as fundamentally wrong about them as I proclaimed. In reality that itself was an excuse. New ideas seduce, and it is a form of discipline to commit to a single project for a respectful amount of time. https://preview.redd.it/zy9a2vzdtf5c1.jpg?width=1456&format=pjpg&auto=webp&s=901c621227bba0feb4efdb39142f66ab2ebb86fe Distribution is not just posting on Indiehackers and Reddit. It’s an actual strategy and you should think of it as soon as you think of the idea, even before the Figma designs. I like how Denis Shatalin taught me. You have to build a pipeline. That means a reliable way to get leads, launch campaigns at them, close deals, learn from them, and optimize. Whenever I get an idea now I always try to ask myself “Where can I find 1000s leads in one day?” If there is no good answer, this is not a good project to do now. ​ https://preview.redd.it/2boh3fpetf5c1.jpg?width=1456&format=pjpg&auto=webp&s=1c0d5d7b000716fcbbb00cbad495e8b61e25be66 Talk to users before doing anything. Jumping on designing and coding to make your idea a reality is a satisfying activity in the short term. Especially for me, I like to create for the sake of creation. However, it is so important to understand the market, understand the audience, understand the distribution. There are a lot of things to understand before coding. https://preview.redd.it/lv8tt96ftf5c1.jpg?width=1456&format=pjpg&auto=webp&s=6c8735aa6ad795f216ff9ddfa2341712e8277724 Get out of your own head. The real reason we dropped so many projects is that we got into our own heads. We let the negative thoughts creep in and kill all the optimism. I am really good at coming up with excuses to start a project. However, I am equally as good at coming up with reasons to kill a project. And so you have this yin and yang of starting and stopping. Building momentum and not burning out. I can say with certainty my team ran out of juice this year. We lost momentum so many times we got burnt out towards the end. Realizing that the project itself has momentum is important. User feedback and sales bring momentum. Building also creates momentum but unless it is matched with an equal force of impact, it can stomp the project down. That is why so many of our projects died quickly after we launched. The smarter approach is to do things that have a low investment of momentum (like talking to users) but result in high impact (sales or feedback). Yes, that means the project can get invalidated which makes it more short-lived than if we built it first, but it preserves team life energy. At the end of 2023 here is a single sentence I am making about how I think one becomes a successful indiehacker. One becomes a successful Indiehacker when one starts to solve pain-killer problems in the market they understand, for an audience they care about and consistently engage with for a long enough timeframe. Therefore an unsuccessful Indiehacker in a single sentence is An unsuccessful Indiehacker constantly enters new markets they don’t understand to build solutions for people whose problems they don’t care about, in a timeframe that is shorter than than the time they spent thinking about distribution. However, an important note to be made. Life is not just about indiehacking. It’s about learning and having fun. In the human world, the best journey isn’t the one that gets you the fastest to your goals but the one you enjoy the most. I enjoyed making those silly little projects and although I do not regret them, I will not repeat the same mistakes in 2024. But while it’s still 2023, I have 2 more projects I want to do :) EDIT: For Devs, frontend is always react with vite (ts) and backend is either node with express (ts) or python. For DB either Postgres or mongo (usually Prisma for ORM). For deployment all of it is on AWS (S3, EC2). In terms of libraries/APIs Whisper.cpp is best open source for transcription Obviously the gpt apis Eleven labs for voice related stuff And other random stuff here and there

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days
reddit
LLM Vibe Score0
Human Vibe Score1
Will_feverThis week

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days

AI has always intrigued me, especially when it comes to automating repetitive tasks and streamlining business operations. Recently, I found a compelling case study about a voice agent that significantly enhanced customer service and lead capture for a plumbing company. Motivated by the potential of this technology, I decided to build a similar system to see how it could be adapted for other industries. I’ve added the case study below along with a number to the demo voice agent I created to see if this is something people would really be interested in. AI technology is advancing rapidly, and I’m excited to dive deeper into this space. Case Study A family-owned plumbing business was facing challenges managing a high volume of customer calls. They were missing potential leads, particularly during after-hours and weekends, which meant lost revenue opportunities. Hiring a dedicated call support team was considered but deemed too expensive and hard to scale. Solution To solve these issues, the company deployed an AI-powered voice agent capable of handling calls autonomously. The system collected essential customer information, identified service needs, and sent real-time alerts to service technicians via SMS. It also had the ability to transfer calls to human agents if necessary, ensuring a seamless experience for customers. Impact The AI voice agent quickly proved its worth by streamlining call management and improving response times. With the AI handling routine inquiries and initial call filtering, the plumbing business saw a noticeable improvement in how quickly they could respond to customer needs. Details The AI-powered voice agent included several advanced features designed to optimize customer service: Answer Calls Anytime: Ensured every call received a friendly and professional response, regardless of the time of day. Spot Emergencies Fast: Quickly identified high-priority issues that required urgent attention. Collect Important Info: Accurately recorded critical customer details to facilitate seamless follow-ups and service scheduling. Send Alerts Right Away: Immediately notified service technicians about emergencies, enabling faster response times. Live Transfers: Live call transfer options when human assistance was needed. Results The AI-powered voice agent delivered measurable improvements across key performance metrics: 100% Call Answer Rate: No missed calls ensured that every customer inquiry was addressed promptly. 5-minute Emergency Response Time: The average response time for urgent calls was reduced significantly. 30% Increase in Lead Capture: The business saw more qualified leads, improving their chances of conversion. 25% Improvement in Resource Efficiency: Better allocation of resources allowed the team to focus on high-priority tasks. By implementing the AI-powered voice agent, the plumbing business enhanced its ability to capture more leads and provide better service to its customers. The improved call handling efficiency helped reduce missed opportunities and boosted overall customer satisfaction. Here’s the number to the demo agent I created: +1 (210) 405-0982 I’d love to hear some honest thoughts on it and which industries you think could benefit the most from this technology.

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days
reddit
LLM Vibe Score0
Human Vibe Score1
Will_feverThis week

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days

AI has always intrigued me, especially when it comes to automating repetitive tasks and streamlining business operations. Recently, I found a compelling case study about a voice agent that significantly enhanced customer service and lead capture for a plumbing company. Motivated by the potential of this technology, I decided to build a similar system to see how it could be adapted for other industries. I’ve added the case study below along with a number to the demo voice agent I created to see if this is something people would really be interested in. AI technology is advancing rapidly, and I’m excited to dive deeper into this space. Case Study A family-owned plumbing business was facing challenges managing a high volume of customer calls. They were missing potential leads, particularly during after-hours and weekends, which meant lost revenue opportunities. Hiring a dedicated call support team was considered but deemed too expensive and hard to scale. Solution To solve these issues, the company deployed an AI-powered voice agent capable of handling calls autonomously. The system collected essential customer information, identified service needs, and sent real-time alerts to service technicians via SMS. It also had the ability to transfer calls to human agents if necessary, ensuring a seamless experience for customers. Impact The AI voice agent quickly proved its worth by streamlining call management and improving response times. With the AI handling routine inquiries and initial call filtering, the plumbing business saw a noticeable improvement in how quickly they could respond to customer needs. Details The AI-powered voice agent included several advanced features designed to optimize customer service: Answer Calls Anytime: Ensured every call received a friendly and professional response, regardless of the time of day. Spot Emergencies Fast: Quickly identified high-priority issues that required urgent attention. Collect Important Info: Accurately recorded critical customer details to facilitate seamless follow-ups and service scheduling. Send Alerts Right Away: Immediately notified service technicians about emergencies, enabling faster response times. Live Transfers: Live call transfer options when human assistance was needed. Results The AI-powered voice agent delivered measurable improvements across key performance metrics: 100% Call Answer Rate: No missed calls ensured that every customer inquiry was addressed promptly. 5-minute Emergency Response Time: The average response time for urgent calls was reduced significantly. 30% Increase in Lead Capture: The business saw more qualified leads, improving their chances of conversion. 25% Improvement in Resource Efficiency: Better allocation of resources allowed the team to focus on high-priority tasks. By implementing the AI-powered voice agent, the plumbing business enhanced its ability to capture more leads and provide better service to its customers. The improved call handling efficiency helped reduce missed opportunities and boosted overall customer satisfaction. Here’s the number to the demo agent I created: +1 (210) 405-0982 I’d love to hear some honest thoughts on it and which industries you think could benefit the most from this technology.

What I learn from my $200 MRR App I built 4 months ago
reddit
LLM Vibe Score0
Human Vibe Score0.857
ricky0603This week

What I learn from my $200 MRR App I built 4 months ago

4 month ago, I am just a 10-years experienced product manager without any software development experience. I have an $3K/month job, but I am so tired, I don’t like my life, don’t like my boss, don’t like my daily work, that make me feeling I already died however I am still living. I yearn for freedom and want to live each day the way I want to. So I quit my job, and become a Indie developer to build my own business, my own app, even my own life. I am so grateful for this time and experience, now my app reach $200 MRR, still very little compared to my previous salary, but I never regret. I have learned lots of things from this time and experience, more than I had in last 10 years. Here is the time-line of my App: ​ Sep 2023: Launch first version to iOS App store Oct 2023: Release in-app-purchase features and have first subscriber, the revenue in October is $154 Nov 2023: Change from subscription to pay per use, and I did lots of marketing jobs in November, however, the revenue reduced to only $40. Dec 2023: Change back to subscription, and stop some invalid marketing jobs, only keep the ones that actually work. I almost did nothing in December, and the revenue come to $243. During this process, I have learned lots of things, there are some of them that I think could help you as well. Web or App My App is an iOS app that only can running on Apple’s device such like iPhone/iPad or Mac with Apple silicon. Many people ask me why my product is an iOS app not a website, because they don’t have any Apple device. It's true that promoting an app is much harder than promoting a website. However I am now very glad I made an App and not a website! If I make a website, I don't think it's possible to make $100 in the first month. My App is about keyword research, to help people find some ideas from search keyword, because every keyword people searched in Google are representing a real need of them, also can be used in SEO field. However there are a lot of website tools about keyword research, some of them are famous like Ahrefs, SEMrush… I have no intention of competing with them. Actually I don’t have any chance. While in app store, there are little apps about keyword research, each of them have terrible data and user experience, that means if my app has better data and experience that could be my chance. In fact, the App store brings me 20 organic installs a day that Google would never have been able to bring me if I had a website, at least for the first few months. Furthermore, Apple nearly did everything for developer, I don’t need to care about user login, payment and so on, Apple did everything, I just need to call their API, that save lots of time, if I build a website, I need to implement login and payment by myself, that would add some extra work. Not to mention I'd need to buy servers and domains, that would cost me a lot of money. Although Apple will take 30% of the revenue, I can live with that in the early stages because the most important thing for me is to get the product to market as soon as possible. Actually thought Apple’s SMB program, the take rate is 15% now. So Web or App is not important in the early stage, time is important, if people need my product, it's easy to make a website one. More Users or More Valuable Users In November, I notice some users would like use my app, and they were meet paywall, but they never subscribe. I provided 7 day free trail, but it seem that they don’t like it. So I decide to change subscription to pay per use. Because as a user, I don’t like subscription as well, pay per use seem like more friendly. So I change from subscription to pay per use. People can afford $9.99 to subscribe monthly for unlimited use or pay $1.99 for each data they want(First purchase is $0.99 then $1.99). I was expecting more user to pay, but it was the complete opposite! Some users who would have paid a higher subscription fee are switching to a lower priced single payment. Users are encountering paywalls more often, and each time they need to make a decision about whether or not to pay, which increases the probability that they will abandon payment. This resulted in a 75% decrease in revenue in November. In fact, the mostly of my revenue comes from a handful of long-cycle subscribers, such as annual subscription. Few bring in most of the revenue, that is the most important thing I learned. You don't need a lot of customers, you just need more valuable ones. That's why it's only right to design a mechanism to filter out high-value customers and focus on them, all the things you want do is just let more people into the filter, and from that point of view, subscription with free trial period is the best way, even if most people don't like it. The rule of 20/80 will always be there. The most important thing is always focus on the 20 percent things and people. Effort does not always guarantee rewards. Unless one engages in deep thinking, or most efforts are invalid. I have been working very hard to promote my product for a period of time. It’s about in November. I did a lot of job, such as write script to send message to my potential clients on Fiverr, post and write comments on others post on Reddit, find related questions and answer them on Quora, post and comments on Twitte, etc. During that period, I was exhausted every day, but the outcome did not meet my expectations. There is only little growth on App installation, even less revenue than before. That make me frustrated. I finally realized that If I need to put in a tremendous amount of effort just to make a little progress, there is must something wrong. So I stop 80% of promote work I have ever did, only keep app store search ad, which will bring a installation with less than $0.5 cost. Then I dive into long time and deeply thinking, I spent more time on reading books, investigate other product with great MRR, watch interviews with people who are already living the kind of life I aspire to live, for example, u/levelsio. These things have given me great inspiration, and my life has become easier. It seems that the life I anticipated when I resigned is getting closer. I also have a clearer understanding of my app. Meanwhile, MRR has been growing. This experience let me learn that effort does not always guarantee results. Many times, our efforts are just wishful thinking, they are invalid, do the right thing after deeply thinking is more important. What Next? My goal is reach $3K MRR, as same as my job payment, I will never stop to building things, and I will keep my currently lifestyle. I still don't know how to get more people to use my app, but levelsio's interviews give me some inspiration that I can verified something by manually instead of build a software. I plan to launch a trend analysis product based on the keyword data provided by my current app. I have always wanted to combine AI to build such a product, but I didn't know how to do it. Now I intend to manually complete it first and start software development once there are paying users. If you are interested to my App, you could try it. Gotrends

My experience trying to scrape google maps with no code
reddit
LLM Vibe Score0
Human Vibe Score1
youngkilogThis week

My experience trying to scrape google maps with no code

A few months back I was working on a project to help founders that sell to SMBs get better quality leads (Current solutions like Zoominfo and Apollo don’t do very well for the SMB market). Of course, I wanted to do this as quickly as possible with as little code as possible.  We found that people were manually going through Google Maps to find SMBs. They would use the search and manually type in the businesses they were looking for. For example, they would type “restaurants” and manually call/email them. What we decided to do was gather the Google Maps data autonomously and surface that to our customers so they could take all of it. The problem was that we would need a bunch of data from Google Maps to pull it off. We would need to grab all the SMBs across the United States which is a huge undertaking.  Initially, I tried no-code AI web scraping solutions and they worked horribly. For some reason, I couldn’t even get them to scroll down on the page. I was also able to reverse engineer their open-source code and discover that they were taking the entire web page and passing it into GPT to extract data. That just burned my Openai bill.  I then tried the semi-code approach (sorry no-code subreddit) where I would use something like Apify or Google Places API to scrape the businesses. This worked better but still, there was an issue of price at the scale we wanted. Eventually, we ended up writing our scraper for the task.  This experience was so horrible I ended up creating potarix.com. Firstly, we provide scraping as a service in conjunction with AI. We all know AI is shit and keeping this human in the loop allows the AI to do 90% of the work and then for us to tweak the script to 100% completion. Also since we use AI to create the scraper instead of using AI to scrape, we can run it for large scale tasks at a low cost.

I acquired a SaaS for ~5 figures to solve my content problem
reddit
LLM Vibe Score0
Human Vibe Score1
Either_Discussion635This week

I acquired a SaaS for ~5 figures to solve my content problem

In 2023 I bought a SaaS called Cuppa AI. I actually found the product on twitter, run by a very talented engineer in the UK.  I’ve spent tens of thousands of dollars on content for various media companies. In one consumer health company, it cost us around $200-$500 for each SEO optimized article. This adds up pretty quickly. Not forgetting the 20 hours of edits! This isn’t just an isolated problem for a single company. It’s industry wide and affects small business + agency owners alike. I spent over a decade in media, and have seen many agency founders complain about long lead times and high costs for low output.  This is an issue. Large swathes of would-be customers that prefer to consume content before buying are being ignored - either because it takes too long or costs too much for founders to scale this channel.   I eventually became tired of the media content game in 2022 and looked into using SaaS to solve my previous life’s challenges. I started building, acquiring and scaling a portfolio of products that I found useful in my day to day. But the content issue was still there.  So I started to look for ways to reduce the time + cost content burden for my own portfolio.   I initially discovered Cuppa using it for my own personal pains of content research, editing, publishing, and scaling. But then I saw potential. I wanted to turn it into an end to end solution for the content gap that myself and other business owners weren’t taking advantage of because of time, cost, or other priorities.  I sent a DM. Then a few calls later, I acquired it in June 2023.  I chose cuppa vs other competing products for a few reasons:  The founder gave excellent support during and post acquisition  It already had a large, loyal existing user base I’d personally used it and solved a pain with it. I saw the potential to solve many others for more people like me  The founder has put a ton of quality and care into it. There wasn’t a risk of picking up a patchy product, plus it already had great social distribution  It naturally fits my expertise from the ‘other side’. I was the original customer of it, so I knew I could evolve it with features that could create content at scale without losing the human touch  Since then we’ve added a lot of new stuff: Chat with articles Image generation for articles API keys to reduce cost Brand / persona voice custom prompts  Month on month iterative content improvement  Full stack content team that blends AI and human editors for agencies I’m still in full build mode with the team. I want to take it to a place where agencies and SMB owners can trust the AI + human content model enough to see this product as a no-brainer for their biz. I don’t believe in AI slop - there’s enough of that out there - I DO believe in using AI to do the grunt work, but to always have that human element a machine can’t quite mimic.  We have a lot more to get through, but I’m very excited about it. View of the done for you content workflow

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.
reddit
LLM Vibe Score0
Human Vibe Score0.6
AlexSnakeKingThis week

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.

TD;LR: At Company A, Team X does advanced analytics using on-prem ERP tools and older programming languages. Their tools work very well and are designed based on very deep business and domain expertise. Team Y is a new and ambitious Data Science team that thinks they can replace Team X's tools with a bunch of R scripts and a custom built ML platform. Their models are simplistic, but more "fashionable" compared to the econometric models used by Team X, and team Y benefits from the ML/DS moniker so leadership is allowing Team Y to start a large scale overhaul of the analytics platform in question. Team Y doesn't have the experience for such a larger scale transformation, and is refusing to collaborate with team X. This project is very likely going to fail, and cause serious harm to the company as a whole financially and from a people perspective. I argue that this is not just because of bad leadership, but also because of various trends and mindsets in the DS community at large. Update (Jump to below the line for the original story): Several people in the comments are pointing out that this just a management failure, not something due to ML/DS, and that you can replace DS with any buzz tech and the story will still be relevant. My response: Of course, any failure at an organization level is ultimately a management failure one way or the other. Moreover, it is also the case that ML/DS when done correctly, will always improve a company's bottom line. There is no scenario where the proper ML solution, delivered at a reasonable cost and in a timely fashion, will somehow hurt the company's bottom line. My point is that in this case management is failing because of certain trends and practices that are specific to the ML/DS community, namely: The idea that DS teams should operate independently of tech and business orgs -- too much autonomy for DS teams The disregard for domain knowledge that seems prevalent nowadays thanks to the ML hype, that DS can be generalists and someone with good enough ML chops can solve any business problem. That wasn't the case when I first left academia for the industry in 2009 (back then nobody would even bother with a phone screen if you didn't have the right domain knowledge). Over reliance on resources who check all the ML hype related boxes (knows Python, R, Tensorflow, Shiny, etc..., has the right Coursera certifications, has blogged on the topic, etc...), but are lacking in depth of experience. DS interviews nowadays all seem to be: Can you tell me what a p-value is? What is elastic net regression? Show me how to fit a model in sklearn? How do you impute NAs in an R dataframe? Any smart person can look those up on Stackoverflow or Cross-Validated,.....Instead teams should be asking stuff like: why does portfolio optimization use QP not LP? How does a forecast influence a customer service level? When should a recommendation engine be content based and when should it use collaborative filtering? etc... (This is a true story, happening to the company I currently work for. Names, domains, algorithms, and roles have been shuffled around to protect my anonymity)  Company A has been around for several decades. It is not the biggest name in its domain, but it is a well respected one. Risk analysis and portfolio optimization have been a core of Company A's business since the 90s. They have a large team of 30 or so analysts who perform those tasks on a daily basis. These analysts use ERP solutions implemented for them by one the big ERP companies (SAP, Teradata, Oracle, JD Edwards,...) or one of the major tech consulting companies (Deloitte, Accenture, PWC, Capgemini, etc...) in collaboration with their own in house engineering team. The tools used are embarrassingly old school: Classic RDBMS running on on-prem servers or maybe even on mainframes, code written in COBOL, Fortran, weird proprietary stuff like ABAP or SPSS.....you get the picture. But the models and analytic functions were pretty sophisticated, and surprisingly cutting edge compared to the published academic literature. Most of all, they fit well with the company's enterprise ecosystem, and were honed based on years of deep domain knowledge.  They have a tech team of several engineers (poached from the aforementioned software and consulting companies) and product managers (who came from the experienced pools of analysts and managers who use the software, or poached from business rivals) maintaining and running this software. Their technology might be old school, but collectively, they know the domain and the company's overall architecture very, very well. They've guided the company through several large scale upgrades and migrations and they have a track record of delivering on time, without too much overhead. The few times they've stumbled, they knew how to pick themselves up very quickly. In fact within their industry niche, they have a reputation for their expertise, and have very good relations with the various vendors they've had to deal with. They were the launching pad of several successful ERP consulting careers.  Interestingly, despite dealing on a daily basis with statistical modeling and optimization algorithms, none of the analysts, engineers, or product managers involved describe themselves as data scientists or machine learning experts. It is mostly a cultural thing: Their expertise predates the Data Science/ML hype that started circa 2010, and they got most of their chops using proprietary enterprise tools instead of the open source tools popular nowadays. A few of them have formal statistical training, but most of them came from engineering or domain backgrounds and learned stats on the fly while doing their job. Call this team "Team X".  Sometime around the mid 2010s, Company A started having some serious anxiety issues: Although still doing very well for a company its size, overall economic and demographic trends were shrinking its customer base, and a couple of so called disruptors came up with a new app and business model that started seriously eating into their revenue. A suitable reaction to appease shareholders and Wall Street was necessary. The company already had a decent website and a pretty snazzy app, what more could be done? Leadership decided that it was high time that AI and ML become a core part of the company's business. An ambitious Manager, with no science or engineering background, but who had very briefly toyed with a recommender system a couple of years back, was chosen to build a data science team, call it team "Y" (he had a bachelor's in history from the local state college and worked for several years in the company's marketing org). Team "Y" consists mostly of internal hires who decided they wanted to be data scientists and completed a Coursera certification or a Galvanize boot camp, before being brought on to the team, along with a few of fresh Ph.D or M.Sc holders who didn't like academia and wanted to try their hand at an industry role. All of them were very bright people, they could write great Medium blog posts and give inspiring TED talks, but collectively they had very little real world industry experience. As is the fashion nowadays, this group was made part of a data science org that reported directly to the CEO and Board, bypassing the CIO and any tech or business VPs, since Company A wanted to claim the monikers "data driven" and "AI powered" in their upcoming shareholder meetings. In 3 or 4 years of existence, team Y produced a few Python and R scripts. Their architectural experience  consisted almost entirely in connecting Flask to S3 buckets or Redshift tables, with a couple of the more resourceful ones learning how to plug their models into Tableau or how to spin up a Kuberneties pod.  But they needn't worry: The aforementioned manager, who was now a director (and was also doing an online Masters to make up for his qualifications gap and bolster his chances of becoming VP soon - at least he now understands what L1 regularization is), was a master at playing corporate politics and self-promotion. No matter how few actionable insights team Y produced or how little code they deployed to production, he always had their back and made sure they had ample funding. In fact he now had grandiose plans for setting up an all-purpose machine learning platform that can be used to solve all of the company's data problems.  A couple of sharp minded members of team Y, upon googling their industry name along with the word "data science", realized that risk analysis was a prime candidate for being solved with Bayesian models, and there was already a nifty R package for doing just that, whose tutorial they went through on R-Bloggers.com. One of them had even submitted a Bayesian classifier Kernel for a competition on Kaggle (he was 203rd on the leaderboard), and was eager to put his new-found expertise to use on a real world problem. They pitched the idea to their director, who saw a perfect use case for his upcoming ML platform. They started work on it immediately, without bothering to check whether anybody at Company A was already doing risk analysis. Since their org was independent, they didn't really need to check with anybody else before they got funding for their initiative. Although it was basically a Naive Bayes classifier, the term ML was added to the project tile, to impress the board.  As they progressed with their work however, tensions started to build. They had asked the data warehousing and CA analytics teams to build pipelines for them, and word eventually got out to team X about their project. Team X was initially thrilled: They offered to collaborate whole heartedly, and would have loved to add an ML based feather to their already impressive cap. The product owners and analysts were totally onboard as well: They saw a chance to get in on the whole Data Science hype that they kept hearing about. But through some weird mix of arrogance and insecurity, team Y refused to collaborate with them or share any of their long term goals with them, even as they went to other parts of the company giving brown bag presentations and tutorials on the new model they created.  Team X got resentful: from what they saw of team Y's model, their approach was hopelessly naive and had little chances of scaling or being sustainable in production, and they knew exactly how to help with that. Deploying the model to production would have taken them a few days, given how comfortable they were with DevOps and continuous delivery (team Y had taken several months to figure out how to deploy a simple R script to production). And despite how old school their own tech was, team X were crafty enough to be able to plug it in to their existing architecture. Moreover, the output of the model was such that it didn't take into account how the business will consume it or how it was going to be fed to downstream systems, and the product owners could have gone a long way in making the model more amenable to adoption by the business stakeholders. But team Y wouldn't listen, and their leads brushed off any attempts at communication, let alone collaboration. The vibe that team Y was giving off was "We are the cutting edge ML team, you guys are the legacy server grunts. We don't need your opinion.", and they seemed to have a complete disregard for domain knowledge, or worse, they thought that all that domain knowledge consisted of was being able to grasp the definitions of a few business metrics.  Team X got frustrated and tried to express their concerns to leadership. But despite owning a vital link in Company A's business process, they were only \~50 people in a large 1000 strong technology and operations org, and they were several layers removed from the C-suite, so it was impossible for them to get their voices heard.  Meanwhile, the unstoppable director was doing what he did best: Playing corporate politics. Despite how little his team had actually delivered, he had convinced the board that all analysis and optimization tasks should now be migrated to his yet to be delivered ML platform. Since most leaders now knew that there was overlap between team Y and team X's objectives, his pitch was no longer that team Y was going to create a new insight, but that they were going to replace (or modernize) the legacy statistics based on-prem tools with more accurate cloud based ML tools. Never mind that there was no support in the academic literature for the idea that Naive Bayes works better than the Econometric approaches used by team X, let alone the additional wacky idea that Bayesian Optimization would definitely outperform the QP solvers that were running in production.  Unbeknownst to team X, the original Bayesian risk analysis project has now grown into a multimillion dollar major overhaul initiative, which included the eventual replacement of all of the tools and functions supported by team X along with the necessary migration to the cloud. The CIO and a couple of business VPs are on now board, and tech leadership is treating it as a done deal. An outside vendor, a startup who nobody had heard of, was contracted to help build the platform, since team Y has no engineering skills. The choice was deliberate, as calling on any of the established consulting or software companies would have eventually led leadership to the conclusion that team X was better suited for a transformation on this scale than team Y.  Team Y has no experience with any major ERP deployments, and no domain knowledge, yet they are being tasked with fundamentally changing the business process that is at the core of Company A's business. Their models actually perform worse than those deployed by team X, and their architecture is hopelessly simplistic, compared to what is necessary for running such a solution in production.  Ironically, using Bayesian thinking and based on all the evidence, the likelihood that team Y succeeds is close to 0%. At best, the project is going to end up being a write off of 50 million dollars or more. Once the !@#$!@hits the fan, a couple of executive heads are going to role, and dozens of people will get laid off. At worst, given how vital risk analysis and portfolio optimization is to Company A's revenue stream, the failure will eventually sink the whole company. It probably won't go bankrupt, but it will lose a significant portion of its business and work force. Failed ERP implementations can and do sink large companies: Just see what happened to National Grid US, SuperValu or Target Canada.  One might argue that this is more about corporate disfunction and bad leadership than about data science and AI. But I disagree. I think the core driver of this debacle is indeed the blind faith in Data Scientists, ML models and the promise of AI, and the overall culture of hype and self promotion that is very common among the ML crowd.  We haven't seen the end of this story: I sincerely hope that this ends well for the sake of my colleagues and all involved. Company A is a good company, and both its customers and its employees deserver better. But the chances of that happening are negligible given all the information available, and this failure will hit my company hard.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[N] AI Robotics startup Covariant (founded by Peter Chen, Pieter Abbeel, other Berkeley / ex-OpenAI folks) just raised $40M in Series B funding round. “Covariant has recently seen increased usage from clients hoping to avoid supply chain disruption due to the coronavirus pandemic.”
reddit
LLM Vibe Score0
Human Vibe Score0
baylearnThis week

[N] AI Robotics startup Covariant (founded by Peter Chen, Pieter Abbeel, other Berkeley / ex-OpenAI folks) just raised $40M in Series B funding round. “Covariant has recently seen increased usage from clients hoping to avoid supply chain disruption due to the coronavirus pandemic.”

h/t their announcement, VB and WSJ article: Logistics AI Startup Covariant Reaps $40 Million in Funding Round Company plans to explore uses of machine learning for automation beyond warehouse operations Artificial-intelligence robotics startup Covariant raised $40 million to expand its logistics automation technology to new industries and ramp up hiring, the company said Wednesday. The Berkeley, Calif.-based company makes AI software that it says helps warehouse robots pick objects at a faster rate than human workers, with a roughly 95% accuracy rate. Covariant is working with Austrian logistics-automation company Knapp AG and the robotics business of Swiss industrial conglomerate ABB Ltd., which provide hardware such as robot arms or conveyor belts to pair with the startup’s technology platform. “What we’ve built is a universal brain for robotic manipulation tasks,” Covariant co-founder and Chief Executive Peter Chen said in an interview. “We provide the software, they provide the rest of the systems.” Logistics-sector appetite for such technology is growing as distribution and fulfillment operations that have relied on human labor look to speed output and meet rising digital commerce demand. The coronavirus pandemic has accelerated that interest as businesses have sought to adjust their operations to volatile swings in consumer demand and to new restrictions, such as spacing workers further apart to guard against contagion. That has provided a bright spot for some technology startups even as many big backers scale back venture-capital spending. Last month logistics delivery platform Bringg said it raised $30 million in a Series D funding round, for example, as demand for home delivery of food, household goods and e-commerce staples soared among homebound consumers. Covariant’s Series B round brings the company’s total funding to $67 million. New investor Index Ventures led the round, with participation from existing investor Amplify Partners and new investors including Radical Ventures. Mr. Chen said the funding will be used to explore the technology’s potential application in other markets such as manufacturing, recycling or agriculture “where there are repetitive manual processes.” Covariant also plans to hire more engineering and other staff, he said. Covariant was founded in 2017 and now has about 50 employees. The company’s technology uses camera systems to capture images of objects, and artificial intelligence to analyze objects and how to pick them up. Machine learning helps Covariant-powered robots learn from experience. The startup’s customers include a German electrical supplies wholesaler that uses the technology to control a mechanical arm that picks out orders of circuit boards, switches and other goods.

[P] Contextual AI – SAP’s first open-source machine learning library for explainability
reddit
LLM Vibe Score0
Human Vibe Score1
seun_sustioThis week

[P] Contextual AI – SAP’s first open-source machine learning library for explainability

Machine learning shows great promise in the enterprise software space to change the way data is processed, insights are gained, and businesses are run. However, given how relatively new this field is, data scientists and machine learning engineers often find themselves possessing more questions than answers about their data and machine learning models. These may include: Is my data “valid,” or fit for training a machine learning model? Which parts of my data are more influential on the machine learning model’s learning outcomes? Why did the model make that prediction? At SAP, where we develop enterprise software embedded with machine learning, answering such questions with explainability is becoming a critical part of building trust with customers. Indeed, in products such as SAP Cash Application, where we automate the processing of various financial documents, providing a “why” to machine learning predictions has not only built transparency to our users, but it also helps establish the necessary auditability in our products. Explainability is thus becoming a topic of increasing interest to many in the company, and a group of us have been working on developing reusable explainability components that can be used by others. We are therefore excited to announce the release of contextual AI, SAP’s first open-source machine learning framework focused on adding explainability to various stages of a machine learning pipeline – data, training, and inference – thereby addressing the trust gap between machine learning systems and their end-users. Below are a few links for more information about our project: GitHub repository Documentation Blog post on the release We welcome any questions/feedback/contributions. Thanks, and take care!

[N] AI Robotics startup Covariant (founded by Peter Chen, Pieter Abbeel, other Berkeley / ex-OpenAI folks) just raised $40M in Series B funding round. “Covariant has recently seen increased usage from clients hoping to avoid supply chain disruption due to the coronavirus pandemic.”
reddit
LLM Vibe Score0
Human Vibe Score0
baylearnThis week

[N] AI Robotics startup Covariant (founded by Peter Chen, Pieter Abbeel, other Berkeley / ex-OpenAI folks) just raised $40M in Series B funding round. “Covariant has recently seen increased usage from clients hoping to avoid supply chain disruption due to the coronavirus pandemic.”

h/t their announcement, VB and WSJ article: Logistics AI Startup Covariant Reaps $40 Million in Funding Round Company plans to explore uses of machine learning for automation beyond warehouse operations Artificial-intelligence robotics startup Covariant raised $40 million to expand its logistics automation technology to new industries and ramp up hiring, the company said Wednesday. The Berkeley, Calif.-based company makes AI software that it says helps warehouse robots pick objects at a faster rate than human workers, with a roughly 95% accuracy rate. Covariant is working with Austrian logistics-automation company Knapp AG and the robotics business of Swiss industrial conglomerate ABB Ltd., which provide hardware such as robot arms or conveyor belts to pair with the startup’s technology platform. “What we’ve built is a universal brain for robotic manipulation tasks,” Covariant co-founder and Chief Executive Peter Chen said in an interview. “We provide the software, they provide the rest of the systems.” Logistics-sector appetite for such technology is growing as distribution and fulfillment operations that have relied on human labor look to speed output and meet rising digital commerce demand. The coronavirus pandemic has accelerated that interest as businesses have sought to adjust their operations to volatile swings in consumer demand and to new restrictions, such as spacing workers further apart to guard against contagion. That has provided a bright spot for some technology startups even as many big backers scale back venture-capital spending. Last month logistics delivery platform Bringg said it raised $30 million in a Series D funding round, for example, as demand for home delivery of food, household goods and e-commerce staples soared among homebound consumers. Covariant’s Series B round brings the company’s total funding to $67 million. New investor Index Ventures led the round, with participation from existing investor Amplify Partners and new investors including Radical Ventures. Mr. Chen said the funding will be used to explore the technology’s potential application in other markets such as manufacturing, recycling or agriculture “where there are repetitive manual processes.” Covariant also plans to hire more engineering and other staff, he said. Covariant was founded in 2017 and now has about 50 employees. The company’s technology uses camera systems to capture images of objects, and artificial intelligence to analyze objects and how to pick them up. Machine learning helps Covariant-powered robots learn from experience. The startup’s customers include a German electrical supplies wholesaler that uses the technology to control a mechanical arm that picks out orders of circuit boards, switches and other goods.

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.
reddit
LLM Vibe Score0
Human Vibe Score0.6
AlexSnakeKingThis week

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.

TD;LR: At Company A, Team X does advanced analytics using on-prem ERP tools and older programming languages. Their tools work very well and are designed based on very deep business and domain expertise. Team Y is a new and ambitious Data Science team that thinks they can replace Team X's tools with a bunch of R scripts and a custom built ML platform. Their models are simplistic, but more "fashionable" compared to the econometric models used by Team X, and team Y benefits from the ML/DS moniker so leadership is allowing Team Y to start a large scale overhaul of the analytics platform in question. Team Y doesn't have the experience for such a larger scale transformation, and is refusing to collaborate with team X. This project is very likely going to fail, and cause serious harm to the company as a whole financially and from a people perspective. I argue that this is not just because of bad leadership, but also because of various trends and mindsets in the DS community at large. Update (Jump to below the line for the original story): Several people in the comments are pointing out that this just a management failure, not something due to ML/DS, and that you can replace DS with any buzz tech and the story will still be relevant. My response: Of course, any failure at an organization level is ultimately a management failure one way or the other. Moreover, it is also the case that ML/DS when done correctly, will always improve a company's bottom line. There is no scenario where the proper ML solution, delivered at a reasonable cost and in a timely fashion, will somehow hurt the company's bottom line. My point is that in this case management is failing because of certain trends and practices that are specific to the ML/DS community, namely: The idea that DS teams should operate independently of tech and business orgs -- too much autonomy for DS teams The disregard for domain knowledge that seems prevalent nowadays thanks to the ML hype, that DS can be generalists and someone with good enough ML chops can solve any business problem. That wasn't the case when I first left academia for the industry in 2009 (back then nobody would even bother with a phone screen if you didn't have the right domain knowledge). Over reliance on resources who check all the ML hype related boxes (knows Python, R, Tensorflow, Shiny, etc..., has the right Coursera certifications, has blogged on the topic, etc...), but are lacking in depth of experience. DS interviews nowadays all seem to be: Can you tell me what a p-value is? What is elastic net regression? Show me how to fit a model in sklearn? How do you impute NAs in an R dataframe? Any smart person can look those up on Stackoverflow or Cross-Validated,.....Instead teams should be asking stuff like: why does portfolio optimization use QP not LP? How does a forecast influence a customer service level? When should a recommendation engine be content based and when should it use collaborative filtering? etc... (This is a true story, happening to the company I currently work for. Names, domains, algorithms, and roles have been shuffled around to protect my anonymity)  Company A has been around for several decades. It is not the biggest name in its domain, but it is a well respected one. Risk analysis and portfolio optimization have been a core of Company A's business since the 90s. They have a large team of 30 or so analysts who perform those tasks on a daily basis. These analysts use ERP solutions implemented for them by one the big ERP companies (SAP, Teradata, Oracle, JD Edwards,...) or one of the major tech consulting companies (Deloitte, Accenture, PWC, Capgemini, etc...) in collaboration with their own in house engineering team. The tools used are embarrassingly old school: Classic RDBMS running on on-prem servers or maybe even on mainframes, code written in COBOL, Fortran, weird proprietary stuff like ABAP or SPSS.....you get the picture. But the models and analytic functions were pretty sophisticated, and surprisingly cutting edge compared to the published academic literature. Most of all, they fit well with the company's enterprise ecosystem, and were honed based on years of deep domain knowledge.  They have a tech team of several engineers (poached from the aforementioned software and consulting companies) and product managers (who came from the experienced pools of analysts and managers who use the software, or poached from business rivals) maintaining and running this software. Their technology might be old school, but collectively, they know the domain and the company's overall architecture very, very well. They've guided the company through several large scale upgrades and migrations and they have a track record of delivering on time, without too much overhead. The few times they've stumbled, they knew how to pick themselves up very quickly. In fact within their industry niche, they have a reputation for their expertise, and have very good relations with the various vendors they've had to deal with. They were the launching pad of several successful ERP consulting careers.  Interestingly, despite dealing on a daily basis with statistical modeling and optimization algorithms, none of the analysts, engineers, or product managers involved describe themselves as data scientists or machine learning experts. It is mostly a cultural thing: Their expertise predates the Data Science/ML hype that started circa 2010, and they got most of their chops using proprietary enterprise tools instead of the open source tools popular nowadays. A few of them have formal statistical training, but most of them came from engineering or domain backgrounds and learned stats on the fly while doing their job. Call this team "Team X".  Sometime around the mid 2010s, Company A started having some serious anxiety issues: Although still doing very well for a company its size, overall economic and demographic trends were shrinking its customer base, and a couple of so called disruptors came up with a new app and business model that started seriously eating into their revenue. A suitable reaction to appease shareholders and Wall Street was necessary. The company already had a decent website and a pretty snazzy app, what more could be done? Leadership decided that it was high time that AI and ML become a core part of the company's business. An ambitious Manager, with no science or engineering background, but who had very briefly toyed with a recommender system a couple of years back, was chosen to build a data science team, call it team "Y" (he had a bachelor's in history from the local state college and worked for several years in the company's marketing org). Team "Y" consists mostly of internal hires who decided they wanted to be data scientists and completed a Coursera certification or a Galvanize boot camp, before being brought on to the team, along with a few of fresh Ph.D or M.Sc holders who didn't like academia and wanted to try their hand at an industry role. All of them were very bright people, they could write great Medium blog posts and give inspiring TED talks, but collectively they had very little real world industry experience. As is the fashion nowadays, this group was made part of a data science org that reported directly to the CEO and Board, bypassing the CIO and any tech or business VPs, since Company A wanted to claim the monikers "data driven" and "AI powered" in their upcoming shareholder meetings. In 3 or 4 years of existence, team Y produced a few Python and R scripts. Their architectural experience  consisted almost entirely in connecting Flask to S3 buckets or Redshift tables, with a couple of the more resourceful ones learning how to plug their models into Tableau or how to spin up a Kuberneties pod.  But they needn't worry: The aforementioned manager, who was now a director (and was also doing an online Masters to make up for his qualifications gap and bolster his chances of becoming VP soon - at least he now understands what L1 regularization is), was a master at playing corporate politics and self-promotion. No matter how few actionable insights team Y produced or how little code they deployed to production, he always had their back and made sure they had ample funding. In fact he now had grandiose plans for setting up an all-purpose machine learning platform that can be used to solve all of the company's data problems.  A couple of sharp minded members of team Y, upon googling their industry name along with the word "data science", realized that risk analysis was a prime candidate for being solved with Bayesian models, and there was already a nifty R package for doing just that, whose tutorial they went through on R-Bloggers.com. One of them had even submitted a Bayesian classifier Kernel for a competition on Kaggle (he was 203rd on the leaderboard), and was eager to put his new-found expertise to use on a real world problem. They pitched the idea to their director, who saw a perfect use case for his upcoming ML platform. They started work on it immediately, without bothering to check whether anybody at Company A was already doing risk analysis. Since their org was independent, they didn't really need to check with anybody else before they got funding for their initiative. Although it was basically a Naive Bayes classifier, the term ML was added to the project tile, to impress the board.  As they progressed with their work however, tensions started to build. They had asked the data warehousing and CA analytics teams to build pipelines for them, and word eventually got out to team X about their project. Team X was initially thrilled: They offered to collaborate whole heartedly, and would have loved to add an ML based feather to their already impressive cap. The product owners and analysts were totally onboard as well: They saw a chance to get in on the whole Data Science hype that they kept hearing about. But through some weird mix of arrogance and insecurity, team Y refused to collaborate with them or share any of their long term goals with them, even as they went to other parts of the company giving brown bag presentations and tutorials on the new model they created.  Team X got resentful: from what they saw of team Y's model, their approach was hopelessly naive and had little chances of scaling or being sustainable in production, and they knew exactly how to help with that. Deploying the model to production would have taken them a few days, given how comfortable they were with DevOps and continuous delivery (team Y had taken several months to figure out how to deploy a simple R script to production). And despite how old school their own tech was, team X were crafty enough to be able to plug it in to their existing architecture. Moreover, the output of the model was such that it didn't take into account how the business will consume it or how it was going to be fed to downstream systems, and the product owners could have gone a long way in making the model more amenable to adoption by the business stakeholders. But team Y wouldn't listen, and their leads brushed off any attempts at communication, let alone collaboration. The vibe that team Y was giving off was "We are the cutting edge ML team, you guys are the legacy server grunts. We don't need your opinion.", and they seemed to have a complete disregard for domain knowledge, or worse, they thought that all that domain knowledge consisted of was being able to grasp the definitions of a few business metrics.  Team X got frustrated and tried to express their concerns to leadership. But despite owning a vital link in Company A's business process, they were only \~50 people in a large 1000 strong technology and operations org, and they were several layers removed from the C-suite, so it was impossible for them to get their voices heard.  Meanwhile, the unstoppable director was doing what he did best: Playing corporate politics. Despite how little his team had actually delivered, he had convinced the board that all analysis and optimization tasks should now be migrated to his yet to be delivered ML platform. Since most leaders now knew that there was overlap between team Y and team X's objectives, his pitch was no longer that team Y was going to create a new insight, but that they were going to replace (or modernize) the legacy statistics based on-prem tools with more accurate cloud based ML tools. Never mind that there was no support in the academic literature for the idea that Naive Bayes works better than the Econometric approaches used by team X, let alone the additional wacky idea that Bayesian Optimization would definitely outperform the QP solvers that were running in production.  Unbeknownst to team X, the original Bayesian risk analysis project has now grown into a multimillion dollar major overhaul initiative, which included the eventual replacement of all of the tools and functions supported by team X along with the necessary migration to the cloud. The CIO and a couple of business VPs are on now board, and tech leadership is treating it as a done deal. An outside vendor, a startup who nobody had heard of, was contracted to help build the platform, since team Y has no engineering skills. The choice was deliberate, as calling on any of the established consulting or software companies would have eventually led leadership to the conclusion that team X was better suited for a transformation on this scale than team Y.  Team Y has no experience with any major ERP deployments, and no domain knowledge, yet they are being tasked with fundamentally changing the business process that is at the core of Company A's business. Their models actually perform worse than those deployed by team X, and their architecture is hopelessly simplistic, compared to what is necessary for running such a solution in production.  Ironically, using Bayesian thinking and based on all the evidence, the likelihood that team Y succeeds is close to 0%. At best, the project is going to end up being a write off of 50 million dollars or more. Once the !@#$!@hits the fan, a couple of executive heads are going to role, and dozens of people will get laid off. At worst, given how vital risk analysis and portfolio optimization is to Company A's revenue stream, the failure will eventually sink the whole company. It probably won't go bankrupt, but it will lose a significant portion of its business and work force. Failed ERP implementations can and do sink large companies: Just see what happened to National Grid US, SuperValu or Target Canada.  One might argue that this is more about corporate disfunction and bad leadership than about data science and AI. But I disagree. I think the core driver of this debacle is indeed the blind faith in Data Scientists, ML models and the promise of AI, and the overall culture of hype and self promotion that is very common among the ML crowd.  We haven't seen the end of this story: I sincerely hope that this ends well for the sake of my colleagues and all involved. Company A is a good company, and both its customers and its employees deserver better. But the chances of that happening are negligible given all the information available, and this failure will hit my company hard.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.
reddit
LLM Vibe Score0
Human Vibe Score1
SpicyCopyThis week

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.

Hey guys, I'm working in a growth marketing agency. Marketing tools are 30% of what we do, so we use them a lot and experiment with the new ones as much as possible. There are thousands of tools and it's easy to get lost, so I wanted to share the tools we use most on a daily basis. And divide the list into 14 categories. I thought this could be handy for Entrepreneurs subreddit. Why adopt tools? I see marketing tools as tireless colleagues. If you can't hire an employee, choosing the right tool can solve your problems, because they Are super cheap. Work 7/24 for you. Don’t make mistakes. Don’t need management. (or needless management) Help you to automate the majority of your lead gen process. Onwards to the list. (With the pricings post ended up quite long, you can find a link in the end if you want to check the prices) Email marketing tools #1 ActiveCampaign is armed with the most complicated email automation features and has the most intuitive user experience. It feels like you already know how to use it. \#2 Autopilot is visual marketing automation and customer journey tool that helps you acquire, nurture based on behaviors, interest etc. #3 Mailjet: This is the tool we use to send out bulky email campaigns such as newsletters. It doesn't have sexy features like others but does its job for a cheap price. Email address finders #4 Skrapp finds email of your contacts by name and company. It also works with LinkedIn Sales Navigator and can extract thousands of emails in bulk + have a browser add-on. #5 Hunter: Similar to Skrapp but doesn't work with LinkedIn Sales Navigator directly. In addition, there are email templates and you can set up email campaigns. Prospecting and outreach tools #6 Prospect combines the personal emails, follow-up calls, other social touches and helps you create multichannel campaigns.  #7 Reply is a more intuitive version of Prospect. It is easy to learn and use; their UX makes you feel good and sufficient.  CRM tools #8 Salesflare helps you to stop managing your data and start managing your customers. Not yet popular as Hubspot and etc but the best solution for smaller B2B businesses. (we're fans) \#9 Hubspot: The most popular CRM for good reason and has a broader product range you can adopt in your next steps. Try this if you have a bulky list of customers because it is free. #10 Pardot: Pardot is by Salesforce, it's armed with features that can close the gap between marketing and sales. Sales Tools #11 Salesforce is the best sales automation and lead management software. It helps you to create complicated segmentations and run, track, analyze campaigns from the same dashboard. #12 LinkedIn Sales Navigator gives you full access to LinkedIn's user database. You can even find a kidnapped CEO if you know how to use it with other marketing automation tools like Skrapp. #13 Pipedrive is a simple tool and excels in one thing. It tracks your leads and tells you when to take the next action. It makes sales easier. #14 Qwilr creates great-looking docs, at speed. You can design perfect proposals, quotes, client updates, and more in a flash. We use it a lot to close deals, it's effective. #15 Crystalknows is an add-on that tells you anyone’s personality on LinkedIn and gives you a detailed approach specific to that person. It's eerily accurate. #16 Leadfeeder shows you the companies that visited your website. Tells how they found you and what they’re interested in. It has a free version. Communication Tools #17 Intercom is a sweet and smart host that welcomes your visitors when you’re not home. It’s one of the best chatbot tools in the market. #18 Drift is famous for its conversational marketing features and more sales-focused than Intercom. #19 Manychat is a chatbot that helps you create high converting Facebook campaigns. #20 Plann3r helps you create your personalized meeting page. You can schedule meetings witch clients, candidates, and prospects. #21 Loom is a video messaging tool, it helps you to be more expressive and create closer relationships. #22 Callpage collects your visitors’ phone number and connects you with them in seconds. No matter where you are. Landing page tools #23 Instapage is the best overall landing page builder. It has a broad range of features and even squirrel can build a compelling landing page with templates. No coding needed. #24 Unbounce can do everything that Instapage does and lets you build a great landing page without a developer. But it's less intuitive. Lead generation / marketing automation tools #25 Phantombuster is by far the most used lead generation software in our tool kit. It extracts data, emails, sends requests, customized messages, and does many things on autopilot in any platform. You can check this, this and this if you want to see it in action. #26 Duxsoup is a Google Chrome add-on and can also automate some of LinkedIn lead generation efforts like Phantombuster. But not works in the cloud. #27 Zapier is a glue that holds all the lead generation tools together. With Zapier, You can connect different marketing tools and no coding required. Conversion rate optimization tools #28 Hotjar tracks what people are doing on your website by recording sessions and capturing mouse movements. Then it gives you a heatmap. #29 UsabilityHub shows your page to a digital crowd and measures the first impressions and helps you to validate your ideas. #30 Optinmonster is a top tier conversion optimization tool. It helps you to capture leads and enables you to increase conversions rates with many features. #31 Notifia is one mega tool of widgets that arms your website with the wildest social proof and lead capturing tactics. #32 Sumo is a much simpler version of Notifia. But Sumo has everything to help you capture leads and build your email lists. Web scrapers #33 Data Miner is a Google Chrome browser extension that helps you scrape data from web pages and into a CSV file or Excel spreadsheet. #34 Webscraper does the same thing as Data Miner; however, it is capable of handling more complex tasks. SEO and Content #35 Grammarly: Your English could be your first language and your grammar could be better than Shakespeare. Grammarly still can make your writing better. #36 Hemingwayapp is a copywriting optimization tool that gives you feedback about your copy and improves your readability score, makes your writing bolder and punchier. Free. #37 Ahrefs is an all-rounder search engine optimization tool that helps you with off-page, on-page or technical SEO. #38 SurferSEO makes things easier for your on-page SEO efforts. It’s a tool that analyzes top Google results for specific keywords and gives you a content brief based on that data. Video editing and design tools #39 Canva is a graphic design platform that makes everything easy. It has thousands of templates for anything from Facebook ads, stylish presentations to business cards.  #40 Kapwing is our go-to platform for quick video edits. It works on the browser and can help you to create stylish videos, add subtitles, resize videos, create memes, or remove backgrounds. #41 Animoto can turn your photos and video clip into beautiful video slideshows. It comes handy when you want to create an advertising material but don’t have a budget. Advertising tools #42 AdEspresso lets you create and test multiple ads with few clicks. You can optimize your FB, IG, and Google ads from this tool and measure your ads with in-depth analytics. #43 AdRoll is an AI-driven platform that connects and coordinates marketing efforts across ads, email, and online stores. Other tools #44 Replug helps you to shorten, track, optimize your links with call-to-actions, branded links, and retargeting pixels #45 Draw.io = Mindmaps, schemes, and charts. With Draw.io, you can put your brain in a digital paper in an organized way. #46 Built With is a tool that finds out what websites are built with. So you can see what tools they're using and so on. #47 Typeform can turn data collection into an experience with Typeform. This tool helps you to engage your audience with conversational forms or surveys and help you to collect more data. #48 Livestorm helped us a lot, especially in COVID-19 tiles. It’s a webinar software that works on your browser, mobile, and desktop. #49 Teachable \- If you have an online course idea but hesitating because of the production process, Teachable can help you. It's easy to configure and customizable for your needs. #50 Viral Loops provides a revolutionary referral marketing solution for modern marketers. You can create and run referral campaigns in a few clicks with templates. Remember, most of these tools have a free trial or free version. Going over them one by one can teach you a lot and help you grow your business with less work power in the early stages of your business. I hope you enjoyed the read and can find some tools to make things easier! Let me know about your favorite tools in the comments, so I can try them out. \------ If you want to check the prices and see a broader explanation about the tools, you can go here.

How I Reduced 🔽Product Development time by 50% & increased 🔼Revenue multi-folds by incorporating No-Code, Low Code & AI tools in our software development workflow
reddit
LLM Vibe Score0
Human Vibe Score1
nikhil_webfostersThis week

How I Reduced 🔽Product Development time by 50% & increased 🔼Revenue multi-folds by incorporating No-Code, Low Code & AI tools in our software development workflow

I run a web development agency, providing SaaS & bespoke Management systems development. Over the years we almost 🔽reduced the software development time by 50% ... ...and increased our revenue. Simultaneously clients are much happier as they get the product quicker. Here is how we achieved it: 1/ Using Low-Code: ➡️ Provide a visual way to software development. ➡️ I just need to build the logic using the interface, check the preview multiple times to refine features, and then download or push the code to GitHub. The benefits are obvious: ⚡ Much faster compared to writing codes 🔄 Iteration & improvements done quickly. 🚀 Idea to basic tiny MVP within few hours. 🧩 Non-developers can build the initial prototype ✅We use https://quickadminpanel.com/ to quickly build admin panel. It provides CRUD, Authentication, Authorisation, API, Model, View, and Controller in PHP Laravel frameworks. ​ 2/ Using AI: Once adminpanel is ready, customers get to see something tangible from his idea. It also uncovers many unseen features, benefits, and roadblocks for us & customers. No-code tools already did a lot of work for us, now we improve the logic where required, build new interfaces, and do integrations. With chatGPT as a development companion, it makes the entire development and design superfast. by helping to build logic quickly, automate mundane tasks, and overcome any roadblocks. ​ Some of our common use cases are: ➡️ Writing PRD ➡️ Brand Guidelines - Color pallet selection, Fonts, images, etc based on targetted niche. ➡️ Designing new component ➡️ Logic building & solving ➡️ Automated Recurring tasks ✅ We use a combination of chatGPT & Github Copilot for AI Assistance. ​ 3/ Using No-Code: ➡️ Allows to quickly build without writing code. ➡️ Provides complete end-to-end solution (application hosting, database hosting, API integrations, etc) ➡️ Unlike Low-code it doesn't provide an option to download code. ✅ Once the MVP is done, we use FormNX to quickly build various types of forms required, like contact forms, Survey forms, initial waiting list forms, Churn Survey forms, Webinar registration & much more. With this customers can build/change forms, embed them in cms, or share them on social media without relying on developers. \\\\\* Doing these 3 has truly helped our agency, leading to substantial time savings, revenue growth, and improved client satisfaction. If you’re an agency owner, i highly recommend doing it to supercharge your agency's growth. If any questions feel free to comment below, happy to help.

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company
reddit
LLM Vibe Score0
Human Vibe Score0.778
wutangsamThis week

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company

I’ve learned so much over the years from this subreddit. I thought I’d return the favour and share some of my own learnings. In November 2020 my best friend and I had an idea. “What if we could find out which stocks the Internet is talking about?” This formed the origins of Ticker Nerd. 9 months later we sold Ticker Nerd to Finder (an Australian fintech company valued at around $500m). In this post, I am going to lay out how we got there. How we came up with the idea First off, like other posts have covered - you don’t NEED a revolutionary or original idea to build a business. There are tonnes of “boring” businesses making over 7 figures a year e.g. law firms, marketing agencies, real estate companies etc. If you’re looking for an exact formula to come up with a great business idea I’m sorry, but it doesn’t exist. Finding new business opportunities is more of an art than a science. Although, there are ways you can make it easier to find inspiration. Below are the same resources I use for inspiration. I rarely ever come up with ideas without first searching one of the resources below for inspiration: Starter Story Twitter Startup Ideas My First Million Trends by the Hustle Trends VC To show how you how messy, random and unpredictable it can be to find an idea - let me explain how my co-founder and I came up with the idea for Ticker Nerd: We discovered a new product on Twitter called Exploding Topics. It was a newsletter that uses a bunch of software and algorithms to find trends that are growing quickly before they hit the mainstream. I had recently listened to a podcast episode from My First Million where they spoke about Motley Fool making hundreds of millions from their investment newsletters. We asked ourselves what if we could build a SaaS platform similar to Exploding Topics but it focused on stocks? We built a quick landing page using Carrd + Gumroad that explained what our new idea will do and included a payment option to get early access for $49. We called it Exploding Stock (lol). We shared it around a bunch of Facebook groups and subreddits. We made $1,000 in pre-sales within a couple days. My co-founder and I can’t code so we had to find a developer to build our idea. We interviewed a bunch of potential candidates. Meanwhile, I was trawling through Wall Street Bets and found a bunch of free tools that did roughly what we wanted to build. Instead of building another SaaS tool that did the same thing as these free tools we decided to pivot from our original idea. Our new idea = a paid newsletter that sends a weekly report that summarises 2 of the best stocks that are growing in interest on the Internet. We emailed everyone who pre-ordered access, telling them about the change and offered a full refund if they wanted. tl;dr: We essentially combined two existing businesses (Exploding Topics and Motley Fool) and made it way better. We validated the idea by finding out if people will actually pay money for it BEFORE we decided to build it. The idea we started out with changed over time. How to work out if your idea will actually make money It’s easy to get hung up on designing the logo or choosing the perfect domain name for your new idea. At this stage none of that matters. The most important thing is working out if people will pay money for it. This is where validation comes in. We usually validate ideas using Carrd. It lets you build a simple one page site without having to code. The Ticker Nerd site was actually built using a Carrd template. Here’s how you can do it yourself (at a high level): Create a Carrd pro account (yes it's a $49 one off payment but you’ll get way more value out of it). Buy a cheap template and send it to your Carrd account. You can build your own template but this will save you a lot of time. Once the template reaches your Carrd account, duplicate it. Leave the original so it can be duplicated for other ideas. Jump onto Canva (free) and create a logo using the free logos provided. Import your logo. Add copy to the page that explains your idea. Use the AIDA formula. Sign up to Gumroad (free) and create a pre-sale campaign. Create a discounted lifetime subscription or version of the product. This will be used pre-sales. Add the copy from the site into the pre-sale campaign on Gumroad. Add a ‘widget’ to Carrd and connect it to Gumroad using the existing easy integration feature. Purchase a domain name. Connect it to Carrd. Test the site works. Share your website Now the site is ready you can start promoting it in various places to see how the market reacts. An easy method is to find relevant subreddits using Anvaka (Github tool) or Subreddit Stats. The Anvaka tool provides a spider map of all the connected subreddits that users are active in. The highlighted ones are most relevant. You can post a thread in these subreddits that offer value or can generate discussion. For example: ‘I’m creating a tool that can write all your copy, would anyone actually use this?’ ‘What does everything think of using AI to get our copy written faster?’ ‘It’s time to scratch my own itch, I’m creating a tool that writes marketing copy using GPT-3. What are the biggest problems you face writing marketing copy? I’ll build a solution for it’ Reddit is pretty brutal these days so make sure the post is genuine and only drop your link in the comments or in the post if it seems natural. If people are interested they’ll ask for the link. Another great place to post is r/entrepreuerridealong and r/business_ideas. These subreddits expect people to share their ideas and you’ll likely make some sales straight off the bat. I also suggest posting in some Facebook groups (related to your idea) as well just for good measure. Assess the results If people are paying you for early access you can assume that it’s worth building your idea. The beauty of posting your idea on Reddit or in Facebook groups is you’ll quickly learn why people love/hate your idea. This can help you decide how to tweak the idea or if you should drop it and move on to the next one. How we got our first 100 customers (for free) By validating Ticker Nerd using subreddits and Facebook groups this gave us our first paying customers. But we knew this wouldn’t be sustainable. We sat down and brainstormed every organic strategy we could use to get traction as quickly as possible. The winner: a Product Hunt launch. A successful Product Hunt launch isn’t easy. You need: Someone that has a solid reputation and audience to “hunt” your product (essentially an endorsement). An aged Product Hunt account - you can’t post any products if your account is less than a week old. To be following relevant Product Hunt members - since they get notified when you launch a new product if they’re following you. Relationships with other builders and makers on Product Hunt that also have a solid reputation and following. Although, if you can pull it off you can get your idea in front of tens of thousands of people actively looking for new products. Over the next few weeks, I worked with my co-founder on connecting with different founders, indie hackers and entrepreneurs mainly via Twitter. We explained to them our plans for the Product Hunt launch and managed to get a small army of people ready to upvote our product on launch day. We were both nervous on the day of the launch. We told ourselves to have zero expectations. The worst that could happen was no one signed up and we were in the same position as we’re in now. Luckily, within a couple of hours Ticker Nerd was on the homepage of Product Hunt and in the top 10. The results were instant. After 24 hours we had around 200 people enter their payment details to sign up for our free trial. These signups were equal to around $5,800 in monthly recurring revenue. \-- I hope this post was useful! Drop any questions you have below and I’ll do my best to respond :)

Tech founders -- you're being lied to
reddit
LLM Vibe Score0
Human Vibe Score1
SaskjimboThis week

Tech founders -- you're being lied to

I've been meaning to post this for a while. I saw a video recently that put me over the edge. You guys need to know what's up. Venture capitalists, angels, and accelerators all want you to build fast and fail faster. They want to you get your mvp buult in as little as a couple weeks. I'm a software dev and I own SaaS company. I'm here to tell you that you're being lied to. It's 2023. Unless some customer is about to drown because of their problem, they are not going to respect, or consider your trashy looking mvp. People these days expect a certain level of polish and professionalism when it comes to software before they give it more than 3s of their time. If your software took 80 hours to build, good chance that even customers from your target market will disregard it unless you're solving some insanely painful problem. And if you're using you're mvp for market research, people aren't going to talk to you if they believe that they spent more time getting dressed that morning than you put into your product. Build things that you can be proud of. Time boxing your first dev cycle into a few days or even weeks limits the scope of what you can build. I've spent more time than this figuring out a single api. Its this time boxing that leads 1000s of people to build the same shit. It's low quality work and exists in a super saturated market. And given the small scope of the product, the amount you'll be able to charge means the LTV of a customer will be lower than you CAC. Meaning your company will always lose money. The negative reception from your pre alpha product will have you think that people don't like you or your work. It's simply not the case. Few on this planet could produce something captivating in 100 hours. VCs tell you to ship your garbage MVP asap because of the following reason. They view every product that ships as a lotto ticket. If they like the look of it, they'll buy a ticket. And the more products there are and the shittier they are, it means a) they have more ticket numbers to select from and b) the cost of the ticket is a lot cheaper than it would otherwise be if the product was nice. VCs are not your friends and often, don't know how to build or market products. They are in it for the money and any advice they give to you or the community will be self serving. The indie community needs to wake up and realize that quality software built by a small team that people will pay for in this saturated market often takes months if not years to build. The idea of building a product and putting it in front of customers in 2 weeks is dumb. I've used some of these products and they are so limited in scope, broken and poorly designed that I don't give them anymore than a minute or two of my time. Note: validate your ideas before writing code. I'm not advocating spending a year writing software for an unproven market or problem. Yes, there are exceptions and stories of people shipping in no time and getting traction, but these are not the norm. Lastly, this philosophy is why you have and will continue to see a million products centered around AI. For those of you who aren't devs, Open AI made chatgpt accessible to developers and it's like 3 lines of code to ask it a question, get a response and save that response within your program. It's super low effort to integrate and that's why everyone will be building the same types of products with it. Tl;dr: Investors and gurus have agendas. Be logical about the level of effort required to build a software company and put forth only work that you're proud of. Being able to code doesn't give you a magical ability to create massive value with only a few weeks of work. You have to grind like pretty much every other successful business owner. I'll likely be banned for this, but fuck it. Ive got a sub where I'll share more insight and ban bullshit and idiotic posts with zero warning. It's not for everyone and I'll usually let you know pretty quick if our relationship isn't going to work. 6000 people and growing. r/cutthebull I'll write a post on that sub in the next few mins on how to guarentee accountability from top level management at your company.

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience
reddit
LLM Vibe Score0
Human Vibe Score1
hopefully_usefulThis week

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience

I met my co-founder in late 2022 after an introduction from a mutual friend to talk about how to find contract Product Management roles. I was sporadically contracting at start-up at the time and he had just come out of another start-up that was wiped out by the pandemic. We hit it off, talking about ideas, sharing what other indie-hackers were doing, and given GPT-3’s prominence at the time, we started throwing around ideas about things we could build with it, if nothing else, just to learn. I should caveat, neither of us were AI experts when starting out, everything we learned has been through Twitter and blogs, my background is as an accountant, and his a consultant. Here’s how it went since then: &#x200B; Nov 2022 (+$50) \- We built a simple tool in around a week using GPT-3 fine-tuning and a no-code tool (Bubble) that helped UK university students write their personal statements for their applications \- We set some Google Ads going and managed to make a few sales (\~$50) in the first week \- OpenAI were still approving applications at the time and said this went against their “ethics” so we had to take it down &#x200B; Dec 2022 (+$200) \- We couldn’t stop coming up with ideas related to AI fine-tuning, but realised it was almost impossible to decide which to pursue \- We needed a deadline to force us so we signed up for the Ben’s Bites hackathon in late December \- In a week, we built and launched a no-code fine-tuning platform, allowing people to create fine-tuned models by dragging and dropping an Excel file onto it \- We launched it on Product Hunt, having no idea how to price it, and somehow managed to get \~2,000 visitors on the site and make 2 sales at $99 &#x200B; Jan 2023 (+$3,000) \- We doubled down on the fine-tuning idea and managed to get up to \~$300 MRR, plus a bunch of one-time sales and a few paid calls to help people get the most out of their models \- We quickly realised that people didn’t want to curate models themselves, they just wanted to dump data and get magic out \- That was when we saw people building “Talk with x book/podcast” on Twitter as side projects and realised that was the missing piece, we needed to turn it into a tool \- We started working on the new product in late January &#x200B; Feb 2023 (+$9,000) \- We started pre-selling access to an MVP for the new product, which allowed people to “chat with their data/content”, we got $5,000 in pre-sales, more than we made from the previous product in total \- By mid-February, after 3 weeks of building we were able to launch and immediately managed to get traction, getting to $1k MRR in < 1 week, building on the hype of ChatGPT and AI (we were very lucky here) &#x200B; Mar - Jul 2023 (+$98,000) \- We worked all the waking hours to keep up with customer demand, bugs, OpenAI issues \- We built integrations for a bunch of services like Slack, Teams, Wordpress etc, added tons of new functionality and continue talking to customers every day \- We managed to grow to $17k MRR (just about enough to cover our living expenses and costs in London) through building in public on Twitter, newsletters and AI directories (and a million other little things) \- We sold our fine-tuning platform for \~$20k and our university project for \~$3k on Acquire &#x200B; Aug 2023 (+$100,000) \- We did some custom development work based on our own product for a customer that proved pretty lucrative &#x200B; Sep - Oct 2023 (+$62,000) \- After 8 months of building constantly, we started digging more seriously into our usage and saw subscriptions plateauing \- We talked to and analysed all our paying users to identify the main use cases and found 75% were for SaaS customer support \- We took the leap to completely rebuild a version of our product around this use case, our biggest to date (especially given most features with no-code took us <1 day) &#x200B; Nov - Dec 2023 (+$53,000) \- We picked up some small custom development work that utilised our own tech \- We’re sitting at around $22k MRR now with a few bigger clients signed up and coming soon \- After 2 months of building and talking to users, we managed to finish our “v2” of our product, focussed squarely on SaaS customer support and launched it today. &#x200B; We have no idea what the response will be to this new version, but we’re pretty happy with it, but couldn’t have planned anything that happened to us in 2023 so who knows what will come of 2024, we just know that we are going to be learning a ton more. &#x200B; Overall, it is probably the most I have had to think in my life - other jobs you can zone out from time to time or rely on someone else if you aren’t feeling it - not when you are doing this, case and point, I am writing this with a banging head-cold right now, but wanted to get this done. A few more things we have learned along the way - context switching is unreal, as is keeping up with, learning and reacting to AI. There isn’t a moment of the day I am not thinking about what we do next. But while in some way we now have hundreds of bosses (our customers) I still haven’t felt this free and can’t imagine ever going back to work for someone else. Next year we’re really hoping to figure out some repeatable distribution channels and personally, I want to get a lot better at creating content/writing, this is a first step! Hope this helps someone else reading this to just try starting something and see what happens.

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security

Uzair Javaid, a Ph.D. with a passion for data privacy, co-founded Betterdata to tackle one of AI's most pressing challenges: protecting privacy while enabling innovation. Recently, Betterdata secured a lucrative contract with the US Department of Homeland Security, 1 of only 4 companies worldwide to do so and the only one in Asia. Here's how he did it: The Story So what's your story? I grew up in Peshawar, Pakistan, excelling in coding despite studying electrical engineering. Inspired by my professors, I set my sights on studying abroad and eventually earned a Ph.D. scholarship at NUS Singapore, specializing in data security and privacy. During my research, I ethically hacked Ethereum and published 15 papers—three times the requirement. While wrapping up my Ph.D., I explored startup ideas and joined Entrepreneur First, where I met Kevin Yee. With his expertise in generative models and mine in privacy, we founded Betterdata. Now, nearly three years in, we’ve secured a major contract with the U.S. Department of Homeland Security—one of only four companies globally and the only one from Asia. The Startup In a nutshell, what does your startup do? Betterdata is a startup that uses AI and synthetic data generation to address two major challenges: data privacy and the scarcity of high-quality data for training AI models. By leveraging generative models and privacy-enhancing technologies, Betterdata enables businesses, such as banks, to use customer data without breaching privacy regulations. The platform trains AI on real data, learns its patterns, and generates synthetic data that mimics the real thing without containing any personal or sensitive information. This allows companies to innovate and develop AI solutions safely and ethically, all while tackling the growing need for diverse, high-quality data in AI development. How did you conduct ideation and validation for your startup? The initial idea for Betterdata came from personal experience. During my Ph.D., I ethically hacked Ethereum’s blockchain, exposing flaws in encryption-based data sharing. This led me to explore AI-driven deep synthesis technology—similar to deepfakes but for structured data privacy. With GDPR impacting 28M+ businesses, I saw a massive opportunity to help enterprises securely share data while staying compliant. To validate the idea, I spoke to 50 potential customers—a number that strikes the right balance. Some say 100, but that’s impractical for early-stage founders. At 50, patterns emerge: if 3 out of 10 mention the same problem, and this repeats across 50, you have 10–15 strong signals, making it a solid foundation for an MVP. Instead of outbound sales, which I dislike, we used three key methods: Account-Based Marketing (ABM)—targeting technically savvy users with solutions for niche problems, like scaling synthetic data for banks. Targeted Content Marketing—regular customer conversations shaped our thought leadership and outreach. Raising Awareness Through Partnerships—collaborating with NUS, Singapore’s PDPC, and Plug and Play to build credibility and educate the market. These strategies attracted serious customers willing to pay, guiding Betterdata’s product development and market fit. How did you approach the initial building and ongoing product development? In the early stages, we built synthetic data generation algorithms and a basic UI for proof-of-concept, using open-source datasets to engage with banks. We quickly learned that banks wouldn't share actual customer data due to privacy concerns, so we had to conduct on-site installations and gather feedback to refine our MVP. Through continuous consultation with customers, we discovered real enterprise data posed challenges, such as missing values, which led us to adapt our prototype accordingly. This iterative approach of listening to customer feedback and observing their usage allowed us to improve our product, enhance UX, and address unmet needs while building trust and loyalty. Working closely with our customers also gives us a data advantage. Our solution’s effectiveness depends on customer data, which we can't fully access, but bridging this knowledge gap gives us a competitive edge. The more customers we test on, the more our algorithms adapt to diverse use cases, making it harder for competitors to replicate our insights. My approach to iteration is simple: focus solely on customer feedback and ignore external noise like trends or advice. The key question for the team is: which customer is asking for this feature or solution? As long as there's a clear answer, we move forward. External influences, such as AI hype, often bring more confusion than clarity. True long-term success comes from solving real customer problems, not chasing trends. Customers may not always know exactly what they want, but they understand their problems. Our job is to identify these problems and solve them in innovative ways. While customers may suggest specific features, we stay focused on solving the core issue rather than just fulfilling their exact requests. The idea aligns with the quote often attributed to Henry Ford: "If I asked people what they wanted, they would have said faster horses." The key is understanding their problems, not just taking requests at face value. How do you assess product-market fit? To assess product-market fit, we track two key metrics: Customers' Willingness to Pay: We measure both the quantity and quality of meetings with potential customers. A high number of meetings with key decision-makers signals genuine interest. At Betterdata, we focused on getting meetings with people in banks and large enterprises to gauge our product's resonance with the target market. How Much Customers Are Willing to Pay: We monitor the price customers are willing to pay, especially in the early stages. For us, large enterprises, like banks, were willing to pay a premium for our synthetic data platform due to the growing need for privacy tech. This feedback guided our product refinement and scaling strategy. By focusing on these metrics, we refined our product and positioned it for scaling. What is your business model? We employ a structured, phase-driven approach for out business model, as a B2B startup. I initially struggled with focusing on the core value proposition in sales, often becoming overly educational. Eventually, we developed a product roadmap with models that allowed us to match customer needs to specific offerings and justify our pricing. Our pricing structure includes project-based pilots and annual contracts for successful deployments. At Betterdata, our customer engagement unfolds across three phases: Phase 1: Trial and Benchmarking \- We start with outreach and use open-source datasets to showcase results, offering customers a trial period to evaluate the solution. Phase 2: Pilot or PoC \- After positive trial results, we conduct a PoC or pilot using the customer’s private data, with the understanding that successful pilots lead to an annual contract. Phase 3: Multi-Year Contracts \- Following a successful pilot, we transition to long-term commercial contracts, focusing on multi-year agreements to ensure stability and ongoing partnerships. How do you do marketing for your brand? We take a non-conventional approach to marketing, focusing on answering one key question: Which customers are willing to pay, and how much? This drives our messaging to show how our solution meets their needs. Our strategy centers around two main components: Building a network of lead magnets \- These are influential figures like senior advisors, thought leaders, and strategic partners. Engaging with institutions like IMDA, SUTD, and investors like Plug and Play helps us gain access to the right people and foster warm introductions, which shorten our sales cycle and ensure we’re reaching the right audience. Thought leadership \- We build our brand through customer traction, technology evidence, and regulatory guidelines. This helps us establish credibility in the market and position ourselves as trusted leaders in our field. This holistic approach has enabled us to navigate diverse market conditions in Asia and grow our B2B relationships. By focusing on these areas, we drive business growth and establish strong trust with stakeholders. What's your advice for fundraising? Here are my key takeaways for other founders when it comes to fundraising: Fundraise When You Don’t Need To We closed our seed round in April 2023, a time when we weren't actively raising. Founders should always be in fundraising mode, even when they're not immediately in need of capital. Don’t wait until you have only a few months of runway left. Keep the pipeline open and build relationships. When the timing is right, execution becomes much easier. For us, our investment came through a combination of referrals and inbound interest. Even our lead investor initially rejected us, but after re-engaging, things eventually fell into place. It’s crucial to stay humble, treat everyone with respect, and maintain those relationships for when the time is right. Be Mindful of How You Present Information When fundraising, how you present information matters a lot. We created a comprehensive, easily digestible investment memo, hosted on Notion, which included everything an investor might need—problem, solution, market, team, risks, opportunities, and data. The goal was for investors to be able to get the full picture within 30 minutes without chasing down extra details. We also focused on making our financial model clear and meaningful, even though a 5-year forecast might be overkill at the seed stage. The key was clarity and conciseness, and making it as easy as possible for investors to understand the opportunity. I learned that brevity and simplicity are often the best ways to make a memorable impact. For the pitch itself, keep it simple and focus on 4 things: problem, solution, team, and market. If you can summarize each of these clearly and concisely, you’ll have a compelling pitch. Later on, you can expand into market segments, traction, and other metrics, but for seed-stage, focus on those four areas, and make sure you’re strong in at least three of them. If you do, you'll have a compelling case. How do you run things day-to-day? i.e what's your operational workflow and team structure? Here's an overview of our team structure and process: Internally: Our team is divided into two main areas: backend (internal team) and frontend (market-facing team). There's no formal hierarchy within the backend team. We all operate as equals, defining our goals based on what needs to be developed, assigning tasks, and meeting weekly to share updates and review progress. The focus is on full ownership of tasks and accountability for getting things done. I also contribute to product development, identifying challenges and clearing obstacles to help the team move forward. Backend Team: We approach tasks based on the scope defined by customers, with no blame or hierarchy. It's like a sports team—sometimes someone excels, and other times they struggle, but we support each other and move forward together. Everyone has the creative freedom to work in the way that suits them best, but we establish regular meetings and check-ins to ensure alignment and progress. Frontend Team: For the market-facing side, we implement a hierarchy because the market expects this structure. If I present myself as "CEO," it signals authority and credibility. This distinction affects how we communicate with the market and how we build our brand. The frontend team is split into four main areas: Business Product (Software Engineering) Machine Learning Engineering R&D The C-suite sits at the top, followed by team leads, and then the executors. We distill market expectations into actionable tasks, ensuring that everyone is clear on their role and responsibilities. Process: We start by receiving market expectations and defining tasks based on them. Tasks are assigned to relevant teams, and execution happens with no communication barriers between team members. This ensures seamless collaboration and focused execution. The main goal is always effectiveness—getting things done efficiently while maintaining flexibility in how individuals approach their work. In both teams, there's an emphasis on accountability, collaboration, and clear communication, but the structure varies according to the nature of the work and external expectations.

