VibeBuilders.ai Logo
VibeBuilders.ai

Micro

Explore resources related to micro to help implement AI solutions for your business.

Technical Co-Founder Seeking Commercial/Marketing Partner for Micro SaaS Projects
reddit
LLM Vibe Score0
Human Vibe Score1
Weekly-Offer-4172This week

Technical Co-Founder Seeking Commercial/Marketing Partner for Micro SaaS Projects

Hi everyone, I’m looking for a commercial or marketing co-founder to join me in developing some Micro SaaS (MSaaS) apps. Here’s a bit about where I’m coming from and what I’m hoping to find: About Me: I’m a full-stack developer with over 15 years of experience, including some work in AI. I’m currently working part-time, which gives me the time to focus on developing MVPs quickly. I’m passionate about creating SaaS solutions and would love to find someone who can help bring these ideas to life. Based in french alps. What I’m Looking For: Role: Non-Technical Co-Founder (Commercial/Marketing) Location: Remote Equity: 50% co-founder stake What I’m Hoping You’ll Bring: Experience: Background in business development, marketing, or similar fields. Vision: An eye for potential in new SaaS ideas and a drive to help make them successful. Commitment: Enthusiasm for building and growing a business together. What’s In It For You: Revenue Potential: Share in the financial rewards of successful products with a 50% equity stake, giving you a direct share of the profits. Fast ROI: Benefit from rapid MVP development, which allows for quicker validation and faster revenue generation. Dynamic Approach: We move quickly—if an app doesn’t gain traction in a few weeks, we pivot to the next idea, keeping our efforts focused on what works. Financial Growth: As we iterate and scale, there are opportunities for significant financial upside based on the success of our products. Shared Success: Be an integral part of a partnership where both of us share equally in the risks and rewards, creating a strong incentive for mutual success. What’s In It For You: Partnership: Equal share in the business (50/50). Opportunity: Work on interesting MSaaS projects with room for creativity. Flexibility: A remote role that fits around your schedule. If you’re interested or would like to learn more, please reach out. I’d be thrilled to discuss how we might work together. Thank you for considering this!

The case for micro PE [x-post from r/micro_pe]
reddit
LLM Vibe Score0
Human Vibe Score0
newy66This week

The case for micro PE [x-post from r/micro_pe]

Any SMB owners considering a sale? What have your challenges been so far? \-- The high-flying venture capital party is quieting down. The pullback in the public tech valuations and high-profile failures have made venture capitalists more cautious, doing fewer deals, no doubt stemming from antsy LPs. But at the same time, real tech has been built that improves business efficiency. AI to cut costs, target customers, improve products. SaaS products to automate everything from billing to marketing. New platforms that open up new modes of customer acquisition. Some of the hyped venture-backed companies from the past decade, while not quite achieving world domination, demonstrated models that provided real value to customers. The on-demand universe - rides, rooms, meals, home services, pets, leisure, showed that customers value convenience and experience. On another front, there's a silver tsunami on the horizon as aging business owners start to cash out. Nearly 60% of private companies are run by the 55+ crowd. Trillions in assets will change hands in the next 15 years as they retire. The tech layoffs have flooded the labor market with brainpower. No shortage of sharp operators looking for their next act. Put it together and you have the ingredients for a new investment approach: micro private equity. Modest valuations, reasonable return expectations, solid companies with positive cash flow or a clear path to profitability. Maybe with debt financing or an acquisition of an existing business at the outset. More targeted, grounded bets are emerging as an alternative to the high-risk venture model. r/micro_pe

[P] How I found & fixed 4 bugs in Microsoft's Phi-4 model
reddit
LLM Vibe Score0
Human Vibe Score1
danielhanchenThis week