The delicate balance of building an online community business
reddit
LLM Vibe Score0
Human Vibe Score0.895
matthewbarbyThis week

The delicate balance of building an online community business

Hey /r/Entrepreneur 👋 Just under two years ago I launched an online community business called Traffic Think Tank with two other co-founders, Nick Eubanks and Ian Howells. As a Traffic Think Tank customer you (currently) pay $119 a month to get access to our online community, which is run through Slack. The community is focused on helping you learn various aspects of marketing, with a particular focus on search engine optimization (SEO). Alongside access to the Slack community, we publish new educational video content from outside experts every week that all customers have access to. At the time of writing, Traffic Think Tank has around 650 members spanning across 17 of the 24 different global time zones. I was on a business trip over in Sydney recently, and during my time there I met up with some of our Australia-based community members. During dinner I was asked by several of them how the idea for Traffic Think Tank came about and what steps we took to validate that the idea was worth pursuing.  This is what I told them… How it all began It all started with a personal need. Nick, an already successful entrepreneur and owner of a marketing agency, had tested out an early version Traffic Think Tank in early 2017. He offered real-time consulting for around ten customers that he ran from Slack. He would publish some educational videos and offer his advice on projects that the members were running. The initial test went well, but it was tough to maintain on his own and he had to charge a fairly high price to make it worth his time. That’s when he spoke to me and Ian about turning this idea into something much bigger. Both Ian and I offered something slightly different to Nick. We’ve both spent time in senior positions at marketing agencies, but currently hold senior director positions in 2,000+ public employee companies (HubSpot and LendingTree). Alongside this, as a trio we could really ramp up the quality and quantity of content within the community, spread out the administrative workload and just generally have more resources to throw at getting this thing off the ground. Admittedly, Nick was much more optimistic about the potential of Traffic Think Tank – something I’m very thankful for now – whereas Ian and I were in the camp of “you’re out of your mind if you think hundreds of people are going to pay us to be a part of a Slack channel”. To validate the idea at scale, we decided that we’d get an initial MVP of the community up and running with a goal of reaching 100 paying customers in the first six months. If we achieved that, we’d validated that it was a viable business and we would continue to pursue it. If not, we’d kill it. We spent the next month building out the initial tech stack that enabled us to accept payments, do basic user management to the Slack channel, and get a one-page website up and running with information on what Traffic Think Tank was all about.  After this was ready, we doubled down on getting some initial content created for members – I mean, we couldn’t have people just land in an empty Slack channel, could we? We created around ten initial videos, 20 or so articles and then some long threads full of useful information within the Slack channel so that members would have some content to pour into right from the beginning.  Then, it was time to go live. The first 100 customers Fortunately, both Nick and I had built a somewhat substantial following in the SEO space over the previous 5-10 years, so we at least had a large email list to tap into (a total of around 40,000 people). We queued up some launch emails, set an initial price of $99 per month and pressed send. [\[LINK\] The launch email I sent to my subscribers announcing Traffic Think Tank](https://mailchi.mp/matthewbarby/future-of-marketing-1128181) What we didn’t expect was to sell all of the initial 100 membership spots in the first 72 hours. “Shit. What do we do now? Are we ready for this many people? Are we providing them with enough value? What if something breaks in our tech stack? What if they don’t like the content? What if everyone hates Slack?” All of these were thoughts running through my head. This brings me to the first great decision we made: we closed down new membership intake for 3 months so that we could focus completely on adding value to the first cohort of users. The right thing at the right time SEO is somewhat of a dark art to many people that are trying to learn about it for the first time. There’s hundreds of thousands (possibly millions) of articles and videos online that talk about how to do SEO.  Some of it’s good advice; a lot of it is very bad advice.  Add to this that the barrier to entry of claiming to be an “expert” in SEO is practically non-existent and you have a recipe for disaster. This is why, for a long time, individuals involved in SEO have flocked in their masses to online communities for information and to bounce ideas off of others in the space. Forums like SEObook, Black Hat World, WickedFire, Inbound.org, /r/BigSEO, and many more have, at one time, been called home by many SEOs.  In recent times, these communities have either been closed down or just simply haven’t adapted to the changing needs of the community – one of those needs being real-time feedback on real-world problems.  The other big need that we all spotted and personally had was the ability to openly share the things that are working – and the things that aren’t – in SEO within a private forum. Not everyone wanted to share their secret sauce with the world. One of the main reasons we chose Slack as the platform to run our community on was the fact that it solved these two core needs. It gave the ability to communicate in real-time across multiple devices, and all of the information shared within it was outside of the public domain. The other problem that plagued a lot of these early communities was spam. Most of them were web-based forums that were free to access. That meant they became a breeding ground for people trying to either sell their services or promote their own content – neither of which is conducive to building a thriving community. This was our main motivation for charging a monthly fee to access Traffic Think Tank. We spent a lot of time thinking through pricing. It needed to be enough money that people would be motivated to really make use of their membership and act in a way that’s beneficial to the community, but not too much money that it became cost prohibitive to the people that would benefit from it the most. Considering that most of our members would typically spend between $200-800 per month on SEO software, $99 initially felt like the perfect balance. Growing pains The first three months of running the community went by without any major hiccups. Members were incredibly patient with us, gave us great feedback and were incredibly helpful and accommodating to other members. Messages were being posted every day, with Nick, Ian and myself seeding most of the engagement at this stage.  With everything going smoothly, we decided that it was time to open the doors to another intake of new members. At this point we’d accumulated a backlog of people on our waiting list, so we knew that simply opening our doors would result in another large intake. Adding more members to a community has a direct impact on the value that each member receives. For Traffic Think Tank in particular, the value for members comes from three areas: The ability to have your questions answered by me, Nick and Ian, as well as other members of the community. The access to a large library of exclusive content. The ability to build connections with the wider community. In the early stages of membership growth, there was a big emphasis on the first of those three points. We didn’t have an enormous content library, nor did we have a particularly large community of members, so a lot of the value came from getting a lot of one-to-one time with the community founders. [\[IMAGE\] Screenshot of engagement within the Traffic Think Tank Slack community](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1322/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-in-Traffic-Think-Tank.png) The good thing about having 100 members was that it was just about feasible to give each and every member some one-to-one time within the month, which really helped us to deliver those moments of delight that the community needed early on. Two-and-a-half months after we launched Traffic Think Tank, we opened the doors to another 250 people, taking our total number of members to 350. This is where we experienced our first growing pains.  Our original members had become used to being able to drop us direct messages and expect an almost instant response, but this wasn’t feasible anymore. There were too many people, and we needed to create a shift in behavior. We needed more value to come from the community engaging with one another or we’d never be able to scale beyond this level. We started to really pay attention to engagement metrics; how many people were logging in every day, and of those, how many were actually posting messages within public channels.  We asked members that were logging in a lot but weren’t posting (the “lurkers”) why that was the case. We also asked the members that engaged in the community the most what motivated them to post regularly. We learned a lot from doing this. We found that the large majority of highly-engaged members had much more experience in SEO, whereas most of the “lurkers” were beginners. This meant that most of the information being shared in the community was very advanced, with a lot of feedback from the beginners in the group being that they “didn’t want to ask a stupid question”.  As managers of the community, we needed to facilitate conversations that catered to all of our members, not just those at a certain level of skill. To tackle this problem, we created a number of new channels that had a much deeper focus on beginner topics so novice members had a safe place to ask questions without judgment.  We also started running live video Q&As each month where we’d answer questions submitted by the community. This gave our members one-on-one time with me, Nick and Ian, but spread the value of these conversations across the whole community rather than them being hidden within private messages. As a result of these changes, we found that the more experienced members in the community were really enjoying sharing their knowledge with those with less experience. The number of replies within each question thread was really starting to increase, and the community started to shift away from just being a bunch of threads created by me, Nick and Ian to a thriving forum of diverse topics compiled by a diverse set of individuals. This is what we’d always wanted. A true community. It was starting to happen. [\[IMAGE\] Chart showing community engagement vs individual member value](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1602/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-Balance-Graph.jpg) At the same time, we started to realize that we’ll eventually reach a tipping point where there’ll be too much content for us to manage and our members to engage with. When we reach this point, the community will be tough to follow and the quality of any given post will go down. Not only that, but the community will become increasingly difficult to moderate. We’re not there yet, but we recognize that this will come, and we’ll have to adjust our model again. Advocating advocacy As we started to feel more comfortable about the value that members were receiving, we made the decision to indefinitely open for new members. At the same time, we increased the price of membership (from $99 a month to $119) in a bid to strike the right balance between profitability as a business and to slow down the rate at which we were reaching the tipping point of community size. We also made the decision to repay all of our early adopters by grandfathering them in to the original pricing – and committing to always do this in the future. Despite the price increase, we saw a continued flow of new members come into the community. The craziest part about this was that we were doing practically no marketing activities to encourage new members– this was all coming from word of mouth. Our members were getting enough value from the community that they were recommending it to their friends, colleagues and business partners.  The scale at which this was happening really took us by surprise and it told us one thing very clearly: delivering more value to members resulted in more value being delivered to the business. This is a wonderful dynamic to have because it perfectly aligns the incentives on both sides. We’d said from the start that we wouldn’t sacrifice value to members for more revenue – this is something that all three of us felt very strongly about. First and foremost, we wanted to create a community that delivered value to its members and was run in a way that aligned with our values as people. If we could find a way to stimulate brand advocacy, while also tightening the bonds between all of our individual community members, we’d be boosting both customer retention and customer acquisition in the same motion. This became our next big focus. [\[TWEET\] Adam, one of our members wore his Traffic Think Tank t-shirt in the Sahara desert](https://twitter.com/AdamGSteele/status/1130892481099382784) We started with some simple things: We shipped out Traffic Think Tank branded T-shirts to all new members. We’d call out each of the individuals that would submit questions to our live Q&A sessions and thank them live on air. We set up a new channel that was dedicated to sharing a quick introduction to who you are, what you do and where you’re based for all new members. We’d created a jobs channel and a marketplace for selling, buying and trading services with other members. Our monthly “blind dates” calls were started where you’d be randomly grouped with 3-4 other community members so that you could hop on a call to get to know each other better. The Traffic Think Tank In Real Life (IRL)* channel was born, which enabled members to facilitate in-person meetups with each other. In particular, we saw that as members started to meet in person or via calls the community itself was feeling more and more like a family. It became much closer knit and some members started to build up a really positive reputation for being particularly helpful to other members, or for having really strong knowledge in a specific area. [\[TWEET\] Dinner with some of the Traffic Think Tank members in Brighton, UK](https://twitter.com/matthewbarby/status/1117175584080134149) Nick, Ian and I would go out of our way to try and meet with members in real life wherever we could. I was taken aback by how appreciative people were for us doing this, and it also served as an invaluable way to gain honest feedback from members. There was another trend that we’d observed that we didn’t really expect to happen. More and more members were doing business with each another. We’ve had people find new jobs through the community, sell businesses to other members, launch joint ventures together and bring members in as consultants to their business. This has probably been the most rewarding thing to watch, and it was clear that the deeper relationships that our members were forming were resulting in an increased level of trust to work with each other. We wanted to harness this and take it to a new level. This brought us to arguably the best decision we’ve made so far running Traffic Think Tank… we were going to run a big live event for our members. I have no idea what I’m doing It’s the first week of January 2019 and we’re less than three weeks away from Traffic Think Tank LIVE, our first ever in-person event hosting 150 people, most of which are Traffic Think Tank members. It's like an ongoing nightmare I can’t wake up from. That was Nick’s response in our private admin channel to myself and Ian when I asked if they were finding the run-up to the event as stressful as I was. I think that all three of us were riding on such a high from how the community was growing that we felt like we could do anything. Running an event? How hard can it be? Well, turns out it’s really hard. We had seven different speakers flying over from around the world to speak at the event, there was a pre- and after event party, and we’d planned a charity dinner where we would take ten attendees (picked at random via a raffle) out for a fancy meal. Oh, and Nick, Ian and I were hosting a live Q&A session on stage. It wasn’t until precisely 48 hours before the event that we’d realized we didn’t have any microphones, nor had a large amount of the swag we’d ordered arrived. Plus, a giant storm had hit Philly causing a TON of flight cancellations. Perfect. Just perfect. This was honestly the tip of the iceberg. We hadn’t thought about who was going to run the registration desk, who would be taking photos during the event and who would actually field questions from the audience while all three of us sat on stage for our live Q&A panel. Turns out that the answer to all of those questions were my wife, Laura, and Nick’s wife, Kelley. Thankfully, they were on hand to save our asses. The weeks running up to the event were honestly some of the most stressful of my life. We sold around 50% of our ticket allocation within the final two weeks before the event. All of the event organizers told us this would happen, but did we believe them? Hell no!  Imagine having two weeks until the big day and as it stood half of the room would be completely empty. I was ready to fly most of my extended family over just to make it look remotely busy. [\[IMAGE\] One of our speakers, Ryan Stewart, presenting at Traffic Think Tank LIVE](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1920/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LIVE-Ryan-Presenting.jpg) Thankfully, if all came together. We managed to acquire some microphones, the swag arrived on the morning of the event, all of our speakers were able to make it on time and the weather just about held up so that our entire allocation of ticket holders was able to make it to the event. We pooled together and I’m proud to say that the event was a huge success. While we made a substantial financial loss on the event itself, January saw a huge spike in new members, which more than recouped our losses. Not only that, but we got to hang out with a load of our members all day while they said really nice things about the thing we’d built. It was both exhausting and incredibly rewarding. Bring on Traffic Think Tank LIVE 2020! (This time we’re hiring an event manager...)   The road ahead Fast forward to today (August 2019) and Traffic Think Tank has over 650 members. The biggest challenges that we’re tackling right now include making sure the most interesting conversations and best content surfaces to the top of the community, making Slack more searchable (this is ultimately one of its flaws as a platform) and giving members a quicker way to find the exclusive content that we create. You’ll notice there’s a pretty clear theme here. In the past 30 days, 4,566 messages were posted in public channels inside Traffic Think Tank. If you add on any messages posted inside private direct messages, this number rises to 21,612. That’s a lot of messages. To solve these challenges and enable further scale in the future, we’ve invested a bunch of cash and our time into building out a full learning management system (LMS) that all members will get access to alongside the Slack community. The LMS will be a web-based portal that houses all of the video content we produce. It will also  provide an account admin section where users can update or change their billing information (they have to email us to do this right now, which isn’t ideal), a list of membership perks and discounts with our partners, and a list of links to some of the best threads within Slack – when clicked, these will drop you directly into Slack. [\[IMAGE\] Designs for the new learning management system (LMS)](https://cdn.shortpixel.ai/client/qglossy,retimg,w_2378/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LMS.png) It’s not been easy, but we’re 95% of the way through this and I’m certain that it will have a hugely positive impact on the experience for our members. Alongside this we hired a community manager, Liz, who supports with any questions that our members have, coordinates with external experts to arrange webinars for the community, helps with new member onboarding, and has tightened up some of our processes around billing and general accounts admin. This was a great decision. Finally, we’ve started planning next year’s live event, which we plan to more than double in size to 350 attendees, and we decided to pick a slightly warmer location in Miami this time out. Stay tuned for me to have a complete meltdown 3 weeks from the event. Final thoughts When I look back on the journey we’ve had so far building Traffic Think Tank, there’s one very important piece to this puzzle that’s made all of this work that I’ve failed to mention so far: co-founder alignment. Building a community is a balancing act that relies heavily on those in charge being completely aligned. Nick, Ian and I completely trust each other and more importantly, are philosophically aligned on how we want to run and grow the community. If we didn’t have this, the friction between us could tear apart the entire community. Picking the right people to work with is important in any company, but when your business is literally about bringing people together, there’s no margin for error here.  While I’m sure there will be many more challenges ahead, knowing that we all trust each other to make decisions that fall in line with each of our core values makes these challenges dramatically easier to overcome. Finally, I’d like to thank all of our members for making the community what it is today – it’d be nothing without you and I promise that we’ll never take that for granted. &#x200B; I originally posted this on my blog here. Welcoming all of your thoughts, comments, questions and I'll do my best to answer them :)

Turning a Social Media Agency into $1.5 Million in Revenue
reddit
LLM Vibe Score0
Human Vibe Score1
FounderFolksThis week

Turning a Social Media Agency into $1.5 Million in Revenue

Steffie here from Founder Folks, with a recent interview I did with Jason Yormark from Socialistics. Here is his story how he started and grew his social media agency. Name: Jason Yormark Company: Socialistics Employee Size: 10 Revenue: $1,500,000/year Year Founded: 2018 Website: www.socialistics.com Technology Tools: ClickUp, Slack, KumoSpace, Google Workspace, Shift, Zapier, Klayvio, Zoom, Gusto, Calendly, Pipedrive Introduction: I am the founder of Socialistics (www.socialistics.com), a leading social media agency that helps businesses turn their social media efforts into real measurable results. I am a 20+ year marketing veteran whose prior work has included launching and managing social media efforts for Microsoft Advertising, Office for Mac, the Air Force, and Habitat for Humanity. I have been recognized as a top B2B social media influencer and thought leader on multiple lists and publications including Forbes, ranking #30 on their 2012 list. I've recently published the book Anti-Agency: A Realistic Path to a $1,000,000 Business, and host the Anti Agency podcast where I share stories of doing business differently. You can learn more about me at www.jasonyormark.com. The Inspiration To Become An Entrepreneur: I’ve been involved with social media marketing since 2007, and have pretty much carved my career out of that. It was a natural progression for me to transition into starting a social media agency. From Idea to Reality: For me realistically, I had to side hustle something long enough to build it up to a point that I could take the leap and risks going full time on my own. For these reasons, I built the company and brand on the side putting out content regularly, and taking on side hustle projects to build out my portfolio and reputation. This went on for about 18 months at which point I had reached the breaking point of my frustrations of working for someone else, and felt I was ready to take the leap since I had the wheels in motion. While balancing a full-time job, I made sure not to overdo it. My main focus was on building out the website/brand and putting out content regularly to gain some traction and work towards some search visibility. I only took on 1-2 clients at a time to make sure I could still meet their needs while balancing a full time job. Attracting Customers: Initially I tapped into my existing network to get my first few clients. Then it was a mix of trade shows, networking events, and throwing a bit of money at paid directories and paid media. This is really a long game. You have to plant seeds over time with people and nurture those relationships over time. A combination of being helpful, likable and a good resource for folks will position you to make asks in the future. If people respect and like you, it makes it much easier to approach for opportunities when the time comes. Overcoming Challenges in Starting the Business: Plenty. Learning when to say no, only hiring the very best, and ultimately the realization that owning a marketing agency is going to have hills and valleys no matter what you do. Costs and Revenue: My largest expense by FAR is personnel, comprising between 50-60% of the business’ expenses, and justifiably so. It’s a people business. Our revenue doubled from the years 2018 through 2021, and we’ve seen between 10-20% growth year over year. A Day in the Life: I’ve successfully removed myself from the day to day of the business and that’s by design. I have a tremendous team, and a rock start Director of Operations who runs the agency day to day. It frees me up to pursue other opportunities, and to mentor, speak and write more. It also allows me to evangelize the book I wrote detailing my journey to a $1M business titled: Anti-Agency: A Realistic Path To A $1,000,000 Business (www.antiagencybook.com). Staying Ahead in a Changing Landscape: You really have to stay on top of technology trends. AI is a huge impact on marketing these days, so making sure we are up to speed on that, and not abusing it or relying on it too much. You also have to embrace that technology and not hide the fact that it’s used. Non-marketers still don’t and can’t do the work regardless of how much AI can help, so we just need to be transparent and smart on how we integrate it, but the fact is, technology will never replace creativity. As an agency, it’s imperative that we operationally allow our account managers to have bandwidth to be creative for clients all the time. It’s how we keep clients and buck the trend of companies changing agencies every year or two. The Vision for Socialistics: Continuing to evolve to cater to our clients through learning, education, and staying on top of the latest tools and technologies. Attracting bigger and more exciting clients, and providing life changing employment opportunities.

Raised $450k for my startup, here are the lessons I've learned along the way
reddit
LLM Vibe Score0
Human Vibe Score1
marin_smiljanicThis week

Raised $450k for my startup, here are the lessons I've learned along the way

2021 has been a pretty amazing year for Omnisearch. Having started initial work on Omnisearch at the end of 2020, we entered the new year with a working MVP yet no revenue, no significant partnerships, and no funding. Fast forward to the end of 2021, and we now have fantastic revenue growth, a partnership with a public company, and a far more powerful, complete and polished product. But one milestone really changed Omnisearch’s trajectory: our $450,000 USD pre-seed round by GoAhead Ventures. In this post I want to share the story of how it came about and offer a couple of takeaways to keep in mind when preparing for fundraising. &#x200B; The story Contrary to most advice, my co-founder Matej and I didn’t allocate a specific time to switch to “fundraising mode” but rather talked to investors on an ongoing basis. It was a bit of a distraction from working on the product, but on the positive side we were able to constantly get feedback on the idea, pitch, go-to-market strategy and hiring, as well as hearing investors’ major concerns sooner rather than later. That being said, our six-month long fundraising efforts weren’t yielding results - we talked to about twenty investors, mostly angels or smaller funds, with no success. The feedback was generally of the “too early for us” variety (since we were still pre-revenue), with additional questions about our go-to-market strategy and ideal customer persona. The introduction to our eventual investors, California-based GoAhead Ventures, came through a friend who had pitched them previously. We wrote a simple blurb and sent our pitch deck. We then went through GoAhead’s hyper-efficient screening process, consisting of a 30-minute call, a recorded three-minute pitch, and filling out a simple Google doc. Throughout the whole process, the GoAhead team left an awesome impression thanks to their knowledge of enterprise software and their responsiveness. They ended up investing and the whole deal was closed within two weeks, which is super fast even by Silicon Valley standards. While our fundraising experience is a single data point and your case might be different, here are the key takeaways from our journey. &#x200B; Perseverance wins: Like I said above, we talked to about twenty investors before we closed our round. Getting a series of “no”s sucks, but we took the feedback seriously and tried to prepare better for questions that caught us off guard. But we persevered, keeping in mind that from a bird’s eye perspective it’s an amazing time to be building startups and raising funds. Focus on traction: Sounds pretty obvious, right? The truth is, though, that even a small amount of revenue is infinitely better than none at all. One of the major differences between our eventual successful investor pitch and the earlier ones was that we had actual paying customers, though our MRR was low. This allows you to talk about customers in the present tense, showing there’s actual demand for your product and making the use cases more tangible. And ideally, highlight a couple of customer testimonials to boost your credibility. Have a demo ready: In Omnisearch’s case, the demo was oftentimes the best received part of the pitch or call. We’d show investors the live demo, and for bonus points even asked them to choose a video from YouTube and then try searching through it. This always had a “wow” effect on prospective investors and made the subsequent conversation more exciting and positive. Accelerators: Accelerators like Y Combinator or Techstars can add enormous value to a startup, especially in the early stages. And while it’s a great idea to apply, don’t rely on them too heavily. Applications happen only a few times a year, and you should have a foolproof fundraising plan in case you don’t get in. In our case, we just constantly looked for investors who were interested in our space (defined as enterprise SaaS more broadly), using LinkedIn, AngelList, and intros from our own network. Practice the pitch ad nauseam: Pitching is tough to get right even for seasoned pros, so it pays to practice as often as possible. We took every opportunity to perfect the pitch: attending meetups and giving the thirty-second elevator pitch to other attendees over beer and pizza, participating in startup competitions, going to conferences and exhibiting at our own booth, attending pre-accelerator programs, and pitching to friends who are in the startup world. Show an understanding of the competition: Frankly, this was one of the strongest parts of our pitch and investor conversations. If you’re in a similar space to ours, Gartner Magic Quadrants and Forrester Waves are an awesome resource, as well as sites like AlternativeTo or Capterra and G2. By thoroughly studying these resources we gained a great understanding of the industry landscape and were able to articulate our differentiation more clearly and succinctly. Presenting this visually in a coordinate system or a feature grid is, from our experience, even more effective. Remember it’s just the beginning! Getting your first round of funding is just the beginning of the journey, so it’s important to avoid euphoria and get back to building and selling the product as soon as possible. While securing funding enables you to scale the team, and is a particular relief if the founders had worked without a salary, the end goal is still to build a big, profitable, and overall awesome startup.

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]
reddit
LLM Vibe Score0
Human Vibe Score1
jamesackerman1234This week

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]

Hello Everyone (VERY LONG CASE STUDY AHEAD) - 355% return in 9 months Note: I own a 7-figures USD valued portfolio of 41+ content sites that generates 5-6 figures USD a month in passive income. This is my first time posting in this sub and my goal is to NOT share generic advice but precise numbers, data and highly refined processes so you can also get started with this business yourself or if you already have an existing business, drive huge traffic to it and scale it substantially (get more customers). I will use a case study to explain the whole process. As most of us are entrepreneurs here, explaining an actual project would be more meaningful. In this case study I used AI assisted content to grow an existing site from $217/m to $2,836/m in 9 months (NO BACKLINKS) and sold it for $59,000. ROI of 3 months: 355% Previous case studies (before I give an overview of the model) Amazon Affiliate Content Site: $371/m to $19,263/m in 14 MONTHS - $900K CASE STUDY \[AMA\] Affiliate Website from $267/m to $21,853/m in 19 months (CASE STUDY - Amazon?) \[AMA\] Amazon Affiliate Website from $0 to $7,786/month in 11 months Amazon Affiliate Site from $118/m to $3,103/m in 8 MONTHS (SOLD it for $62,000+) Note: You can check pinned posts on my profile. Do go through the comments as well as a lot of questions are answered in those. However, if you still have any questions, feel free to reach out. This is an \[AMA\]. Quick Overview of the Model Approach: High traffic, niche specific, informative content websites that monetise its traffic through highly automated methods like display ads and affiliate. The same model can be applied to existing businesses to drive traffic and get customers. Main idea: Make passive income in a highly automated way Easy to understand analogy You have real estate (here you have digital asset like a website) You get rental income (here you get ads and affiliate income with no physical hassle, in case you have a business like service, product etc. then you can get customers for that too but if not, it's alright) Real estate has value (this digital asset also has value that can be appreciated with less effort) Real estate can be sold (this can be sold too but faster) IMPORTANT NOTE: Search traffic is the BEST way to reach HUGE target audience and it's important when it comes to scaling. This essentially means that you can either monetise that via affiliate, display etc. or if you have a business then you can reach a bigger audience to scale. Overview of this website's valuation (then and now: Oct. 2022 and June 2023) Oct 2022: $217/m Valuation: $5,750.5 (26.5x) - set it the same as the multiple it was sold for June 2023: $2,836/m Traffic and revenue trend: growing fast Last 3 months avg: $2,223 Valuation now: $59,000 (26.5x) Description: The domain was registered in 2016, it grew and then the project was left unattended. I decided to grow it again using properly planned AI assisted content. Backlink profile: 500+ Referring domains (Ahrefs). Backlinks mean the sites linking back to you. This is important when it comes to ranking. Summary of Results of This Website - Before and After Note: If the terms seem technical, do not worry. I will explain them in detail later. Still if you have any questions. Feel free to comment or reach out. |Metric|Oct 2022|June 2023|Difference|Comments| |:-|:-|:-|:-|:-| |Articles|314|804|\+490|AI Assisted content published in 3 months| |Traffic|9,394|31,972|\+22,578|Organic| |Revenue|$217|$2,836|\+$2,619|Multiple sources| |RPM (revenue/1000 web traffic)|23.09|$88.7|\+$65.61|Result of Conversion rate optimisation (CRO). You make changes to the site for better conversions| |EEAT (expertise, experience, authority and trust of website)|2 main authors|8 authors|6|Tables, video ads and 11 other fixations| |CRO|Nothing|Tables, video ads |Tables, video ads and 11 other fixations || &#x200B; Month by Month Growth |Month|Revenue|Steps| |:-|:-|:-| |Sept 2022|NA|Content Plan| |Oct 2022|$217|Content Production| |Nov 2022|$243|Content production + EEAT authors| |Dec 2022|$320|Content production + EEAT authors| |Jan 2023|$400|Monitoring| |Feb 2023|$223|Content production + EEAT authors| |Mar 2023|$2,128|CRO & Fixations| |April 2023|$1,609|CRO & Fixations| |May 2023|$2,223|Content production + EEAT authors| |June 2023|$2,836|CRO and Fixations| |Total|$10,199|| &#x200B; What will I share Content plan and Website structure Content Writing Content Uploading, formatting and onsite SEO Faster indexing Conversion rate optimisation Guest Posting EEAT (Experience, Expertise, Authority, Trust) Costing ROI The plans moving forward with these sites &#x200B; Website Structure and Content Plan This is probably the most important important part of the whole process. The team spends around a month just to get this right. It's like defining the direction of the project. Description: Complete blueprint of the site's structure in terms of organisation of categories, subcategories and sorting of articles in each one of them. It also includes the essential pages. The sorted articles target main keyword, relevant entities and similar keywords. This has to be highly data driven and we look at over 100 variables just to get it right. It's like beating Google's algorithm to ensure you have a blueprint for a site that will rank. It needs to be done right. If there is a mistake, then even if you do everything right - it's not going to work out and after 8-16 months you will realise that everything went to waste. Process For this project, we had a niche selected already so we didn't need to do a lot of research pertaining to that. We also knew the topic since the website was already getting good traffic on that. We just validated from Ahrefs, SEMRUSH and manual analysis if it would be worth it to move forward with that topic. &#x200B; Find entities related to the topic: We used Ahrefs and InLinks to get an idea about the related entities (topics) to create a proper topical relevance. In order to be certain and have a better idea, we used ChatGPT to find relevant entities as well \> Ahrefs (tool): Enter main keyword in keywords explorer. Check the left pain for popular topics \> Inlinks (tool): Enter the main keyword, check the entity maps \> ChatGPT (tool): Ask it to list down the most important and relevant entities in order of their priority Based on this info, you can map out the most relevant topics that are semantically associated to your main topic Sorting the entities in topics (categories) and subtopics (subcategories): Based on the information above, cluster them properly. The most relevant ones must be grouped together. Each group must be sorted into its relevant category. \> Example: Site about cycling. \> Categories/entities: bicycles, gear and equipment, techniques, safety, routes etc. \> The subcategories/subentities for let's say "techniques" would be: Bike handling, pedaling, drafting etc. Extract keywords for each subcategory/subentity: You can do this using Ahrefs or Semrush. Each keyword would be an article. Ensure that you target the similar keywords in one article. For example: how to ride a bicycle and how can I ride a bicycle will be targeted by one article. Make the more important keyword in terms of volume and difficulty as the main keyword and the other one(s) as secondary Define main focus vs secondary focus: Out of all these categories/entities - there will be one that you would want to dominate in every way. So, focus on just that in the start. This will be your main focus. Try to answer ALL the questions pertaining to that. You can extract the questions using Ahrefs. \> Ahrefs > keywords explorer \> enter keyword \> Questions \> Download the list and cluster the similar ones. This will populate your main focus category/entity and will drive most of the traffic. Now, you need to write in other categories/subentities as well. This is not just important, but crucial to complete the topical map loop. In simple words, if you do this Google sees you as a comprehensive source on the topic - otherwise, it ignores you and you don't get ranked Define the URLs End result: List of all the entities and sub-entities about the main site topic in the form of categories and subcategories respectively. A complete list of ALL the questions about the main focus and at around 10 questions for each one of the subcategories/subentities that are the secondary focus Content Writing So, now that there's a plan. Content needs to be produced. Pick out a keyword (which is going to be a question) and... Answer the question Write about 5 relevant entities Answer 10 relevant questions Write a conclusion Keep the format the same for all the articles. Content Uploading, formatting and onsite SEO Ensure the following is taken care of: H1 Permalink H2s H3s Lists Tables Meta description Socials description Featured image 2 images in text \\Schema Relevant YouTube video (if there is) Note: There are other pointers link internal linking in a semantically relevant way but this should be good to start with. Faster Indexing Indexing means Google has read your page. Ranking only after this step has been done. Otherwise, you can't rank if Google hasn't read the page. Naturally, this is a slow process. But, we expedite it in multiple ways. You can use RankMath to quickly index the content. Since, there are a lot of bulk pages you need a reliable method. Now, this method isn't perfect. But, it's better than most. Use Google Indexing API and developers tools to get indexed. Rank Math plugin is used. I don't want to bore you and write the process here. But, a simple Google search can help you set everything up. Additionally, whenever you post something - there will be an option to INDEX NOW. Just press that and it would be indexed quite fast. Conversion rate optimisation Once you get traffic, try adding tables right after the introduction of an article. These tables would feature a relevant product on Amazon. This step alone increased our earnings significantly. Even though the content is informational and NOT review. This still worked like a charm. Try checking out the top pages every single day in Google analytics and add the table to each one of them. Moreover, we used EZOIC video ads as well. That increased the RPM significantly as well. Both of these steps are highly recommended. Overall, we implemented over 11 fixations but these two contribute the most towards increasing the RPM so I would suggest you stick to these two in the start. Guest Posting We made additional income by selling links on the site as well. However, we were VERY careful about who we offered a backlink to. We didn't entertain any objectionable links. Moreover, we didn't actively reach out to anyone. We had a professional email clearly stated on the website and a particularly designated page for "editorial guidelines" A lot of people reached out to us because of that. As a matter of fact, the guy who bought the website is in the link selling business and plans to use the site primarily for selling links. According to him, he can easily make $4000+ from that alone. Just by replying to the prospects who reached out to us. We didn't allow a lot of people to be published on the site due to strict quality control. However, the new owner is willing to be lenient and cash it out. EEAT (Experience, Expertise, Authority, Trust) This is an important ranking factor. You need to prove on the site that your site has authors that are experienced, have expertise, authority and trust. A lot of people were reaching out to publish on our site and among them were a few established authors as well. We let them publish on our site for free, added them on our official team, connected their socials and shared them on all our socials. In return, we wanted them to write 3 articles each for us and share everything on all the social profiles. You can refer to the tables I shared above to check out the months it was implemented. We added a total of 6 writers (credible authors). Their articles were featured on the homepage and so were their profiles. Costing Well, we already had the site and the backlinks on it. Referring domains (backlinks) were already 500+. We just needed to focus on smart content and content. Here is the summary of the costs involved. Articles: 490 Avg word count per article: 1500 Total words: 735,000 (approximately) Cost per word: 2 cents (includes research, entities, production, quality assurance, uploading, formatting, adding images, featured image, alt texts, onsite SEO, publishing/scheduling etc.) Total: $14,700 ROI (Return on investment) Earning: Oct 22 - June 23 Earnings: $10,199 Sold for: $59,000 Total: $69,199 Expenses: Content: $14,700 Misc (hosting and others): $500 Total: $15,200 ROI over a 9 months period: 355.25% The plans moving forward This website was a part of a research and development experiment we did. With AI, we wanted to test new waters and transition more towards automation. Ideally, we want to use ChatGPT or some other API to produce these articles and bulk publish on the site. The costs with this approach are going to be much lower and the ROI is much more impressive. It's not the the 7-figures projects I created earlier (as you may have checked the older case studies on my profile), but it's highly scalable. We plan to refine this model even further, test more and automate everything completely to bring down our costs significantly. Once we have a model, we are going to scale it to 100s of sites. The process of my existing 7-figures websites portfolio was quite similar. I tested out a few sites, refined the model and scaled it to over 41 sites. Now, the fundamentals are the same however, we are using AI in a smarter way to do the same but at a lower cost, with a smaller team and much better returns. The best thing in my opinion is to run numerous experiments now. Our experimentation was slowed down a lot in the past since we couldn't write using AI but now it's much faster. The costs are 3-6 times lower so when it used to take $50-100k to start, grow and sell a site. Now you can pump 3-6 more sites for the same budget. This is a good news for existing business owners as well who want to grow their brand. Anyway, I am excited to see the results of more sites. In the meantime, if you have any questions - feel free to let me know. Best of luck for everything. Feel free to ask questions. I'd be happy to help. This is an AMA.

[Ultimate List] A list of Marketing Tools That I’ve tested over the years and found helpful to do better marketing with less work. More than 50 Tools To Help you with Marketing, Copywriting & Sales!
reddit
LLM Vibe Score0
Human Vibe Score0.973
lazymentorsThis week

[Ultimate List] A list of Marketing Tools That I’ve tested over the years and found helpful to do better marketing with less work. More than 50 Tools To Help you with Marketing, Copywriting & Sales!

Starting to focus on marketing for your business, You will come across the same tools mentioned over and over by marketers. I would like to mention here tools that you might haven’t seen going viral in the community but actually will help you grow faster and efficiently. Starting off with My favourite Marketing Channel! #Email Marketing For SMBs Convertkit / Mailerlite / Mailchimp - These 3 Platforms are the best options for SMBs and entrepreneurs just starting out with email marketing. All 3 have free plans up to 1,000 subscribers. Scribe - Email Signature Tool, Create Great Email signatures for your emails. Liramail - Most Email marketing platforms don’t offer great email templates. This tool will help you build great email templates with drag and drop. Quick mail Auto-Warmer - Most Businesses at the beginning don’t know what to do when open rate drops. You need to use an email warmer like this to keep it up. #Email Marketing For Big Businesses SendGrid - Overall Email Marketing Tools, this tool is best for brands that have huge email lists and email marketing is the key marketing channel. Braze - This tool is leading in email marketing for large Email senders. When I was working for agencies, this was one of the best email marketing tools I had used. NeoCertified - Protect your emails for spammers and threats. To keep your email list healthy, this is a must have! Sparkloop - Referral Marketing For Email Campaigns. Email can generate great huge amount of referrals for you and Sparkloop makes it easier. #Cold Emails & Lead Generation Hunter - A Great Tool to scrape emails from domain names. The tool comes with a green free plan but Pro plan is worth the amount of features it provides. Icyleads - It’s better than Hunter as it’s heavily focused on the sales and prospecting to help you derive great results from your campaigns. Mailshake - Beginner Friend Cold Email Tool with Great features like email list warming. #Communication Tools Twilio - One do the best customer engagement platform used by Companies like Stripe and mine too. Chatlio - Use Live chat feature on your website with slack integration. My favourite easier to catch up on conversations through slack integration. Intercom - Used by Most Marketers, Industry Leading customer communication platform. Great for beginners! Chatwoot - Another Amazing Communication Tool but the best part is they have a great free plan useful for new businesses. Loom - Communicate with your audience through Videos. Loom is great for SaaS and to show human interaction to close new visitors effectively. #CRM Outseta - This tool provides great CRM and their billing system is better than other tools out their which makes it stands out! Hubspot - I don’t think this tool needs an introduction because Hubspot’s CRM is the best in industry. Salesflare - This CRM is a great alternative to hubspot as it’s beginner friendly and helpful for SMBs. #SEO Tools Ahrefs - One of the best SEO tool in the industry. They also just launched a bunch of free tools to help SEO beginners. Screaming frog - The only website crawler I have used since I bought my first domain. It’s the best! Ubersuggest- The Tool by Neil Patel is the best SEO tool for you. (I’m Joking, it’s the worst) Contentking - This tool is good at Real-time SEO Auditing, they do a lot of Marketing work through Newsletters. If you are subscribed to any SEO newsletter. You may have seen this tool. SEOquake & Semrush - SEOquake is a great tool to conduct on-page analysis, SERP, and much more. Great tool but it’s owned by Semrush. You should go for Semrush because that tool will cover all SEO aspects for you. #Content Marketing Buzzsumo - This tool is great for content research and but you may find the regular emails pretty annoying sometimes. Contentrow - Analyse Your Content and find it’s strength. Highly recommended who are weak at content structuring like me. Grammarly - If you are not a native English speaker like me, you might think you need it or not. You need it for sure for grammar corrections. #Graphic Design Tools Visme - At agencies, Infographics can be more effective than usual postscript. Visme is a graphic design tool focused on infographics and designs related to B2B and B2C. It’s great for agencies! Glorify - A Graphic Design Tool focused on E-commerce, filled with Designs useful for E-commerce store owners. Canva - All-in-one Industry leading Graphic Design Tool that everyone knows and every template is overused now. Adobe Creative Cloud ( previously Sparkpost) - It’s a great alternative to Canva filled with Amazing Stock images to use in your visuals but the only backlash is the exports in this tool are not high quality. Snaps - A Canva Alternative that might not have overused templates for your Social Accounts. #Advertising Tools Plai - It’s a great PPC tool to create Ads for Instagram and Tiktok. Wordstream - It’s an industry leading PPC Tool, great for Ad Grading and auditing. AdEspresso - This Is a tool by Hootsuite. They have a lot of Data sourced at the backend, which helps in Ad optimisation through this tool. That’s the reason I recommend this tool. #Video Editing Tools Veed Studio - I have been using Veed from last year. It’s one of the best Video Marketing Tool Optimized for Instagram & Tiktok. Synthesia - It’s a new AI video generation platform. From last few months, if you have seen marketing agencies including Videos in Emails. The chances are that’s not a Agency member taking but AI generated Human. Motionbox - It’s also a great video editing tool focused on video editing for Digital Marketers. Jitter Video - It’s a great motion design tool. Comes with great templates, the only place where other tools I mentioned lacks. It’s great and beginner friendly. #Copywriting Jasper AI - Google’s John Mueller says AI generated content is banned on Search but I think with Jasper AI you can generate SEO optimised Content but you have to put in some efforts like at least give 30 minutes for editing the Copy by yourself. Copy AI - Another AI tool to help you write better copy. This one is more focused on helping you write copy suitable for Ads and Social media campaigns. Hemingway App - To help you write more clearly and Bold. This tool is better than Grammarly if you look for writing perspective and it’s free. #Social Media Management App I’ve used a Lot of SMM Tools and that’s why going to mention all of them with a short review. Sprout social - The Best with deep insights coverage. Hootsuite - Great Scheduling tool just under sprout social. Later - Heavily Focused on Instagram from beginning and Now Tiktok too. SkedSocial - It’s like a Later alternative with great addition features like link-in-bio. Facebook’s Business Manager- Great but sometimes bugs can make a huge issue for you and customer support is like dead. Tweet Hunter & Hypefury- Both are Twitter Scheduling tools growing very fast on platform and are great for growth. Buffer - It’s a great tool but I haven’t seen any new updates to help with management. Zoho Social - It’s a great SMM tool and if you use other marketing solutions from Zoho. It’s a must have! #Market Research Tool • SparkToro - That’s the only one I have ever used. It’s great for audience research and comes with great customer service. Founded by Rand Fishkin, it’s one of the best research tool. #Influencer Marketing & UGC InfluenceGrid - A free search engine To find Tiktok & Instagram Influencers for your campaigns. Tiktok Creative Center- TikTok’s in-built tool called “Creative Center” is the best to find content trends, audience demographics and much more. Archive - Find Instagram Stories and Posts mentioning Your brands and use them as Ads for your business Marketing. #Landing Page Builders Leadpages - Its a great landing page builder because the integration and drag-and-drop features makes it easier to work with! Cardd co - A Great Landing page builder with easy step up but it lacks the copywriting and tracking features. Instapage - It’s one of the best out and I think the overall product is effective enough to help you stand out with your landing page. Unbounce - It’s a great alternative to Instapage due its well polished landing page templates that might be helpful for you. #Community Building Mighty Networks - A Great Community building platform, and you can also sell courses within the platform. Circle so - A great alternative to Mighty networks focused on Communities specifically. We are currently using for small community Of ours. #Sales Tools Drift - You can get much more out of Drift than just sales tools but The Sales solutions provided in Drift are one of the best. Salesforce - It’s the industry Sales solution provider. A go-to and have various pricing plans making it suitable for majority of SMBs. #Social Proof Tools People don’t have enough time to search across internet to decide to trust you after seeing your Ad first time. That’s what you might be facing too. Here are two tools I absolutely love for social proof! Use Proof - Show Recent Activities occurring on your website and build the trust of your visitors. Testimonial to - Gather Testimonials across Social Media platforms related to your business with this tool. Capture tweets and comments mentioning your brands and mention them. #Analytics Tools Plausible Analytics- A privacy friendly Analytics alternative to Google Analytics if you hate Analytics 4 like me. Mixpanel - Product Analytics and funnel reports better than Google Analytics. #Reddit Marketing Gummysearch- This tool will help To find your target audience on Reddit and interact with them with its help and close your new customers. Howitzer- It’s another pretty similar tool to Gummysearch focused on Reddit cold outreach to get clients and new customers. Both are great but Gummysearch provides better customer support while Howtizer is helpful on a large scale Reddit Marketing. #Text Marketing Klaviyo - It’s an email + SMS marketing tool, it’s taking up space in marketing industry very quickly as an industry leader due to its great integrations but you need to learn the platform usage to maximise the outcome. Cartloop - This tool provides great text marketing solutions with integration with Spotify and other e-commerce marketing tools. Attentive Mobile - This is my favourite Text marketing tool due to the interactive dashboard + they have a library of Text marketing examples to help you out with your campaigns. #Other Tools I have used throughout my journey! Triple Whale - It’s a great E-commerce marketing tools with Triple pixel to help you track your campaigns more efficiently. Fastory - To create well optimized Instagram & Tiktok Stories for your business. Jotform - Online Form Builder with integrations with leading marketing tools. Gated - As an entrepreneur and marketer, you may receive a bunch of unwanted emails. Use Gated to get rid of them and receive useful mails only! ClickUp- The main Tool for Project Management, one of the best and highly recommended. Riverside - Forget Zoom or Google Meet, For your Podcast Interviews and Marketing conferences. You need riverside with great video quality and recording features. Manychat- Automate your Instagram DMs and interact with your followers more efficiently + sell out your products/ services when you are offline. Calendy - To schedule meetings with your ideal clients. ServiceProviderPro - It’s a client portal for SEO & Growing Agencies, very helpful in scaling agencies. SendCheckit - Compare your Email Subject Lines with 100,000+ others in the database for free. Otter AI - Using AI track your meetings more effectively, you can easily edit, annotate and share notes from the meetings. Ryte - Optimise your website User experience with this tool focused on UX aspects + SEO too. PhantomBuster - Scrape LinkedIn Profile and Data from Facebook/LinkedIn groups. I clearly love this tool! #Honourable Mentions Zapier - The Only tool you need to integrate your favourite tool with a new effective tool. Elementor - That’s what I use for web design and it’s great! Marketer Hire - To hire world class marketers to work with you. InShot & Capcut - I create Instagram Reels and TikTok’s and life without these tools isn’t possible. Nira - It’s a great tool to Manage your workspace and this tool has launched many marketing templates in-built helpful for marketers and also entrepreneurs. X - The tool you love that wasn’t mentioned here is valuable and I honour that tool and share that if you would like to! I mean thanks for reading what I have curated all over my life as a marketer. I share 5 Marketing Tools, 5 Marketing Resources and 1 Free Resourceevery week in my newsletter, you can subscribe here to receive that for free. Also, You can read an expanded list of email marketing tools in this Reddit post!

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience
reddit
LLM Vibe Score0
Human Vibe Score1
hopefully_usefulThis week

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience

I met my co-founder in late 2022 after an introduction from a mutual friend to talk about how to find contract Product Management roles. I was sporadically contracting at start-up at the time and he had just come out of another start-up that was wiped out by the pandemic. We hit it off, talking about ideas, sharing what other indie-hackers were doing, and given GPT-3’s prominence at the time, we started throwing around ideas about things we could build with it, if nothing else, just to learn. I should caveat, neither of us were AI experts when starting out, everything we learned has been through Twitter and blogs, my background is as an accountant, and his a consultant. Here’s how it went since then: &#x200B; Nov 2022 (+$50) \- We built a simple tool in around a week using GPT-3 fine-tuning and a no-code tool (Bubble) that helped UK university students write their personal statements for their applications \- We set some Google Ads going and managed to make a few sales (\~$50) in the first week \- OpenAI were still approving applications at the time and said this went against their “ethics” so we had to take it down &#x200B; Dec 2022 (+$200) \- We couldn’t stop coming up with ideas related to AI fine-tuning, but realised it was almost impossible to decide which to pursue \- We needed a deadline to force us so we signed up for the Ben’s Bites hackathon in late December \- In a week, we built and launched a no-code fine-tuning platform, allowing people to create fine-tuned models by dragging and dropping an Excel file onto it \- We launched it on Product Hunt, having no idea how to price it, and somehow managed to get \~2,000 visitors on the site and make 2 sales at $99 &#x200B; Jan 2023 (+$3,000) \- We doubled down on the fine-tuning idea and managed to get up to \~$300 MRR, plus a bunch of one-time sales and a few paid calls to help people get the most out of their models \- We quickly realised that people didn’t want to curate models themselves, they just wanted to dump data and get magic out \- That was when we saw people building “Talk with x book/podcast” on Twitter as side projects and realised that was the missing piece, we needed to turn it into a tool \- We started working on the new product in late January &#x200B; Feb 2023 (+$9,000) \- We started pre-selling access to an MVP for the new product, which allowed people to “chat with their data/content”, we got $5,000 in pre-sales, more than we made from the previous product in total \- By mid-February, after 3 weeks of building we were able to launch and immediately managed to get traction, getting to $1k MRR in < 1 week, building on the hype of ChatGPT and AI (we were very lucky here) &#x200B; Mar - Jul 2023 (+$98,000) \- We worked all the waking hours to keep up with customer demand, bugs, OpenAI issues \- We built integrations for a bunch of services like Slack, Teams, Wordpress etc, added tons of new functionality and continue talking to customers every day \- We managed to grow to $17k MRR (just about enough to cover our living expenses and costs in London) through building in public on Twitter, newsletters and AI directories (and a million other little things) \- We sold our fine-tuning platform for \~$20k and our university project for \~$3k on Acquire &#x200B; Aug 2023 (+$100,000) \- We did some custom development work based on our own product for a customer that proved pretty lucrative &#x200B; Sep - Oct 2023 (+$62,000) \- After 8 months of building constantly, we started digging more seriously into our usage and saw subscriptions plateauing \- We talked to and analysed all our paying users to identify the main use cases and found 75% were for SaaS customer support \- We took the leap to completely rebuild a version of our product around this use case, our biggest to date (especially given most features with no-code took us <1 day) &#x200B; Nov - Dec 2023 (+$53,000) \- We picked up some small custom development work that utilised our own tech \- We’re sitting at around $22k MRR now with a few bigger clients signed up and coming soon \- After 2 months of building and talking to users, we managed to finish our “v2” of our product, focussed squarely on SaaS customer support and launched it today. &#x200B; We have no idea what the response will be to this new version, but we’re pretty happy with it, but couldn’t have planned anything that happened to us in 2023 so who knows what will come of 2024, we just know that we are going to be learning a ton more. &#x200B; Overall, it is probably the most I have had to think in my life - other jobs you can zone out from time to time or rely on someone else if you aren’t feeling it - not when you are doing this, case and point, I am writing this with a banging head-cold right now, but wanted to get this done. A few more things we have learned along the way - context switching is unreal, as is keeping up with, learning and reacting to AI. There isn’t a moment of the day I am not thinking about what we do next. But while in some way we now have hundreds of bosses (our customers) I still haven’t felt this free and can’t imagine ever going back to work for someone else. Next year we’re really hoping to figure out some repeatable distribution channels and personally, I want to get a lot better at creating content/writing, this is a first step! Hope this helps someone else reading this to just try starting something and see what happens.

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company
reddit
LLM Vibe Score0
Human Vibe Score0.778
wutangsamThis week

12 months ago, I was unemployed. Last week my side hustle got acquired by a $500m fintech company

I’ve learned so much over the years from this subreddit. I thought I’d return the favour and share some of my own learnings. In November 2020 my best friend and I had an idea. “What if we could find out which stocks the Internet is talking about?” This formed the origins of Ticker Nerd. 9 months later we sold Ticker Nerd to Finder (an Australian fintech company valued at around $500m). In this post, I am going to lay out how we got there. How we came up with the idea First off, like other posts have covered - you don’t NEED a revolutionary or original idea to build a business. There are tonnes of “boring” businesses making over 7 figures a year e.g. law firms, marketing agencies, real estate companies etc. If you’re looking for an exact formula to come up with a great business idea I’m sorry, but it doesn’t exist. Finding new business opportunities is more of an art than a science. Although, there are ways you can make it easier to find inspiration. Below are the same resources I use for inspiration. I rarely ever come up with ideas without first searching one of the resources below for inspiration: Starter Story Twitter Startup Ideas My First Million Trends by the Hustle Trends VC To show how you how messy, random and unpredictable it can be to find an idea - let me explain how my co-founder and I came up with the idea for Ticker Nerd: We discovered a new product on Twitter called Exploding Topics. It was a newsletter that uses a bunch of software and algorithms to find trends that are growing quickly before they hit the mainstream. I had recently listened to a podcast episode from My First Million where they spoke about Motley Fool making hundreds of millions from their investment newsletters. We asked ourselves what if we could build a SaaS platform similar to Exploding Topics but it focused on stocks? We built a quick landing page using Carrd + Gumroad that explained what our new idea will do and included a payment option to get early access for $49. We called it Exploding Stock (lol). We shared it around a bunch of Facebook groups and subreddits. We made $1,000 in pre-sales within a couple days. My co-founder and I can’t code so we had to find a developer to build our idea. We interviewed a bunch of potential candidates. Meanwhile, I was trawling through Wall Street Bets and found a bunch of free tools that did roughly what we wanted to build. Instead of building another SaaS tool that did the same thing as these free tools we decided to pivot from our original idea. Our new idea = a paid newsletter that sends a weekly report that summarises 2 of the best stocks that are growing in interest on the Internet. We emailed everyone who pre-ordered access, telling them about the change and offered a full refund if they wanted. tl;dr: We essentially combined two existing businesses (Exploding Topics and Motley Fool) and made it way better. We validated the idea by finding out if people will actually pay money for it BEFORE we decided to build it. The idea we started out with changed over time. How to work out if your idea will actually make money It’s easy to get hung up on designing the logo or choosing the perfect domain name for your new idea. At this stage none of that matters. The most important thing is working out if people will pay money for it. This is where validation comes in. We usually validate ideas using Carrd. It lets you build a simple one page site without having to code. The Ticker Nerd site was actually built using a Carrd template. Here’s how you can do it yourself (at a high level): Create a Carrd pro account (yes it's a $49 one off payment but you’ll get way more value out of it). Buy a cheap template and send it to your Carrd account. You can build your own template but this will save you a lot of time. Once the template reaches your Carrd account, duplicate it. Leave the original so it can be duplicated for other ideas. Jump onto Canva (free) and create a logo using the free logos provided. Import your logo. Add copy to the page that explains your idea. Use the AIDA formula. Sign up to Gumroad (free) and create a pre-sale campaign. Create a discounted lifetime subscription or version of the product. This will be used pre-sales. Add the copy from the site into the pre-sale campaign on Gumroad. Add a ‘widget’ to Carrd and connect it to Gumroad using the existing easy integration feature. Purchase a domain name. Connect it to Carrd. Test the site works. Share your website Now the site is ready you can start promoting it in various places to see how the market reacts. An easy method is to find relevant subreddits using Anvaka (Github tool) or Subreddit Stats. The Anvaka tool provides a spider map of all the connected subreddits that users are active in. The highlighted ones are most relevant. You can post a thread in these subreddits that offer value or can generate discussion. For example: ‘I’m creating a tool that can write all your copy, would anyone actually use this?’ ‘What does everything think of using AI to get our copy written faster?’ ‘It’s time to scratch my own itch, I’m creating a tool that writes marketing copy using GPT-3. What are the biggest problems you face writing marketing copy? I’ll build a solution for it’ Reddit is pretty brutal these days so make sure the post is genuine and only drop your link in the comments or in the post if it seems natural. If people are interested they’ll ask for the link. Another great place to post is r/entrepreuerridealong and r/business_ideas. These subreddits expect people to share their ideas and you’ll likely make some sales straight off the bat. I also suggest posting in some Facebook groups (related to your idea) as well just for good measure. Assess the results If people are paying you for early access you can assume that it’s worth building your idea. The beauty of posting your idea on Reddit or in Facebook groups is you’ll quickly learn why people love/hate your idea. This can help you decide how to tweak the idea or if you should drop it and move on to the next one. How we got our first 100 customers (for free) By validating Ticker Nerd using subreddits and Facebook groups this gave us our first paying customers. But we knew this wouldn’t be sustainable. We sat down and brainstormed every organic strategy we could use to get traction as quickly as possible. The winner: a Product Hunt launch. A successful Product Hunt launch isn’t easy. You need: Someone that has a solid reputation and audience to “hunt” your product (essentially an endorsement). An aged Product Hunt account - you can’t post any products if your account is less than a week old. To be following relevant Product Hunt members - since they get notified when you launch a new product if they’re following you. Relationships with other builders and makers on Product Hunt that also have a solid reputation and following. Although, if you can pull it off you can get your idea in front of tens of thousands of people actively looking for new products. Over the next few weeks, I worked with my co-founder on connecting with different founders, indie hackers and entrepreneurs mainly via Twitter. We explained to them our plans for the Product Hunt launch and managed to get a small army of people ready to upvote our product on launch day. We were both nervous on the day of the launch. We told ourselves to have zero expectations. The worst that could happen was no one signed up and we were in the same position as we’re in now. Luckily, within a couple of hours Ticker Nerd was on the homepage of Product Hunt and in the top 10. The results were instant. After 24 hours we had around 200 people enter their payment details to sign up for our free trial. These signups were equal to around $5,800 in monthly recurring revenue. \-- I hope this post was useful! Drop any questions you have below and I’ll do my best to respond :)

Building and launching an AI-powered Product Strategy tool, or; a story of nights and weekends
reddit
LLM Vibe Score0
Human Vibe Score1
_raZeThis week

Building and launching an AI-powered Product Strategy tool, or; a story of nights and weekends

Speaking to peers in the software development sphere I learned of one constant that we had all personally experienced throughout our careers: a bloated product development process that feels like work for the sake of work, centred around the highest-paid person's opinion instead of its customers. We didn't like how current tools assume AI will provide the perfect answer on the first run. Instead, we wanted a tool that allows for manual refining and editing AI suggestions, keeping all previous ideas in context. This way, we can develop a solution step by step, instead of trying to get it perfect on the first try. An approach more similar to how you'd typically approach product discovery as a human. AI is then used to help save time and reduce admin, instead of replace the expert So, we got together and asked over 100 Product Managers questions about it, brought all that feedback goodness together, and started building Squad. We think we've created something really cool and hope you think so too. The ELI5 on what Squad does: 1) Creates alignment that empowers bottom up software development whilst keeping executive in the loop 2) Increases confidence that what you're building is what people actually want - data driven by default 2) Speeds up the time from idea --> execution by ideating with you on an experimentation approach 3) Helps gives PMs time back to focus on strategy (currently stats show they spend 75% of their time on admin, 25% on strategy) The team hustled hard on this as a passion project while working day jobs, and today have launched on Product Hunt. Check it out and see if the mission resonates with you, we'd appreciate the love! https://www.producthunt.com/posts/squad-8b75e29c-d767-4a8f-a60a-fd162e141a72 &#x200B;

AI Will Make You Extremely Rich or Kill Your Business in 2024
reddit
LLM Vibe Score0
Human Vibe Score1
AntsyNursery58This week

AI Will Make You Extremely Rich or Kill Your Business in 2024

Preface: I'm a solo-founder in the AI space and previously worked as an ML scientist; the new advancements in AI that I'm seeing are going to impact everyone here. It doesn't matter if you're just starting out, or a bootstrapped brick and mortar founder, or even a VC backed hard tech founder. Last year was when the seeds were laid, and this is the year we'll see them bloom. There will be an onslaught of advancements that take place that are borderline inconceivable due to the nature of exponential progress. This will change every single vertical. I'm making this post because I think AI execution strategy will make or break businesses. Dramatically. Over $50B was put into AI startups in 2023 alone. This figure excludes the hundreds of billions poured into AI from enterprises. So, let's follow the money: &#x200B; 1) AI enterprise software. There's a lot to unpack here and this is what I’m currently working on. AI enterprise software will encompass everything from hyper personalized email outbound to AI cold calls to AI that A/B tests ads on synthetic data to vertical specific software. The impact of the former is relatively self explanatory, so I'll focus on the latter. To illustrate vertical specific AI software, I'll use a simple example in the legal space. Lawyers typically have to comb through thousands of pages of documents. Now, using an LLM + a VDB, an AI can instantly answer all of those questions while surfacing the source and highlighting the specific answer in the contract/document. There are dozens of AI startups for this use case alone. This saves lawyers an immense amount of time and allows them to move faster. Firms that adopt this have a fundamental advantage over law firms that don't adopt this. This was 2023 technology. I'm seeing vertical AI software getting built by my friends in areas from construction, to real estate, to even niche areas like chimney manufacturing. This will exist everywhere. Now, this can be extrapolated much further to be applicable to systems that can do reports and even browse the Internet. This brings me to my next point. &#x200B; 2) AI information aggregation and spread. My gut tells me that this will have a crescendo moment in the future with hardware advancements (Rabbit, Tab, etc.). You won't have to google things because it will be surfaced to you. It's predictive in nature. The people who can get information the fastest will grow their business the fastest. This part is semi-speculative, but due to the nature of LLMs being so expensive to train, I have a strong feeling that large institutions will have access to the \fastest\ and \best\ models that can do this quicker than you and I can. This is why it's important to stay on top. &#x200B; 3) AI content generation This is relevant to running advertisements and any digital marketing aspect of your business. If you can rapidly make content faster than your competitors to put in social media, you will outpace your competitors rapidly. I think most folks are familiar with MidJourney, Stable diffusion, etc. but don't know how to use it. You can generate consistent models for a clothing brand or generate images of a product that you would normally need to hire a professional photographer to take. There's also elevenlabs which is relatively easy to use and can be used to make an MP3 clip as a narration for an ad; this is something I've already done. I'm also still shocked by how many people are unfamiliar with tools like Pika which can do video generation. You could imagine companies having fleets of digital influencers that they control or conjuring up the perfect ad for a specific demographic using a combination of all of the aforementioned tools. &#x200B; In summary, if you feel like I'm being hyperbolic or propagating science fiction fantasies, you're likely already behind. I truly recommend that everyone stays up to date on these advancements as much as possible. If your competitor comes across an AI tool that can increase their ROAS by 5x they can crush you. If your competitor uses a tool that increases the rate at which they receive and aggregate information by 200% (modest estimate) they will crush you. If your competitors have a tool that can reduce their employee size, then they will use it. They'll fire their employees to cut costs and reinvest the money back into their business. It will compound to the point where you're outpaced, and this isn't a level of innovation we've seen since the birth of the industrial revolution. Your customers can get stolen overnight, or you can steal your competition’s customers overnight. TL;DR: This is an opportunity for entrepreneurs to scale faster than they could have possibly imagined, but this also comes with the potential for your company to be obliterated. We've never seen advancements that can have this drastic of an impact this quickly. Adoption will happen fast, and first movers will have a disproportionate and compounding advantage. Watch guides, meet with startups, follow the news, and get rich.

Recently hit 6,600,000 monthly organic traffic for a B2C SaaS website. Here's the 40 tips that helped me make that happen.
reddit
LLM Vibe Score0
Human Vibe Score1
DrJigsawThis week

Recently hit 6,600,000 monthly organic traffic for a B2C SaaS website. Here's the 40 tips that helped me make that happen.

Hey guys! So as title says, we recently hit 6,600,000 monthly organic traffic / month for a B2C SaaS website (screenshot. Can't give name publicly, but can show testimonial to a mod). Here's 40 tips that "helped" me make this happen. If you get some value of the post, I write an SEO tip every other day on /r/seogrowth. There's around 10 more tips already up there other than the ones I mention here. If you want to give back for all my walls of text, I'd appreciate a sub <3 Also, there are a bunch of free stuff I mention in the article: content outline, writer guidelines, SEO checklist, and other stuff. Here's the Google Doc with all that! Tip #1. Take SEO With a Grain of Salt A lot of the SEO advice and best practices on the internet are based on 2 things: Personal experiences and case studies of companies that managed to make SEO work for them. Google or John Mueller (Google’s Senior Webmaster Trends Analyst). And, unfortunately, neither of these sources are always accurate. Personal SEO accounts are simply about what worked for specific companies. Sometimes, what worked for others, won’t work for you. For example, you might find a company that managed to rank with zero link-building because their website already had a very strong backlink profile. If you’re starting with a fresh website, chances are, you won’t be able to get the same results. At the same time, information from Google or John Mueller is also not 100% accurate. For example, they’ve said that guest posting is against Google’s guidelines and doesn’t work… But practically, guest posting is a very effective link-building strategy. So the takeaway is this: Take all information you read about SEO with a grain of salt. Analyze the information yourself, and make your conclusions. SEO Tip #2. SEO Takes Time You’ve already heard this one before, but considering how many people keep asking, thought I'd include this anyway. On average, it’s going to take you 6 months to 2 years to get SEO results, depending on the following factors: Your backlink profile. The more quality backlinks you have (or build), the faster you’ll rank. Age of your website. If your website is older (or you purchased an aged website), you can expect your content to rank faster. Amount of content published. The more quality content you publish on your website, the more “authoritative” it is in the eyes of Google, and thus more likely to rank faster. SEO work done on the website. If a lot of your pages are already ranking on Google (page 2-3), it’s easier to get them to page #1 than if you just published the content piece. Local VS global SEO. Ranking locally is (sometimes) easier and faster than ranking globally. That said, some marketing agencies can use “SEO takes time” as an excuse for not driving results. Well, fortunately, there is a way to track SEO results from month #2 - #3 of work. Simply check if your new content pieces/pages are getting more and more impressions on Google Search Console month-to-month. While your content won’t be driving traffic for a while after being published, they’ll still have a growing number of impressions from month #2 or #3 since publication. SEO Tip #3. SEO Might Not Be The Best Channel For You In theory, SEO sounds like the best marketing channel ever. You manage to rank on Google and your marketing seemingly goes on auto-pilot - you’re driving new leads every day from existing content without having to lift a finger… And yet, SEO is not for everyone. Avoid SEO as a marketing channel if: You’re just getting started with your business and need to start driving revenue tomorrow (and not in 1-2 years). If this is you, try Google ads, Facebook ads, or organic marketing. Your target audience is pretty small. If you’re selling enterprise B2B software and have around 2,000 prospects in total worldwide, then it’s simply easier to directly reach out to these prospects. Your product type is brand-new. If customers don’t know your product exists, they probably won’t be Googling it. SEO Tip #4. Traffic Can Be a Vanity Metric I've seen hundreds of websites that drive 6-7 digits of traffic but generate only 200-300 USD per month from those numbers. “What’s the deal?” You might be thinking. “How can you fail to monetize that much traffic?” Well, that brings us to today’s tip: traffic can be a vanity metric. See, not all traffic is created equal. Ranking for “hormone balance supplement” is a lot more valuable than ranking for “Madagascar character names.” The person Googling the first keyword is an adult ready to buy your product. Someone Googling the latter, on the other hand, is a child with zero purchasing power. So, when deciding on which keywords to pursue, always keep in mind the buyer intent behind and don’t go after rankings or traffic just because 6-digit traffic numbers look good. SEO Tip #5. Push Content Fast Whenever you publish a piece of content, you can expect it to rank within 6 months to a year (potentially less if you’re an authority in your niche). So, the faster you publish your content, the faster they’re going to age, and, as such, the faster they’ll rank on Google. On average, I recommend you publish a minimum of 10,000 words of content per month and 20,000 to 30,000 optimally. If you’re not doing link-building for your website, then I’d recommend pushing for even more content. Sometimes, content velocity can compensate for the lack of backlinks. SEO Tip #6. Use Backlink Data to Prioritize Content You might be tempted to go for that juicy, 6-digit traffic cornerstone keyword right from the get-go... But I'd recommend doing the opposite. More often than not, to rank for more competitive, cornerstone keywords, you’ll need to have a ton of supporting content, high-quality backlinks, website authority, and so on. Instead, it’s a lot more reasonable to first focus on the less competitive keywords and then, once you’ve covered those, move on to the rest. Now, as for how to check keyword competitiveness, here are 2 options: Use Mozbar to see the number of backlinks for top-ranking pages, as well as their Domain Authority (DA). If all the pages ranking on page #1 have <5 backlinks and DA of 20 - 40, it’s a good opportunity. Use SEMrush or Ahrefs to sort your keywords by difficulty, and focus on the less difficult keywords first. Now, that said, keep in mind that both of these metrics are third-party, and hence not always accurate. SEO Tip #7. Always Start With Competitive Analysis When doing keyword research, the easiest way to get started is via competitive analysis. Chances are, whatever niche you’re in, there’s a competitor that is doing great with SEO. So, instead of having to do all the work from scratch, run their website through SEMrush or Ahrefs and steal their keyword ideas. But don’t just stop there - once you’ve borrowed keyword ideas from all your competitors, run the seed keywords through a keyword research tool such as UberSuggest or SEMrush Keyword Magic Tool. This should give you dozens of new ideas that your competitors might’ve missed. Finally, don’t just stop at borrowing your competitor’s keyword ideas. You can also borrow some inspiration on: The types of graphics and images you can create to supplement your blog content. The tone and style you can use in your articles. The type of information you can include in specific content pieces. SEO Tip #8. Source a LOT of Writers Content writing is one of those professions that has a very low barrier to entry. Anyone can take a writing course, claim to be a writer, and create an UpWork account… This is why 99% of the writers you’ll have to apply for your gigs are going to be, well, horrible. As such, if you want to produce a lot of content on the reg, you’ll need to source a LOT of writers. Let’s do the math: If, by posting a job ad, you source 100 writers, you’ll see that only 5 of them are a good fit. Out of the 5 writers, 1 has a very high rate, so they drop out. Another doesn’t reply back to your communication, which leaves you with 3 writers. You get the 3 writers to do a trial task, and only one turns out to be a good fit for your team. Now, since the writer is freelance, the best they can do is 4 articles per month for a total of 5,000-words (which, for most niches, ain’t all that much). So, what we’re getting at here is, to hire quality writers, you should source a LOT of them. SEO Tip #9. Create a Process for Filtering Writers If you follow the previous tip, you'll end up with a huge database of hundreds of writers. This creates a whole new problem: You now have a database of 500+ writers waiting for you to sift through them and decide which ones are worth the hire. It would take you 2-3 days of intense work to go through all these writers and vet them yourself. Let’s be real - you don’t have time for that. Here’s what you can do instead: When sourcing writers, always get them to fill in a Google form (instead of DMing or emailing you). In this form, make sure to ask for 3 relevant written samples, a link to the writer’s portfolio page, and the writer’s rate per word. Create a SOP for evaluating writers. The criteria for evaluation should be: Level of English. Does the writer’s sample have any English mistakes? If so, they’re not a good fit. Quality of Samples. Are the samples long-form and engaging content or are they boring 500-word copy-pastes? Technical Knowledge. Has the writer written about a hard-to-explain topic before? Anyone can write about simple topics like traveling—you want to look for someone who knows how to research a new topic and explain it in a simple and easy-to-read way. If someone’s written about how to create a perfect cover letter, they can probably write about traveling, but the opposite isn’t true. Get your VA to evaluate the writer’s samples as per the criteria above and short-list writers that seem competent. If you sourced 500 writers, the end result of this process should be around 50 writers. You or your editor goes through the short-list of 50 writers and invites 5-10 for a (paid) trial task. The trial task is very important - you’ll sometimes find that the samples provided by the writer don’t match their writing level. SEO Tip #10. Use the Right Websites to Find Writers Not sure where to source your writers? Here are some ideas: ProBlogger \- Our #1 choice - a lot of quality writers frequent this website. LinkedIn \- You can headhunt content writers in specific locations. Upwork \- If you post a content gig, most writers are going to be awful. Instead, I recommend headhunting top writers instead. WeWorkRemotely \- Good if you’re looking to make a full-time remote hire. Facebook \- There are a ton of quality Facebook groups for writers. Some of our faves are Cult of Copy Job Board and Content Marketing Lounge. SEO Tip #11. Always Use Content Outlines When giving tasks to your writing team, you need to be very specific about the instructions you give them. Don’t just provide a keyword and tell them to “knock themselves out.” The writer isn’t a SEO expert; chances are, they’re going to mess it up big-time and talk about topics that aren’t related to the keyword you’re targeting. Instead, when giving tasks to writers, do it through content outlines. A content outline, in a nutshell, is a skeleton of the article they’re supposed to write. It includes information on: Target word count (aim for the same or 50% more the word count than that of the competition). Article title. Article structure (which sections should be mentioned and in what order). Related topics of keywords that need to be mentioned in the article. Content outline example in the URL in the post intro. SEO Tip #12. Focus on One Niche at a Time I used to work with this one client that had a SaaS consisting of a mixture of CRM, Accounting Software, and HRS. I had to pick whether we were going to focus on topics for one of these 3 niches or focus on all of them at the same time. I decided to do the former. Here’s why: When evaluating what to rank, Google considers the authority of your website. If you have 60 articles about accounting (most of which link to each other), you’re probably an authority in the niche and are more likely to get good rankings. If you have 20 sales, 20 HR, and 20 accounting articles, though, none of these categories are going to rank as well. It always makes more sense to first focus on a single niche (the one that generates the best ROI for your business), and then move on to the rest. This also makes it easier to hire writers - you hire writers specialized in accounting, instead of having to find writers who can pull off 3 unrelated topics. SEO Tip #13. Just Hire a VA Already It’s 2021 already guys—unless you have a virtual assistant, you’re missing out big-time. Since a lot of SEO tasks are very time-consuming, it really helps to have a VA around to take over. As long as you have solid SOPs in place, you can hire a virtual assistant, train them, and use them to free up your time. Some SEO tasks virtual assistants can help with are: Internal linking. Going through all your blog content and ensuring that they link to each other. Backlink prospecting. Going through hundreds of websites daily to find link opportunities. Uploading content on WordPress and ensuring that the content is optimized well for on-page SEO. SEO Tip #14. Use WordPress (And Make Your Life Easier) Not sure which CMS platform to use? 99% of the time, you’re better off with WordPress. It has a TON of plugins that will make your life easier. Want a drag & drop builder? Use Elementor. It’s cheap, efficient, extremely easy to learn, and comes jam-packed with different plugins and features. Wix, SiteGround, and similar drag & drops are pure meh. SEO Tip #15. Use These Nifty WordPress Plugins There are a lot of really cool WordPress plugins that can make your (SEO) life so much easier. Some of our favorites include: RankMath. A more slick alternative to YoastSEO. Useful for on-page SEO. Smush. App that helps you losslessly compress all images on your website, as well as enables lazy loading. WP Rocket. This plugin helps speed up your website pretty significantly. Elementor. Not a techie? This drag & drop plugin makes it significantly easier to manage your website. WP Forms. Very simple form builder. Akismet Spam Protection. Probably the most popular anti-spam WP plugin. Mammoth Docx. A plugin that uploads your content from a Google doc directly to WordPress. SEO Tip #16. No, Voice Search Is Still Not Relevant Voice search is not and will not be relevant (no matter what sensationalist articles might say). Sure, it does have its application (“Alexa, order me toilet paper please”), but it’s pretty niche and not relevant to most SEOs. After all, you wouldn’t use voice search for bigger purchases (“Alexa, order me a new laptop please”) or informational queries (“Alexa, teach me how to do accounting, thanks”). SEO Tip #17. SEO Is Obviously Not Dead I see these articles every year - “SEO is dead because I failed to make it work.” SEO is not dead and as long as there are people looking up for information/things online, it never will be. And no, SEO is not just for large corporations with huge budgets, either. Some niches are hypercompetitive and require a huge link-building budget (CBD, fitness, VPN, etc.), but they’re more of an exception instead of the rule. SEO Tip #18. Doing Local SEO? Focus on Service Pages If you’re doing local SEO, you’re better off focusing on local service pages than blog content. E.g. if you’re an accounting firm based in Boston, you can make a landing page about /accounting-firm-boston/, /tax-accounting-boston/, /cpa-boston/, and so on. Or alternatively, if you’re a personal injury law firm, you’d want to create pages like /car-accident-law-firm/, /truck-accident-law-firm/, /wrongful-death-law-firm/, and the like. Thing is, you don’t really need to rank on global search terms—you just won’t get leads from there. Even if you ranked on the term “financial accounting,” it wouldn’t really matter for your bottom line that much. SEO Tip #19. Engage With the SEO Community The SEO community is (for the most part) composed of extremely helpful and friendly people. There are a lot of online communities (including this sub) where you can ask for help, tips, case studies, and so on. Some of our faves are: This sub :) SEO Signals Lab (FB Group) Fat Graph Content Ops (FB Group) Proper SEO Group (FB Group) BigSEO Subreddit SEO Tip #20. Test Keywords Before Pursuing Them You can use Google ads to test how profitable any given keyword is before you start trying to rank for it. The process here is: Create a Google Ads account. Pick a keyword you want to test. Create a landing page that corresponds to the search intent behind the keyword. Allocate an appropriate budget. E.g. if you assume a conversion rate of 2%, you’d want to buy 100+ clicks. If the CPC is 2 USD, then the right budget would be 200 USD plus. Run the ads! If you don’t have the budget for this, you can still use the average CPC for the keyword to estimate how well it’s going to convert. If someone is willing to bid 10 USD to rank for a certain keyword, it means that the keyword is most probably generating pretty good revenue/conversions. SEO Tip #21. Test & Improve SEO Headlines Sometimes, you’ll see that you’re ranking in the top 3 positions for your search query, but you’re still not driving that much traffic. “What’s the deal?” you might be asking. Chances are, your headline is not clickable enough. Every 3-4 months, go through your Google Search Console and check for articles that are ranking well but not driving enough traffic. Then, create a Google sheet and include the following data: Targeted keyword Page link CTR (for the last 28 days) Date when you implemented the new title Old title New title New CTR (for the month after the CTR change was implemented) From then on, implement the new headline and track changes in the CTR. If you don’t reach your desired result, you can always test another headline. SEO Tip #22. Longer Content Isn’t Always Better Content You’ve probably heard that long-form content is where it’s at in 2021. Well, this isn’t always the case. Rather, this mostly depends on the keyword you’re targeting. If, for example, you’re targeting the keyword “how to tie a tie,” you don’t need a long-ass 5,000-word mega-guide. In such a case, the reader is looking for something that can be explained in 200-300 words and if your article fails to do this, the reader will bounce off and open a different page. On the other hand, if you’re targeting the keyword “how to write a CV,” you’ll need around 4,000 to 5,000 words to adequately explain the topic and, chances are, you won’t rank with less. SEO Tip #23. SEO is Not All About Written Content More often than not, when people talk about SEO they talk about written blog content creation. It’s very important not to forget, though, that blog content is not end-all-be-all for SEO. Certain keywords do significantly better with video content. For example, if the keyword is “how to do a deadlift,” video content is going to perform significantly better than blog content. Or, if the keyword is “CV template,” you’ll see that a big chunk of the rankings are images of the templates. So, the lesson here is, don’t laser-focus on written content—keep other content mediums in mind, too. SEO Tip #24. Write For Your Audience It’s very important that your content resonates well with your target audience. If, for example, you’re covering the keyword “skateboard tricks,” you can be very casual with your language. Heck, it’s even encouraged! Your readers are Googling the keyword in their free time and are most likely teens or in their early 20s. Meaning, you can use informal language, include pop culture references, and avoid complicated language. Now, on the other hand, if you’re writing about high-level investment advice, your audience probably consists of 40-something suit-and-ties. If you include Rick & Morty references in your article, you'll most likely lose credibility and the Googler, who will go to another website. Some of our best tips on writing for your audience include: Define your audience. Who’s the person you’re writing for? Are they reading the content at work or in their free time? Keep your reader’s level of knowledge in mind. If you’re covering an accounting 101 topic, you want to cover the topic’s basics, as the reader is probably a student. If you’re writing about high-level finance, though, you don’t have to teach the reader what a balance sheet is. More often than not, avoid complicated language. The best practice is to write on a 6th-grade level, as it’s understandable for anyone. Plus, no one wants to read Shakespeare when Googling info online (unless they’re looking for Shakespeare's work, of course). SEO Tip #25. Create Compelling Headlines Want to drive clicks to your articles? You’ll need compelling headlines. Compare the following headline: 101 Productivity Tips \[To Get Things Done in 2021\] With this one: Productivity Tips Guide Which one would you click? Data says it’s the first! To create clickable headlines, I recommend you include the following elements: Keyword. This one’s non-negotiable - you need to include the target keyword in the headline. Numbers. If Buzzfeed taught us anything, it’s that people like to click articles with numbers in their titles. Results. If I read your article, what’s going to be the end result? E.g. “X Resume tips (to land the job)”.* Year (If Relevant). Adding a year to your title shows that the article is recent (which is relevant for some specific topics). E.g. If the keyword is “Marketing Trends,” I want to know marketing trends in 2021, not in 2001. So, adding a year in the title makes the headline more clickable. SEO Tip #26. Make Your Content Visual How good your content looks matters, especially if you're in a competitive niche. Here are some tips on how to make your content as visual as possible: Aim for 2-4 sentences per paragraph. Avoid huge blocks of text. Apply a 60-65% content width to your blog pages. Pick a good-looking font. I’d recommend Montserrat, PT Sans, and Roboto. Alternatively, you can also check out your favorite blogs, see which fonts they’re using, and do the same. Use a reasonable font size. Most top blogs use font sizes ranging from 16 pt to 22 pt. Add images when possible. Avoid stock photos, though. No one wants to see random “office people smiling” scattered around your blog posts. Use content boxes to help convey information better. Content boxes example in the URL in the intro of the post. SEO Tip #27. Ditch the Skyscraper Technique Already Brian Dean’s skyscraper technique is awesome and all, but the following bit really got old: “Hey \[name\], I saw you wrote an article. I, too, wrote an article. Please link to you?” The theory here is, if your content is good, the person will be compelled to link to it. In practice, though, the person really, really doesn’t care. At the end of the day, there’s no real incentive for the person to link to your content. They have to take time out of their day to head over to their website, log in to WordPress, find the article you mentioned, and add a link... Just because some stranger on the internet asked them to. Here’s something that works much better: Instead of fake compliments, be very straightforward about what you can offer them in exchange for that link. Some things you can offer are: A free version of your SaaS. Free product delivered to their doorstep. Backlink exchange. A free backlink from your other website. Sharing their content to your social media following. Money. SEO Tip #28. Get the URL Slug Right for Seasonal Content If you want to rank on a seasonal keyword, there are 2 ways to do this. If you want your article to be evergreen (i.e. you update it every year with new information), then your URL should not contain the year. E.g. your URL would be /saas-trends/, and you simply update the article’s contents+headline each year to keep it timely. If you’re planning on publishing a new trends report annually, though, then you can add a year to the URL. E.g. /saas-trends-2020/ instead of /saas-trends/. SEO Tip #29. AI Content Tools Are a Mixed Bag Lots of people are talking about AI content tools these days. Usually, they’re either saying: “AI content tools are garbage and the output is horrible,” Or: “AI content tools are a game-changer!” So which one is it? The truth is somewhere in-between. In 2021, AI content writing tools are pretty bad. The output you’re going to get is far from something you can publish on your website. That said, some SEOs use such tools to get a very, very rough draft of the article written, and then they do intense surgery on it to make it usable. Should you use AI content writing tools? If you ask me, no - it’s easier to hire a proficient content writer than spend hours salvaging AI-written content. That said, I do believe that such tools are going to get much better years down the line. This one was, clearly, more of a personal opinion than a fact. I’d love to hear YOUR opinion on AI content tools! Are they a fad, or are they the future of content creation? Let me know in the comments. SEO Tip #30. Don’t Overdo it With SEO Tools There are a lot of SEO tools out there for pretty much any SEO function. Keyword research, link-building, on-page, outreach, technical SEO, you name it! If you were to buy most of these tools for your business, you’d easily spend 4-figures on SEO tools per month. Luckily, though, you don’t actually need most of them. At the end of the day, the only must-have SEO tools are: An SEO Suite (Paid). Basically SEMrush or Ahrefs. Both of these tools offer an insane number of features - backlink analysis, keyword research, and a ton of other stuff. Yes, 99 USD a month is expensive for a tool. But then again, if you value your time 20 USD/hour and this tool saves you 6 hours, it's obviously worth it, right? On-Page SEO Tool (Free). RankMath or Yoast. Basically, a tool that's going to help you optimize web pages or blog posts as per SEO best practices. Technical SEO Tool (Freemium). You can use ScreamingFrog to crawl your entire website and find technical SEO problems. There are probably other tools that also do this, but ScreamingFrog is the most popular option. The freemium version of the tool only crawls a limited number of pages (500 URLs, to be exact), so if your website is relatively big, you'll need to pay for the tool. Analytics (Free). Obviously, you'll need Google Analytics (to track website traffic) and Google Search Console (to track organic traffic, specifically) set up on your website. Optionally, you can also use Google Track Manager to better track how your website visitors interact with the site. MozBar (Free). Chrome toolbar that lets you simply track the number of backlinks on Google Search Queries, Domain Authority, and a bunch of other stuff. Website Speed Analysis (Free). You can use Google Page Speed Insights to track how fast your website loads, as well as how mobile-friendly it is. Outreach Tool (Paid). Tool for reaching out to prospects for link-building, guest posting, etc. There are about a dozen good options for this. Personally, I like to use Snov for this. Optimized GMB Profile (Free). Not a tool per se, but if you're a local business, you need to have a well-optimized Google My Business profile. Google Keyword Planner (Free). This gives you the most reliable search volume data of all the tools. So, when doing keyword research, grab the search volume from here. Tool for Storing Keyword Research (Free). You can use Google Sheets or AirTable to store your keyword research and, at the same time, use it as a content calendar. Hemingway App (Free). Helps keep your SEO content easy to read. Spots passive voice, complicated words, etc. Email Finder (Freemium). You can use a tool like Hunter to find the email address of basically anyone on the internet (for link-building or guest posting purposes). Most of the tools that don’t fit into these categories are 100% optional. SEO Tip #31. Hiring an SEO? Here’s How to Vet Them Unless you’re an SEO pro yourself, hiring one is going to be far from easy. There’s a reason there are so many “SEO experts” out there - for the layman, it’s very hard to differentiate between someone who knows their salt and a newbie who took an SEO course, like, last week. Here’s how you can vet both freelance and full-time SEOs: Ask for concrete traffic numbers. The SEO pro should give you the exact numbers on how they’ve grown a website in the past - “100% SEO growth in 1 year” doesn’t mean much if the growth is from 10 monthly traffic to 20. “1,000 to 30,000” traffic, on the other hand, is much better. Ask for client names. While some clients ask their SEOs to sign an NDA and not disclose their collaboration, most don’t. If an SEO can’t name a single client they’ve worked with in the past, that’s a red flag. Make sure they have the right experience. Global and local SEO have very different processes. Make sure that the SEO has experience with the type of SEO you need. Make sure you’re looking for the right candidate. SEO pros can be content writers, link-builders, web developers, or all of the above simultaneously. Make sure you understand which one you need before making the hire. If you’re looking for someone to oversee your content ops, you shouldn’t hire a technical SEO expert. Look for SEO pros in the right places. Conventional job boards are overrated. Post your job ads on SEO communities instead. E.g. this sub, bigseo, SEO Signals Facebook group, etc. SEO Tip #32. Blog Post Not Ranking? Follow This Checklist I wanted to format the post natively for Reddit, but it’s just SO much better on Notion. Tl;dr, the checklist covers every reason your post might not be ranking: Search intent mismatch. Inferior content. Lack of internal linking. Lack of backlinks. And the like. Checklist URL at the intro of the post. SEO Tip #33. Avoid BS Link-Building Tactics The only type of link-building that works is building proper, quality links from websites with a good backlink profile and decent organic traffic. Here’s what DOESN’T work: Blog comment links Forum spam links Drive-by Reddit comment/post links Web 2.0 links Fiverr “100 links for 10 bucks” bs If your “SEO agency” says they’re doing any of the above instead of actually trying to build you links from quality websites, you’re being scammed. SEO Tip #34. Know When to Use 301 and 302 Redirects When doing redirects, it’s very important to know the distinction between these two. 301 is a permanent page redirect and passes on link juice. If you’re killing off a page that has backlinks, it’s better to 301 it to your homepage so that you don’t lose the link juice. If you simply delete a page, it’s going to be a 404, and the backlink juice is lost forever. 302 is a temporary page redirect and doesn’t pass on link juice. If the redirect is temporary, you do a 302. E.g. you want to test how well a new page is going to perform w/ your audience. SEO Tip #35. Social Signals Matter (But Not How You Think) Social signals are NOT a ranking factor. And yet, they can help your content rank on Google’s front page. Wondering what the hell am I talking about? Here’s what’s up: As I said, social signals are not a ranking factor. It’s not something Google takes into consideration to decide whether your article should rank or not. That said, social signals CAN lead to your article ranking better. Let’s say your article goes viral and gets around 20k views within a week. A chunk of these viewers are going to forget your domain/link and they’re going to look up the topic on Google via your chosen keyword + your brand name. The amount of people looking for YOUR keyword and exclusively picking your result over others is going to make Google think that your content is satisfying search intent better than the rest, and thus, reward you with better ranking. SEO Tip #36. Run Remarketing Ads to Lift Organic Traffic Conversions Not satisfied with your conversion rates? You can use Facebook ads to help increase them. Facebook allows you to do something called “remarketing.” This means you can target anyone that visited a certain page (or multiple pages) on your website and serve them ads on Facebook. There are a TON of ways you can take advantage of this. For example, you can target anyone that landed on a high buyer intent page and serve them ads pitching your product or a special offer. Alternatively, you can target people who landed on an educational blog post and offer them something to drive them down the funnel. E.g. free e-book or white paper to teach them more about your product or service. SEO Tip #37. Doing Local SEO? Follow These Tips Local SEO is significantly different from global SEO. Here’s how the two differ (and what you need to do to drive local SEO results): You don’t need to publish content. For 95% of local businesses, you only want to rank for keywords related to your services/products, you don’t actually need to create educational content. You need to focus more on reviews and citation-building. One of Google Maps’ biggest ranking factors is the of reviews your business has. Encourage your customers to leave a review if they enjoyed your product/service through email or real-life communication. You need to create service pages for each location. As a local business, your #1 priority is to rank for keywords around your service. E.g. If you're a personal injury law firm, you want to optimize your homepage for “personal injury law firm” and then create separate pages for each service you provide, e.g. “car accident lawyer,” “motorcycle injury law firm,” etc. Focus on building citations. Being listed on business directories makes your business more trustworthy for Google. BrightLocal is a good service for this. You don’t need to focus as much on link-building. As local SEO is less competitive than global, you don’t have to focus nearly as much on building links. You can, in a lot of cases, rank with the right service pages and citations. SEO Tip #38. Stop Ignoring the Outreach Emails You’re Getting (And Use Them to Build Your Own Links) Got a ton of people emailing you asking for links? You might be tempted to just send them all straight to spam, and I don’t blame you. Outreach messages like “Hey Dr Jigsaw, your article is A+++ amazing! ...can I get a backlink?” can get hella annoying. That said, there IS a better way to deal with these emails: Reply and ask for a link back. Most of the time, people who send such outreach emails are also doing heavy guest posting. So, you can ask for a backlink from a 3rd-party website in exchange for you mentioning their link in your article. Win-win! SEO Tip #39. Doing Internal Linking for a Large Website? This’ll Help Internal linking can get super grueling once you have hundreds of articles on your website. Want to make the process easier? Do this: Pick an article you want to interlink on your website. For the sake of the example, let’s say it’s about “business process improvement.” Go on Google and look up variations of this keyword mentioned on your website. For example: Site:\[yourwebsite\] “improve business process” Site:\[yourwebsite\] “improve process” Site:\[yourwebsite\] “process improvement” The above queries will find you the EXACT articles where these keywords are mentioned. Then, all you have to do is go through them and include the links. SEO Tip #40. Got a Competitor Copying Your Content? File a DMCA Notice Fun fact - if your competitors are copying your website, you can file a DMCA notice with Google. That said, keep in mind that there are consequences for filing a fake notice.

My boss taught me how to build a Failed business (15 lessons)
reddit
LLM Vibe Score0
Human Vibe Score0.091
aminekhThis week

My boss taught me how to build a Failed business (15 lessons)

I'm a senior software developer at a three-year-old startup that has been making $0 in revenue. I've been with this startup since its beginning, and it pays me $1200/month. My boss has broken the records of the number of stupid ideas and stupid features that he asked me to implement. He taught me (unintentionally) all the lessons I should NOT do to build a successful business. From bad product ideas, bad business decisions, not listening to your team, not building what target customers want, and falling in love with your bad product. The product we're working on is a desktop program that moves the cursor with your finger using the webcam (gesture recognition). Why in the world would anyone pay money to move the mouse cursor with his finger? No one knows. My boss watched Iron Man (the film) and saw how Tony Starks do gestures in front of his "advanced" computer and thought it was cool so he asked me to build this for him to sell it to enterprises (then pivoted the target customer to schools). Of course, no one bought this software. All the people he meets tell him it is cool but he never hears from them again. No one on the team, except my boss, thinks this software will succeed. He keeps adding irrelevant features to this software just because he "thinks" people will love it. We added 3D object visualizer, ChatGPT integration, and Quizzes. I suggested moving everything to the cloud and focusing only on improving the education industry by providing solutions that help teachers better prepare their lessons and understand where each student lacks by recording lessons, summarizing them for students, generating quizzes using AI, and analyzing the part that each student didn't understand. However, to do that, we need to forget the part of moving the cursor with fingers because it can be done only on Python, not NextJS. He simply replied, "NO, moving the cursor with fingers is COOL". So here are the lessons I learned from my boss to build a failed business: Never listen to your team. Always build what you think is good and never let anyone from your team say it's a bad idea. Fall in love with your business idea. Don't talk to customers. If no one bought your product, it's because they don't understand how cool it is. If a member of your team say it's a bad idea, ignore them, they don't understand how cool your idea is. Always hire interns because they're free labor and give them the most sensitive parts of the work like payments and databases. Make your business dependant on you. Don't let your team do their job the right way, give them orders to do it YOUR way. Hire experts to tell them what to do not to tell you what to do and how to do it. Never do marketing because people will steal your idea. Ask your team "What you think?" but ignore them. If your wife and children think your product is cool then it's cool. Start a business in an industry that you know nothing about but act like you know everything. If no one is buying your product, keep adding irrelevant features that no one asked for. \--- Edit: I didn't mention all the "stupid" ideas I built for him so here you go: Replacing Zoom, Teams, and Meet meetings with meetings in the metaverse. Target customer: Enterprises. An app that lets you scroll through social media without touching your mobile screen (using gesture recognition). We didn't build this because it's technically impossible to continuously use the phone camera outside your own app. He didn't believe me so asked his friend and told him the same thing. A software that controls the computer with gestures (moving cursor, single click, double click, ALT Tab...). Target customers: Enterprises Building a classroom in Decentraland (metaverse) to replace classes through Zoom and Teams He told me to build the startup website but to not make the home page the first page a user lands on when he opens the website. He wants to make the visitor lands on another "almost" empty page and if the user wants to go to the home page he should click on "Home" in the navbar.

MVP + AI/ML Implementation/Integration - Done for you SaaS
reddit
LLM Vibe Score0
Human Vibe Score1
rikksamThis week

MVP + AI/ML Implementation/Integration - Done for you SaaS

In today’s fast-paced world, businesses need to stay ahead of the curve. Leveraging AI, ML, and Cloud technologies isn't just an option—it's a necessity. We specialize in providing cutting-edge AI/ML solutions and Cloud services that empower businesses to innovate, automate, and scale like never before. Why AI and ML Matter Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing industries by enabling systems to learn, adapt, and improve over time. Whether it's predicting customer behavior, automating tasks, or enhancing decision-making, AI and ML open up a world of possibilities. Key Benefits of AI and ML: Enhanced Decision-Making: Harness predictive analytics to make data-driven decisions. Automation: Streamline operations with intelligent automation. Personalization: Deliver tailored experiences to your customers, increasing engagement and loyalty. Efficiency: Reduce costs and time through optimized processes. How Cloud Services Drive Innovation The Cloud is the backbone of modern business infrastructure. It allows companies to be more agile, scalable, and resilient. With Cloud computing, businesses can access powerful tools and resources on-demand, without the need for significant upfront investment. Advantages of Cloud Services: Scalability: Easily scale up or down based on your business needs. Cost Efficiency: Pay only for the resources you use, minimizing overhead. Security: Benefit from the highest standards of data security and compliance. Flexibility: Access your applications and data from anywhere, anytime. Our Services We offer comprehensive services to help you harness the full potential of AI, ML, and Cloud technologies: AI and ML Solutions: We design and deploy custom AI/ML models that solve your specific business challenges. From natural language processing (NLP) to computer vision, we cover all aspects of AI/ML. Cloud Integration: We help you migrate to the Cloud, ensuring a smooth transition with minimal disruption. Whether it’s AWS, Azure, or Google Cloud, our experts have you covered. Data Analytics: Transform your data into actionable insights with advanced analytics tools and platforms. Custom Software Development: We build robust, scalable applications that integrate AI/ML capabilities and leverage the Cloud. DevOps: Automate your development pipeline and ensure continuous integration and delivery with our DevOps expertise. Why Choose Us? Expert Team: Our team of experienced professionals is well-versed in AI/ML, Cloud computing, and data analytics. End-to-End Solutions: From ideation to deployment, we offer full-cycle development services. Tailored Approach: We understand that every business is unique. We provide customized solutions that align with your specific goals. Proven Track Record: We’ve helped numerous businesses across industries to innovate and grow. Success Stories Retail Industry: Implemented an AI-driven recommendation engine that increased sales by 30%. Healthcare Sector: Developed an ML-based diagnostic tool that improved accuracy by 20%. Finance: Integrated Cloud-based AI solutions that reduced operational costs by 25%.

My (23M) first $10k month installing internal GPT-4 for businesses
reddit
LLM Vibe Score0
Human Vibe Score1
swagamoneyThis week

My (23M) first $10k month installing internal GPT-4 for businesses

It all started in this very own subreddit just a month ago. I posted “How I made a secure GPT-4 for my company knowledge base” and left a cheeky Google Form in the comments. The post got 162 upvotes, 67 comments and, most importantly… ~30 form answers 😈 From there I got on 12 calls and even though I initially offered to do it for free… I closed 2 clients for $5k each. Data privacy was my main selling point: 1st company was a manufacturer with private instructions/manuals on how to operate certain systems. I trained GPT on them and let their employees talk with these 100-page PDFs. (When I say “train”, I refer to RAG, not fine-tune) 2nd company had customers sending them photos of sensitive documents for a customs clearing service. They had people manually extracting the info so we automated all of that. How did I ensure data privacy and security? I simply used MS Azure AI. They have all of the same stuff OpenAI has, but offer data privacy guarantees and network isolation. That’s both SOC 2 and GDPR compliant. Companies love it. Now I’m cold emailing my first 2 clients’ competitors for a quick rinse and repeat. P.S. I’m extremely curious of different use cases since I’m looking to niche down, so I’d be happy to talk to businesses with ideas of how to use this. You’d give me a use case idea and I’d give you advice on how to implement it. Edit: I’m getting TONS of DMs so please be comprehensive in your first message!

From research paper to a tech startup - help!
reddit
LLM Vibe Score0
Human Vibe Score1
More_MousseThis week

From research paper to a tech startup - help!

Hi! I'm a CS master student that loves being creative. I’ve always wanted to start a business. I have gotten offers to join other startups when I took my bachelors, but personally I never believed in the startups, so I’ve always ended up politely declining on any startup offers. But my master thesis idea is very intriguing. However, I still feel very lost. I can’t even think of any good company names, or where I would even find enthusiastic co founders.  My master thesis as an AI startup with large potential. As of today, I have not started on the product itself. I will write a paper on the product, and finish the thesis in August 2026. My supervisor suggested that this is a good startup idea, and has a large market potential. I want to try. I’ve written about my goals, milestones, and some questions. Feel free to help me in any way, by answering my questions below. Goal:  Learn about startups and non-technical part of it (business, finance, sales, etc) (I'm clueless here) Build the business part time Try and fail Milestones Complete my paper on the product Create MVP for customers to test Validate idea and check market Find company name, acquire domain and launch SaaS  Get feedback, do networking and improve the product Join a Startup Lab and find Cofounders. The following roles would need to be filled  CEO (Me, Vision and tech expert) COO (Business strategy, operations, and scaling.),  CMO (marketing and sales responsible, working to acquire new business) CPO (Product design, user experience, and frontend development)  Formally create the company, divide shares, hold weekend work meeting, pick company name (again) Goal: create product for an industry (the product can be tailored to different industries) and get the first clients. Work that needs to be done: Tech: Create the product for the industry  COO: pitching competitions, define the sales pitch, and how to price the product CMO: find out how marketing should be done, and what companies to contact for demo CMO: design company logo, design web page for business usage, create front page of the website  Growth + Profits Questions Between now, and until I have the working demo, what should I do with my time? I have courses where I learn technical skills for the company. It does not make sense to create the website for the product, when I don't know how the user would interact with the product.  Should I start the company even before the product is made? (While I'm a student and working on the paper) How can I acquire non-technical skills for running a business? I prefer reading books. How can I learn about software companies (practical skills)? For example: How to lower hosting costs?  How to price a product for customers and a product for business? (Software contracts) How to guarantee  privacy when it comes to business documents?  I’m planning on searching for co-founders, after I have validated the idea myself. Should I instead find co founders before I have even created the product? (with no guarantee that there would even be a product?) Should I try to make the product without co-founders? (This is my first startup, so it might tank within the first few months) Any experience with starting a software business while working full time? Thank you for all the help!

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security

Uzair Javaid, a Ph.D. with a passion for data privacy, co-founded Betterdata to tackle one of AI's most pressing challenges: protecting privacy while enabling innovation. Recently, Betterdata secured a lucrative contract with the US Department of Homeland Security, 1 of only 4 companies worldwide to do so and the only one in Asia. Here's how he did it: The Story So what's your story? I grew up in Peshawar, Pakistan, excelling in coding despite studying electrical engineering. Inspired by my professors, I set my sights on studying abroad and eventually earned a Ph.D. scholarship at NUS Singapore, specializing in data security and privacy. During my research, I ethically hacked Ethereum and published 15 papers—three times the requirement. While wrapping up my Ph.D., I explored startup ideas and joined Entrepreneur First, where I met Kevin Yee. With his expertise in generative models and mine in privacy, we founded Betterdata. Now, nearly three years in, we’ve secured a major contract with the U.S. Department of Homeland Security—one of only four companies globally and the only one from Asia. The Startup In a nutshell, what does your startup do? Betterdata is a startup that uses AI and synthetic data generation to address two major challenges: data privacy and the scarcity of high-quality data for training AI models. By leveraging generative models and privacy-enhancing technologies, Betterdata enables businesses, such as banks, to use customer data without breaching privacy regulations. The platform trains AI on real data, learns its patterns, and generates synthetic data that mimics the real thing without containing any personal or sensitive information. This allows companies to innovate and develop AI solutions safely and ethically, all while tackling the growing need for diverse, high-quality data in AI development. How did you conduct ideation and validation for your startup? The initial idea for Betterdata came from personal experience. During my Ph.D., I ethically hacked Ethereum’s blockchain, exposing flaws in encryption-based data sharing. This led me to explore AI-driven deep synthesis technology—similar to deepfakes but for structured data privacy. With GDPR impacting 28M+ businesses, I saw a massive opportunity to help enterprises securely share data while staying compliant. To validate the idea, I spoke to 50 potential customers—a number that strikes the right balance. Some say 100, but that’s impractical for early-stage founders. At 50, patterns emerge: if 3 out of 10 mention the same problem, and this repeats across 50, you have 10–15 strong signals, making it a solid foundation for an MVP. Instead of outbound sales, which I dislike, we used three key methods: Account-Based Marketing (ABM)—targeting technically savvy users with solutions for niche problems, like scaling synthetic data for banks. Targeted Content Marketing—regular customer conversations shaped our thought leadership and outreach. Raising Awareness Through Partnerships—collaborating with NUS, Singapore’s PDPC, and Plug and Play to build credibility and educate the market. These strategies attracted serious customers willing to pay, guiding Betterdata’s product development and market fit. How did you approach the initial building and ongoing product development? In the early stages, we built synthetic data generation algorithms and a basic UI for proof-of-concept, using open-source datasets to engage with banks. We quickly learned that banks wouldn't share actual customer data due to privacy concerns, so we had to conduct on-site installations and gather feedback to refine our MVP. Through continuous consultation with customers, we discovered real enterprise data posed challenges, such as missing values, which led us to adapt our prototype accordingly. This iterative approach of listening to customer feedback and observing their usage allowed us to improve our product, enhance UX, and address unmet needs while building trust and loyalty. Working closely with our customers also gives us a data advantage. Our solution’s effectiveness depends on customer data, which we can't fully access, but bridging this knowledge gap gives us a competitive edge. The more customers we test on, the more our algorithms adapt to diverse use cases, making it harder for competitors to replicate our insights. My approach to iteration is simple: focus solely on customer feedback and ignore external noise like trends or advice. The key question for the team is: which customer is asking for this feature or solution? As long as there's a clear answer, we move forward. External influences, such as AI hype, often bring more confusion than clarity. True long-term success comes from solving real customer problems, not chasing trends. Customers may not always know exactly what they want, but they understand their problems. Our job is to identify these problems and solve them in innovative ways. While customers may suggest specific features, we stay focused on solving the core issue rather than just fulfilling their exact requests. The idea aligns with the quote often attributed to Henry Ford: "If I asked people what they wanted, they would have said faster horses." The key is understanding their problems, not just taking requests at face value. How do you assess product-market fit? To assess product-market fit, we track two key metrics: Customers' Willingness to Pay: We measure both the quantity and quality of meetings with potential customers. A high number of meetings with key decision-makers signals genuine interest. At Betterdata, we focused on getting meetings with people in banks and large enterprises to gauge our product's resonance with the target market. How Much Customers Are Willing to Pay: We monitor the price customers are willing to pay, especially in the early stages. For us, large enterprises, like banks, were willing to pay a premium for our synthetic data platform due to the growing need for privacy tech. This feedback guided our product refinement and scaling strategy. By focusing on these metrics, we refined our product and positioned it for scaling. What is your business model? We employ a structured, phase-driven approach for out business model, as a B2B startup. I initially struggled with focusing on the core value proposition in sales, often becoming overly educational. Eventually, we developed a product roadmap with models that allowed us to match customer needs to specific offerings and justify our pricing. Our pricing structure includes project-based pilots and annual contracts for successful deployments. At Betterdata, our customer engagement unfolds across three phases: Phase 1: Trial and Benchmarking \- We start with outreach and use open-source datasets to showcase results, offering customers a trial period to evaluate the solution. Phase 2: Pilot or PoC \- After positive trial results, we conduct a PoC or pilot using the customer’s private data, with the understanding that successful pilots lead to an annual contract. Phase 3: Multi-Year Contracts \- Following a successful pilot, we transition to long-term commercial contracts, focusing on multi-year agreements to ensure stability and ongoing partnerships. How do you do marketing for your brand? We take a non-conventional approach to marketing, focusing on answering one key question: Which customers are willing to pay, and how much? This drives our messaging to show how our solution meets their needs. Our strategy centers around two main components: Building a network of lead magnets \- These are influential figures like senior advisors, thought leaders, and strategic partners. Engaging with institutions like IMDA, SUTD, and investors like Plug and Play helps us gain access to the right people and foster warm introductions, which shorten our sales cycle and ensure we’re reaching the right audience. Thought leadership \- We build our brand through customer traction, technology evidence, and regulatory guidelines. This helps us establish credibility in the market and position ourselves as trusted leaders in our field. This holistic approach has enabled us to navigate diverse market conditions in Asia and grow our B2B relationships. By focusing on these areas, we drive business growth and establish strong trust with stakeholders. What's your advice for fundraising? Here are my key takeaways for other founders when it comes to fundraising: Fundraise When You Don’t Need To We closed our seed round in April 2023, a time when we weren't actively raising. Founders should always be in fundraising mode, even when they're not immediately in need of capital. Don’t wait until you have only a few months of runway left. Keep the pipeline open and build relationships. When the timing is right, execution becomes much easier. For us, our investment came through a combination of referrals and inbound interest. Even our lead investor initially rejected us, but after re-engaging, things eventually fell into place. It’s crucial to stay humble, treat everyone with respect, and maintain those relationships for when the time is right. Be Mindful of How You Present Information When fundraising, how you present information matters a lot. We created a comprehensive, easily digestible investment memo, hosted on Notion, which included everything an investor might need—problem, solution, market, team, risks, opportunities, and data. The goal was for investors to be able to get the full picture within 30 minutes without chasing down extra details. We also focused on making our financial model clear and meaningful, even though a 5-year forecast might be overkill at the seed stage. The key was clarity and conciseness, and making it as easy as possible for investors to understand the opportunity. I learned that brevity and simplicity are often the best ways to make a memorable impact. For the pitch itself, keep it simple and focus on 4 things: problem, solution, team, and market. If you can summarize each of these clearly and concisely, you’ll have a compelling pitch. Later on, you can expand into market segments, traction, and other metrics, but for seed-stage, focus on those four areas, and make sure you’re strong in at least three of them. If you do, you'll have a compelling case. How do you run things day-to-day? i.e what's your operational workflow and team structure? Here's an overview of our team structure and process: Internally: Our team is divided into two main areas: backend (internal team) and frontend (market-facing team). There's no formal hierarchy within the backend team. We all operate as equals, defining our goals based on what needs to be developed, assigning tasks, and meeting weekly to share updates and review progress. The focus is on full ownership of tasks and accountability for getting things done. I also contribute to product development, identifying challenges and clearing obstacles to help the team move forward. Backend Team: We approach tasks based on the scope defined by customers, with no blame or hierarchy. It's like a sports team—sometimes someone excels, and other times they struggle, but we support each other and move forward together. Everyone has the creative freedom to work in the way that suits them best, but we establish regular meetings and check-ins to ensure alignment and progress. Frontend Team: For the market-facing side, we implement a hierarchy because the market expects this structure. If I present myself as "CEO," it signals authority and credibility. This distinction affects how we communicate with the market and how we build our brand. The frontend team is split into four main areas: Business Product (Software Engineering) Machine Learning Engineering R&D The C-suite sits at the top, followed by team leads, and then the executors. We distill market expectations into actionable tasks, ensuring that everyone is clear on their role and responsibilities. Process: We start by receiving market expectations and defining tasks based on them. Tasks are assigned to relevant teams, and execution happens with no communication barriers between team members. This ensures seamless collaboration and focused execution. The main goal is always effectiveness—getting things done efficiently while maintaining flexibility in how individuals approach their work. In both teams, there's an emphasis on accountability, collaboration, and clear communication, but the structure varies according to the nature of the work and external expectations.

Why the value of writing code and other digital services is going to zero
reddit
LLM Vibe Score0
Human Vibe Score1
BalloonWheelieThis week

Why the value of writing code and other digital services is going to zero

I must preface this with a trigger warning because I make some statements in this post that might be upsetting to some. This post discusses my experience building in the new era of entrepreneurship, which is one where the founder is the center of the universe, and the consultants, overpriced SaaS, and corporate swamp creatures are replaced by single-user custom software, bots, and self-hosted automations. If you work in the legacy economy, I really don't intend to stress you out or say things you are doing are quickly becoming irrelevant, but I must share the reality of how I am operating, because I would like to hear from others who are doing the same, or desire to do the same. I am currently operating with the belief that AI-powered tools are going to make 1-person million dollar businesses much more common. Building anything digital is becoming extremely easy, cheap, and quick to implement. The value of code and digital tools is approaching zero, or at most 5% of what it currently is. Right now, the most powerful AI tools are aimed at developers, so folks who have some technical and business ability basically have nothing holding them back aside from the speed of their brain right now. I happen to be a part of the cohort, and am building like there is no tomorrow, but I don't believe this cohort is actually all that big. The next hurdle to unlock the new era of entrepreneurship is empowering every entrepreneur to build at the same pace that is currently locked behind having technical ability. This cohort is huge (millions, if the number of people in this sub is any indication). This post is aimed at them (you?). If you are part of this cohort, what is holding you back from launching a new product for near-zero cost? What is too complicated, too expensive, too unknown for you to be able to build your new/current business at maximum speed? I look forward to seeing the replies, I hope some insights shared can help the community, and be a catalyst for more tools to enable non-technical founders to launch. I will now share some of how I am testing, launching, and selling as a one-man-show. This will be a little bit technical, but if the output of any layer of my stack is something you want, please comment because maybe someone will build a cheap way of accessing it without needing to manage the code yourself. \#1 BOTS I cannot overstate how much leverage bots have created for me. I run all of my bots locally and interface with with via Telegram. Bots do things like: \- watch social media pages, forums, subreddits, etc related to my customers and notify me of what is going on, and suggest SEO blog posts that could be published to capture traffic related to the topic. with a single message, my bot will generate a blog post, send it to me for review, apply edits i suggest, and then publish it live, all from within telegram \- pay attention to all my key metrics/analytics, and attempt to find insights/corrolations (ex. there is a lot of traffic on this page, blog post, video, etc. here's why, and how we can take advantage of it to drive business goals) \- repurposing content. i have dozens of social media profiles that are 100% run by bots, they are all related to my customer niches and will do things like post news, snippets from my blogs, interact with human creators in the niche, etc. this builds my audience automatically which I can then advertise to/try to convert into paying customers, since they are interested in the things my bot is posting and become followers, it's like automated qualified lead gen 24/7 across every social platform and every niche I care about. you may be thinking by now that this post is made by a bot, but you will have to trust me that this is 100% hand-written by my sleep-deprived brain. let's continue: \#2 replacing every SaaS with a shitty version of it designed for what i need out of it it's absurd that we pay ten's of dollars per seat per month for basic digital functions like chat (slack), CRM (active camppaign, sales force, hubspot, etc), email stuff (mailchip, etc), link sharing (linktree, etc), website builders (wix, squarespace, etc), etc. all of these SaaS tools are overpriced and overbuilt. I believe many of them are going to be caught in the innovators dilemma and will go to 0. I don't use any of these anymore, I build and self-host my own shitty version of each of them that does only what i need out of the tool. for example, my CRM doesn't have a fancy drag and drop email builder and 10000 3rd party plugins, because i dont need any of that shit I just need to segment and communicate with my customers. if i need more features, i can generate them on the fly. \#3 working alone I have worked with cofounders in the past, raised money from investors, hired consultants, burned money and time, suffered sleepless nights from stress caused by other people not delivering, trying to convince others they are wrong, or they are pushing the company off a cliff, waste waste waste. no more of that. In the new age of entrepreneurship, the BUILDER (you and I) are the ones creating the value, and AI empowers us to do it alone. this might seem daunting, but there is no business problem that can't be solved with a detailed discussion sesh with chatgpt, no facts that can't be found with perplexity, and no task that can't be automated with claude. there is no need for anymore swamp creatures. you are the start and the end point, you don't need to rely on anyone else for anything. this may sound ignorant, but this is the conclusion I have come to believe, and it continues to be proven every day my businesses progress with me being the only human involved. This is getting quite long so I'll cut it here. I look forward to hearing about how you are operating in this new era and hopefully getting inspired/learning some new ideas to add to my current stack.

how I built a $6k/mo business with cold email
reddit
LLM Vibe Score0
Human Vibe Score1
Afraid-Astronomer130This week

how I built a $6k/mo business with cold email

I scaled my SaaS to a $6k/mo business in under 6 months completely using cold email. However, the biggest takeaway for me is not a business that’s potentially worth 6-figure. It’s having a glance at the power of cold emails in the age of AI. It’s a rapidly evolving yet highly-effective channel, but no one talks about how to do it properly. Below is the what I needed 3 years ago, when I was stuck with 40 free users on my first app. An app I spent 2 years building into the void. Entrepreneurship is lonely. Especially when you are just starting out. Launching a startup feel like shouting into the dark. You pour your heart out. You think you have the next big idea, but no one cares. You write tweets, write blogs, build features, add tests. You talk to some lukewarm leads on Twitter. You do your big launch on Product Hunt. You might even get your first few sales. But after that, crickets... Then, you try every distribution channel out there. SEO Influencers Facebook ads Affiliates Newsletters Social media PPC Tiktok Press releases The reality is, none of them are that effective for early-stage startups. Because, let's face it, when you're just getting started, you have no clue what your customers truly desire. Without understanding their needs, you cannot create a product that resonates with them. It's as simple as that. So what’s the best distribution channel when you are doing a cold start? Cold emails. I know what you're thinking, but give me 10 seconds to change your mind: When I first heard about cold emailing I was like: “Hell no! I’m a developer, ain’t no way I’m talking to strangers.” That all changed on Jan 1st 2024, when I actually started sending cold emails to grow. Over the period of 6 months, I got over 1,700 users to sign up for my SaaS and grew it to a $6k/mo rapidly growing business. All from cold emails. Mastering Cold Emails = Your Superpower I might not recommend cold emails 3 years ago, but in 2024, I'd go all in with it. It used to be an expensive marketing channel bootstrapped startups can’t afford. You need to hire many assistants, build a list, research the leads, find emails, manage the mailboxes, email the leads, reply to emails, do meetings. follow up, get rejected... You had to hire at least 5 people just to get the ball rolling. The problem? Managing people sucks, and it doesn’t scale. That all changed with AI. Today, GPT-4 outperforms most human assistants. You can build an army of intelligent agents to help you complete tasks that’d previously be impossible without human input. Things that’d take a team of 10 assistants a week can now be done in 30 minutes with AI, at far superior quality with less headaches. You can throw 5000 names with website url at this pipeline and you’ll automatically have 5000 personalized emails ready to fire in 30 minutes. How amazing is that? Beyond being extremely accessible to developers who are already proficient in AI, cold email's got 3 superpowers that no other distribution channels can offer. Superpower 1/3 : You start a conversation with every single user. Every. Single. User. Let that sink in. This is incredibly powerful in the early stages, as it helps you establish rapport, bounce ideas off one another, offer 1:1 support, understand their needs, build personal relationships, and ultimately convert users into long-term fans of your product. From talking to 1000 users at the early stage, I had 20 users asking me to get on a call every week. If they are ready to buy, I do a sales call. If they are not sure, I do a user research call. At one point I even had to limit the number of calls I took to avoid burnout. The depth of the understanding of my customers’ needs is unparalleled. Using this insight, I refined the product to precisely cater to their requirements. Superpower 2/3 : You choose exactly who you talk to Unlike other distribution channels where you at best pick what someone's searching for, with cold emails, you have 100% control over who you talk to. Their company Job title Seniority level Number of employees Technology stack Growth rate Funding stage Product offerings Competitive landscape Social activity (Marital status - well, technically you can, but maybe not this one…) You can dial in this targeting to match your ICP exactly. The result is super low CAC and ultra high conversion rate. For example, My competitors are paying $10 per click for the keyword "HARO agency". I pay $0.19 per email sent, and $1.92 per signup At around $500 LTV, you can see how the first means a non-viable business. And the second means a cash-generating engine. Superpower 3/3 : Complete stealth mode Unlike other channels where competitors can easily reverse engineer or even abuse your marketing strategies, cold email operates in complete stealth mode. Every aspect is concealed from end to end: Your target audience Lead generation methods Number of leads targeted Email content Sales funnel This secrecy explains why there isn't much discussion about it online. Everyone is too focused on keeping their strategies close and reaping the rewards. That's precisely why I've chosen to share my insights on leveraging cold email to grow a successful SaaS business. More founders need to harness this channel to its fullest potential. In addition, I've more or less reached every user within my Total Addressable Market (TAM). So, if any competitor is reading this, don't bother trying to replicate it. The majority of potential users for this AI product are already onboard. To recap, the three superpowers of cold emails: You start a conversation with every single user → Accelerate to PMF You choose exactly who you talk to → Super-low CAC Complete stealth mode → Doesn’t attract competition By combining the three superpowers I helped my SaaS reach product-marketing-fit quickly and scale it to $6k per month while staying fully bootstrapped. I don't believe this was a coincidence. It's a replicable strategy for any startup. The blueprint is actually straightforward: Engage with a handful of customers Validate the idea Engage with numerous customers Scale to $5k/mo and beyond More early-stage founders should leverage cold emails for validation, and as their first distribution channel. And what would it do for you? Update: lots of DM asking about more specifics so I wrote about it here. https://coldstartblueprint.com/p/ai-agent-email-list-building

101 best SEO tips to help you drive traffic in 2k21
reddit
LLM Vibe Score0
Human Vibe Score0.543
DrJigsawThis week

101 best SEO tips to help you drive traffic in 2k21

Hey guys! I don't have to tell you how SEO can be good for your business - you can drive leads to your SaaS on autopilot, drive traffic to your store/gym/bar/whatever, etc. The thing with SEO, though, is that most SEO tips on the internet are just not that good. Most of the said tips: Are way too simple & basic (“add meta descriptions to your images”*) Are not impactful. Sure, adding that meta tag to an image is important, but that’s not what’s going to drive traffic to your website Don’t talk much about SEO strategy (which is ultimately the most important thing for SEO). Sure, on-page SEO is great, but you sure as hell won't drive much traffic if you can't hire the right writers to scale your content. And to drive serious SEO traffic, you'll need a LOT more than that. Over the past few years, my and my co-founder have helped grow websites to over 200k+ monthly traffic (check out our older Reddit post if you want to learn more about us, our process, and what we do), and we compiled all our most important SEO tips and tricks, as well as case studies, research, and experiments from the web, into this article. Hope you like it ;) If you think we missed something super important, let us know and we'll add it to the list. And btw, we also published this article on our own blog with images, smart filters, and all that good stuff. If you want to check it out, click here. That said, grab some coffee (or beer) & let's dive in - this is going to be a long one. SEO Strategy Tips Tip #1. A Lot of SEO Tips On The Internet Are NOT Necessarily Factual A lot of the SEO content you’ll read on the internet will be based on personal experiences and hearsay. Unfortunately, Google is a bit vague about SEO advice, so you have to rely more on experiments conducted by SEO pros in the community. So, sometimes, a lot of this information is questionable, wrong, or simply based on inaccurate data.  What we’re getting at here is, whenever you hear some new SEO advice, take it with a grain of salt. Google it to double-check other sources, and really understand what this SEO advice is based on (instead of just taking it at face value). Tip #2. SEO Takes Time - Get Used to It Any way you spin it, SEO takes time.  It can take around 6 months to 2 years (depending on the competition in your niche) before you start seeing some serious results.  So, don’t get disappointed if you don’t see any results within 3 months of publishing content. Tip #3. SEO Isn’t The Best Channel for Everyone That said, if you need results for your business tomorrow, you might want to reconsider SEO altogether.  If you just started your business, for example, and are trying to get to break-even ASAP, SEO is a bad idea - you’ll quit before you even start seeing any results.  If that’s the case, focus on other marketing channels that can have faster results like content marketing, PPC, outreach, etc. Tip #4. Use PPC to Validate Keywords Not sure if SEO is right for your business? Do this: set up Google Search ads for the most high-intent keywords in your niche. See how well the traffic converts and then decide if it’s worthwhile to focus on SEO (and rank on these keywords organically). Tip #5. Use GSC to See If SEO Is Working While it takes a while to see SEO results, it IS possible to see if you’re going in the right direction. On a monthly basis, you can use Search Console to check if your articles are indexed by Google and if their average position is improving over time. Tip #6. Publish a TON of Content The more content you publish on your blog, the better. We recommend a minimum of 10,000 words per month and optimally 20,000 - 30,000 (especially if your website is fresh). If an agency offers you the typical “4 500-word articles per month” deal, stay away. No one’s ever gotten results in SEO with short, once-per-week articles. Tip #7. Upgrade Your Writers Got a writer that’s performing well? Hire them as an editor and get them to oversee content operations / edit other writers’ content. Then, upgrade your best editor to Head of Content and get them to manage the entire editor / writer ops. Tip #8. Use Backlink Data to Prioritize Content When doing keyword research, gather the backlink data of the top 3 ranking articles and add it to your sheet. Then, use this data to help you prioritize which keywords to focus on first. We usually prioritize keywords that have lower competition, high traffic, and a medium to high buyer intent. Tip #9. Conduct In-Depth Keyword Research Make your initial keyword research as comprehensive as possible. This will give you a much more realistic view of your niche and allow you to prioritize content the right way. We usually aim for 100 to 300 keywords (depending on the niche) for the initial keyword research when we start working with a client. Tip #10. Start With Competitive Analysis Start every keyword research with competitive analysis. Extract the keywords your top 3 competitors are ranking on.  Then, use them as inspiration and build upon it. Use tools like UberSuggest to help generate new keyword ideas. Tip #11. Get SEMrush of Ahrefs You NEED SEMrush or Ahrefs, there’s no doubt about it. While they might seem expensive at a glance (99 USD per month billed annually), they’re going to save you a lot of manpower doing menial SEO tasks. Tip #12. Don’t Overdo It With SEO Tools Don’t overdo it with SEO tools. There are hundreds of those out there, and if you’re the type that’s into SaaS, you might be tempted to play around with dozens at a time. And yes, to be fair, most of these tools ARE helpful one way or another. To effectively do organic SEO, though, you don’t really need that many tools. In most cases, you just need the following: SEMrush/Ahrefs Screaming Frog RankMath/Yoast SEO Whichever outreach tool you prefer (our favorite is snov.io). Tip #13. Try Some of the Optional Tools In addition to the tools we mentioned before, you can also try the following 2 which are pretty useful & popular in the SEO community: Surfer SEO - helps with on-page SEO and creating content briefs for writers. ClusterAI - tool that helps simplify keyword research & save time. Tip #14. Constantly Source Writers Want to take your content production to the next level? You’ll need to hire more writers.  There is, however, one thing that makes this really, really difficult: 95 - 99% of writers applying for your gigs won’t be relevant. Up to 80% will be awful at writing, and the remainder just won’t be relevant for your niche. So, in order to scale your writing team, we recommend sourcing constantly, and not just once every few months. Tip #15. Create a Process for Writer Filtering As we just mentioned, when sourcing writers, you’ll be getting a ton of applicants, but most won’t be qualified. Fun fact \- every single time we post a job ad on ProBlogger, we get around 300 - 500 applications (most of which are totally not relevant). Trust us, you don’t want to spend your time going through such a huge list and checking out the writer samples. So, instead, we recommend you do this: Hire a virtual assistant to own the process of evaluating and short-listing writers. Create a process for evaluating writers. We recommend evaluating writers by: Level of English. If their samples aren’t fluent, they’re not relevant. Quality of Samples. Are the samples engaging / long-form content, or are they boring 500-word copy-pastes? Technical Knowledge. Has the writer written about a hard-to-explain topic before? Anyone can write about simple topics like traveling - you want to look for someone who knows how to research a new topic and explain it in a simple and easy to read way. If someone’s written about how to create a perfect cover letter, they can probably write about traveling, but the opposite isn’t true. The VA constantly evaluates new applicants and forwards the relevant ones to the editor. The editor goes through the short-listed writers and gives them trial tasks and hires the ones that perform well. Tip #16. Use The Right Websites to Source Writers “Is UpWork any good?” This question pops up on social media time and time again. If you ask us, no, UpWork is not good at all. Of course, there are qualified writers there (just like anywhere else), but from our experience, those writers are few and far in-between. Instead, here are some of our favorite ways to source writers: Cult of Copy Job Board ProBlogger Headhunting on LinkedIn If you really want to use UpWork, use it for headhunting (instead of posting a job ad) Tip #17. Hire Writers the Right Way If you want to seriously scale your content production, hire your writers full-time. This (especially) makes sense if you’re a content marketing agency that creates a TON of content for clients all the time. If you’re doing SEO just for your own blog, though, it usually makes more sense to use freelancers. Tip #18. Topic Authority Matters Google keeps your website's authoritativeness in mind. Meaning, if you have 100 articles on digital marketing, you’re probably more of an authority on the topic than someone that has just 10. Hence, Google is a lot more likely to reward you with better rankings. This is also partially why content volume really matters: the more frequently you publish content, the sooner Google will view you as an authority. Tip #19. Focus on One Niche at a Time Let’s say your blog covers the following topics: sales, accounting, and business management.  You’re more likely to rank if you have 30 articles on a single topic (e.g. accounting) than if you have 10 articles on each. So, we recommend you double-down on one niche instead of spreading your content team thin with different topics. Tip #20. Don’t Fret on the Details While technical SEO is important, you shouldn’t get too hung up on it.  Sure, there are thousands of technical tips you can find on the internet, and most of them DO matter. The truth, though, is that Google won’t punish you just because your website doesn’t load in 3 milliseconds or there’s a meta description missing on a single page. Especially if you have SEO fundamentals done right: Get your website to run as fast as possible. Create a ton of good SEO content. Get backlinks for your website on a regular basis. You’ll still rank, even if your website isn’t 100% optimized. Tip #21. Do Yourself a Favor and Hire a VA There are a TON of boring SEO tasks that your team should really not be wasting time with. So, hire a full-time VA to help with all that. Some tasks you want to outsource include gathering contacts to reach out to for link-building, uploading articles on WordPress, etc. Tip #22. Google Isn’t Everything While Google IS the dominant search engine in most parts of the world, there ARE countries with other popular search engines.  If you want to improve your SEO in China, for example, you should be more concerned with ranking on Baidu. Targeting Russia? Focus on Yandex. Tip #23. No, Voice Search is Still Not Relevant Voice search is not and will not be relevant (no matter what sensationalist articles might say). It’s just too impractical for most search queries to use voice (as opposed to traditional search). Tip #24. SEO Is Not Dead SEO is not dead and will still be relevant decades down the line. Every year, there’s a sensationalist article talking about this.  Ignore those. Tip #25. Doing Local SEO? Focus on Service Pages If you’re doing local SEO, focus on creating service-based landing pages instead of content.  E.g. if you’re an accounting firm based in Boston, you can make a landing page about /accounting-firm-boston/, /tax-accounting-boston/, /cpa-boston/, and so on. Thing is, you don’t really need to rank on global search terms - you just won’t get leads from there. Even if you ranked on the term “financial accounting,” it wouldn’t really matter for your bottom line that much. Tip #26. Learn More on Local SEO Speaking of local SEO, we definitely don’t do the topic justice in this guide. There’s a lot more you need to know to do local SEO effectively and some of it goes against the general SEO advice we talk about in this article (e.g. you don't necessarily need blog content for local SEO). We're going to publish an article on that soon enough, so if you want to check it out, DM me and I'll hit you up when it's up. Tip #27. Avoid Vanity Metrics Don’t get side-tracked by vanity metrics.  At the end of the day, you should care about how your traffic impacts your bottom line. Fat graphs and lots of traffic are nice and all, but none of it matters if the traffic doesn’t have the right search intent to convert to your product/service. Tip #28. Struggling With SEO? Hire an Expert Failing to make SEO work for your business? When in doubt, hire an organic SEO consultant or an SEO agency.  The #1 benefit of hiring an SEO agency or consultant is that they’ve been there and done that - more than once. They might be able to catch issues an inexperienced SEO can’t. Tip #29. Engage With the Community Need a couple of SEO questions answered?  SEO pros are super helpful & easy to reach! Join these Facebook groups and ask your question - you’ll get about a dozen helpful answers! SEO Signals Lab SEO & Content Marketing The Proper SEO Group. Tip #30. Stay Up to Date With SEO Trends SEO is always changing - Google is constantly pumping out new updates that have a significant impact on how the game is played.  Make sure to stay up to date with the latest SEO trends and Google updates by following the Google Search Central blog. Tip #31. Increase Organic CTR With PPC Want to get the most out of your rankings? Run PPC ads for your best keywords. Googlers who first see your ad are more likely to click your organic listing. Content & On-Page SEO Tips Tip #32. Create 50% Longer Content On average, we recommend you create an article that’s around 50% longer than the best article ranking on the keyword.  One small exception, though, is if you’re in a super competitive niche and all top-ranking articles are already as comprehensive as they can be. For example, in the VPN niche, all articles ranking for the keyword “best VPN” are around 10,000 - 11,000 words long. And that’s the optimal word count - even if you go beyond, you won’t be able to deliver that much value for the reader to make it worth the effort of creating the content. Tip #33. Longer Is Not Always Better Sometimes, a short-form article can get the job done much better.  For example, let’s say you’re targeting the keyword “how to tie a tie.”  The reader expects a short and simple guide, something under 500 words, and not “The Ultimate Guide to Tie Tying for 2021 \[11 Best Tips and Tricks\]” Tip #34. SEO is Not Just About Written Content Written content is not always best. Sometimes, videos can perform significantly better. E.g. If the Googler is looking to learn how to get a deadlift form right, they’re most likely going to be looking for a video. Tip #35. Don’t Forget to Follow Basic Optimization Tips For all your web pages (articles included), follow basic SEO optimization tips. E.g. include the keyword in the URL, use the right headings etc.  Just use RankMath or YoastSEO for this and you’re in the clear! Tip #36. Hire Specialized Writers When hiring content writers, try to look for ones that specialize in creating SEO content.  There are a LOT of writers on the internet, plenty of which are really good.  However, if they haven’t written SEO content before, chances are, they won’t do that good of a job. Tip #37. Use Content Outlines Speaking of writers - when working with writers, create a content outline that summarizes what the article should be about and what kind of topics it needs to cover instead of giving them a keyword and asking them to “knock themselves out.”   This makes it a lot more likely for the writer to create something that ranks. When creating content outlines, we recommend you include the following information: Target keyword Related keywords that should be mentioned in the article Article structure - which headings should the writer use? In what order? Article title Tip #38. Find Writers With Niche Knowledge Try to find a SEO content writer with some experience or past knowledge about your niche. Otherwise, they’re going to take around a month or two to become an expert. Alternatively, if you’re having difficulty finding a writer with niche knowledge, try to find someone with experience in technical or hard to explain topics. Writers who’ve written about cybersecurity in the past, for example, are a lot more likely to successfully cover other complicated topics (as opposed to, for example, a food or travel blogger). Tip #39. Keep Your Audience’s Knowledge in Mind When creating SEO content, always keep your audience’s knowledge in mind. If you’re writing about advanced finance, for example, you don’t need to teach your reader what an income statement is. If you’re writing about income statements, on the other hand, you’d want to start from the very barebone basics. Tip #40. Write for Your Audience If your readers are suit-and-tie lawyers, they’re going to expect professionally written content. 20-something hipsters? You can get away with throwing a Rick and Morty reference here and there. Tip #41. Use Grammarly Trust us, it’ll seriously make your life easier! Keep in mind, though, that the app is not a replacement for a professional editor. Tip #42. Use Hemingway Online content should be very easy to read & follow for everyone, whether they’re a senior profession with a Ph.D. or a college kid looking to learn a new topic. As such, your content should be written in a simple manner - and that’s where Hemingway comes in. It helps you keep your blog content simple. Tip #43. Create Compelling Headlines Want to drive clicks to your articles? You’ll need compelling headlines. Compare the two headlines below; which one would you click? 101 Productivity Tips \[To Get Things Done in 2021\] VS Productivity Tips Guide Exactly! To create clickable headlines, we recommend you include the following elements: Keyword Numbers Results Year (If Relevant) Tip #44. Nail Your Blog Content Formatting Format your blog posts well and avoid overly long walls of text. There’s a reason Backlinko content is so popular - it’s extremely easy to read and follow. Tip #45. Use Relevant Images In Your SEO Content Key here - relevant. Don’t just spray random stock photos of “office people smiling” around your posts; no one likes those.  Instead, add graphs, charts, screenshots, quote blocks, CSS boxes, and other engaging elements. Tip #46. Implement the Skyscraper Technique (The Right Way) Want to implement Backlinko’s skyscraper technique?  Keep this in mind before you do: not all content is meant to be promoted.  Pick a topic that fits the following criteria if you want the internet to care: It’s on an important topic. “Mega-Guide to SaaS Marketing” is good, “top 5 benefits of SaaS marketing” is not. You’re creating something significantly better than the original material. The internet is filled with mediocre content - strive to do better. Tip #47. Get The URL Slug Right for Seasonal Content If you want to rank on a seasonal keyword with one piece of content (e.g. you want to rank on “saas trends 2020, 2021, etc.”), don’t mention the year in the URL slug - keep it /saas-trends/ and just change the headline every year instead.  If you want to rank with separate articles, on the other hand (e.g. you publish a new trends report every year), include the year in the URL. Tip #48. Avoid content cannibalization.  Meaning, don’t write 2+ articles on one topic. This will confuse Google on which article it should rank. Tip #49. Don’t Overdo Outbound Links Don’t include too many outbound links in your content. Yes, including sources is good, but there is such a thing as overdoing it.  If your 1,000 word article has 20 outbound links, Google might consider it as spam (even if all those links are relevant). Tip #50. Consider “People Also Ask” To get the most out of SERP, you want to grab as many spots on the search result as possible, and this includes “people also ask (PAA):” Make a list of the topic’s PAA questions and ensure that your article answers them.  If you can’t fit the questions & answers within the article, though, you can also add an FAQ section at the end where you directly pose these questions and provide the answers. Tip #51. Optimize For Google Snippet Optimize your content for the Google Snippet. Check what’s currently ranking as the snippet. Then, try to do something similar (or even better) in terms of content and formatting. Tip #52. Get Inspired by Viral Content Want to create content that gets insane shares & links?  Reverse-engineer what has worked in the past. Look up content in your niche that went viral on Reddit, Hacker News, Facebook groups, Buzzsumo, etc. and create something similar, but significantly better. Tip #53. Avoid AI Content Tools No, robots can’t write SEO content.  If you’ve seen any of those “AI generated content tools,” you should know to stay away. The only thing those tools are (currently) good for is creating news content. Tip #54. Avoid Bad Content You will never, ever, ever rank with one 500-word article per week.  There are some SEO agencies (even the more reputable ones) that offer this as part of their service. Trust us, this is a waste of time. Tip #55. Update Your Content Regularly Check your top-performing articles annually and see if there’s anything you can do to improve them.  When most companies finally get the #1 ranking for a keyword, they leave the article alone and never touch it again… ...Until they get outranked, of course, by someone who one-upped their original article. Want to prevent this from happening? Analyze your top-performing content once a year and improve it when possible. Tip #56. Experiment With CTR Do your articles have low CTR? Experiment with different headlines and see if you can improve it.  Keep in mind, though, that what a “good CTR” is really depends on the keyword.  In some cases, the first ranking will drive 50% of the traffic. In others, it’s going to be less than 15%. Link-Building Tips Tip #57. Yes, Links Matter. Here’s What You Need to Know “Do I need backlinks to rank?” is probably one of the most common SEO questions.  The answer to the question (alongside all other SEO-related questions) is that it depends on the niche.  If your competitors don’t have a lot of backlinks, chances are, you can rank solely by creating superior content. If you’re in an extremely competitive niche (e.g. VPN, insurance, etc.), though, everyone has amazing, quality content - that’s just the baseline.  What sets top-ranking content apart from the rest is backlinks. Tip #58. Sometimes, You’ll Have to Pay For Links Unfortunately, in some niches, paying for links is unavoidable - e.g. gambling, CBD, and others. In such cases, you either need a hefty link-building budget, or a very creative link-building campaign (create a viral infographic, news-worthy story based on interesting data, etc.). Tip #59. Build Relationships, Not Links The very best link-building is actually relationship building.  Make a list of websites in your niche and build a relationship with them - don’t just spam them with the standard “hey, I have this amazing article, can you link to it?”.  If you spam, you risk ruining your reputation (and this is going to make further outreach much harder). Tip #60. Stick With The Classics At the end of the day, the most effective link-building tactics are the most straightforward ones:  Direct Outreach Broken Link-Building Guest Posting Skyscraper Technique Creating Viral Content Guestposting With Infographics Tip #61. Give, Don’t Just Take! If you’re doing link-building outreach, don’t just ask for links - give something in return.  This will significantly improve the reply rate from your outreach email. If you own a SaaS tool, for example, you can offer the bloggers you’re reaching out to free access to your software. Or, alternatively, if you’re doing a lot of guest posting, you can offer the website owner a link from the guest post in exchange for the link to your website. Tip #62. Avoid Link Resellers That guy DMing you on LinkedIn, trying to sell you links from a Google Sheet?  Don’t fall for it - most of those links are PBNs and are likely to backfire on you. Tip #63. Avoid Fiverr Like The Plague Speaking of spammy links, don’t touch anything that’s sold on Fiverr - pretty much all of the links there are useless. Tip #64. Focus on Quality Links Not all links are created equal. A link is of higher quality if it’s linked from a page that: Is NOT a PBN. Doesn’t have a lot of outbound links. If the page links to 20 other websites, each of them gets less link juice. Has a lot of (quality) backlinks. Is part of a website with a high domain authority. Is about a topic relevant to the page it’s linking to. If your article about pets has a link from an accounting blog, Google will consider it a bit suspicious. Tip #65. Data-Backed Content Just Works Data-backed content can get insane results for link-building.  For example, OKCupid used to publish interesting data & research based on how people interacted with their platform and it never failed to go viral. Each of their reports ended up being covered by dozens of news media (which got them a ton of easy links). Tip #66. Be Creative - SEO Is Marketing, After All Be novel & creative with your link-building initiatives.  Here’s the thing: the very best link-builders are not going to write about the tactics they’re using.  If they did, you’d see half the internet using the exact same tactic as them in less than a week! Which, as you can guess, would make the tactic cliche and significantly less effective. In order to get superior results with your link-building, you’ll need to be creative - think about how you can make your outreach different from what everyone does. Experiment it, measure it, and improve it till it works! Tip #67. Try HARO HARO, or Help a Reporter Out, is a platform that matches journalists with sources. You get an email every day with journalists looking for experts in specific niches, and if you pitch them right, they might feature you in their article or link to your website. Tip #68. No-Follow Links Aren’t That Bad Contrary to what you might’ve heard, no-follow links are not useless. Google uses no-follow as more of a suggestion than anything else.  There have been case studies that prove Google can disregard the no-follow tag and still reward you with increased rankings. Tip #69. Start Fresh With an Expired Domain Starting a new website? It might make sense to buy an expired one with existing backlinks (that’s in a similar niche as yours). The right domain can give you a serious boost to how fast you can rank. Tip #70. Don’t Overspend on Useless Links “Rel=sponsored” links don’t pass pagerank and hence, won’t help increase your website rankings.  So, avoid buying links from media websites like Forbes, Entrepreneur, etc. Tip #71. Promote Your Content Other than link-building, focus on organic content promotion. For example, you can repost your content on Facebook groups, LinkedIn, Reddit, etc. and focus on driving traffic.  This will actually lead to you getting links, too. We got around 95 backlinks to our SEO case study article just because of our successful content promotion. Tons of people saw the article on the net, liked it, and linked to it from their website. Tip #72. Do Expert Roundups Want to build relationships with influencers in your niche, but don’t know where to start?  Create an expert roundup article. If you’re in the sales niche, for example, you can write about Top 21 Sales Influencers in 2021 and reach out to the said influencers letting them know that they got featured. Trust us, they’ll love you for this! Tip #73. .Edu Links are Overhyped .edu links are overrated. According to John Mueller, .edu domains tend to have a ton of outbound links, and as such, Google ignores a big chunk of them. Tip #74. Build Relationships With Your Customers Little-known link-building hack: if you’re a SaaS company doing SEO, you can build relationships with your customers (the ones that are in the same topical niche as you are) and help each other build links! Tip #75. Reciprocal Links Aren’t That Bad Reciprocal links are not nearly as bad as Google makes them out to be. Sure, they can be bad at scale (if trading links is all you’re doing). Exchanging a link or two with another website / blog, though, is completely harmless in 99% of cases. Tip #76. Don’t Overspam Don’t do outreach for every single post you publish - just the big ones.  Most people already don’t care about your outreach email. Chances are, they’re going to care even less if you’re asking them to link to this new amazing article you wrote (which is about the top 5 benefits of adopting a puppy). Technical SEO Tips Tip #77. Use PageSpeed Insights If your website is extremely slow, it’s definitely going to impact your rankings. Use PageSpeed Insights to see how your website is currently performing. Tip #78. Load Speed Matters While load speed doesn’t impact rankings directly, it DOES impact your user experience. Chances are, if your page takes 5 seconds to load, but your competition’s loads instantly, the average Googler will drop off and pick them over you. Tip #79. Stick to a Low Crawl Depth Crawl depth of any page on your website should be lower than 4 (meaning, any given page should be possible to reach in no more than 3 clicks from the homepage).  Tip #80. Use Next-Gen Image Formats Next-gen image formats such as JPEG 2000, JPEG XR, and WebP can be compressed a lot better than PNG or JPG. So, when possible, use next-get formats for images on your website. Tip #81. De-Index Irrelevant Pages Hide the pages you don’t want Google to index (e.g: non-public, or unimportant pages) via your Robots.txt. If you’re a SaaS, for example, this would include most of your in-app pages or your internal knowledge base pages. Tip #82. Make Your Website Mobile-Friendly Make sure that your website is mobile-friendly. Google uses “mobile-first indexing.” Meaning, unless you have a working mobile version of your website, your rankings will seriously suffer. Tip #83. Lazy-Load Images Lazy-load your images. If your pages contain a lot of images, you MUST activate lazy-loading. This allows images that are below the screen, to be loaded only once the visitor scrolls down enough to see the image. Tip #84. Enable Gzip Compression Enable Gzip compression to allow your HTML, CSS and JS files to load faster. Tip #85. Clean Up Your Code If your website loads slowly because you have 100+ external javascript files and stylesheets being requested from the server, you can try minifying, aggregating, and inlining some of those files. Tip 86. Use Rel-Canonical Have duplicate content on your website? Use rel-canonical to show Google which version is the original (and should be prioritized for search results). Tip #87. Install an SSL Certificate Not only does an SSL certificate help keep your website safe, but it’s also a direct ranking factor. Google prioritizes websites that have SSL certificates over the ones that don’t. Tip #88. Use Correct Anchor Texts for Internal Links When linking to an internal page, mention the keyword you’re trying to rank for on that page in the anchor text. This helps Google understand that the page is, indeed, about the keyword you’re associating it with. Tip #89. Use GSC to Make Sure Your Content is Interlinked Internal links can have a serious impact on your rankings. So, make sure that all your blog posts (especially the new ones) are properly linked to/from your past content.  You can check how many links any given page has via Google Search Console. Tip #90. Bounce rate is NOT a Google ranking factor. Meaning, you can still rank high-up even with a high bounce rate. Tip #91. Don’t Fret About a High Bounce Rate Speaking of the bounce rate, you’ll see that some of your web pages have a higher-than-average bounce rate (70%+).  While this can sometimes be a cause for alarm, it’s not necessarily so. Sometimes, the search intent behind a given keyword means that you WILL have a high bounce rate even if your article is the most amazing thing ever.  E.g. if it’s a recipe page, the reader gets the recipe and bounces off (since they don’t need anything else). Tip #92. Google Will Ignore Your Meta Description More often than not, Google won’t use the meta description you provide - that’s normal. It will, instead, automatically pick a part of the text that it thinks is most relevant and use it as a meta description. Despite this, you should always add a meta description to all pages. Tip #93. Disavow Spammy & PBN Links Keep track of your backlinks and disavow anything that’s obviously spammy or PBNy. In most cases, Google will ignore these links anyway. However, you never know when a competitor is deliberately targeting you with too many spammy or PBN links (which might put you at risk for being penalized). Tip #94. Use The Correct Redirect  When permanently migrating your pages, use 301 redirect to pass on the link juice from the old page to the new one. If the redirect is temporary, use a 302 redirect instead. Tip #95. When A/B Testing, Do This A/B testing two pages? Use rel-canonical to show Google which page is the original. Tip #96. Avoid Amp DON’T use Amp.  Unless you’re a media company, Amp will negatively impact your website. Tip #97. Get Your URL Slugs Right Keep your blog URLs short and to-the-point. Good Example: apollodigital.io/blog/seo-case-study Bad Example: apollodigital.io/blog/seo-case-study-2021-0-to-200,000/ Tip #98. Avoid Dates in URLs An outdated date in your URL can hurt your CTR. Readers are more likely to click / read articles published recently than the ones written years back. Tip #99. Social Signals Matter Social signals impact your Google rankings, just not in the way you think. No, your number of shares and likes does NOT impact your ranking at all.  However, if your article goes viral and people use Google to find your article, click it, and read it, then yes, it will impact your rankings.  E.g. you read our SaaS marketing guide on Facebook, then look up “SaaS marketing” on Google, click it, and read it from there. Tip #100. Audit Your Website Frequently Every other month, crawl your website with ScreamingFrog and see if you have any broken links, 404s, etc. Tip #101. Use WordPress Not sure which CMS platform to use?  99% of the time, you’re better off with WordPress.  It has a TON of plugins that will make your life easier.  Want a drag & drop builder? Use Elementor. Wix, SiteGround and similar drag & drops are bad for SEO. Tip #102. Check Rankings the Right Way When checking on how well a post is ranking on Google Search Console, make sure to check Page AND Query to get the accurate number.  If you check just the page, it’s going to give you the average ranking on all keywords the page is ranking for (which is almost always going to be useless data). Conclusion Aaand that's about it - thanks for the read! Now, let's circle back to Tip #1 for a sec. Remember when we said a big chunk of what you read on SEO is based on personal experiences, experiments, and the like? Well, the tips we've mentioned are part of OUR experience. Chances are, you've done something that might be different (or completely goes against) our advice in this article. If that's the case, we'd love it if you let us know down in the comments. If you mention something extra-spicy, we'll even include it in this article.

What's some good AI software for entrepreneurs?
reddit
LLM Vibe Score0
Human Vibe Score1
Moist_Possibility128This week

What's some good AI software for entrepreneurs?

I just started running a smaller business as a side gig and am in need of getting some manual work off my shoulders. This business is basically a hobby turned business as something I've been wanting to get into for a long time but just got the courage to do so this year. I'm making hand-made jewelry that's kind of a niche but has a tiny little tight market with relatively active and supportive buyers. Of course, a huge part of my job is answering all kinds of questions, covering spreadsheets, and doing market research to try and find new customer groups. The majority of this work is relatively simple what I’d call “manual”, which is why I feel like it could be done by AI, at the very least with the precision that I need. I did find some help using Chat GPT 4 so far, especially with handling my spreadsheets and market research. I usually let it do some manual labor on the spreadsheets, and I’ve even managed to train it to do some more complex tasks like researching the market and putting the results in the spreadsheet that I can use. ChatGPT isn’t that good at answering messages however because the answers are pretty generic and I have to manually generate responses and send them which takes arguably even more time than just responding myself. For this task, Personal AI has been proven to be way more useful because it’s literally a personalized AI model that can be trained to accurately respond to anything + once you create your own personal AI, other people can ask questions there instead of messaging me directly and get instant responses from the AI that are based on the knowledge I fed it. Still testing the tool, but so far it has been quite useful and saved me a ton of time. I also used Poll the People a few times to get feedback from my customers, and it worked magnificently. I'd like to hear some recommendations on AI tools that can be useful to someone who's just entering this world so please shoot them!

AI Will Make You Extremely Rich or Kill Your Business in 2024
reddit
LLM Vibe Score0
Human Vibe Score1
AntsyNursery58This week

AI Will Make You Extremely Rich or Kill Your Business in 2024

Preface: I'm a solo-founder in the AI space and previously worked as an ML scientist; the new advancements in AI that I'm seeing are going to impact everyone here. It doesn't matter if you're just starting out, or a bootstrapped brick and mortar founder, or even a VC backed hard tech founder. Last year was when the seeds were laid, and this is the year we'll see them bloom. There will be an onslaught of advancements that take place that are borderline inconceivable due to the nature of exponential progress. This will change every single vertical. I'm making this post because I think AI execution strategy will make or break businesses. Dramatically. Over $50B was put into AI startups in 2023 alone. This figure excludes the hundreds of billions poured into AI from enterprises. So, let's follow the money: &#x200B; 1) AI enterprise software. There's a lot to unpack here and this is what I’m currently working on. AI enterprise software will encompass everything from hyper personalized email outbound to AI cold calls to AI that A/B tests ads on synthetic data to vertical specific software. The impact of the former is relatively self explanatory, so I'll focus on the latter. To illustrate vertical specific AI software, I'll use a simple example in the legal space. Lawyers typically have to comb through thousands of pages of documents. Now, using an LLM + a VDB, an AI can instantly answer all of those questions while surfacing the source and highlighting the specific answer in the contract/document. There are dozens of AI startups for this use case alone. This saves lawyers an immense amount of time and allows them to move faster. Firms that adopt this have a fundamental advantage over law firms that don't adopt this. This was 2023 technology. I'm seeing vertical AI software getting built by my friends in areas from construction, to real estate, to even niche areas like chimney manufacturing. This will exist everywhere. Now, this can be extrapolated much further to be applicable to systems that can do reports and even browse the Internet. This brings me to my next point. &#x200B; 2) AI information aggregation and spread. My gut tells me that this will have a crescendo moment in the future with hardware advancements (Rabbit, Tab, etc.). You won't have to google things because it will be surfaced to you. It's predictive in nature. The people who can get information the fastest will grow their business the fastest. This part is semi-speculative, but due to the nature of LLMs being so expensive to train, I have a strong feeling that large institutions will have access to the \fastest\ and \best\ models that can do this quicker than you and I can. This is why it's important to stay on top. &#x200B; 3) AI content generation This is relevant to running advertisements and any digital marketing aspect of your business. If you can rapidly make content faster than your competitors to put in social media, you will outpace your competitors rapidly. I think most folks are familiar with MidJourney, Stable diffusion, etc. but don't know how to use it. You can generate consistent models for a clothing brand or generate images of a product that you would normally need to hire a professional photographer to take. There's also elevenlabs which is relatively easy to use and can be used to make an MP3 clip as a narration for an ad; this is something I've already done. I'm also still shocked by how many people are unfamiliar with tools like Pika which can do video generation. You could imagine companies having fleets of digital influencers that they control or conjuring up the perfect ad for a specific demographic using a combination of all of the aforementioned tools. &#x200B; In summary, if you feel like I'm being hyperbolic or propagating science fiction fantasies, you're likely already behind. I truly recommend that everyone stays up to date on these advancements as much as possible. If your competitor comes across an AI tool that can increase their ROAS by 5x they can crush you. If your competitor uses a tool that increases the rate at which they receive and aggregate information by 200% (modest estimate) they will crush you. If your competitors have a tool that can reduce their employee size, then they will use it. They'll fire their employees to cut costs and reinvest the money back into their business. It will compound to the point where you're outpaced, and this isn't a level of innovation we've seen since the birth of the industrial revolution. Your customers can get stolen overnight, or you can steal your competition’s customers overnight. TL;DR: This is an opportunity for entrepreneurs to scale faster than they could have possibly imagined, but this also comes with the potential for your company to be obliterated. We've never seen advancements that can have this drastic of an impact this quickly. Adoption will happen fast, and first movers will have a disproportionate and compounding advantage. Watch guides, meet with startups, follow the news, and get rich.

How I went from $27 to $3K as a solopreneur still in a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
jottrledThis week

How I went from $27 to $3K as a solopreneur still in a 9-5

My journey started back in November 2023. I was scrolling through Twitter and YouTube and saw a word that I had never come across before. Solopreneur. The word caught my eye. Mainly because I was pretty sure I knew what it meant even though it's not a word you'll find in the dictionary. I liked what it was describing. A solo entrepreneur. A one man business. It completely resonated with me. As a software engineer by trade I'm used to working alone, especially since the pandemic hit and we were forced to work remotely. See, I always wanted to ditch the 9-5 thing but thought that was too big and too scary for a single person to do. Surely you would need a lot of money to get started, right? Surely you would need investors? The whole concept seemed impossible to me. That was until I found all the success stories. I became obsessed with the concept of solopreneurship. As I went further down the rabbit hole I found people like Justin Welsh, Kieran Drew and Marc Louvion to name a few. All of whom have one person businesses making huge money every year. So I thought, if they can do it, why can't I? People like this have cleared the pathway for those looking to escape the 9-5 grind. I decided 2024 would be the year I try this out. My main goal for the year? Build a one man business, earn my first $ online and learn a sh\*t ton along the way. My main goal in general? Build my business to $100K per year, quit my 9-5 and live with freedom. From December 2023 to February 2024 I began brainstorming ideas. I was like a lost puppy looking for his ball. How on earth did people find good ideas? I began writing everything and anything that came to mind down in my notes app on my phone. By February I would have approximately 70 ideas. Each as weird and whacky as the other. I was skeptical though. If I went through all the trouble of building a product for one of these ideas how would I know if anyone would even be interested in using it? I got scared and took a break for a week. All these ideas seemed too big and the chance that they would take off into the atmosphere was slim (in my mind anyways). I was learning more and more about solopreneurship as the weeks went on so I decided to build a product centered around everything I was learning about. The idea was simple. Enter a business idea and use AI to give the user details about how to market it, who their target customers were, what to write on their landing page, etc. All for a measly $27 per use. I quickly built it and launched on March 3rd 2024. I posted about it on Indie Hackers, Reddit and Hacker News. I was so excited about the prospect of earning my first internet $! Surely everyone wanted to use my product! Nope...all I got was crickets. I was quickly brought back down to earth. That was until 5 days later. I looked at my phone and had a new Stripe notification! Cha-ching! My first internet $. What a feeling! That was goal number 1 complete. It would be another 6 days before I would get my second sale...and then another 15 days to get my third. It was an emotional rollercoaster. I went from feeling like quitting the 9-5 was actually possible to thinking that maybe the ups and downs aren't worth it. On one hand I had made my first internet dollar so I should my ecstatic, and don't get me wrong, I was but I wanted more. More validation that I could do this long term. By May I was starting to give up on the product. I had learned so much in the past few months about marketing, SEO, building an audience, etc. and I wanted to build something that I thought could have more success so I focused on one critical thing that I had learned about. What was it? Building a product that had SEO potential. A product that I knew hundreds of people were looking for. See this was my thinking - If I could find a keyword that people were searching for on Google hundreds/thousands of times every month and it was easy to rank high on search engines then I would go all in (in SEO land this equates to a Keyword that has a Keyword Difficulty of = 500). I began researching and found that the keyword "micro saas ideas" was being searched for around 600 times each month. Micro Saas was something that really interested me. It was perfect for solopreneurs. Small software products that 1 person could build. What's not to like if you're in the game of software and solopreneurship? Researching keywords like this became like a game for me. I was hooked. I was doing it every day, finding gems that were being searched for hundreds and thousands of times every month that still had potential. That's when I came up with my next product idea. I decided to create a database of Micro Saas Ideas all with this sort of SEO potential. See if you can build a product that you know people are looking for then that's all the validation you need. So I put this theory to the test. I created a database of Micro Saas Ideas with SEO Potential and launched it in June 2024. This time it was different. I made $700 in the first week of launching. A large contrast to my previous failed attempt at becoming the worlds greatest solopreneur. Since launch I have grown the product to $3K and I couldn't be happier. I know what you're saying, $3K isn't a lot. But it's validation. It's validation that I can earn $ online. Validation that I can grow a business and it gives me hope that one day I'll be able to quit that 9-5 grind. My plan is to keep growing the business. I expect there to be a few challenges up ahead but I'll tackle them as I go and learn from the failures and successes. I have a newsletter where I share Micro Saas Ideas with SEO potential every week which I'll leave below in the first comment. Feel free to come along for the ride. If not I hope this post brings you some value If you're thinking about starting as a solopreneur, stop thinking and start doing, you won't regret it.

Detailed Guide - How I've Been Self Employed for 2 Years Selling Posters
reddit
LLM Vibe Score0
Human Vibe Score1
tommo278This week

Detailed Guide - How I've Been Self Employed for 2 Years Selling Posters

Hey everyone, bit of context before you read through this. I have been selling POD posters full time for over 2 years now. My next venture is that I have started my own Print on Demand company for posters, PrintShrimp. As one way of creating customers for our service, we are teaching people for free how to also sell posters. Here is a guide I have written on how to sell posters on Etsy. Feel free to have a read through and then check out PrintShrimp, hopefully can help some of you guys out (and get us some more customers!) All of this is also available in video format on our website too, if you prefer to learn that way. Thanks guys! And as some people asked in other subs, no this isn't written with AI 😅 This took a couple of weeks to put together! Through this guide, we will teach you everything you need to know about starting to sell posters and generate some income. We will also show you why PrintShrimp is the best POD supplier for all of your poster needs. Trust me, you won’t need much convincing.  So, why are posters the best product to sell? Also, just thought I’d quickly answer the question - why posters? If you’ve been researching Print on Demand you’ve probably come across the infinite options of t-shirts, mugs, hats, phone cases, and more. All of these are viable options, however we think posters are the perfect place to start. You can always expand into other areas further down the line! So a brief summary of why posters are the perfect product for Print on Demand: \-They are very easy to design! Posters are a very easy shape to deal with - can’t go wrong with a rectangle. This makes designing products very easy. \-Similarly to this, what you see is what you get with a poster. You can literally see your finished product as you design it in either canva or photoshop. With T-Shirts for example, you have to make your design, and then place it on a t-shirt. Then you have to coordinate with your printers the size you would like the design on the tshirt and many other variables like that. There is no messing about with posters - what you see is what you get. \-The same high quality, everywhere. With other products, if you want to reap the benefits of a printing in various countries, you need to ensure each of your global suppliers stocks the same t-shirts, is able to print in the same way, carries the same sizes etc. Again with posters you avoid all of this hassle- your products will come out the same, no matter which of our global locations are used. \-They have a very favorable profit margin. As you will see later, the cost price of posters is very low. And people are prepared to pay quite a lot for a decent bit of wall art! I have tried out other products, and the profit margin combined with the order quantity of posters makes them my most profitable product, every single time. Using PrintShrimp, you can be sure to enjoy profits of anywhere between £6 - £40 pure profit per sale.  \-They are one of the easiest to print white label. This makes them perfect for Print on Demand. Your posters are simply put in a tube, and off they go. There are no extras you need to faff around with, compared to the extra elements other products come with, such as clothing labels on t-shirts.  Picking your poster niche So, you are ready to start selling posters. Great! Now, the blessing and curse with selling posters is that there are infinite possibilities regarding what you can sell. So, it can easily be quite overwhelming at first.  The first thing I would recommend doing is having a look at what others are selling. Etsy is a wonderful place for this (and will likely be a key part of your poster selling journey). So, log on to Etsy and simply type in ‘poster’ in the search bar. Get ready to write a massive list of the broad categories and type of posters that people are selling.  If you do not have more than 50 categories written down by the end, you are doing something wrong. There are seriously an infinite amount of posters! For example, here are some popular ones to get you started: Star sign posters, Kitchen posters, World map posters, Custom Dog Portrait posters, Music posters, Movie posters, Fine art posters, Skiing posters, Girl Power posters and Football posters.  Now, you have a huge list of potential products to sell. What next? There are a few important things you need to bear in mind when picking your niche: \-Does this interest me?  Don’t make the mistake of going down a niche that didn’t actually interest you just because it would probably be a money maker. Before you know it, what can be a very fun process of making designs can become incredibly \\\monotonous, and feel like a chore\\\. You need to bear in mind that you will be spending a lot of time creating designs - if it is something you are interested in you are much less likely to get burnt out! As well, \\\creativity will flow\\\ far better if it is something you are interested in, which at the end of the day will lead to better designs that are more likely to be purchased by customers.  \-Is this within my design range? Don’t let this put you off too much. We will go through how to get started on design later on in this guide. However, it is important to note that the plain truth of it is that some niches and designs are a hell of a lot more complicated than others. For example, quote posters can essentially be designed by anyone when you learn about how to put nice fonts together in a good color scheme. On the other hand, some posters you see may have been designed with complex illustrations in a program like Illustrator. To start with, it may be better to pick a niche that seems a bit more simple to get into, as you can always expand your range with other stores further down the line. A good way of evaluating the design complexity is by identifying if this poster is \\\a lot of elements put together\\\ or is \\\a lot of elements created by the designer themselves\\\\\.\\ Design can in a lot of cases be like a jigsaw - putting colours, shapes and text together to create an image. This will be a lot easier to start with and can be learnt by anyone, compared to complex drawings and illustrations.  \-Is this niche subject to copyright issues? Time to delve deep into good old copyright. Now, when you go through Etsy, you will without a doubt see hundreds of sellers selling music album posters, car posters, movie posters and more. Obviously, these posters contain the property of musicians, companies and more and are therefore copyrighted. The annoying thing is - these are \\\a complete cash cow.\\\ If you go down the music poster route, I will honestly be surprised if you \\don’t\\ make thousands. However it is only a matter of time before the copyright strikes start rolling in and you eventually get banned from Etsy.  So I would highly recommend \\\not making this mistake\\\. Etsy is an incredible platform for selling posters, and it is a hell of a lot easier to make sales on there compared to advertising your own website. And, you \\\only get one chance on Etsy.\\\ Once you have been banned once, you are not allowed to sign up again (and they do ID checks - so you won’t be able to rejoin again under your own name).  So, don’t be shortsighted when it comes to entering Print on Demand. If you keep your designs legitimate, they will last you a lifetime and you will then later be able to crosspost them to other platforms, again without the worry of ever getting shut down.  So, how do I actually design posters? Now you have an idea of what kind of posters you want to be making, it’s time to get creative and make some designs! Photoshop (and the creative cloud in general) is probably the best for this. However, when starting out it can be a scary investment (it costs about £30 a month unless you can get a student rate!).  So, while Photoshop is preferable in the long term, when starting out you can learn the ropes of design and get going with Canva. This can be great at the start as they have a load of templates that you can use to get used to designing and experimenting (while it might be tempting to slightly modify these and sell them - this will be quite saturated on places like Etsy so we would recommend doing something new).  What size format should I use? The best design format to start with is arguably the A sizes - as all the A sizes (A5, A4, A3, A2, A1, A0) are scalable. This means that you can make all of your designs in one size, for example A3, and these designs will be ready to fit to all other A sizes. For example, if you design an A3 poster and someone orders A1, you can just upload this A3 file to PrintShrimp and it will be ready to print. There is a wide range of other sizes you should consider offering on your shop, especially as these sizes are very popular with the American market. They have a wide range of popular options, which unfortunately aren’t all scalable with each other. This does mean that you will therefore have to make some slight modifications to your design in order to be able to offer them in American sizing, in a few different aspect ratios. What you can do however is design all of your products in UK sizing, and simply redesign to fit American sizing once you have had an order. Essentially: design in UK sizing, but list in both UK and US sizing. Then when you get a non-A size order, you can quickly redesign it on demand. This means that you don’t have to make a few different versions of each poster when first designing, and can simply do a quick redesign for US sizing when you need to. Below is PrintShrimps standard size offering. We can also offer any custom sizing too, so please get in touch if you are looking for anything else. With these sizes, your poster orders will be dispatched domestically in whatever country your customer orders from. Our recommendations for starting design One thing that will not be featured in this guide is a written out explanation or guide on how to design. Honestly, I can’t think of a more boring, or frankly worse, way to learn design. When it comes to getting started, experimenting is your best friend! Just have a play around and see what you can do. It is a really fun thing to get started with, and the satisfaction of when a poster design comes together is like no other. A good way to start is honestly by straight up copying a poster you see for sale online. And we don’t mean copying to sell! But just trying to replicate other designs is a great way to get a feel for it and what you can do. We really think you will be surprised at how easy it is to pull together a lot of designs that at first can appear quite complicated! Your best friend throughout this whole process will be google. At the start you will not really know how to do anything - but learning how to look into things you want to know about design is all part of the process. At first, it can be quite hard to even know how to search for what you are trying to do, but this will come with time (we promise). Learning how to google is a skill that you will learn throughout this process.  Above all, what we think is most important is this golden rule: take inspiration but do not steal. You want to be selling similar products in your niche, but not copies. You need to see what is selling in your niche and get ideas from that, but if you make designs too similar to ones already available, you won’t have much luck. At the end of the day, if two very similar posters are for sale and one shop has 1000 reviews and your newer one has 2, which one is the customer going to buy? You need to make yours offer something different and stand out enough to attract customers. Etsy SEO and maximizing your sales You may have noticed in this guide we have mentioned Etsy quite a few times! That is because we think it is hands down the best place to start selling posters. Why? Etsy is a go to place for many looking to decorate their homes and also to buy gifts. It might be tempting to start selling with your own website straight away, however we recommend Etsy as it brings the customers to you. For example, say you start selling Bathroom Posters. It is going to be a hell of a lot easier to convert sales when you already have customers being shown your page after searching ‘bathroom decor’, compared to advertising your own website. This is especially true as it can be hard to identify your ideal target audience to then advertise to via Meta (Facebook/Instagram) for example. Websites are a great avenue to explore eventually like I now have, but we recommend starting with Etsy and going from there. What costs do I need to be aware of? So, setting up an Etsy sellers account is currently costs £15. The only other upfront cost you will have is the cost of listing a product - this is 20 cents per listing. From then on, every time you make a sale you will be charged a transaction fee of 6.5%, a small payment processing fee, plus another 20 cents for a renewed listing fee. It normally works out to about 10% of each order, a small price to pay for all the benefits Etsy brings. No matter what platform you sell on, you will be faced with some form of transaction fee. Etsy is actually quite reasonable especially as they do not charge you to use their platform on a monthly basis.  What do I need to get selling? Getting your shop looking pretty \-Think of a shop name and design (now you are a professional designer) a logo \-Design a banner for the top of your shop \-Add in some about me info/shop announcement \-I recommend running a sale wherein orders of 3+ items get a 20% of discount. Another big benefit of PrintShrimp is that you receive large discounts when ordering multiple posters. This is great for attracting buyers and larger orders.  Making your products look attractive That is the bulk of the ‘decor’ you will need to do. Next up is placing your posters in mock ups! As you may notice on Etsy, most shops show their posters framed and hanging on walls. These are 99% of the time not real photos, but digital mock ups. This is where Photoshop comes in really handy, as you can automate this process through a plug in called Bulk Mock Up. If you don’t have photoshop, you can do this on Canva, you will just have to do it manually which can be rather time consuming.  Now, where can you get the actual Mock Ups? One platform we highly recommend for design in general is platforms like Envato Elements. These are design marketplaces where you have access to millions of design resources that you are fully licensed to use!  Titles, tags, and descriptions  Now for the slightly more nitty gritty part. You could have the world's most amazing looking poster, however, if you do not get the Etsy SEO right, no one is going to see it! We will take you through creating a new Etsy listing field by field so you can know how to best list your products.  The key to Etsy listing optimisation is to maximise. Literally cram in as many key words as you possibly can! Before you start this process, create a word map of anything you can think of relating to your listing. And come at this from the point of view of, if I was looking for a poster like mine, what would I search? Titles \-Here you are blessed with 140 characters to title your listing. Essentially, start off with a concise way of properly describing your poster. And then afterwards, add in as many key words as you can! Here is an example of the title of a well selling Skiing poster: Les Arcs Skiing Poster, Les Arcs Print, Les Alpes, France Ski Poster, Skiing Poster, Snowboarding Poster, Ski Resort Poster Holiday, French This is 139 characters out of 140 - you should try and maximise this as much as possible! As you can see, this crams in a lot of key words and search terms both related to Skiing as a whole, the poster category, and then the specifics of the poster itself (Les Arcs resort in France). Bear in mind that if you are listing a lot of listings that are of the same theme, you won’t have to spend time creating an entirely new title. For example if your next poster was of a ski resort in Italy, you can copy this one over and just swap out the specifics. For example change “France ski poster” to “Italy ski poster”, change “Les Arcs” to “The Dolomites”, etc.  Description \-Same logic applies for descriptions - try and cram in as many key words as you can! Here is an example for a Formula One poster: George Russell, Mercedes Formula One Poster  - item specific keywords Bright, modern and vibrant poster to liven up your home.  - Describes the style of the poster All posters are printed on high quality, museum grade 200gsm poster paper. Suitable for framing and frames. - Shows the quality of the print. Mentions frames whilst showing it comes unframed Experience the thrill of the racetrack with this stunning Formula One poster. Printed on high-quality paper, this racing car wall art print features a dynamic image of a Formula One car in action, perfect for adding a touch of speed and excitement to any motorsports room or man cave. Whether you're a die-hard fan or simply appreciate the adrenaline of high-speed racing, this poster is sure to impress. Available in a range of sizes, it makes a great addition to your home or office, or as a gift for a fellow Formula One enthusiast. Each poster is carefully packaged to ensure safe delivery, so you can enjoy your new piece of art as soon as possible. - A nice bit of text really highlighting a lot of key words such as gift, motorsports, racetrack etc.  You could go further with this too, by adding in extra things related to the poster such as ‘Perfect gift for a Mercedes F1 fan’ etc.  Tags Now, these are actually probably the most important part of your listing! You get 13 tags (20 character limit for each) and there are essentially search terms that will match your listing with what customers search for when shopping.  You really need to maximize these - whilst Title and Description play a part, these are the main things that will bring buyers to your listing. Once again, it is important to think about what customers are likely to be searching when looking for a poster similar to yours. Life hack alert! You can actually see what tags other sellers are using. All you need to do is go to a listing similar to yours that is selling well, scroll down and you can actually see them listed out at the bottom of the page! Here is an example of what this may look like: So, go through a few listings of competitors and make notes on common denominators that you can integrate into your listing. As you can see here, this seller uses tags such as ‘Birthday Gift’ and ‘Poster Print’. When you first start out, you may be better off swapping these out for more listing specific tags. This seller has been on Etsy for a few years however and has 15,000+ sales, so are more likely to see success from these tags.  If it’s not clear why, think about it this way. If you searched ‘poster print’ on Etsy today, there will be 10s of thousands of results. However, if you searched ‘Russell Mercedes Poster’, you will (as of writing) get 336 results. Etsy is far more likely to push your product to the top of the latter tag, against 300 other listings, rather than the top of ‘Poster Print’ where it is incredibly competitive. It is only when you are a more successful shop pulling in a high quantity of orders that these larger and more generic tags will work for you, as Etsy has more trust in your shop and will be more likely to push you to the front.  SKUs \-One important thing you need to do is add SKUs to all of your products! This is worth doing at the start as it will make your life so much easier when it comes to making sales and using PrintShrimp further down the line. What is an SKU? It is a ‘stock keeping unit’, and is essentially just a product identifier. Your SKUs need to match your file name that you upload to PrintShrimp. For example, if you made a poster about the eiffel tower, you can literally name the SKU eiffel-tower. There is no need to complicate things! As long as your file name (as in the image name of your poster on your computer) matches your SKU, you will be good to go.  \-It may be more beneficial to set up a system with unique identifiers, to make organising your files a lot easier further down the line. Say you get to 1000 posters eventually, you’ll want to be able to quickly search a code, and also ensure every SKU is always unique, so you won’t run into accidentally using the same SKU twice further down the line. For example, you can set it up so at the start of each file name, you have \[unique id\]\[info\], so your files will look like -  A1eiffeltower A2france And further down the line: A99aperolspritz B1potatoart This not only removes the potential issue of duplicating SKUs accidentally (for example if you made a few posters of the same subject), but also keeps your files well organised. If you need to find a file, you can search your files according to the code, so just by searching ‘a1’ for example, rather than having to trawl through a load of different files until you find the correct one. \-If your poster has variations, for example color variations, you can set a different SKU for each variation. Just click the little box when setting up variations that says ‘SKUs vary for each (variation)’. So if you have a poster available either in a white or black background, you can name each file, and therefore each SKU, a1eiffel-tower-black and a1eiffel-tower-white for example. \-The same goes for different sizes. As different American sizes have different aspect ratios, as mentioned above you may have to reformat some posters if you get a sale for one of these sizes. You can then add in the SKU to your listing once you have reformatted your poster. So for example if you sell a 16x20” version of the eiffel tower poster, you can name this file eiffel-tower-white-1620. Whilst this involves a little bit of set up, the time it saves you overall is massive!  Variations and Prices \-So, when selling posters there is a huge variety of sizes that you can offer, as mentioned previously. Non-negotiable is that you should be offering A5-A1. These will likely be your main sellers! Especially in the UK. It is also a good idea to offer inch sizing to appeal to a global audience (as bear in mind with PrintShrimp you will be able to print in multiple countries around the world!).  Below is a recommended pricing structure of what to charge on Etsy. Feel free to mess around with these! You may notice on Etsy that many shops charge a whole lot more for sizes such as A1, 24x36” etc. In my experience I prefer charging a lower rate to attract more sales, but there is validity in going for a lower amount of sales with higher profits. As mentioned above, you can also offer different variations on items - for example different colour schemes on posters. This is always a decent idea (if it suits the design) as it provides the customer with more options, which might help to convert the sale. You can always add this in later however if you want to keep it simple while you start! Setting up shipping profiles Etsy makes it very easy to set up different shipping rates for different countries. However, luckily with PrintShrimp you can offer free shipping to the majority of the major countries that are active on Etsy!  Using PrintShrimp means that your production costs are low enough in each domestic market to justify this. If you look on Etsy you can see there are many shops that post internationally to countries such as the US or Australia. Therefore, they often charge £8-10 in postage, and have a delivery time of 1-2 weeks. This really limits their customer base to their domestic market.  Using PrintShrimp avoids this and means you can offer free shipping (as we absorb the shipping cost in our prices) to the major markets of the UK, Australia, and USA (Europe coming soon!).  We also offer a 1 day processing time, unlike many POD poster suppliers. This means you can set your Etsy processing time to just one day, which combined with our quick shipping, means you will be one of the quickest on Etsy at sending out orders. This is obviously very attractive for customers, who are often very impatient with wanting their orders!  Getting the sales and extra tips \-Don’t list an insane amount of listings when you first get started. Etsy will be like ‘hang on a second’ if a brand new shop suddenly has 200 items in the first week. Warm up your account, and take things slow as you get going. We recommend 5 a day for the first week or so, and then you can start uploading more. You don’t want Etsy to flag your account for suspicious bot-like activity when you first get going.  \-It is very easy to copy listings when creating a new one. Simply select an old listing and press copy, and then you can just change the listing specific details to create a new one, rather than having to start from scratch. It can feel like a bit of a ball-ache setting up your first ever listing, but from then on you can just copy it over and just change the specifics.  \-Try and organize your listings into sections! This really helps the customer journey. Sometimes a customer will click onto your shop after seeing one of your listings, so it really helps if they can easily navigate your shop for what they are looking for. So, you now have a fully fledged Etsy shop. Well done! Time to start making £3,000 a month straight away right? Not quite. Please bear in mind, patience is key when starting out. If you started doing this because you are £10,000 in debt to the Albanian mafia and need to pay it off next week, you have come into this in the wrong frame of mind. If you have however started this to slowly build up a side hustle which hopefully one day become your full time gig, then winner winner chicken dinner.  Starting out on Etsy isn’t always easy. It takes time for your shop to build up trust! As I’ve said before, a buyer is far more likely to purchase from a shop with 1000s of reviews, than a brand new one with 0. But before you know it, you can become one of these shops! One thing you can do at the very start is to encourage your friends and family to buy your posters! This is a slightly naughty way of getting a few sales at the start, of course followed by a few glowing 5\* reviews. It really helps to give your shop this little boost at the start, so if this is something you can do then I recommend it.  Okay, so once you have a fully fledged shop with a decent amount of listings, you might be expecting the sales to start rolling in. And, if you are lucky, they indeed might. However, in my experience, you need to give your listings a little boost. So let us introduce you to: The wonderful world of Etsy ads Ads!! Oh no, that means money!! We imagine some of you more risk averse people are saying to yourself right now. And yes, it indeed does. But more often than not unfortunately you do have to spend money to make money.  Fortunately, in my experience anyway, Etsy ads do tend to work. This does however only apply if your products are actually good however, so if you’re back here after paying for ads for 2 months and are losing money at the same rate as your motivation, maybe go back to the start of this guide and pick another niche.  When you first start out, there are two main strategies.  Number 1: The Safer Option So, with PrintShrimp, you will essentially be making a minimum of £6 profit per order. With this in mind, I normally start a new shop with a safer strategy of advertising my products with a budget of $3-5 dollars a day. This then means that at the start, you only need to make 1 sale to break even, and anything above that is pure profit! This might not seem like the most dazzling proposition right now, but again please bear in mind that growth will be slow at the start. This means that you can gradually grow your shop, and therefore the trust that customers have in your shop, over time with a very small risk of ever actually losing money. Number 2: The Billy Big Balls Option If you were yawning while reading the first option, then this strategy may be for you. This will be better suited to those of you that are a bit more risk prone, and it also helps if you have a bit more cash to invest at the start. Through this strategy, you can essentially pay your way to the top of Etsy's rankings. For this, you’ll probably be looking at spending $20 a day on ads. So, this can really add up quickly and is definitely the riskier option. In my experience, the level of sales with this may not always match up to your spend every day. You may find that some days you rake in about 10 sales, and other days only one. But what this does mean is that as your listings get seen and purchased more, they will begin to rank higher in Etsy’s organic search rankings, at a much quicker rate than option one. This is the beauty of Etsy’s ads. You can pay to boost your products, but then results from this paid promotion feed into the organic ranking of your products. So you may find that you can splash the cash for a while at the start in order to race to the top, and then drop your ad spending later on when your products are already ranking well.  Sending your poster orders So, you’ve now done the hard bit. You have a running Etsy store, and essentially all you need to now on a daily basis is send out your orders and reply to customer messages! This is where it really becomes passive income.  \-Check out the PrintShrimp order portal. Simply sign up, and you can place individual orders through there. \-Bulk upload: We have an option to bulk upload your Esty orders via csv.  Seriously, when you are up and running with your first store, it is really as easy as that.  Once you have your first Etsy store up and running, you can think about expanding. There are many ways to expand your income. You can set up other Etsy stores, as long as the type of posters you are selling varies. You can look into setting up your own Shopify stores, and advertise them through Facebook, Instagram etc. Through this guide, we will teach you everything you need to know about starting to sell posters and generate some income. We will also show you why PrintShrimp is the best POD supplier for all of your poster needs. Trust me, you won’t need much convincing.