[P] How I found & fixed 4 bugs in Microsoft's Phi-4 model

Hey r/MachineLearning! Last week, Microsoft released Phi-4, a 14B open-source model that rivals OpenAI's GPT-4-o-mini. I managed to find & fix 4 bugs impacting its output quality. You might remember me previously from fixing 8 bugs in Google's Gemma model! :) I'm going to walk you through how I found & fixed the bugs. Phi-4's benchmarks were amazing, however many users reported weird or just wrong outputs. Since I maintain the open-source project called 'Unsloth' (fine-tuning LLMs 2x faster with 70% less VRAM) with my brother, I firstly tested Phi-4 for inference and found many errors. Our GitHub repo: https://github.com/unslothai/unsloth This time, the model had no implementation issues (unlike Gemma 2) but did have problems in the model card. For my first inference run, I randomly found an extra token which is obviously incorrect (2 eos tokens is never a good idea). Also during more runs, I found there was an extra assistant prompt which is once again incorrect. And, lastly, from past experience with Unsloth's bug fixes, I already knew fine-tuning was wrong when I read the code. These bugs caused Phi-4 to have some drop in accuracy and also broke fine-tuning runs. Our fixes are now under review by Microsoft to be officially added to Hugging Face. We uploaded the fixed versions to https://huggingface.co/unsloth/phi-4-GGUF Here’s a breakdown of the bugs and their fixes: Tokenizer bug fixes The Phi-4 tokenizer interestingly uses as the BOS (beginning of sentence), EOS (end of sentence) and PAD (padding) tokens. The main issue is the EOS token is wrong - it should be . Otherwise, you will get in generations. Fine-tuning bug fixes The padding token should be a designated pad token like in Llama () or we can use an untrained token - for example we use , fixing infinite generations and outputs. Chat template issues The Phi-4 tokenizer always adds an assistant prompt - it should only do this if prompted by add\generation\prompt. Most LLM serving libraries expect non auto assistant additions, and this might cause issues during serving. We dive deeper into the bugs in our blog: https://unsloth.ai/blog/phi4 Do our Fixes Work? Yes! Our fixed Phi-4 uploads show clear performance gains, with even better scores than Microsoft's original uploads on the Open LLM Leaderboard. https://preview.redd.it/d8hew26e06ce1.png?width=2366&format=png&auto=webp&s=173c23feacc625566271470839fe7a5e25eb860e Some redditors even tested our fixes to show greatly improved results in: Example 1: Multiple-choice tasks https://preview.redd.it/qx50pkq706ce1.png?width=1579&format=png&auto=webp&s=437da2cabdbf98ef5a8b8cbdc5592907a20e2316 Example 2: ASCII art generation https://preview.redd.it/sw1o3a3yt4de1.png?width=2326&format=png&auto=webp&s=fc6bfc45d14134d45f332ba58bbd1de049f5776b We also made a Colab notebook fine-tune Phi-4 completely for free using Google's free Tesla T4 (16GB) GPUs: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi\4-Conversational.ipynb Thank you for reading this long post and hope you all found this insightful! If you have any questions, please feel free to ask! :) How I found the bugs: I first downloaded the original Phi-4 from https://huggingface.co/microsoft/phi-4, and tested inference out. Weirdly I found assistant to be appended at the even with addgenerationprompt = False in Hugging Face, so I theorized there was a chat template problem. Adding assistant prompts by default can break serving libraries. And yes, https://huggingface.co/microsoft/phi-4/blob/f957856cd926f9d681b14153374d755dd97e45ed/tokenizer\config.json#L774 had by default added the assistant prompt - I first fixed this! I then found ` to be used for the BOS, EOS and PAD tokens, which is a common issue amongst models - I ignored the BOS, since Phi-4 did not have one anyways, but changed the PAD token to `. You can select any of the tokens since they're empty and not trained. This counteracts issues of infinite generations during finetuning. For Llama-fication, I used torch.allclose to confirm all tensors are in fact equivalent. I also used some fake random data to check all activations are also mostly similar bitwise. I also uploaded the model to the HF Open LLM Leaderboard to confirm if the original Phi-4 arch and the new Llama-fied models are equivalent. Finally I verified all finetuning runs with Unsloth in a Colab Notebook to confirm all runs were correct.