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]
reddit
LLM Vibe Score0
Human Vibe Score1
jamesackerman1234This week

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]

Hello Everyone (VERY LONG CASE STUDY AHEAD) - 355% return in 9 months Note: I own a 7-figures USD valued portfolio of 41+ content sites that generates 5-6 figures USD a month in passive income. This is my first time posting in this sub and my goal is to NOT share generic advice but precise numbers, data and highly refined processes so you can also get started with this business yourself or if you already have an existing business, drive huge traffic to it and scale it substantially (get more customers). I will use a case study to explain the whole process. As most of us are entrepreneurs here, explaining an actual project would be more meaningful. In this case study I used AI assisted content to grow an existing site from $217/m to $2,836/m in 9 months (NO BACKLINKS) and sold it for $59,000. ROI of 3 months: 355% Previous case studies (before I give an overview of the model) Amazon Affiliate Content Site: $371/m to $19,263/m in 14 MONTHS - $900K CASE STUDY \[AMA\] Affiliate Website from $267/m to $21,853/m in 19 months (CASE STUDY - Amazon?) \[AMA\] Amazon Affiliate Website from $0 to $7,786/month in 11 months Amazon Affiliate Site from $118/m to $3,103/m in 8 MONTHS (SOLD it for $62,000+) Note: You can check pinned posts on my profile. Do go through the comments as well as a lot of questions are answered in those. However, if you still have any questions, feel free to reach out. This is an \[AMA\]. Quick Overview of the Model Approach: High traffic, niche specific, informative content websites that monetise its traffic through highly automated methods like display ads and affiliate. The same model can be applied to existing businesses to drive traffic and get customers. Main idea: Make passive income in a highly automated way Easy to understand analogy You have real estate (here you have digital asset like a website) You get rental income (here you get ads and affiliate income with no physical hassle, in case you have a business like service, product etc. then you can get customers for that too but if not, it's alright) Real estate has value (this digital asset also has value that can be appreciated with less effort) Real estate can be sold (this can be sold too but faster) IMPORTANT NOTE: Search traffic is the BEST way to reach HUGE target audience and it's important when it comes to scaling. This essentially means that you can either monetise that via affiliate, display etc. or if you have a business then you can reach a bigger audience to scale. Overview of this website's valuation (then and now: Oct. 2022 and June 2023) Oct 2022: $217/m Valuation: $5,750.5 (26.5x) - set it the same as the multiple it was sold for June 2023: $2,836/m Traffic and revenue trend: growing fast Last 3 months avg: $2,223 Valuation now: $59,000 (26.5x) Description: The domain was registered in 2016, it grew and then the project was left unattended. I decided to grow it again using properly planned AI assisted content. Backlink profile: 500+ Referring domains (Ahrefs). Backlinks mean the sites linking back to you. This is important when it comes to ranking. Summary of Results of This Website - Before and After Note: If the terms seem technical, do not worry. I will explain them in detail later. Still if you have any questions. Feel free to comment or reach out. |Metric|Oct 2022|June 2023|Difference|Comments| |:-|:-|:-|:-|:-| |Articles|314|804|\+490|AI Assisted content published in 3 months| |Traffic|9,394|31,972|\+22,578|Organic| |Revenue|$217|$2,836|\+$2,619|Multiple sources| |RPM (revenue/1000 web traffic)|23.09|$88.7|\+$65.61|Result of Conversion rate optimisation (CRO). You make changes to the site for better conversions| |EEAT (expertise, experience, authority and trust of website)|2 main authors|8 authors|6|Tables, video ads and 11 other fixations| |CRO|Nothing|Tables, video ads |Tables, video ads and 11 other fixations || &#x200B; Month by Month Growth |Month|Revenue|Steps| |:-|:-|:-| |Sept 2022|NA|Content Plan| |Oct 2022|$217|Content Production| |Nov 2022|$243|Content production + EEAT authors| |Dec 2022|$320|Content production + EEAT authors| |Jan 2023|$400|Monitoring| |Feb 2023|$223|Content production + EEAT authors| |Mar 2023|$2,128|CRO & Fixations| |April 2023|$1,609|CRO & Fixations| |May 2023|$2,223|Content production + EEAT authors| |June 2023|$2,836|CRO and Fixations| |Total|$10,199|| &#x200B; What will I share Content plan and Website structure Content Writing Content Uploading, formatting and onsite SEO Faster indexing Conversion rate optimisation Guest Posting EEAT (Experience, Expertise, Authority, Trust) Costing ROI The plans moving forward with these sites &#x200B; Website Structure and Content Plan This is probably the most important important part of the whole process. The team spends around a month just to get this right. It's like defining the direction of the project. Description: Complete blueprint of the site's structure in terms of organisation of categories, subcategories and sorting of articles in each one of them. It also includes the essential pages. The sorted articles target main keyword, relevant entities and similar keywords. This has to be highly data driven and we look at over 100 variables just to get it right. It's like beating Google's algorithm to ensure you have a blueprint for a site that will rank. It needs to be done right. If there is a mistake, then even if you do everything right - it's not going to work out and after 8-16 months you will realise that everything went to waste. Process For this project, we had a niche selected already so we didn't need to do a lot of research pertaining to that. We also knew the topic since the website was already getting good traffic on that. We just validated from Ahrefs, SEMRUSH and manual analysis if it would be worth it to move forward with that topic. &#x200B; Find entities related to the topic: We used Ahrefs and InLinks to get an idea about the related entities (topics) to create a proper topical relevance. In order to be certain and have a better idea, we used ChatGPT to find relevant entities as well \> Ahrefs (tool): Enter main keyword in keywords explorer. Check the left pain for popular topics \> Inlinks (tool): Enter the main keyword, check the entity maps \> ChatGPT (tool): Ask it to list down the most important and relevant entities in order of their priority Based on this info, you can map out the most relevant topics that are semantically associated to your main topic Sorting the entities in topics (categories) and subtopics (subcategories): Based on the information above, cluster them properly. The most relevant ones must be grouped together. Each group must be sorted into its relevant category. \> Example: Site about cycling. \> Categories/entities: bicycles, gear and equipment, techniques, safety, routes etc. \> The subcategories/subentities for let's say "techniques" would be: Bike handling, pedaling, drafting etc. Extract keywords for each subcategory/subentity: You can do this using Ahrefs or Semrush. Each keyword would be an article. Ensure that you target the similar keywords in one article. For example: how to ride a bicycle and how can I ride a bicycle will be targeted by one article. Make the more important keyword in terms of volume and difficulty as the main keyword and the other one(s) as secondary Define main focus vs secondary focus: Out of all these categories/entities - there will be one that you would want to dominate in every way. So, focus on just that in the start. This will be your main focus. Try to answer ALL the questions pertaining to that. You can extract the questions using Ahrefs. \> Ahrefs > keywords explorer \> enter keyword \> Questions \> Download the list and cluster the similar ones. This will populate your main focus category/entity and will drive most of the traffic. Now, you need to write in other categories/subentities as well. This is not just important, but crucial to complete the topical map loop. In simple words, if you do this Google sees you as a comprehensive source on the topic - otherwise, it ignores you and you don't get ranked Define the URLs End result: List of all the entities and sub-entities about the main site topic in the form of categories and subcategories respectively. A complete list of ALL the questions about the main focus and at around 10 questions for each one of the subcategories/subentities that are the secondary focus Content Writing So, now that there's a plan. Content needs to be produced. Pick out a keyword (which is going to be a question) and... Answer the question Write about 5 relevant entities Answer 10 relevant questions Write a conclusion Keep the format the same for all the articles. Content Uploading, formatting and onsite SEO Ensure the following is taken care of: H1 Permalink H2s H3s Lists Tables Meta description Socials description Featured image 2 images in text \\Schema Relevant YouTube video (if there is) Note: There are other pointers link internal linking in a semantically relevant way but this should be good to start with. Faster Indexing Indexing means Google has read your page. Ranking only after this step has been done. Otherwise, you can't rank if Google hasn't read the page. Naturally, this is a slow process. But, we expedite it in multiple ways. You can use RankMath to quickly index the content. Since, there are a lot of bulk pages you need a reliable method. Now, this method isn't perfect. But, it's better than most. Use Google Indexing API and developers tools to get indexed. Rank Math plugin is used. I don't want to bore you and write the process here. But, a simple Google search can help you set everything up. Additionally, whenever you post something - there will be an option to INDEX NOW. Just press that and it would be indexed quite fast. Conversion rate optimisation Once you get traffic, try adding tables right after the introduction of an article. These tables would feature a relevant product on Amazon. This step alone increased our earnings significantly. Even though the content is informational and NOT review. This still worked like a charm. Try checking out the top pages every single day in Google analytics and add the table to each one of them. Moreover, we used EZOIC video ads as well. That increased the RPM significantly as well. Both of these steps are highly recommended. Overall, we implemented over 11 fixations but these two contribute the most towards increasing the RPM so I would suggest you stick to these two in the start. Guest Posting We made additional income by selling links on the site as well. However, we were VERY careful about who we offered a backlink to. We didn't entertain any objectionable links. Moreover, we didn't actively reach out to anyone. We had a professional email clearly stated on the website and a particularly designated page for "editorial guidelines" A lot of people reached out to us because of that. As a matter of fact, the guy who bought the website is in the link selling business and plans to use the site primarily for selling links. According to him, he can easily make $4000+ from that alone. Just by replying to the prospects who reached out to us. We didn't allow a lot of people to be published on the site due to strict quality control. However, the new owner is willing to be lenient and cash it out. EEAT (Experience, Expertise, Authority, Trust) This is an important ranking factor. You need to prove on the site that your site has authors that are experienced, have expertise, authority and trust. A lot of people were reaching out to publish on our site and among them were a few established authors as well. We let them publish on our site for free, added them on our official team, connected their socials and shared them on all our socials. In return, we wanted them to write 3 articles each for us and share everything on all the social profiles. You can refer to the tables I shared above to check out the months it was implemented. We added a total of 6 writers (credible authors). Their articles were featured on the homepage and so were their profiles. Costing Well, we already had the site and the backlinks on it. Referring domains (backlinks) were already 500+. We just needed to focus on smart content and content. Here is the summary of the costs involved. Articles: 490 Avg word count per article: 1500 Total words: 735,000 (approximately) Cost per word: 2 cents (includes research, entities, production, quality assurance, uploading, formatting, adding images, featured image, alt texts, onsite SEO, publishing/scheduling etc.) Total: $14,700 ROI (Return on investment) Earning: Oct 22 - June 23 Earnings: $10,199 Sold for: $59,000 Total: $69,199 Expenses: Content: $14,700 Misc (hosting and others): $500 Total: $15,200 ROI over a 9 months period: 355.25% The plans moving forward This website was a part of a research and development experiment we did. With AI, we wanted to test new waters and transition more towards automation. Ideally, we want to use ChatGPT or some other API to produce these articles and bulk publish on the site. The costs with this approach are going to be much lower and the ROI is much more impressive. It's not the the 7-figures projects I created earlier (as you may have checked the older case studies on my profile), but it's highly scalable. We plan to refine this model even further, test more and automate everything completely to bring down our costs significantly. Once we have a model, we are going to scale it to 100s of sites. The process of my existing 7-figures websites portfolio was quite similar. I tested out a few sites, refined the model and scaled it to over 41 sites. Now, the fundamentals are the same however, we are using AI in a smarter way to do the same but at a lower cost, with a smaller team and much better returns. The best thing in my opinion is to run numerous experiments now. Our experimentation was slowed down a lot in the past since we couldn't write using AI but now it's much faster. The costs are 3-6 times lower so when it used to take $50-100k to start, grow and sell a site. Now you can pump 3-6 more sites for the same budget. This is a good news for existing business owners as well who want to grow their brand. Anyway, I am excited to see the results of more sites. In the meantime, if you have any questions - feel free to let me know. Best of luck for everything. Feel free to ask questions. I'd be happy to help. This is an AMA.

[Ultimate List] A list of Marketing Tools That I’ve tested over the years and found helpful to do better marketing with less work. More than 50 Tools To Help you with Marketing, Copywriting & Sales!
reddit
LLM Vibe Score0
Human Vibe Score0.973
lazymentorsThis week

[Ultimate List] A list of Marketing Tools That I’ve tested over the years and found helpful to do better marketing with less work. More than 50 Tools To Help you with Marketing, Copywriting & Sales!

Starting to focus on marketing for your business, You will come across the same tools mentioned over and over by marketers. I would like to mention here tools that you might haven’t seen going viral in the community but actually will help you grow faster and efficiently. Starting off with My favourite Marketing Channel! #Email Marketing For SMBs Convertkit / Mailerlite / Mailchimp - These 3 Platforms are the best options for SMBs and entrepreneurs just starting out with email marketing. All 3 have free plans up to 1,000 subscribers. Scribe - Email Signature Tool, Create Great Email signatures for your emails. Liramail - Most Email marketing platforms don’t offer great email templates. This tool will help you build great email templates with drag and drop. Quick mail Auto-Warmer - Most Businesses at the beginning don’t know what to do when open rate drops. You need to use an email warmer like this to keep it up. #Email Marketing For Big Businesses SendGrid - Overall Email Marketing Tools, this tool is best for brands that have huge email lists and email marketing is the key marketing channel. Braze - This tool is leading in email marketing for large Email senders. When I was working for agencies, this was one of the best email marketing tools I had used. NeoCertified - Protect your emails for spammers and threats. To keep your email list healthy, this is a must have! Sparkloop - Referral Marketing For Email Campaigns. Email can generate great huge amount of referrals for you and Sparkloop makes it easier. #Cold Emails & Lead Generation Hunter - A Great Tool to scrape emails from domain names. The tool comes with a green free plan but Pro plan is worth the amount of features it provides. Icyleads - It’s better than Hunter as it’s heavily focused on the sales and prospecting to help you derive great results from your campaigns. Mailshake - Beginner Friend Cold Email Tool with Great features like email list warming. #Communication Tools Twilio - One do the best customer engagement platform used by Companies like Stripe and mine too. Chatlio - Use Live chat feature on your website with slack integration. My favourite easier to catch up on conversations through slack integration. Intercom - Used by Most Marketers, Industry Leading customer communication platform. Great for beginners! Chatwoot - Another Amazing Communication Tool but the best part is they have a great free plan useful for new businesses. Loom - Communicate with your audience through Videos. Loom is great for SaaS and to show human interaction to close new visitors effectively. #CRM Outseta - This tool provides great CRM and their billing system is better than other tools out their which makes it stands out! Hubspot - I don’t think this tool needs an introduction because Hubspot’s CRM is the best in industry. Salesflare - This CRM is a great alternative to hubspot as it’s beginner friendly and helpful for SMBs. #SEO Tools Ahrefs - One of the best SEO tool in the industry. They also just launched a bunch of free tools to help SEO beginners. Screaming frog - The only website crawler I have used since I bought my first domain. It’s the best! Ubersuggest- The Tool by Neil Patel is the best SEO tool for you. (I’m Joking, it’s the worst) Contentking - This tool is good at Real-time SEO Auditing, they do a lot of Marketing work through Newsletters. If you are subscribed to any SEO newsletter. You may have seen this tool. SEOquake & Semrush - SEOquake is a great tool to conduct on-page analysis, SERP, and much more. Great tool but it’s owned by Semrush. You should go for Semrush because that tool will cover all SEO aspects for you. #Content Marketing Buzzsumo - This tool is great for content research and but you may find the regular emails pretty annoying sometimes. Contentrow - Analyse Your Content and find it’s strength. Highly recommended who are weak at content structuring like me. Grammarly - If you are not a native English speaker like me, you might think you need it or not. You need it for sure for grammar corrections. #Graphic Design Tools Visme - At agencies, Infographics can be more effective than usual postscript. Visme is a graphic design tool focused on infographics and designs related to B2B and B2C. It’s great for agencies! Glorify - A Graphic Design Tool focused on E-commerce, filled with Designs useful for E-commerce store owners. Canva - All-in-one Industry leading Graphic Design Tool that everyone knows and every template is overused now. Adobe Creative Cloud ( previously Sparkpost) - It’s a great alternative to Canva filled with Amazing Stock images to use in your visuals but the only backlash is the exports in this tool are not high quality. Snaps - A Canva Alternative that might not have overused templates for your Social Accounts. #Advertising Tools Plai - It’s a great PPC tool to create Ads for Instagram and Tiktok. Wordstream - It’s an industry leading PPC Tool, great for Ad Grading and auditing. AdEspresso - This Is a tool by Hootsuite. They have a lot of Data sourced at the backend, which helps in Ad optimisation through this tool. That’s the reason I recommend this tool. #Video Editing Tools Veed Studio - I have been using Veed from last year. It’s one of the best Video Marketing Tool Optimized for Instagram & Tiktok. Synthesia - It’s a new AI video generation platform. From last few months, if you have seen marketing agencies including Videos in Emails. The chances are that’s not a Agency member taking but AI generated Human. Motionbox - It’s also a great video editing tool focused on video editing for Digital Marketers. Jitter Video - It’s a great motion design tool. Comes with great templates, the only place where other tools I mentioned lacks. It’s great and beginner friendly. #Copywriting Jasper AI - Google’s John Mueller says AI generated content is banned on Search but I think with Jasper AI you can generate SEO optimised Content but you have to put in some efforts like at least give 30 minutes for editing the Copy by yourself. Copy AI - Another AI tool to help you write better copy. This one is more focused on helping you write copy suitable for Ads and Social media campaigns. Hemingway App - To help you write more clearly and Bold. This tool is better than Grammarly if you look for writing perspective and it’s free. #Social Media Management App I’ve used a Lot of SMM Tools and that’s why going to mention all of them with a short review. Sprout social - The Best with deep insights coverage. Hootsuite - Great Scheduling tool just under sprout social. Later - Heavily Focused on Instagram from beginning and Now Tiktok too. SkedSocial - It’s like a Later alternative with great addition features like link-in-bio. Facebook’s Business Manager- Great but sometimes bugs can make a huge issue for you and customer support is like dead. Tweet Hunter & Hypefury- Both are Twitter Scheduling tools growing very fast on platform and are great for growth. Buffer - It’s a great tool but I haven’t seen any new updates to help with management. Zoho Social - It’s a great SMM tool and if you use other marketing solutions from Zoho. It’s a must have! #Market Research Tool • SparkToro - That’s the only one I have ever used. It’s great for audience research and comes with great customer service. Founded by Rand Fishkin, it’s one of the best research tool. #Influencer Marketing & UGC InfluenceGrid - A free search engine To find Tiktok & Instagram Influencers for your campaigns. Tiktok Creative Center- TikTok’s in-built tool called “Creative Center” is the best to find content trends, audience demographics and much more. Archive - Find Instagram Stories and Posts mentioning Your brands and use them as Ads for your business Marketing. #Landing Page Builders Leadpages - Its a great landing page builder because the integration and drag-and-drop features makes it easier to work with! Cardd co - A Great Landing page builder with easy step up but it lacks the copywriting and tracking features. Instapage - It’s one of the best out and I think the overall product is effective enough to help you stand out with your landing page. Unbounce - It’s a great alternative to Instapage due its well polished landing page templates that might be helpful for you. #Community Building Mighty Networks - A Great Community building platform, and you can also sell courses within the platform. Circle so - A great alternative to Mighty networks focused on Communities specifically. We are currently using for small community Of ours. #Sales Tools Drift - You can get much more out of Drift than just sales tools but The Sales solutions provided in Drift are one of the best. Salesforce - It’s the industry Sales solution provider. A go-to and have various pricing plans making it suitable for majority of SMBs. #Social Proof Tools People don’t have enough time to search across internet to decide to trust you after seeing your Ad first time. That’s what you might be facing too. Here are two tools I absolutely love for social proof! Use Proof - Show Recent Activities occurring on your website and build the trust of your visitors. Testimonial to - Gather Testimonials across Social Media platforms related to your business with this tool. Capture tweets and comments mentioning your brands and mention them. #Analytics Tools Plausible Analytics- A privacy friendly Analytics alternative to Google Analytics if you hate Analytics 4 like me. Mixpanel - Product Analytics and funnel reports better than Google Analytics. #Reddit Marketing Gummysearch- This tool will help To find your target audience on Reddit and interact with them with its help and close your new customers. Howitzer- It’s another pretty similar tool to Gummysearch focused on Reddit cold outreach to get clients and new customers. Both are great but Gummysearch provides better customer support while Howtizer is helpful on a large scale Reddit Marketing. #Text Marketing Klaviyo - It’s an email + SMS marketing tool, it’s taking up space in marketing industry very quickly as an industry leader due to its great integrations but you need to learn the platform usage to maximise the outcome. Cartloop - This tool provides great text marketing solutions with integration with Spotify and other e-commerce marketing tools. Attentive Mobile - This is my favourite Text marketing tool due to the interactive dashboard + they have a library of Text marketing examples to help you out with your campaigns. #Other Tools I have used throughout my journey! Triple Whale - It’s a great E-commerce marketing tools with Triple pixel to help you track your campaigns more efficiently. Fastory - To create well optimized Instagram & Tiktok Stories for your business. Jotform - Online Form Builder with integrations with leading marketing tools. Gated - As an entrepreneur and marketer, you may receive a bunch of unwanted emails. Use Gated to get rid of them and receive useful mails only! ClickUp- The main Tool for Project Management, one of the best and highly recommended. Riverside - Forget Zoom or Google Meet, For your Podcast Interviews and Marketing conferences. You need riverside with great video quality and recording features. Manychat- Automate your Instagram DMs and interact with your followers more efficiently + sell out your products/ services when you are offline. Calendy - To schedule meetings with your ideal clients. ServiceProviderPro - It’s a client portal for SEO & Growing Agencies, very helpful in scaling agencies. SendCheckit - Compare your Email Subject Lines with 100,000+ others in the database for free. Otter AI - Using AI track your meetings more effectively, you can easily edit, annotate and share notes from the meetings. Ryte - Optimise your website User experience with this tool focused on UX aspects + SEO too. PhantomBuster - Scrape LinkedIn Profile and Data from Facebook/LinkedIn groups. I clearly love this tool! #Honourable Mentions Zapier - The Only tool you need to integrate your favourite tool with a new effective tool. Elementor - That’s what I use for web design and it’s great! Marketer Hire - To hire world class marketers to work with you. InShot & Capcut - I create Instagram Reels and TikTok’s and life without these tools isn’t possible. Nira - It’s a great tool to Manage your workspace and this tool has launched many marketing templates in-built helpful for marketers and also entrepreneurs. X - The tool you love that wasn’t mentioned here is valuable and I honour that tool and share that if you would like to! I mean thanks for reading what I have curated all over my life as a marketer. I share 5 Marketing Tools, 5 Marketing Resources and 1 Free Resourceevery week in my newsletter, you can subscribe here to receive that for free. Also, You can read an expanded list of email marketing tools in this Reddit post!

Why the value of writing code and other digital services is going to zero
reddit
LLM Vibe Score0
Human Vibe Score1
BalloonWheelieThis week

Why the value of writing code and other digital services is going to zero

I must preface this with a trigger warning because I make some statements in this post that might be upsetting to some. This post discusses my experience building in the new era of entrepreneurship, which is one where the founder is the center of the universe, and the consultants, overpriced SaaS, and corporate swamp creatures are replaced by single-user custom software, bots, and self-hosted automations. If you work in the legacy economy, I really don't intend to stress you out or say things you are doing are quickly becoming irrelevant, but I must share the reality of how I am operating, because I would like to hear from others who are doing the same, or desire to do the same. I am currently operating with the belief that AI-powered tools are going to make 1-person million dollar businesses much more common. Building anything digital is becoming extremely easy, cheap, and quick to implement. The value of code and digital tools is approaching zero, or at most 5% of what it currently is. Right now, the most powerful AI tools are aimed at developers, so folks who have some technical and business ability basically have nothing holding them back aside from the speed of their brain right now. I happen to be a part of the cohort, and am building like there is no tomorrow, but I don't believe this cohort is actually all that big. The next hurdle to unlock the new era of entrepreneurship is empowering every entrepreneur to build at the same pace that is currently locked behind having technical ability. This cohort is huge (millions, if the number of people in this sub is any indication). This post is aimed at them (you?). If you are part of this cohort, what is holding you back from launching a new product for near-zero cost? What is too complicated, too expensive, too unknown for you to be able to build your new/current business at maximum speed? I look forward to seeing the replies, I hope some insights shared can help the community, and be a catalyst for more tools to enable non-technical founders to launch. I will now share some of how I am testing, launching, and selling as a one-man-show. This will be a little bit technical, but if the output of any layer of my stack is something you want, please comment because maybe someone will build a cheap way of accessing it without needing to manage the code yourself. \#1 BOTS I cannot overstate how much leverage bots have created for me. I run all of my bots locally and interface with with via Telegram. Bots do things like: \- watch social media pages, forums, subreddits, etc related to my customers and notify me of what is going on, and suggest SEO blog posts that could be published to capture traffic related to the topic. with a single message, my bot will generate a blog post, send it to me for review, apply edits i suggest, and then publish it live, all from within telegram \- pay attention to all my key metrics/analytics, and attempt to find insights/corrolations (ex. there is a lot of traffic on this page, blog post, video, etc. here's why, and how we can take advantage of it to drive business goals) \- repurposing content. i have dozens of social media profiles that are 100% run by bots, they are all related to my customer niches and will do things like post news, snippets from my blogs, interact with human creators in the niche, etc. this builds my audience automatically which I can then advertise to/try to convert into paying customers, since they are interested in the things my bot is posting and become followers, it's like automated qualified lead gen 24/7 across every social platform and every niche I care about. you may be thinking by now that this post is made by a bot, but you will have to trust me that this is 100% hand-written by my sleep-deprived brain. let's continue: \#2 replacing every SaaS with a shitty version of it designed for what i need out of it it's absurd that we pay ten's of dollars per seat per month for basic digital functions like chat (slack), CRM (active camppaign, sales force, hubspot, etc), email stuff (mailchip, etc), link sharing (linktree, etc), website builders (wix, squarespace, etc), etc. all of these SaaS tools are overpriced and overbuilt. I believe many of them are going to be caught in the innovators dilemma and will go to 0. I don't use any of these anymore, I build and self-host my own shitty version of each of them that does only what i need out of the tool. for example, my CRM doesn't have a fancy drag and drop email builder and 10000 3rd party plugins, because i dont need any of that shit I just need to segment and communicate with my customers. if i need more features, i can generate them on the fly. \#3 working alone I have worked with cofounders in the past, raised money from investors, hired consultants, burned money and time, suffered sleepless nights from stress caused by other people not delivering, trying to convince others they are wrong, or they are pushing the company off a cliff, waste waste waste. no more of that. In the new age of entrepreneurship, the BUILDER (you and I) are the ones creating the value, and AI empowers us to do it alone. this might seem daunting, but there is no business problem that can't be solved with a detailed discussion sesh with chatgpt, no facts that can't be found with perplexity, and no task that can't be automated with claude. there is no need for anymore swamp creatures. you are the start and the end point, you don't need to rely on anyone else for anything. this may sound ignorant, but this is the conclusion I have come to believe, and it continues to be proven every day my businesses progress with me being the only human involved. This is getting quite long so I'll cut it here. I look forward to hearing about how you are operating in this new era and hopefully getting inspired/learning some new ideas to add to my current stack.

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.
reddit
LLM Vibe Score0
Human Vibe Score1
SpicyCopyThis week

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.

Hey guys, I'm working in a growth marketing agency. Marketing tools are 30% of what we do, so we use them a lot and experiment with the new ones as much as possible. There are thousands of tools and it's easy to get lost, so I wanted to share the tools we use most on a daily basis. And divide the list into 14 categories. I thought this could be handy for Entrepreneurs subreddit. Why adopt tools? I see marketing tools as tireless colleagues. If you can't hire an employee, choosing the right tool can solve your problems, because they Are super cheap. Work 7/24 for you. Don’t make mistakes. Don’t need management. (or needless management) Help you to automate the majority of your lead gen process. Onwards to the list. (With the pricings post ended up quite long, you can find a link in the end if you want to check the prices) Email marketing tools #1 ActiveCampaign is armed with the most complicated email automation features and has the most intuitive user experience. It feels like you already know how to use it. \#2 Autopilot is visual marketing automation and customer journey tool that helps you acquire, nurture based on behaviors, interest etc. #3 Mailjet: This is the tool we use to send out bulky email campaigns such as newsletters. It doesn't have sexy features like others but does its job for a cheap price. Email address finders #4 Skrapp finds email of your contacts by name and company. It also works with LinkedIn Sales Navigator and can extract thousands of emails in bulk + have a browser add-on. #5 Hunter: Similar to Skrapp but doesn't work with LinkedIn Sales Navigator directly. In addition, there are email templates and you can set up email campaigns. Prospecting and outreach tools #6 Prospect combines the personal emails, follow-up calls, other social touches and helps you create multichannel campaigns.  #7 Reply is a more intuitive version of Prospect. It is easy to learn and use; their UX makes you feel good and sufficient.  CRM tools #8 Salesflare helps you to stop managing your data and start managing your customers. Not yet popular as Hubspot and etc but the best solution for smaller B2B businesses. (we're fans) \#9 Hubspot: The most popular CRM for good reason and has a broader product range you can adopt in your next steps. Try this if you have a bulky list of customers because it is free. #10 Pardot: Pardot is by Salesforce, it's armed with features that can close the gap between marketing and sales. Sales Tools #11 Salesforce is the best sales automation and lead management software. It helps you to create complicated segmentations and run, track, analyze campaigns from the same dashboard. #12 LinkedIn Sales Navigator gives you full access to LinkedIn's user database. You can even find a kidnapped CEO if you know how to use it with other marketing automation tools like Skrapp. #13 Pipedrive is a simple tool and excels in one thing. It tracks your leads and tells you when to take the next action. It makes sales easier. #14 Qwilr creates great-looking docs, at speed. You can design perfect proposals, quotes, client updates, and more in a flash. We use it a lot to close deals, it's effective. #15 Crystalknows is an add-on that tells you anyone’s personality on LinkedIn and gives you a detailed approach specific to that person. It's eerily accurate. #16 Leadfeeder shows you the companies that visited your website. Tells how they found you and what they’re interested in. It has a free version. Communication Tools #17 Intercom is a sweet and smart host that welcomes your visitors when you’re not home. It’s one of the best chatbot tools in the market. #18 Drift is famous for its conversational marketing features and more sales-focused than Intercom. #19 Manychat is a chatbot that helps you create high converting Facebook campaigns. #20 Plann3r helps you create your personalized meeting page. You can schedule meetings witch clients, candidates, and prospects. #21 Loom is a video messaging tool, it helps you to be more expressive and create closer relationships. #22 Callpage collects your visitors’ phone number and connects you with them in seconds. No matter where you are. Landing page tools #23 Instapage is the best overall landing page builder. It has a broad range of features and even squirrel can build a compelling landing page with templates. No coding needed. #24 Unbounce can do everything that Instapage does and lets you build a great landing page without a developer. But it's less intuitive. Lead generation / marketing automation tools #25 Phantombuster is by far the most used lead generation software in our tool kit. It extracts data, emails, sends requests, customized messages, and does many things on autopilot in any platform. You can check this, this and this if you want to see it in action. #26 Duxsoup is a Google Chrome add-on and can also automate some of LinkedIn lead generation efforts like Phantombuster. But not works in the cloud. #27 Zapier is a glue that holds all the lead generation tools together. With Zapier, You can connect different marketing tools and no coding required. Conversion rate optimization tools #28 Hotjar tracks what people are doing on your website by recording sessions and capturing mouse movements. Then it gives you a heatmap. #29 UsabilityHub shows your page to a digital crowd and measures the first impressions and helps you to validate your ideas. #30 Optinmonster is a top tier conversion optimization tool. It helps you to capture leads and enables you to increase conversions rates with many features. #31 Notifia is one mega tool of widgets that arms your website with the wildest social proof and lead capturing tactics. #32 Sumo is a much simpler version of Notifia. But Sumo has everything to help you capture leads and build your email lists. Web scrapers #33 Data Miner is a Google Chrome browser extension that helps you scrape data from web pages and into a CSV file or Excel spreadsheet. #34 Webscraper does the same thing as Data Miner; however, it is capable of handling more complex tasks. SEO and Content #35 Grammarly: Your English could be your first language and your grammar could be better than Shakespeare. Grammarly still can make your writing better. #36 Hemingwayapp is a copywriting optimization tool that gives you feedback about your copy and improves your readability score, makes your writing bolder and punchier. Free. #37 Ahrefs is an all-rounder search engine optimization tool that helps you with off-page, on-page or technical SEO. #38 SurferSEO makes things easier for your on-page SEO efforts. It’s a tool that analyzes top Google results for specific keywords and gives you a content brief based on that data. Video editing and design tools #39 Canva is a graphic design platform that makes everything easy. It has thousands of templates for anything from Facebook ads, stylish presentations to business cards.  #40 Kapwing is our go-to platform for quick video edits. It works on the browser and can help you to create stylish videos, add subtitles, resize videos, create memes, or remove backgrounds. #41 Animoto can turn your photos and video clip into beautiful video slideshows. It comes handy when you want to create an advertising material but don’t have a budget. Advertising tools #42 AdEspresso lets you create and test multiple ads with few clicks. You can optimize your FB, IG, and Google ads from this tool and measure your ads with in-depth analytics. #43 AdRoll is an AI-driven platform that connects and coordinates marketing efforts across ads, email, and online stores. Other tools #44 Replug helps you to shorten, track, optimize your links with call-to-actions, branded links, and retargeting pixels #45 Draw.io = Mindmaps, schemes, and charts. With Draw.io, you can put your brain in a digital paper in an organized way. #46 Built With is a tool that finds out what websites are built with. So you can see what tools they're using and so on. #47 Typeform can turn data collection into an experience with Typeform. This tool helps you to engage your audience with conversational forms or surveys and help you to collect more data. #48 Livestorm helped us a lot, especially in COVID-19 tiles. It’s a webinar software that works on your browser, mobile, and desktop. #49 Teachable \- If you have an online course idea but hesitating because of the production process, Teachable can help you. It's easy to configure and customizable for your needs. #50 Viral Loops provides a revolutionary referral marketing solution for modern marketers. You can create and run referral campaigns in a few clicks with templates. Remember, most of these tools have a free trial or free version. Going over them one by one can teach you a lot and help you grow your business with less work power in the early stages of your business. I hope you enjoyed the read and can find some tools to make things easier! Let me know about your favorite tools in the comments, so I can try them out. \------ If you want to check the prices and see a broader explanation about the tools, you can go here.

I spent 18 hours every week tracking marketing trends and latest news. Here are my predictions for 2024
reddit
LLM Vibe Score0
Human Vibe Score0.778
lazymentorsThis week

I spent 18 hours every week tracking marketing trends and latest news. Here are my predictions for 2024

1/ Securing Digital Footprint becomes #1 Priority For Chronically Online Users, Protecting their digital footprint will become one of the main things. We saw influencers getting cancelled over Old Content and Brands used Old Travis Kelce Tweets, we saw what could happen without digital footprint protection. Online Engagement Precautions will be taken again with Twitter & IG showing your usernames above ‘Algorithm Suggested Content’. What you like is more visible to other people in UI Design of these apps, another reason behind why Digital Footprint preservation will matter a lot in 2024. This will impact likes to viewership ratio on your organic and paid content. &#x200B; 2/  TikTok wants Long Videos with Storytelling As I was writing this report, TikTok also released their What’s Next 2024 Report. It focuses heavily on how the audiences on the app demand better storytelling and from the examples in the report, you can judge what TikTok wants. They also rolled out a 30-minute video upload limit. Engaging Content over 1-Minute Mark to keep the audiences longer on the app. I highlighted in the first trend, every social media platform wants the same thing, more time spent. 3/ Use of Shop the Look While Streaming Netflix or Amazon Prime. This year’s one of the most successful TV series, The Bear caused Men to go mad for the T-Shirt worn by Jeremy Allen White in the show. Showing us how TV Shows influence or encourage us to dress in a particular way. It’s nothing new, TV Shows like Friends & Gossip Girl influenced all demographics when they came out. But now, Streamings Services such as Roku & Amazon enable consumers to shop the look while watching the TV Shows. Many Brands will jump on these opportunities in upcoming months. 4/ Brands in Comments & Memes are the new norm By Summer 2024, Most Online Users & Creators will no longer feel too excited or answered when they see your brand in the comments. Why? It’s becoming too common for Brands to show in comments under viral content about them. Or Brands being funny with Internet Culture Trends is known to most users. The Saturation of Every Brand being funny and being present leads to increased competition of levitating the content quality. &#x200B; 5/ Marketers decrease their focus on Traffic & Views With AI recommendations taking over, The Structure of content distributing on social media is changing, the same goes for SEO. Conversational AIs are changing how web traffic is distributed to publishers. An Increased focus on managing the conversion rate and landing page relevancy will be the main focus. 6/ OOH is kind of making a comeback. First, US OOH Ads Industry grew 1.1% in Q3 2023. Second, Outfront Media reported slight revenue increase in Q3 as Billboard Ad Revenue grew in Q3. Many Brands in UK are also aligning more toward traditional media Channels. With Burger King in UK focusing on only OOH for Christmas this year and Fashion Brands like SSENSE launching Billboards as Branding Play. 7/ Rise of Curation Continues This Year, we witnessed success of Pinterest Shuffles App, Gen-Z loved it. Similar Success with formats like IG photo dump & TikTok ‘My Fav Finds’ Carousels being the center of Gen-Z Content. Just look at this recent trend and tell me Curation isn’t personal to Online Teens. Spotify won with their idea of curating Songs with Astrology-type signs. The Fashion Products with Curated Emojis and Stickers on them, that scrappy curated approach is predicted to grow in 2024, data from Pinterest. 8/ Use of AI to Trace Consumers in the wild This year we saw a huge trend of people using Image/ face recognition tools to find or dig dirt about famous people. The biggest example was Dillion Dannis exposing Multiple images of Logan Paul’s girlfriend using AI tools. (Which was Obviously bad) But next year, I believe with better rules, big brands like Adidas or Nike will be able to find worldwide micro-influencers & Online Consumers seen wearing adidas. And partnering with them on a large scale through automated outreach. 9/ More Cartoons than Influencer-Brand Products. All the Cartoon shows are seeing huge rise on IG and TikTok, Shaun the sheep is viral, Snoopy was big this year, Sesame Street’s TikTok is working. Aussie Show Bluey is making a huge spark in the US. More Brand collaborations are on the road. Why? Cartoons have built a very consistent identity and they have social channels. I know many see Cartoons as Kids Content but on social, looking at TikTok Account of Sesame Street & Snoopy. Last month, Powerpuff Girls launched a collaboration with Nike. &#x200B; 10/ The Best Trend to get people off social media &#x200B; Try to get people off the social media apps, build your own loops. You can’t rely on social and you clearly shouldn’t burn out trying to win on social and streaming with Paid Ads or without them. This matters a lot because data shares most of your customers buy from you once or twice a year. And then they interact with your content, how bad will you feel if the only thing they remember as your content is being on TikTok. Nothing about your brand. 11/ The Internet Aesthetic will Die for Cafes & Restaurants When I wrote my post about Instagram Marketing, I mentioned this issue of Every Account looking the same. In reality, It isn’t limited to IG Feeds, This Creator points out the same Problem, mentioning the aesthetic Standards from Internet are changing how new businesses approach their whole business. More Content from Cafes & Restaurants need to be around their people and neighbourhood. 12/ Echo Chambers & Sonic Influence All Podcasts are Echo Chambers because if people wanted a new perspective in form of value. We would have chosen debates, but we chose Podcasts to find new value while being in comfort. People are now looking for more value in comfort than ever, Podcasts will continue to rise. 13/ Clever AI Integration to Better Customer Journeys in B2B & B2C Marketing Agencies can provide clever solutions to B2B Companies, and help them overcome the tag of Boring Ads only. How? Ogilvy India created an AI Ad Campaign for Cadbury, allowing SMBs to have the Bollywood Actor endorse them. They used the AI voice generation allowing businesses to alter the voice and have Shah Rukh Khan endorse their shop. A similar approach was taken by IPG India, An AI Ad with Shah Rukh Khan allowing everyone to add their face in the Branded Content. &#x200B; If I sounded like an Old head in this report or I missed on some elements like Programmatic Advertising and PPC. I will try to include better analysis and new content about future trends. You can find the post shared with examples & research, linked here.

We create AI software and provide AI automation for companies. Here is a list of the best AI tools for sales IMHO
reddit
LLM Vibe Score0
Human Vibe Score1
IntellectualAINCThis week

We create AI software and provide AI automation for companies. Here is a list of the best AI tools for sales IMHO

Here are some AI tools that are useful for sales. I tried to touch as many different parts of the sales process so the tools are all quite different but all useful for sales. I tried to include some of the best and underrated AI tools. Most of them are free so check them out if you want. I did not include ChatGPT as it can basically be used for anything with the right prompts. So these tools will be more research-oriented. A quick disclaimer – I work for the company Idealink where we create custom ChatGPT for businesses and other AI products. Apollo AI Seamless AI CoPilot AI Lavender AI Regie AI Gemini Plusdocs Make Midjourney Fireflies AI Apollo AI - Find potential customers Apollo is a platform for sales and business development. It offers a range of tools to find and engage with ideal customers. The platform has an extensive B2B database and features that streamline the sales process from prospecting to closing deals. Key Features: Extensive B2B Database: Apollo boasts a large, accurate database of over 275 million contacts, providing a wealth of potential leads and opportunities for sales teams. Data Enrichment and Lead Insights: The platform offers data enrichment capabilities, ensuring CRM systems are continuously updated with detailed and actionable lead information. AI-Driven Sales Engagement: Apollo's AI technology assists in crafting effective communication and prioritizing high-value leads, enhancing the overall sales engagement process. Comprehensive Sales Tools: The platform provides an integrated suite of tools for email, call, and social media engagement, combined with analytics and automation features to streamline the sales cycle. Tailored Solutions for Teams: Apollo offers customized solutions for different team types, including sales and business development, founders, and marketing teams, addressing specific needs and goals. Seamless AI - Sale process made easier Seamless.AI is an innovative B2B sales lead generation solution that allows sales teams to efficiently connect with their ideal customers. The platform's features provide accurate and up-to-date contact information and integrate easily with existing sales and marketing tools. Key Features: Real-Time Search Engine: Seamless.AI uses AI to scour the web in real time, ensuring the contact information for sales leads is current and accurate. Comprehensive Integration: Easily integrates with popular CRMs and sales tools like Salesforce, HubSpot, and LinkedIn Sales Navigator, enhancing productivity and eliminating manual data entry. Chrome Extension: Enhances web browsing experience for sales teams, allowing them to build lead lists directly from their browser. Pitch Intelligence and Writer: Tools for crafting effective sales messages and marketing content, personalized for each potential customer. Data Enrichment and Autopilot: Keeps customer data current and automates lead-building, supporting consistent lead generation. Buyer Intent Data and Job Changes: Offers insights into potential customers' buying intentions and keeps track of significant job changes within key accounts. CoPilot AI - Helps sales reps manage leads CoPilot AI is an advanced AI-powered sales support platform designed for B2B sales teams and agencies to drive consistent revenue growth. The tool focuses on using LinkedIn for sales prospecting, engagement, and conversion. Key Features: LinkedIn Lead Generation: Targets and automates outreach to high-intent LinkedIn leads, enhancing efficiency and scalability in lead generation. Personalized Messaging Automation: Facilitates sending of personalized, one-click messages at scale, maintaining a human touch in digital interactions. Sales Conversion Insights: Offers tools to understand and adapt to prospects' communication styles, improving the likelihood of conversion. Sales Process Optimization: Provides analytics to evaluate and refine sales strategies, identifying opportunities for improvement in the sales funnel. Industry Versatility: Adapts to diverse industries, offering tailored solutions for B2B sales, marketing, HR, and financial services sectors. Collaborative Team Tools: Enables team synchronization and collaboration, boosting productivity and synergy in sales teams Lavender AI - Email AI assistant Lavender AI is an AI-powered email tool that helps users write better emails. It provides real-time feedback and personalized suggestions to optimize email communication efficiency. Key Features: Email Coaching and Scoring: Lavender evaluates emails using AI and a vast database of email interactions, offering a score and tips for improvement. It identifies factors that might reduce the likelihood of receiving a reply, helping users refine their email content. Personalization Assistant: This feature integrates prospect data directly into the user's email platform, suggesting personalization strategies based on recipient data and personality insights to foster deeper connections. Adaptive Improvement: Lavender's scoring and recommendations evolve in real-time with changing email behaviors and practices, thanks to its generative AI and extensive data analysis, ensuring users always follow the best practices. Data-Driven Managerial Insights: The platform provides managers with valuable insights derived from actual email interactions, aiding them in coaching their teams more effectively based on real performance and communication trends. Broad Integration Capability: Lavender integrates with various email and sales platforms including Gmail, Outlook, and others, making it versatile for different user preferences and workflows. Regie AI - Great for business intelligence Regie.ai simplifies the sales prospecting process for businesses, using GenAI and automation to improve interactions with prospects. The platform offers tools like Auto-Pilot for automatic prospecting and meeting scheduling, Co-Pilot for sales rep support, and integrations with various CRM and sales engagement platforms. It also includes a Chrome Extension and CMS for content management and customization. Key Features: Automated Prospecting with Auto-Pilot: Regie.ai's Auto-Pilot feature autonomously prospects and schedules meetings, using Generative AI for Sales Agents to enhance outbound sales efforts. Audience Discovery and Content Generation: The platform identifies target accounts not in the CRM, generating relevant, on-brand content for each message, thus ensuring efficiency in list building and message personalization. Outbound Prioritization and Dynamic Engagement: It utilizes engagement and intent data to prioritize outreach to in-market prospects and adjust engagement strategies based on buyer responsiveness. Full Funnel Brand Protection and Analytics: Regie.ai ensures consistent use of marketing-approved language in all sales outreach and provides insights into campaign and document performance, thereby safeguarding brand integrity throughout the sales funnel. Gemini - AI powered conversational platform Gemini is a large language model chatbot developed by Google AI. It can generate text, translate languages, write different creative text formats, and answer your questions in an informative way. It is still under development but has learned to perform many kinds of tasks. Key features: Generate different creative text formats of text content (poems, code, scripts, musical pieces, email, letters, etc.) Answer your questions in an informative way, even if they are open ended, challenging, or strange. Translate languages Follow your instructions and complete your requests thoughtfully. Plusdocs (Plus AI) - AI tool for presentations Plus AI is a versatile tool that helps improve presentations and integrates with Slides in a simple and intuitive way. It simplifies slide creation and customization by converting text into slides and utilizing AI for various languages. Key Features: Text-to-Slide Conversion: Plus AI excels in transforming textual content into visually appealing slides, streamlining the presentation creation process. Multilingual AI Support: The tool is equipped to handle various languages, making it adaptable for a global user base. Professional Design Options: Users have access to professionally designed slide layouts, enabling the creation of polished presentations with ease. Customization and AI Design: Plus AI allows for extensive customization, including the use of AI for designing and editing slides, ensuring unique and personalized presentations. Live Snapshots and Templates: The tool offers live snapshots for real-time updates and a wide range of templates for quick and effective slide creation. Make - AI automation Make is a powerful visual platform that allows users to build and automate tasks, workflows, apps, and systems. It offers an intuitive, no-code interface that empowers users across various business functions to design and implement complex processes without the need for developer resources. Key Features: No-Code Visual Workflow Builder: Make's core feature is its user-friendly interface that allows for the creation of intricate workflows without coding expertise, making it accessible to a wide range of users. Extensive App Integration: The platform boasts compatibility with over 1000 apps, facilitating seamless connections and data sharing across diverse tools and systems. Custom Automation Solutions: Make enables personalized automation strategies, fitting various business needs from marketing automation to IT workflow control. Template Library: Users can jumpstart their automation projects with a vast collection of pre-built templates, which are customizable to fit specific workflow requirements. Enterprise-Level Solutions: Make offers advanced options for larger organizations, including enhanced security, single sign-on, custom functions, and dedicated support. Midjourney - Making sales content Midjourney is an AI-based image generation tool that changes the way we visualise and create digital art. It offers a lot of artistic possibilities, allowing users to create stunning images from text prompts. This innovative service caters to artists, designers, and anyone seeking to bring their creative visions to life. Key Features: Advanced AI Image Generation: Midjourney's core strength lies in its powerful AI algorithms, which interpret text prompts to generate detailed, high-quality images. This feature allows users to explore an endless array of visual concepts and styles. User-driven Customization: The tool offers significant control over the image creation process, enabling users to guide the AI with specific instructions, ensuring that the final output aligns closely with their vision. Diverse Artistic Styles: Midjourney can mimic various artistic styles, from classical to contemporary, providing users with a wide range of aesthetic options for their creations. Collaboration and Community Features: The platform fosters a community of users who can share, critique, and collaborate on artistic projects, enriching the creative experience. Fireflies AI - Sales meeting assistant Fireflies.ai is a powerful tool for improving team productivity and efficiency in managing meetings and voice conversations. It offers a range of features to simplify the process of capturing, organizing, and analyzing meeting content. Key Features: Automatic Meeting Transcription: Fireflies.ai can transcribe meetings held on various video-conferencing platforms and dialers. The tool captures both video and audio, providing transcripts quickly and efficiently. AI-Powered Search and Summarization: It allows users to review long meetings in a fraction of the time, highlighting key action items, tasks, and questions. Users can filter and focus on specific topics discussed in meetings. Improved Collaboration: The tool enables adding comments, pins, and reactions to specific conversation parts. Users can create and share soundbites and integrate meeting notes with popular collaboration apps such as Slack, Notion, and Asana. Conversation Intelligence: Fireflies.ai offers insights into meetings by tracking metrics like speaker talk time and sentiment. It helps in coaching team members and improving performance in sales, recruiting, and other internal processes. Workflow Automation: The AI assistant from Fireflies.ai can log call notes and activities in CRMs, create tasks through voice commands, and share meeting recaps instantly across various platforms. Comprehensive Knowledge Base: It compiles all voice conversations into an easily accessible and updatable knowledge base, with features to organize meetings into channels and set custom privacy controls. I’ll keep updating this little guide, so add your comments and I’ll try to add more tools. This is all just a personal opinion, so it’s completely cool if you disagree with it. Btw here is the link to the full blog post about all the AI tools in a bit more depth.

The power of AI chatbots for business efficiency
reddit
LLM Vibe Score0
Human Vibe Score1
Excelhr360This week

The power of AI chatbots for business efficiency

Let's talk about a game-changer in the world of customer support: AI chatbots. These intelligent virtual assistants are transforming how businesses handle customer inquiries and support tasks. Today, I want to discuss their utility for businesses and a how platforms like Datasavvy.chat, is simplifying the chatbot creation process. AI chatbots are not just another tech trend; they're a fundamental shift in how businesses interact with customers. From addressing FAQs to guiding users through transactions, chatbots can handle a diverse array of tasks efficiently and effectively. AI chatbots offer a myriad of benefits for businesses: 24/7 Availability: Chatbots don't sleep. They provide round-the-clock support, ensuring that customers can get assistance whenever they need it. Efficiency: By automating repetitive tasks, chatbots free up human agents to focus on more complex inquiries, improving overall efficiency and productivity. Scalability: As your business grows, so do the demands on your customer support team. Chatbots can scale effortlessly to handle increased volumes of inquiries without compromising quality. Data Insights: Chatbots can collect valuable data on customer interactions, preferences, and pain points. This data can be leveraged to optimize processes, improve customer satisfaction, and drive business decisions. Consistency: Chatbots deliver consistent responses, ensuring that every customer receives the same level of service regardless of the time or day. In conclusion, AI chatbots are invaluable tools for businesses looking to streamline their customer support operations and enhance the overall customer experience. And platforms like Datasavvy.chat are making it easier than ever for businesses to leverage this technology to their advantage. Are you ready to revolutionize your customer support? Dive into the world of AI chatbots and discover the difference they can make for your business!What are your thoughts on AI chatbots? Have you had any experiences, good or bad, with them in customer support? Let's discuss!

AI Automation Agency, the Future for Solopreneurs?
reddit
LLM Vibe Score0
Human Vibe Score1
MoneyPizza1231This week

AI Automation Agency, the Future for Solopreneurs?

I want to take a moment to discuss AI automation agencies. If they are any good for new entrepreneurs. Or on the flip side what is wrong with them. &#x200B; Normally when you see something promising to make you thousands of dollars, for very little work, you run the other way. But you see I am not most people, and I love stuff like this. So, when I saw, AI Automation Agencies (AAA) promising to make me thousands of dollars, I ran straight down that rabbit hole. With no hesitation… It was a new term and idea, that I had already played around with. Due to the inherent nature of businesses and AI at the time. It was 100% an opportunity with a potential market down the line. What is an AI Automation Agency? On the surface, an AAA is using AI to automate and augment business processes. With a combination of using no code AI tools, AI LLMs, and simple automation process tools (Zapier). The whole premise of the AAA is to help companies reduce expenses and increase profits. Whether that is through improving business processes or cutting out easy-to-replace jobs. AAAs are all about optimizing your business (The best way to think about it). Run through a quick scenario with me: Say you are a simple e-commerce store, selling your favorite product. I show up, as an AAA, promising to automate your customer service platform. I can build you a fully automated customer service chatbot, and help you answer specific customer questions with AI. With the promises of a faster, more efficient, and more effective customer service platform. Being able to perform 80% of your current team’s work. Would you take the offer? It is a no-brainer, right? That is the premise behind this business model. Make businesses more effective. Which in turn makes them more profitable. A win-win for everyone. Take a look at some of the products an AAA might sell. Robotic Process Automation: Automating repetitive tasks in a business. AI- Power Analytics: Helping businesses understand and act on insights in their data. Sentiment Analysis: Analyzing how customers think and feel about products and markets. Customer Service: AI chatbots for customer questions. Productivity: Help augment processes with AI to cut down on time. Any process in a business that you fully understand you can augment and or automate with AI. And guess what? It is an open market but for good reason… Too Good to be True? The reason that this new business model is wide open is quite funny. No business cares about AI right now. Businesses are too focused to worry about AI and its upsides. Focused on the day-to-day operations, and not worried about AI. Make a few cold calls, and see how many leads you get… At the moment the offer does not resonate with potential clients. Meaning you need to have a massive advertising budget to get any leads. Because no one cares or sees any benefit, they will just brush you off. Which becomes an endless cycle of paid ads, and constant cold calling, just to find any business. So why is this model even popular? The gurus…that’s why. They have the budget for ads and get clients from their videos. Effectively throwing money at the problem. At least until it works. Do not get me wrong, AI automation is going to change businesses. But not right now. The whole growth of this business model is being pushed by influencers and gurus. People that can afford the cost of the startup. Telling others that it is a feasible one-person business. That anyone with no money can do, with a few simple steps. And that is just not the case. This has been a trend for any new profitable and “easy” business model. The gurus get there first, promote the model, show how simple it is, and rope everyone in. Eventually up selling a course on how to do it, or maybe even a community. You’ve seen it with ChatGPT, Facebook ads, SMMA, and so much more. It is a constant cycle that you need to be aware of. The End Result Good news, there is an alternative. It is using a combination of SMMA and AAA. Gathering leads using SMMA. Creating a great offer for your niche. And selling them on the service you can provide through marketing. Then once they are sold, you upsell them on AI automation. Easy to start, low cost, and super effective. Although unproven. It makes complete sense why it would work. It is beginner friendly, with plenty of SMMA tutorials online. With low barriers to entry. Making it a very inciting opportunity. AAA is going to be the future of business. It is a million-dollar opportunity for anyone. But with most startups, it takes skills and capital. With a façade of being easy to operate and start, pushed by gurus. More entrepreneur hopefuls find themselves debating starting an AAA. And guess what, it isn’t a good idea… Do your research to understand the market you want to enter, and how your business is going to operate. And don’t fall for get-rich-quick schemes. Ps. Check out this video if you want to learn more…

My (23M) first $10k month installing internal GPT-4 for businesses
reddit
LLM Vibe Score0
Human Vibe Score1
swagamoneyThis week

My (23M) first $10k month installing internal GPT-4 for businesses

It all started in this very own subreddit just a month ago. I posted “How I made a secure GPT-4 for my company knowledge base” and left a cheeky Google Form in the comments. The post got 162 upvotes, 67 comments and, most importantly… ~30 form answers 😈 From there I got on 12 calls and even though I initially offered to do it for free… I closed 2 clients for $5k each. Data privacy was my main selling point: 1st company was a manufacturer with private instructions/manuals on how to operate certain systems. I trained GPT on them and let their employees talk with these 100-page PDFs. (When I say “train”, I refer to RAG, not fine-tune) 2nd company had customers sending them photos of sensitive documents for a customs clearing service. They had people manually extracting the info so we automated all of that. How did I ensure data privacy and security? I simply used MS Azure AI. They have all of the same stuff OpenAI has, but offer data privacy guarantees and network isolation. That’s both SOC 2 and GDPR compliant. Companies love it. Now I’m cold emailing my first 2 clients’ competitors for a quick rinse and repeat. P.S. I’m extremely curious of different use cases since I’m looking to niche down, so I’d be happy to talk to businesses with ideas of how to use this. You’d give me a use case idea and I’d give you advice on how to implement it. Edit: I’m getting TONS of DMs so please be comprehensive in your first message!

Looking for Social Media Marketing Partner(s) for High-Potential AI App Business
reddit
LLM Vibe Score0
Human Vibe Score1
Altruistic-Flan-8222This week

Looking for Social Media Marketing Partner(s) for High-Potential AI App Business

Hello everyone! I am Mak, and I'm a software engineer and AI developer with a few years of experience. I'm pretty young like the most of you and have an amazing idea. I'm sure that some of you have heard of Rizz, Plug, Wigman and similar apps. Those are simple AI apps that generate pickup lines for people, and I worked as an AI developer for one of the above. I got this business idea after analyzing more about this industry and realizing that these apps make TONS of money—like the one I worked for, which is making about $50k per WEEK using my AI solutions. That's crazy. The point is that I took a pause from working as a software engineer for clients and researched how to do the same thing. It took me a few months to actually understand everything about this business model, and Rizz apps are just one example of this type of business. There is one 17 yo guy I found who made "Cal AI" I guess, basically a simple AI app that analyzes your meal and provides info like calories, etc. I also created AI solutions for a guy who made an AI app that analyzes your face, provides Sigma analytics, and suggests how to improve your face, etc. So the point is that there are tons of AI app ideas that you can create for this industry. And the important fact is that the AI market is growing. Some important AI analytics say that in 2024, there were 1.5B AI app downloads, and mobile AI app consumer spending was $1.8B. That's huge. So, what am I looking for? I need someone, hopefully from the US, or someone who knows how to post social media content for US users, to help me out with my business idea. I'm self-funded and have already spent a lot on important requirements and equipment, which is why I need someone interested in revenue sharing. We can come up with a deal such as capped/tiered revenue share, profit share, deferred model, etc. We could discuss this privately since everyone has different experience levels and thoughts about this. Also, since I'm talking about experience, you don't need huge experience at all. You can be 16-25 years old just like me and only have marketing skills. However, to make it easier for those who don't have marketing skills, I am planning to create code that will automatically generate content for you, and all you need to do is post the content. But this is only for posting content without creating it and is for interested people from the US since I need US customers. However, if you have marketing skills and an idea for getting organic US views, please let's talk. Short info about my app: It is an AI app like the previous examples, which doesn’t yet exist. There is pretty big potential for app growth (60% of Americans could use this app), and it should be pretty easy to market. Good niche, good idea and overall solid market for this app idea. TL;DR I need someone interested in marketing my AI app in exchange for revenue share. No huge experience is needed. I would prefer someone from the US. If you are interested, feel free to contact me here on Reddit via private messages or below. We can talk here, on Discord, LinkedIn, or anywhere you prefer. Thanks once again!

How I went from $27 to $3K as a solopreneur still in a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
jottrledThis week

How I went from $27 to $3K as a solopreneur still in a 9-5

My journey started back in November 2023. I was scrolling through Twitter and YouTube and saw a word that I had never come across before. Solopreneur. The word caught my eye. Mainly because I was pretty sure I knew what it meant even though it's not a word you'll find in the dictionary. I liked what it was describing. A solo entrepreneur. A one man business. It completely resonated with me. As a software engineer by trade I'm used to working alone, especially since the pandemic hit and we were forced to work remotely. See, I always wanted to ditch the 9-5 thing but thought that was too big and too scary for a single person to do. Surely you would need a lot of money to get started, right? Surely you would need investors? The whole concept seemed impossible to me. That was until I found all the success stories. I became obsessed with the concept of solopreneurship. As I went further down the rabbit hole I found people like Justin Welsh, Kieran Drew and Marc Louvion to name a few. All of whom have one person businesses making huge money every year. So I thought, if they can do it, why can't I? People like this have cleared the pathway for those looking to escape the 9-5 grind. I decided 2024 would be the year I try this out. My main goal for the year? Build a one man business, earn my first $ online and learn a sh\*t ton along the way. My main goal in general? Build my business to $100K per year, quit my 9-5 and live with freedom. From December 2023 to February 2024 I began brainstorming ideas. I was like a lost puppy looking for his ball. How on earth did people find good ideas? I began writing everything and anything that came to mind down in my notes app on my phone. By February I would have approximately 70 ideas. Each as weird and whacky as the other. I was skeptical though. If I went through all the trouble of building a product for one of these ideas how would I know if anyone would even be interested in using it? I got scared and took a break for a week. All these ideas seemed too big and the chance that they would take off into the atmosphere was slim (in my mind anyways). I was learning more and more about solopreneurship as the weeks went on so I decided to build a product centered around everything I was learning about. The idea was simple. Enter a business idea and use AI to give the user details about how to market it, who their target customers were, what to write on their landing page, etc. All for a measly $27 per use. I quickly built it and launched on March 3rd 2024. I posted about it on Indie Hackers, Reddit and Hacker News. I was so excited about the prospect of earning my first internet $! Surely everyone wanted to use my product! Nope...all I got was crickets. I was quickly brought back down to earth. That was until 5 days later. I looked at my phone and had a new Stripe notification! Cha-ching! My first internet $. What a feeling! That was goal number 1 complete. It would be another 6 days before I would get my second sale...and then another 15 days to get my third. It was an emotional rollercoaster. I went from feeling like quitting the 9-5 was actually possible to thinking that maybe the ups and downs aren't worth it. On one hand I had made my first internet dollar so I should my ecstatic, and don't get me wrong, I was but I wanted more. More validation that I could do this long term. By May I was starting to give up on the product. I had learned so much in the past few months about marketing, SEO, building an audience, etc. and I wanted to build something that I thought could have more success so I focused on one critical thing that I had learned about. What was it? Building a product that had SEO potential. A product that I knew hundreds of people were looking for. See this was my thinking - If I could find a keyword that people were searching for on Google hundreds/thousands of times every month and it was easy to rank high on search engines then I would go all in (in SEO land this equates to a Keyword that has a Keyword Difficulty of = 500). I began researching and found that the keyword "micro saas ideas" was being searched for around 600 times each month. Micro Saas was something that really interested me. It was perfect for solopreneurs. Small software products that 1 person could build. What's not to like if you're in the game of software and solopreneurship? Researching keywords like this became like a game for me. I was hooked. I was doing it every day, finding gems that were being searched for hundreds and thousands of times every month that still had potential. That's when I came up with my next product idea. I decided to create a database of Micro Saas Ideas all with this sort of SEO potential. See if you can build a product that you know people are looking for then that's all the validation you need. So I put this theory to the test. I created a database of Micro Saas Ideas with SEO Potential and launched it in June 2024. This time it was different. I made $700 in the first week of launching. A large contrast to my previous failed attempt at becoming the worlds greatest solopreneur. Since launch I have grown the product to $3K and I couldn't be happier. I know what you're saying, $3K isn't a lot. But it's validation. It's validation that I can earn $ online. Validation that I can grow a business and it gives me hope that one day I'll be able to quit that 9-5 grind. My plan is to keep growing the business. I expect there to be a few challenges up ahead but I'll tackle them as I go and learn from the failures and successes. I have a newsletter where I share Micro Saas Ideas with SEO potential every week which I'll leave below in the first comment. Feel free to come along for the ride. If not I hope this post brings you some value If you're thinking about starting as a solopreneur, stop thinking and start doing, you won't regret it.

This founder was about to shut down his startup and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What else have you seen grow that fast?
reddit
LLM Vibe Score0
Human Vibe Score1
CountryPitifulThis week

This founder was about to shut down his startup and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What else have you seen grow that fast?

I heard that Jasper scaled to $45m ARR in 12 months...with a team of 8. For context, they are one of the fastest-growing companies ever. Grew from $0 to $45m ARR in 12 months (then raised $125m at a $1.5b valuation). As a fellow founder, their story is really inspiring to me (curious about what others think): In December 2020, Dave Rogenmoser and his co-founders were on the brink of shutting down their business. They'd spent 3+ years building a conversion optimization software called Proof...and it was flatlining. A few weeks prior they had to make the painful decision to let go of half their team. Competition and churn had completely eroded growth. Things were painful. 8 years of work left them with a string of startups that never quite made it: 2 failed software businesses (couldn't make money*) A SMB marketing agency (maxed out at $25k/mo*) An online course company (hard to get big*) The Pivot: In January 2021, they had an idea to use Chat GPT-3, the generative AI model released 6 months earlier, to write high-converting Facebook ads. Within 30 days, they launched the business. With the skeleton crew remaining from the last startup, they scaled the business to $45m ARR and 70,000+ customers without hiring a single new person. Soon after, they raised $125m at a $1.5b valuation. Dave Rogenmoser, CEO at Jasper, had some great one-liners in a few podcasts I listened to on the business. Here are some of his learnings: Right Skill, Wrong Vehicle: He spent 8 years building marketing businesses which gave this team the knowledge and confidence to spend $1m/mo on sales and marketing to scale the business to $45m ARR in year 1. Launch Fast & Iterate Quickly: The team agreed that if the business didn't work in 30 days, they'd shut it down. Dave says, "If you have been working on a problem for more than 18 months and haven't found Product market fit (PMF), odds are you won't...Make the hard pivot."* Ride A Big Wave: Generative AI technology is a new technology that is changing the way we work. But it's not just text. It's images, voice, etc. Identify new customer segments (e.g., Municipalities, Banks, Lawyers, etc.), learn their problems, and apply this novel technology to solve them. What other businesses have you seen scale like this? I've never seen a SaaS business grow that fast. I meet interesting founders 2x per week and share the learnings here.

This founder was about to shut down his business and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What other businesses can scale like this?
reddit
LLM Vibe Score0
Human Vibe Score1
CountryPitifulThis week

This founder was about to shut down his business and open a restaurant. He pivoted the business and grew it to $45m ARR in 12 months. What other businesses can scale like this?

I heard that Jasper scaled to $45m ARR in 12 months...with a team of 8. For context, they are one of the fastest-growing companies ever. Grew from $0 to $45m ARR in 12 months (then raised $125m at a $1.5b valuation). As a fellow founder, their story is really inspiring to me (curious about what others think): In December 2020, Dave Rogenmoser and his co-founders were on the brink of shutting down their business. They'd spent 3+ years building a conversion optimization software called Proof...and it was flatlining. A few weeks prior they had to make the painful decision to let go of half their team. Competition and churn had completely eroded growth. Things were painful. 8 years of work left them with a string of startups that never quite made it: 2 failed software businesses (couldn't make money*) A SMB marketing agency (maxed out at $25k/mo*) An online course company (hard to get big*) The Pivot: In January 2021, they had an idea to use Chat GPT-3, the generative AI model released 6 months earlier, to write high-converting Facebook ads. Within 30 days, they launched the business. With the skeleton crew remaining from the last startup, they scaled the business to $45m ARR and 70,000+ customers without hiring a single new person. Soon after, they raised $125m at a $1.5b valuation. Dave Rogenmoser, CEO at Jasper, had some great one-liners in a few podcasts I listened to on the business. Here are some of his learnings: Right Skill, Wrong Vehicle: He spent 8 years building marketing businesses which gave this team the knowledge and confidence to spend $1m/mo on sales and marketing to scale the business to $45m ARR in year 1. Launch Fast & Iterate Quickly: The team agreed that if the business didn't work in 30 days, they'd shut it down. Dave says, "If you have been working on a problem for more than 18 months and haven't found Product market fit (PMF), odds are you won't...Make the hard pivot."* Ride A Big Wave: Generative AI technology is a new technology that is changing the way we work. But it's not just text. It's images, voice, etc. Identify new customer segments (e.g., Municipalities, Banks, Lawyers, etc.), learn their problems, and apply this novel technology to solve them. What other businesses have you seen scale like this? I've never seen a SaaS business grow that fast. I meet interesting founders 2x per week and share the learnings here.

I’m building a “DesignPickle” for all things Funnels. Would love your feedback...
reddit
LLM Vibe Score0
Human Vibe Score0.846
Gluteous_MaximusThis week

I’m building a “DesignPickle” for all things Funnels. Would love your feedback...

Hey Entrepreneurs, Early next year I’m rolling out a productized service business along the lines of Design Pickle, but instead of design assets, we create on-demand marketing assets: Things like landing pages, lead magnets, email campaigns, etc. This is NOT an agency with client engagements, etc.  It is an on-demand, menu-item style fulfillment platform where we do a few predefined things really, really well, and as much as possible try to reduce the complexity (and required customer inputs) so that creating your next killer Funnel is as easy as ordering dinner on Skip the Dishes. Below I’ve laid out our current thinking (we’re still distilling this into a deck), just so you have the full context.  And at the end, I pose 5 feedback questions. So if this “deck” seems interesting to you, then I’d love to get your feedback at the end 🙂 Thanks! And here goes... \--- The current elevator pitch:  We will research your business, your market and your competitors to develop a killer Lead Magnet, Landing Page, Ad Creatives and a 30-Day Email Drip campaign designed to turn your traffic into a rabid, lifelong buyer tribe (that you can email for years... like having your own, on-demand cash printer).  The overall thesis:  While AI is getting continually better at creating things like one-off graphics, article content, and so on - we do not think it can deeply understand market psychology, what keeps your customers up at night, or the underlying emotions that drive purchase decisions at the individual level, for your specific offer(s). Moreover, it’s also this psychological aspect of marketing where most businesses simply do not have the talent, resources or frankly the experience to create high-performing funnels themselves, regardless of how much "automation" they might have at their fingertips. And that’s because this is where you need to know who your customer really is, and what they’re actually buying (hint: not your features). Few marketers focus on these fundamentals, let alone understand the selling process. This is also why tools like ClickFunnels, HighLevel, LeadPages, etc. while very helpful, can only help with the logistics of selling. It’s still on each business to figure out how to actually tell their story, capture demand, and sell effectively. This is why a productized service that nails market research, competitor analysis & world-class copywriting that can actually turn cold traffic into lifelong customers is going to be a no-brainer for a business that’s currently struggling to actually get a steady flow of online sales. This is not something we see AI replacing effectively, any time soon. Current gaps & unknowns:  At a top level, I’m not overly worried about validation or viability; there are several existing competitors, and obviously the automation platforms have substantial customer bases (ClickFunnels etc). There will be a certain cohort that will want experts to do the actual thinking for them, storytelling, etc. Even if it’s a relatively small cohort, given the CLTV of a service like this, it still makes for a decent sized business. But where I’m less confident is in who our ideal customer actually is... Yes, basically every direct-response internet business needs an effective funnel that can sell. Whether you’re an Enterprise SaaS platform or a solopreneur launching your first $39 ebook, you will benefit from a killer funnel. As a “DesignPickle” type service though, here’s the challenges I see with each core customer category... B2B SaaS: While sales decisions are still emotional, it’s more about account-based considerations; people usually aren’t spending their own money, so it’s more about not looking stupid vs. gaining some benefit. Harder to systemize. Very high stakes. Consumer / SMB SaaS: While I think in general these are ideal customers, there will be resistance to leaning in hard on personality (and personal brand); founders usually want to sell at some point, so if they become the face of the platform, then boosting performance with a high-personality funnel might ironically make it a harder business to sell. SaaS founders are also generally very technical and stereotypically avoid marketing like the plague. Ecommerce: Most DTC brands think of funnels as an extension of their FB ad campaigns; few see their customers as a long-term audience that can become a significant asset. However, certain lifestyle / luxury brands might differ. Online Courses / Coaches: Of all the customer profiles, this group probably has the most appreciation for the effectiveness of marketing psychology, copywriting, etc. and would get the value prop quickly. The problem is that most won’t have the budget or traction to outsource asset creation. This is the “poorest” segment of the market. Service Businesses: Agencies, consultancies, and so on would greatly benefit from having a strong personal brand + storytelling premise (funnel). However, they’re also the worst offenders when it comes to never practicing what they preach / do for others. Client work soaks up all their resources. Local & Brick/Mortar: Generally speaking most local businesses are going to have smaller audiences (email lists under 2K subs), where funnel ops might have limited value long-term due to a lack of scale. And for larger B&M brands with franchises across various locations, you get into stakeholder friction; messaging usually gets watered down to basic corporate-speak as a result. Now, to be clear, I still see a ton of opportunity in each of those main customer categories as well, but I like to be clear-eyed about the overall resistance each niche will have - mainly because this helps to refine messaging to an ideal customer profile within them. In this case though, so far, nothing’s really jumping out at me as a clear “winner” at a category level. So far, what I’m thinking is our ICP might be situational / conditional. For example: A business has a funnel / is invested in the process, but it’s not working yet A business sees their competitor killing it with a funnel, and they’re ultra motivated to do it even better A business has one funnel that’s working awesome, and everything else they try sucks (so they can’t scale / expand) Etc. Basically, our most ideal customer might be ANY type of business who gets it, who’s tried to do this themselves, and now needs the pros to come in and fix things. \--- This is where your feedback would be incredibly valuable... First, if you’ve made it all the way down to this point - thanks for enduring my rambling mess above! But I did think the context might be helpful. Based on our overall biz plan & go-to-market considerations discussed above, if you run a business (or work with one) that might benefit from something like this, I’d love to ask a few questions... What is the nature of your business? (What do you sell)? What do you find hardest about selling to your online audience? Have you built a funnel in the past / are you running one currently? If not, what’s stopping you from building a high-performing funnel? If you had a “magic marketing lamp” where a genie could create ONE amazing marketing asset for you (eg. a killer landing page, video ad, launch strategy, etc), but you could only use it ONCE, what would you have the genie do for you? Please reply below as a comment, or DM me if you’d prefer to keep answers anonymous.  Thanks so much And again, apologies for the novel... Cheers

As a soloproneur, here is how I'm scaling with AI and GPT-based tools
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

As a soloproneur, here is how I'm scaling with AI and GPT-based tools

Being a solopreneur has its fair share of challenges. Currently I've got businesses in ecommerce, agency work, and affiliate marketing, and one undeniable truth remains: to truly scale by yourself, you need more than just sheer will. That's where I feel technology, especially AI, steps in. As such, I wanted some AI tools that have genuinely made a difference in my own work as a solo business operator. No fluff, just tried-and-true tools and platforms that have worked for me. The ability for me to scale alone with AI tools that take advantage of GPT in one way, or another has been significant and really changed my game over the past year. They bring in an element of adaptability and intelligence and work right alongside “traditional automation”. Whether you're new to this or looking to optimize your current setup, I hope this post helps. FYI I used multiple prompts with GPT-4 to draft this using my personal notes. Plus AI (add-on for google slides/docs) I handle a lot of sales calls and demos for my AI automation agency. As I’m providing a custom service rather than a product, every client has different pain points and as such I need to make a new slide deck each time. And making slides used to be a huge PITA and pretty much the bane of my existence until slide deck generators using GPT came out. My favorite so far has been PlusAI, which works as a plugin for Google Slides. You pretty much give it a rough idea, or some key points and it creates some slides right within Google Slides. For me, I’ve been pasting the website copy or any information on my client, then telling PlusAI the service I want to propose. After the slides are made, you have a lot of leeway to edit the slides again with AI, compared to other slide generators out there. With 'Remix', I can switch up layouts if something feels off, and 'Rewrite' is there to gently nudge the AI in a different direction if I ever need it to. It's definitely given me a bit of breathing space in a schedule that often feels suffocating. echo.win (web-based app) As a solopreneur, I'm constantly juggling roles. Managing incoming calls can be particularly challenging. Echo.win, a modern call management platform, has become a game-changer for my business. It's like having a 24/7 personal assistant. Its advanced AI understands and responds to queries in a remarkably human way, freeing up my time. A standout feature is the Scenario Builder, allowing me to create personalized conversation flows. Live transcripts and in-depth analytics help me make data-driven decisions. The platform is scalable, handling multiple simultaneous calls and improving customer satisfaction. Automatic contact updates ensure I never miss an important call. Echo.win's pricing is reasonable, offering a personalized business number, AI agents, unlimited scenarios, live transcripts, and 100 answered call minutes per month. Extra minutes are available at a nominal cost. Echo.win has revolutionized my call management. It's a comprehensive, no-code platform that ensures my customers are always heard and never missed MindStudio by YouAi (web app/GUI) I work with numerous clients in my AI agency, and a recurring task is creating chatbots and demo apps tailored to their specific needs and connected to their knowledge base/data sources. Typically, I would make production builds from scratch with libraries such as LangChain/LlamaIndex, however it’s quite cumbersome to do this for free demos. As each client has unique requirements, it means I'm often creating something from scratch. For this, I’ve been using MindStudio (by YouAi) to quickly come up with the first iteration of my app. It supports multiple AI models (GPT, Claude, Llama), let’s you upload custom data sources via multiple formats (PDF, CSV, Excel, TXT, Docx, and HTML), allows for custom flows and rules, and lets you to quickly publish your apps. If you are in their developer program, YouAi has built-in payment infrastructure to charge your users for using your app. Unlike many of the other AI builders I’ve tried, MindStudio basically lets me dictate every step of the AI interaction at a high level, while at the same time simplifying the behind-the-scenes work. Just like how you'd sketch an outline or jot down main points, you start with a scaffold or decide to "remix" an existing AI, and it will open up the IDE. I often find myself importing client data or specific project details, and then laying out the kind of app or chatbot I'm looking to prototype. And once you've got your prototype you can customize the app as much as you want. LLamaIndex (Python framework) As mentioned before, in my AI agency, I frequently create chatbots and apps for clients, tailored to their specific needs and connected to their data sources. LlamaIndex, a data framework for LLM applications, has been a game-changer in this process. It allows me to ingest, structure, and access private or domain-specific data. The major difference over LangChain is I feel like LlamaIndex does high level abstraction much better.. Where LangChain unnecessarily abstracts the simplest logic, LlamaIndex actually has clear benefits when it comes to integrating your data with LLMs- it comes with data connectors that ingest data from various sources and formats, data indexes that structure data for easy consumption by LLMs, and engines that provide natural language access to data. It also includes data agents, LLM-powered knowledge workers augmented by tools, and application integrations that tie LlamaIndex back into the rest of the ecosystem. LlamaIndex is user-friendly, allowing beginners to use it with just five lines of code, while advanced users can customize and extend any module to fit their needs. To be completely honest, to me it’s more than a tool- at its heart it’s a framework that ensures seamless integration of LLMs with data sources while allowing for complete flexibility compared to no-code tools. GoCharlie (web app) GoCharlie, the first AI Agent product for content creation, has been a game-changer for my business. Powered by a proprietary LLM called Charlie, it's capable of handling multi-input/multi-output tasks. GoCharlie's capabilities are vast, including content repurposing, image generation in 4K and 8K for various aspect ratios, SEO-optimized blog creation, fact-checking, web research, and stock photo and GIF pull-ins. It also offers audio transcriptions for uploaded audio/video files and YouTube URLs, web scraping capabilities, and translation. One standout feature is its multiple input capability, where I can attach a file (like a brand brief from a client) and instruct it to create a social media campaign using brand guidelines. It considers the file, prompt, and website, and produces multiple outputs for each channel, each of which can be edited separately. Its multi-output feature allows me to write a prompt and receive a response, which can then be edited further using AI. Overall, very satisfied with GoCharlie and in my opinion it really presents itself as an effective alternative to GPT based tools. ProfilePro (chrome extension) As someone overseeing multiple Google Business Profiles (GBPs) for my various businesses, I’ve been using ProfilePro by Merchynt. This tool stood out with its ability to auto-generate SEO-optimized content like review responses and business updates based on minimal business input. It works as a Chrome extension, and offers suggestions for responses automatically on your GBP, with multiple options for the tone it will write in. As a plus, it can generate AI images for Google posts, and offer suggestions for services and service/product descriptions. While it streamlines many GBP tasks, it still allows room for personal adjustments and refinements, offering a balance between automation and individual touch. And if you are like me and don't have dedicated SEO experience, it can handle ongoing optimization tasks to help boost visibility and drive more customers to profiles through Google Maps and Search

What Are the Top Small Business Trends You Must Know for 2024 ?
reddit
LLM Vibe Score0
Human Vibe Score1
brycetychsenThis week

What Are the Top Small Business Trends You Must Know for 2024 ?

Are you excited about the new business horizons in 2024? Well, you should be! The small business landscape is evolving faster than anything right now, and here are the trends you absolutely need to know to keep your business game strong. Sustainable Swag In a world where eco-friendliness is the new black, businesses are carrying the badge of sustainability. From eco-packaging to carbon-neutral practices, customers are giving the side-eye to anything less green. So, if you want to be at the top, consider adopting some planet-friendly practices. Remote Work Revolution Office who? The 9-to-5 grind is getting a makeover, and the dress code is PJs. Remote work is no longer just a trend; it's a lifestyle. So, if your business can embrace the virtual office, you might just find your team doing the hustle and bustle with productivity. Tech-Tastic Ventures The future is now, and it's filled with tech wonders. Augmented reality (AR), artificial intelligence (AI), and all things tech are the new developments in this sector. Businesses incorporating these innovations are riding the digital wave straight to success. Personalization Party No one likes generic. Customers want products and services tailor-made just for them. So, businesses are using data to give customers an experience that feels as customized as a handmade suit. Say goodbye to one-size-fits-all! Community Crusaders In a world full of noise, community is the superhero we all need. Businesses are realizing the power of building a network around their brand. Whether it's through social media, events, or exclusive memberships, creating a community is like having an army of brand advocates. 2024 is the year to unleash your small business swagger. Embrace these trends, adapt with flair, and let your entrepreneurial spirit soar. Remember to sprinkle some personality into your business strategy—people love a brand with a sense of humor and a human touch!

Please rate my business idea aimed at emerging markets
reddit
LLM Vibe Score0
Human Vibe Score1
Whole_Ad_9002This week

Please rate my business idea aimed at emerging markets

Imagine a single platform that transforms your business operations effortlessly. Think of it like a Swiss Army knife for your business. First Steps (Every Business Needs These): Our website builder is your first step online. Just pick what you want, drag it where you need it, and you've got a professional website or online store. No tech skills needed. Perfect for getting your business visible to customers. Our security tool comes next because every business needs protection. It's like a security guard for your files and data, keeping hackers out and making sure you never lose important work. Think of it as insurance for your digital business. Cybersecurity and backups combined. Growing Business Needs: As your team grows, our digital office keeps everyone connected. Email, chat, share files, and track projects in one place. It's like having everyone in the same room, even when working remotely. This becomes essential once you have more than a few people. When paperwork starts piling up, our AI helper steps in. It's like having a smart assistant who learns your business and helps everyone get more done - handling routine tasks, summarizing meetings, and suggesting better ways to work. Scaling Up (For Established Businesses): Once you're handling lots of data, our eco-friendly cloud storage becomes crucial. Your business gets fast, reliable storage while helping the environment. We use servers powered by renewable energy, so you can grow sustainably. Our data transfer tool becomes important when you're working with multiple systems and need to move files around. It's like having a digital moving service that safely carries your files between different cloud services. With 20+ services to connect to cloud to cloud or on prem to cloud, its easy and fast. Advanced Needs: When your business processes get complex, our workflow automation tool helps you set up automatic systems for repetitive tasks. It's like training a robot to handle your routine work while your team focuses on growth. Simple no-code automation when you need it. Everything works on its own, but they're designed to work even better together. And since it's all in one place, you only need one password and one monthly bill. Most businesses save about half their tech costs by switching to our platform. Cost Benefits: Single subscription replaces multiple vendor contracts Reduces IT overhead by 40-60% on average No need for expensive technical specialists Predictable monthly costs Scales pricing with your usage

No-code platform for Creating AI Chatbots
reddit
LLM Vibe Score0
Human Vibe Score0
ANICKINTHEUNIVERSEThis week

No-code platform for Creating AI Chatbots

Hey everyone! I've got an idea that I'm really excited about and I thought I’d share it with this community to get some feedback. I've been thinking about how chatbots are becoming increasingly popular, but the process of fine tuning and managing them can be a real hassle. The idea I am proposing is a no-code interface for creating and managing chatbots using the GPT-3 API. Think about it, imagine having the ability to create and customize your own chatbot in minutes, without any coding required. You could easily embed it into your Notion page or website and use it to provide better support or answer questions for customers. And if you're a solopreneur looking to sell access to your chatbot, this platform could be especially helpful for that This is just an idea for now, but I'm hoping to gauge interest and see if there's enough demand for such a product. Whether you're a solopreneur, a small business owner, or just someone who's curious about chatbots, your input is valuable to me. So what do you think? Would you be interested in using a no-code interface for creating and managing chatbots with GPT-3 API? Let me know in the comments and I'll keep you updated on the progress. And if you're interested in being a customer, co-founder, or just want early access, PM me your email with the word ‘Chatbot’ and I’ll make sure to keep you updated if this ever exists. Thanks for your time and I can't wait to hear from you!

Business Strategy Trends for 2024
reddit
LLM Vibe Score0
Human Vibe Score1
aidenleepingweiiThis week

Business Strategy Trends for 2024

As we gear up for 2024, it's time to gaze into the crystal ball and see what's reshaping the world of business strategy. From cutting-edge technology to how people are shopping, it's all happening. So let's check out the latest trends that are going to dominate the business world! Going Green and Doing Good Yep, you heard it right—being eco-friendly and socially responsible is all the rage. Businesses are jumping on the sustainability train, whether it's by using recycled materials or giving back to the community. It's not just good for the planet—it's good for business too! Tech Takeover From fancy AI to blockchain innovations, businesses are embracing all things digital. It's not just about staying up to date—it's about using technology to make things easier, faster, and way more amazing. Work from Anywhere Who says you have to be stuck in an office all day? Today, businesses are all about flexibility. Whether you're working from home, a coffee shop, or a hammock on the beach, it's all good. Remote work is here to stay, and people are loving the freedom it brings. Treat Yo' Customers Want to stand out in a sea of competition? It's all about making your customers feel special. Whether it's personalized recommendations or killer customer service, businesses are pulling out all the stops to keep folks coming back for more. Roll with the Punches In today's fast-paced world, you've got to be quick on your feet. That's why businesses are ditching rigid plans and embracing agile strategies. It's all about being able to adapt to whatever curveballs the world throws your way. Click, Buy, and Repeat Online shopping is getting bigger. Businesses are getting creative with their online offerings, whether it's through slick new websites, social media shenanigans, or funky new delivery options. The future of shopping is digital! Conclusion: The lowdown on what's shaking up the world of business strategy in 2024. Whether it's going green, embracing tech, or keeping customers happy, there's plenty of excitement on the horizon.

What Are the Top Small Business Trends You Must Know for 2024 ?
reddit
LLM Vibe Score0
Human Vibe Score1
brycetychsenThis week

What Are the Top Small Business Trends You Must Know for 2024 ?

Are you excited about the new business horizons in 2024? Well, you should be! The small business landscape is evolving faster than anything right now, and here are the trends you absolutely need to know to keep your business game strong. Sustainable Swag In a world where eco-friendliness is the new black, businesses are carrying the badge of sustainability. From eco-packaging to carbon-neutral practices, customers are giving the side-eye to anything less green. So, if you want to be at the top, consider adopting some planet-friendly practices. Remote Work Revolution Office who? The 9-to-5 grind is getting a makeover, and the dress code is PJs. Remote work is no longer just a trend; it's a lifestyle. So, if your business can embrace the virtual office, you might just find your team doing the hustle and bustle with productivity. Tech-Tastic Ventures The future is now, and it's filled with tech wonders. Augmented reality (AR), artificial intelligence (AI), and all things tech are the new developments in this sector. Businesses incorporating these innovations are riding the digital wave straight to success. Personalization Party No one likes generic. Customers want products and services tailor-made just for them. So, businesses are using data to give customers an experience that feels as customized as a handmade suit. Say goodbye to one-size-fits-all! Community Crusaders In a world full of noise, community is the superhero we all need. Businesses are realizing the power of building a network around their brand. Whether it's through social media, events, or exclusive memberships, creating a community is like having an army of brand advocates. 2024 is the year to unleash your small business swagger. Embrace these trends, adapt with flair, and let your entrepreneurial spirit soar. Remember to sprinkle some personality into your business strategy—people love a brand with a sense of humor and a human touch!

Digital Analytics and Marketing
reddit
LLM Vibe Score0
Human Vibe Score1
Chou789This week

Digital Analytics and Marketing

I'm a Data Analyst with wide range of experience in this niche. Looking for partner to bring me clients and get a cut on the charges, i.e act as a agency connecting businesses with developers. Lately, I see that Developer costs in US/EU is skyrocketing and hiring a decent Data Analyst costs a fortune for companies, small companies can't even think of getting one. Already working with several small businesses and see that many small businesses have need somebody to play around their data but since it's a costly affair, mostly small businesses stick with Excel and Google Sheets as their database and don't leverage the potential of automation, now with AI/LLM, having proper data strategy is important. We can team up and provide reach these low hanging fruits. What i do: Data Reporting: Move clients current data systems from Excel, Google Sheets into Database/Datawarehouse Integrate data from different sources like Pipedrive, Google Ads, Facebook Ads, Shopify etc and create automated custom reports on the data. Digital Marketing: For Shopify/Ecommernce site owners - Google Analytics Reporting Answer questions like Where is my traffic coming from, which traffic is working, how long they are staying in site, which products are working, product views to purchase ratio etc Custom Desktop Applications Custom: Have a custom idea? Let's discuss. DM me. Thanks. PS: Potential customers include ones who can't hire $50-$150/hr full time developers but want one at part time/freelancing type where they can get things done quickly/validating their ideas without burning their business.

Obliterate my app idea before I bet my life savings on it (AI lead-gen tool)
reddit
LLM Vibe Score0
Human Vibe Score1
r_hussyThis week

Obliterate my app idea before I bet my life savings on it (AI lead-gen tool)

So I have this app idea on my mind for months now, but I’m 95% sure it’ll flop. Can you help me figure it out? The Problem: Many agencies struggle to stand out in a crowded marketplace and waste time on discovery calls. Current lead generation tools often feel impersonal and don’t showcase how an agency’s expertise can solve specific problems of clients. The Idea: A lead generation tool for agency owners that uses AI to create personalized recommendations for prospects (potential customers) early in the sales process. These recommendations are sent as custom reports (aka lead magnet) to the prospect. This would showcase how the agency can address the unique needs and requirements of the potential client without requiring a discovery call right away. The whole process will be 100% automated, allowing agency owners to focus on closing deals. Target audience: Agency owners/marketers who want to focus on acquiring qualified leads online. In the future, I’d love to explore niches like SaaS and real estate. How it works in 4 steps: Prospect Input: Prospects visit an agency’s landing page (generated by my app) and submit their goals and challenges. AI Matching: The custom-trained AI processes their input and combines it with the agency’s data to generate a customized, actionable report. Delivery: The report is instantly emailed to the prospect, highlighting how the agency can address his/her challenges. Follow-Up: With the prospect warmed up, the agency can follow up and (hopefully) convert them into a client. For example, a digital marketing agency could use the app to create a landing page offering a free ‘Personalized Marketing Strategy Report.’ When a prospect submits his goals and challenges, the AI instantly generates and emails a tailored report, showcasing the agency’s expertise. Why It Might Fail: Maybe agencies won’t see the value in automation, or AI-generated reports might feel impersonal. Could this idea fill a real gap? Why It Might Work: It’s a way for agencies to stand out with personalized lead magnets that feel unique and interactive. It could help agencies attract and convert qualified leads in an automated way. Your Honest Feedback: Would this help agencies improve their lead-generation process, or is it just flashy nonsense? What flaws or challenges do you see in this idea? Is this worth pursuing, or should I stick to spending time with my family 😂? Thank you guys, your honesty might save me from myself! PS: I won’t link to my tool because I don’t want to come off as a spammer.

🛒7 Strategies to Increase Retail Store Footfall post-COVID | Ultimate Blueprint & Guide 📈
reddit
LLM Vibe Score0
Human Vibe Score1
bnk3r_This week

🛒7 Strategies to Increase Retail Store Footfall post-COVID | Ultimate Blueprint & Guide 📈

Hello fellow marketers/entrepreneurs! Covid has had a gobsmacking effect on all retail promotions and marketing efforts. For people with retail businesses that thrive on footfall, it has been an uphill battle, but markets of the world are slowly resuming action. Knowing the footfall to your retail store can help you decide how many products you need to stock, which days of the week are best for promotions, and what type of promotional offers work well. The pandemic has drastically impacted customer behavior and customer loyalty is plunging. People prefer shopping online to brick-and-mortar purchases, and consumers are limiting their spending on a range of items - investing only in essentials is the norm now (McKinsey). We found some companies like Target having programs like Cartwheel that offer 5% to 50% off specific items when customers shop in-store to increase foot traffic. Strategies like these ultimately add up, an ICSC report cites that 69% of customers who went to collect their orders eventually bought additional items. I've put together a detailed list of 7 strategies to boost footfall to stores post COVID, I hope they come in handy! Abide by COVID-19 Protocols for a Safer Environment Be well-informed of the COVID-19 protocols. Don't implement this merely under the government norms, instead take extra measures to show customers that you care! Have an automated entrance Deploy hygiene counters Fix thermal sensors in the entrance Have an isolation space for those showing symptoms of the coronavirus To see more check this link for the entire list! Run Catchy In-Store Promotions Discounts are a perfect way to attract new customers and retain existing ones. When you want to increase customer traffic in a brick-and-mortar store, give customers an offer that only works inside the store. Surprise your consumers with free samples of your products. This would allow them to try some new brands and products. If you’d want to reduce your excess stock post the quarantine time, try running a multi-buy campaign. Digital Signages - Enhance In-store Shopping Experience Digital signage is a type of advertising that uses a video screen to display marketing messages. They can be used for attracting customers, conveying information, and promoting merchandise. Retail outlets in malls that have fashion sections can display the latest trends on their screens so customers know what’s new. This helps them pick out something they might like quickly. Some restaurants showcase menus on screens while others even project live cooking shows! These displays help with menu navigation too; helping a diner decide between chicken tikka masala or steak tartare by showing pictures of both dishes at once. Leverage Beacon Notification to Attract Customers to Your Store The beacon technology is a way to implement a tracking system indoors. A beacon is an inaudible signal that can be tracked and act as the trigger for other events like sending notifications about deals, discounts, or new products. Beacon technology helps with driving footfalls by giving customers an indoor mapping experience of your store's inventory. This ensures they always know where they are going and what’s around them. The navigation reminds them of their proximity to items on display so there’s never any confusion over whether something is nearby or farther off. Train your Salespeople to Become the Shopper's Friend Educating your salespersons on how to be consumers’ friends is important. They should be knowledgeable about what products are popular and in-demand so that they can help the customers find exactly what they want while at the same time giving guidance on how to save money by telling them where discounts and deals can be found. Reconceptualize Checkout Counters Customers abandon their purchases because of long lines at the checkout. With the pandemic out there, this could be one of the reasons why the retail foot traffic is diminishing. Include contactless payments that can be automated or replace your existing POS setup. Encourage BOPIS (Buy Online Pick-up In-store) To implement BOPIS for your retail store, you need to have a centralized platform that allows you to manage orders, sales, and customers. This helps you to deliver a personalized customer experience. In combination with BOPIS, another way to promote footfall into the store and drive sales in retail is by bringing your website in-store. And this will be a good move if you have multiple stores and not all the stock in one place. This is because, when you know how to calculate footfall in retail it can help you with many retail metrics like: How to plan your store for peak footfall times? How much stock you need in the store and how often you'll need to restock it? What products are selling well on an hourly basis? This is so crucial information for retailers that will help inform decisions about where to place certain items or which ones may be more popular than others etc. When stores should have promotions (if they want), discounts, and raise weekend sales? We've put together an elaborate, research-based White Paper that covers these segments: How have pandemics catalyzed technological innovations Customer sentiment and behavior during COVID-19 An omnichannel customer engagement strategy to drive sales in retail and footfall The ultimate roadmap to increase retail footfalls How to build the perfect loyalty program to turn foot traffic into brand ambassadors? You can find the same over here, hope my team's effort comes in handy to some of y'all that could improve your store visits, cheers!

AI ChatBo Business System Digital - Software Bring Yours SALES UP + COSTS DOWN With Digital Systems
reddit
LLM Vibe Score0
Human Vibe Score0
Individual_Brain_513This week

AI ChatBo Business System Digital - Software Bring Yours SALES UP + COSTS DOWN With Digital Systems

Recommend the AI ​​ChatBo Business System from especially for coaches & consultants, e-commerce and retail and build a passive income in the mega-trend of AI & WhatsApp marketing. Your advantages: Lifetime 10 percent recurring commissions for the software licenses. One-off 10% for the service. ​No more losses due to changing browsers and devices thanks to the unique multi-device tracking using hash key technology from our partner Klick-Tip (commissions are 46 percent higher on average). One of the largest companies in the German-speaking region for digital payment processing. Software made and hosted in Germany. Click here to get it now: https://bit.ly/3TXNKm9 Start with a little and let it grow ChatboOne is THE all-in-one solution for marketing and sales and is available in three versions... Base \- reduces your manual effort, improves the overview of your sales campaigns and increases the conversion of your website. Expert \- Automates communication with customers and interested parties, offers campaigns via email and WhatsApp and makes planning your customer appointments easier. Professional \- The complete package including websites and landing pages, member area and affiliate marketing tool. Brilliant for you: no matter where you are with your business, start at the optimal level and let the system grow with you until you reach the professional level. &#x200B; Click here to get it now: https://bit.ly/3TXNKm9 &#x200B;

Obliterate my app idea before I bet my life savings on it (AI lead-gen tool)
reddit
LLM Vibe Score0
Human Vibe Score1
r_hussyThis week

Obliterate my app idea before I bet my life savings on it (AI lead-gen tool)

So I have this app idea on my mind for months now, but I’m 95% sure it’ll flop. Can you help me figure it out? The Problem: Many agencies struggle to stand out in a crowded marketplace and waste time on discovery calls. Current lead generation tools often feel impersonal and don’t showcase how an agency’s expertise can solve specific problems of clients. The Idea: A lead generation tool for agency owners that uses AI to create personalized recommendations for prospects (potential customers) early in the sales process. These recommendations are sent as custom reports (aka lead magnet) to the prospect. This would showcase how the agency can address the unique needs and requirements of the potential client without requiring a discovery call right away. The whole process will be 100% automated, allowing agency owners to focus on closing deals. Target audience: Agency owners/marketers who want to focus on acquiring qualified leads online. In the future, I’d love to explore niches like SaaS and real estate. How it works in 4 steps: Prospect Input: Prospects visit an agency’s landing page (generated by my app) and submit their goals and challenges. AI Matching: The custom-trained AI processes their input and combines it with the agency’s data to generate a customized, actionable report. Delivery: The report is instantly emailed to the prospect, highlighting how the agency can address his/her challenges. Follow-Up: With the prospect warmed up, the agency can follow up and (hopefully) convert them into a client. For example, a digital marketing agency could use the app to create a landing page offering a free ‘Personalized Marketing Strategy Report.’ When a prospect submits his goals and challenges, the AI instantly generates and emails a tailored report, showcasing the agency’s expertise. Why It Might Fail: Maybe agencies won’t see the value in automation, or AI-generated reports might feel impersonal. Could this idea fill a real gap? Why It Might Work: It’s a way for agencies to stand out with personalized lead magnets that feel unique and interactive. It could help agencies attract and convert qualified leads in an automated way. Your Honest Feedback: Would this help agencies improve their lead-generation process, or is it just flashy nonsense? What flaws or challenges do you see in this idea? Is this worth pursuing, or should I stick to spending time with my family 😂? Thank you guys, your honesty might save me from myself! PS: I won’t link to my tool because I don’t want to come off as a spammer.

Digital Analytics and Marketing
reddit
LLM Vibe Score0
Human Vibe Score1
Chou789This week

Digital Analytics and Marketing

I'm a Data Analyst with wide range of experience in this niche. Looking for partner to bring me clients and get a cut on the charges, i.e act as a agency connecting businesses with developers. Lately, I see that Developer costs in US/EU is skyrocketing and hiring a decent Data Analyst costs a fortune for companies, small companies can't even think of getting one. Already working with several small businesses and see that many small businesses have need somebody to play around their data but since it's a costly affair, mostly small businesses stick with Excel and Google Sheets as their database and don't leverage the potential of automation, now with AI/LLM, having proper data strategy is important. We can team up and provide reach these low hanging fruits. What i do: Data Reporting: Move clients current data systems from Excel, Google Sheets into Database/Datawarehouse Integrate data from different sources like Pipedrive, Google Ads, Facebook Ads, Shopify etc and create automated custom reports on the data. Digital Marketing: For Shopify/Ecommernce site owners - Google Analytics Reporting Answer questions like Where is my traffic coming from, which traffic is working, how long they are staying in site, which products are working, product views to purchase ratio etc Custom Desktop Applications Custom: Have a custom idea? Let's discuss. DM me. Thanks. PS: Potential customers include ones who can't hire $50-$150/hr full time developers but want one at part time/freelancing type where they can get things done quickly/validating their ideas without burning their business.

Looking For Tech-Savvy Business Partner
reddit
LLM Vibe Score0
Human Vibe Score1
DesignedItThis week

Looking For Tech-Savvy Business Partner

Hi! I'm looking for a business partner to help with one of my product lines or we could create a new product line together. I would like the product to be a digital asset where we can sell it on another website, where the other website brings customers to our product so we don't have to market it at first. Our short-term goal will be to publish a product one month after connecting and then make $1 by the following month. Our 4-month goal will be to generate $2,500 - $7,500 in passive income per year for one product line. I'm not trying to make a lot of money right away, but am looking to setup enough passive income so we can both retire early in a few years. For this year, I wrote down 100's of ideas, tried 30 ideas, have 14 ideas that work, and have only 6 ideas that would be profitable. So I'll bring with me only the best of the best ideas. I'm all about efficiency and doing things in bulk to maximize profit and decrease time spent, using AI to generate text/images/audio but adding on that manual touch to make all digital products high-quality and 5 stars, and using software like Python to automate repetitive processes to create digital products. My main skillset: running a business, project management, creating design and technical documentation, marketing, hiring, budgeting, business analysis, graphic design, software development, app development, web design/development, AI development, databases, data engineering, cloud/Azure, data analysis, and reporting. I know many other skills too and can pick up and learn a new business or technical skill pretty quickly. I also have a friend who's in IT/security/networking/servers if we need to bring him in. A clone of myself would be perfect to connect with, but working with anyone with a different skillset would open up the digital product possibilities. I might put tech-savvy at the top of the list so you could figure out how to create new digital products, while business-savvy might be #2, Other skills might be specific to individual products. If you're interested in working together, then feel free to post below or message me!

WE JUST GOT $2,500 in angel investment for our AI Cold Calling Startup! Hooray! Looking for web dev + digital marketing agencies to partner with.
reddit
LLM Vibe Score0
Human Vibe Score1
GrowthGetThis week

WE JUST GOT $2,500 in angel investment for our AI Cold Calling Startup! Hooray! Looking for web dev + digital marketing agencies to partner with.

Hey y'all. The AI cold calling startup I've been working on for 3-4 months now just got a $2,500 angel investment, and we have 2 current customers, a credit card processing broker and a hospital equipment rental company based out of Texas. We have around $1,500 revenue so far, but we're having lots of trouble fulfilling the contracts because our tech just isn't "there" yet. I'm the Chief Tech Officer, and I'm also running some operations. The other main person in this is the CEO who has a strong sales background and came up with the idea. I've been working purely remotely, and it's great having some income because I'm stuck at home because I'm disabled, basically... We're using 11labs, openai, google speech to text, and a sh\*tty online dialer right now to run the first MVP which runs locally on our "botrunners" computers, and we're developing a web app with django python + javascript react. Our plan is, after we get the webapp working better, to hire more botrunners for $3 per hour from countries like Phillipines and India, and we're going to try to track all the actions the botrunners take to be able to train the AI to run it fully automated. The biggest problem we're facing right now with the tech is reducing latency, it started at 27 seconds to get a response and I've been able to get it down to 6 seconds, but people are still hanging up. We're trying several ways to mitigate this, including having pre-rendered speech playing something like "Okay" or "As an artificial representative, I'm still learning to be quicker on the pickup. We appreciate your patience." One of the industries we want to target is international web development and digital marketing companies, and we want to use the bot to cold-call businesses to pitch them our services. The goal is to replace $30 an hour cold-callers from the USA with $3 per hour total-cost automation. Apparently the CEO was given a $5 million valuation from the strength of the MVP from a VC. Our investment so far was at a $300k valuation tho. It's exciting. Trying to get Twilio working to be able to make calls programmatically instead of using our hacky workaround. Let me know if you have any questions, or feedback. Looking for digital marketing and web dev agencies to partner with to test the next stage of our business model. Thanks. I just wanted to share this awesome news!

Please rate my business idea aimed at emerging markets
reddit
LLM Vibe Score0
Human Vibe Score1
Whole_Ad_9002This week

Please rate my business idea aimed at emerging markets

Imagine a single platform that transforms your business operations effortlessly. Think of it like a Swiss Army knife for your business. First Steps (Every Business Needs These): Our website builder is your first step online. Just pick what you want, drag it where you need it, and you've got a professional website or online store. No tech skills needed. Perfect for getting your business visible to customers. Our security tool comes next because every business needs protection. It's like a security guard for your files and data, keeping hackers out and making sure you never lose important work. Think of it as insurance for your digital business. Cybersecurity and backups combined. Growing Business Needs: As your team grows, our digital office keeps everyone connected. Email, chat, share files, and track projects in one place. It's like having everyone in the same room, even when working remotely. This becomes essential once you have more than a few people. When paperwork starts piling up, our AI helper steps in. It's like having a smart assistant who learns your business and helps everyone get more done - handling routine tasks, summarizing meetings, and suggesting better ways to work. Scaling Up (For Established Businesses): Once you're handling lots of data, our eco-friendly cloud storage becomes crucial. Your business gets fast, reliable storage while helping the environment. We use servers powered by renewable energy, so you can grow sustainably. Our data transfer tool becomes important when you're working with multiple systems and need to move files around. It's like having a digital moving service that safely carries your files between different cloud services. With 20+ services to connect to cloud to cloud or on prem to cloud, its easy and fast. Advanced Needs: When your business processes get complex, our workflow automation tool helps you set up automatic systems for repetitive tasks. It's like training a robot to handle your routine work while your team focuses on growth. Simple no-code automation when you need it. Everything works on its own, but they're designed to work even better together. And since it's all in one place, you only need one password and one monthly bill. Most businesses save about half their tech costs by switching to our platform. Cost Benefits: Single subscription replaces multiple vendor contracts Reduces IT overhead by 40-60% on average No need for expensive technical specialists Predictable monthly costs Scales pricing with your usage

Looking For Tech-Savvy Business Partner
reddit
LLM Vibe Score0
Human Vibe Score1
DesignedItThis week

Looking For Tech-Savvy Business Partner

Hi! I'm looking for a business partner to help with one of my product lines or we could create a new product line together. I would like the product to be a digital asset where we can sell it on another website, where the other website brings customers to our product so we don't have to market it at first. Our short-term goal will be to publish a product one month after connecting and then make $1 by the following month. Our 4-month goal will be to generate $2,500 - $7,500 in passive income per year for one product line. I'm not trying to make a lot of money right away, but am looking to setup enough passive income so we can both retire early in a few years. For this year, I wrote down 100's of ideas, tried 30 ideas, have 14 ideas that work, and have only 6 ideas that would be profitable. So I'll bring with me only the best of the best ideas. I'm all about efficiency and doing things in bulk to maximize profit and decrease time spent, using AI to generate text/images/audio but adding on that manual touch to make all digital products high-quality and 5 stars, and using software like Python to automate repetitive processes to create digital products. My main skillset: running a business, project management, creating design and technical documentation, marketing, hiring, budgeting, business analysis, graphic design, software development, app development, web design/development, AI development, databases, data engineering, cloud/Azure, data analysis, and reporting. I know many other skills too and can pick up and learn a new business or technical skill pretty quickly. I also have a friend who's in IT/security/networking/servers if we need to bring him in. A clone of myself would be perfect to connect with, but working with anyone with a different skillset would open up the digital product possibilities. I might put tech-savvy at the top of the list so you could figure out how to create new digital products, while business-savvy might be #2, Other skills might be specific to individual products. If you're interested in working together, then feel free to post below or message me!

What do you think of SaaS 2.0: Service-as-a-Software?
reddit
LLM Vibe Score0
Human Vibe Score1
FrenzyOfLifeThis week

What do you think of SaaS 2.0: Service-as-a-Software?

A new term has recently emerged in the business world: Service-as-a-Software a.k.a. SaaS 2.0 In general, some authors of articles promoting this term assume that the new and rapidly growing possibilities offered by AI and automation mean that problems that were previously too individual or support-intensive can now be tackled. The focus is on (human) service on the customer side and the background processes in the company are fully AI-supported and automated. Unlike traditional SaaS, no software is primarily offered here as self-use. In other words: "Service as a Software" (SaaS 2.0) is a new type of business model that mixes software automation with real human support. Unlike traditional SaaS, which provides self-service tools for users to solve problems on their own, SaaS 2.0 focuses on delivering results by combining technology with human expertise. In this model, software handles repetitive tasks like data processing, scheduling, or matching, while humans step in to provide guidance, handle exceptions, or solve complex issues. This approach is often called Human-in-the-Loop because humans are actively involved in key parts of the process, ensuring a personalized and empathetic experience for the customer. SaaS 2.0 is especially useful in industries like healthcare, education, or elderly care placement, where trust and personalization are critical. For example, a traditional SaaS might offer a tool to search for care homes, while a SaaS 2.0 solution would also provide a care consultant to help families make the best choice. In this case no traditional marketplace is needed where the supply and demand side used to be scaled simultaneously. Instead, an AI can now search for the best match for a place in a retirement home and a human in the loop can be the external face for the customer and the retirement homes and thus act as an agent. By automating routine tasks and using humans for high-value touchpoints, SaaS 2.0 delivers better outcomes, builds stronger relationships with customers, and stands out from traditional software that relies only on automation. What do you think about the potential of this concept?

Digital Analytics and Marketing
reddit
LLM Vibe Score0
Human Vibe Score1
Chou789This week

Digital Analytics and Marketing

I'm a Data Analyst with wide range of experience in this niche. Looking for partner to bring me clients and get a cut on the charges, i.e act as a agency connecting businesses with developers. Lately, I see that Developer costs in US/EU is skyrocketing and hiring a decent Data Analyst costs a fortune for companies, small companies can't even think of getting one. Already working with several small businesses and see that many small businesses have need somebody to play around their data but since it's a costly affair, mostly small businesses stick with Excel and Google Sheets as their database and don't leverage the potential of automation, now with AI/LLM, having proper data strategy is important. We can team up and provide reach these low hanging fruits. What i do: Data Reporting: Move clients current data systems from Excel, Google Sheets into Database/Datawarehouse Integrate data from different sources like Pipedrive, Google Ads, Facebook Ads, Shopify etc and create automated custom reports on the data. Digital Marketing: For Shopify/Ecommernce site owners - Google Analytics Reporting Answer questions like Where is my traffic coming from, which traffic is working, how long they are staying in site, which products are working, product views to purchase ratio etc Custom Desktop Applications Custom: Have a custom idea? Let's discuss. DM me. Thanks. PS: Potential customers include ones who can't hire $50-$150/hr full time developers but want one at part time/freelancing type where they can get things done quickly/validating their ideas without burning their business.

WE JUST GOT $2,500 in angel investment for our AI Cold Calling Startup! Hooray! Looking for web dev + digital marketing agencies to partner with.
reddit
LLM Vibe Score0
Human Vibe Score1
GrowthGetThis week

WE JUST GOT $2,500 in angel investment for our AI Cold Calling Startup! Hooray! Looking for web dev + digital marketing agencies to partner with.

Hey y'all. The AI cold calling startup I've been working on for 3-4 months now just got a $2,500 angel investment, and we have 2 current customers, a credit card processing broker and a hospital equipment rental company based out of Texas. We have around $1,500 revenue so far, but we're having lots of trouble fulfilling the contracts because our tech just isn't "there" yet. I'm the Chief Tech Officer, and I'm also running some operations. The other main person in this is the CEO who has a strong sales background and came up with the idea. I've been working purely remotely, and it's great having some income because I'm stuck at home because I'm disabled, basically... We're using 11labs, openai, google speech to text, and a sh\*tty online dialer right now to run the first MVP which runs locally on our "botrunners" computers, and we're developing a web app with django python + javascript react. Our plan is, after we get the webapp working better, to hire more botrunners for $3 per hour from countries like Phillipines and India, and we're going to try to track all the actions the botrunners take to be able to train the AI to run it fully automated. The biggest problem we're facing right now with the tech is reducing latency, it started at 27 seconds to get a response and I've been able to get it down to 6 seconds, but people are still hanging up. We're trying several ways to mitigate this, including having pre-rendered speech playing something like "Okay" or "As an artificial representative, I'm still learning to be quicker on the pickup. We appreciate your patience." One of the industries we want to target is international web development and digital marketing companies, and we want to use the bot to cold-call businesses to pitch them our services. The goal is to replace $30 an hour cold-callers from the USA with $3 per hour total-cost automation. Apparently the CEO was given a $5 million valuation from the strength of the MVP from a VC. Our investment so far was at a $300k valuation tho. It's exciting. Trying to get Twilio working to be able to make calls programmatically instead of using our hacky workaround. Let me know if you have any questions, or feedback. Looking for digital marketing and web dev agencies to partner with to test the next stage of our business model. Thanks. I just wanted to share this awesome news!

Please rate my business idea aimed at emerging markets
reddit
LLM Vibe Score0
Human Vibe Score1
Whole_Ad_9002This week

Please rate my business idea aimed at emerging markets

Imagine a single platform that transforms your business operations effortlessly. Think of it like a Swiss Army knife for your business. First Steps (Every Business Needs These): Our website builder is your first step online. Just pick what you want, drag it where you need it, and you've got a professional website or online store. No tech skills needed. Perfect for getting your business visible to customers. Our security tool comes next because every business needs protection. It's like a security guard for your files and data, keeping hackers out and making sure you never lose important work. Think of it as insurance for your digital business. Cybersecurity and backups combined. Growing Business Needs: As your team grows, our digital office keeps everyone connected. Email, chat, share files, and track projects in one place. It's like having everyone in the same room, even when working remotely. This becomes essential once you have more than a few people. When paperwork starts piling up, our AI helper steps in. It's like having a smart assistant who learns your business and helps everyone get more done - handling routine tasks, summarizing meetings, and suggesting better ways to work. Scaling Up (For Established Businesses): Once you're handling lots of data, our eco-friendly cloud storage becomes crucial. Your business gets fast, reliable storage while helping the environment. We use servers powered by renewable energy, so you can grow sustainably. Our data transfer tool becomes important when you're working with multiple systems and need to move files around. It's like having a digital moving service that safely carries your files between different cloud services. With 20+ services to connect to cloud to cloud or on prem to cloud, its easy and fast. Advanced Needs: When your business processes get complex, our workflow automation tool helps you set up automatic systems for repetitive tasks. It's like training a robot to handle your routine work while your team focuses on growth. Simple no-code automation when you need it. Everything works on its own, but they're designed to work even better together. And since it's all in one place, you only need one password and one monthly bill. Most businesses save about half their tech costs by switching to our platform. Cost Benefits: Single subscription replaces multiple vendor contracts Reduces IT overhead by 40-60% on average No need for expensive technical specialists Predictable monthly costs Scales pricing with your usage

The Weekly Brief for anyone looking to incorporate AI into their business.
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Business_BriefThis week

The Weekly Brief for anyone looking to incorporate AI into their business.

Good morning and happy Sunday. Today is Sunday and you know what that means. The weekly brief. Covering all of last week’s most important AI business related stories. Here are some of the biggest stories: Claude the newest generative AI. Amazon to change up its search. AI leaders Testify. Meta Open sources its LLM. Voice Actors Struggle Growing AI innovations has led to a struggle for many voice actors. As AI powered voice technology is progressing everyday jobs are becoming more and more scarce. With many publishers already leaning towards replacing many of their voice actors for faster, cheaper, and more efficient AI voices. Meet Claude Anthropic, an AI company founded by ex-OpenAI employee released their generative AI called Claude. Some key aspects of their model is the ability to give more correct and less harmful answers, and perform similar tasks that many other generative AI’s can do. A keynote is that Google has invested 300milloion into the company, which is a direct competitor to their AI Bard. Interesting to see how that will play out. Amazon Changes to Change up Search A new job description at Amazon may have hinted towards their future plans for AI. The description under software developer read “reimagining Amazon Search with an interactive conversational experience”. This may hint towards a generative AI search experience in Amazon for customers. ChatGPT User Get More Access Premium ChatGPT users got access to Web browsing and plugins. This is a crucial step for OpenAI as they plan to pivot to a more assist type AI. While at the same time continuing to research and develop their AI models. This move puts a lot of pressure on Google to hopefully step up their game. AI Leaders Testify This Wednesday AI leaders (Sam Altman, Christina Montgomery and Gary Marcus) all testified before congress about AI regulation. They were asked many questions about AI regulation but came up with two solutions. FDA-Like Approval Processing: AI developing companies are open to safety checks, audits, licensing and risk review. Precision Approach: Develop risk rules, provide explanations and provide guidelines for risks, encourage transparency around AI companies, finally assess impact of AI technologies. Meta Open Sourcing Thursday Meta open sourced this coding for their LLM. As the company wants to see the use of its LLM to help drive innovation, inspire smaller companies, and overall develop better AI technologies. Comes as an interesting move as competitors try and keep their AI’s an insider secret.

What do you think of SaaS 2.0: Service-as-a-Software?
reddit
LLM Vibe Score0
Human Vibe Score1
FrenzyOfLifeThis week

What do you think of SaaS 2.0: Service-as-a-Software?

A new term has recently emerged in the business world: Service-as-a-Software a.k.a. SaaS 2.0 In general, some authors of articles promoting this term assume that the new and rapidly growing possibilities offered by AI and automation mean that problems that were previously too individual or support-intensive can now be tackled. The focus is on (human) service on the customer side and the background processes in the company are fully AI-supported and automated. Unlike traditional SaaS, no software is primarily offered here as self-use. In other words: "Service as a Software" (SaaS 2.0) is a new type of business model that mixes software automation with real human support. Unlike traditional SaaS, which provides self-service tools for users to solve problems on their own, SaaS 2.0 focuses on delivering results by combining technology with human expertise. In this model, software handles repetitive tasks like data processing, scheduling, or matching, while humans step in to provide guidance, handle exceptions, or solve complex issues. This approach is often called Human-in-the-Loop because humans are actively involved in key parts of the process, ensuring a personalized and empathetic experience for the customer. SaaS 2.0 is especially useful in industries like healthcare, education, or elderly care placement, where trust and personalization are critical. For example, a traditional SaaS might offer a tool to search for care homes, while a SaaS 2.0 solution would also provide a care consultant to help families make the best choice. In this case no traditional marketplace is needed where the supply and demand side used to be scaled simultaneously. Instead, an AI can now search for the best match for a place in a retirement home and a human in the loop can be the external face for the customer and the retirement homes and thus act as an agent. By automating routine tasks and using humans for high-value touchpoints, SaaS 2.0 delivers better outcomes, builds stronger relationships with customers, and stands out from traditional software that relies only on automation. What do you think about the potential of this concept?

Please rate my business idea aimed at emerging markets
reddit
LLM Vibe Score0
Human Vibe Score1
Whole_Ad_9002This week

Please rate my business idea aimed at emerging markets

Imagine a single platform that transforms your business operations effortlessly. Think of it like a Swiss Army knife for your business. First Steps (Every Business Needs These): Our website builder is your first step online. Just pick what you want, drag it where you need it, and you've got a professional website or online store. No tech skills needed. Perfect for getting your business visible to customers. Our security tool comes next because every business needs protection. It's like a security guard for your files and data, keeping hackers out and making sure you never lose important work. Think of it as insurance for your digital business. Cybersecurity and backups combined. Growing Business Needs: As your team grows, our digital office keeps everyone connected. Email, chat, share files, and track projects in one place. It's like having everyone in the same room, even when working remotely. This becomes essential once you have more than a few people. When paperwork starts piling up, our AI helper steps in. It's like having a smart assistant who learns your business and helps everyone get more done - handling routine tasks, summarizing meetings, and suggesting better ways to work. Scaling Up (For Established Businesses): Once you're handling lots of data, our eco-friendly cloud storage becomes crucial. Your business gets fast, reliable storage while helping the environment. We use servers powered by renewable energy, so you can grow sustainably. Our data transfer tool becomes important when you're working with multiple systems and need to move files around. It's like having a digital moving service that safely carries your files between different cloud services. With 20+ services to connect to cloud to cloud or on prem to cloud, its easy and fast. Advanced Needs: When your business processes get complex, our workflow automation tool helps you set up automatic systems for repetitive tasks. It's like training a robot to handle your routine work while your team focuses on growth. Simple no-code automation when you need it. Everything works on its own, but they're designed to work even better together. And since it's all in one place, you only need one password and one monthly bill. Most businesses save about half their tech costs by switching to our platform. Cost Benefits: Single subscription replaces multiple vendor contracts Reduces IT overhead by 40-60% on average No need for expensive technical specialists Predictable monthly costs Scales pricing with your usage

Obliterate my app idea before I bet my life savings on it (AI lead-gen tool)
reddit
LLM Vibe Score0
Human Vibe Score1
r_hussyThis week

Obliterate my app idea before I bet my life savings on it (AI lead-gen tool)

So I have this app idea on my mind for months now, but I’m 95% sure it’ll flop. Can you help me figure it out? The Problem: Many agencies struggle to stand out in a crowded marketplace and waste time on discovery calls. Current lead generation tools often feel impersonal and don’t showcase how an agency’s expertise can solve specific problems of clients. The Idea: A lead generation tool for agency owners that uses AI to create personalized recommendations for prospects (potential customers) early in the sales process. These recommendations are sent as custom reports (aka lead magnet) to the prospect. This would showcase how the agency can address the unique needs and requirements of the potential client without requiring a discovery call right away. The whole process will be 100% automated, allowing agency owners to focus on closing deals. Target audience: Agency owners/marketers who want to focus on acquiring qualified leads online. In the future, I’d love to explore niches like SaaS and real estate. How it works in 4 steps: Prospect Input: Prospects visit an agency’s landing page (generated by my app) and submit their goals and challenges. AI Matching: The custom-trained AI processes their input and combines it with the agency’s data to generate a customized, actionable report. Delivery: The report is instantly emailed to the prospect, highlighting how the agency can address his/her challenges. Follow-Up: With the prospect warmed up, the agency can follow up and (hopefully) convert them into a client. For example, a digital marketing agency could use the app to create a landing page offering a free ‘Personalized Marketing Strategy Report.’ When a prospect submits his goals and challenges, the AI instantly generates and emails a tailored report, showcasing the agency’s expertise. Why It Might Fail: Maybe agencies won’t see the value in automation, or AI-generated reports might feel impersonal. Could this idea fill a real gap? Why It Might Work: It’s a way for agencies to stand out with personalized lead magnets that feel unique and interactive. It could help agencies attract and convert qualified leads in an automated way. Your Honest Feedback: Would this help agencies improve their lead-generation process, or is it just flashy nonsense? What flaws or challenges do you see in this idea? Is this worth pursuing, or should I stick to spending time with my family 😂? Thank you guys, your honesty might save me from myself! PS: I won’t link to my tool because I don’t want to come off as a spammer.

Obliterate my app idea before I bet my life savings on it (AI lead-gen tool)
reddit
LLM Vibe Score0
Human Vibe Score1
r_hussyThis week

Obliterate my app idea before I bet my life savings on it (AI lead-gen tool)

So I have this app idea on my mind for months now, but I’m 95% sure it’ll flop. Can you help me figure it out? The Problem: Many agencies struggle to stand out in a crowded marketplace and waste time on discovery calls. Current lead generation tools often feel impersonal and don’t showcase how an agency’s expertise can solve specific problems of clients. The Idea: A lead generation tool for agency owners that uses AI to create personalized recommendations for prospects (potential customers) early in the sales process. These recommendations are sent as custom reports (aka lead magnet) to the prospect. This would showcase how the agency can address the unique needs and requirements of the potential client without requiring a discovery call right away. The whole process will be 100% automated, allowing agency owners to focus on closing deals. Target audience: Agency owners/marketers who want to focus on acquiring qualified leads online. In the future, I’d love to explore niches like SaaS and real estate. How it works in 4 steps: Prospect Input: Prospects visit an agency’s landing page (generated by my app) and submit their goals and challenges. AI Matching: The custom-trained AI processes their input and combines it with the agency’s data to generate a customized, actionable report. Delivery: The report is instantly emailed to the prospect, highlighting how the agency can address his/her challenges. Follow-Up: With the prospect warmed up, the agency can follow up and (hopefully) convert them into a client. For example, a digital marketing agency could use the app to create a landing page offering a free ‘Personalized Marketing Strategy Report.’ When a prospect submits his goals and challenges, the AI instantly generates and emails a tailored report, showcasing the agency’s expertise. Why It Might Fail: Maybe agencies won’t see the value in automation, or AI-generated reports might feel impersonal. Could this idea fill a real gap? Why It Might Work: It’s a way for agencies to stand out with personalized lead magnets that feel unique and interactive. It could help agencies attract and convert qualified leads in an automated way. Your Honest Feedback: Would this help agencies improve their lead-generation process, or is it just flashy nonsense? What flaws or challenges do you see in this idea? Is this worth pursuing, or should I stick to spending time with my family 😂? Thank you guys, your honesty might save me from myself! PS: I won’t link to my tool because I don’t want to come off as a spammer.

GenAI_Agents
github
LLM Vibe Score0.563
Human Vibe Score0.24210481455988786
NirDiamantMar 28, 2025

GenAI_Agents

🌟 Support This Project: Your sponsorship fuels innovation in GenAI agent development. Become a sponsor to help maintain and expand this valuable resource! GenAI Agents: Comprehensive Repository for Development and Implementation 🚀 Welcome to one of the most extensive and dynamic collections of Generative AI (GenAI) agent tutorials and implementations available today. This repository serves as a comprehensive resource for learning, building, and sharing GenAI agents, ranging from simple conversational bots to complex, multi-agent systems. 📫 Stay Updated! 🚀Cutting-edgeUpdates 💡ExpertInsights 🎯Top 0.1%Content Join over 15,000 of AI enthusiasts getting unique cutting-edge insights and free tutorials! Plus, subscribers get exclusive early access and special 33% discounts to my book and the upcoming RAG Techniques course! Introduction Generative AI agents are at the forefront of artificial intelligence, revolutionizing the way we interact with and leverage AI technologies. This repository is designed to guide you through the development journey, from basic agent implementations to advanced, cutting-edge systems. 📚 Learn to Build Your First AI Agent Your First AI Agent: Simpler Than You Think This detailed blog post complements the repository by providing a complete A-Z walkthrough with in-depth explanations of core concepts, step-by-step implementation, and the theory behind AI agents. It's designed to be incredibly simple to follow while covering everything you need to know to build your first working agent from scratch. 💡 Plus: Subscribe to the newsletter for exclusive early access to tutorials and special discounts on upcoming courses and books! Our goal is to provide a valuable resource for everyone - from beginners taking their first steps in AI to seasoned practitioners pushing the boundaries of what's possible. By offering a range of examples from foundational to complex, we aim to facilitate learning, experimentation, and innovation in the rapidly evolving field of GenAI agents. Furthermore, this repository serves as a platform for showcasing innovative agent creations. Whether you've developed a novel agent architecture or found an innovative application for existing techniques, we encourage you to share your work with the community. Related Projects 📚 Dive into my comprehensive guide on RAG techniques to learn about integrating external knowledge into AI systems, enhancing their capabilities with up-to-date and relevant information retrieval. 🖋️ Explore my Prompt Engineering Techniques guide for an extensive collection of prompting strategies, from fundamental concepts to advanced methods, improving your ability to communicate effectively with AI language models. A Community-Driven Knowledge Hub This repository grows stronger with your contributions! Join our vibrant Discord community — the central hub for shaping and advancing this project together 🤝 GenAI Agents Discord Community Whether you're a novice eager to learn or an expert ready to share your knowledge, your insights can shape the future of GenAI agents. Join us to propose ideas, get feedback, and collaborate on innovative implementations. For contribution guidelines, please refer to our CONTRIBUTING.md file. Let's advance GenAI agent technology together! 🔗 For discussions on GenAI, agents, or to explore knowledge-sharing opportunities, feel free to connect on LinkedIn. Key Features 🎓 Learn to build GenAI agents from beginner to advanced levels 🧠 Explore a wide range of agent architectures and applications 📚 Step-by-step tutorials and comprehensive documentation 🛠️ Practical, ready-to-use agent implementations 🌟 Regular updates with the latest advancements in GenAI 🤝 Share your own agent creations with the community GenAI Agent Implementations Explore our extensive list of GenAI agent implementations, sorted by categories: 🌱 Beginner-Friendly Agents Simple Conversational Agent LangChain PydanticAI Overview 🔎 A context-aware conversational AI maintains information across interactions, enabling more natural dialogues. Implementation 🛠️ Integrates a language model, prompt template, and history manager to generate contextual responses and track conversation sessions. Simple Question Answering Agent Overview 🔎 Answering (QA) agent using LangChain and OpenAI's language model understands user queries and provides relevant, concise answers. Implementation 🛠️ Combines OpenAI's GPT model, a prompt template, and an LLMChain to process user questions and generate AI-driven responses in a streamlined manner. Simple Data Analysis Agent LangChain PydanticAI Overview 🔎 An AI-powered data analysis agent interprets and answers questions about datasets using natural language, combining language models with data manipulation tools for intuitive data exploration. Implementation 🛠️ Integrates a language model, data manipulation framework, and agent framework to process natural language queries and perform data analysis on a synthetic dataset, enabling accessible insights for non-technical users. 🔧 Framework Tutorial: LangGraph Introduction to LangGraph: Building Modular AI Workflows Overview 🔎 This tutorial introduces LangGraph, a powerful framework for creating modular, graph-based AI workflows. Learn how to leverage LangGraph to build more complex and flexible AI agents that can handle multi-step processes efficiently. Implementation 🛠️ Step-by-step guide on using LangGraph to create a StateGraph workflow. The tutorial covers key concepts such as state management, node creation, and graph compilation. It demonstrates these principles by constructing a simple text analysis pipeline, serving as a foundation for more advanced agent architectures. Additional Resources 📚 Blog Post 🎓 Educational and Research Agents ATLAS: Academic Task and Learning Agent System Overview 🔎 ATLAS demonstrates how to build an intelligent multi-agent system that transforms academic support through AI-powered assistance. The system leverages LangGraph's workflow framework to coordinate multiple specialized agents that provide personalized academic planning, note-taking, and advisory support. Implementation 🛠️ Implements a state-managed multi-agent architecture using four specialized agents (Coordinator, Planner, Notewriter, and Advisor) working in concert through LangGraph's workflow framework. The system features sophisticated workflows for profile analysis and academic support, with continuous adaptation based on student performance and feedback. Additional Resources 📚 YouTube Explanation Blog Post Scientific Paper Agent - Literature Review Overview 🔎 An intelligent research assistant that helps users navigate, understand, and analyze scientific literature through an orchestrated workflow. The system combines academic APIs with sophisticated paper processing techniques to automate literature review tasks, enabling researchers to efficiently extract insights from academic papers while maintaining research rigor and quality control. Implementation 🛠️ Leverages LangGraph to create a five-node workflow system including decision making, planning, tool execution, and quality validation nodes. The system integrates the CORE API for paper access, PDFplumber for document processing, and advanced language models for analysis. Key features include a retry mechanism for robust paper downloads, structured data handling through Pydantic models, and quality-focused improvement cycles with human-in-the-loop validation options. Additional Resources 📚 YouTube Explanation Blog Post Chiron - A Feynman-Enhanced Learning Agent Overview 🔎 An adaptive learning agent that guides users through educational content using a structured checkpoint system and Feynman-style teaching. The system processes learning materials (either user-provided or web-retrieved), verifies understanding through interactive checkpoints, and provides simplified explanations when needed, creating a personalized learning experience that mimics one-on-one tutoring. Implementation 🛠️ Uses LangGraph to orchestrate a learning workflow that includes checkpoint definition, context building, understanding verification, and Feynman teaching nodes. The system integrates web search for dynamic content retrieval, employs semantic chunking for context processing, and manages embeddings for relevant information retrieval. Key features include a 70% understanding threshold for progression, interactive human-in-the-loop validation, and structured output through Pydantic models for consistent data handling. Additional Resources 📚 YouTube Explanation 💼 Business and Professional Agents Customer Support Agent (LangGraph) Overview 🔎 An intelligent customer support agent using LangGraph categorizes queries, analyzes sentiment, and provides appropriate responses or escalates issues. Implementation 🛠️ Utilizes LangGraph to create a workflow combining state management, query categorization, sentiment analysis, and response generation. Essay Grading Agent (LangGraph) Overview 🔎 An automated essay grading system using LangGraph and an LLM model evaluates essays based on relevance, grammar, structure, and depth of analysis. Implementation 🛠️ Utilizes a state graph to define the grading workflow, incorporating separate grading functions for each criterion. Travel Planning Agent (LangGraph) Overview 🔎 A Travel Planner using LangGraph demonstrates how to build a stateful, multi-step conversational AI application that collects user input and generates personalized travel itineraries. Implementation 🛠️ Utilizes StateGraph to define the application flow, incorporates custom PlannerState for process management. GenAI Career Assistant Agent Overview 🔎 The GenAI Career Assistant demonstrates how to create a multi-agent system that provides personalized guidance for careers in Generative AI. Using LangGraph and Gemini LLM, the system delivers customized learning paths, resume assistance, interview preparation, and job search support. Implementation 🛠️ Leverages a multi-agent architecture using LangGraph to coordinate specialized agents (Learning, Resume, Interview, Job Search) through TypedDict-based state management. The system employs sophisticated query categorization and routing while integrating with external tools like DuckDuckGo for job searches and dynamic content generation. Additional Resources 📚 YouTube Explanation Project Manager Assistant Agent Overview 🔎 An AI agent designed to assist in project management tasks by automating the process of creating actionable tasks from project descriptions, identifying dependencies, scheduling work, and assigning tasks to team members based on expertise. The system includes risk assessment and self-reflection capabilities to optimize project plans through multiple iterations, aiming to minimize overall project risk. Implementation 🛠️ Leverages LangGraph to orchestrate a workflow of specialized nodes including task generation, dependency mapping, scheduling, allocation, and risk assessment. Each node uses GPT-4o-mini for structured outputs following Pydantic models. The system implements a feedback loop for self-improvement, where risk scores trigger reflection cycles that generate insights to optimize the project plan. Visualization tools display Gantt charts of the generated schedules across iterations. Additional Resources 📚 YouTube Explanation Contract Analysis Assistant (ClauseAI) Overview 🔎 ClauseAI demonstrates how to build an AI-powered contract analysis system using a multi-agent approach. The system employs specialized AI agents for different aspects of contract review, from clause analysis to compliance checking, and leverages LangGraph for workflow orchestration and Pinecone for efficient clause retrieval and comparison. Implementation 🛠️ Implements a sophisticated state-based workflow using LangGraph to coordinate multiple AI agents through contract analysis stages. The system features Pydantic models for data validation, vector storage with Pinecone for clause comparison, and LLM-based analysis for generating comprehensive contract reports. The implementation includes parallel processing capabilities and customizable report generation based on user requirements. Additional Resources 📚 YouTube Explanation E2E Testing Agent Overview 🔎 The E2E Testing Agent demonstrates how to build an AI-powered system that converts natural language test instructions into executable end-to-end web tests. Using LangGraph for workflow orchestration and Playwright for browser automation, the system enables users to specify test cases in plain English while handling the complexity of test generation and execution. Implementation 🛠️ Implements a structured workflow using LangGraph to coordinate test generation, validation, and execution. The system features TypedDict state management, integration with Playwright for browser automation, and LLM-based code generation for converting natural language instructions into executable test scripts. The implementation includes DOM state analysis, error handling, and comprehensive test reporting. Additional Resources 📚 YouTube Explanation 🎨 Creative and Content Generation Agents GIF Animation Generator Agent (LangGraph) Overview 🔎 A GIF animation generator that integrates LangGraph for workflow management, GPT-4 for text generation, and DALL-E for image creation, producing custom animations from user prompts. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow that generates character descriptions, plots, and image prompts using GPT-4, creates images with DALL-E 3, and assembles them into GIFs using PIL. Employs asynchronous programming for efficient parallel processing. TTS Poem Generator Agent (LangGraph) Overview 🔎 An advanced text-to-speech (TTS) agent using LangGraph and OpenAI's APIs classifies input text, processes it based on content type, and generates corresponding speech output. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow that classifies input text using GPT models, applies content-specific processing, and converts the processed text to speech using OpenAI's TTS API. The system adapts its output based on the identified content type (general, poem, news, or joke). Music Compositor Agent (LangGraph) Overview 🔎 An AI Music Compositor using LangGraph and OpenAI's language models generates custom musical compositions based on user input. The system processes the input through specialized components, each contributing to the final musical piece, which is then converted to a playable MIDI file. Implementation 🛠️ LangGraph orchestrates a workflow that transforms user input into a musical composition, using ChatOpenAI (GPT-4) to generate melody, harmony, and rhythm, which are then style-adapted. The final AI-generated composition is converted to a MIDI file using music21 and can be played back using pygame. Content Intelligence: Multi-Platform Content Generation Agent Overview 🔎 Content Intelligence demonstrates how to build an advanced content generation system that transforms input text into platform-optimized content across multiple social media channels. The system employs LangGraph for workflow orchestration to analyze content, conduct research, and generate tailored content while maintaining brand consistency across different platforms. Implementation 🛠️ Implements a sophisticated workflow using LangGraph to coordinate multiple specialized nodes (Summary, Research, Platform-Specific) through the content generation process. The system features TypedDict and Pydantic models for state management, integration with Tavily Search for research enhancement, and platform-specific content generation using GPT-4. The implementation includes parallel processing for multiple platforms and customizable content templates. Additional Resources 📚 YouTube Explanation Business Meme Generator Using LangGraph and Memegen.link Overview 🔎 The Business Meme Generator demonstrates how to create an AI-powered system that generates contextually relevant memes based on company website analysis. Using LangGraph for workflow orchestration, the system combines Groq's Llama model for text analysis and the Memegen.link API to automatically produce brand-aligned memes for digital marketing. Implementation 🛠️ Implements a state-managed workflow using LangGraph to coordinate website content analysis, meme concept generation, and image creation. The system features Pydantic models for data validation, asynchronous processing with aiohttp, and integration with external APIs (Groq, Memegen.link) to create a complete meme generation pipeline with customizable templates. Additional Resources 📚 YouTube Explanation Murder Mystery Game with LLM Agents Overview 🔎 A text-based detective game that utilizes autonomous LLM agents as interactive characters in a procedurally generated murder mystery. Drawing inspiration from the UNBOUNDED paper, the system creates unique scenarios each time, with players taking on the role of Sherlock Holmes to solve the case through character interviews and deductive reasoning. Implementation 🛠️ Leverages two LangGraph workflows - a main game loop for story/character generation and game progression, and a conversation sub-graph for character interactions. The system uses a combination of LLM-powered narrative generation, character AI, and structured game mechanics to create an immersive investigative experience with replayable storylines. Additional Resources 📚 YouTube Explanation 📊 Analysis and Information Processing Agents Memory-Enhanced Conversational Agent Overview 🔎 A memory-enhanced conversational AI agent incorporates short-term and long-term memory systems to maintain context within conversations and across multiple sessions, improving interaction quality and personalization. Implementation 🛠️ Integrates a language model with separate short-term and long-term memory stores, utilizes a prompt template incorporating both memory types, and employs a memory manager for storage and retrieval. The system includes an interaction loop that updates and utilizes memories for each response. Multi-Agent Collaboration System Overview 🔎 A multi-agent collaboration system combining historical research with data analysis, leveraging large language models to simulate specialized agents working together to answer complex historical questions. Implementation 🛠️ Utilizes a base Agent class to create specialized HistoryResearchAgent and DataAnalysisAgent, orchestrated by a HistoryDataCollaborationSystem. The system follows a five-step process: historical context provision, data needs identification, historical data provision, data analysis, and final synthesis. Self-Improving Agent Overview 🔎 A Self-Improving Agent using LangChain engages in conversations, learns from interactions, and continuously improves its performance over time through reflection and adaptation. Implementation 🛠️ Integrates a language model with chat history management, response generation, and a reflection mechanism. The system employs a learning system that incorporates insights from reflection to enhance future performance, creating a continuous improvement loop. Task-Oriented Agent Overview 🔎 A language model application using LangChain that summarizes text and translates the summary to Spanish, combining custom functions, structured tools, and an agent for efficient text processing. Implementation 🛠️ Utilizes custom functions for summarization and translation, wrapped as structured tools. Employs a prompt template to guide the agent, which orchestrates the use of tools. An agent executor manages the process, taking input text and producing both an English summary and its Spanish translation. Internet Search and Summarize Agent Overview 🔎 An intelligent web research assistant that combines web search capabilities with AI-powered summarization, automating the process of gathering information from the internet and distilling it into concise, relevant summaries. Implementation 🛠️ Integrates a web search module using DuckDuckGo's API, a result parser, and a text summarization engine leveraging OpenAI's language models. The system performs site-specific or general searches, extracts relevant content, generates concise summaries, and compiles attributed results for efficient information retrieval and synthesis. Multi agent research team - Autogen Overview 🔎 This technique explores a multi-agent system for collaborative research using the AutoGen library. It employs agents to solve tasks collaboratively, focusing on efficient execution and quality assurance. The system enhances research by distributing tasks among specialized agents. Implementation 🛠️ Agents are configured with specific roles using the GPT-4 model, including admin, developer, planner, executor, and quality assurance. Interaction management ensures orderly communication with defined transitions. Task execution involves collaborative planning, coding, execution, and quality checking, demonstrating a scalable framework for various domains. Additional Resources 📚 comprehensive solution with UI Blogpost Sales Call Analyzer Overview 🔎 An intelligent system that automates the analysis of sales call recordings by combining audio transcription with advanced natural language processing. The analyzer transcribes audio using OpenAI's Whisper, processes the text using NLP techniques, and generates comprehensive reports including sentiment analysis, key phrases, pain points, and actionable recommendations to improve sales performance. Implementation 🛠️ Utilizes multiple components in a structured workflow: OpenAI Whisper for audio transcription, CrewAI for task automation and agent management, and LangChain for orchestrating the analysis pipeline. The system processes audio through a series of steps from transcription to detailed analysis, leveraging custom agents and tasks to generate structured JSON reports containing insights about customer sentiment, sales opportunities, and recommended improvements. Additional Resources 📚 YouTube Explanation Weather Emergency & Response System Overview 🔎 A comprehensive system demonstrating two agent graph implementations for weather emergency response: a real-time graph processing live weather data, and a hybrid graph combining real and simulated data for testing high-severity scenarios. The system handles complete workflow from data gathering through emergency plan generation, with automated notifications and human verification steps. Implementation 🛠️ Utilizes LangGraph for orchestrating complex workflows with state management, integrating OpenWeatherMap API for real-time data, and Gemini for analysis and response generation. The system incorporates email notifications, social media monitoring simulation, and severity-based routing with configurable human verification for low/medium severity events. Additional Resources 📚 YouTube Explanation Self-Healing Codebase System Overview 🔎 An intelligent system that automatically detects, diagnoses, and fixes runtime code errors using LangGraph workflow orchestration and ChromaDB vector storage. The system maintains a memory of encountered bugs and their fixes through vector embeddings, enabling pattern recognition for similar errors across the codebase. Implementation 🛠️ Utilizes a state-based graph workflow that processes function definitions and runtime arguments through specialized nodes for error detection, code analysis, and fix generation. Incorporates ChromaDB for vector-based storage of bug patterns and fixes, with automated search and retrieval capabilities for similar error patterns, while maintaining code execution safety through structured validation steps. Additional Resources 📚 YouTube Explanation DataScribe: AI-Powered Schema Explorer Overview 🔎 An intelligent agent system that enables intuitive exploration and querying of relational databases through natural language interactions. The system utilizes a fleet of specialized agents, coordinated by a stateful Supervisor, to handle schema discovery, query planning, and data analysis tasks while maintaining contextual understanding through vector-based relationship graphs. Implementation 🛠️ Leverages LangGraph for orchestrating a multi-agent workflow including discovery, inference, and planning agents, with NetworkX for relationship graph visualization and management. The system incorporates dynamic state management through TypedDict classes, maintains database context between sessions using a db_graph attribute, and includes safety measures to prevent unauthorized database modifications. Memory-Enhanced Email Agent (LangGraph & LangMem) Overview 🔎 An intelligent email assistant that combines three types of memory (semantic, episodic, and procedural) to create a system that improves over time. The agent can triage incoming emails, draft contextually appropriate responses using stored knowledge, and enhance its performance based on user feedback. Implementation 🛠️ Leverages LangGraph for workflow orchestration and LangMem for sophisticated memory management across multiple memory types. The system implements a triage workflow with memory-enhanced decision making, specialized tools for email composition and calendar management, and a self-improvement mechanism that updates its own prompts based on feedback and past performance. Additional Resources 📚 Blog Post 📰 News and Information Agents News TL;DR using LangGraph Overview 🔎 A news summarization system that generates concise TL;DR summaries of current events based on user queries. The system leverages large language models for decision making and summarization while integrating with news APIs to access up-to-date content, allowing users to quickly catch up on topics of interest through generated bullet-point summaries. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow combining multiple components: GPT-4o-mini for generating search terms and article summaries, NewsAPI for retrieving article metadata, BeautifulSoup for web scraping article content, and Asyncio for concurrent processing. The system follows a structured pipeline from query processing through article selection and summarization, managing the flow between components to produce relevant TL;DRs of current news articles. Additional Resources 📚 YouTube Explanation Blog Post AInsight: AI/ML Weekly News Reporter Overview 🔎 AInsight demonstrates how to build an intelligent news aggregation and summarization system using a multi-agent architecture. The system employs three specialized agents (NewsSearcher, Summarizer, Publisher) to automatically collect, process and summarize AI/ML news for general audiences through LangGraph-based workflow orchestration. Implementation 🛠️ Implements a state-managed multi-agent system using LangGraph to coordinate the news collection (Tavily API), technical content summarization (GPT-4), and report generation processes. The system features modular architecture with TypedDict-based state management, external API integration, and markdown report generation with customizable templates. Additional Resources 📚 YouTube Explanation Journalism-Focused AI Assistant Overview 🔎 A specialized AI assistant that helps journalists tackle modern journalistic challenges like misinformation, bias, and information overload. The system integrates fact-checking, tone analysis, summarization, and grammar review tools to enhance the accuracy and efficiency of journalistic work while maintaining ethical reporting standards. Implementation 🛠️ Leverages LangGraph to orchestrate a workflow of specialized components including language models for analysis and generation, web search integration via DuckDuckGo's API, document parsing tools like PyMuPDFLoader and WebBaseLoader, text splitting with RecursiveCharacterTextSplitter, and structured JSON outputs. Each component works together through a unified workflow to analyze content, verify facts, detect bias, extract quotes, and generate comprehensive reports. Blog Writer (Open AI Swarm) Overview 🔎 A multi-agent system for collaborative blog post creation using OpenAI's Swarm package. It leverages specialized agents to perform research, planning, writing, and editing tasks efficiently. Implementation 🛠️ Utilizes OpenAI's Swarm Package to manage agent interactions. Includes an admin, researcher, planner, writer, and editor, each with specific roles. The system follows a structured workflow: topic setting, outlining, research, drafting, and editing. This approach enhances content creation through task distribution, specialization, and collaborative problem-solving. Additional Resources 📚 Swarm Repo Podcast Internet Search and Generate Agent 🎙️ Overview 🔎 A two step agent that first searches the internet for a given topic and then generates a podcast on the topic found. The search step uses a search agent and search function to find the most relevant information. The second step uses a podcast generation agent and generation function to create a podcast on the topic found. Implementation 🛠️ Utilizes LangGraph to orchestrate a two-step workflow. The first step involves a search agent and function to gather information from the internet. The second step uses a podcast generation agent and function to create a podcast based on the gathered information. 🛍️ Shopping and Product Analysis Agents ShopGenie - Redefining Online Shopping Customer Experience Overview 🔎 An AI-powered shopping assistant that helps customers make informed purchasing decisions even without domain expertise. The system analyzes product information from multiple sources, compares specifications and reviews, identifies the best option based on user needs, and delivers recommendations through email with supporting video reviews, creating a comprehensive shopping experience. Implementation 🛠️ Uses LangGraph to orchestrate a workflow combining Tavily for web search, Llama-3.1-70B for structured data analysis and product comparison, and YouTube API for review video retrieval. The system processes search results through multiple nodes including schema mapping, product comparison, review identification, and email generation. Key features include structured Pydantic models for consistent data handling, retry mechanisms for robust API interactions, and email delivery through SMTP for sharing recommendations. Additional Resources 📚 YouTube Explanation Car Buyer AI Agent Overview 🔎 The Smart Product Buyer AI Agent demonstrates how to build an intelligent system that assists users in making informed purchasing decisions. Using LangGraph and LLM-based intelligence, the system processes user requirements, scrapes product listings from websites like AutoTrader, and provides detailed analysis and recommendations for car purchases. Implementation 🛠️ Implements a state-based workflow using LangGraph to coordinate user interaction, web scraping, and decision support. The system features TypedDict state management, async web scraping with Playwright, and integrates with external APIs for comprehensive product analysis. The implementation includes a Gradio interface for real-time chat interaction and modular scraper architecture for easy extension to additional product categories. Additional Resources 📚 YouTube Explanation 🎯 Task Management and Productivity Agents Taskifier - Intelligent Task Allocation & Management Overview 🔎 An intelligent task management system that analyzes user work styles and creates personalized task breakdown strategies, born from the observation that procrastination often stems from task ambiguity among students and early-career professionals. The system evaluates historical work patterns, gathers relevant task information through web search, and generates customized step-by-step approaches to optimize productivity and reduce workflow paralysis. Implementation 🛠️ Leverages LangGraph for orchestrating a multi-step workflow including work style analysis, information gathering via Tavily API, and customized plan generation. The system maintains state through the process, integrating historical work pattern data with fresh task research to output detailed, personalized task execution plans aligned with the user's natural working style. Additional Resources 📚 YouTube Explanation Grocery Management Agents System Overview 🔎 A multi-agent system built with CrewAI that automates grocery management tasks including receipt interpretation, expiration date tracking, inventory management, and recipe recommendations. The system uses specialized agents to extract data from receipts, estimate product shelf life, track consumption, and suggest recipes to minimize food waste. Implementation 🛠️ Implements four specialized agents using CrewAI - a Receipt Interpreter that extracts item details from receipts, an Expiration Date Estimator that determines shelf life using online sources, a Grocery Tracker that maintains inventory based on consumption, and a Recipe Recommender that suggests meals using available ingredients. Each agent has specific tools and tasks orchestrated through a crew workflow. Additional Resources 📚 YouTube Explanation 🔍 Quality Assurance and Testing Agents LangGraph-Based Systems Inspector Overview 🔎 A comprehensive testing and validation tool for LangGraph-based applications that automatically analyzes system architecture, generates test cases, and identifies potential vulnerabilities through multi-agent inspection. The inspector employs specialized AI testers to evaluate different aspects of the system, from basic functionality to security concerns and edge cases. Implementation 🛠️ Integrates LangGraph for workflow orchestration, multiple LLM-powered testing agents, and a structured evaluation pipeline that includes static analysis, test case generation, and results verification. The system uses Pydantic for data validation, NetworkX for graph representation, and implements a modular architecture that allows for parallel test execution and comprehensive result analysis. Additional Resources 📚 YouTube Explanation Blog Post EU Green Deal FAQ Bot Overview 🔎 The EU Green Deal FAQ Bot demonstrates how to build a RAG-based AI agent that helps businesses understand EU green deal policies. The system processes complex regulatory documents into manageable chunks and provides instant, accurate answers to common questions about environmental compliance, emissions reporting, and waste management requirements. Implementation 🛠️ Implements a sophisticated RAG pipeline using FAISS vectorstore for document storage, semantic chunking for preprocessing, and multiple specialized agents (Retriever, Summarizer, Evaluator) for query processing. The system features query rephrasing for improved accuracy, cross-reference with gold Q&A datasets for answer validation, and comprehensive evaluation metrics to ensure response quality and relevance. Additional Resources 📚 YouTube Explanation Systematic Review Automation System + Paper Draft Creation Overview 🔎 A comprehensive system for automating academic systematic reviews using a directed graph architecture and LangChain components. The system generates complete, publication-ready systematic review papers, automatically processing everything from literature search through final draft generation with multiple revision cycles. Implementation 🛠️ Utilizes a state-based graph workflow that handles paper search and selection (up to 3 papers), PDF processing, and generates a complete academic paper with all standard sections (abstract, introduction, methods, results, conclusions, references). The system incorporates multiple revision cycles with automated critique and improvement phases, all orchestrated through LangGraph state management. Additional Resources 📚 YouTube Explanation 🌟 Special Advanced Technique 🌟 Sophisticated Controllable Agent for Complex RAG Tasks 🤖 Overview 🔎 An advanced RAG solution designed to tackle complex questions that simple semantic similarity-based retrieval cannot solve. This approach uses a sophisticated deterministic graph as the "brain" 🧠 of a highly controllable autonomous agent, capable of answering non-trivial questions from your own data. Implementation 🛠️ • Implement a multi-step process involving question anonymization, high-level planning, task breakdown, adaptive information retrieval and question answering, continuous re-planning, and rigorous answer verification to ensure grounded and accurate responses. Getting Started To begin exploring and building GenAI agents: Clone this repository: Navigate to the technique you're interested in: Follow the detailed implementation guide in each technique's notebook. Contributing We welcome contributions from the community! If you have a new technique or improvement to suggest: Fork the repository Create your feature branch: git checkout -b feature/AmazingFeature Commit your changes: git commit -m 'Add some AmazingFeature' Push to the branch: git push origin feature/AmazingFeature Open a pull request Contributors License This project is licensed under a custom non-commercial license - see the LICENSE file for details. ⭐️ If you find this repository helpful, please consider giving it a star! Keywords: GenAI, Generative AI, Agents, NLP, AI, Machine Learning, Natural Language Processing, LLM, Conversational AI, Task-Oriented AI

AITreasureBox
github
LLM Vibe Score0.447
Human Vibe Score0.1014145151561518
superiorluMar 28, 2025