[N] TheSequence Scope: When it comes to machine learning, size matters: Microsoft's DeepSpeed framework, which can train a model with up to a trillion parameters
reddit
LLM Vibe Score0
Human Vibe Score1
KseniaseThis week

[N] TheSequence Scope: When it comes to machine learning, size matters: Microsoft's DeepSpeed framework, which can train a model with up to a trillion parameters

Hi there! Offering to your attention the latest edition of a weekly ML-newsletter that focusing on three things: impactful ML research papers, cool ML tech solutions, and ML use cases supported by investors. Please, see it below. Reddit is a new thing for me, and I've been struggling a bit with it, so please don't judge me too harsh for this promotion. This weekly digest is free and I hope you'd find the format convenient for you. Your feedback is very appreciated, and please feel free to sign up if you like it. 📝 Editorial  The recent emergence of pre-trained language models and transformer architectures pushed the creation of larger and larger machine learning models. Google’s BERT presented attention mechanism and transformer architecture possibilities as the “next big thing” in ML, and the numbers seem surreal. OpenAI’s GPT-2 set a record by processing 1.5 billion parameters, followed by Microsoft’s Turing-NLG, which processed 17 billion parameters just to see the new GPT-3 processing an astonishing 175 billion parameters. To not feel complacent, just this week Microsoft announced a new release of its DeepSpeed framework (which powers Turing-NLG), which can train a model with up to a trillion parameters. That sounds insane but it really isn’t.   What we are seeing is a consequence of several factors. First, computation power and parallelization techniques have evolved to a point where it is relatively easy to train machine learning models in large clusters of machines. Second and most importantly, in the current state of machine learning, larger models have regularly outperformed smaller and more specialized models. Knowledge reusability methods like transfer learning are still in very nascent stages. As a result, it’s really hard to build small models that can operate in uncertain environments. Furthermore, as models like GPT-3 and Turing-NLG have shown, there is some unexplainable magic that happens after models go past a certain size. Many of the immediate machine learning problems might be solved by scaling the current generation of neural network architectures. Plain and simple, when it comes to machine learning, size matters.   We would love to hear your opinions about the debate between broader-larger vs. smaller and more specialized models.   Leave a comment Now, to the most important developments in the AI industry this week 🔎 ML Research GPT-3 Falls Short in Machine Comprehension Proposed by researchers from a few major American universities, a 57-task test to measure models’ ability to reason poses challenges even for sophisticated models like GPT-3 ->read more in the original paper Better Text Summarization OpenAI published a paper showing a reinforcement learning with human feedback technique that can surpass supervised models ->read more on OpenAI blog Reinforcement Learning with Offline Datasets Researchers from the Berkeley AI Research (BAIR) Lab published a paper unveiling a method that uses offline datasets to improve reinforcement learning models->read more on BAIR blog 🤖 Cool AI Tech Releases New Version of DeepSpeed Microsoft open-sourced a new version of DeepSpeed, an open-source library for parallelizable training that can scale up to models with 1 trillion parameters->read more on Microsoft Research blog 💸 Money in AI AI-powered customer experience management platform Sprinklr has raised $200 million (kudos to our subscribers from Sprinklr 👏). Sprinklr's “AI listening processing” solution allows companies to get structured and meaningful sentiments and insights from unstructured customer data that comes from public conversations on different websites and social platforms. Xometry, an on-demand industrial parts marketplace, raises $75 million in Series E funding. The company provides a digital way of creating the right combination of buyers and manufacturers. Another example of AI implementation into matching two sides for a deal. Real estate tech company Orchard raises $69 million in its recent funding round. Orchard aims to digitize the whole real estate market, by developing a solution that combines machine learning and rapid human assistance to smooth the search, match the right deal, and simplify buying and selling relationships. Cybersecurity startup Pcysys raised $25 million in its funding round. Pcysys’ platform, which doesn’t require installation or network reconfiguration, uses algorithms to scan and “ethically” attack enterprise networks. Robotics farming company Iron Ox raised $20 million in a funding round. The system of farming robots is still semi-autonomous, the company’s goal is to become fully autonomous.  Insurtech company Descartes Underwriting raised $18.5 million. The company applies AI and machine learning technologies to climate risk predicting and insurance underwriting. Legaltech startup ThoughtRiver raised $10 million in its Series A round. Its AI solution applied to contract pre-screening aims to boost operational efficiency. Medtech startup Skin Analytics raised $5.1 million in Series A funding. Skin Analytics has developed a clinically validated AI system that can identify not only the important skin cancers but also precancerous lesions that can be treated, as well as a range of lesions that are benign. Amazon, along with several government organizations and three other industry partners, helped fund the National Science Foundation, a high-priority AI research initiative. The amount of funding is not disclosed. The content of TheSequence is written by Jesus Rodriguez, one of the most-read contributors to KDNuggets and TDS. You can check his Medium here.