AITreasureBox

AI TreasureBox English | 中文 Collect practical AI repos, tools, websites, papers and tutorials on AI. Translated from ChatGPT, picture from Midjourney. Catalog Repos Tools Websites Report&Paper Tutorials Repos updated repos and stars every 2 hours and re-ranking automatically. | No. | Repos | Description | | ----:|:-----------------------------------------|:------------------------------------------------------------------------------------------------------| | 1|🔥codecrafters-io/build-your-own-x !2025-03-28364681428|Master programming by recreating your favorite technologies from scratch.| | 2|sindresorhus/awesome !2025-03-28353614145|😎 Awesome lists about all kinds of interesting topics| | 3|public-apis/public-apis !2025-03-28334299125|A collective list of free APIs| | 4|kamranahmedse/developer-roadmap !2025-03-2831269540|Interactive roadmaps, guides and other educational content to help developers grow in their careers.| | 5|vinta/awesome-python !2025-03-28238581114|A curated list of awesome Python frameworks, libraries, software and resources| | 6|practical-tutorials/project-based-learning !2025-03-28222661124|Curated list of project-based tutorials| | 7|tensorflow/tensorflow !2025-03-281888714|An Open Source Machine Learning Framework for Everyone| | 8|Significant-Gravitas/AutoGPT !2025-03-2817391338|An experimental open-source attempt to make GPT-4 fully autonomous.| | 9|jackfrued/Python-100-Days !2025-03-2816305141|Python - 100天从新手到大师| | 10|AUTOMATIC1111/stable-diffusion-webui !2025-03-2815011553|Stable Diffusion web UI| | 11|huggingface/transformers !2025-03-2814207850|🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.| | 12|ollama/ollama !2025-03-28135166151|Get up and running with Llama 2, Mistral, Gemma, and other large language models.| | 13|f/awesome-chatgpt-prompts !2025-03-2812212738 |This repo includes ChatGPT prompt curation to use ChatGPT better.| | 14|justjavac/free-programming-books-zhCN !2025-03-2811316119|📚 免费的计算机编程类中文书籍,欢迎投稿| | 15|krahets/hello-algo !2025-03-2811107930|《Hello 算法》:动画图解、一键运行的数据结构与算法教程。支持 Python, Java, C++, C, C#, JS, Go, Swift, Rust, Ruby, Kotlin, TS, Dart 代码。简体版和繁体版同步更新,English version ongoing| | 16|yt-dlp/yt-dlp !2025-03-28105801114|A feature-rich command-line audio/video downloader| | 17|langchain-ai/langchain !2025-03-2810449479|⚡ Building applications with LLMs through composability ⚡| | 18|goldbergyoni/nodebestpractices !2025-03-281021629|✅ The Node.js best practices list (July 2024)| | 19|puppeteer/puppeteer !2025-03-289018212|JavaScript API for Chrome and Firefox| | 20|pytorch/pytorch !2025-03-288833938|Tensors and Dynamic neural networks in Python with strong GPU acceleration| | 21|neovim/neovim !2025-03-288781482|Vim-fork focused on extensibility and usability| | 22|🔥🔥langgenius/dify !2025-03-2887342639 |One API for plugins and datasets, one interface for prompt engineering and visual operation, all for creating powerful AI applications.| | 23|mtdvio/every-programmer-should-know !2025-03-28867069|A collection of (mostly) technical things every software developer should know about| | 24|open-webui/open-webui !2025-03-2886025159|User-friendly WebUI for LLMs (Formerly Ollama WebUI)| | 25|ChatGPTNextWeb/NextChat !2025-03-288231521|✨ Light and Fast AI Assistant. Support: Web | | 26|supabase/supabase !2025-03-287990956|The open source Firebase alternative.| | 27|openai/whisper !2025-03-287905542|Robust Speech Recognition via Large-Scale Weak Supervision| | 28|home-assistant/core !2025-03-287773219|🏡 Open source home automation that puts local control and privacy first.| | 29|tensorflow/models !2025-03-28774694|Models and examples built with TensorFlow| | 30| ggerganov/llama.cpp !2025-03-287731836 | Port of Facebook's LLaMA model in C/C++ | | 31|3b1b/manim !2025-03-287641918|Animation engine for explanatory math videos| | 32|microsoft/generative-ai-for-beginners !2025-03-287623860|12 Lessons, Get Started Building with Generative AI 🔗 https://microsoft.github.io/generative-ai-for-beginners/| | 33|nomic-ai/gpt4all !2025-03-28729285 |gpt4all: an ecosystem of open-source chatbots trained on a massive collection of clean assistant data including code, stories and dialogue| | 34|comfyanonymous/ComfyUI !2025-03-2872635111|The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.| | 35|bregman-arie/devops-exercises !2025-03-2872225209|Linux, Jenkins, AWS, SRE, Prometheus, Docker, Python, Ansible, Git, Kubernetes, Terraform, OpenStack, SQL, NoSQL, Azure, GCP, DNS, Elastic, Network, Virtualization. DevOps Interview Questions| | 36|elastic/elasticsearch !2025-03-28721419|Free and Open, Distributed, RESTful Search Engine| | 37|🔥n8n-io/n8n !2025-03-2872093495|Free and source-available fair-code licensed workflow automation tool. Easily automate tasks across different services.| | 38|fighting41love/funNLP !2025-03-287200422|The Most Powerful NLP-Weapon Arsenal| | 39|hoppscotch/hoppscotch !2025-03-287060134|Open source API development ecosystem - https://hoppscotch.io (open-source alternative to Postman, Insomnia)| | 40|abi/screenshot-to-code !2025-03-286932817|Drop in a screenshot and convert it to clean HTML/Tailwind/JS code| | 41|binary-husky/gptacademic !2025-03-28680374|Academic Optimization of GPT| | 42|d2l-ai/d2l-zh !2025-03-286774142|Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries| | 43|josephmisiti/awesome-machine-learning !2025-03-286739215|A curated list of awesome Machine Learning frameworks, libraries and software.| | 44|grafana/grafana !2025-03-286725414|The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.| | 45|python/cpython !2025-03-286602218|The Python programming language| | 46|apache/superset !2025-03-286519020|Apache Superset is a Data Visualization and Data Exploration Platform| | 47|xtekky/gpt4free !2025-03-28639391 |decentralizing the Ai Industry, free gpt-4/3.5 scripts through several reverse engineered API's ( poe.com, phind.com, chat.openai.com etc...)| | 48|sherlock-project/sherlock !2025-03-286332536|Hunt down social media accounts by username across social networks| | 49|twitter/the-algorithm !2025-03-28630586 |Source code for Twitter's Recommendation Algorithm| | 50|keras-team/keras !2025-03-28627835|Deep Learning for humans| | 51|openai/openai-cookbook !2025-03-28625136 |Examples and guides for using the OpenAI API| | 52|immich-app/immich !2025-03-286238670|High performance self-hosted photo and video management solution.| | 53|AppFlowy-IO/AppFlowy !2025-03-286173528|Bring projects, wikis, and teams together with AI. AppFlowy is an AI collaborative workspace where you achieve more without losing control of your data. The best open source alternative to Notion.| | 54|scikit-learn/scikit-learn !2025-03-286158212|scikit-learn: machine learning in Python| | 55|binhnguyennus/awesome-scalability !2025-03-286117021|The Patterns of Scalable, Reliable, and Performant Large-Scale Systems| | 56|labmlai/annotateddeeplearningpaperimplementations !2025-03-285951726|🧑‍🏫 59 Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠| | 57|OpenInterpreter/open-interpreter !2025-03-285894710|A natural language interface for computers| | 58|lobehub/lobe-chat !2025-03-285832054|🤖 Lobe Chat - an open-source, extensible (Function Calling), high-performance chatbot framework. It supports one-click free deployment of your private ChatGPT/LLM web application.| | 59|meta-llama/llama !2025-03-28579536|Inference code for Llama models| | 60|nuxt/nuxt !2025-03-28566437|The Intuitive Vue Framework.| | 61|imartinez/privateGPT !2025-03-28555192|Interact with your documents using the power of GPT, 100% privately, no data leaks| | 62|Stirling-Tools/Stirling-PDF !2025-03-285500846|#1 Locally hosted web application that allows you to perform various operations on PDF files| | 63|PlexPt/awesome-chatgpt-prompts-zh !2025-03-285459720|ChatGPT Chinese Training Guide. Guidelines for various scenarios. Learn how to make it listen to you| | 64|dair-ai/Prompt-Engineering-Guide !2025-03-285451025 |🐙 Guides, papers, lecture, notebooks and resources for prompt engineering| | 65|ageitgey/facerecognition !2025-03-28544382|The world's simplest facial recognition api for Python and the command line| | 66|CorentinJ/Real-Time-Voice-Cloning !2025-03-285384814|Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 67|geekan/MetaGPT !2025-03-285375376|The Multi-Agent Meta Programming Framework: Given one line Requirement, return PRD, Design, Tasks, Repo | | 68|gpt-engineer-org/gpt-engineer !2025-03-285367419|Specify what you want it to build, the AI asks for clarification, and then builds it.| | 69|lencx/ChatGPT !2025-03-2853653-3|🔮 ChatGPT Desktop Application (Mac, Windows and Linux)| | 70|deepfakes/faceswap !2025-03-28535672|Deepfakes Software For All| | 71|langflow-ai/langflow !2025-03-285319584|Langflow is a low-code app builder for RAG and multi-agent AI applications. It’s Python-based and agnostic to any model, API, or database.| | 72|commaai/openpilot !2025-03-28529759|openpilot is an operating system for robotics. Currently, it upgrades the driver assistance system on 275+ supported cars.| | 73|clash-verge-rev/clash-verge-rev !2025-03-2852848124|Continuation of Clash Verge - A Clash Meta GUI based on Tauri (Windows, MacOS, Linux)| | 74|All-Hands-AI/OpenHands !2025-03-285150675|🙌 OpenHands: Code Less, Make More| | 75|xai-org/grok-1 !2025-03-28502504|Grok open release| | 76|meilisearch/meilisearch !2025-03-284999122|A lightning-fast search API that fits effortlessly into your apps, websites, and workflow| | 77|🔥browser-use/browser-use !2025-03-2849910294|Make websites accessible for AI agents| | 78|jgthms/bulma !2025-03-28496783|Modern CSS framework based on Flexbox| | 79|facebookresearch/segment-anything !2025-03-284947116|The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.| |!green-up-arrow.svg 80|hacksider/Deep-Live-Cam !2025-03-2848612146|real time face swap and one-click video deepfake with only a single image (uncensored)| |!red-down-arrow 81|mlabonne/llm-course !2025-03-284860934|Course with a roadmap and notebooks to get into Large Language Models (LLMs).| | 82|PaddlePaddle/PaddleOCR !2025-03-284785530|Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)| | 83|alist-org/alist !2025-03-284732618|🗂️A file list/WebDAV program that supports multiple storages, powered by Gin and Solidjs. / 一个支持多存储的文件列表/WebDAV程序,使用 Gin 和 Solidjs。| | 84|infiniflow/ragflow !2025-03-2847027129|RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding.| | 85|Avik-Jain/100-Days-Of-ML-Code !2025-03-284679312|100 Days of ML Coding| | 86|v2ray/v2ray-core !2025-03-28458706|A platform for building proxies to bypass network restrictions.| | 87|hiyouga/LLaMA-Factory !2025-03-284555881|Easy-to-use LLM fine-tuning framework (LLaMA, BLOOM, Mistral, Baichuan, Qwen, ChatGLM)| | 88|Asabeneh/30-Days-Of-Python !2025-03-284544930|30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace. These videos may help too: https://www.youtube.com/channel/UC7PNRuno1rzYPb1xLa4yktw| | 89|type-challenges/type-challenges !2025-03-284488511|Collection of TypeScript type challenges with online judge| | 90|lllyasviel/Fooocus !2025-03-284402716|Focus on prompting and generating| | 91|RVC-Boss/GPT-SoVITS !2025-03-284327738|1 min voice data can also be used to train a good TTS model! (few shot voice cloning)| | 92|rasbt/LLMs-from-scratch !2025-03-284320667|Implementing a ChatGPT-like LLM from scratch, step by step| | 93|oobabooga/text-generation-webui !2025-03-284302012 |A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, OPT, and GALACTICA.| | 94|vllm-project/vllm !2025-03-2842982102|A high-throughput and memory-efficient inference and serving engine for LLMs| | 95|dani-garcia/vaultwarden !2025-03-284297121|Unofficial Bitwarden compatible server written in Rust, formerly known as bitwarden_rs| | 96|microsoft/autogen !2025-03-284233049|Enable Next-Gen Large Language Model Applications. Join our Discord: https://discord.gg/pAbnFJrkgZ| | 97|jeecgboot/JeecgBoot !2025-03-284205920|🔥「企业级低代码平台」前后端分离架构SpringBoot 2.x/3.x,SpringCloud,Ant Design&Vue3,Mybatis,Shiro,JWT。强大的代码生成器让前后端代码一键生成,无需写任何代码! 引领新的开发模式OnlineCoding->代码生成->手工MERGE,帮助Java项目解决70%重复工作,让开发更关注业务,既能快速提高效率,帮助公司节省成本,同时又不失灵活性。| | 98|Mintplex-Labs/anything-llm !2025-03-284186955|A full-stack application that turns any documents into an intelligent chatbot with a sleek UI and easier way to manage your workspaces.| | 99|THUDM/ChatGLM-6B !2025-03-28410192 |ChatGLM-6B: An Open Bilingual Dialogue Language Model| | 100|hpcaitech/ColossalAI !2025-03-28406902|Making large AI models cheaper, faster and more accessible| | 101|Stability-AI/stablediffusion !2025-03-28406337|High-Resolution Image Synthesis with Latent Diffusion Models| | 102|mingrammer/diagrams !2025-03-28405063|🎨 Diagram as Code for prototyping cloud system architectures| | 103|Kong/kong !2025-03-28404616|🦍 The Cloud-Native API Gateway and AI Gateway.| | 104|getsentry/sentry !2025-03-284040913|Developer-first error tracking and performance monitoring| | 105| karpathy/nanoGPT !2025-03-284034613 |The simplest, fastest repository for training/finetuning medium-sized GPTs| | 106|fastlane/fastlane !2025-03-2840014-1|🚀 The easiest way to automate building and releasing your iOS and Android apps| | 107|psf/black !2025-03-28399765|The uncompromising Python code formatter| | 108|OpenBB-finance/OpenBBTerminal !2025-03-283972074 |Investment Research for Everyone, Anywhere.| | 109|2dust/v2rayNG !2025-03-283943415|A V2Ray client for Android, support Xray core and v2fly core| | 110|apache/airflow !2025-03-283937314|Apache Airflow - A platform to programmatically author, schedule, and monitor workflows| | 111|KRTirtho/spotube !2025-03-283902746|🎧 Open source Spotify client that doesn't require Premium nor uses Electron! Available for both desktop & mobile!| | 112|coqui-ai/TTS !2025-03-283889719 |🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production| | 113|ggerganov/whisper.cpp !2025-03-283882116|Port of OpenAI's Whisper model in C/C++| | 114|ultralytics/ultralytics !2025-03-283866951|NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite| | 115|typst/typst !2025-03-283863914|A new markup-based typesetting system that is powerful and easy to learn.| | 116|streamlit/streamlit !2025-03-283845828|Streamlit — A faster way to build and share data apps.| | 117|LC044/WeChatMsg !2025-03-283836931|提取微信聊天记录,将其导出成HTML、Word、Excel文档永久保存,对聊天记录进行分析生成年度聊天报告,用聊天数据训练专属于个人的AI聊天助手| | 118|lm-sys/FastChat !2025-03-283822112 |An open platform for training, serving, and evaluating large languages. Release repo for Vicuna and FastChat-T5.| | 119|NaiboWang/EasySpider !2025-03-283819013|A visual no-code/code-free web crawler/spider易采集:一个可视化浏览器自动化测试/数据采集/爬虫软件,可以无代码图形化的设计和执行爬虫任务。别名:ServiceWrapper面向Web应用的智能化服务封装系统。| | 120|microsoft/DeepSpeed !2025-03-283765816 |A deep learning optimization library that makes distributed training and inference easy, efficient, and effective| | 121|QuivrHQ/quivr !2025-03-28376067|Your GenAI Second Brain 🧠 A personal productivity assistant (RAG) ⚡️🤖 Chat with your docs (PDF, CSV, ...) & apps using Langchain, GPT 3.5 / 4 turbo, Private, Anthropic, VertexAI, Ollama, LLMs, that you can share with users ! Local & Private alternative to OpenAI GPTs & ChatGPT powered by retrieval-augmented generation.| | 122|freqtrade/freqtrade !2025-03-283757817 |Free, open source crypto trading bot| | 123|suno-ai/bark !2025-03-28373178 |🔊 Text-Prompted Generative Audio Model| | 124|🔥cline/cline !2025-03-2837307282|Autonomous coding agent right in your IDE, capable of creating/editing files, executing commands, and more with your permission every step of the way.| | 125|LAION-AI/Open-Assistant !2025-03-28372712 |OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so.| | 126|penpot/penpot !2025-03-283716217|Penpot: The open-source design tool for design and code collaboration| | 127|gradio-app/gradio !2025-03-283713320|Build and share delightful machine learning apps, all in Python. 🌟 Star to support our work!| | 128|FlowiseAI/Flowise !2025-03-283667135 |Drag & drop UI to build your customized LLM flow using LangchainJS| | 129|SimplifyJobs/Summer2025-Internships !2025-03-28366506|Collection of Summer 2025 tech internships!| | 130|TencentARC/GFPGAN !2025-03-28365027 |GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration.| | 131|ray-project/ray !2025-03-283626819|Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for accelerating ML workloads.| | 132|babysor/MockingBird !2025-03-28360498|🚀AI拟声: 5秒内克隆您的声音并生成任意语音内容 Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 133|unslothai/unsloth !2025-03-283603691|5X faster 50% less memory LLM finetuning| | 134|zhayujie/chatgpt-on-wechat !2025-03-283600124 |Wechat robot based on ChatGPT, which uses OpenAI api and itchat library| | 135|upscayl/upscayl !2025-03-283599824|🆙 Upscayl - Free and Open Source AI Image Upscaler for Linux, MacOS and Windows built with Linux-First philosophy.| | 136|freeCodeCamp/devdocs !2025-03-28359738|API Documentation Browser| | 137|XingangPan/DragGAN !2025-03-28359043 |Code for DragGAN (SIGGRAPH 2023)| | 138|2noise/ChatTTS !2025-03-283543922|ChatTTS is a generative speech model for daily dialogue.| | 139|google-research/google-research !2025-03-28352207 |Google Research| | 140|karanpratapsingh/system-design !2025-03-28351003|Learn how to design systems at scale and prepare for system design interviews| | 141|lapce/lapce !2025-03-28350855|Lightning-fast and Powerful Code Editor written in Rust| | 142| microsoft/TaskMatrix !2025-03-2834500-3 | Talking, Drawing and Editing with Visual Foundation Models| | 143|chatchat-space/Langchain-Chatchat !2025-03-283442020|Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain| | 144|unclecode/crawl4ai !2025-03-283434163|🔥🕷️ Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper| | 145|Bin-Huang/chatbox !2025-03-283374733 |A desktop app for GPT-4 / GPT-3.5 (OpenAI API) that supports Windows, Mac & Linux| | 146|milvus-io/milvus !2025-03-283366525 |A cloud-native vector database, storage for next generation AI applications| | 147|mendableai/firecrawl !2025-03-2833297128|🔥 Turn entire websites into LLM-ready markdown| | 148|pola-rs/polars !2025-03-283269320|Fast multi-threaded, hybrid-out-of-core query engine focussing on DataFrame front-ends| | 149|Pythagora-io/gpt-pilot !2025-03-28325321|PoC for a scalable dev tool that writes entire apps from scratch while the developer oversees the implementation| | 150|hashicorp/vault !2025-03-28320797|A tool for secrets management, encryption as a service, and privileged access management| | 151|shardeum/shardeum !2025-03-28319580|Shardeum is an EVM based autoscaling blockchain| | 152|Chanzhaoyu/chatgpt-web !2025-03-28319242 |A demonstration website built with Express and Vue3 called ChatGPT| | 153|lllyasviel/ControlNet !2025-03-283186413 |Let us control diffusion models!| | 154|google/jax !2025-03-28317727|Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more| | 155|facebookresearch/detectron2 !2025-03-28315987|Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.| | 156|myshell-ai/OpenVoice !2025-03-28315233|Instant voice cloning by MyShell| | 157|TheAlgorithms/C-Plus-Plus !2025-03-283151411|Collection of various algorithms in mathematics, machine learning, computer science and physics implemented in C++ for educational purposes.| | 158|hiroi-sora/Umi-OCR !2025-03-283138129|OCR图片转文字识别软件,完全离线。截屏/批量导入图片,支持多国语言、合并段落、竖排文字。可排除水印区域,提取干净的文本。基于 PaddleOCR 。| | 159|mudler/LocalAI !2025-03-283127815|🤖 The free, Open Source OpenAI alternative. Self-hosted, community-driven and local-first. Drop-in replacement for OpenAI running on consumer-grade hardware. No GPU required. Runs gguf, transformers, diffusers and many more models architectures. It allows to generate Text, Audio, Video, Images. Also with voice cloning capabilities.| | 160|facebookresearch/fairseq !2025-03-28312124 |Facebook AI Research Sequence-to-Sequence Toolkit written in Python.| | 161|alibaba/nacos !2025-03-28310559|an easy-to-use dynamic service discovery, configuration and service management platform for building cloud native applications.| | 162|yunjey/pytorch-tutorial !2025-03-28310326|PyTorch Tutorial for Deep Learning Researchers| | 163|v2fly/v2ray-core !2025-03-28307448|A platform for building proxies to bypass network restrictions.| | 164|mckaywrigley/chatbot-ui !2025-03-283067714|The open-source AI chat interface for everyone.| | 165|TabbyML/tabby !2025-03-28305949 |Self-hosted AI coding assistant| | 166|deepseek-ai/awesome-deepseek-integration !2025-03-283053193|| | 167|danielmiessler/fabric !2025-03-283028914|fabric is an open-source framework for augmenting humans using AI.| | 168|xinntao/Real-ESRGAN !2025-03-283026623 |Real-ESRGAN aims at developing Practical Algorithms for General Image/Video Restoration.| | 169|paul-gauthier/aider !2025-03-283014642|aider is GPT powered coding in your terminal| | 170|tatsu-lab/stanfordalpaca !2025-03-28299022 |Code and documentation to train Stanford's Alpaca models, and generate the data.| | 171|DataTalksClub/data-engineering-zoomcamp !2025-03-282971817|Free Data Engineering course!| | 172|HeyPuter/puter !2025-03-282967014|🌐 The Internet OS! Free, Open-Source, and Self-Hostable.| | 173|mli/paper-reading !2025-03-282962314|Classic Deep Learning and In-Depth Reading of New Papers Paragraph by Paragraph| | 174|linexjlin/GPTs !2025-03-28295568|leaked prompts of GPTs| | 175|s0md3v/roop !2025-03-28295286 |one-click deepfake (face swap)| | 176|JushBJJ/Mr.-Ranedeer-AI-Tutor !2025-03-2829465-1 |A GPT-4 AI Tutor Prompt for customizable personalized learning experiences.| | 177|opendatalab/MinerU !2025-03-282927074|A one-stop, open-source, high-quality data extraction tool, supports PDF/webpage/e-book extraction.一站式开源高质量数据提取工具,支持PDF/网页/多格式电子书提取。| | 178|mouredev/Hello-Python !2025-03-282920720|Curso para aprender el lenguaje de programación Python desde cero y para principiantes. 75 clases, 37 horas en vídeo, código, proyectos y grupo de chat. Fundamentos, frontend, backend, testing, IA...| | 179|Lightning-AI/pytorch-lightning !2025-03-28292039|Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes.| | 180|crewAIInc/crewAI !2025-03-282919344|Framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.| | 181|facebook/folly !2025-03-282916612|An open-source C++ library developed and used at Facebook.| | 182|google-ai-edge/mediapipe !2025-03-28291519|Cross-platform, customizable ML solutions for live and streaming media.| | 183| getcursor/cursor !2025-03-282892025 | An editor made for programming with AI| | 184|chatanywhere/GPTAPIfree !2025-03-282856424|Free ChatGPT API Key, Free ChatGPT API, supports GPT-4 API (free), ChatGPT offers a free domestic forwarding API that allows direct connections without the need for a proxy. It can be used in conjunction with software/plugins like ChatBox, significantly reducing interface usage costs. Enjoy unlimited and unrestricted chatting within China| | 185|meta-llama/llama3 !2025-03-28285552|The official Meta Llama 3 GitHub site| | 186|tinygrad/tinygrad !2025-03-282845811|You like pytorch? You like micrograd? You love tinygrad! ❤️| | 187|google-research/tuningplaybook !2025-03-282841514|A playbook for systematically maximizing the performance of deep learning models.| | 188|huggingface/diffusers !2025-03-282830222|🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.| | 189|tokio-rs/tokio !2025-03-28282408|A runtime for writing reliable asynchronous applications with Rust. Provides I/O, networking, scheduling, timers, ...| | 190|RVC-Project/Retrieval-based-Voice-Conversion-WebUI !2025-03-282823817|Voice data !2025-03-282822612|Jan is an open source alternative to ChatGPT that runs 100% offline on your computer| | 192|openai/CLIP !2025-03-282814720|CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image| | 193|🔥khoj-ai/khoj !2025-03-2828112313|Your AI second brain. A copilot to get answers to your questions, whether they be from your own notes or from the internet. Use powerful, online (e.g gpt4) or private, local (e.g mistral) LLMs. Self-host locally or use our web app. Access from Obsidian, Emacs, Desktop app, Web or Whatsapp.| | 194| acheong08/ChatGPT !2025-03-2828054-2 | Reverse engineered ChatGPT API | | 195|iperov/DeepFaceLive !2025-03-28279345 |Real-time face swap for PC streaming or video calls| | 196|eugeneyan/applied-ml !2025-03-28278471|📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production.| | 197|XTLS/Xray-core !2025-03-282778213|Xray, Penetrates Everything. Also the best v2ray-core, with XTLS support. Fully compatible configuration.| | 198|feder-cr/JobsApplierAIAgent !2025-03-282776410|AutoJobsApplierAI_Agent aims to easy job hunt process by automating the job application process. Utilizing artificial intelligence, it enables users to apply for multiple jobs in an automated and personalized way.| | 199|mindsdb/mindsdb !2025-03-282750631|The platform for customizing AI from enterprise data| | 200|DataExpert-io/data-engineer-handbook !2025-03-282721611|This is a repo with links to everything you'd ever want to learn about data engineering| | 201|exo-explore/exo !2025-03-282721633|Run your own AI cluster at home with everyday devices 📱💻 🖥️⌚| | 202|taichi-dev/taichi !2025-03-2826926-1|Productive, portable, and performant GPU programming in Python.| | 203|mem0ai/mem0 !2025-03-282689134|The memory layer for Personalized AI| | 204|svc-develop-team/so-vits-svc !2025-03-28268096 |SoftVC VITS Singing Voice Conversion| | 205|OpenBMB/ChatDev !2025-03-28265624|Create Customized Software using Natural Language Idea (through Multi-Agent Collaboration)| | 206|roboflow/supervision !2025-03-282632010|We write your reusable computer vision tools. 💜| | 207|drawdb-io/drawdb !2025-03-282626913|Free, simple, and intuitive online database design tool and SQL generator.| | 208|karpathy/llm.c !2025-03-28261633|LLM training in simple, raw C/CUDA| | 209|airbnb/lottie-ios !2025-03-28261431|An iOS library to natively render After Effects vector animations| | 210|openai/openai-python !2025-03-282607713|The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language.| | 211|academic/awesome-datascience !2025-03-28259876|📝 An awesome Data Science repository to learn and apply for real world problems.| | 212|harry0703/MoneyPrinterTurbo !2025-03-282576618|Generate short videos with one click using a large model| | 213|gabime/spdlog !2025-03-282571511|Fast C++ logging library.| | 214|ocrmypdf/OCRmyPDF !2025-03-2825674217|OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched| | 215|Vision-CAIR/MiniGPT-4 !2025-03-28256170 |Enhancing Vision-language Understanding with Advanced Large Language Models| | 216|Stability-AI/generative-models !2025-03-28255936|Generative Models by Stability AI| | 217|DS4SD/docling !2025-03-282555662|Get your docs ready for gen AI| | 218|PostHog/posthog !2025-03-282533227|🦔 PostHog provides open-source product analytics, session recording, feature flagging and A/B testing that you can self-host.| | 219|nrwl/nx !2025-03-282509612|Smart Monorepos · Fast CI| | 220|continuedev/continue !2025-03-282500737|⏩ the open-source copilot chat for software development—bring the power of ChatGPT to VS Code| | 221|opentofu/opentofu !2025-03-28247968|OpenTofu lets you declaratively manage your cloud infrastructure.| | 222|invoke-ai/InvokeAI !2025-03-28247293|InvokeAI is a leading creative engine for Stable Diffusion models, empowering professionals, artists, and enthusiasts to generate and create visual media using the latest AI-driven technologies. The solution offers an industry leading WebUI, supports terminal use through a CLI, and serves as the foundation for multiple commercial products.| | 223|deepinsight/insightface !2025-03-282471615 |State-of-the-art 2D and 3D Face Analysis Project| | 224|apache/flink !2025-03-28246865|Apache Flink| | 225|ComposioHQ/composio !2025-03-28246436|Composio equips agents with well-crafted tools empowering them to tackle complex tasks| | 226|Genesis-Embodied-AI/Genesis !2025-03-282458314|A generative world for general-purpose robotics & embodied AI learning.| | 227|stretchr/testify !2025-03-28243184|A toolkit with common assertions and mocks that plays nicely with the standard library| | 228| yetone/openai-translator !2025-03-28242921 | Browser extension and cross-platform desktop application for translation based on ChatGPT API | | 229|frappe/erpnext !2025-03-282425211|Free and Open Source Enterprise Resource Planning (ERP)| | 230|songquanpeng/one-api !2025-03-282410034|OpenAI 接口管理 & 分发系统,支持 Azure、Anthropic Claude、Google PaLM 2 & Gemini、智谱 ChatGLM、百度文心一言、讯飞星火认知、阿里通义千问、360 智脑以及腾讯混元,可用于二次分发管理 key,仅单可执行文件,已打包好 Docker 镜像,一键部署,开箱即用. OpenAI key management & redistribution system, using a single API for all LLMs, and features an English UI.| | 231| microsoft/JARVIS !2025-03-28240604 | a system to connect LLMs with ML community | | 232|google/flatbuffers !2025-03-28239965|FlatBuffers: Memory Efficient Serialization Library| | 233|microsoft/graphrag !2025-03-282398928|A modular graph-based Retrieval-Augmented Generation (RAG) system| | 234|rancher/rancher !2025-03-28239675|Complete container management platform| | 235|bazelbuild/bazel !2025-03-282384618|a fast, scalable, multi-language and extensible build system| | 236|modularml/mojo !2025-03-28238236 |The Mojo Programming Language| | 237|danny-avila/LibreChat !2025-03-282378753|Enhanced ChatGPT Clone: Features OpenAI, GPT-4 Vision, Bing, Anthropic, OpenRouter, Google Gemini, AI model switching, message search, langchain, DALL-E-3, ChatGPT Plugins, OpenAI Functions, Secure Multi-User System, Presets, completely open-source for self-hosting. More features in development| |!green-up-arrow.svg 238|🔥🔥🔥Shubhamsaboo/awesome-llm-apps !2025-03-28237391211|Collection of awesome LLM apps with RAG using OpenAI, Anthropic, Gemini and opensource models.| |!red-down-arrow 239|microsoft/semantic-kernel !2025-03-282373611|Integrate cutting-edge LLM technology quickly and easily into your apps| |!red-down-arrow 240|TheAlgorithms/Rust !2025-03-28236995|All Algorithms implemented in Rust| | 241|stanford-oval/storm !2025-03-28236326|An LLM-powered knowledge curation system that researches a topic and generates a full-length report with citations.| | 242|openai/gpt-2 !2025-03-28232483|Code for the paper "Language Models are Unsupervised Multitask Learners"| | 243|labring/FastGPT !2025-03-282319445|A platform that uses the OpenAI API to quickly build an AI knowledge base, supporting many-to-many relationships.| | 244|pathwaycom/llm-app !2025-03-2822928-10|Ready-to-run cloud templates for RAG, AI pipelines, and enterprise search with live data. 🐳Docker-friendly.⚡Always in sync with Sharepoint, Google Drive, S3, Kafka, PostgreSQL, real-time data APIs, and more.| | 245|warpdotdev/Warp !2025-03-282286825|Warp is a modern, Rust-based terminal with AI built in so you and your team can build great software, faster.| | 246|🔥agno-agi/agno !2025-03-2822833298|Agno is a lightweight library for building Multimodal Agents. It exposes LLMs as a unified API and gives them superpowers like memory, knowledge, tools and reasoning.| | 247|qdrant/qdrant !2025-03-282275214 |Qdrant - Vector Database for the next generation of AI applications. Also available in the cloud https://cloud.qdrant.io/| | 248|ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code !2025-03-282271815|500 AI Machine learning Deep learning Computer vision NLP Projects with code| | 249|stanfordnlp/dspy !2025-03-282268321|Stanford DSPy: The framework for programming—not prompting—foundation models| | 250|PaddlePaddle/Paddle !2025-03-28226246|PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)| | 251|zulip/zulip !2025-03-28225464|Zulip server and web application. Open-source team chat that helps teams stay productive and focused.| | 252|Hannibal046/Awesome-LLM !2025-03-282240721|Awesome-LLM: a curated list of Large Language Model| | 253|facefusion/facefusion !2025-03-282218812|Next generation face swapper and enhancer| | 254|Mozilla-Ocho/llamafile !2025-03-28220624|Distribute and run LLMs with a single file.| | 255|yuliskov/SmartTube !2025-03-282201614|SmartTube - an advanced player for set-top boxes and tvs running Android OS| | 256|haotian-liu/LLaVA !2025-03-282201316 |Large Language-and-Vision Assistant built towards multimodal GPT-4 level capabilities.| | 257|ashishps1/awesome-system-design-resources !2025-03-282189367|This repository contains System Design resources which are useful while preparing for interviews and learning Distributed Systems| | 258|Cinnamon/kotaemon !2025-03-28218248|An open-source RAG-based tool for chatting with your documents.| | 259|CodePhiliaX/Chat2DB !2025-03-282179757|🔥🔥🔥AI-driven database tool and SQL client, The hottest GUI client, supporting MySQL, Oracle, PostgreSQL, DB2, SQL Server, DB2, SQLite, H2, ClickHouse, and more.| | 260|blakeblackshear/frigate !2025-03-282177113|NVR with realtime local object detection for IP cameras| | 261|facebookresearch/audiocraft !2025-03-28217111|Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.| | 262|karpathy/minGPT !2025-03-28216567|A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training| | 263|grpc/grpc-go !2025-03-282159510|The Go language implementation of gRPC. HTTP/2 based RPC| | 264|HumanSignal/label-studio !2025-03-282137618|Label Studio is a multi-type data labeling and annotation tool with standardized output format| | 265|yoheinakajima/babyagi !2025-03-28212764 |uses OpenAI and Pinecone APIs to create, prioritize, and execute tasks, This is a pared-down version of the original Task-Driven Autonomous Agent| | 266|deepseek-ai/DeepSeek-Coder !2025-03-282118210|DeepSeek Coder: Let the Code Write Itself| | 267|BuilderIO/gpt-crawler !2025-03-282118010|Crawl a site to generate knowledge files to create your own custom GPT from a URL| | 268| openai/chatgpt-retrieval-plugin !2025-03-2821152-1 | Plugins are chat extensions designed specifically for language models like ChatGPT, enabling them to access up-to-date information, run computations, or interact with third-party services in response to a user's request.| | 269|microsoft/OmniParser !2025-03-282113123|A simple screen parsing tool towards pure vision based GUI agent| | 270|black-forest-labs/flux !2025-03-282107219|Official inference repo for FLUX.1 models| | 271|ItzCrazyKns/Perplexica !2025-03-282099154|Perplexica is an AI-powered search engine. It is an Open source alternative to Perplexity AI| | 272|microsoft/unilm !2025-03-28209876|Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities| | 273|Sanster/lama-cleaner !2025-03-282077614|Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.| | 274|assafelovic/gpt-researcher !2025-03-282057222|GPT based autonomous agent that does online comprehensive research on any given topic| | 275|PromtEngineer/localGPT !2025-03-28204230 |Chat with your documents on your local device using GPT models. No data leaves your device and 100% private.| | 276|elastic/kibana !2025-03-28203482|Your window into the Elastic Stack| | 277|fishaudio/fish-speech !2025-03-282033222|Brand new TTS solution| | 278|mlc-ai/mlc-llm !2025-03-282028110 |Enable everyone to develop, optimize and deploy AI models natively on everyone's devices.| | 279|deepset-ai/haystack !2025-03-282005320|🔍 Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs (GPT-4, ChatGPT and alike). Haystack offers production-ready tools to quickly build complex question answering, semantic search, text generation applications, and more.| | 280|tree-sitter/tree-sitter !2025-03-28200487|An incremental parsing system for programming tools| | 281|Anjok07/ultimatevocalremovergui !2025-03-281999811|GUI for a Vocal Remover that uses Deep Neural Networks.| | 282|guidance-ai/guidance !2025-03-28199622|A guidance language for controlling large language models.| | 283|ml-explore/mlx !2025-03-28199619|MLX: An array framework for Apple silicon| | 284|mlflow/mlflow !2025-03-281995314|Open source platform for the machine learning lifecycle| | 285|ml-tooling/best-of-ml-python !2025-03-28198631|🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.| | 286|BerriAI/litellm !2025-03-281981862|Call all LLM APIs using the OpenAI format. Use Bedrock, Azure, OpenAI, Cohere, Anthropic, Ollama, Sagemaker, HuggingFace, Replicate (100+ LLMs)| | 287|LazyVim/LazyVim !2025-03-281981320|Neovim config for the lazy| | 288|wez/wezterm !2025-03-281976018|A GPU-accelerated cross-platform terminal emulator and multiplexer written by @wez and implemented in Rust| | 289|valkey-io/valkey !2025-03-281970416|A flexible distributed key-value datastore that supports both caching and beyond caching workloads.| | 290|LiLittleCat/awesome-free-chatgpt !2025-03-28196185|🆓免费的 ChatGPT 镜像网站列表,持续更新。List of free ChatGPT mirror sites, continuously updated.| | 291|Byaidu/PDFMathTranslate !2025-03-281947645|PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/Docker| | 292|openai/swarm !2025-03-281947111|Educational framework exploring ergonomic, lightweight multi-agent orchestration. Managed by OpenAI Solution team.| | 293|HqWu-HITCS/Awesome-Chinese-LLM !2025-03-281921423|Organizing smaller, cost-effective, privately deployable open-source Chinese language models, including related datasets and tutorials| | 294|stitionai/devika !2025-03-28190903|Devika is an Agentic AI Software Engineer that can understand high-level human instructions, break them down into steps, research relevant information, and write code to achieve the given objective. Devika aims to be a competitive open-source alternative to Devin by Cognition AI.| | 295|OpenBMB/MiniCPM-o !2025-03-28190887|MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone| | 296|samber/lo !2025-03-281904815|💥 A Lodash-style Go library based on Go 1.18+ Generics (map, filter, contains, find...)| | 297|chroma-core/chroma !2025-03-281895221 |the AI-native open-source embedding database| | 298|DarkFlippers/unleashed-firmware !2025-03-28189278|Flipper Zero Unleashed Firmware| | 299|brave/brave-browser !2025-03-281892710|Brave browser for Android, iOS, Linux, macOS, Windows.| | 300| tloen/alpaca-lora !2025-03-28188641 | Instruct-tune LLaMA on consumer hardware| | 301|VinciGit00/Scrapegraph-ai !2025-03-281884618|Python scraper based on AI| | 302|gitroomhq/postiz-app !2025-03-281879110|📨 Schedule social posts, measure them, exchange with other members and get a lot of help from AI 🚀| | 303|PrefectHQ/prefect !2025-03-281878715|Prefect is a workflow orchestration tool empowering developers to build, observe, and react to data pipelines| | 304|ymcui/Chinese-LLaMA-Alpaca !2025-03-28187723 |Chinese LLaMA & Alpaca LLMs| | 305|kenjihiranabe/The-Art-of-Linear-Algebra !2025-03-28187335|Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"| | 306|joonspk-research/generativeagents !2025-03-28187288|Generative Agents: Interactive Simulacra of Human Behavior| | 307|renovatebot/renovate !2025-03-28186820|Universal dependency update tool that fits into your workflows.| | 308|gventuri/pandas-ai !2025-03-28186109 |Pandas AI is a Python library that integrates generative artificial intelligence capabilities into Pandas, making dataframes conversational| | 309|thingsboard/thingsboard !2025-03-28185184|Open-source IoT Platform - Device management, data collection, processing and visualization.| | 310|ente-io/ente !2025-03-28184722|Fully open source, End to End Encrypted alternative to Google Photos and Apple Photos| | 311|serengil/deepface !2025-03-281840113|A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python| | 312|Raphire/Win11Debloat !2025-03-281840132|A simple, easy to use PowerShell script to remove pre-installed apps from windows, disable telemetry, remove Bing from windows search as well as perform various other changes to declutter and improve your windows experience. This script works for both windows 10 and windows 11.| | 313|Avaiga/taipy !2025-03-28179235|Turns Data and AI algorithms into production-ready web applications in no time.| | 314|microsoft/qlib !2025-03-281784231|Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.| | 315|CopilotKit/CopilotKit !2025-03-281778571|Build in-app AI chatbots 🤖, and AI-powered Textareas ✨, into react web apps.| | 316|QwenLM/Qwen-7B !2025-03-281766017|The official repo of Qwen-7B (通义千问-7B) chat & pretrained large language model proposed by Alibaba Cloud.| | 317|w-okada/voice-changer !2025-03-28176078 |リアルタイムボイスチェンジャー Realtime Voice Changer| | 318|rlabbe/Kalman-and-Bayesian-Filters-in-Python !2025-03-281756011|Kalman Filter book using Jupyter Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions.| | 319|Mikubill/sd-webui-controlnet !2025-03-28174794 |WebUI extension for ControlNet| | 320|jingyaogong/minimind !2025-03-2817380116|「大模型」3小时完全从0训练26M的小参数GPT,个人显卡即可推理训练!| | 321|apify/crawlee !2025-03-28172696|Crawlee—A web scraping and browser automation library for Node.js to build reliable crawlers. In JavaScript and TypeScript. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with Puppeteer, Playwright, Cheerio, JSDOM, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 322|apple/ml-stable-diffusion !2025-03-28172395|Stable Diffusion with Core ML on Apple Silicon| | 323| transitive-bullshit/chatgpt-api !2025-03-28172095 | Node.js client for the official ChatGPT API. | | 324|teableio/teable !2025-03-281719222|✨ The Next Gen Airtable Alternative: No-Code Postgres| | 325| xx025/carrot !2025-03-28170900 | Free ChatGPT Site List | | 326|microsoft/LightGBM !2025-03-28170723|A fast, distributed, high-performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.| | 327|VikParuchuri/surya !2025-03-28169827|Accurate line-level text detection and recognition (OCR) in any language| | 328|deepseek-ai/Janus !2025-03-281692825|Janus-Series: Unified Multimodal Understanding and Generation Models| | 329|ardalis/CleanArchitecture !2025-03-28168823|Clean Architecture Solution Template: A starting point for Clean Architecture with ASP.NET Core| | 330|neondatabase/neon !2025-03-28166466|Neon: Serverless Postgres. We separated storage and compute to offer autoscaling, code-like database branching, and scale to zero.| | 331|kestra-io/kestra !2025-03-281661313|⚡ Workflow Automation Platform. Orchestrate & Schedule code in any language, run anywhere, 500+ plugins. Alternative to Zapier, Rundeck, Camunda, Airflow...| | 332|Dao-AILab/flash-attention !2025-03-281659720|Fast and memory-efficient exact attention| | 333|RPCS3/rpcs3 !2025-03-281655712|PS3 emulator/debugger| | 334|meta-llama/llama-recipes !2025-03-28165486|Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger| | 335|emilwallner/Screenshot-to-code !2025-03-28165180|A neural network that transforms a design mock-up into a static website.| | 336|datawhalechina/llm-cookbook !2025-03-281650922|面向开发者的 LLM 入门教程,吴恩达大模型系列课程中文版| | 337|e2b-dev/awesome-ai-agents !2025-03-281643923|A list of AI autonomous agents| | 338|QwenLM/Qwen2.5 !2025-03-281641114|Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.| | 339|dair-ai/ML-YouTube-Courses !2025-03-28164114|📺 Discover the latest machine learning / AI courses on YouTube.| | 340|pybind/pybind11 !2025-03-28163620|Seamless operability between C++11 and Python| | 341|graphdeco-inria/gaussian-splatting !2025-03-281627116|Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"| | 342|meta-llama/codellama !2025-03-28162531|Inference code for CodeLlama models| | 343|TransformerOptimus/SuperAGI !2025-03-28161292 | SuperAGI - A dev-first open source autonomous AI agent framework. Enabling developers to build, manage & run useful autonomous agents quickly and reliably.| | 344|microsoft/onnxruntime !2025-03-28161169|ONNX Runtime: cross-platform, high-performance ML inferencing and training accelerator| | 345|IDEA-Research/Grounded-Segment-Anything !2025-03-281601411 |Marrying Grounding DINO with Segment Anything & Stable Diffusion & BLIP - Automatically Detect, Segment and Generate Anything with Image and Text Inputs| | 346|ddbourgin/numpy-ml !2025-03-28160054|Machine learning, in numpy| | 347|eosphoros-ai/DB-GPT !2025-03-281585225|Revolutionizing Database Interactions with Private LLM Technology| | 348|Stability-AI/StableLM !2025-03-28158310 |Stability AI Language Models| | 349|openai/evals !2025-03-28157935 |Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.| | 350|THUDM/ChatGLM2-6B !2025-03-28157500|ChatGLM2-6B: An Open Bilingual Chat LLM | | 351|sunner/ChatALL !2025-03-28156761 |Concurrently chat with ChatGPT, Bing Chat, Bard, Alpaca, Vincuna, Claude, ChatGLM, MOSS, iFlytek Spark, ERNIE and more, discover the best answers| | 352|abseil/abseil-cpp !2025-03-28156656|Abseil Common Libraries (C++)| | 353|NVIDIA/open-gpu-kernel-modules !2025-03-28156531|NVIDIA Linux open GPU kernel module source| | 354|letta-ai/letta !2025-03-281563718|Letta (formerly MemGPT) is a framework for creating LLM services with memory.| | 355|typescript-eslint/typescript-eslint !2025-03-28156211|✨ Monorepo for all the tooling which enables ESLint to support TypeScript| | 356|umijs/umi !2025-03-28156211|A framework in react community ✨| | 357|AI4Finance-Foundation/FinGPT !2025-03-281561215|Data-Centric FinGPT. Open-source for open finance! Revolutionize 🔥 We'll soon release the trained model.| | 358|amplication/amplication !2025-03-28156022|🔥🔥🔥 The Only Production-Ready AI-Powered Backend Code Generation| | 359|KindXiaoming/pykan !2025-03-28155477|Kolmogorov Arnold Networks| | 360|arc53/DocsGPT !2025-03-28154900|GPT-powered chat for documentation, chat with your documents| | 361|influxdata/telegraf !2025-03-28154502|Agent for collecting, processing, aggregating, and writing metrics, logs, and other arbitrary data.| | 362|microsoft/Bringing-Old-Photos-Back-to-Life !2025-03-28154084|Bringing Old Photo Back to Life (CVPR 2020 oral)| | 363|GaiZhenbiao/ChuanhuChatGPT !2025-03-2815394-2|GUI for ChatGPT API and many LLMs. Supports agents, file-based QA, GPT finetuning and query with web search. All with a neat UI.| | 364|Zeyi-Lin/HivisionIDPhotos !2025-03-281529710|⚡️HivisionIDPhotos: a lightweight and efficient AI ID photos tools. 一个轻量级的AI证件照制作算法。| | 365| mayooear/gpt4-pdf-chatbot-langchain !2025-03-281529518 | GPT4 & LangChain Chatbot for large PDF docs | | 366|1Panel-dev/MaxKB !2025-03-2815277148|? Based on LLM large language model knowledge base Q&A system. Ready to use out of the box, supports quick integration into third-party business systems. Officially produced by 1Panel| | 367|ai16z/eliza !2025-03-281526811|Conversational Agent for Twitter and Discord| | 368|apache/arrow !2025-03-28151684|Apache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing| | 369|princeton-nlp/SWE-agent !2025-03-281516119|SWE-agent: Agent Computer Interfaces Enable Software Engineering Language Models| | 370|mlc-ai/web-llm !2025-03-281509311 |Bringing large-language models and chat to web browsers. Everything runs inside the browser with no server support.| | 371|guillaumekln/faster-whisper !2025-03-281507117 |Faster Whisper transcription with CTranslate2| | 372|overleaf/overleaf !2025-03-28150316|A web-based collaborative LaTeX editor| | 373|triton-lang/triton !2025-03-28150169|Development repository for the Triton language and compiler| | 374|soxoj/maigret !2025-03-281500410|🕵️‍♂️ Collect a dossier on a person by username from thousands of sites| | 375|alibaba/lowcode-engine !2025-03-28149841|An enterprise-class low-code technology stack with scale-out design / 一套面向扩展设计的企业级低代码技术体系| | 376|espressif/esp-idf !2025-03-28148545|Espressif IoT Development Framework. Official development framework for Espressif SoCs.| | 377|pgvector/pgvector !2025-03-281484913|Open-source vector similarity search for Postgres| | 378|datawhalechina/leedl-tutorial !2025-03-28148246|《李宏毅深度学习教程》(李宏毅老师推荐👍),PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases| | 379|xcanwin/KeepChatGPT !2025-03-28147972 |Using ChatGPT is more efficient and smoother, perfectly solving ChatGPT network errors. No longer do you need to frequently refresh the webpage, saving over 10 unnecessary steps| | 380|m-bain/whisperX !2025-03-281471313|WhisperX: Automatic Speech Recognition with Word-level Timestamps (& Diarization)| | 381|HumanAIGC/AnimateAnyone !2025-03-2814706-1|Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation| |!green-up-arrow.svg 382|naklecha/llama3-from-scratch !2025-03-281469024|llama3 implementation one matrix multiplication at a time| |!red-down-arrow 383| fauxpilot/fauxpilot !2025-03-28146871 | An open-source GitHub Copilot server | | 384|LlamaFamily/Llama-Chinese !2025-03-28145111|Llama Chinese Community, the best Chinese Llama large model, fully open source and commercially available| | 385|BradyFU/Awesome-Multimodal-Large-Language-Models !2025-03-281450121|Latest Papers and Datasets on Multimodal Large Language Models| | 386|vanna-ai/vanna !2025-03-281449819|🤖 Chat with your SQL database 📊. Accurate Text-to-SQL Generation via LLMs using RAG 🔄.| | 387|bleedline/aimoneyhunter !2025-03-28144845|AI Side Hustle Money Mega Collection: Teaching You How to Utilize AI for Various Side Projects to Earn Extra Income.| | 388|stefan-jansen/machine-learning-for-trading !2025-03-28144629|Code for Machine Learning for Algorithmic Trading, 2nd edition.| | 389|state-spaces/mamba !2025-03-28144139|Mamba: Linear-Time Sequence Modeling with Selective State Spaces| | 390|vercel/ai-chatbot !2025-03-281434614|A full-featured, hackable Next.js AI chatbot built by Vercel| | 391|steven-tey/novel !2025-03-281428410|Notion-style WYSIWYG editor with AI-powered autocompletions| | 392|unifyai/ivy !2025-03-281409348|Unified AI| | 393|chidiwilliams/buzz !2025-03-281402411 |Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.| | 394|lukas-blecher/LaTeX-OCR !2025-03-28139769|pix2tex: Using a ViT to convert images of equations into LaTeX code.| | 395|openai/tiktoken !2025-03-28139599|tiktoken is a fast BPE tokeniser for use with OpenAI's models.| | 396|nocobase/nocobase !2025-03-281391522|NocoBase is a scalability-first, open-source no-code/low-code platform for building business applications and enterprise solutions.| | 397|neonbjb/tortoise-tts !2025-03-28139010 |A multi-voice TTS system trained with an emphasis on quality| | 398|yamadashy/repomix !2025-03-281382036|📦 Repomix (formerly Repopack) is a powerful tool that packs your entire repository into a single, AI-friendly file. Perfect for when you need to feed your codebase to Large Language Models (LLMs) or other AI tools like Claude, ChatGPT, and Gemini.| | 399|adobe/react-spectrum !2025-03-28136766|A collection of libraries and tools that help you build adaptive, accessible, and robust user experiences.| | 400|THUDM/ChatGLM3 !2025-03-28136684|ChatGLM3 series: Open Bilingual Chat LLMs | | 401|NVIDIA/NeMo !2025-03-28134837|A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)| | 402|BlinkDL/RWKV-LM !2025-03-28134346 |RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it combines the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.| | 403| fuergaosi233/wechat-chatgpt !2025-03-28133330 | Use ChatGPT On Wechat via wechaty | | 404|udecode/plate !2025-03-28133325|A rich-text editor powered by AI| | 405|xenova/transformers.js !2025-03-281331219|State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!| | 406|stas00/ml-engineering !2025-03-281325615|Machine Learning Engineering Guides and Tools| | 407| wong2/chatgpt-google-extension !2025-03-2813241-1 | A browser extension that enhances search engines with ChatGPT, this repos will not be updated from 2023-02-20| | 408|mrdbourke/pytorch-deep-learning !2025-03-281317520|Materials for the Learn PyTorch for Deep Learning: Zero to Mastery course.| | 409|Koenkk/zigbee2mqtt !2025-03-28131544|Zigbee 🐝 to MQTT bridge 🌉, get rid of your proprietary Zigbee bridges 🔨| | 410|vercel-labs/ai !2025-03-281298528|Build AI-powered applications with React, Svelte, and Vue| | 411|netease-youdao/QAnything !2025-03-28129318|Question and Answer based on Anything.| | 412|huggingface/trl !2025-03-281289622|Train transformer language models with reinforcement learning.| | 413|microsoft/BitNet !2025-03-28128503|Official inference framework for 1-bit LLMs| | 414|mediar-ai/screenpipe !2025-03-281283915|24/7 local AI screen & mic recording. Build AI apps that have the full context. Works with Ollama. Alternative to Rewind.ai. Open. Secure. You own your data. Rust.| | 415|Skyvern-AI/skyvern !2025-03-281277612|Automate browser-based workflows with LLMs and Computer Vision| | 416|pytube/pytube !2025-03-28126591|A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos.| | 417|official-stockfish/Stockfish !2025-03-28126574|UCI chess engine| | 418|sgl-project/sglang !2025-03-281260143|SGLang is a structured generation language designed for large language models (LLMs). It makes your interaction with LLMs faster and more controllable.| | 419|plasma-umass/scalene !2025-03-28125535|Scalene: a high-performance, high-precision CPU, GPU, and memory profiler for Python with AI-powered optimization proposals| | 420|danswer-ai/danswer !2025-03-28125503|Ask Questions in natural language and get Answers backed by private sources. Connects to tools like Slack, GitHub, Confluence, etc.| | 421|OpenTalker/SadTalker !2025-03-28125226|[CVPR 2023] SadTalker:Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation| | 422|facebookresearch/AnimatedDrawings !2025-03-28123693 |Code to accompany "A Method for Animating Children's Drawings of the Human Figure"| | 423|activepieces/activepieces !2025-03-28123609|Your friendliest open source all-in-one automation tool ✨ Workflow automation tool 100+ integration / Enterprise automation tool / Zapier Alternative| | 424|ggerganov/ggml !2025-03-28121992 |Tensor library for machine learning| | 425|bytebase/bytebase !2025-03-28121694|World's most advanced database DevOps and CI/CD for Developer, DBA and Platform Engineering teams. The GitLab/GitHub for database DevOps.| | 426| willwulfken/MidJourney-Styles-and-Keywords-Reference !2025-03-28120971 | A reference containing Styles and Keywords that you can use with MidJourney AI| | 427|Huanshere/VideoLingo !2025-03-281207013|Netflix-level subtitle cutting, translation, alignment, and even dubbing - one-click fully automated AI video subtitle team | | 428|OpenLMLab/MOSS !2025-03-28120330 |An open-source tool-augmented conversational language model from Fudan University| | 429|llmware-ai/llmware !2025-03-281200727|Providing enterprise-grade LLM-based development framework, tools, and fine-tuned models.| | 430|PKU-YuanGroup/Open-Sora-Plan !2025-03-28119362|This project aim to reproduce Sora (Open AI T2V model), but we only have limited resource. We deeply wish the all open source community can contribute to this project.| | 431|ShishirPatil/gorilla !2025-03-28119332 |Gorilla: An API store for LLMs| | 432|NVIDIA/Megatron-LM !2025-03-281192716|Ongoing research training transformer models at scale| | 433|illacloud/illa-builder !2025-03-28119192|Create AI-Driven Apps like Assembling Blocks| | 434|marimo-team/marimo !2025-03-281191521|A reactive notebook for Python — run reproducible experiments, execute as a script, deploy as an app, and version with git.| | 435|smol-ai/developer !2025-03-28119111 | With 100k context windows on the way, it's now feasible for every dev to have their own smol developer| | 436|Lightning-AI/litgpt !2025-03-28118878|Pretrain, finetune, deploy 20+ LLMs on your own data. Uses state-of-the-art techniques: flash attention, FSDP, 4-bit, LoRA, and more.| | 437|openai/shap-e !2025-03-28118474 |Generate 3D objects conditioned on text or images| | 438|eugeneyan/open-llms !2025-03-28118451 |A list of open LLMs available for commercial use.| | 439|andrewyng/aisuite !2025-03-28118124|Simple, unified interface to multiple Generative AI providers| | 440|hajimehoshi/ebiten !2025-03-28117816|Ebitengine - A dead simple 2D game engine for Go| | 441|kgrzybek/modular-monolith-with-ddd !2025-03-28117493|Full Modular Monolith application with Domain-Driven Design approach.| | 442|h2oai/h2ogpt !2025-03-2811736-1 |Come join the movement to make the world's best open source GPT led by H2O.ai - 100% private chat and document search, no data leaks, Apache 2.0| | 443|owainlewis/awesome-artificial-intelligence !2025-03-28117332|A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers.| | 444|DataTalksClub/mlops-zoomcamp !2025-03-28116643|Free MLOps course from DataTalks.Club| | 445|Rudrabha/Wav2Lip !2025-03-281163410|This repository contains the codes of "A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild", published at ACM Multimedia 2020.| | 446|aishwaryanr/awesome-generative-ai-guide !2025-03-281152810|A one stop repository for generative AI research updates, interview resources, notebooks and much more!| | 447|karpathy/micrograd !2025-03-28115146|A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API| | 448|InstantID/InstantID !2025-03-28115111|InstantID : Zero-shot Identity-Preserving Generation in Seconds 🔥| | 449|facebookresearch/seamlesscommunication !2025-03-28114434|Foundational Models for State-of-the-Art Speech and Text Translation| | 450|anthropics/anthropic-cookbook !2025-03-281140112|A collection of notebooks/recipes showcasing some fun and effective ways of using Claude.| | 451|mastra-ai/mastra !2025-03-281139240|the TypeScript AI agent framework| | 452|NVIDIA/TensorRT !2025-03-28113864|NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.| | 453|plandex-ai/plandex !2025-03-28113645|An AI coding engine for complex tasks| | 454|RUCAIBox/LLMSurvey !2025-03-28112735 |A collection of papers and resources related to Large Language Models.| | 455|kubeshark/kubeshark !2025-03-28112711|The API traffic analyzer for Kubernetes providing real-time K8s protocol-level visibility, capturing and monitoring all traffic and payloads going in, out and across containers, pods, nodes and clusters. Inspired by Wireshark, purposely built for Kubernetes| | 456|electric-sql/pglite !2025-03-28112617|Lightweight Postgres packaged as WASM into a TypeScript library for the browser, Node.js, Bun and Deno from https://electric-sql.com| | 457|lightaime/camel !2025-03-281124441 |🐫 CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society| | 458|huggingface/lerobot !2025-03-281120184|🤗 LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch| | 459|normal-computing/outlines !2025-03-28111657|Generative Model Programming| | 460|libretro/RetroArch !2025-03-28110701|Cross-platform, sophisticated frontend for the libretro API. Licensed GPLv3.| | 461|THUDM/CogVideo !2025-03-28110599|Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023)| | 462|bentoml/OpenLLM !2025-03-28110495|An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease.| | 463|vosen/ZLUDA !2025-03-28110429|CUDA on AMD GPUs| | 464|dair-ai/ML-Papers-of-the-Week !2025-03-28110304 |🔥Highlighting the top ML papers every week.| | 465|WordPress/gutenberg !2025-03-28110212|The Block Editor project for WordPress and beyond. Plugin is available from the official repository.| | 466|microsoft/data-formulator !2025-03-281099827|🪄 Create rich visualizations with AI| | 467|LibreTranslate/LibreTranslate !2025-03-28109887|Free and Open Source Machine Translation API. Self-hosted, offline capable and easy to setup.| | 468|block/goose !2025-03-281097737|an open-source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM| | 469|getumbrel/llama-gpt !2025-03-28109553|A self-hosted, offline, ChatGPT-like chatbot. Powered by Llama 2. 100% private, with no data leaving your device.| | 470|HigherOrderCO/HVM !2025-03-28109182|A massively parallel, optimal functional runtime in Rust| | 471|databrickslabs/dolly !2025-03-2810812-3 | A large language model trained on the Databricks Machine Learning Platform| | 472|srush/GPU-Puzzles !2025-03-28108014|Solve puzzles. Learn CUDA.| | 473|Z3Prover/z3 !2025-03-28107952|The Z3 Theorem Prover| | 474|UFund-Me/Qbot !2025-03-281079313 |Qbot is an AI-oriented quantitative investment platform, which aims to realize the potential, empower AI technologies in quantitative investment| | 475|langchain-ai/langgraph !2025-03-281077336|| | 476|lz4/lz4 !2025-03-28107647|Extremely Fast Compression algorithm| | 477|magic-research/magic-animate !2025-03-28107160|MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model| | 478|PaperMC/Paper !2025-03-281071410|The most widely used, high performance Minecraft server that aims to fix gameplay and mechanics inconsistencies| | 479|getomni-ai/zerox !2025-03-281071015|Zero shot pdf OCR with gpt-4o-mini| |!green-up-arrow.svg 480|🔥NirDiamant/GenAIAgents !2025-03-2810693318|This repository provides tutorials and implementations for various Generative AI Agent techniques, from basic to advanced. It serves as a comprehensive guide for building intelligent, interactive AI systems.| |!red-down-arrow 481|Unstructured-IO/unstructured !2025-03-28106889|Open source libraries and APIs to build custom preprocessing pipelines for labeling, training, or production machine learning pipelines.| | 482|apache/thrift !2025-03-28106610|Apache Thrift| | 483| TheR1D/shellgpt !2025-03-28106097 | A command-line productivity tool powered by ChatGPT, will help you accomplish your tasks faster and more efficiently | | 484|TheRamU/Fay !2025-03-281060312 |Fay is a complete open source project that includes Fay controller and numeral models, which can be used in different applications such as virtual hosts, live promotion, numeral human interaction and so on| | 485|zyronon/douyin !2025-03-28105566|Vue3 + Pinia + Vite5 仿抖音,Vue 在移动端的最佳实践 . Imitate TikTok ,Vue Best practices on Mobile| | 486|THU-MIG/yolov10 !2025-03-28105485|YOLOv10: Real-Time End-to-End Object Detection| | 487|idootop/mi-gpt !2025-03-281052522|? Transform XiaoAi speaker into a personal voice assistant with ChatGPT and DouBao integration.| | 488|SakanaAI/AI-Scientist !2025-03-281051310|The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑‍🔬| | 489|szimek/sharedrop !2025-03-28105101|Easy P2P file transfer powered by WebRTC - inspired by Apple AirDrop| | 490|salesforce/LAVIS !2025-03-28103942 |LAVIS - A One-stop Library for Language-Vision Intelligence| | 491|aws/amazon-sagemaker-examples !2025-03-28103654|Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.| | 492|artidoro/qlora !2025-03-28103402 |QLoRA: Efficient Finetuning of Quantized LLMs| | 493|lllyasviel/stable-diffusion-webui-forge !2025-03-281029314| a platform on top of Stable Diffusion WebUI (based on Gradio) to make development easier, optimize resource management, and speed up inference| | 494|NielsRogge/Transformers-Tutorials !2025-03-28102487|This repository contains demos I made with the Transformers library by HuggingFace.| | 495|kedro-org/kedro !2025-03-28102371|Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.| | 496| chathub-dev/chathub !2025-03-28102301 | All-in-one chatbot client | | 497|microsoft/promptflow !2025-03-28101612|Build high-quality LLM apps - from prototyping, testing to production deployment and monitoring.| | 498|mistralai/mistral-src !2025-03-28101372|Reference implementation of Mistral AI 7B v0.1 model.| | 499|burn-rs/burn !2025-03-28101183|Burn - A Flexible and Comprehensive Deep Learning Framework in Rust| | 500|AIGC-Audio/AudioGPT !2025-03-28101150 |AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head| | 501|facebookresearch/dinov2 !2025-03-281011210 |PyTorch code and models for the DINOv2 self-supervised learning method.| | 502|RockChinQ/LangBot !2025-03-281008455|😎丰富生态、🧩支持扩展、🦄多模态 - 大模型原生即时通信机器人平台 🤖 | | 503|78/xiaozhi-esp32 !2025-03-281008180|Build your own AI friend| | 504|cumulo-autumn/StreamDiffusion !2025-03-28100761|StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation| | 505|DataTalksClub/machine-learning-zoomcamp !2025-03-28100664|The code from the Machine Learning Bookcamp book and a free course based on the book| | 506|nerfstudio-project/nerfstudio !2025-03-28100343|A collaboration friendly studio for NeRFs| | 507|cupy/cupy !2025-03-28100344|NumPy & SciPy for GPU| | 508|NVIDIA/TensorRT-LLM !2025-03-281000823|TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.| | 509|wasp-lang/open-saas !2025-03-2899665|A free, open-source SaaS app starter for React & Node.js with superpowers. Production-ready. Community-driven.| | 510|huggingface/text-generation-inference !2025-03-2899383|Large Language Model Text Generation Inference| | 511|jxnl/instructor !2025-03-2899224|structured outputs for llms| | 512|GoogleCloudPlatform/generative-ai !2025-03-2899086|Sample code and notebooks for Generative AI on Google Cloud| | 513|manticoresoftware/manticoresearch !2025-03-2898799|Easy to use open source fast database for search | | 514|langfuse/langfuse !2025-03-28985134|🪢 Open source LLM engineering platform. Observability, metrics, evals, prompt management, testing, prompt playground, datasets, LLM evaluations -- 🍊YC W23 🤖 integrate via Typescript, Python / Decorators, OpenAI, Langchain, LlamaIndex, Litellm, Instructor, Mistral, Perplexity, Claude, Gemini, Vertex| | 515|keephq/keep !2025-03-2897949|The open-source alert management and AIOps platform| | 516|sashabaranov/go-openai !2025-03-2897843|OpenAI ChatGPT, GPT-3, GPT-4, DALL·E, Whisper API wrapper for Go| | 517|autowarefoundation/autoware !2025-03-2897766|Autoware - the world's leading open-source software project for autonomous driving| | 518|anthropics/courses !2025-03-2897269|Anthropic's educational courses| | 519|popcorn-official/popcorn-desktop !2025-03-2896853|Popcorn Time is a multi-platform, free software BitTorrent client that includes an integrated media player ( Windows / Mac / Linux ) A Butter-Project Fork| | 520|getmaxun/maxun !2025-03-28968515|🔥 Open-source no-code web data extraction platform. Turn websites to APIs and spreadsheets with no-code robots in minutes! [In Beta]| | 521|wandb/wandb !2025-03-2896763|🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API.| | 522|karpathy/minbpe !2025-03-2895353|Minimal, clean, code for the Byte Pair Encoding (BPE) algorithm commonly used in LLM tokenization.| | 523|bigscience-workshop/petals !2025-03-2895142|🌸 Run large language models at home, BitTorrent-style. Fine-tuning and inference up to 10x faster than offloading| | 524|OthersideAI/self-operating-computer !2025-03-2894931|A framework to enable multimodal models to operate a computer.| | 525|mshumer/gpt-prompt-engineer !2025-03-2894911|| | 526| BloopAI/bloop !2025-03-2894710 | A fast code search engine written in Rust| | 527|BlinkDL/ChatRWKV !2025-03-289467-1 |ChatRWKV is like ChatGPT but powered by RWKV (100% RNN) language model, and open source.| | 528|timlrx/tailwind-nextjs-starter-blog !2025-03-2894677|This is a Next.js, Tailwind CSS blogging starter template. Comes out of the box configured with the latest technologies to make technical writing a breeze. Easily configurable and customizable. Perfect as a replacement to existing Jekyll and Hugo individual blogs.| | 529|google/benchmark !2025-03-2893634|A microbenchmark support library| | 530|facebookresearch/nougat !2025-03-2893603|Implementation of Nougat Neural Optical Understanding for Academic Documents| | 531|modelscope/facechain !2025-03-2893536|FaceChain is a deep-learning toolchain for generating your Digital-Twin.| | 532|DrewThomasson/ebook2audiobook !2025-03-2893388|Convert ebooks to audiobooks with chapters and metadata using dynamic AI models and voice cloning. Supports 1,107+ languages!| | 533|RayTracing/raytracing.github.io !2025-03-2893035|Main Web Site (Online Books)| | 534|QwenLM/Qwen2.5-VL !2025-03-28930249|Qwen2.5-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud.| | 535|WongKinYiu/yolov9 !2025-03-2892201|Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information| | 536|alibaba-damo-academy/FunASR !2025-03-28920222|A Fundamental End-to-End Speech Recognition Toolkit and Open Source SOTA Pretrained Models.| | 537|Visualize-ML/Book4Power-of-Matrix !2025-03-2891931|Book4 'Power of Matrix' | | 538|dice2o/BingGPT !2025-03-289185-1 |Desktop application of new Bing's AI-powered chat (Windows, macOS and Linux)| | 539|browserbase/stagehand !2025-03-28917621|An AI web browsing framework focused on simplicity and extensibility.| | 540|FlagOpen/FlagEmbedding !2025-03-28914111|Dense Retrieval and Retrieval-augmented LLMs| | 541|Const-me/Whisper !2025-03-2890979|High-performance GPGPU inference of OpenAI's Whisper automatic speech recognition (ASR) model| | 542|lucidrains/denoising-diffusion-pytorch !2025-03-2890942|Implementation of Denoising Diffusion Probabilistic Model in Pytorch| | 543|Chainlit/chainlit !2025-03-28904422|Build Conversational AI in minutes ⚡️| | 544|togethercomputer/OpenChatKit !2025-03-2890160 |OpenChatKit provides a powerful, open-source base to create both specialized and general purpose chatbots for various applications| | 545|Stability-AI/StableStudio !2025-03-2889631 |Community interface for generative AI| | 546|voicepaw/so-vits-svc-fork !2025-03-2889482 |so-vits-svc fork with realtime support, improved interface and more features.| | 547|pymc-devs/pymc !2025-03-2889413|Bayesian Modeling and Probabilistic Programming in Python| | 548|espnet/espnet !2025-03-2889302|End-to-End Speech Processing Toolkit| | 549|kedacore/keda !2025-03-2888991|KEDA is a Kubernetes-based Event Driven Autoscaling component. It provides event driven scale for any container running in Kubernetes| | 550|open-mmlab/Amphion !2025-03-28886911|Amphion (/æmˈfaɪən/) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.| | 551|gorse-io/gorse !2025-03-2888451|Gorse open source recommender system engine| | 552|adams549659584/go-proxy-bingai !2025-03-288768-1 |A Microsoft New Bing demo site built with Vue3 and Go, providing a consistent UI experience, supporting ChatGPT prompts, and accessible within China| | 553|open-mmlab/mmsegmentation !2025-03-2887513|OpenMMLab Semantic Segmentation Toolbox and Benchmark.| | 554|bytedance/monolith !2025-03-2887223|ByteDance's Recommendation System| | 555|LouisShark/chatgptsystemprompt !2025-03-2887216|store all agent's system prompt| | 556|brexhq/prompt-engineering !2025-03-2887080 |Tips and tricks for working with Large Language Models like OpenAI's GPT-4.| | 557|erincatto/box2d !2025-03-2886841|Box2D is a 2D physics engine for games| | 558|🔥microsoft/ai-agents-for-beginners !2025-03-288669323|10 Lessons to Get Started Building AI Agents| | 559|nashsu/FreeAskInternet !2025-03-2886102|FreeAskInternet is a completely free, private and locally running search aggregator & answer generate using LLM, without GPU needed. The user can ask a question and the system will make a multi engine search and combine the search result to the ChatGPT3.5 LLM and generate the answer based on search results.| | 560|goldmansachs/gs-quant !2025-03-2885981|Python toolkit for quantitative finance| | 561|srbhr/Resume-Matcher !2025-03-2885800|Open Source Free ATS Tool to compare Resumes with Job Descriptions and create a score to rank them.| | 562|facebookresearch/ImageBind !2025-03-2885681 |ImageBind One Embedding Space to Bind Them All| | 563|ashawkey/stable-dreamfusion !2025-03-2885481 |A pytorch implementation of text-to-3D dreamfusion, powered by stable diffusion.| | 564|meetecho/janus-gateway !2025-03-2885232|Janus WebRTC Server| | 565|google/magika !2025-03-2885003|Detect file content types with deep learning| | 566|huggingface/chat-ui !2025-03-2884871 |Open source codebase powering the HuggingChat app| | 567|EleutherAI/lm-evaluation-harness !2025-03-28843012|A framework for few-shot evaluation of autoregressive language models.| | 568|jina-ai/reader !2025-03-2884089|Convert any URL to an LLM-friendly input with a simple prefix https://r.jina.ai/| | 569|microsoft/TypeChat !2025-03-288406-1|TypeChat is a library that makes it easy to build natural language interfaces using types.| | 570|thuml/Time-Series-Library !2025-03-28839715|A Library for Advanced Deep Time Series Models.| | 571|OptimalScale/LMFlow !2025-03-2883882|An Extensible Toolkit for Finetuning and Inference of Large Foundation Models. Large Model for All.| | 572|baptisteArno/typebot.io !2025-03-2883845|💬 Typebot is a powerful chatbot builder that you can self-host.| | 573|jzhang38/TinyLlama !2025-03-2883504|The TinyLlama project is an open endeavor to pretrain a 1.1B Llama model on 3 trillion tokens.| | 574|fishaudio/Bert-VITS2 !2025-03-2883472|vits2 backbone with multilingual-bert| | 575|OpenBMB/XAgent !2025-03-2882683|An Autonomous LLM Agent for Complex Task Solving| | 576|Acly/krita-ai-diffusion !2025-03-2882387|Streamlined interface for generating images with AI in Krita. Inpaint and outpaint with optional text prompt, no tweaking required.| | 577|jasonppy/VoiceCraft !2025-03-2882151|Zero-Shot Speech Editing and Text-to-Speech in the Wild| | 578|SJTU-IPADS/PowerInfer !2025-03-2881693|High-speed Large Language Model Serving on PCs with Consumer-grade GPUs| | 579|modelscope/DiffSynth-Studio !2025-03-28814713|Enjoy the magic of Diffusion models!| | 580|o3de/o3de !2025-03-2881443|Open 3D Engine (O3DE) is an Apache 2.0-licensed multi-platform 3D engine that enables developers and content creators to build AAA games, cinema-quality 3D worlds, and high-fidelity simulations without any fees or commercial obligations.| | 581|zmh-program/chatnio !2025-03-2881325|🚀 Next Generation AI One-Stop Internationalization Solution. 🚀 下一代 AI 一站式 B/C 端解决方案,支持 OpenAI,Midjourney,Claude,讯飞星火,Stable Diffusion,DALL·E,ChatGLM,通义千问,腾讯混元,360 智脑,百川 AI,火山方舟,新必应,Gemini,Moonshot 等模型,支持对话分享,自定义预设,云端同步,模型市场,支持弹性计费和订阅计划模式,支持图片解析,支持联网搜索,支持模型缓存,丰富美观的后台管理与仪表盘数据统计。| | 582|leptonai/searchwithlepton !2025-03-2880632|Building a quick conversation-based search demo with Lepton AI.| | 583|sebastianstarke/AI4Animation !2025-03-2880620|Bringing Characters to Life with Computer Brains in Unity| | 584|wangrongding/wechat-bot !2025-03-2880528|🤖一个基于 WeChaty 结合 DeepSeek / ChatGPT / Kimi / 讯飞等Ai服务实现的微信机器人 ,可以用来帮助你自动回复微信消息,或者管理微信群/好友,检测僵尸粉等...| | 585|openvinotoolkit/openvino !2025-03-2880528|OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference| | 586|steven2358/awesome-generative-ai !2025-03-28802610|A curated list of modern Generative Artificial Intelligence projects and services| | 587|adam-maj/tiny-gpu !2025-03-2880234|A minimal GPU design in Verilog to learn how GPUs work from the ground up| | 588| anse-app/chatgpt-demo !2025-03-2880180 | A demo repo based on OpenAI API (gpt-3.5-turbo) | | 589| acheong08/EdgeGPT !2025-03-288015-1 |Reverse engineered API of Microsoft's Bing Chat | | 590|ai-collection/ai-collection !2025-03-2879994 |The Generative AI Landscape - A Collection of Awesome Generative AI Applications| | 591|GreyDGL/PentestGPT !2025-03-2879953 |A GPT-empowered penetration testing tool| | 592|delta-io/delta !2025-03-2879112|An open-source storage framework that enables building a Lakehouse architecture with compute engines including Spark, PrestoDB, Flink, Trino, and Hive and APIs| | 593|dataelement/bisheng !2025-03-2879085|Bisheng is an open LLM devops platform for next generation AI applications.| | 594|e2b-dev/e2b !2025-03-2878447 |Vercel for AI agents. We help developers to build, deploy, and monitor AI agents. Focusing on specialized AI agents that build software for you - your personal software developers.| | 595|01-ai/Yi !2025-03-2878311|A series of large language models trained from scratch by developers @01-ai| | 596|Plachtaa/VALL-E-X !2025-03-287830-1|An open source implementation of Microsoft's VALL-E X zero-shot TTS model. The demo is available at https://plachtaa.github.io| | 597|abhishekkrthakur/approachingalmost !2025-03-2878204|Approaching (Almost) Any Machine Learning Problem| | 598|pydantic/pydantic-ai !2025-03-28781041|Agent Framework / shim to use Pydantic with LLMs| | 599|rany2/edge-tts !2025-03-2877901|Use Microsoft Edge's online text-to-speech service from Python WITHOUT needing Microsoft Edge or Windows or an API key| | 600|CASIA-IVA-Lab/FastSAM !2025-03-2877881|Fast Segment Anything| | 601|netease-youdao/EmotiVoice !2025-03-2877817|EmotiVoice 😊: a Multi-Voice and Prompt-Controlled TTS Engine| | 602|lllyasviel/IC-Light !2025-03-2877804|More relighting!| | 603|kroma-network/tachyon !2025-03-287774-1|Modular ZK(Zero Knowledge) backend accelerated by GPU| | 604|deep-floyd/IF !2025-03-2877731 |A novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding| | 605|oumi-ai/oumi !2025-03-2877705|Everything you need to build state-of-the-art foundation models, end-to-end.| | 606|reorproject/reor !2025-03-2877681|AI note-taking app that runs models locally.| | 607|lightpanda-io/browser !2025-03-28775813|Lightpanda: the headless browser designed for AI and automation| | 608|xiangsx/gpt4free-ts !2025-03-287755-1|Providing a free OpenAI GPT-4 API ! This is a replication project for the typescript version of xtekky/gpt4free| | 609|IDEA-Research/GroundingDINO !2025-03-28773311|Official implementation of the paper "Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection"| | 610|bunkerity/bunkerweb !2025-03-2877326|🛡️ Make your web services secure by default !| | 611|vikhyat/moondream !2025-03-2877057|tiny vision language model| | 612|firmai/financial-machine-learning !2025-03-287703-1|A curated list of practical financial machine learning tools and applications.| | 613|n8n-io/self-hosted-ai-starter-kit !2025-03-28765121|The Self-hosted AI Starter Kit is an open-source template that quickly sets up a local AI environment. Curated by n8n, it provides essential tools for creating secure, self-hosted AI workflows.| | 614|intel-analytics/ipex-llm !2025-03-2876507|Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, Baichuan, Mixtral, Gemma, etc.) on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max). A PyTorch LLM library that seamlessly integrates with llama.cpp, HuggingFace, LangChain, LlamaIndex, DeepSpeed, vLLM, FastChat, ModelScope, etc.| | 615|jrouwe/JoltPhysics !2025-03-28764510|A multi core friendly rigid body physics and collision detection library. Written in C++. Suitable for games and VR applications. Used by Horizon Forbidden West.| | 616|THUDM/CodeGeeX2 !2025-03-2876270|CodeGeeX2: A More Powerful Multilingual Code Generation Model| | 617|meta-llama/llama-stack !2025-03-2875866|Composable building blocks to build Llama Apps| | 618|sweepai/sweep !2025-03-287530-1|Sweep is an AI junior developer| | 619|lllyasviel/Omost !2025-03-2875301|Your image is almost there!| | 620|ahmedbahaaeldin/From-0-to-Research-Scientist-resources-guide !2025-03-2875050|Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.| | 621|dair-ai/ML-Papers-Explained !2025-03-2875050|Explanation to key concepts in ML| | 622|zaidmukaddam/scira !2025-03-28750110|Scira (Formerly MiniPerplx) is a minimalistic AI-powered search engine that helps you find information on the internet. Powered by Vercel AI SDK! Search with models like Grok 2.0.| | 623|Portkey-AI/gateway !2025-03-28749416|A Blazing Fast AI Gateway. Route to 100+ LLMs with 1 fast & friendly API.| | 624|web-infra-dev/midscene !2025-03-28748729|An AI-powered automation SDK can control the page, perform assertions, and extract data in JSON format using natural language.| | 625|zilliztech/GPTCache !2025-03-2874801 |GPTCache is a library for creating semantic cache to store responses from LLM queries.| | 626|niedev/RTranslator !2025-03-2874742|RTranslator is the world's first open source real-time translation app.| |!green-up-arrow.svg 627|roboflow/notebooks !2025-03-2874666|Examples and tutorials on using SOTA computer vision models and techniques. Learn everything from old-school ResNet, through YOLO and object-detection transformers like DETR, to the latest models like Grounding DINO and SAM.| |!red-down-arrow 628|openlm-research/openllama !2025-03-2874652|OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset| | 629|LiheYoung/Depth-Anything !2025-03-2874155|Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data| | 630|enso-org/enso !2025-03-2874040|Hybrid visual and textual functional programming.| | 631|bigcode-project/starcoder !2025-03-287401-1 |Home of StarCoder: fine-tuning & inference!| | 632|git-ecosystem/git-credential-manager !2025-03-2873975|Secure, cross-platform Git credential storage with authentication to GitHub, Azure Repos, and other popular Git hosting services.| | 633|OpenGVLab/InternVL !2025-03-2873634|[CVPR 2024 Oral] InternVL Family: A Pioneering Open-Source Alternative to GPT-4V. 接近GPT-4V表现的可商用开源模型| | 634|WooooDyy/LLM-Agent-Paper-List !2025-03-2873551|The paper list of the 86-page paper "The Rise and Potential of Large Language Model Based Agents: A Survey" by Zhiheng Xi et al.| | 635|lencx/Noi !2025-03-2873157|🦄 AI + Tools + Plugins + Community| | 636|udlbook/udlbook !2025-03-2873075|Understanding Deep Learning - Simon J.D. Prince| | 637|OpenBMB/MiniCPM !2025-03-2872841|MiniCPM-2B: An end-side LLM outperforms Llama2-13B.| | 638|jaywalnut310/vits !2025-03-2872815 |VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech| | 639|xorbitsai/inference !2025-03-28727528|Replace OpenAI GPT with another LLM in your app by changing a single line of code. Xinference gives you the freedom to use any LLM you need. With Xinference, you're empowered to run inference with any open-source language models, speech recognition models, and multimodal models, whether in the cloud, on-premises, or even on your laptop.| | 640|PWhiddy/PokemonRedExperiments !2025-03-2872492|Playing Pokemon Red with Reinforcement Learning| | 641|Canner/WrenAI !2025-03-28723213|🤖 Open-source AI Agent that empowers data-driven teams to chat with their data to generate Text-to-SQL, charts, spreadsheets, reports, and BI. 📈📊📋🧑‍💻| | 642|miurla/morphic !2025-03-2872258|An AI-powered answer engine with a generative UI| | 643|ml-explore/mlx-examples !2025-03-2872168|Examples in the MLX framework| | 644|PKU-YuanGroup/ChatLaw !2025-03-2872010|Chinese Legal Large Model| | 645|NVIDIA/cutlass !2025-03-2871883|CUDA Templates for Linear Algebra Subroutines| | 646|FoundationVision/VAR !2025-03-28717444|[GPT beats diffusion🔥] [scaling laws in visual generation📈] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction"| | 647|ymcui/Chinese-LLaMA-Alpaca-2 !2025-03-2871561|Chinese LLaMA-2 & Alpaca-2 LLMs| | 648|nadermx/backgroundremover !2025-03-2871514 |Background Remover lets you Remove Background from images and video using AI with a simple command line interface that is free and open source.| | 649|onuratakan/gpt-computer-assistant !2025-03-28714514|gpt-4o for windows, macos and ubuntu| | 650|graviraja/MLOps-Basics !2025-03-2871326|| | 651|Future-House/paper-qa !2025-03-287118-1|High accuracy RAG for answering questions from scientific documents with citations| | 652|open-mmlab/mmagic !2025-03-2871102 |OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox| | 653|bhaskatripathi/pdfGPT !2025-03-2870941 |PDF GPT allows you to chat with the contents of your PDF file by using GPT capabilities. The only open source solution to turn your pdf files in a chatbot!| | 654|ollama/ollama-python !2025-03-28709117|Ollama Python library| | 655|facebookresearch/DiT !2025-03-2870376|Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"| | 656|geekyutao/Inpaint-Anything !2025-03-2870262 |Inpaint anything using Segment Anything and inpainting models.| | 657|AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-Plugin !2025-03-2870160 |A user-friendly plug-in that makes it easy to generate stable diffusion images inside Photoshop using Automatic1111-sd-webui as a backend.| | 658|apple/corenet !2025-03-2869990|CoreNet: A library for training deep neural networks| | 659|openstatusHQ/openstatus !2025-03-2869926|🏓 The open-source synthetic monitoring platform 🏓| | 660|weaviate/Verba !2025-03-2869772|Retrieval Augmented Generation (RAG) chatbot powered by Weaviate| | 661|meshery/meshery !2025-03-2869630|Meshery, the cloud native manager| | 662|OpenTalker/video-retalking !2025-03-2869530|[SIGGRAPH Asia 2022] VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild| | 663|digitalinnovationone/dio-lab-open-source !2025-03-28689013|Repositório do lab "Contribuindo em um Projeto Open Source no GitHub" da Digital Innovation One.| | 664|jianchang512/ChatTTS-ui !2025-03-2868842|一个简单的本地网页界面,直接使用ChatTTS将文字合成为语音,同时支持对外提供API接口。| | 665|patchy631/ai-engineering-hub !2025-03-28686434|In-depth tutorials on LLMs, RAGs and real-world AI agent applications.| | 666|gunnarmorling/1brc !2025-03-2868512|1️⃣🐝🏎️ The One Billion Row Challenge -- A fun exploration of how quickly 1B rows from a text file can be aggregated with Java| | 667|Azure-Samples/azure-search-openai-demo !2025-03-2868482 |A sample app for the Retrieval-Augmented Generation pattern running in Azure, using Azure Cognitive Search for retrieval and Azure OpenAI large language models to power ChatGPT-style and Q&A experiences.| | 668|mit-han-lab/streaming-llm !2025-03-2868382|Efficient Streaming Language Models with Attention Sinks| | 669|InternLM/InternLM !2025-03-2868352|InternLM has open-sourced a 7 billion parameter base model, a chat model tailored for practical scenarios and the training system.| | 670|dependency-check/DependencyCheck !2025-03-2868191|OWASP dependency-check is a software composition analysis utility that detects publicly disclosed vulnerabilities in application dependencies.| | 671|Soulter/AstrBot !2025-03-28678643|✨易上手的多平台 LLM 聊天机器人及开发框架✨。支持 QQ、QQ频道、Telegram、微信平台(Gewechat, 企业微信)、内置 Web Chat,OpenAI GPT、DeepSeek、Ollama、Llama、GLM、Gemini、OneAPI、LLMTuner,支持 LLM Agent 插件开发,可视化面板。一键部署。支持 Dify 工作流、代码执行器、Whisper 语音转文字。| | 672|react-native-webview/react-native-webview !2025-03-2867792|React Native Cross-Platform WebView| | 673|modelscope/agentscope !2025-03-28676916|Start building LLM-empowered multi-agent applications in an easier way.| | 674|mylxsw/aidea !2025-03-2867381|AIdea is a versatile app that supports GPT and domestic large language models,also supports "Stable Diffusion" text-to-image generation, image-to-image generation, SDXL 1.0, super-resolution, and image colorization| | 675|langchain-ai/ollama-deep-researcher !2025-03-28668635|Fully local web research and report writing assistant| | 676|threestudio-project/threestudio !2025-03-2866653|A unified framework for 3D content generation.| | 677|gaomingqi/Track-Anything !2025-03-2866631 |A flexible and interactive tool for video object tracking and segmentation, based on Segment Anything, XMem, and E2FGVI.| | 678|spdustin/ChatGPT-AutoExpert !2025-03-2866570|🚀🧠💬 Supercharged Custom Instructions for ChatGPT (non-coding) and ChatGPT Advanced Data Analysis (coding).| | 679|HariSekhon/DevOps-Bash-tools !2025-03-2866463|1000+ DevOps Bash Scripts - AWS, GCP, Kubernetes, Docker, CI/CD, APIs, SQL, PostgreSQL, MySQL, Hive, Impala, Kafka, Hadoop, Jenkins, GitHub, GitLab, BitBucket, Azure DevOps, TeamCity, Spotify, MP3, LDAP, Code/Build Linting, pkg mgmt for Linux, Mac, Python, Perl, Ruby, NodeJS, Golang, Advanced dotfiles: .bashrc, .vimrc, .gitconfig, .screenrc, tmux..| | 680|modelscope/swift !2025-03-28661530|ms-swift: Use PEFT or Full-parameter to finetune 200+ LLMs or 15+ MLLMs| | 681|langchain-ai/opengpts !2025-03-2866080|This is an open source effort to create a similar experience to OpenAI's GPTs and Assistants API| | 682| yihong0618/xiaogpt !2025-03-2865131 | Play ChatGPT with xiaomi ai speaker | | 683| civitai/civitai !2025-03-2865111 | Build a platform where people can share their stable diffusion models | | 684|KoljaB/RealtimeSTT !2025-03-28649513|A robust, efficient, low-latency speech-to-text library with advanced voice activity detection, wake word activation and instant transcription.| | 685|qunash/chatgpt-advanced !2025-03-2864910 | A browser extension that augments your ChatGPT prompts with web results.| | 686|Licoy/ChatGPT-Midjourney !2025-03-2864850|🎨 Own your own ChatGPT+Midjourney web service with one click| | 687|friuns2/BlackFriday-GPTs-Prompts !2025-03-2864744|List of free GPTs that doesn't require plus subscription| | 688|PixarAnimationStudios/OpenUSD !2025-03-2864700|Universal Scene Description| | 689|linyiLYi/street-fighter-ai !2025-03-2864630 |This is an AI agent for Street Fighter II Champion Edition.| | 690|run-llama/rags !2025-03-2864380|Build ChatGPT over your data, all with natural language| | 691|frdel/agent-zero !2025-03-2864154|Agent Zero AI framework| | 692|microsoft/DeepSpeedExamples !2025-03-2863911 |Example models using DeepSpeed| | 693|k8sgpt-ai/k8sgpt !2025-03-2863882|Giving Kubernetes Superpowers to everyone| | 694|open-metadata/OpenMetadata !2025-03-2863514|OpenMetadata is a unified platform for discovery, observability, and governance powered by a central metadata repository, in-depth lineage, and seamless team collaboration.| | 695|google/gemma.cpp !2025-03-2863163|lightweight, standalone C++ inference engine for Google's Gemma models.| | 696|RayVentura/ShortGPT !2025-03-286314-1|🚀🎬 ShortGPT - An experimental AI framework for automated short/video content creation. Enables creators to rapidly produce, manage, and deliver content using AI and automation.| | 697|openai/consistencymodels !2025-03-2862940 |Official repo for consistency models.| | 698|yangjianxin1/Firefly !2025-03-2862924|Firefly: Chinese conversational large language model (full-scale fine-tuning + QLoRA), supporting fine-tuning of Llma2, Llama, Baichuan, InternLM, Ziya, Bloom, and other large models| | 699|enricoros/big-AGI !2025-03-2862665|Generative AI suite powered by state-of-the-art models and providing advanced AI/AGI functions. It features AI personas, AGI functions, multi-model chats, text-to-image, voice, response streaming, code highlighting and execution, PDF import, presets for developers, much more. Deploy on-prem or in the cloud.| | 700|aptos-labs/aptos-core !2025-03-2862633|Aptos is a layer 1 blockchain built to support the widespread use of blockchain through better technology and user experience.| | 701|wenda-LLM/wenda !2025-03-286262-1 |Wenda: An LLM invocation platform. Its objective is to achieve efficient content generation tailored to specific environments while considering the limited computing resources of individuals and small businesses, as well as knowledge security and privacy concerns| | 702|Project-MONAI/MONAI !2025-03-2862603|AI Toolkit for Healthcare Imaging| | 703|HVision-NKU/StoryDiffusion !2025-03-2862470|Create Magic Story!| | 704|deepseek-ai/DeepSeek-LLM !2025-03-2862463|DeepSeek LLM: Let there be answers| | 705|Tohrusky/Final2x !2025-03-2862393|2^x Image Super-Resolution| | 706|OpenSPG/KAG !2025-03-28619611|KAG is a logical form-guided reasoning and retrieval framework based on OpenSPG engine and LLMs. It is used to build logical reasoning and factual Q&A solutions for professional domain knowledge bases. It can effectively overcome the shortcomings of the traditional RAG vector similarity calculation model.| | 707|Moonvy/OpenPromptStudio !2025-03-2861861 |AIGC Hint Word Visualization Editor| | 708|levihsu/OOTDiffusion !2025-03-2861761|Official implementation of OOTDiffusion| | 709|tmc/langchaingo !2025-03-2861729|LangChain for Go, the easiest way to write LLM-based programs in Go| | 710|vladmandic/automatic !2025-03-2861374|SD.Next: Advanced Implementation of Stable Diffusion and other Diffusion-based generative image models| | 711|clovaai/donut !2025-03-2861231 |Official Implementation of OCR-free Document Understanding Transformer (Donut) and Synthetic Document Generator (SynthDoG), ECCV 2022| | 712|Shaunwei/RealChar !2025-03-286121-1|🎙️🤖Create, Customize and Talk to your AI Character/Companion in Realtime(All in One Codebase!). Have a natural seamless conversation with AI everywhere(mobile, web and terminal) using LLM OpenAI GPT3.5/4, Anthropic Claude2, Chroma Vector DB, Whisper Speech2Text, ElevenLabs Text2Speech🎙️🤖| | 713|microsoft/TinyTroupe !2025-03-2861142|LLM-powered multiagent persona simulation for imagination enhancement and business insights.| | 714| rustformers/llm !2025-03-2861010 | Run inference for Large Language Models on CPU, with Rust| | 715|firebase/firebase-ios-sdk !2025-03-2860950|Firebase SDK for Apple App Development| | 716|vespa-engine/vespa !2025-03-2860824|The open big data serving engine. https://vespa.ai| | 717|n4ze3m/page-assist !2025-03-28607610|Use your locally running AI models to assist you in your web browsing| | 718|Dooy/chatgpt-web-midjourney-proxy !2025-03-2860646|chatgpt web, midjourney, gpts,tts, whisper 一套ui全搞定| | 719|ethereum-optimism/optimism !2025-03-2860213|Optimism is Ethereum, scaled.| | 720|sczhou/ProPainter !2025-03-2859971|[ICCV 2023] ProPainter: Improving Propagation and Transformer for Video Inpainting| | 721|MineDojo/Voyager !2025-03-2859951 |An Open-Ended Embodied Agent with Large Language Models| | 722|lavague-ai/LaVague !2025-03-2859800|Automate automation with Large Action Model framework| | 723|SevaSk/ecoute !2025-03-2859770 |Ecoute is a live transcription tool that provides real-time transcripts for both the user's microphone input (You) and the user's speakers output (Speaker) in a textbox. It also generates a suggested response using OpenAI's GPT-3.5 for the user to say based on the live transcription of the conversation.| | 724|google/mesop !2025-03-2859661|| | 725|pengxiao-song/LaWGPT !2025-03-2859542 |Repo for LaWGPT, Chinese-Llama tuned with Chinese Legal knowledge| | 726|fr0gger/Awesome-GPT-Agents !2025-03-2859434|A curated list of GPT agents for cybersecurity| | 727|google-deepmind/graphcast !2025-03-2859412|| | 728|comet-ml/opik !2025-03-28594126|Open-source end-to-end LLM Development Platform| | 729|SciPhi-AI/R2R !2025-03-28594033|A framework for rapid development and deployment of production-ready RAG systems| | 730|SkalskiP/courses !2025-03-2859272 |This repository is a curated collection of links to various courses and resources about Artificial Intelligence (AI)| | 731|QuivrHQ/MegaParse !2025-03-2859122|File Parser optimised for LLM Ingestion with no loss 🧠 Parse PDFs, Docx, PPTx in a format that is ideal for LLMs.| | 732|pytorch-labs/gpt-fast !2025-03-2858971|Simple and efficient pytorch-native transformer text generation in !2025-03-2858886|Curated list of chatgpt prompts from the top-rated GPTs in the GPTs Store. Prompt Engineering, prompt attack & prompt protect. Advanced Prompt Engineering papers.| | 734|nilsherzig/LLocalSearch !2025-03-2858852|LLocalSearch is a completely locally running search aggregator using LLM Agents. The user can ask a question and the system will use a chain of LLMs to find the answer. The user can see the progress of the agents and the final answer. No OpenAI or Google API keys are needed.| | 735|kuafuai/DevOpsGPT !2025-03-285874-2|Multi agent system for AI-driven software development. Convert natural language requirements into working software. Supports any development language and extends the existing base code.| | 736|myshell-ai/MeloTTS !2025-03-2858486|High-quality multi-lingual text-to-speech library by MyShell.ai. Support English, Spanish, French, Chinese, Japanese and Korean.| | 737|OpenGVLab/LLaMA-Adapter !2025-03-2858421 |Fine-tuning LLaMA to follow Instructions within 1 Hour and 1.2M Parameters| | 738|volcengine/verl !2025-03-28582563|veRL: Volcano Engine Reinforcement Learning for LLM| | 739|a16z-infra/companion-app !2025-03-2858171|AI companions with memory: a lightweight stack to create and host your own AI companions| | 740|HumanAIGC/OutfitAnyone !2025-03-285816-1|Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person| | 741|josStorer/RWKV-Runner !2025-03-2857472|A RWKV management and startup tool, full automation, only 8MB. And provides an interface compatible with the OpenAI API. RWKV is a large language model that is fully open source and available for commercial use.| | 742|648540858/wvp-GB28181-pro !2025-03-2857414|WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的网络视频平台,支持NAT穿透,支持海康、大华、宇视等品牌的IPC、NVR、DVR接入。支持国标级联,支持rtsp/rtmp等视频流转发到国标平台,支持rtsp/rtmp等推流转发到国标平台。| | 743|ToonCrafter/ToonCrafter !2025-03-2857345|a research paper for generative cartoon interpolation| | 744|PawanOsman/ChatGPT !2025-03-2857191|OpenAI API Free Reverse Proxy| | 745|apache/hudi !2025-03-2857091|Upserts, Deletes And Incremental Processing on Big Data.| | 746| nsarrazin/serge !2025-03-2857081 | A web interface for chatting with Alpaca through llama.cpp. Fully dockerized, with an easy to use API| | 747|homanp/superagent !2025-03-2857021|🥷 Superagent - Build, deploy, and manage LLM-powered agents| | 748|ramonvc/freegpt-webui !2025-03-2856910|GPT 3.5/4 with a Chat Web UI. No API key is required.| | 749|baichuan-inc/baichuan-7B !2025-03-2856901|A large-scale 7B pretraining language model developed by BaiChuan-Inc.| | 750|Azure/azure-sdk-for-net !2025-03-2856792|This repository is for active development of the Azure SDK for .NET. For consumers of the SDK we recommend visiting our public developer docs at https://learn.microsoft.com/dotnet/azure/ or our versioned developer docs at https://azure.github.io/azure-sdk-for-net.| | 751|mnotgod96/AppAgent !2025-03-2856643|AppAgent: Multimodal Agents as Smartphone Users, an LLM-based multimodal agent framework designed to operate smartphone apps.| | 752|microsoft/TaskWeaver !2025-03-2856243|A code-first agent framework for seamlessly planning and executing data analytics tasks.| | 753| yetone/bob-plugin-openai-translator !2025-03-285600-1 | A Bob Plugin base ChatGPT API | | 754|PrefectHQ/marvin !2025-03-2855840 |A batteries-included library for building AI-powered software| | 755|microsoft/promptbase !2025-03-2855832|All things prompt engineering| | 756|fullstackhero/dotnet-starter-kit !2025-03-2855560|Production Grade Cloud-Ready .NET 8 Starter Kit (Web API + Blazor Client) with Multitenancy Support, and Clean/Modular Architecture that saves roughly 200+ Development Hours! All Batteries Included.| | 757|deepseek-ai/DeepSeek-Coder-V2 !2025-03-2855435|DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence| | 758|aiwaves-cn/agents !2025-03-2855391|An Open-source Framework for Autonomous Language Agents| | 759|microsoft/Mastering-GitHub-Copilot-for-Paired-Programming !2025-03-2855158|A 6 Lesson course teaching everything you need to know about harnessing GitHub Copilot and an AI Paired Programing resource.| | 760|allenai/OLMo !2025-03-2854506|Modeling, training, eval, and inference code for OLMo| | 761|apify/crawlee-python !2025-03-2854493|Crawlee—A web scraping and browser automation library for Python to build reliable crawlers. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with BeautifulSoup, Playwright, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 762|k2-fsa/sherpa-onnx !2025-03-28541520|Speech-to-text, text-to-speech, and speaker recongition using next-gen Kaldi with onnxruntime without Internet connection. Support embedded systems, Android, iOS, Raspberry Pi, RISC-V, x86_64 servers, websocket server/client, C/C++, Python, Kotlin, C#, Go, NodeJS, Java, Swift| | 763|TEN-framework/TEN-Agent !2025-03-28541411|TEN Agent is a realtime conversational AI agent powered by TEN. It seamlessly integrates the OpenAI Realtime API, RTC capabilities, and advanced features like weather updates, web search, computer vision, and Retrieval-Augmented Generation (RAG).| | 764|google/gemmapytorch !2025-03-2854010|The official PyTorch implementation of Google's Gemma models| | 765|snakers4/silero-vad !2025-03-2853858|Silero VAD: pre-trained enterprise-grade Voice Activity Detector| | 766|livekit/agents !2025-03-2853836|Build real-time multimodal AI applications 🤖🎙️📹| | 767|pipecat-ai/pipecat !2025-03-28537811|Open Source framework for voice and multimodal conversational AI| | 768|EricLBuehler/mistral.rs !2025-03-28536324|Blazingly fast LLM inference.| | 769|asg017/sqlite-vec !2025-03-28535810|Work-in-progress vector search SQLite extension that runs anywhere.| | 770|albertan017/LLM4Decompile !2025-03-2853563|Reverse Engineering: Decompiling Binary Code with Large Language Models| | 771|Permify/permify !2025-03-2853235|An open-source authorization as a service inspired by Google Zanzibar, designed to build and manage fine-grained and scalable authorization systems for any application.| | 772|imoneoi/openchat !2025-03-2853171|OpenChat: Advancing Open-source Language Models with Imperfect Data| | 773|mosaicml/composer !2025-03-2853140|Train neural networks up to 7x faster| | 774|dsdanielpark/Bard-API !2025-03-285277-1 |The python package that returns a response of Google Bard through API.| | 775|lxfater/inpaint-web !2025-03-2852552|A free and open-source inpainting & image-upscaling tool powered by webgpu and wasm on the browser。| | 776|leanprover/lean4 !2025-03-2852441|Lean 4 programming language and theorem prover| | 777|AILab-CVC/YOLO-World !2025-03-2852415|Real-Time Open-Vocabulary Object Detection| | 778|openchatai/OpenChat !2025-03-2852260 |Run and create custom ChatGPT-like bots with OpenChat, embed and share these bots anywhere, the open-source chatbot console.| | 779|mufeedvh/code2prompt !2025-03-28519414|A CLI tool to convert your codebase into a single LLM prompt with source tree, prompt templating, and token counting.| | 780|biobootloader/wolverine !2025-03-2851700 |Automatically repair python scripts through GPT-4 to give them regenerative abilities.| | 781|huggingface/parler-tts !2025-03-2851671|Inference and training library for high-quality TTS models.| | 782|Akegarasu/lora-scripts !2025-03-2851308 |LoRA training scripts use kohya-ss's trainer, for diffusion model.| | 783|openchatai/OpenCopilot !2025-03-285128-3|🤖 🔥 Let your users chat with your product features and execute things by text - open source Shopify sidekick| | 784|e2b-dev/fragments !2025-03-2851228|Open-source Next.js template for building apps that are fully generated by AI. By E2B.| | 785|microsoft/SynapseML !2025-03-2851132|Simple and Distributed Machine Learning| | 786|aigc-apps/sd-webui-EasyPhoto !2025-03-285108-1|📷 EasyPhoto | | 787|ChaoningZhang/MobileSAM !2025-03-2850944|This is the official code for Faster Segment Anything (MobileSAM) project that makes SAM lightweight| | 788|huggingface/alignment-handbook !2025-03-2850932|Robust recipes for to align language models with human and AI preferences| | 789|alpkeskin/mosint !2025-03-2850920|An automated e-mail OSINT tool| | 790|TaskingAI/TaskingAI !2025-03-2850891|The open source platform for AI-native application development.| | 791|lipku/metahuman-stream !2025-03-28507615|Real time interactive streaming digital human| | 792|OpenInterpreter/01 !2025-03-2850530|The open-source language model computer| | 793|open-compass/opencompass !2025-03-28505111|OpenCompass is an LLM evaluation platform, supporting a wide range of models (InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.| | 794|xxlong0/Wonder3D !2025-03-2850491|A cross-domain diffusion model for 3D reconstruction from a single image| | 795|pytorch/torchtune !2025-03-2850342|A Native-PyTorch Library for LLM Fine-tuning| | 796|SuperDuperDB/superduperdb !2025-03-2850192|🔮 SuperDuperDB: Bring AI to your database: Integrate, train and manage any AI models and APIs directly with your database and your data.| | 797|WhiskeySockets/Baileys !2025-03-2850057|Lightweight full-featured typescript/javascript WhatsApp Web API| | 798| mpociot/chatgpt-vscode !2025-03-2849890 | A VSCode extension that allows you to use ChatGPT | | 799|OpenGVLab/DragGAN !2025-03-2849880|Unofficial Implementation of DragGAN - "Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold" (DragGAN 全功能实现,在线Demo,本地部署试用,代码、模型已全部开源,支持Windows, macOS, Linux)| | 800|microsoft/LLMLingua !2025-03-2849824|To speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.| | 801|Zipstack/unstract !2025-03-2849745|No-code LLM Platform to launch APIs and ETL Pipelines to structure unstructured documents| | 802|OpenBMB/ToolBench !2025-03-2849621|An open platform for training, serving, and evaluating large language model for tool learning.| | 803|Fanghua-Yu/SUPIR !2025-03-2849593|SUPIR aims at developing Practical Algorithms for Photo-Realistic Image Restoration In the Wild| | 804|GaiaNet-AI/gaianet-node !2025-03-2849360|Install and run your own AI agent service| | 805|qodo-ai/qodo-cover !2025-03-284922-1|Qodo-Cover: An AI-Powered Tool for Automated Test Generation and Code Coverage Enhancement! 💻🤖🧪🐞| | 806|Zejun-Yang/AniPortrait !2025-03-2849042|AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animation| | 807|lvwzhen/law-cn-ai !2025-03-2848901 |⚖️ AI Legal Assistant| | 808|developersdigest/llm-answer-engine !2025-03-2848740|Build a Perplexity-Inspired Answer Engine Using Next.js, Groq, Mixtral, Langchain, OpenAI, Brave & Serper| | 809|Plachtaa/VITS-fast-fine-tuning !2025-03-2848640|This repo is a pipeline of VITS finetuning for fast speaker adaptation TTS, and many-to-many voice conversion| | 810|espeak-ng/espeak-ng !2025-03-2848601|eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.| | 811|ant-research/CoDeF !2025-03-2848581|[CVPR'24 Highlight] Official PyTorch implementation of CoDeF: Content Deformation Fields for Temporally Consistent Video Processing| | 812|deepseek-ai/DeepSeek-V2 !2025-03-2848512|| | 813|XRPLF/rippled !2025-03-2848210|Decentralized cryptocurrency blockchain daemon implementing the XRP Ledger protocol in C++| | 814|AutoMQ/automq !2025-03-28478721|AutoMQ is a cloud-first alternative to Kafka by decoupling durability to S3 and EBS. 10x cost-effective. Autoscale in seconds. Single-digit ms latency.| | 815|AILab-CVC/VideoCrafter !2025-03-2847800|VideoCrafter1: Open Diffusion Models for High-Quality Video Generation| | 816|nautechsystems/nautilustrader !2025-03-2847702|A high-performance algorithmic trading platform and event-driven backtester| | 817|kyegomez/swarms !2025-03-2847563|The Enterprise-Grade Production-Ready Multi-Agent Orchestration Framework Join our Community: https://discord.com/servers/agora-999382051935506503| | 818|Deci-AI/super-gradients !2025-03-2847310 |Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS.| | 819|QwenLM/Qwen2.5-Coder !2025-03-2847236|Qwen2.5-Coder is the code version of Qwen2.5, the large language model series developed by Qwen team, Alibaba Cloud.| | 820|SCIR-HI/Huatuo-Llama-Med-Chinese !2025-03-2847191 |Repo for HuaTuo (华驼), Llama-7B tuned with Chinese medical knowledge| | 821|togethercomputer/RedPajama-Data !2025-03-2846841 |code for preparing large datasets for training large language models| | 822|mishushakov/llm-scraper !2025-03-2846704|Turn any webpage into structured data using LLMs| | 823|1rgs/jsonformer !2025-03-2846663 |A Bulletproof Way to Generate Structured JSON from Language Models| | 824|anti-work/shortest !2025-03-2846565|QA via natural language AI tests| | 825|dnhkng/GlaDOS !2025-03-2846510|This is the Personality Core for GLaDOS, the first steps towards a real-life implementation of the AI from the Portal series by Valve.| | 826|Nukem9/dlssg-to-fsr3 !2025-03-2846380|Adds AMD FSR3 Frame Generation to games by replacing Nvidia DLSS-G Frame Generation (nvngx_dlssg).| | 827|BuilderIO/ai-shell !2025-03-2846373 |A CLI that converts natural language to shell commands.| | 828|facebookincubator/AITemplate !2025-03-2846220 |AITemplate is a Python framework which renders neural network into high performance CUDA/HIP C++ code. Specialized for FP16 TensorCore (NVIDIA GPU) and MatrixCore (AMD GPU) inference.| | 829|terraform-aws-modules/terraform-aws-eks !2025-03-2846030|Terraform module to create AWS Elastic Kubernetes (EKS) resources 🇺🇦| | 830|timescale/pgai !2025-03-2845915|A suite of tools to develop RAG, semantic search, and other AI applications more easily with PostgreSQL| | 831|awslabs/multi-agent-orchestrator !2025-03-2845788|Flexible and powerful framework for managing multiple AI agents and handling complex conversations| | 832|sanchit-gandhi/whisper-jax !2025-03-2845771 |Optimised JAX code for OpenAI's Whisper Model, largely built on the Hugging Face Transformers Whisper implementation| | 833|NVIDIA/NeMo-Guardrails !2025-03-2845755|NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.| | 834|PathOfBuildingCommunity/PathOfBuilding !2025-03-2845480|Offline build planner for Path of Exile.| | 835|UX-Decoder/Segment-Everything-Everywhere-All-At-Once !2025-03-2845412 |Official implementation of the paper "Segment Everything Everywhere All at Once"| | 836|build-trust/ockam !2025-03-2845171|Orchestrate end-to-end encryption, cryptographic identities, mutual authentication, and authorization policies between distributed applications – at massive scale.| | 837|google-research/timesfm !2025-03-2845135|TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.| | 838|luosiallen/latent-consistency-model !2025-03-2844842|Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference| | 839|NVlabs/neuralangelo !2025-03-2844740|Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)| | 840|kyegomez/tree-of-thoughts !2025-03-2844720 |Plug in and Play Implementation of Tree of Thoughts: Deliberate Problem Solving with Large Language Models that Elevates Model Reasoning by atleast 70%| | 841|sjvasquez/handwriting-synthesis !2025-03-2844720 |Handwriting Synthesis with RNNs ✏️| | 842| madawei2699/myGPTReader !2025-03-2844420 | A slack bot that can read any webpage, ebook or document and summarize it with chatGPT | | 843|OpenBMB/AgentVerse !2025-03-2844413|🤖 AgentVerse 🪐 provides a flexible framework that simplifies the process of building custom multi-agent environments for large language models (LLMs).| | 844|argmaxinc/WhisperKit !2025-03-2844395|Swift native speech recognition on-device for iOS and macOS applications.| | 845|landing-ai/vision-agent !2025-03-2844346|Vision agent| | 846|InternLM/xtuner !2025-03-2844273|An efficient, flexible and full-featured toolkit for fine-tuning large models (InternLM, Llama, Baichuan, Qwen, ChatGLM)| | 847|google-deepmind/alphageometry !2025-03-284421-1|Solving Olympiad Geometry without Human Demonstrations| | 848|ostris/ai-toolkit !2025-03-2844093|Various AI scripts. Mostly Stable Diffusion stuff.| | 849|LLM-Red-Team/kimi-free-api !2025-03-2844004|🚀 KIMI AI 长文本大模型白嫖服务,支持高速流式输出、联网搜索、长文档解读、图像解析、多轮对话,零配置部署,多路token支持,自动清理会话痕迹。| | 850|argilla-io/argilla !2025-03-2843991|Argilla is a collaboration platform for AI engineers and domain experts that require high-quality outputs, full data ownership, and overall efficiency.| | 851|spring-projects/spring-ai !2025-03-28438419|An Application Framework for AI Engineering| | 852|alibaba-damo-academy/FunClip !2025-03-2843555|Open-source, accurate and easy-to-use video clipping tool, LLM based AI clipping intergrated | | 853|yisol/IDM-VTON !2025-03-2843541|IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild| | 854|fchollet/ARC-AGI !2025-03-2843368|The Abstraction and Reasoning Corpus| | 855|MahmoudAshraf97/whisper-diarization !2025-03-2843064|Automatic Speech Recognition with Speaker Diarization based on OpenAI Whisper| | 856|Speykious/cve-rs !2025-03-2843047|Blazingly 🔥 fast 🚀 memory vulnerabilities, written in 100% safe Rust. 🦀| | 857|Blealtan/efficient-kan !2025-03-2842770|An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN).| | 858|smol-ai/GodMode !2025-03-284249-1|AI Chat Browser: Fast, Full webapp access to ChatGPT / Claude / Bard / Bing / Llama2! I use this 20 times a day.| | 859|openai/plugins-quickstart !2025-03-284235-4 |Get a ChatGPT plugin up and running in under 5 minutes!| | 860|Doriandarko/maestro !2025-03-2842260|A framework for Claude Opus to intelligently orchestrate subagents.| | 861|philz1337x/clarity-upscaler !2025-03-2842204|Clarity-Upscaler: Reimagined image upscaling for everyone| | 862|facebookresearch/co-tracker !2025-03-2842142|CoTracker is a model for tracking any point (pixel) on a video.| | 863|xlang-ai/OpenAgents !2025-03-2842031|OpenAgents: An Open Platform for Language Agents in the Wild| | 864|alibaba/higress !2025-03-28419514|🤖 AI Gateway | | 865|ray-project/llm-numbers !2025-03-2841920 |Numbers every LLM developer should know| | 866|fudan-generative-vision/champ !2025-03-2841820|Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance| | 867|NVIDIA/garak !2025-03-2841795|the LLM vulnerability scanner| | 868|leetcode-mafia/cheetah !2025-03-2841740 |Whisper & GPT-based app for passing remote SWE interviews| | 869|ragapp/ragapp !2025-03-2841710|The easiest way to use Agentic RAG in any enterprise| | 870|collabora/WhisperSpeech !2025-03-2841692|An Open Source text-to-speech system built by inverting Whisper.| | 871|Facico/Chinese-Vicuna !2025-03-2841520 |Chinese-Vicuna: A Chinese Instruction-following LLaMA-based Model| | 872|openai/grok !2025-03-2841381|| | 873|CrazyBoyM/llama3-Chinese-chat !2025-03-2841361|Llama3 Chinese Repository with modified versions, and training and deployment resources| | 874|luban-agi/Awesome-AIGC-Tutorials !2025-03-2841301|Curated tutorials and resources for Large Language Models, AI Painting, and more.| | 875|damo-vilab/AnyDoor !2025-03-2841192|Official implementations for paper: Anydoor: zero-shot object-level image customization| | 876|raspberrypi/pico-sdk !2025-03-2841072|| | 877|mshumer/gpt-llm-trainer !2025-03-284097-1|| | 878|metavoiceio/metavoice-src !2025-03-284076-1|AI for human-level speech intelligence| | 879|intelowlproject/IntelOwl !2025-03-2840763|IntelOwl: manage your Threat Intelligence at scale| | 880|a16z-infra/ai-getting-started !2025-03-2840682|A Javascript AI getting started stack for weekend projects, including image/text models, vector stores, auth, and deployment configs| | 881|MarkFzp/mobile-aloha !2025-03-2840641|Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation| | 882| keijiro/AICommand !2025-03-2840380 | ChatGPT integration with Unity Editor | | 883|Tencent/HunyuanDiT !2025-03-2840214|Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding| | 884|hengyoush/kyanos !2025-03-2840061|Visualize the time packets spend in the kernel, watch & analyze in command line.| | 885|agiresearch/AIOS !2025-03-2840045|AIOS: LLM Agent Operating System| | 886|truefoundry/cognita !2025-03-2839773|RAG (Retrieval Augmented Generation) Framework for building modular, open source applications for production by TrueFoundry| | 887|X-PLUG/MobileAgent !2025-03-2839557|Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception| | 888|jackMort/ChatGPT.nvim !2025-03-2839231|ChatGPT Neovim Plugin: Effortless Natural Language Generation with OpenAI's ChatGPT API| | 889|microsoft/RD-Agent !2025-03-28388422|Research and development (R&D) is crucial for the enhancement of industrial productivity, especially in the AI era, where the core aspects of R&D are mainly focused on data and models. We are committed to automate these high-value generic R&D processes through our open source R&D automation tool RD-Agent, which let AI drive data-driven AI.| | 890|Significant-Gravitas/Auto-GPT-Plugins !2025-03-283882-1 |Plugins for Auto-GPT| | 891|apple/ml-mgie !2025-03-2838770|| | 892|OpenDriveLab/UniAD !2025-03-2838727|[CVPR 2023 Best Paper] Planning-oriented Autonomous Driving| | 893|llSourcell/DoctorGPT !2025-03-2838640|DoctorGPT is an LLM that can pass the US Medical Licensing Exam. It works offline, it's cross-platform, & your health data stays private.| | 894|FlagAI-Open/FlagAI !2025-03-2838601|FlagAI (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model.| | 895|krishnaik06/Roadmap-To-Learn-Generative-AI-In-2024 !2025-03-2838513|Roadmap To Learn Generative AI In 2024| | 896|SysCV/sam-hq !2025-03-2838491|Segment Anything in High Quality| | 897|google/security-research !2025-03-2838420|This project hosts security advisories and their accompanying proof-of-concepts related to research conducted at Google which impact non-Google owned code.| | 898|shroominic/codeinterpreter-api !2025-03-2838330|Open source implementation of the ChatGPT Code Interpreter 👾| | 899|Yonom/assistant-ui !2025-03-2838308|React Components for AI Chat 💬 🚀| | 900|nucleuscloud/neosync !2025-03-2838262|Open source data anonymization and synthetic data orchestration for developers. Create high fidelity synthetic data and sync it across your environments.| | 901|ravenscroftj/turbopilot !2025-03-2838230 |Turbopilot is an open source large-language-model based code completion engine that runs locally on CPU| | 902|NVlabs/Sana !2025-03-28380810|SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer| | 903|huggingface/distil-whisper !2025-03-2838061|Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.| | 904|Codium-ai/AlphaCodium !2025-03-2837971|code generation tool that surpasses most human competitors in CodeContests| | 905|fixie-ai/ultravox !2025-03-2837710|A fast multimodal LLM for real-time voice| | 906|unit-mesh/auto-dev !2025-03-28375715|🧙‍AutoDev: The AI-powered coding wizard with multilingual support 🌐, auto code generation 🏗️, and a helpful bug-slaying assistant 🐞! Customizable prompts 🎨 and a magic Auto Dev/Testing/Document/Agent feature 🧪 included! 🚀| | 907|Marker-Inc-Korea/AutoRAG !2025-03-2837432|AutoML tool for RAG| | 908|deepseek-ai/DeepSeek-VL !2025-03-283734-1|DeepSeek-VL: Towards Real-World Vision-Language Understanding| | 909|hiyouga/ChatGLM-Efficient-Tuning !2025-03-283692-1|Fine-tuning ChatGLM-6B with PEFT | | 910| Yue-Yang/ChatGPT-Siri !2025-03-2836921 | Shortcuts for Siri using ChatGPT API gpt-3.5-turbo model | | 911|0hq/WebGPT !2025-03-2836901 |Run GPT model on the browser with WebGPU. An implementation of GPT inference in less than ~2000 lines of vanilla Javascript.| | 912|cvg/LightGlue !2025-03-2836903|LightGlue: Local Feature Matching at Light Speed (ICCV 2023)| | 913|deanxv/coze-discord-proxy !2025-03-2836791|代理Discord-Bot对话Coze-Bot,实现API形式请求GPT4对话模型/微调模型| | 914|MervinPraison/PraisonAI !2025-03-2836764|PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human-agent collaboration.| | 915|Ironclad/rivet !2025-03-2836345 |The open-source visual AI programming environment and TypeScript library| | 916|BasedHardware/OpenGlass !2025-03-2835851|Turn any glasses into AI-powered smart glasses| | 917|ricklamers/gpt-code-ui !2025-03-2835840 |An open source implementation of OpenAI's ChatGPT Code interpreter| | 918|whoiskatrin/chart-gpt !2025-03-2835830 |AI tool to build charts based on text input| | 919|github/CopilotForXcode !2025-03-2835788|Xcode extension for GitHub Copilot| | 920|hemansnation/God-Level-Data-Science-ML-Full-Stack !2025-03-2835570 |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 921|pytorch/torchchat !2025-03-2835461|Run PyTorch LLMs locally on servers, desktop and mobile| | 922| Kent0n-Li/ChatDoctor !2025-03-2835451 | A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge | | 923|xtekky/chatgpt-clone !2025-03-283519-1 |ChatGPT interface with better UI| | 924|jupyterlab/jupyter-ai !2025-03-2835120|A generative AI extension for JupyterLab| | 925|pytorch/torchtitan !2025-03-2835064|A native PyTorch Library for large model training| | 926|minimaxir/simpleaichat !2025-03-2835031|Python package for easily interfacing with chat apps, with robust features and minimal code complexity.| | 927|srush/Tensor-Puzzles !2025-03-2834930|Solve puzzles. Improve your pytorch.| | 928|Helicone/helicone !2025-03-2834918|🧊 Open source LLM-Observability Platform for Developers. One-line integration for monitoring, metrics, evals, agent tracing, prompt management, playground, etc. Supports OpenAI SDK, Vercel AI SDK, Anthropic SDK, LiteLLM, LLamaIndex, LangChain, and more. 🍓 YC W23| | 929|run-llama/llama-hub !2025-03-2834740|A library of data loaders for LLMs made by the community -- to be used with LlamaIndex and/or LangChain| | 930|NExT-GPT/NExT-GPT !2025-03-2834700|Code and models for NExT-GPT: Any-to-Any Multimodal Large Language Model| | 931|souzatharsis/podcastfy !2025-03-2834661|An Open Source Python alternative to NotebookLM's podcast feature: Transforming Multimodal Content into Captivating Multilingual Audio Conversations with GenAI| | 932|Dataherald/dataherald !2025-03-2834450|Interact with your SQL database, Natural Language to SQL using LLMs| | 933|iryna-kondr/scikit-llm !2025-03-2834350 |Seamlessly integrate powerful language models like ChatGPT into scikit-learn for enhanced text analysis tasks.| | 934|Netflix/maestro !2025-03-2834230|Maestro: Netflix’s Workflow Orchestrator| | 935|CanadaHonk/porffor !2025-03-2833560|A from-scratch experimental AOT JS engine, written in JS| | 936|hustvl/Vim !2025-03-2833323|Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model| | 937|pashpashpash/vault-ai !2025-03-2833250 |OP Vault ChatGPT: Give ChatGPT long-term memory using the OP Stack (OpenAI + Pinecone Vector Database). Upload your own custom knowledge base files (PDF, txt, etc) using a simple React frontend.| | 938|tencentmusic/supersonic !2025-03-28330611|SuperSonic is the next-generation BI platform that integrates Chat BI (powered by LLM) and Headless BI (powered by semantic layer) paradigms.| | 939|billmei/every-chatgpt-gui !2025-03-2832981|Every front-end GUI client for ChatGPT| | 940|microsoft/torchgeo !2025-03-2832772|TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data| | 941|LLMBook-zh/LLMBook-zh.github.io !2025-03-28326110|《大语言模型》作者:赵鑫,李军毅,周昆,唐天一,文继荣| | 942|dvlab-research/MiniGemini !2025-03-2832601|Official implementation for Mini-Gemini| | 943|rashadphz/farfalle !2025-03-2832460|🔍 AI search engine - self-host with local or cloud LLMs| | 944|Luodian/Otter !2025-03-2832450|🦦 Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following and in-context learning ability.| | 945|AprilNEA/ChatGPT-Admin-Web !2025-03-2832370 | ChatGPT WebUI with user management and admin dashboard system| | 946|MarkFzp/act-plus-plus !2025-03-2832365|Imitation Learning algorithms with Co-traing for Mobile ALOHA: ACT, Diffusion Policy, VINN| | 947|ethen8181/machine-learning !2025-03-2832310|🌎 machine learning tutorials (mainly in Python3)| | 948|opengeos/segment-geospatial !2025-03-2832312 |A Python package for segmenting geospatial data with the Segment Anything Model (SAM)| | 949|iusztinpaul/hands-on-llms !2025-03-283225-2|🦖 𝗟𝗲𝗮𝗿𝗻 about 𝗟𝗟𝗠𝘀, 𝗟𝗟𝗠𝗢𝗽𝘀, and 𝘃𝗲𝗰𝘁𝗼𝗿 𝗗𝗕𝘀 for free by designing, training, and deploying a real-time financial advisor LLM system ~ 𝘴𝘰𝘶𝘳𝘤𝘦 𝘤𝘰𝘥𝘦 + 𝘷𝘪𝘥𝘦𝘰 & 𝘳𝘦𝘢𝘥𝘪𝘯𝘨 𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭𝘴| | 950|ToTheBeginning/PuLID !2025-03-2832221|Official code for PuLID: Pure and Lightning ID Customization via Contrastive Alignment| | 951|neo4j-labs/llm-graph-builder !2025-03-2832164|Neo4j graph construction from unstructured data using LLMs| | 952|OpenGVLab/InternGPT !2025-03-2832150 |InternGPT (iGPT) is an open source demo platform where you can easily showcase your AI models. Now it supports DragGAN, ChatGPT, ImageBind, multimodal chat like GPT-4, SAM, interactive image editing, etc. Try it at igpt.opengvlab.com (支持DragGAN、ChatGPT、ImageBind、SAM的在线Demo系统)| | 953|PKU-YuanGroup/Video-LLaVA !2025-03-2832060 |Video-LLaVA: Learning United Visual Representation by Alignment Before Projection| | 954|DataTalksClub/llm-zoomcamp !2025-03-2832030|LLM Zoomcamp - a free online course about building an AI bot that can answer questions about your knowledge base| | 955|gptscript-ai/gptscript !2025-03-2832010|Natural Language Programming| |!green-up-arrow.svg 956|isaac-sim/IsaacLab !2025-03-28320113|Unified framework for robot learning built on NVIDIA Isaac Sim| |!red-down-arrow 957|ai-boost/Awesome-GPTs !2025-03-2832003|Curated list of awesome GPTs 👍.| | 958|huggingface/safetensors !2025-03-2831901|Simple, safe way to store and distribute tensors| | 959|linyiLYi/bilibot !2025-03-2831771|A local chatbot fine-tuned by bilibili user comments.| | 960| project-baize/baize-chatbot !2025-03-283168-1 | Let ChatGPT teach your own chatbot in hours with a single GPU! | | 961|Azure-Samples/cognitive-services-speech-sdk !2025-03-2831280|Sample code for the Microsoft Cognitive Services Speech SDK| | 962|microsoft/Phi-3CookBook !2025-03-2831231|This is a Phi-3 book for getting started with Phi-3. Phi-3, a family of open AI models developed by Microsoft. Phi-3 models are the most capable and cost-effective small language models (SLMs) available, outperforming models of the same size and next size up across a variety of language, reasoning, coding, and math benchmarks.| | 963|neuralmagic/deepsparse !2025-03-2831180|Sparsity-aware deep learning inference runtime for CPUs| | 964|sugarforever/chat-ollama !2025-03-2831000|ChatOllama is an open source chatbot based on LLMs. It supports a wide range of language models, and knowledge base management.| | 965|amazon-science/chronos-forecasting !2025-03-2830974|Chronos: Pretrained (Language) Models for Probabilistic Time Series Forecasting| | 966|damo-vilab/i2vgen-xl !2025-03-2830902|Official repo for VGen: a holistic video generation ecosystem for video generation building on diffusion models| | 967|google-deepmind/gemma !2025-03-2830733|Open weights LLM from Google DeepMind.| | 968|iree-org/iree !2025-03-2830733|A retargetable MLIR-based machine learning compiler and runtime toolkit.| | 969|NVlabs/VILA !2025-03-2830724|VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)| | 970|microsoft/torchscale !2025-03-2830661|Foundation Architecture for (M)LLMs| | 971|openai/openai-realtime-console !2025-03-2830656|React app for inspecting, building and debugging with the Realtime API| | 972|daveshap/OpenAIAgentSwarm !2025-03-2830610|HAAS = Hierarchical Autonomous Agent Swarm - "Resistance is futile!"| | 973|microsoft/PromptWizard !2025-03-2830555|Task-Aware Agent-driven Prompt Optimization Framework| | 974|CVI-SZU/Linly !2025-03-2830490 |Chinese-LLaMA basic model; ChatFlow Chinese conversation model; NLP pre-training/command fine-tuning dataset| | 975|cohere-ai/cohere-toolkit !2025-03-2830130|Toolkit is a collection of prebuilt components enabling users to quickly build and deploy RAG applications.| | 976|adamcohenhillel/ADeus !2025-03-2830131|An open source AI wearable device that captures what you say and hear in the real world and then transcribes and stores it on your own server. You can then chat with Adeus using the app, and it will have all the right context about what you want to talk about - a truly personalized, personal AI.| | 977|Lightning-AI/LitServe !2025-03-2830132|Lightning-fast serving engine for AI models. Flexible. Easy. Enterprise-scale.| | 978|potpie-ai/potpie !2025-03-2829973|Prompt-To-Agent : Create custom engineering agents for your codebase| | 979|ant-design/x !2025-03-28299529|Craft AI-driven interfaces effortlessly 🤖| | 980|meta-llama/PurpleLlama !2025-03-2829832|Set of tools to assess and improve LLM security.| | 981|williamyang1991/RerenderAVideo !2025-03-2829800|[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation| | 982|baichuan-inc/Baichuan-13B !2025-03-2829790|A 13B large language model developed by Baichuan Intelligent Technology| | 983|Stability-AI/stable-audio-tools !2025-03-2829761|Generative models for conditional audio generation| | 984|li-plus/chatglm.cpp !2025-03-2829720|C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & more LLMs| | 985|NVIDIA/GenerativeAIExamples !2025-03-2829546|Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.| | 986|Josh-XT/AGiXT !2025-03-2829521 |AGiXT is a dynamic AI Automation Platform that seamlessly orchestrates instruction management and complex task execution across diverse AI providers. Combining adaptive memory, smart features, and a versatile plugin system, AGiXT delivers efficient and comprehensive AI solutions.| | 987|MrForExample/ComfyUI-3D-Pack !2025-03-2829515|An extensive node suite that enables ComfyUI to process 3D inputs (Mesh & UV Texture, etc) using cutting edge algorithms (3DGS, NeRF, etc.)| | 988|olimorris/codecompanion.nvim !2025-03-28295111|✨ AI-powered coding, seamlessly in Neovim. Supports Anthropic, Copilot, Gemini, Ollama, OpenAI and xAI LLMs| | 989|salesforce/CodeT5 !2025-03-282940-1 |Home of CodeT5: Open Code LLMs for Code Understanding and Generation| | 990|facebookresearch/ijepa !2025-03-2829391|Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."| | 991|eureka-research/Eureka !2025-03-2829351|Official Repository for "Eureka: Human-Level Reward Design via Coding Large Language Models"| | 992|NVIDIA/trt-llm-rag-windows !2025-03-282934-1|A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM| | 993|gmpetrov/databerry !2025-03-282930-1|The no-code platform for building custom LLM Agents| | 994|AI4Finance-Foundation/FinRobot !2025-03-28291946|FinRobot: An Open-Source AI Agent Platform for Financial Applications using LLMs 🚀 🚀 🚀| | 995|nus-apr/auto-code-rover !2025-03-2829013|A project structure aware autonomous software engineer aiming for autonomous program improvement| | 996|deepseek-ai/DreamCraft3D !2025-03-2828921|[ICLR 2024] Official implementation of DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior| | 997|mlabonne/llm-datasets !2025-03-2828848|High-quality datasets, tools, and concepts for LLM fine-tuning.| | 998|facebookresearch/jepa !2025-03-2828712|PyTorch code and models for V-JEPA self-supervised learning from video.| | 999|facebookresearch/habitat-sim !2025-03-2828604|A flexible, high-performance 3D simulator for Embodied AI research.| | 1000|xenova/whisper-web !2025-03-2828581|ML-powered speech recognition directly in your browser| | 1001|cvlab-columbia/zero123 !2025-03-2828530|Zero-1-to-3: Zero-shot One Image to 3D Object: https://zero123.cs.columbia.edu/| | 1002|yuruotong1/autoMate !2025-03-28285121|Like Manus, Computer Use Agent(CUA) and Omniparser, we are computer-using agents.AI-driven local automation assistant that uses natural language to make computers work by themselves| | 1003|muellerberndt/mini-agi !2025-03-282845-1 |A minimal generic autonomous agent based on GPT3.5/4. Can analyze stock prices, perform network security tests, create art, and order pizza.| | 1004|allenai/open-instruct !2025-03-2828432|| | 1005|CodingChallengesFYI/SharedSolutions !2025-03-2828360|Publicly shared solutions to Coding Challenges| | 1006|hegelai/prompttools !2025-03-2828220|Open-source tools for prompt testing and experimentation, with support for both LLMs (e.g. OpenAI, LLaMA) and vector databases (e.g. Chroma, Weaviate).| | 1007|mazzzystar/Queryable !2025-03-2828222|Run CLIP on iPhone to Search Photos.| | 1008|Doubiiu/DynamiCrafter !2025-03-2828173|DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors| | 1009|SamurAIGPT/privateGPT !2025-03-282805-1 |An app to interact privately with your documents using the power of GPT, 100% privately, no data leaks| | 1010|facebookresearch/Pearl !2025-03-2827951|A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.| | 1011|intuitem/ciso-assistant-community !2025-03-2827954|CISO Assistant is a one-stop-shop for GRC, covering Risk, AppSec and Audit Management and supporting +70 frameworks worldwide with auto-mapping: NIST CSF, ISO 27001, SOC2, CIS, PCI DSS, NIS2, CMMC, PSPF, GDPR, HIPAA, Essential Eight, NYDFS-500, DORA, NIST AI RMF, 800-53, 800-171, CyFun, CJIS, AirCyber, NCSC, ECC, SCF and so much more| | 1012|facebookresearch/audio2photoreal !2025-03-2827840|Code and dataset for photorealistic Codec Avatars driven from audio| | 1013|Azure/azure-rest-api-specs !2025-03-2827770|The source for REST API specifications for Microsoft Azure.| | 1014|SCUTlihaoyu/open-chat-video-editor !2025-03-2827690 |Open source short video automatic generation tool| | 1015|Alpha-VLLM/LLaMA2-Accessory !2025-03-2827642|An Open-source Toolkit for LLM Development| | 1016|johnma2006/mamba-minimal !2025-03-2827601|Simple, minimal implementation of the Mamba SSM in one file of PyTorch.| | 1017|nerfstudio-project/gsplat !2025-03-2827576|CUDA accelerated rasterization of gaussian splatting| | 1018|Physical-Intelligence/openpi !2025-03-28274617|| | 1019|leptonai/leptonai !2025-03-2827246|A Pythonic framework to simplify AI service building| |!green-up-arrow.svg 1020|joanrod/star-vector !2025-03-28271149|StarVector is a foundation model for SVG generation that transforms vectorization into a code generation task. Using a vision-language modeling architecture, StarVector processes both visual and textual inputs to produce high-quality SVG code with remarkable precision.| |!red-down-arrow 1021|jqnatividad/qsv !2025-03-2827092|CSVs sliced, diced & analyzed.| | 1022|FranxYao/chain-of-thought-hub !2025-03-2826991|Benchmarking large language models' complex reasoning ability with chain-of-thought prompting| | 1023|princeton-nlp/SWE-bench !2025-03-2826965|[ICLR 2024] SWE-Bench: Can Language Models Resolve Real-world Github Issues?| | 1024|elastic/otel-profiling-agent !2025-03-2826930|The production-scale datacenter profiler| | 1025|src-d/hercules !2025-03-2826900|Gaining advanced insights from Git repository history.| | 1026|lanqian528/chat2api !2025-03-2826695|A service that can convert ChatGPT on the web to OpenAI API format.| | 1027|ishan0102/vimGPT !2025-03-2826681|Browse the web with GPT-4V and Vimium| | 1028|TMElyralab/MuseV !2025-03-2826650|MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising| | 1029|georgia-tech-db/eva !2025-03-2826600 |AI-Relational Database System | | 1030|kubernetes-sigs/controller-runtime !2025-03-2826590|Repo for the controller-runtime subproject of kubebuilder (sig-apimachinery)| | 1031|gptlink/gptlink !2025-03-2826550 |Build your own free commercial ChatGPT environment in 10 minutes. The setup is simple and includes features such as user management, orders, tasks, and payments| | 1032|pytorch/executorch !2025-03-2826534|On-device AI across mobile, embedded and edge for PyTorch| | 1033|NVIDIA/nv-ingest !2025-03-2826290|NVIDIA Ingest is an early access set of microservices for parsing hundreds of thousands of complex, messy unstructured PDFs and other enterprise documents into metadata and text to embed into retrieval systems.| | 1034|SuperTux/supertux !2025-03-2826081|SuperTux source code| | 1035|abi/secret-llama !2025-03-2826050|Fully private LLM chatbot that runs entirely with a browser with no server needed. Supports Mistral and LLama 3.| | 1036|liou666/polyglot !2025-03-2825841 |Desktop AI Language Practice Application| | 1037|janhq/nitro !2025-03-2825821|A fast, lightweight, embeddable inference engine to supercharge your apps with local AI. OpenAI-compatible API| | 1038|deepseek-ai/DeepSeek-Math !2025-03-2825825|DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models| | 1039|anthropics/prompt-eng-interactive-tutorial !2025-03-2825781|Anthropic's Interactive Prompt Engineering Tutorial| | 1040|microsoft/promptbench !2025-03-2825741|A unified evaluation framework for large language models| | 1041|baaivision/Painter !2025-03-2825580 |Painter & SegGPT Series: Vision Foundation Models from BAAI| | 1042|OpenPipe/OpenPipe !2025-03-2825581|Turn expensive prompts into cheap fine-tuned models| | 1043|TracecatHQ/tracecat !2025-03-2825531|😼 The AI-native, open source alternative to Tines / Splunk SOAR.| | 1044|JoshuaC215/agent-service-toolkit !2025-03-2825528|Full toolkit for running an AI agent service built with LangGraph, FastAPI and Streamlit| | 1045|databricks/dbrx !2025-03-2825460|Code examples and resources for DBRX, a large language model developed by Databricks| | 1046|lamini-ai/lamini !2025-03-2825271 |Official repo for Lamini's data generator for generating instructions to train instruction-following LLMs| | 1047|mshumer/gpt-author !2025-03-282510-1|| | 1048|TMElyralab/MusePose !2025-03-2824971|MusePose: a Pose-Driven Image-to-Video Framework for Virtual Human Generation| | 1049|Kludex/fastapi-tips !2025-03-2824974|FastAPI Tips by The FastAPI Expert!| | 1050|openai/simple-evals !2025-03-2824813|| | 1051|iterative/datachain !2025-03-2824732|AI-data warehouse to enrich, transform and analyze data from cloud storages| | 1052|girafe-ai/ml-course !2025-03-2824703|Open Machine Learning course| | 1053|kevmo314/magic-copy !2025-03-2824620 |Magic Copy is a Chrome extension that uses Meta's Segment Anything Model to extract a foreground object from an image and copy it to the clipboard.| | 1054|Eladlev/AutoPrompt !2025-03-2824432|A framework for prompt tuning using Intent-based Prompt Calibration| | 1055|OpenBMB/CPM-Bee !2025-03-282434-1 |A bilingual large-scale model with trillions of parameters| | 1056|IDEA-Research/T-Rex !2025-03-2824310|T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy| | 1057|microsoft/genaiscript !2025-03-2824202|Automatable GenAI Scripting| | 1058|paulpierre/RasaGPT !2025-03-2824090 |💬 RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain. Built w/ Rasa, FastAPI, Langchain, LlamaIndex, SQLModel, pgvector, ngrok, telegram| | 1059|ashishpatel26/LLM-Finetuning !2025-03-2823911|LLM Finetuning with peft| | 1060|SoraWebui/SoraWebui !2025-03-2823570|SoraWebui is an open-source Sora web client, enabling users to easily create videos from text with OpenAI's Sora model.| | 1061|6drf21e/ChatTTScolab !2025-03-2823491|🚀 一键部署(含离线整合包)!基于 ChatTTS ,支持音色抽卡、长音频生成和分角色朗读。简单易用,无需复杂安装。| | 1062|Azure/PyRIT !2025-03-2823343|The Python Risk Identification Tool for generative AI (PyRIT) is an open access automation framework to empower security professionals and machine learning engineers to proactively find risks in their generative AI systems.| | 1063|tencent-ailab/V-Express !2025-03-2823201|V-Express aims to generate a talking head video under the control of a reference image, an audio, and a sequence of V-Kps images.| | 1064|THUDM/CogVLM2 !2025-03-2823170|GPT4V-level open-source multi-modal model based on Llama3-8B| | 1065|dvmazur/mixtral-offloading !2025-03-2823001|Run Mixtral-8x7B models in Colab or consumer desktops| | 1066|semanser/codel !2025-03-2822950|✨ Fully autonomous AI Agent that can perform complicated tasks and projects using terminal, browser, and editor.| | 1067|mshumer/gpt-investor !2025-03-2822590|| | 1068|aixcoder-plugin/aiXcoder-7B !2025-03-2822550|official repository of aiXcoder-7B Code Large Language Model| | 1069|Azure-Samples/graphrag-accelerator !2025-03-2822503|One-click deploy of a Knowledge Graph powered RAG (GraphRAG) in Azure| | 1070|emcf/engshell !2025-03-2821830 |An English-language shell for any OS, powered by LLMs| | 1071|hncboy/chatgpt-web-java !2025-03-2821771|ChatGPT project developed in Java, based on Spring Boot 3 and JDK 17, supports both AccessToken and ApiKey modes| | 1072|openai/consistencydecoder !2025-03-2821692|Consistency Distilled Diff VAE| | 1073|Alpha-VLLM/Lumina-T2X !2025-03-2821681|Lumina-T2X is a unified framework for Text to Any Modality Generation| | 1074|bghira/SimpleTuner !2025-03-2821612|A general fine-tuning kit geared toward Stable Diffusion 2.1, Stable Diffusion 3, DeepFloyd, and SDXL.| | 1075|JiauZhang/DragGAN !2025-03-2821530 |Implementation of DragGAN: Interactive Point-based Manipulation on the Generative Image Manifold| | 1076|cgpotts/cs224u !2025-03-2821390|Code for Stanford CS224u| | 1077|PKU-YuanGroup/MoE-LLaVA !2025-03-2821300|Mixture-of-Experts for Large Vision-Language Models| | 1078|darrenburns/elia !2025-03-2820831|A snappy, keyboard-centric terminal user interface for interacting with large language models. Chat with ChatGPT, Claude, Llama 3, Phi 3, Mistral, Gemma and more.| | 1079|ageerle/ruoyi-ai !2025-03-28207898|RuoYi AI 是一个全栈式 AI 开发平台,旨在帮助开发者快速构建和部署个性化的 AI 应用。| | 1080|NVIDIA/gpu-operator !2025-03-2820510|NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes| | 1081|BAAI-Agents/Cradle !2025-03-2820481|The Cradle framework is a first attempt at General Computer Control (GCC). Cradle supports agents to ace any computer task by enabling strong reasoning abilities, self-improvment, and skill curation, in a standardized general environment with minimal requirements.| | 1082|microsoft/aici !2025-03-2820080|AICI: Prompts as (Wasm) Programs| | 1083|PRIS-CV/DemoFusion !2025-03-2820040|Let us democratise high-resolution generation! (arXiv 2023)| | 1084|apple/axlearn !2025-03-2820012|An Extensible Deep Learning Library| | 1085|naver/mast3r !2025-03-2819685|Grounding Image Matching in 3D with MASt3R| | 1086|liltom-eth/llama2-webui !2025-03-281958-1|Run Llama 2 locally with gradio UI on GPU or CPU from anywhere (Linux/Windows/Mac). Supporting Llama-2-7B/13B/70B with 8-bit, 4-bit. Supporting GPU inference (6 GB VRAM) and CPU inference.| | 1087|GaParmar/img2img-turbo !2025-03-2819582|One-step image-to-image with Stable Diffusion turbo: sketch2image, day2night, and more| | 1088|Niek/chatgpt-web !2025-03-2819560|ChatGPT web interface using the OpenAI API| | 1089|huggingface/cookbook !2025-03-2819421|Open-source AI cookbook| | 1090|pytorch/ao !2025-03-2819241|PyTorch native quantization and sparsity for training and inference| | 1091|emcie-co/parlant !2025-03-2819053|The behavior guidance framework for customer-facing LLM agents| | 1092|ymcui/Chinese-LLaMA-Alpaca-3 !2025-03-2818980|中文羊驼大模型三期项目 (Chinese Llama-3 LLMs) developed from Meta Llama 3| | 1093|Nutlope/notesGPT !2025-03-2818811|Record voice notes & transcribe, summarize, and get tasks| | 1094|InstantStyle/InstantStyle !2025-03-2818791|InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation 🔥| | 1095|idaholab/moose !2025-03-2818771|Multiphysics Object Oriented Simulation Environment| | 1096|The-OpenROAD-Project/OpenROAD !2025-03-2818351|OpenROAD's unified application implementing an RTL-to-GDS Flow. Documentation at https://openroad.readthedocs.io/en/latest/| | 1097|alibaba/spring-ai-alibaba !2025-03-281831121|Agentic AI Framework for Java Developers| | 1098|ytongbai/LVM !2025-03-2817990|Sequential Modeling Enables Scalable Learning for Large Vision Models| | 1099|microsoft/sample-app-aoai-chatGPT !2025-03-2817981|[PREVIEW] Sample code for a simple web chat experience targeting chatGPT through AOAI.| | 1100|AI-Citizen/SolidGPT !2025-03-2817830|Chat everything with your code repository, ask repository level code questions, and discuss your requirements. AI Scan and learning your code repository, provide you code repository level answer🧱 🧱| | 1101|YangLing0818/RPG-DiffusionMaster !2025-03-2817784|Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs (PRG)| | 1102|kyegomez/BitNet !2025-03-2817710|Implementation of "BitNet: Scaling 1-bit Transformers for Large Language Models" in pytorch| | 1103|eloialonso/diamond !2025-03-2817671|DIAMOND (DIffusion As a Model Of eNvironment Dreams) is a reinforcement learning agent trained in a diffusion world model.| | 1104|flowdriveai/flowpilot !2025-03-2817250|flow-pilot is an openpilot based driver assistance system that runs on linux, windows and android powered machines.| | 1105|xlang-ai/OSWorld !2025-03-2817200|OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments| | 1106|linyiLYi/snake-ai !2025-03-2817031|An AI agent that beats the classic game "Snake".| | 1107|baaivision/Emu !2025-03-2816991|Emu Series: Generative Multimodal Models from BAAI| | 1108|kevmo314/scuda !2025-03-2816870|SCUDA is a GPU over IP bridge allowing GPUs on remote machines to be attached to CPU-only machines.| | 1109|SharifiZarchi/IntroductiontoMachineLearning !2025-03-2816701|دوره‌ی مقدمه‌ای بر یادگیری ماشین، برای دانشجویان| | 1110|google/maxtext !2025-03-2816670|A simple, performant and scalable Jax LLM!| | 1111|ml-explore/mlx-swift-examples !2025-03-2816471|Examples using MLX Swift| | 1112|unitreerobotics/unitreerlgym !2025-03-2816256|| | 1113|collabora/WhisperFusion !2025-03-2815901|WhisperFusion builds upon the capabilities of WhisperLive and WhisperSpeech to provide a seamless conversations with an AI.| | 1114|lichao-sun/Mora !2025-03-2815520|Mora: More like Sora for Generalist Video Generation| | 1115|GoogleCloudPlatform/localllm !2025-03-2815370|Run LLMs locally on Cloud Workstations| | 1116|TencentARC/BrushNet !2025-03-2815330|The official implementation of paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"| | 1117|ai-christianson/RA.Aid !2025-03-2815288|Develop software autonomously.| | 1118|stephansturges/WALDO !2025-03-2815170|Whereabouts Ascertainment for Low-lying Detectable Objects. The SOTA in FOSS AI for drones!| | 1119|skills/copilot-codespaces-vscode !2025-03-2815112|Develop with AI-powered code suggestions using GitHub Copilot and VS Code| | 1120|andrewnguonly/Lumos !2025-03-2814920|A RAG LLM co-pilot for browsing the web, powered by local LLMs| | 1121|TeamNewPipe/NewPipeExtractor !2025-03-2814811|NewPipe's core library for extracting data from streaming sites| | 1122|mhamilton723/FeatUp !2025-03-2814770|Official code for "FeatUp: A Model-Agnostic Frameworkfor Features at Any Resolution" ICLR 2024| | 1123|AnswerDotAI/fsdpqlora !2025-03-2814671|Training LLMs with QLoRA + FSDP| | 1124|jgravelle/AutoGroq !2025-03-2814330|| | 1125|OpenGenerativeAI/llm-colosseum !2025-03-2814130|Benchmark LLMs by fighting in Street Fighter 3! The new way to evaluate the quality of an LLM| | 1126|microsoft/vscode-ai-toolkit !2025-03-2814000|| | 1127|McGill-NLP/webllama !2025-03-2813930|Llama-3 agents that can browse the web by following instructions and talking to you| | 1128|lucidrains/self-rewarding-lm-pytorch !2025-03-2813760|Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI| | 1129|ishaan1013/sandbox !2025-03-2813650|A cloud-based code editing environment with an AI copilot and real-time collaboration.| | 1130|goatcorp/Dalamud !2025-03-2813275|FFXIV plugin framework and API| | 1131|Lightning-AI/lightning-thunder !2025-03-2813151|Make PyTorch models Lightning fast! Thunder is a source to source compiler for PyTorch. It enables using different hardware executors at once.| | 1132|PKU-YuanGroup/MagicTime !2025-03-2813052|MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators| | 1133|SakanaAI/evolutionary-model-merge !2025-03-2813000|Official repository of Evolutionary Optimization of Model Merging Recipes| | 1134|a-real-ai/pywinassistant !2025-03-2812950|The first open source Large Action Model generalist Artificial Narrow Intelligence that controls completely human user interfaces by only using natural language. PyWinAssistant utilizes Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models.| | 1135|TraceMachina/nativelink !2025-03-2812630|NativeLink is an open source high-performance build cache and remote execution server, compatible with Bazel, Buck2, Reclient, and other RBE-compatible build systems. It offers drastically faster builds, reduced test flakiness, and significant infrastructure cost savings.| | 1136|MLSysOps/MLE-agent !2025-03-2812500|🤖 MLE-Agent: Your intelligent companion for seamless AI engineering and research. 🔍 Integrate with arxiv and paper with code to provide better code/research plans 🧰 OpenAI, Ollama, etc supported. 🎆 Code RAG| | 1137|wpilibsuite/allwpilib !2025-03-2811610|Official Repository of WPILibJ and WPILibC| | 1138|elfvingralf/macOSpilot-ai-assistant !2025-03-2811470|Voice + Vision powered AI assistant that answers questions about any application, in context and in audio.| | 1139|langchain-ai/langchain-extract !2025-03-2811210|🦜⛏️ Did you say you like data?| | 1140|FoundationVision/GLEE !2025-03-2811120|【CVPR2024】GLEE: General Object Foundation Model for Images and Videos at Scale| | 1141|Profluent-AI/OpenCRISPR !2025-03-2810990|AI-generated gene editing systems| | 1142|zju3dv/EasyVolcap !2025-03-2810821|[SIGGRAPH Asia 2023 (Technical Communications)] EasyVolcap: Accelerating Neural Volumetric Video Research| | 1143|PaddlePaddle/PaddleHelix !2025-03-2810560|Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集| | 1144|myshell-ai/JetMoE !2025-03-289800|Reaching LLaMA2 Performance with 0.1M Dollars| | 1145|likejazz/llama3.np !2025-03-289770|llama3.np is pure NumPy implementation for Llama 3 model.| | 1146|mustafaaljadery/gemma-2B-10M !2025-03-289500|Gemma 2B with 10M context length using Infini-attention.| | 1147|HITsz-TMG/FilmAgent !2025-03-289382|Resources of our paper "FilmAgent: A Multi-Agent Framework for End-to-End Film Automation in Virtual 3D Spaces". New versions in the making!| | 1148|aws-samples/amazon-bedrock-samples !2025-03-289362|This repository contains examples for customers to get started using the Amazon Bedrock Service. This contains examples for all available foundational models| | 1149|Akkudoktor-EOS/EOS !2025-03-2893154|This repository features an Energy Optimization System (EOS) that optimizes energy distribution, usage for batteries, heat pumps& household devices. It includes predictive models for electricity prices (planned), load forecasting& dynamic optimization to maximize energy efficiency & minimize costs. Founder Dr. Andreas Schmitz (YouTube @akkudoktor)| Tip: | symbol| rule | | :----| :---- | |🔥 | 256 1k| |!green-up-arrow.svg !red-down-arrow | ranking up / down| |⭐ | on trending page today| [Back to Top] Tools | No. | Tool | Description | | ----:|:----------------------------------------------- |:------------------------------------------------------------------------------------------- | | 1 | ChatGPT | A sibling model to InstructGPT, which is trained to follow instructions in a prompt and provide a detailed response | | 2 | DALL·E 2 | Create original, realistic images and art from a text description | | 3 | Murf AI | AI enabled, real people's voices| | 4 | Midjourney | An independent research lab that produces an artificial intelligence program under the same name that creates images from textual descriptions, used in Discord | 5 | Make-A-Video | Make-A-Video is a state-of-the-art AI system that generates videos from text | | 6 | Creative Reality™ Studio by D-ID| Use generative AI to create future-facing videos| | 7 | chat.D-ID| The First App Enabling Face-to-Face Conversations with ChatGPT| | 8 | Notion AI| Access the limitless power of AI, right inside Notion. Work faster. Write better. Think bigger. | | 9 | Runway| Text to Video with Gen-2 | | 10 | Resemble AI| Resemble’s AI voice generator lets you create human–like voice overs in seconds | | 11 | Cursor| Write, edit, and chat about your code with a powerful AI | | 12 | Hugging Face| Build, train and deploy state of the art models powered by the reference open source in machine learning | | 13 | Claude | A next-generation AI assistant for your tasks, no matter the scale | | 14 | Poe| Poe lets you ask questions, get instant answers, and have back-and-forth conversations with AI. Gives access to GPT-4, gpt-3.5-turbo, Claude from Anthropic, and a variety of other bots| [Back to Top] Websites | No. | WebSite |Description | | ----:|:------------------------------------------ |:---------------------------------------------------------------------------------------- | | 1 | OpenAI | An artificial intelligence research lab | | 2 | Bard | Base Google's LaMDA chatbots and pull from internet | | 3 | ERNIE Bot | Baidu’s new generation knowledge-enhanced large language model is a new member of the Wenxin large model family | | 4 | DALL·E 2 | An AI system that can create realistic images and art from a description in natural language | | 5 | Whisper | A general-purpose speech recognition model | | 6| CivitAI| A platform that makes it easy for people to share and discover resources for creating AI art| | 7|D-ID| D-ID’s Generative AI enables users to transform any picture or video into extraordinary experiences| | 8| Nvidia eDiff-I| Text-to-Image Diffusion Models with Ensemble of Expert Denoisers | | 9| Stability AI| The world's leading open source generative AI company which opened source Stable Diffusion | | 10| Meta AI| Whether it be research, product or infrastructure development, we’re driven to innovate responsibly with AI to benefit the world | | 11| ANTHROPIC| AI research and products that put safety at the frontier | [Back to Top] Reports&Papers | No. | Report&Paper | Description | |:---- |:-------------------------------------------------------------------------------------------------------------- |:---------------------------------------------------- | | 1 | GPT-4 Technical Report | GPT-4 Technical Report | | 2 | mli/paper-reading | Deep learning classics and new papers are read carefully paragraph by paragraph. | | 3 | labmlai/annotateddeeplearningpaperimplementations| A collection of simple PyTorch implementations of neural networks and related algorithms, which are documented with explanations | | 4 | Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models | Talking, Drawing and Editing with Visual Foundation Models | | 5 | OpenAI Research | The latest research report and papers from OpenAI | | 6 | Make-A-Video: Text-to-Video Generation without Text-Video Data|Meta's Text-to-Video Generation| | 7 | eDiff-I: Text-to-Image Diffusion Models with Ensemble of Expert Denoisers| Nvidia eDiff-I - New generation of generative AI content creation tool | | 8 | Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo | 2023 GPT4All Technical Report | | 9 | Segment Anything| Meta Segment Anything | | 10 | LLaMA: Open and Efficient Foundation Language Models| LLaMA: a collection of foundation language models ranging from 7B to 65B parameters| | 11 | papers-we-love/papers-we-love |Papers from the computer science community to read and discuss| | 12 | CVPR 2023 papers |The most exciting and influential CVPR 2023 papers| [Back to Top] Tutorials | No. | Tutorial | Description| |:---- |:---------------------------------------------------------------- | --- | | 1 | Coursera - Machine Learning | The Machine Learning Specialization Course taught by Dr. Andrew Ng| | 2 | microsoft/ML-For-Beginners | 12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all| | 3 | ChatGPT Prompt Engineering for Developers | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI) will teach how to use a large language model (LLM) to quickly build new and powerful applications | | 4 | Dive into Deep Learning |Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries | | 5 | AI Expert Roadmap | Roadmap to becoming an Artificial Intelligence Expert in 2022 | | 6 | Computer Science courses |List of Computer Science courses with video lectures| | 7 | Machine Learning with Python | Machine Learning with Python Certification on freeCodeCamp| | 8 | Building Systems with the ChatGPT API | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI), you will learn how to automate complex workflows using chain calls to a large language model| | 9 | LangChain for LLM Application Development | This short course taught by Harrison Chase (Co-Founder and CEO at LangChain) and Andrew Ng. you will gain essential skills in expanding the use cases and capabilities of language models in application development using the LangChain framework| | 10 | How Diffusion Models Work | This short course taught by Sharon Zhou (CEO, Co-founder, Lamini). you will gain a deep familiarity with the diffusion process and the models which carry it out. More than simply pulling in a pre-built model or using an API, this course will teach you to build a diffusion model from scratch| | 11 | Free Programming Books For AI |📚 Freely available programming books for AI | | 12 | microsoft/AI-For-Beginners |12 Weeks, 24 Lessons, AI for All!| | 13 | hemansnation/God-Level-Data-Science-ML-Full-Stack |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 14 | datawhalechina/prompt-engineering-for-developers |Chinese version of Andrew Ng's Big Model Series Courses, including "Prompt Engineering", "Building System", and "LangChain"| | 15 | ossu/computer-science |🎓 Path to a free self-taught education in Computer Science!| | 16 | microsoft/Data-Science-For-Beginners | 10 Weeks, 20 Lessons, Data Science for All! | |17 |jwasham/coding-interview-university !2023-09-29268215336 |A complete computer science study plan to become a software engineer.| [Back to Top] Thanks If this project has been helpful to you in any way, please give it a ⭐️ by clicking on the star.

He makes $750 a day 'Vibe Coding' Apps (using Replit, ChatGPT, Upwork)
youtube
LLM Vibe Score0.379
Human Vibe Score0.77
Greg IsenbergMar 21, 2025

He makes $750 a day 'Vibe Coding' Apps (using Replit, ChatGPT, Upwork)

Billy Howell shares his strategy for making money by building and selling custom web applications using AI tools like Replit. He demonstrates the process by finding projects on Upwork, creating a product requirements document with ChatGPT, and using Replit to automatically generate a functional web application. Billy explains that this approach is less risky than building SaaS products because it validates demand before significant development work. Timestamps: 00:00 - Intro 02:19 - Searching for App Ideas on Upwork 11:04 - Using ChatGPT for PRD Creation 12:22 - Why choose Replit for Development 15:15 - Building Prototype with Replit 19:53 - Areas of Concern when building with AI coders 23:30 - Earning Potential on Upwork 27:55 - The process for selling these Apps 32:03 - Comparing Different Business Models 35:40 - Huge opportunity: Unbundling SaaS 37:44 - Testing App 39:39 - How to standout on Upwork 40:35 - Integrating v0 UI to Replit Key Points • Billy Howell explains his method of "vibe coding" - using AI tools like Replit to quickly build and sell custom web applications • The process involves finding clients on Upwork who need solutions, creating a prototype, and selling it before building the complete app • Billy demonstrates how to use Repl.it with AI assistance to rapidly build a case management system for a nonprofit • The approach focuses on creating simple CRUD (Create, Read, Update, Delete) applications rather than complex systems 1) The "Sell First, Build Later" Framework Billy's #1 rule: Find someone to BUY your app BEFORE you build it. Most developers get this backward - they build something cool then struggle to find users. The secret? Don't market. SELL. How? Look for people ALREADY trying to pay for solutions 2) Upwork Gold Mining Strategy Billy's exact process: • Search Upwork for jobs mentioning expensive SaaS tools (Airtable, HubSpot, etc) • Look for simple CRUD apps (data entry, visualization) • Build a quick prototype in Repl.it • Send a Loom video demo to potential clients His first sale? $750 replacing an Airtable solution! 3) The Vibe Coding Tech Stack Billy's weapons of choice: • Replit for rapid prototyping (zero setup friction!) • ChatGPT to format requirements into PRDs • V0 for beautiful UI mockups • ShadCN components for clean interfaces The magic combo: Feed requirements to Replit + "build me this app" = working prototype in MINUTES. 4) What to Avoid When Vibe Coding Not all projects are created equal! Watch out for: • Payment processing (risky) • DocuSign integrations (complex) • Calendar functionality (AI struggles with time zones) • Anything changing data in other apps Start with simple CRUD apps that store and display information. 5) The Real Money-Making Model Billy's approach isn't just about one-off projects: • Initial build: $750-2,500 • Charge for hosting • Recurring revenue from feature requests • Get referrals to similar businesses One recent client is now reselling his solution to other companies in the same industry! 6) Why This Beats Building a SaaS Building a traditional SaaS = "nightmare money pit" according to Billy. With vibe coding consulting: • De-risk by getting paid upfront • Learn across multiple projects • No marketing costs • Discover validated problems • Build a portfolio of solutions Six figures on Upwork is VERY doable. 7) The 60-Second Sales Pitch Billy's exact closing technique: • Find job posting • Make mockup in V0 or Replit • Record 1-minute Loom: "I'm Billy, I make apps. I know you wanted Airtable, but I made this custom for you." • Personalize with company name • Send and repeat Simple. Effective. PROFITABLE. The future of coding isn't about knowing every framework—it's about SOLVING PROBLEMS quickly. Anyone can do this with the right tools and approach. Notable Quotes: "The number one thing is how to sell an app that you've built... And the secret is not to market. It's just to sell it." - Billy Howell "We start, we need to find someone to buy the app before we build it. That's where most people get this wrong, is they build something and then try to sell it or try to get users." - Billy Howell LCA helps Fortune 500s and fast-growing startups build their future - from Warner Music to Fortnite to Dropbox. We turn 'what if' into reality with AI, apps, and next-gen products https://latecheckout.agency/ BoringAds — ads agency that will build you profitable ad campaigns http://boringads.com/ BoringMarketing — SEO agency and tools to get your organic customers http://boringmarketing.com/ Startup Empire — a membership for builders who want to build cash-flowing businesses https://www.startupempire.co FIND ME ON SOCIAL X/Twitter: https://twitter.com/gregisenberg Instagram: https://instagram.com/gregisenberg/ LinkedIn: https://www.linkedin.com/in/gisenberg/ FIND BILLY ON SOCIAL X/Twitter: https://x.com/billyjhowell Youtube: https://www.youtube.com/@billyjhowell

I built an AI Agent in 43 min to automate my workflows (Zero Coding)
youtube
LLM Vibe Score0.459
Human Vibe Score0.88
Greg IsenbergJan 31, 2025

I built an AI Agent in 43 min to automate my workflows (Zero Coding)

In this episode, Max Brodeur-Urbas, Gumloop's CEO, where we dive deep into how to build AI agents and how to automate any workflow. We cover various use cases, from automated sales outreach to content generation. Max shows us how Gumloop makes complex automations accessible to everyone by having user-friendly UI/UX, intuitive workflow buildouts, and easy custom integration creation. Timestamps: 00:00 - Intro 02:29 - Gumloop Workflow Overview 05:00 - Example: Lead Automation Workflow 10:23 - Templates for Workflows 12:21 - Example: YouTube to Blog Post Automation Workflow 21:03 - Gumloop Interfaces Demonstration 21:40 - Example: Media Ad Library Analyzer Automation Workflow 24:38 - Using Gumloop for SaaS Products 26:25 - Example: Analyze Daily Calendar Automation Workflow 27:47 - Output of Media Ad Library Analyzer Automation Workflow 28:43 - Cost of Running Gumloop 30:34 - Custom Node Builder Demonstration 34:18 - Gumloop Chrome Extension 37:06 - Final thoughts on business automation Gumloop Templates: https://www.gumloop.com/templates Key Points: • Demonstration of Gumloop's automation platform for building AI-powered workflows • Showcase of features including custom nodes, Chrome extension, and interface builder • Real-world examples of automated processes for sales, recruitment, and content generation • Discussion of practical business applications and cost-effectiveness of automation: Key Features Demonstrated: • Visual workflow builder • AI-powered content generation • Custom integration creation • Chrome extension functionality • Interface builder for non-technical users • Webhook integration capabilities 1) Gumloop is a visual workflow builder that lets you create powerful AI automations by connecting "nodes" - think Zapier meets ChatGPT, but WAY more powerful. Key features that stood out: 2) SUBFLOWS: Create reusable workflow components Build once, use everywhere Share with team members Perfect for complex operations Makes scaling easier 3) The YouTube Blog Post Generator is INSANE: Takes any YT video link Extracts transcript Generates TLDR summary Creates full blog post Adds video embed Posts to CMS Cost? About $1.62 per post 4) Competitor Ad Analysis automation: Scrapes competitor FB/IG ads Uses Gemini to analyze videos/images Generates strategy insights Sends beautiful email reports Runs on schedule Save 40+ hours/month 5) Custom Node Builder = game changer Create your own integrations No coding required AI helps write the code Share with your team Endless possibilities 6) Chrome Extension feature: Turn any workflow into a 1-click tool Works on any webpage Perfect for LinkedIn outreach Data enrichment Email automation 7) Why this matters: Most companies (even $1B+ ones) are still doing things manually that could be automated. The competitive advantage isn't just having AI - it's automating your workflows at scale. 8) Pricing & Getting Started: Free to try No CC required 1000 free credits with tutorial Build custom workflows Join their community Notable Quotes: "If you can list it as a list of steps, like for an intern, you would hand off a little sticky note being like, you do these 15 things in a row and that's the entire workflow, then you can 100% automate it." - Max "Being in business is a game of unfair advantages... And that means it's always about how do you save time as founders and executive teams." - Greg LCA helps Fortune 500s and fast-growing startups build their future - from Warner Music to Fortnite to Dropbox. We turn 'what if' into reality with AI, apps, and next-gen products https://latecheckout.agency/ BoringAds — ads agency that will build you profitable ad campaigns http://boringads.com/ BoringMarketing — SEO agency and tools to get your organic customers http://boringmarketing.com/ Startup Empire - a membership for builders who want to build cash-flowing businesses https://www.startupempire.co FIND ME ON SOCIAL X/Twitter: https://twitter.com/gregisenberg Instagram: https://instagram.com/gregisenberg/ LinkedIn: https://www.linkedin.com/in/gisenberg/ FIND MAX ON SOCIAL Gumloop: https://www.gumloop.com X/Twitter: https://x.com/maxbrodeururbas?lang=en LinkedIn: https://www.linkedin.com/in/max-brodeur-urbas-1a4b25172/

I ranked every AI Coder: Bolt vs. Cursor vs. Replit vs Lovable
youtube
LLM Vibe Score0.399
Human Vibe Score0.77
Greg IsenbergJan 24, 2025

I ranked every AI Coder: Bolt vs. Cursor vs. Replit vs Lovable

v0 vs windsurf vs replit vs bolt vs lovable vs tempolabs - which one should you use? Ras Mic breaks down the AI coding platforms based on how tech-savvy you are and how much control you want. He splits the tools into three groups: no-code options for non-techies, hybrid platforms for those with a mix of skills, and advanced tools for developers. None of them are quite ready for full-on production yet, but the video highlights what each one does best—whether it’s integrations, teamwork, or deployment features. Timestamps: 00:00 - Intro 01:00 - Overview of Popular Tools 02:29 - Technical vs. non-technical user classification 05:37 - Production readiness discussion 09:50 - Mapping Tools to User Profiles 12:52 - Platform comparisons and strengths 15:15 - Pricing discussion 16:43 - AI agents in coding platforms 19:04 - Final Recommendations and User Alignment Key Points: • Comprehensive comparison of major AI coding platforms (Lovable, Bolt, V0, Replit, Tempo Labs, Onlook, Cursor, Windsurf) • Tools categorized by technical expertise required and level of control offered • None of the platforms are 100% production-ready, but Replit and Tempo Labs are closest • All platforms offer similar base pricing ($20-30/month) with generous free tiers 1) First, understand the 3 MAJOR CATEGORIES of AI coding tools: • No-code (non-technical friendly) • Middle-ground (hybrid) • Technical (developer-focused) Your choice depends on TWO key factors: How much control you want Your technical expertise 2) THE CONTROL SPECTRUM Less Control → More Control • Lovable (basic control) • Bolt/V0 (code tweaking) • Replit (file management) • Tempo/Onlook (design control) • Cursor/Windsurf (full code control) 3) PRODUCTION READINESS STATUS Most honest take: None are 100% there yet, but some are close: Top contenders: • Replit • Tempo Labs Runner-ups: • Bolt • Lovable Pro tip: Start building now to be ready when they mature! 4) BEST TOOLS BY USER TYPE Non-technical: • Lovable • Bolt Product-minded non-technical: • Tempo Labs • Replit Technical folks: • Cursor • Windsurf 5) WINNING FEATURES BY PLATFORM Integrations: Lovable (crushing it!) Replit Tempo Labs Collaboration: Tempo Labs Replit Deployment: All solid, but Tempo needs work 6) PRICING INSIDER TIP All platforms hover around $20-30/month for basic tiers SECRET: They ALL have generous free tiers! Pro tip: Test drive everything before committing to paid plans 7) FINAL ADVICE Build a simple todo app on each platform Use free tiers to test Choose based on: Your technical comfort Desired level of control Specific project needs Remember: There's no "perfect" tool - just the right one for YOU! Notable Quotes: "None of the tools are there yet. I cannot confidently say you can build something to production easily, simply without a ton of roadblocks." - Ras Mic "Control is not for everybody. Did you like the assumptions that AI product was making for you? Or do you want to be able to tell it exactly what to do?" - Ras Mic LCA helps Fortune 500s and fast-growing startups build their future - from Warner Music to Fortnite to Dropbox. We turn 'what if' into reality with AI, apps, and next-gen products https://latecheckout.agency/ BoringAds — ads agency that will build you profitable ad campaigns http://boringads.com/ BoringMarketing — SEO agency and tools to get your organic customers http://boringmarketing.com/ Startup Empire - a membership for builders who want to build cash-flowing businesses https://www.startupempire.co FIND ME ON SOCIAL X/Twitter: https://twitter.com/gregisenberg Instagram: https://instagram.com/gregisenberg/ LinkedIn: https://www.linkedin.com/in/gisenberg/ FIND MIC ON SOCIAL X/Twitter: https://x.com/rasmickyy Youtube: https://www.youtube.com/@rasmic

internet-tools-collection
github
LLM Vibe Score0.236
Human Vibe Score0.009333333333333334
bogdanmosicaJan 23, 2025

internet-tools-collection

Internet Tools Collection A collection of tools, website and AI for entrepreneurs, web designers, programmers and for everyone else. Content by category Artificial Intelligence Developers Design Entrepreneur Video Editing Stock videos Stock Photos Stock music Search Engine Optimization Blog Posts Resume Interviews No code website builder No code game builder Side Hustle Browser Extensions Other Students Artificial Intelligence Jasper - The Best AI Writing Assistant [](https://www.jasper.ai/) Create content 5x faster with artificial intelligence. Jasper is the highest quality AI copywriting tool with over 3,000 5-star reviews. Best for writing blog posts, social media content, and marketing copy. AutoDraw [](https://www.autodraw.com/) Fast drawing for everyone. AutoDraw pairs machine learning with drawings from talented artists to help you draw stuff fast. Rytr - Best AI Writer, Content Generator & Writing Assistant [](https://rytr.me/) Rytr is an AI writing assistant that helps you create high-quality content, in just a few seconds, at a fraction of the cost! Neevo - Neevo [](https://www.neevo.ai/) Kinetix Tech [](https://kinetix.tech/) Kinetix is a no-code 3D creation tool powered by Artificial Intelligence. The web-based platform leverages AI motion capture to convert a video into a 3D animation and lets you customize your avatars and environments. We make 3D animation accessible to every creator so they can create engaging stories. LALAL.AI: 100% AI-Powered Vocal and Instrumental Tracks Remover [](https://www.lalal.ai/) Split vocal and instrumental tracks quickly and accurately with LALAL.AI. Upload any audio file and receive high-quality extracted tracks in a few seconds. Copy.ai: Write better marketing copy and content with AI [](https://www.copy.ai/) Get great copy that sells. Copy.ai is an AI-powered copywriter that generates high-quality copy for your business. Get started for free, no credit card required! Marketing simplified! OpenAI [](https://openai.com/) OpenAI is an AI research and deployment company. Our mission is to ensure that artificial general intelligence benefits all of humanity. DALL·E 2 [](https://openai.com/dall-e-2/) DALL·E 2 is a new AI system that can create realistic images and art from a description in natural language. Steve.ai - World’s fastest way to create Videos [](https://www.steve.ai/) Steve.AI is an online Video making software that helps anyone to create Videos and animations in seconds. Octie.ai - Your A.I. ecommerce marketing assistant [](https://octie.ai/) Write emails, product descriptions, and more, with A.I. Created by Octane AI. hypnogram.xyz [](https://hypnogram.xyz/) Generate images from text descriptions using AI FakeYou. Deep Fake Text to Speech. [](https://fakeyou.com/) FakeYou is a text to speech wonderland where all of your dreams come true. Craiyon, formerly DALL-E mini [](https://www.craiyon.com/) Craiyon, formerly DALL-E mini, is an AI model that can draw images from any text prompt! Deck Rocks - Create Pictch Decks [](https://www.deck.rocks/) Writely | Using AI to Improve Your Writing [](https://www.writelyai.com/) Making the art of writing accessible to all Writesonic AI Writer - Best AI Writing Assistant [](https://writesonic.com/) Writesonic is an AI writer that's been trained on top-performing SEO content, high-performing ads, and converting sales copy to help you supercharge your writing and marketing efforts. Smart Copy - AI Copywriting Assistant | Unbounce [](https://unbounce.com/product/smart-copy/) Generate creative AI copy on-the-spot across your favourite tools Synthesia | #1 AI Video Generation Platform [](https://www.synthesia.io/) Create AI videos by simply typing in text. Easy to use, cheap and scalable. Make engaging videos with human presenters — directly from your browser. Free demo. NVIDIA Canvas: Turn Simple Brushstrokes into Realistic Images [](https://www.nvidia.com/en-us/studio/canvas/) Create backgrounds quickly, or speed up your concept exploration so you can spend more time visualizing ideas with the help of NVIDIA Canvas. Hotpot.ai - Hotpot.ai [](https://hotpot.ai/) Hotpot.ai makes graphic design and image editing easy. AI tools allow experts and non-designers to automate tedious tasks while attractive, easy-to-edit templates allow anyone to create device mockups, social media posts, marketing images, app icons, and other work graphics. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Search listening tool for market, customer & content research - AnswerThePublic [](https://answerthepublic.com/) Use our free tool to get instant, raw search insights, direct from the minds of your customers. Upgrade to a paid plan to monitor for new ways that people talk & ask questions about your brand, product or topic. Topic Mojo [](https://topicmojo.com/) Discover unique & newest queries around any topic and find what your customers are searching for. Pulling data from 50+ sources to enhance your topic research. AI Image Enlarger | Enlarge Image Without Losing Quality! [](https://imglarger.com/) AI Image Enlarger is a FREE online image enlarger that could upscale and enhance small images automatically. Make jpg/png pictures big without losing quality. Midjourney [](https://www.midjourney.com/app/) Kaedim - AI for turning 2D images to 3D models [](https://www.kaedim3d.com/webapp) AI for turning 2D images, sketches and photos to 3D models in seconds. Overdub: Ultra realistic text to speech voice cloning - Descript [](https://www.descript.com/overdub) Create a text to speech model of your voice. Try a live demo. Getting Started [](https://magenta.tensorflow.org/get-started) Resources to learn about Magenta Photosonic AI Art Generator | Create Unique Images with AI [](https://photosonic.writesonic.com/) Transform your imagination into stunning digital art with Photosonic - the AI art generator. With its creative suggestions, this Writesonic's AI image generator can help unleash your inner artist and share your creations with the world. Image Computer [](https://image.computer/) Most downloaded Instagram Captions App (+more creator tools) [](https://captionplus.app/) Join 3 Million+ Instagram Creators who use CaptionPlus to find Instagram Captions, Hashtags, Feed Planning, Reel Ideas, IG Story Design and more. Writecream - Best AI Writer & Content Generator - Writecream [](https://www.writecream.com/) Sentence Rewriter is a free tool to reword a sentence, paragraph and even entire essays in a short amount of time. Hypotenuse AI: AI Writing Assistant and Text Generator [](https://www.hypotenuse.ai/) Turn a few keywords into original, insightful articles, product descriptions and social media copy with AI copywriting—all in just minutes. Try it free today. Text to Speach Listnr: Generate realistic Text to Speech voiceovers in seconds [](https://www.listnr.tech/) AI Voiceover Generator with over 600+ voiceovers in 80+ languages, go from Text to Voice in seconds. Get started for Free! Free Text to Speech: Online, App, Software, Commercial license with Natural Sounding Voices. [](https://www.naturalreaders.com/) Free text to speech online app with natural voices, convert text to audio and mp3, for personal and commercial use Developers OverAPI.com | Collecting all the cheat sheets [](https://overapi.com/) OverAPI.com is a site collecting all the cheatsheets,all! Search Engine For Devs [](https://you.com/) Spline - Design tool for 3D web browser experiences [](https://spline.design/) Create web-based 3D browser experiences Image to HTML CSS converter. Convert image to HTML CSS with AI: Fronty [](https://fronty.com/) Fronty - Image to HTML CSS code converter. Convert image to HTML powered by AI. Sketchfab - The best 3D viewer on the web [](https://sketchfab.com/) With a community of over one million creators, we are the world’s largest platform to publish, share, and discover 3D content on web, mobile, AR, and VR. Railway [](https://railway.app/) Railway is an infrastructure platform where you can provision infrastructure, develop with that infrastructure locally, and then deploy to the cloud. JSON Crack - Crack your data into pieces [](https://jsoncrack.com/) Simple visualization tool for your JSON data. No forced structure, paste your JSON and view it instantly. Locofy.ai - ship your products 3-4x faster — with low code [](https://www.locofy.ai/) Turn your designs into production-ready frontend code for mobile apps and web. Ship products 3-4x faster with your existing design tools, tech stacks & workflows. Oh Shit, Git!?! [](https://ohshitgit.com/) Carbon | Create and share beautiful images of your source code [](https://carbon.now.sh/) Carbon is the easiest way to create and share beautiful images of your source code. GPRM : GitHub Profile ReadMe Maker [](https://gprm.itsvg.in/) Best Profile Generator, Create your perfect GitHub Profile ReadMe in the best possible way. Lots of features and tools included, all for free ! HubSpot | Software, Tools, and Resources to Help Your Business Grow Better [](https://www.hubspot.com/) HubSpot’s integrated CRM platform contains the marketing, sales, service, operations, and website-building software you need to grow your business. QuickRef.ME - Quick Reference Cheat Sheet [](https://quickref.me/) Share quick reference and cheat sheet for developers massCode | A free and open source code snippets manager for developers [](https://masscode.io/) Code snippets manager for developers, developed using web technologies. Snyk | Developer security | Develop fast. Stay secure. [](https://snyk.io/) Snyk helps software-driven businesses develop fast and stay secure. Continuously find and fix vulnerabilities for npm, Maven, NuGet, RubyGems, PyPI and more. Developer Roadmaps [](https://roadmap.sh/) Community driven roadmaps, articles, guides, quizzes, tips and resources for developers to learn from, identify their career paths, know what they don't know, find out the knowledge gaps, learn and improve. CSS Generators Get Waves – Create SVG waves for your next design [](https://getwaves.io/) A free SVG wave generator to make unique SVG waves for your next web design. Choose a curve, adjust complexity, randomize! Box Shadows [](https://box-shadow.dev/) Tridiv | CSS 3D Editor [](http://tridiv.com/) Tridiv is a web-based editor for creating 3D shapes in CSS Glassmorphism CSS Generator - Glass UI [](https://ui.glass/generator/) Generate CSS and HTML components using the glassmorphism design specifications based on the Glass UI library. Blobmaker - Make organic SVG shapes for your next design [](https://www.blobmaker.app/) Make organic SVG shapes for your next design. Modify the complexity, contrast, and color, to generate unique SVG blobs every time. Keyframes.app [](https://keyframes.app/) cssFilters.co - Custom and Instagram like photo filters for CSS [](https://www.cssfilters.co/) Visual playground for generating CSS for custom and Instagram like photo filters. Experiment with your own uploaded photo or select one from the Unsplash collection. CSS Animations Animista - CSS Animations on Demand [](https://animista.net/) Animista is a CSS animation library and a place where you can play with a collection of ready-made CSS animations and download only those you will use. Build Internal apps Superblocks | Save 100s of developer hours on internal tools [](https://www.superblocks.com/) Superblocks is the fast, easy and secure way for developers to build custom internal tools fast. Connect your databases & APIs. Drag and drop UI components. Extend with Python or Javascript. Deploy in 1-click. Secure and Monitor using your favorite tools Budibase | Build internal tools in minutes, the easy way [](https://budibase.com/) Budibase is a modern, open source low-code platform for building modern internal applications in minutes. Retool | Build internal tools, remarkably fast. [](https://retool.com/) Retool is the fast way to build internal tools. Drag-and-drop our building blocks and connect them to your databases and APIs to build your own tools, instantly. Connects with Postgres, REST APIs, GraphQL, Firebase, Google Sheets, and more. Built by developers, for developers. Trusted by startups and Fortune 500s. Sign up for free. GitHub Repositories GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? [](https://github.com/vasanthk/how-web-works) What happens behind the scenes when we type www.google.com in a browser? - GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. [](https://github.com/kamranahmedse/developer-roadmap) Interactive roadmaps, guides and other educational content to help developers grow in their careers. - GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. [](https://github.com/apptension/developer-handbook) An opinionated guide on how to become a professional Web/Mobile App Developer. - GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. ProfileMe.dev | Create an amazing GitHub profile in minutes [](https://www.profileme.dev/) ProfileMe.dev | Create an amazing GitHub profile in minutes GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. [](https://github.com/Kristories/awesome-guidelines) A curated list of high quality coding style conventions and standards. - GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. GitHub - tiimgreen/github-cheat-sheet: A list of cool features of Git and GitHub. [](https://github.com/tiimgreen/github-cheat-sheet) A list of cool features of Git and GitHub. Contribute to tiimgreen/github-cheat-sheet development by creating an account on GitHub. GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer [](https://github.com/andreasbm/web-skills) A visual overview of useful skills to learn as a web developer - GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers [](https://github.com/Ebazhanov/linkedin-skill-assessments-quizzes) Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers - GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers Blockchain/Crypto Dashboards [](https://dune.com/) Blockchain ecosystem analytics by and for the community. Explore and share data from Ethereum, xDai, Polygon, Optimism, BSC and Solana for free. Introduction - The Anchor Book v0.24.0 [](https://book.anchor-lang.com/introduction/introduction.html) Crypto & Fiat Exchange Super App | Trade, Save & Spend | hi [](https://hi.com/) Buy, Trade, Send and Earn Crypto & Fiat. Deposit Bitcoin, ETH, USDT and other cryptos and start earning. Get the hi Debit Card and Multi-Currency IBAN Account. Moralis Web3 - Enterprise-Grade Web3 APIs [](https://moralis.io/) Bridge the development gap between Web2 and Web3 with Moralis’ powerful Web3 APIs. Mirror [](https://mirror.xyz/) Built on web3 for web3, Mirror’s robust publishing platform pushes the boundaries of writing online—whether it’s the next big white paper or a weekly community update. Makerdao [](https://blog.makerdao.com/) Sholi — software for Investors & Traders / Sholi MetriX [](https://sholi.io/) Sholi — software for Investors & Traders / Sholi MetriX Stock Trading Quiver Quantitative [](https://www.quiverquant.com/) Quiver Quantitative Chart Prime - The only tool you'll need for trading assets across all markets [](https://chartprime.com/) ChartPrime offers a toolkit that will take your trading game to the next level. Visit our site for a full rundown of features and helpful tutorials. Learning Hacker Rank [](https://www.hackerrank.com/) Coderbyte | Code Screening, Challenges, & Interview Prep [](https://coderbyte.com/) Improve your coding skills with our library of 300+ challenges and prepare for coding interviews with content from leading technology companies. Competitive Programming | Participate & Learn | CodeChef [](https://www.codechef.com/) Learn competitive programming with the help of CodeChef's coding competitions. Take part in these online coding contests to level up your skills Learn to Code - for Free | Codecademy [](https://www.codecademy.com/) Learn the technical skills to get the job you want. Join over 50 million people choosing Codecademy to start a new career (or advance in their current one). Free Code Camp [](https://www.freecodecamp.org/) Learn to Code — For Free Sololearn: Learn to Code [](https://www.sololearn.com/home) Join Now to learn the basics or advance your existing skills Mimo: The coding app you need to learn to code! Python, HTML, JavaScript [](https://getmimo.com/) Join more than 17 million learners worldwide. Learn to code for free. Learn Python, JavaScript, CSS, SQL, HTML, and more with our free code learning app. Free for developers [](https://free-for.dev/#/) Your Career in Web Development Starts Here | The Odin Project [](https://www.theodinproject.com/) The Odin Project empowers aspiring web developers to learn together for free Code Learning Games CheckiO - coding games and programming challenges for beginner and advanced [](https://checkio.org/) CheckiO - coding websites and programming games. Improve your coding skills by solving coding challenges and exercises online with your friends in a fun way. Exchanges experience with other users online through fun coding activities Coding for Kids | Game-Based Programming | CodeMonkey [](https://www.codemonkey.com/) CodeMonkey is a leading coding for kids program. Through its award-winning courses, millions of students learn how to code in real programming languages. Coding Games and Programming Challenges to Code Better [](https://www.codingame.com/) CodinGame is a challenge-based training platform for programmers where you can play with the hottest programming topics. Solve games, code AI bots, learn from your peers, have fun. Learn VIM while playing a game - VIM Adventures [](https://vim-adventures.com/) VIM Adventures is an online game based on VIM's keyboard shortcuts. It's the "Zelda meets text editing" game. So come have some fun and learn some VIM! CodeCombat - Coding games to learn Python and JavaScript [](https://codecombat.com/) Learn typed code through a programming game. Learn Python, JavaScript, and HTML as you solve puzzles and learn to make your own coding games and websites. Design Useberry - Codeless prototype analytics [](https://www.useberry.com/) User testing feedback & rich insights in minutes, not months! Figma: the collaborative interface design tool. [](https://www.figma.com/) Build better products as a team. Design, prototype, and gather feedback all in one place with Figma. Dribbble - Discover the World’s Top Designers & Creative Professionals [](https://dribbble.com/) Find Top Designers & Creative Professionals on Dribbble. We are where designers gain inspiration, feedback, community, and jobs. Your best resource to discover and connect with designers worldwide. Photopea | Online Photo Editor [](https://www.photopea.com/) Photopea Online Photo Editor lets you edit photos, apply effects, filters, add text, crop or resize pictures. Do Online Photo Editing in your browser for free! Toools.design – An archive of 1000+ Design Resources [](https://www.toools.design/) A growing archive of over a thousand design resources, weekly updated for the community. Discover highly useful design tools you never thought existed. All Online Tools in One Box | 10015 Tools [](https://10015.io/) All online tools you need in one box for free. Build anything online with “all-in-one toolbox”. All tools are easy-to-use, blazing fast & free. Phase - Digital Design Reinvented| Phase [](https://phase.com/) Design and prototype websites and apps visually and intuitively, in a new powerful product reworked for the digital age. Animated Backgrounds [](https://animatedbackgrounds.me/) A Collection of 30+ animated backgrounds for websites and blogs.With Animated Backgrounds, set a simple, elegant background animations on your websites and blogs. Trianglify.io · Low Poly Pattern Generator [](https://trianglify.io/) Trianglify.io is a tool for generating low poly triangle patterns that can be used as wallpapers and website assets. Cool Backgrounds [](https://coolbackgrounds.io/) Explore a beautifully curated selection of cool backgrounds that you can add to blogs, websites, or as desktop and phone wallpapers. SVG Repo - Free SVG Vectors and Icons [](https://www.svgrepo.com/) Free Vectors and Icons in SVG format. ✅ Download free mono or multi color vectors for commercial use. Search in 300.000+ Free SVG Vectors and Icons. Microcopy - Short copy text for your website. [](https://www.microcopy.me/) Search micro UX copy text: slogans, headlines, notifications, CTA, error messages, email, account preferences, and much more. 3D icons and icon paks - Free3Dicon [](https://free3dicon.com/) All 3D icons you need in one place. This is a collection of free, beautiful, trending 3D icons, that you can use in any project. Love 3D Icon [](https://free3dicons.com/) Downloads free 3D icons GIMP - GNU Image Manipulation Program [](https://www.gimp.org/) GIMP - The GNU Image Manipulation Program: The Free and Open Source Image Editor blender.org - Home of the Blender project - Free and Open 3D Creation Software [](https://www.blender.org/) The Freedom to Create 3D Design Software | 3D Modeling on the Web | SketchUp [](https://www.sketchup.com/) SketchUp is a premier 3D design software that truly makes 3D modeling for everyone, with a simple to learn yet robust toolset that empowers you to create whatever you can imagine. Free Logo Maker - Create a Logo in Seconds - Shopify [](https://www.shopify.com/tools/logo-maker) Free logo maker tool to generate custom design logos in seconds. This logo creator is built for entrepreneurs on the go with hundreds of templates, free vectors, fonts and icons to design your own logo. The easiest way to create business logos online. All your design tools in one place | Renderforest [](https://www.renderforest.com/) Time to get your brand noticed. Create professional videos, logos, mockups, websites, and graphics — all in one place. Get started now! Prompt Hero [](https://prompthero.com/) Type Scale - A Visual Calculator [](https://type-scale.com/) Preview and choose the right type scale for your project. Experiment with font size, scale and different webfonts. DreamFusion: Text-to-3D using 2D Diffusion [](https://dreamfusion3d.github.io/) DreamFusion: Text-to-3D using 2D Diffusion, 2022. The branding style guidelines documents archive [](https://brandingstyleguides.com/) Welcome to the brand design manual documents directory. Search over our worldwide style assets handpicked collection, access to PDF documents for inspiration. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Readymag—a design tool to create websites without coding [](https://readymag.com/) Meet the most elegant, simple and powerful web-tool for designing websites, presentations, portfolios and all kinds of digital publications. ffflux: Online SVG Fluid Gradient Background Generator | fffuel [](https://fffuel.co/ffflux/) SVG generator to make fluid gradient backgrounds that feel organic and motion-like. Perfect to add a feeling of motion and fluidity to your web designs. Generate unique SVG design assets | Haikei [](https://haikei.app/) A web-based design tool to generate unique SVG design assets for websites, social media, blog posts, desktop and mobile wallpapers, posters, and more! Our generators let you discover, customize, randomize, and export generative SVG design assets ready to use with your favorite design tools. UI/UX - Inspirational Free Website Builder Software | 10,000+ Free Templates [](https://nicepage.com/) Nicepage is your website builder software breaking limitations common for website builders with revolutionary freehand positioning. 7000+ Free Templates. Easy Drag-n-Drop. No coding. Mobile-friendly. Clean HTML. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Pika – Create beautiful mockups from screenshots [](https://pika.style/) Quickly create beautiful website and device mockup from screenshot. Pika lets you capture website screenshots form URL, add device and browser frames, customize background and more LiveTerm [](https://liveterm.vercel.app/) Minimal Gallery – Web design inspiration [](https://minimal.gallery/) For the love of beautiful, clean and functional websites. Awwwards - Website Awards - Best Web Design Trends [](https://www.awwwards.com/) Awwwards are the Website Awards that recognize and promote the talent and effort of the best developers, designers and web agencies in the world. Design Systems For Figma [](https://www.designsystemsforfigma.com/) A collection of Design Systems for Figma from all over the globe. Superside: Design At Scale For Ambitious Brands [](https://www.superside.com/) We are an always-on design company. Get a team of dedicated designers, speedy turnarounds, magical creative collaboration tech and the top 1% of global talent. UXArchive - Made by Waldo [](https://uxarchive.com/) UXArchive the world's largest library of mobile user flows. Be inspired to design the best user experiences. Search by Muzli [](https://search.muz.li/) Search, discover, test and create beautiful color palettes for your projects Siteinspire | Web Design Inspiration [](https://www.siteinspire.com/) SAVEE [](https://savee.it/) The best way to save and share inspiration. A little corner of the internet to find good landing page copywriting examples [](https://greatlandingpagecopy.com/) A little corner of the internet to find great landing page copywriting examples. The Best Landing Page Examples For Design Inspiration - SaaS Landing Page [](https://saaslandingpage.com/) SaaS Landing Page showcases the best landing page examples created by top-class SaaS companies. Get ideas and inspirations for your next design project. Websites Free templates Premium Bootstrap Themes and Templates: Download @ Creative Tim [](https://www.creative-tim.com/) UI Kits, Templates and Dashboards built on top of Bootstrap, Vue.js, React, Angular, Node.js and Laravel. Join over 2,014,387+ creatives to access all our products! Free Bootstrap Themes, Templates, Snippets, and Guides - Start Bootstrap [](https://startbootstrap.com/) Start Bootstrap develops free to download, open source Bootstrap 5 themes, templates, and snippets and creates guides and tutorials to help you learn more about designing and developing with Bootstrap. Free Website Templates [](https://freewebsitetemplates.com/) Get your free website templates here and use them on your website without needing to link back to us. One Page Love - One Page Website Inspiration and Templates [](https://onepagelove.com/) One Page Love is a One Page website design gallery showcasing the best Single Page websites, templates and resources. Free CSS | 3400 Free Website Templates, CSS Templates and Open Source Templates [](https://www.free-css.com/) Free CSS has 3400 free website templates, all templates are free CSS templates, open source templates or creative commons templates. Free Bootstrap Themes and Website Templates | BootstrapMade [](https://bootstrapmade.com/) At BootstrapMade, we create beautiful website templates and bootstrap themes using Bootstrap, the most popular HTML, CSS and JavaScript framework. Free and Premium Bootstrap Themes, Templates by Themesberg [](https://themesberg.com/) Free and Premium Bootstrap themes, templates, admin dashboards and UI kits used by over 38820 web developers and software companies HTML, Vue.js and React templates for startup landing pages - Cruip [](https://cruip.com/) Cruip is a gallery of premium and free HTML, Vue.js and React templates for startups and SaaS. Free Website Templates Download | WordPress Themes - W3Layouts [](https://w3layouts.com/) Want to download free website templates? W3Layouts WordPress themes and website templates are built with responsive web design techniques. Download now! Free HTML Landing Page Templates and UI Kits | UIdeck [](https://uideck.com/) Free HTML Landing Page Templates, Bootstrap Themes, React Templates, HTML Templates, Tailwind Templates, and UI Kits. Create Online Graphics Snappa - Quick & Easy Graphic Design Software [](https://snappa.com/) Snappa makes it easy to create any type of online graphic. Create & publish images for social media, blogs, ads, and more! Canva [](https://www.canva.com/) Polotno Studio - Make graphical designs [](https://studio.polotno.com) Free online design editor. Create images for social media, youtube previews, facebook covers Free Logo Maker: Design Custom Logos | Adobe Express [](https://www.adobe.com/express/create/logo) The Adobe Express logo maker is instant, intuitive, and intelligent. Use it to generate a wide range of possibilities for your own logo. Photo Editor: Fotor – Free Online Photo Editing & Image Editor [](https://www.fotor.com/) Fotor's online photo editor helps you edit photos with free online photo editing tools. Crop photos, resize images, and add effects/filters, text, and graphics in just a few clicks. Photoshop online has never been easier with Fotor's free online photo editor. VistaCreate – Free Graphic Design Software with 70,000+ Free Templates [](https://create.vista.com/) Looking for free graphic design software? Easily create professional designs with VistaCreate, a free design tool with powerful features and 50K+ ready-made templates Draw Freely | Inkscape [](https://inkscape.org/) Inkscape is professional quality vector graphics software which runs on Linux, Mac OS X and Windows desktop computers. Visual & Video Maker Trusted By 11 Million Users - Piktochart [](https://piktochart.com/) With Piktochart, you can create professional-looking infographics, flyers, posters, charts, videos, and more. No design experience needed. Start for free. The Web's Favorite Online Graphic Design Tool | Stencil [](https://getstencil.com/) Stencil is a fantastically easy-to-use online graphic design tool and image editor built for business owners, social media marketers, and bloggers. Pablo by Buffer - Design engaging images for your social media posts in under 30 seconds [](https://pablo.buffer.com/) Buffer makes it super easy to share any page you're reading. Keep your Buffer topped up and we automagically share them for you through the day. Free Online Graphic Design Software | Create stunning designs in seconds. [](https://desygner.com/) Easy drag and drop graphic design tool for anyone to use with 1000's of ready made templates. Create & print professional business cards, flyers, social posts and more. Color Pallet Color Palettes for Designers and Artists - Color Hunt [](https://colorhunt.co/) Discover the newest hand-picked color palettes of Color Hunt. Get color inspiration for your design and art projects. Coolors - The super fast color palettes generator! [](https://coolors.co/) Generate or browse beautiful color combinations for your designs. Get color palette inspiration from nature - colorpalettes.earth [](https://colorpalettes.earth/) Color palettes inspired by beautiful nature photos Color Palette Generator - Create Beautiful Color Schemes [](https://colors.muz.li/) Search, discover, test and create beautiful color palettes for your projects A Most Useful Color Picker | 0to255 [](https://0to255.com/) Find lighter and darker colors based on any color. Discover why over two million people have used 0to255 to choose colors for their website, logo, room interior, and print design projects. Colour Contrast Checker [](https://colourcontrast.cc/) Check the contrast between different colour combinations against WCAG standards Fonts Google Fonts [](https://fonts.google.com/) Making the web more beautiful, fast, and open through great typography Fonts In Use – Type at work in the real world. [](https://fontsinuse.com/) A searchable archive of typographic design, indexed by typeface, format, and topic. Wordmark - Helps you choose fonts! [](https://wordmark.it/) Wordmark helps you choose fonts by quickly displaying your text with your fonts. OH no Type Company [](https://ohnotype.co/) OH no Type Co. Retail and custom typefaces. Life’s a thrill, fonts are chill! Illustrations Illustrations | unDraw [](https://undraw.co/illustrations) The design project with open-source illustrations for any idea you can imagine and create. Create beautiful websites, products and applications with your color, for free. Design Junction [](https://designjunction.xyz/) Design Junction is a one-stop resource library for Designers and Creatives with curated list of best resources handpicked from around the web Humaaans: Mix-&-Match illustration library [](https://www.humaaans.com/) Mix-&-match illustrations of people with a design library for InVIsion Studio and Sketch. Stubborn - Free Illustrations Generator [](https://stubborn.fun/) Free illustrations generator for Figma and Sketch. Get the opportunity to design your characters using symbols and styles. Open Peeps, Hand-Drawn Illustration Library [](https://www.openpeeps.com/) Open Peeps is a hand-drawn illustration library to create scenes of people. You can use them in product illustration, marketing, comics, product states, user flows, personas, storyboarding, quinceañera invitations, or whatever you want! ⠀ Reshot | Free icons & illustrations [](https://www.reshot.com/) Design freely with instant downloads of curated SVG icons and vector illustrations. All free with commercial licensing. No attribution required. Blush: Illustrations for everyone [](https://blush.design/) Blush makes it easy to add free illustrations to your designs. Play with fully customizable graphics made by artists across the globe. Mockups Angle 4 - 5000+ Device Mockups for Figma, Sketch and XD [](https://angle.sh/) Vector mockups for iPhone, iPad, Android and Mac devices, including the new iPhone 13, Pro, Pro Max and Mini. Perfect for presenting your apps. Huge library of components, compositions, wallpapers and plugins made for Figma, Sketch and XD. Make Mockups, Logos, Videos and Designs in Seconds [](https://placeit.net/) Get unlimited downloads on all our 100K templates! You can make a logo, video, mockup, flyer, business card and social media image in seconds right from your browser. Free and premium tools for graphic designers | Lstore Graphics [](https://www.ls.graphics/) Free and premium mockups, UI/UX tools, scene creators for busy designers Logo Design & Brand Identity Platform for Entrepreneurs | Looka [](https://looka.com/) Logojoy is now Looka! Design a Logo, make a website, and create a Brand Identity you’ll love with the power of Artificial Intelligence. 100% free to use. Create stunning product mockups easily and online - Smartmockups [](https://smartmockups.com/) Smartmockups enables you to create stunning high-resolution mockups right inside your browser within one interface across multiple devices. Previewed - Free mockup generator for your app [](https://previewed.app/) Join Previewed to create stunning 3D image shots and animations for your app. Choose from hundreds of ready made mockups, or create your own. Free Design Software - Graphic Online Maker - Glorify [](https://www.glorify.com/) Create professional and high converting social media posts, ads, infographics, presentations, and more with Glorify, a free design software & graphic maker. Other BuiltWith Technology Lookup [](https://builtwith.com/) Web technology information profiler tool. Find out what a website is built with. Compress JPEG Images Online [](https://compressjpeg.com/) Compress JPEG images and photos for displaying on web pages, sharing on social networks or sending by email. PhotoRoom - Remove Background and Create Product Pictures [](https://www.photoroom.com/) Create product and portrait pictures using only your phone. Remove background, change background and showcase products. Magic Eraser - Remove unwanted things from images in seconds [](https://www.magiceraser.io/) Magic Eraser - Use AI to remove unwanted things from images in seconds. Upload an image, mark the bit you need removed, download the fixed up image. Compressor.io - optimize and compress JPEG photos and PNG images [](https://compressor.io/) Optimize and compress JPEG, PNG, SVG, GIF and WEBP images online. Compress, resize and rename your photos for free. Remove Video Background – Unscreen [](https://www.unscreen.com/) Remove the background of any video - 100% automatically, online & free! Goodbye Greenscreen. Hello Unscreen. Noun Project: Free Icons & Stock Photos for Everything [](https://thenounproject.com/) Noun Project features the most diverse collection of icons and stock photos ever. Download SVG and PNG. Browse over 5 million art-quality icons and photos. Design Principles [](https://principles.design/) An Open Source collection of Design Principles and methods Shapefest™ - A massive library of free 3D shapes [](https://www.shapefest.com/) A massive free library of beautifully rendered 3D shapes. 160,000+ high resolution PNG images in one cohesive library. Learning UX Degreeless.design - Everything I Learned in Design School [](https://degreeless.design/) This is a list of everything I've found useful in my journey of learning design, and an ongoing list of things I think you should read. For budding UX, UI, Interaction, or whatever other title designers. UX Tools | Practical UX skills and tools [](https://uxtools.co/) Lessons and resources from two full-time product designers. Built For Mars [](https://builtformars.com/) On a mission to help the world build better user experiences by demystifying UX. Thousands of hours of research packed into UX case studies. Case Study Club – Curated UX Case Study Gallery [](https://www.casestudy.club/) Case Study Club is the biggest curated gallery of the best UI/UX design case studies. Get inspired by industry-leading designers, openly sharing their UX process. The Guide to Design [](https://start.uxdesign.cc/) A self-guided class to help you get started in UX and answer key questions about craft, design, and career Uxcel - Where design careers are built [](https://app.uxcel.com/explore) Available on any device anywhere in the world, Uxcel is the best way to improve and learn UX design online in just 5 minutes per day. UI & UX Design Tips by Jim Raptis. [](https://www.uidesign.tips/) Learn UI & UX Design with practical byte-sized tips and in-depth articles from Jim Raptis. Entrepreneur Instant Username Search [](https://instantusername.com/#/) Instant Username Search checks out if your username is available on more than 100 social media sites. Results appear instantly as you type. Flourish | Data Visualization & Storytelling [](https://flourish.studio/) Beautiful, easy data visualization and storytelling PiPiADS - #1 TikTok Ads Spy Tool [](https://www.pipiads.com/) PiPiADS is the best tiktok ads spy tool .We provide tiktok advertising,advertising on tiktok,tiktok ads examples,tiktok ads library,tiktok ads best practices,so you can understand the tiktok ads cost and master the tiktok ads 2021 and tiktok ads manager. Minea - The best adspy for product search in ecommerce and dropshipping [](https://en.minea.com/) Minea is the ultimate e-commerce product search tool. Minea tracks all ads on all networks. Facebook Ads, influencer product placements, Snapspy, all networks are tracked. Stop paying adspy 149€ for one network and discover Minea. AdSpy [](https://adspy.com/) Google Trends [](https://trends.google.com/) ScoreApp: Advanced Quiz Funnel Marketing | Make a Quiz Today [](https://www.scoreapp.com/) ScoreApp makes quiz funnel marketing easy, so you can attract relevant warm leads, insightful data and increase your sales. Try for free today Mailmodo - Send Interactive Emails That Drive Conversions [](https://www.mailmodo.com/) Use Mailmodo to create and send interactive emails your customers love. Drive conversions and get better email ROI. Sign up for a free trial now. 185 Top E-Commerce Sites Ranked by User Experience Performance – Baymard Institute [](https://baymard.com/ux-benchmark) See the ranked UX performance of the 185 largest e-commerce sites in the US and Europe. The chart summarizes 50,000+ UX performance ratings. Metricool - Analyze, manage and measure your digital content [](https://metricool.com/) Social media scheduling, web analytics, link in bio and reporting. Metricool is free per live for one brand. START HERE Visualping: #1 Website change detection, monitoring and alerts [](https://visualping.io/) More than 1.5 millions users monitor changes in websites with Visualping, the No1 website change detection, website checker, webpage change monitoring and webpage change detection tool. Gumroad – Sell what you know and see what sticks [](https://gumroad.com/) Gumroad is a powerful, but simple, e-commerce platform. We make it easy to earn your first dollar online by selling digital products, memberships and more. Product Hunt – The best new products in tech. [](https://www.producthunt.com/) Product Hunt is a curation of the best new products, every day. Discover the latest mobile apps, websites, and technology products that everyone's talking about. 12ft Ladder [](https://12ft.io/) Show me a 10ft paywall, I’ll show you a 12ft ladder. namecheckr | Social and Domain Name Availability Search For Brand Professionals [](https://www.namecheckr.com/) Social and Domain Name Availability Search For Brand Professionals Excel AI Formula Generator - Excelformulabot.com [](https://excelformulabot.com/) Transform your text instructions into Excel formulas in seconds with the help of AI. Z-Library [](https://z-lib.org/) Global Print On Demand Platform | Gelato [](https://www.gelato.com/) Create and sell custom products online. With local production in 33 countries, easy integration, and 24/7 customer support, Gelato is an all-in-one platform. Freecycle: Front Door [](https://freecycle.org/) Free eBooks | Project Gutenberg [](https://www.gutenberg.org/) Project Gutenberg is a library of free eBooks. Convertio — File Converter [](https://convertio.co/) Convertio - Easy tool to convert files online. More than 309 different document, image, spreadsheet, ebook, archive, presentation, audio and video formats supported. Namechk [](https://namechk.com/) Crazy Egg Website — Optimization | Heatmaps, Recordings, Surveys & A/B Testing [](https://www.crazyegg.com/) Use Crazy Egg to see what's hot and what's not, and to know what your web visitors are doing with tools, such as heatmaps, recordings, surveys, A/B testing & more. Ifttt [](https://ifttt.com/) Also Asked [](https://alsoasked.com/) Business Name Generator - Easily create Brandable Business Names - Namelix [](https://namelix.com/) Namelix uses artificial intelligence to create a short, brandable business name. Search for domain availability, and instantly generate a logo for your new business Merch Informer [](https://merchinformer.com/) Headline Generator [](https://www.title-generator.com/) Title Generator: create 700 headlines with ONE CLICK: Content Ideas + Catchy Headlines + Ad Campaign E-mail Subject Lines + Emotional Titles. Simple - Efficient - One Click Make [](https://www.make.com/en) Create and add calculator widgets to your website | CALCONIC_ [](https://www.calconic.com/) Web calculator builder empowers you to choose from a pre-made templates or build your own calculator widgets from a scratch without any need of programming knowledge Boost Your Views And Subscribers On YouTube - vidIQ [](https://vidiq.com/) vidIQ helps you acquire the tools and knowledge needed to grow your audience faster on YouTube and beyond. Learn More Last Pass [](https://www.lastpass.com/) Starter Story: Learn How People Are Starting Successful Businesses [](https://www.starterstory.com/) Starter Story interviews successful entrepreneurs and shares the stories behind their businesses. In each interview, we ask how they got started, how they grew, and how they run their business today. How To Say No [](https://www.starterstory.com/how-to-say-no) Saying no is hard, but it's also essential for your sanity. Here are some templates for how to say no - so you can take back your life. Think with Google - Discover Marketing Research & Digital Trends [](https://www.thinkwithgoogle.com/) Uncover the latest marketing research and digital trends with data reports, guides, infographics, and articles from Think with Google. ClickUp™ | One app to replace them all [](https://clickup.com/) Our mission is to make the world more productive. To do this, we built one app to replace them all - Tasks, Docs, Goals, and Chat. The Manual [](https://manual.withcompound.com/) Wealth-planning resources for founders and startup employees Software for Amazon FBA Sellers & Walmart Sellers | Helium 10 [](https://www.helium10.com/) If you're looking for the best software for Amazon FBA & Walmart sellers on the market, check out Helium 10's capabilities online today! Buffer: All-you-need social media toolkit for small businesses [](https://buffer.com/) Use Buffer to manage your social media so that you have more time for your business. Join 160,000+ small businesses today. CPGD — The Consumer Packaged Goods Directory [](https://www.cpgd.xyz/) The Consumer Packaged Goods Directory is a platform to discover new brands and resources. We share weekly trends in our newsletter and partner with services to provide vetted, recommended platforms for our Directory brands. Jungle Scout [](https://www.junglescout.com/) BuzzSumo | The World's #1 Content Marketing Platform [](https://buzzsumo.com/) BuzzSumo powers the strategies of 500k+ marketers, with content marketing data on 8b articles, 42m websites, 300t engagements, 500k journalists & 492m questions. Login - Capital [](https://app.capital.xyz/) Raise, hold, spend, and send funds — all in one place. Marketing Pictory – Video Marketing Made Easy - Pictory.ai [](https://pictory.ai/) Pictory's powerful AI enables you to create and edit professional quality videos using text, no technical skills required or software to download. Tolstoy | Communicate with interactive videos [](https://www.gotolstoy.com/) Start having face-to-face conversations with your customers. Create Email Marketing Your Audience Will Love - MailerLite [](https://www.mailerlite.com/) Email marketing tools to grow your audience faster and drive revenue smarter. Get free access to premium features with a 30-day trial! Sign up now! Hypefury - Schedule & Automate Social Media Marketing [](https://hypefury.com/) Save time on social media while creating more value, and growing your audience faster. Schedule & automate your social media experience! Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Online Email & Lead Scraper | Klean Leads [](https://www.kleanleads.com/) Klean Leads is an online email scraper & email address finder. Use it to book more appointments, get more replies, and close more sales. PhantomBuster [](https://phantombuster.com/) Call to Action Examples - 300+ CTA Phrases [](https://ctaexamples.com/) See the best CTA example in every situation covered by the library of 300+ CTA goals. Use the examples to create your own CTAs in minutes. Creative Center: one-stop creative solution for TikTok [](https://ads.tiktok.com/business/creativecenter/pc/en?from=001010) Come to get your next great idea for TikTok. Here you can find the best performing ads, viral videos, and trending hashtags across regions and verticals. Groove.cm GrooveFunnels, GrooveMail with CRM and Digital Marketing Automation Platform - Groove.cm with GrooveFunnels, GroovePages, GrooveKart [](https://groove.cm/) Groove is a website creator, page builder, sales funnel maker, membership site platform, email autoresponder, blog tool, shopping cart system, ecommerce store solution, affiliate manager, video marketing software and more apps to help build your online business. SurveyMonkey: The World’s Most Popular Free Online Survey Tool [](https://www.surveymonkey.com/) Use SurveyMonkey to drive your business forward by using our free online survey tool to capture the voices and opinions of the people who matter most to you. Video Maker | Create Videos Online | Promo.com [](https://promo.com/) Free customizable video maker to help boost your business. Video creator for ads, social media, product and explainer videos, and for anything else you need! beehiiv — The newsletter platform built for growth [](https://www.beehiiv.com/) Access the best tools available in email, helping your newsletter scale and monetize like never before. GetResponse | Professional Email Marketing for Everyone [](https://www.getresponse.com/) No matter your level of expertise, we have a solution for you. At GetResponse, it's email marketing done right. Start your free account today! Search Email Newsletter Archives : Email Tuna [](https://emailtuna.com/) Explore newsletters without subscribing. Get email design ideas, discount coupon codes and exclusive newsletters deals. Database of email newsletters archived from all over the internet. Other Tools Simplescraper — Scrape Websites and turn them into APIs [](https://simplescraper.io/) Web scraping made easy — a powerful and free Chrome extension for scraping websites in your browser, automated in the cloud, or via API. No code required. Exploding Topics - Discover the hottest new trends. [](https://explodingtopics.com/) See new market opportunities, trending topics, emerging technology, hot startups and more on Exploding Topics. Scribe | Visual step-by-step guides [](https://scribehow.com/) By capturing your process while you work, Scribe automatically generates a visual guide, ready to share with the click of a button. Get It Free – The internet's BEST place to find free stuff! [](https://getitfree.us/) The internet's BEST place to find free stuff! Inflact by Ingramer – Marketing toolkit for Instagram [](https://inflact.com/) Sell on Instagram, build your audience, curate content with the right set of tools. Free Online Form Builder & Form Creator | Jotform [](https://www.jotform.com/) We believe the right form makes all the difference. Go from busywork to less work with powerful forms that use conditional logic, accept payments, generate reports, and automate workflows. Manage Your Team’s Projects From Anywhere | Trello [](https://trello.com/en) Trello is the ultimate project management tool. Start up a board in seconds, automate tedious tasks, and collaborate anywhere, even on mobile. TikTok hashtag generator - tiktokhashtags.com [](https://tiktokhashtags.com/) Find out which are the best hashtags for your TikTok post. Create Infographics, Reports and Maps - Infogram [](https://infogram.com/) Infogram is an easy to use infographic and chart maker. Create and share beautiful infographics, online reports, and interactive maps. Make your own here. Confetto - Create Instagram content in minutes [](https://www.confet.to/) Confetto is an all-in-one social media marketing tool built for SMBs and Social Media Managers. Confetto helps you create high-quality content for your audience that maximizes your reach and engagement on social media. Design, copy-write, plan and schedule content all in one place. Find email addresses in seconds • Hunter (Email Hunter) [](https://hunter.io/) Hunter is the leading solution to find and verify professional email addresses. Start using Hunter and connect with the people that matter for your business. PlayPhrase.me: Site for cinema archaeologists. [](https://playphrase.me/) Travel and explore the world of cinema. Largest collection of video quotes from movies on the web. #1 Free SEO Tools → SEO Review Tools [](https://www.seoreviewtools.com/) SEO Review Tools: 42+ Free Online SEO Tools build with ❤! → Rank checker → Domain Authority Checker → Keyword Tool → Backlink Checker Podcastle: Seamless Podcast Recording & Editing [](https://podcastle.ai/) Podcastle is the simplest way to create professional-quality podcasts. Record, edit, transcribe, and export your content with the power of AI, in an intuitive web-based platform. Save Ads from TikTok & Facebook Ad Library - Foreplay [](https://www.foreplay.co/) The best way to save ads from TikTok Creative Center and Facebook Ad Library, Organize them into boards and share ad inspiration with your team. Supercharge your creative strategy. SiteRight - Automate Your Business [](https://www.siteright.co/) SiteRight combines the abilities of multiple online resources into a single dashboard allowing you to have full control over how you manage your business. Diffchecker - Compare text online to find the difference between two text files [](https://www.diffchecker.com/) Diffchecker will compare text to find the difference between two text files. Just paste your files and click Find Difference! Yout.com [](https://yout.com/) Yout.com allows you to record videos from YouTube, FaceBook, SoundCloud, VK and others too many formats with clipping. Intuitively easy to use, with Yout the Internet DVR, with a bit of extra. AI Content Generation | Competitor Analysis - Predis.ai [](https://predis.ai/) Predis helps brands and influencers communicate better on social media by providing AI-powered content strategy analysis, content and hashtag recommendations. Castr | #1 Live Video Streaming Solution With Video Hosting [](https://castr.io/) Castr is a live video streaming solution platform that delivers enterprise-grade live videos globally with CDN. Live event streaming, video hosting, pre-recorded live, multi stream – all in one place using Castr. Headliner - Promote your podcast, radio show or blog with video [](https://www.headliner.app/) Easily create videos to promote your podcast, radio show or blog. Share to Instagram, Facebook, Twitter, YouTube, Linkedin and anywhere video lives Create Presentations, Infographics, Design & Video | Visme [](https://www.visme.co/) Create professional presentations, interactive infographics, beautiful design and engaging videos, all in one place. Start using Visme today. Designrr - Create eBooks, Kindle books, Leadmagnets, Flipbooks and Blog posts from your content in 2 minutes [](https://designrr.io/) Upload any web page, MS Word, Video, Podcast or YouTube and it will create a stunning ebook and convert it to pdf, epub, Kindle or Flipbook. Quick and Easy to use. Full Training, 24x7 Support and Facebook Group Included. SwipeWell | Swipe File Software [](https://www.swipewell.app/) The only Chrome extension dedicated to helping you save, organize, and reference marketing examples (so you never feel stumped). Tango | Create how-to guides, in seconds [](https://www.tango.us/) Tango takes the pain out of documenting processes by automatically generating how-to guides while you work. Empower your team to do their best work. Ad Creative Bank [](https://www.theadcreativebank.com/) Get inspired by ads from across industries, learn new best practices, and start thinking creatively about your brand’s digital creative. Signature Hound • Free Email Signature and Template Generator [](https://signaturehound.com/) Our email signature generator is free and easy to use. Our customizable templates work with Gmail, Outlook, Office 365, Apple Mail and more. Organize All Of Your Marketing In One Place - CoSchedule [](https://coschedule.com/) Get more done in less time with the only work management software for marketers. B Ok - Books [](https://b-ok.xyz/categories) OmmWriter [](https://ommwriter.com/) Ommwriter Rebrandly | Custom URL Shortener, Branded Link Management, API [](https://www.rebrandly.com/) URL Shortener with custom domains. Shorten, brand and track URLs with the industry-leading link management platform. Free to try. API, Short URL, Custom Domains. Common Tools [](https://www.commontools.org/) Book Bolt [](https://bookbolt.io/) Zazzle [](https://www.zazzle.com/) InspiroBot [](https://inspirobot.me/) Download Free Cheat Sheets or Create Your Own! - Cheatography.com: Cheat Sheets For Every Occasion [](https://cheatography.com/) Find thousands of incredible, original programming cheat sheets, all free to download. No Code Chatbot Platform | Free Chatbot Platform | WotNot [](https://wotnot.io/) WotNot is the best no code chatbot platform to build AI bot easily without coding. Deploy bots and live chat on the Website, Messenger, WhatsApp, and more. SpyFu - Competitor Keyword Research Tools for Google Ads PPC & SEO [](https://www.spyfu.com/) Systeme.io - The only tool you need to launch your online business [](https://systeme.io/) Systeme.io has all the tools you need to grow your online business. Click here to create your FREE account! Productivity Temp Mail [](https://temp-mail.org/en/) The Visual Collaboration Platform for Every Team | Miro [](https://miro.com/) Scalable, secure, cross-device and enterprise-ready team collaboration whiteboard for distributed teams. Join 35M+ users from around the world. Grammarly: Free Online Writing Assistant [](https://www.grammarly.com/) Millions trust Grammarly’s free writing app to make their online writing clear and effective. Getting started is simple — download Grammarly’s extension today. Rize · Maximize Your Productivity [](https://rize.io/) Rize is a smart time tracker that improves your focus and helps you build better work habits. Motion | Manage calendars, meetings, projects & tasks in one app [](https://www.usemotion.com/) Automatically prioritize tasks, schedule meetings, and resolve calendar conflicts. Used by over 10k CEOs and professionals to improve focus, get more done, and streamline workday. Notion – One workspace. Every team. [](https://www.notion.so/) We’re more than a doc. Or a table. Customize Notion to work the way you do. Loom: Async Video Messaging for Work | Loom [](https://www.loom.com/) Record your screen, share your thoughts, and get things done faster with async video. Zapier | Automation that moves you forward [](https://zapier.com/) Workflow automation for everyone. Zapier automates your work across 5,000+ app integrations, so you can focus on what matters. Rows — The spreadsheet with superpowers [](https://rows.com/) Combine the power of a spreadsheet with built-in integrations from your business apps. Automate workflows and build tools that make work simpler. Free Online Form Builder | Tally [](https://tally.so/) Tally is the simplest way to create free forms & surveys. Create any type of form in seconds, without knowing how to code, and for free. Highbrow | Learn Something New Every Day. Join for Free! [](https://gohighbrow.com/) Highbrow helps you learn something new every day with 5-minute lessons delivered to your inbox every morning. Join over 400,000 lifelong learners today! Slick Write | Check your grammar. Proofread online. [](https://www.slickwrite.com/#!home) Slick Write is a powerful, FREE application that makes it easy to check your writing for grammar errors, potential stylistic mistakes, and other features of interest. Whether you're a blogger, novelist, SEO professional, or student writing an essay for school, Slick Write can help take your writing to the next level. Reverso [](https://www.reverso.net) Hemingway Editor [](https://hemingwayapp.com/) Web Apps by 123apps - Edit, Convert, Create [](https://123apps.com/) Splitbee – Your all-in-one analytics and conversion platform [](https://splitbee.io/) Track and optimize your online business with Splitbee. Analytics, Funnels, Automations, A/B Testing and more. PDF Tools Free PDF, Video, Image & Other Online Tools - TinyWow [](https://tinywow.com/) Smallpdf.com - A Free Solution to all your PDF Problems [](https://smallpdf.com/) Smallpdf - the platform that makes it super easy to convert and edit all your PDF files. Solving all your PDF problems in one place - and yes, free. Sejda helps with your PDF tasks [](https://www.sejda.com/) Sejda helps with your PDF tasks. Quick and simple online service, no installation required! Split, merge or convert PDF to images, alternate mix or split scans and many other. iLovePDF | Online PDF tools for PDF lovers [](https://www.ilovepdf.com/) iLovePDF is an online service to work with PDF files completely free and easy to use. Merge PDF, split PDF, compress PDF, office to PDF, PDF to JPG and more! Text rewrite QuillBot [](https://quillbot.com/) Pre Post SEO : Online SEO Tools [](https://www.prepostseo.com/) Free Online SEO Tools: plagiarism checker, grammar checker, image compressor, website seo checker, article rewriter, back link checker Wordtune | Your personal writing assistant & editor [](https://www.wordtune.com/) Wordtune is the ultimate AI writing tool that rewrites, rephrases, and rewords your writing! Trusted by over 1,000,000 users, Wordtune strengthens articles, academic papers, essays, emails and any other online content. Aliexpress alternatives CJdropshipping - Dropshipping from Worldwide to Worldwide! [](https://cjdropshipping.com/) China's reliable eCommerce dropshipping fulfillment supplier, helps small businesses ship worldwide, dropship and fulfillment services that are friendly to start-ups and small businesses, Shopify dropshipping. SaleHoo [](https://www.salehoo.com/) Alibaba.com: Manufacturers, Suppliers, Exporters & Importers from the world's largest online B2B marketplace [](https://www.alibaba.com/) Find quality Manufacturers, Suppliers, Exporters, Importers, Buyers, Wholesalers, Products and Trade Leads from our award-winning International Trade Site. Import & Export on alibaba.com Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Best dropshipping supplier to the US [](https://www.usadrop.com/) THE ONLY AMERICAN-MADE FULFILLMENT CENTER IN CHINA. Our knowledge of the Worldwide dropshipping market and the Chinese Supply-Chain can't be beat! 阿里1688 [](https://www.1688.com/) 阿里巴巴(1688.com)是全球企业间(B2B)电子商务的著名品牌,为数千万网商提供海量商机信息和便捷安全的在线交易市场,也是商人们以商会友、真实互动的社区平台。目前1688.com已覆盖原材料、工业品、服装服饰、家居百货、小商品等12个行业大类,提供从原料--生产--加工--现货等一系列的供应产品和服务 Dropshipping Tools Oberlo | Where Self Made is Made [](https://www.oberlo.com/) Start selling online now with Shopify. All the videos, podcasts, ebooks, and dropshipping tools you'll need to build your online empire. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. SMSBump | SMS Marketing E-Commerce App for Shopify [](https://smsbump.com/) SMSBump is an SMS marketing & automation app for Shopify. Segment customers, recover orders, send campaign text messages with a 35%+ click through rate. AfterShip: The #1 Shipment Tracking Platform [](https://www.aftership.com/) Order status lookup, branded tracking page, and multi-carrier tracking API for eCommerce. Supports USPS, FedEx, UPS, and 900+ carriers worldwide. #1 Dropshipping App | Zendrop [](https://zendrop.com/) Start and scale your own dropshipping business with Zendrop. Sell and easily fulfill your orders with the fastest shipping in the industry. Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Video Editing Jitter • The simplest motion design tool on the web. [](https://jitter.video/) Animate your designs easily. Export your creations as videos or GIFs. All in your browser. DaVinci Resolve 18 | Blackmagic Design [](https://www.blackmagicdesign.com/products/davinciresolve) Professional video editing, color correction, visual effects and audio post production all in a single application. Free and paid versions for Mac, Windows and Linux. Online Video Editor | Video Creator | InVideo [](https://invideo.io/) InVideo's Online Video Editor Helps You Make Professional Videos From Premium Templates, Images, And Music. All your video needs in one place | Clipchamp [](https://clipchamp.com/) Fast-forward your creations with our video editing platform. Start with a video template or record your webcam or screen. Get the pro look with filters, transitions, text and more. Then, export in minutes and share in an instant. Descript | All-in-one audio/video editing, as easy as a doc. [](https://www.descript.com/) Record, transcribe, edit, mix, collaborate, and master your audio and video with Descript. Download for free →. Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. Panzoid [](https://panzoid.com/) Powerful, free online apps and community for creating beautiful custom content. Google Web Designer - Home [](https://webdesigner.withgoogle.com/) Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. ClipDrop [](https://clipdrop.co/) Create professional visuals without a photo studio CapCut [](https://www.capcut.com/) CapCut is an all-in-one online video editing software which makes creation, upload & share easier, with frame by frame track editor, cloud drive etc. VEED - Online Video Editor - Video Editing Made Simple [](https://www.veed.io/) Make stunning videos with a single click. Cut, trim, crop, add subtitles and more. Online, no account needed. Try it now, free. VEED Free Video Maker | Create & Edit Your Videos Easily - Animoto [](https://animoto.com/k/welcome) Create, edit, and share videos with our online video maker. Combine your photos, video clips, and music to make quality videos in minutes. Get started free! Runway - Online Video Editor | Everything you need to make content, fast. [](https://runwayml.com/) Discover advanced video editing capabilities to take your creations to the next level. CreatorKit - A.I. video creator for marketers [](https://creatorkit.com/) Create videos with just one click, using our A.I. video editor purpose built for marketers. Create scroll stopping videos, Instagram stories, Ads, Reels, and TikTok videos. Pixar in a Box | Computing | Khan Academy [](https://www.khanacademy.org/computing/pixar) 3D Video Motions Plask - AI Motion Capture and 3D Animation Tool [](https://plask.ai/) Plask is an all-in-one browser-based AI motion capture tool and animation editor that anybody can use, from motion designers to every day content creators. Captions Captions [](https://www.getcaptions.app/) Say hello to Captions, the only camera and editing app that automatically transcribes, captions and clips your talking videos for you. Stock videos Pexels [](https://www.pexels.com/) Pixabay [](https://pixabay.com/) Mixkit - Awesome free assets for your next video project [](https://mixkit.co/) Download Free Stock Video Footage, Stock Music & Premiere Pro Templates for your next video editing project. All assets can be downloaded for free! Free Stock Video Footage HD 4K Download Royalty-Free Clips [](https://www.videvo.net/) Download free stock video footage with over 300,000 video clips in 4K and HD. We also offer a wide selection of music and sound effect files with over 180,000 clips available. Click here to download royalty-free licensing videos, motion graphics, music and sound effects from Videvo today. Free Stock Video Footage HD Royalty-Free Videos Download [](https://mazwai.com/) Download free stock video footage with clips available in HD. Click here to download royalty-free licensing videos from Mazwai now. Royalty Free Stock Video Footage Clips | Vidsplay.com [](https://www.vidsplay.com/) Royalty Free Stock Video Footage Clips Free Stock Video Footage, Royalty Free Videos for Download [](https://coverr.co/) Download royalty free (for personal and commercial use), unique and beautiful video footage for your website or any project. No attribution required. Stock Photos Beautiful Free Images & Pictures | Unsplash [](https://unsplash.com/) Beautiful, free images and photos that you can download and use for any project. Better than any royalty free or stock photos. When we share, everyone wins - Creative Commons [](https://creativecommons.org/) Creative Commons licenses are 20! Honoring 20 years of open sharing using CC licenses, join us in 2022 to celebrate Better Sharing — advancing universal access to knowledge and culture, and fostering creativity, innovation, and collaboration. Help us reach our goal of raising $15 million for a future of Better Sharing.  20 Years of Better … Read More "When we share, everyone wins" Food Pictures • Foodiesfeed • Free Food Photos [](https://www.foodiesfeed.com/) Download 2000+ food pictures ⋆ The best free food photos for commercial use ⋆ CC0 license Free Stock Photos and Images for Websites & Commercial Use [](https://burst.shopify.com/) Browse thousands of beautiful copyright-free images. All our pictures are free to download for personal and commercial use, no attribution required. EyeEm | Authentic Stock Photography and Royalty-Free Images [](https://www.eyeem.com/) Explore high-quality, royalty-free stock photos for commercial use. License individual images or save money with our flexible subscription and image pack plans. picjumbo: Free Stock Photos [](https://picjumbo.com/) Free stock photos and images for your projects and websites.️ Beautiful 100% free high-resolution stock images with no watermark. Free Stock Photos, Images, and Vectors [](https://www.stockvault.net/) 139.738 free stock photos, textures, backgrounds and graphics for your next project. No attribution required. Free Stock Photos, PNGs, Templates & Mockups | rawpixel [](https://www.rawpixel.com/) Free images, PNGs, stickers, backgrounds, wallpapers, graphic templates and PSD mockups. All safe to use with commercial licenses. Free Commercial Stock Photos & Royalty Free Images | PikWizard [](https://pikwizard.com/) Free images, videos & free stock photos. Unlimited downloads ✓ Royalty-free Images ✓Copyright-free for commercial use ✓ No Attribution Required Design Bundles [](https://designbundles.net/) Stock music Royalty Free Music for video creators | Epidemic Sound [](https://www.epidemicsound.com/) Download premium Royalty free Music and SFX! Our free trial gives you access to over 35,000 tracks and 90,000 sound effects for video, streaming and more! Royalty-Free Music & SFX for Video Creators | Artlist [](https://artlist.io/) Explore the ultimate royalty-free music & sound effects catalogs for unlimited use in YouTube videos, social media & films created by inspiring indie artists worldwide. The go-to music licensing choice for all creators Royalty Free Audio Tracks - Envato Elements [](https://elements.envato.com/audio) Download Royalty Free Stock Audio Tracks for your next project from Envato Elements. Premium, High Quality handpicked Audio files ideal for any genre. License popular music for videos • Lickd [](https://lickd.co/) The only place you can license popular music for videos. Access 1M+ mainstream tracks, plus high-quality stock music for content creators NCS (NoCopyrightSounds) - free music for content creators [](https://ncs.io/) NCS is a Record Label dedicated to giving a platform to the next generation of Artists in electronic music, representing genres from house to dubstep via trap, drum & bass, electro pop and more. Search Engine Optimization Keyword Tool For Monthly Search Volume, CPC & Competition [](https://keywordseverywhere.com/) Keywords Everywhere is a browser add-on for Chrome & Firefox that shows search volume, CPC & competition on multiple websites. Semrush - Online Marketing Can Be Easy [](https://www.semrush.com/) Turn the algorithm into a friend. Make your business visible online with 55+ tools for SEO, PPC, content, social media, competitive research, and more. DuckDuckGo — Privacy, simplified. [](https://duckduckgo.com/) The Internet privacy company that empowers you to seamlessly take control of your personal information online, without any tradeoffs. SEO Software for 360° Analysis of Your Website [](https://seranking.com/) Leading SEO software for business owners, agencies, and SEO specialists. Track your rankings, monitor competitors, spot technical errors, and more. Skyrocket your organic traffic with Surfer [](https://surferseo.com/) Use Surfer to research, write, optimize, and audit! Everything you need to create a comprehensive content strategy that yields real results is right here. Ahrefs - SEO Tools & Resources To Grow Your Search Traffic [](https://ahrefs.com/) You don't have to be an SEO pro to rank higher and get more traffic. Join Ahrefs – we're a powerful but easy to learn SEO toolset with a passionate community. Neon Tools [](https://neontools.io/) Google Index Search [](https://lumpysoft.com/) Google Index Search SEO Backlink Checker & Link Building Toolset | Majestic.com [](https://majestic.com/) Develop backlink strategies with our Link Intelligence data, build the strongest SEO backlink campaigns to drive organic traffic and boost your rankings today. PageOptimizer Pro [](https://pageoptimizer.pro/) Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page Workshops With Kyle Roof POP Chrome Extension Guide Tutorial Videos Frequently Asked Questions Best Practices Login Cancel Anytime Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page… Keyword Chef - Keywords for Publishers [](https://keywordchef.com/) Rank Insanely Fast for Keywords Your Competition Can’t Find “Every long-tail keyword I find ends up ranking within a day” – Dane Eyerly, Owner at TextGoods.com Keyword Chef automatically finds and filters keywords for you. Real-time SERP analysis lets you find keywords nearly guaranteed to rank. Try for free → Let’s face it, most keyword tools ... Read more Notifier - Social Listening for Social Media and More! [](https://notifier.so/) Track keywords. Market your product for free. Drive the conversation. Easy. Free Trial. No obligation ever. Simple. Fast. Trusted by Top Companies. Free Keyword Research Tool from Wordtracker [](https://www.wordtracker.com/) The best FREE alternative to the Keyword Planner. Use Wordtracker to reveal 1000s of profitable longtail keywords with up to 10,000 results per search Blog Posts The 60 Hottest Front-end Tools of 2021 | CSS-Tricks - CSS-Tricks [](https://css-tricks.com/hottest-front-end-tools-in-2021/) A complete list of the most popular front-end tools in 2021, according to the Web Tools Weekly newsletter. See which resources made the list. Resume ResumeGlow - AI Powered Resume Builder [](https://resumeglow.com/) Get hired fast with a resume that grabs attention. Designed by a team of HR experts and typographers. Customizable templates with more than a million possible Create Your Job-winning Resume - (Free) Resume maker · Resume.io [](https://resume.io/) Free online resume maker, allows you to create a perfect Resume or Cover Letter in 5 minutes. See how easy it is to write a professional resume - apply for jobs today! Rezi - The Leading AI-Powered Free Resume Builder [](https://www.rezi.ai/) Rezi’s award-winning AI-powered resume builder is trusted by hundreds of thousands of job seekers. Create your perfect resume in minutes with Rezi. Create a Perfect Resume | Free Resume Builder | Resumaker.ai [](https://resumaker.ai/) Create your professional resume with this online resume maker. Choose a designer-made template and grab any employer attention in seconds. Trusted AI Resume Maker Helps You Get Hired Fast [](https://skillroads.com/) Reach a 96.4% success rate in the job hunt race with the best resume creator. Our innovative technologies and 24/7 support help you to become a perfect candidate for any job. Do not lose your chance to become the One. Kickresume | Best Online Resume & Cover Letter Builder [](https://www.kickresume.com/) Create your best resume yet. Online resume and cover letter builder used by 1,300,000 job seekers worldwide. Professional templates approved by recruiters. ResumeMaker.Online | Create a Professional Resume for Free [](https://www.resumemaker.online/) Save time with the easiest-to-use Resume Maker Online. Create an effective resume in just minutes and land your dream job. No Sign-up required, start now! Interviews Interview Warmup - Grow with Google [](https://grow.google/certificates/interview-warmup/) A quick way to prepare for your next interview. Practice key questions, get insights about your answers, and get more comfortable interviewing. No code website builder Carrd - Simple, free, fully responsive one-page sites for pretty much anything [](https://carrd.co/) A free platform for building simple, fully responsive one-page sites for pretty much anything. Webflow: Create a custom website | No-code website builder [](https://webflow.com/) Create professional, custom websites in a completely visual canvas with no code. Learn how to create a website by trying Webflow for free! Google Sites: Sign-in [](https://sites.google.com/) FlutterFlow - Build beautiful, modern apps incredibly fast! [](https://flutterflow.io/) FlutterFlow lets you build apps incredibly fast in your browser. Build fully functional apps with Firebase integration, API support, animations, and more. Export your code or even easier deploy directly to the app stores! Free Website Builder: Build a Free Website or Online Store | Weebly [](https://www.weebly.com/) Weebly’s free website builder makes it easy to create a website, blog, or online store. Find customizable templates, domains, and easy-to-use tools for any type of business website. Glide • No Code App Builder • Nocode Application Development [](https://www.glideapps.com/) Create the apps your business needs, without coding, waiting or overpaying. Get started for free and build an app today Adalo - Build Your Own No Code App [](https://www.adalo.com/) Adalo makes creating apps as easy as putting together a slide deck. Turn your idea into a real native app — no code needed! Siter.io - The collaborative web design tool, no-code website builder [](https://siter.io/) Siter.io is a visual website builder for designers. Prototype, design, and create responsive websites in the browser. Work together with your team in one place. Elementor: #1 Free WordPress Website Builder | Elementor.com [](https://elementor.com/) Elementor is the platform web creators choose to build professional WordPress websites, grow their skills, and build their business. Start for free today! No code app builder | Bravo Studio [](https://www.bravostudio.app/) Your no-code mobile app builder for iOS and Android. Create MVP’s, validate ideas and publish on App Store and Google Play Store. Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Free Website Builder | Create a Free Website | Wix.com [](https://www.wix.com/) Create a website with Wix’s robust website builder. With 900+ strategically designed templates and advanced SEO and marketing tools, build your brand online today. Free responsive Emails & Landing Pages drag-and-drop Editor | BEE [](https://beefree.io/) Free responsive emails and landing pages editor. With BEE drag-and-drop builders embedded in many software applications you can start designing now! Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Ownit Connected Checkout [](https://www.ownit.co/) Ownit Connected Checkout Bookmark.com | No-code Website Builder to Start Your Business [](https://www.bookmark.com/) Our AI powered platform ensures your business is future proof. Try Bookmark for free. The best way to build web apps without code | Bubble [](https://bubble.io/) Bubble introduces a new way to build software. It’s a no-code tool that lets you build SaaS platforms, marketplaces and CRMs without code. Bubble hosts all web apps on its cloud platform. Responsive Web Design | Website Creation | Editor X [](https://www.editorx.com/) Experience the future of website design with responsive layouts, CSS precision and smooth drag and drop. Create a Website for Free. Tilda Website Builder [](https://tilda.cc/) Create a website, online store, landing page with Tilda intuitive website builder. Build your site from hundreds of pre-designed templates and publish it today. No code required. No-code headless commerce and websites | Unstack Inc. [](https://www.unstack.com/) Deploy high performance eCommerce storefronts and websites without the engineering overhead using Unstack's no-code CMS Best Drag-and-Drop Website Builder | Jemi [](https://jemi.so/) The modern website builder for creatives, entrepreneurs, and dreamers. Build a beautiful link in bio site, portfolio, or landing page in minutes. No-code website builder that works like Notion [](https://popsy.co/) Create a beautiful no-code website in minutes. Popsy works just like Notion but is built from the ground up for building websites. Choose a free template. Edit content just like in Notion. Customize styles without code. Free Notion icons and illustrations. Unbounce - The Landing Page Builder & Platform [](https://unbounce.com/) Grow your relevance, leads, and sales with Unbounce. Use Unbounce to easily create and optimize landing pages for your small business and boost conversions with AI insights. Low-code Front-end Design & Development Platform | TeleportHQ [](https://teleporthq.io/) Front-end development platform, with a visual builder and headless content modelling capabilities. Static website creation, and UI development tools. Other tools used in no code website MemberSpace - Turn any part of your website into members-only with just a few clicks [](https://www.memberspace.com/) Create memberships on your website for anything you want like courses, video tutorials, member directories, and more while having 100% control over look & feel. Triggre | The number one true no-code platform to run your business [](https://www.triggre.com/) The best no-code platform to create highly advanced business applications in hours, without programming. Try it now for free! No code game builder Welcome to Buildbox [](https://signup.buildbox.com/) Welcome to Buildbox Flowlab Game Creator - Make games online [](https://flowlab.io/) Flowlab is an online game creator. Make your own games to share with friends. Make 2D Games With GameMaker | Free Video Game Maker [](https://gamemaker.io/) Make a game with GameMaker, the best free video game engine. Perfect for beginners and professionals. Learn to build your own 2D games with our simple tutorials. Side Hustle Side Hustle Stack [](https://sidehustlestack.co/) Side Hustle Stack is a resource for finding platform-based work, ranging from gig work and side hustles to platforms that help you start a small business that can grow. Fiverr [](https://www.fiverr.com/) Remotasks: Work From Home, Online Bootcamp Training [](https://www.remotasks.com/en) Make money doing tasks. Start earning today! Free bootcamp training offered online. Sign up for a free Remotasks account and work from home. Earn up to $200/month. Transcribe Speech to Text | Rev [](https://www.rev.com/) Transcribe Speech to Text with Rev. Reach your audience with clear and accurate captions, transcripts, and subtitles. AI Training Data and other Data Management Services [](https://www.clickworker.com/) AI training data, SEO texts, web research, tagging, surveys and more - Use the crowdsourcing principle with the power of >4.5M Clickworkers. Automate your Busy Work - Byron People-Powered Assistants [](https://www.hibyron.com/) Byron is an on demand US based virtual assistant platform that gives individuals and teams the ability to quickly outsource their non-essential tasks. Jobs Websites - Remote Latest Crypto Jobs, Web3 Jobs and Blockchain Jobs in the leading tech companies. [](https://cryptojobslist.com/) New Cryptocurrency Jobs, Web3 Jobs and Blockchain Jobs on CryptoJobsList — the leading site to find and post jobs. Connect with companies hiring in a few clicks and begin your next experience in the industry. Updated daily. Remote Jobs: Design, Marketing, Programming, Writing & More [](https://justremote.co/) Discover Remote Jobs from around the world. Give up the commute, work remotely and do what you love, daily, from anywhere. Find your perfect remote development, design, sales or marketing job today. Remote Ok [](https://remoteok.com/) Hire Freelancers & Remote Workers For Free [](https://talent.hubstaff.com/) Find and hire the highest quality freelancers from around the world - for free. Choose from thousands of developers, digital marketers, creatives and more. We Work Remotely: Remote jobs in design, programming, marketing and more [](https://weworkremotely.com/) Find the most qualified people in the most unexpected places: Hire remote! We Work Remotely is the best place to find and list remote jobs that aren't restricted by commutes or a particular geographic area. Browse thousands of remote work jobs today. Angel [](https://angel.co/) Remote Work: Jobs, Companies & Virtual Teams - Remote.co [](https://remote.co/) Remote.co is the definitive remote work job board for online job seekers and companies hiring. Start your remote job search here! FlexJobs: Best Remote Jobs, Work from Home Jobs, Online Jobs & More [](https://www.flexjobs.com/) The #1 job search site for hand-screened flexible and remote jobs (work from home jobs) since 2007. Plus get resume, coaching and career help. Join today! Remote jobs remotefront.io [](https://remotefront.io/) All remote jobs at remotefront.io Daily Virtual Events Helping You Grow Professionally [](https://powertofly.com/) PowerToFly is where you receive expert career advice, free video training, coaching and exclusive access to jobs and events at top companies. Best Remote and Work from Home Jobs - Virtual Vocations [](https://www.virtualvocations.com/) Best work from home jobs and remote jobs in over 50 categories for professionals, digital nomads, telecommuting workers and entry level jobseekers. Education, healthcare, medical, customer support and tech job openings. Remote Jobs | Working Nomads [](https://www.workingnomads.com/jobs) Remote jobs for digital working nomads. Start your telecommuting career and work remotely from home or places around the world. Job Search, Companies Hiring Near Me, and Advice | The Muse [](https://www.themuse.com/) Find jobs at the best companies hiring near you and get free career advice. Startupers [](https://www.startupers.com/) NoDesk - Where Everyone Works Remote [](https://nodesk.co/) Browse and apply to the best new remote jobs at leading remote companies and startups for free. Join hundreds of companies that use NoDesk to build their remote teams. Browser Extensions Blackbox - Select. Copy. Paste & Search - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/blackbox-select-copy-past/mcgbeeipkmelnpldkobichboakdfaeon) Fastest Way to Copy Text from Videos & Images Octotree - GitHub code tree - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/octotree-github-code-tree/bkhaagjahfmjljalopjnoealnfndnagc) GitHub on steroids WhatFont - Chrome Web Store [](https://chrome.google.com/webstore/detail/whatfont/jabopobgcpjmedljpbcaablpmlmfcogm?hl=en) The easiest way to identify fonts on web pages. Window Resizer - Chrome Web Store [](https://chrome.google.com/webstore/detail/window-resizer/kkelicaakdanhinjdeammmilcgefonfh?hl=en) Resize the browser window to emulate various screen resolutions. Amino: CSS Editor - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/amino-css-editor/pbcpfbcibpcbfbmddogfhcijfpboeaaf) Live CSS Editor. Write custom CSS for any website and see your changes in real time. Checkbot: SEO, Web Speed & Security Tester 🚀 - Chrome Web Store [](https://chrome.google.com/webstore/detail/checkbot-seo-web-speed-se/dagohlmlhagincbfilmkadjgmdnkjinl?hl=en) Test SEO/speed/security of 100s of pages in a click! Check broken links, HTML/JavaScript/CSS, URL redirects, duplicate titles... Honey: Automatic Coupons & Rewards - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/honey-automatic-coupons-r/bmnlcjabgnpnenekpadlanbbkooimhnj) Save money and earn rewards when you shop online. Tango: screenshots, training, & documentation - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/tango-screenshots-trainin/lggdbpblkekjjbobadliahffoaobaknh) Automatically create beautiful step-by-step guides with screenshots, in seconds. No code browser automation | axiom.ai [](https://axiom.ai/) Build browser bots quickly, without code. Automate website actions and repetitive tasks using just your browser, on any website or web app. No Code Browser extensions builder Bildr - Visual Web Development in your Browser [](https://www.bildr.com/) Visually build SaaS products, Chrome extensions, and web3 dApps Other Repurposing content for social media the easy way » Repurpose.io [](https://repurpose.io/) Repurposing content for social media made easy. Automatically repurpose YouTube, TikTok, Lives, Podcasts, and Zoom calls. Try it for FREE. Smart Serials: Your serial numbers database [](https://smartserials.com/) This is your main source of free serial numbers, unlock keys in a clean environment safe to browse by all ages. Old versions of Windows, Mac and Linux Software, Apps & Abandonware Games - Download at OldVersion.com [](http://www.oldversion.com/) Online Room Planner - Design Your Room [](http://www.planyourroom.com/) Planyourroom.com is a wonderful website to redesign each room in your house by picking out perfect furniture options to fit your unique space. BoredHumans.com - Fun AI Programs You Can Use Online [](https://boredhumans.com/) Fun AI programs you can use online. AI games, fake people, computer generated art, machine learning demos, and more. BNProject | Home [](https://buynothingproject.org/) Open Source Alternatives to Proprietary Software [](https://www.opensourcealternative.to/) Discover 400+ popular open source alternatives to proprietary SaaS. URL Shortener - Short URLs & Custom Free Link Shortener | Bitly [](https://bitly.com/) Bitly’s Connections Platform is more than a free URL shortener, with robust link management software, advanced QR Code features, and a Link-in-bio solution. TinEye Reverse Image Search [](https://tineye.com/) Good Books | Books recommended by successful people [](https://www.goodbooks.io/) Looking for the best books to read in 2022? Discover the best book recommendations from the world's most successful, influential and interesting people. Directory - Website Recommendations [](https://tokapps.com/directory/) 0 TRIED & TESTED WEBSITES LISTED Insanely Useful Websites A combination of useful websites for businesses, freelancers, DIYers, and individuals in a centralised area.All websites have been tried and tested. Filter Websites Audio Business Tools Copywriting Design Entertainment Graphics Guides Health Marketing PC Resources Savings SEO Software Travel Video Apply filter Watch Anime Online, Free Anime Streaming Online on Zoro.to Anime Website [](https://zoro.to/) Zoro is a Free anime streaming website which you can watch English Subbed and Dubbed Anime online with No Account and Daily update. WATCH NOW! Animated Drawings [](https://sketch.metademolab.com/) Bring children's drawings to life, by animating characters to move around! Alternativeto [](https://alternativeto.net/) Chatroulette [](https://chatroulette.com/) Random meetings around the world Tiktok Downloader - Download Video tiktok Without Watermark - SnapTik [](https://snaptik.app/en) TikTok Video Downloader - SnapTik.App is one of the best free Download video Tiktok No Watermark tool available online. You can download TikTok video from any device you have. Imgflip - Create and Share Awesome Images [](https://imgflip.com/) Flip through memes, gifs, and other funny images. Make your own images with our Meme Generator or Animated GIF Maker. Fake Text Message | Make Fake Text Conversation [](https://ifaketextmessage.com/) Fake Text Message is a tool to create a Fake Text Conversation and a Fake iMessage. ✂Templatemaker ︎ [](https://www.templatemaker.nl/en/) Omni Calculator [](https://www.omnicalculator.com/) Omni Calculator solves 2960 problems anywhere from finance and business to health. It’s so fast and easy you won’t want to do the math again! Watch Movies Online Free | Watch Series HD Free [](https://hdtoday.tv/) Free Access to the Biggest library of HD Movies and HD Series online - NO ADS - No Account Required - Fast Free Streaming Students Answers - The Most Trusted Place for Answering Life's Questions [](https://www.answers.com/) Answers is the place to go to get the answers you need and to ask the questions you want Wolfram|Alpha: Computational Intelligence [](https://www.wolframalpha.com/) Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, engineering, mathematics, linguistics, sports, finance, music… Online Math Tools - Simple, free and easy to use math utilities [](https://onlinemathtools.com/) World's simplest collection of useful mathematics utilities. Generate number sequences, draw fractals, do quick matrix and numerical calculations and more! edX | Free Online Courses by Harvard, MIT, & more | edX [](https://www.edx.org/) Access 2000 free online courses from 140 leading institutions worldwide. Gain new skills and earn a certificate of completion. Join today. Sci-Hub [](https://sci-hub.hkvisa.net/) Sci-Hub,mg.scihub.ltd,sci-hub.tw,The project is supported by user donations. Imagine the world with free access to knowledge for everyone ‐ a world without any paywalls. DigitalDefynd - Find the Best + Free Courses Online [](https://digitaldefynd.com/) 4 Million+ Learners | 96,000+ Courses | 45,000+ Free Courses | 1200+ Free Certificates Learn Anything [](https://learn-anything.xyz/) Search Interactive Mind Maps to learn anything HubSpot Academy - Homepage [](https://academy.hubspot.com/) HubSpot Academy is the worldwide leader in inbound marketing, sales, and customer service/support training.

Top 7 AI Certifications That Pay Incredibly Well Right Now
youtube
LLM Vibe Score0.416
Human Vibe Score0.75
SuperHumans LifeOct 13, 2024

Top 7 AI Certifications That Pay Incredibly Well Right Now

The right certifications can make a huge difference to how much money you can charge for freelance jobs. These certifications help you both land jobs, start a new side hustle or even turn it into a full time business because they give you the knowledge and credentials needed for you to do a great job and make clients happy. 🐝 Join our FREE AI Business Trailblazers Hive Community at https://www.skool.com/ai-trailblazers-hive-7394/about?ref=ff40ab4ff9184e7ca2d1971501f578df. Get cold outreach templates, in-depth tutorials, and live Q&As to help you launch and scale your AI side hustle. Like and subscribe for more videos like this if you've enjoyed the content. ALL GOOGLE CERTIFICATIONS THAT MATTER TO MAKE MONEY (START FREE) ⭐ Google Data Analytics Certificate: imp.i384100.net/xkRyXv ⭐ Google Digital Marketing Certificate: https://imp.i384100.net/JzWJoE ⭐ Google IT Support Certificate: https://imp.i384100.net/g14D5A ⭐ Google Project Management Certificate: https://imp.i384100.net/oqBzJO ⭐ Google UX Design Certificate: https://imp.i384100.net/B01xky ⭐ Google Ads for Beginners: https://imp.i384100.net/PyWxeQ ⭐ Introduction to Generative AI: https://imp.i384100.net/eKbz3z ⭐ Google Cybersecurity Certificate: https://imp.i384100.net/3eLQ2B ⭐ Google Google Advanced Data Analytics Certificate: https://imp.i384100.net/Y90eXR ⭐ Google IT Automation with Python Certificate https://imp.i384100.net/9grkmy ⭐ Google Business Intelligence Certificate: https://imp.i384100.net/eKbz3j ⭐ Google Crash Course on Python: https://imp.i384100.net/DKJoYd 👉 Freelancer Freedom Blueprint: https://superhumans.life/ffb-flow-landing-simple/ The start to finish step by step playbook to start making money online from scratch. 👉The Dream Job Challenge: https://superhumans.life/dream-career-landing-flow/ The best ways I know to get clear on what skills you can monetize and make money doing what you love. 👉 Create an Irresistible Profile - https://superhumans.life/irresistible-profile-flow-landing/ The ultimate strategies to create a perfect profile that attracts clients. 👉 Get a list with 99 validated remote job sites: https://superhumans.life/99-validated-remote-jobs-sites-flow-landing-2/ Start applying and earning money today. 👉 Get the 99 Ingenious Midjourney & ChatGPT Prompts for Digital Wall Art: https://superhumans.life/product/99-digital-art-etsy-shop-prompts/ Perfect if you want to start an Etsy shop to make money and don't have products to stand out. 🌐 MY WEBSITE: https://bit.ly/3KTY9sc with resources on how to get work from home online jobs that you can do remotely and how to get started as a freelancer. ✅ FREE Freelancing Masterclass - Step by step guide to get online work from home jobs ✅ https://www.superhumans.life/10xmasterclass ✅ Review your Upwork profile with my cheat sheet. DOWNLOAD HERE for FREE: https://www.superhumans.life/upworkchecklist/ OTHER MONEY MAKING VIDEOS: ►► This Simple Way to Make Money Copy Pasting Google News Will Blow Your Mind (Legit): https://youtu.be/mRJ2gmT69wo ►► Top Tier Google Certifications to Make $100,000+ Online (Start Free on Coursera): https://youtu.be/DOb_02gmdvM ►► Make $660/Day with Free Google Generative AI Certificates: https://youtu.be/0GjK1rvuI1Q ►► Make $100k+ working from home with FREE Google Certification trainings: https://youtu.be/K0pQvnYzjv8 ►► Make $917 / Day with Google News and AI posting Faceless Videos (Beginner friendly): https://youtu.be/mRJ2gmT69wo ►► Make Money Online as a Data Analyst with FREE Google Certifications & Training: https://youtu.be/j62iI6i47Yc ►► Make $100,000 / Year with Google Trainings (for High Paying Careers): https://youtu.be/t0GvneBaUjs ►► I Tried Making $800 in 4 Hours with Google Maps (To See If It Works): https://youtu.be/A0xA5vyDgzA ►► Make $550 a Day with These FREE Google Project Management Courses: https://youtu.be/S-lNEQ95bAU ►► How to Use ChatGPT to Find a High Paying Remote Job in Less Than 1 Hour: https://youtu.be/m3MwM6I0hBc OUTSTANDING RESOURCES TO HELP YOUR IMPROVE YOUR SKILLS AND EARN MORE: ►► Skillshare - Learn skills you can actually make money from: https://skillshare.eqcm.net/EKA34X ►► Resume.io - Largest resume builders serving 20 million customers worldwide: https://resumeio.sjv.io/baQEnB ►► Career.io - All-in-one career management platform: https://careerio.sjv.io/OrEjPA ►► Steppit - Easily build and sell immersive online courses with the help of AI: https://steppit.pxf.io/R5Eke7 ►► Placeit - Create designs, mockups, logos & more in just seconds: https://1.envato.market/WqE1V3

AI-Chatbot-Using-Mixtral-8x7B-PGVector-Llama-Index-With-Websockets-For-SaaS
github
LLM Vibe Score0.328
Human Vibe Score0.0056
quamernasimJul 15, 2024

AI-Chatbot-Using-Mixtral-8x7B-PGVector-Llama-Index-With-Websockets-For-SaaS

Steps to Building an AI Chatbot Using Mixtral 8x7B for SaaS Entrepreneurs An AI based chatbot built for SaaS Entrepreneurs Introduction This is a step-by-step guide to building an AI chatbot using Mixtral 8x7B for SaaS Entrepreneurs. The guide is designed to help you understand the process of building an AI chatbot and how it can be used to improve your business. What is Mixtral 8x7B? Mixtral 8x7B is LLM released by Mistral AI. It is a powerful LLM that has performed well on a variety of language tasks. It is a Mixure of Experts Model. It has outperformed GPT-3 on a variety of language tasks. It is a powerful tool for building AI chatbots. Why Build an AI Chatbot? AI chatbots are becoming increasingly popular in the business world. They can be used to automate customer service, answer questions, and provide information to customers. They can also be used to improve the user experience on your website or app. Building an AI chatbot can help you save time and money, and improve the overall customer experience. How to Build an AI Chatbot Using Mixtral 8x7B Building an AI chatbot using Mixtral 8x7B is a relatively simple process. Here are the steps you need to follow: Step 1: Collect Data Step 2: Index The Data using Llama-Index Step 3: Store The Indexed Data in a Database (In our case, we will use PGVector) Step 4: Get the LLM and Embedding Model from Hugging Face Step 5: Load the indexed data from the database Step 6: Set up a query engine using llama-index Step 7: Combine all the above steps to build an AI chatbot Step 8: Finallly, integrate the chatbot with WebSockets Step 9: Test the chatbot How to Use the AI Chatbot Once you have built the AI chatbot, you can use it to automate customer service, answer questions, and provide information to customers. You can also use it to improve the user experience on your website or app. The possibilities are endless! app.py that contains the websockets code to integrate the chatbot with your website or app. To run the chatbot, you can use the following command: To test the chatbot, you can use the following command: Conclusion Building an AI chatbot using Mixtral 8x7B is a relatively simple process. It can help you save time and money, and improve the overall customer experience. References https://medium.com/@vivekpatil647/timeline-of-chatbots-f3baf14c05e6 https://arxiv.org/pdf/2005.11401v4.pdf https://www.e2enetworks.com/ https://docs.llamaindex.ai/en/stable/index.html https://mistral.ai/news/mixtral-of-experts/ https://huggingface.co/ https://arxiv.org/pdf/2309.07597.pdf https://huggingface.co/blog/ray-rag

AI Tools for Small Business - 7 Ways Small Business Can Use AI Today
youtube
LLM Vibe Score0.346
Human Vibe Score0.47
Philip VanDusenMar 26, 2024

AI Tools for Small Business - 7 Ways Small Business Can Use AI Today

Extended 30 Day HighLevel Trial: https://www.gohighlevel.com/philipvandusen So, how can small businesses leverage all the AI tools that are flooding the market? There is so much it’s overwhelming! As small businesses navigate the competitive landscape, AI technologies offer a lifeline, enabling smarter decisions, enhanced customer connections, and expansion into new markets. From revolutionizing content creation with tools like ChatGPT to transforming social media strategies and personalizing email marketing, AI is redefining how small businesses engage with their audience. We’ll dive deep into using AI for marketing automation, competitor insights, local SEO mastery, engaging customers through chatbots, and converting website visitors into loyal customers. With practical insights and our sponsor HighLevel's platform, small businesses can now leverage AI tools to optimize their operations and marketing efforts. Keywords: AI Tools, Small Business, Growth, AI Technologies, Smarter Decisions, Customer Connections, Markets, Content Creation, ChatGPT, Social Media Strategies, Email Marketing, Personalizing, CRM, Marketing Automation, Competitor Insights, Local SEO, Chatbots, Converting Website Visitors, Operations, HighLevel #ai #smallbusiness #marketing WEBSITE https://www.philipvandusen.com BRAND•MUSE NEWSLETTER https://www.philipvandusen.com/muse BONFIRE: The Mastermind Community for Established Creative Pros https://philipvandusen.com/bonfire CREATIVE PROFESSIONAL COACHING https://philipvandusen.com/oneonone BRAND CONSULTING https://philipvandusen.com/brand-consulting BRAND STRATEGY 101 COURSE https://philipvandusen.com/bs101 BRAND DESIGN MASTERS PODCAST https://podcast.branddesignmasters.com/subscribe YOUTUBE https://www.youtube.com/c/philipvandusen LINKEDIN https://www.linkedin.com/in/philipvandusen/ THREADS https://www.threads.net/@philipvandusen FACEBOOK https://www.facebook.com/philipvandusen.agency/ INSTAGRAM https://www.instagram.com/philipvandusen/ BRAND DESIGN MASTERS FACEBOOK GROUP https://www.facebook.com/groups/branddesignmasters/ AFFILIATE PARTNERS: Bring Your Own Laptop - Adobe Training with Daniel Scott https://www.byol.me/philip GO HIGHLEVEL: https://www.gohighlevel.com/philipvandusen Tubebuddy https://www.tubebuddy.com/philipvandusen Philip VanDusen is a branding consultant and the owner of a brand strategy and design agency based in New Jersey. Philip is a highly accomplished creative executive and expert in brand strategy, graphic design, marketing and creative management. Philip provides design, branding, marketing, career and business advice to creative professionals, entrepreneurs and companies on building successful brands for themselves and the clients and customers they serve.

Airtable builds with Amazon Bedrock to transform workflows with generative AI | Amazon Web Services
youtube
LLM Vibe Score0.273
Human Vibe Score0.17
Amazon Web ServicesMar 20, 2024

Airtable builds with Amazon Bedrock to transform workflows with generative AI | Amazon Web Services

Airtable, a cloud based low-code platform, enables non-programmers to build next-gen business applications. To democratize AI adoption for non-technical users across organizations, Airtable launched Airtable AI, powered by Amazon Bedrock. Through this partnership, Airtable AI seamlessly incorporates powerful foundation models like Anthropic's Claude and Amazon's Titan on Amazon Bedrock, allowing customers to choose models that best suits their use cases and workflows. Key benefits include a unified API for integrating AWS services, secure hosting of foundation models and data, access to cutting-edge technologies, fostering bottoms-up AI adoption among non-technical teams, and generative AI use cases including content generation, automation actions, and intelligent data Q&A. All this is unified within Airtable's intuitive low-code environment. Learn more at: https://go.aws/3Ta68X4 Subscribe: More AWS videos: https://go.aws/3m5yEMW More AWS events videos: https://go.aws/3ZHq4BK Do you have technical AWS questions? Ask the community of experts on AWS re:Post: https://go.aws/3lPaoPb ABOUT AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform, offering over 200 fully featured services from data centers globally. Millions of customers — including the fastest-growing startups, largest enterprises, and leading government agencies — are using AWS to lower costs, become more agile, and innovate faster. #AmazonBedrock #FoundationModels #generativeAI #AnthropicClaude #AmazonTitan #Airtable #AWS #AmazonWebServices #CloudComputing

LearnAI-KnowledgeMiningBootcamp
github
LLM Vibe Score0.438
Human Vibe Score0.05521136990708693
sithukyaw007Jan 29, 2024

LearnAI-KnowledgeMiningBootcamp

LearnAI: Build an Enterprise Knowledge Mining Solution using the Microsoft AI Platform Build an enterprise scale intelligent search solution for searching business documents using Microsoft Azure and Cognitive Search About this Course In this course, you will learn to build an enterprise search solution by applying knowledge mining approach to search an organization’s business documents like Microsoft Office, PDFs and images using Azure search and Cognitive search skillsets and expose the results via a Bot interface. You will learn to perform entity recognition, image analysis, text translation and indexed search on enterprise business documents using Microsoft Cognitive Services and Azure Search. This approach can be used with almost any Azure service to augment a customer’s scenario involving intelligent search. While this course focusses on Azure and Cognitive search capabilities, a depth course on building Bots and integrating various cognitive services is available here - Building Intelligent Agents and Apps. In this course you will learn Fundamentals of Azure Search and its capabilities. Understand Microsoft Cognitive Search and its key scenarios for using them. Build an enriched data pipeline for search using predefined and custom skillsets: a. Text skills like entity recognition, language detection, text manipulation and key phrase extraction. b. Image skills like OCR. c. Language skills like text translation. d. Content moderation skills to block documents with incompliant content. Use the enriched data pipeline for a knowledge mining solution on business documents within an enterprise. Expose the knowledge mining solution using a bot interface for document search and consumption. Architecture !Architecture Technologies Covered !Technology Industry application Intelligent search is relevant to many major industries. Some are listed below. Retail and health care industries employ chatbots with advanced multi-language support capabilities to service their customers. Retail, Housing and Automotive industries for sales/listing. Entertainment industry uses search for relevant/contextual on-demand streaming. Pre-requisites Fundamental working knowledge of Azure Portal, Functions and Azure Search. Familiarity with Visual Studio. Familiarity with Azure Bots and Microsoft Bot Framework v4. If you do not have any familiarity with the above pre-requisites, please find below links To Read (10 minutes): Visual Studio Tutorial To Read (4 minutes): Azure Functions Overview To Read (10 minutes): Azure Search Overview To Read (7 minutes): Postman Tutorial To Do (30 minutes): CQuickstart Pre-Setup before you attend the class Mandatory To Create: You need a Microsoft Azure account to create the services we use in our solution. You can create a free account, use your MSDN account or use any other subscription where you have permission to create services. To Install: Visual Studio 2017 version version 15.5 or later, including the Azure development workload. To Install: Postman. To call the labs APIs. Course Details Primary Audience: Azure AI Developers, Architects. Secondary Audience: Any professional interested in learning AI. Level This content is designed as an intermediate to advanced level course for AI developers and/or architects. Type This course, in its full form, is designed to be taught in-person but you can also use the materials in a self-paced fashion. There are assignments and multiple reference links throughout the materials that support the concepts and skills you will learn. Length Full Course classroom training: 16 hours Related LearnAI Courses Building Intelligent Agents and Apps Course Modules Introduction – Overview of Azure Search, Cognitive Search, Scenarios and industry specific applications. Fundamentals of Azure Search. Architecture – Solution Architecture for building enterprise search solution. Cognitive Search Skillset – Applying text skills. Cognitive Search Skillset – Applying image skills. Cognitive Search Skillset – Applying Language skills. Cognitive Search Skillset – Applying Moderation skills. Build and Integrate a Bot with Cognitive Search API. Group Hands-on Lab to practice skills acquired.