[R] TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs - Yaobo Liang et al Microsoft 2023
reddit
LLM Vibe Score0
Human Vibe Score1
Singularian2501This week

[R] TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs - Yaobo Liang et al Microsoft 2023

Paper: https://arxiv.org/abs/2303.16434 Abstract: Artificial Intelligence (AI) has made incredible progress recently. On the one hand, advanced foundation models like ChatGPT can offer powerful conversation, in-context learning and code generation abilities on a broad range of open-domain tasks. They can also generate high-level solution outlines for domain-specific tasks based on the common sense knowledge they have acquired. However, they still face difficulties with some specialized tasks because they lack enough domain specific data during pre-training or they often have errors in their neural network computations on those tasks that need accurate executions. On the other hand, there are also many existing models and systems (symbolic-based or neural-based) that can do some domain specific tasks very well. However, due to the different implementation or working mechanisms, they are not easily accessible or compatible with foundation models. Therefore, there is a clear and pressing need for a mechanism that can leverage foundation models to propose task solution outlines and then automatically match some of the sub tasks in the outlines to the off-the-shelf models and systems with special functionalities to complete them. Inspired by this, we introduce TaskMatrix.AI as a new AI ecosystem that connects foundation models with millions of APIs for task completion. Unlike most previous work that aimed to improve a single AI model, TaskMatrix.AI focuses more on using existing foundation models (as a brain-like central system) and APIs of other AI models and systems (as sub-task solvers) to achieve diversified tasks in both digital and physical domains. As a position paper, we will present our vision of how to build such an ecosystem, explain each key component, and use study cases to illustrate both the feasibility of this vision and the main challenges we need to address next. https://preview.redd.it/0guexiznhxqa1.jpg?width=979&format=pjpg&auto=webp&s=e5d818ae789cfc493cfb82fdf8b002a8dfe11939

[R] AutoDev: Automated AI-Driven Development - Microsoft 2024
reddit
LLM Vibe Score0
Human Vibe Score0
Singularian2501This week

[R] AutoDev: Automated AI-Driven Development - Microsoft 2024

Paper: https://arxiv.org/abs/2403.08299 Sorry posted a wrong github link. The real code sadly isnt public yet! Thank you for everyone who pointed that out to me! ~~Github includes Code + AutoDev Coder Model:~~ ~~https://github.com/unit-mesh/auto-dev~~ Abstract: The landscape of software development has witnessed a paradigm shift with the advent of AI-powered assistants, exemplified by GitHub Copilot. However, existing solutions are not leveraging all the potential capabilities available in an IDE such as building, testing, executing code, git operations, etc. Therefore, they are constrained by their limited capabilities, primarily focusing on suggesting code snippets and file manipulation within a chat-based interface. To fill this gap, we present AutoDev, a fully automated AI-driven software development framework, designed for autonomous planning and execution of intricate software engineering tasks. AutoDev enables users to define complex software engineering objectives, which are assigned to AutoDev's autonomous AI Agents to achieve. These AI agents can perform diverse operations on a codebase, including file editing, retrieval, build processes, execution, testing, and git operations. They also have access to files, compiler output, build and testing logs, static analysis tools, and more. This enables the AI Agents to execute tasks in a fully automated manner with a comprehensive understanding of the contextual information required. Furthermore, AutoDev establishes a secure development environment by confining all operations within Docker containers. This framework incorporates guardrails to ensure user privacy and file security, allowing users to define specific permitted or restricted commands and operations within AutoDev. In our evaluation, we tested AutoDev on the HumanEval dataset, obtaining promising results with 91.5% and 87.8% of Pass@1 for code generation and test generation respectively, demonstrating its effectiveness in automating software engineering tasks while maintaining a secure and user-controlled development environment. https://preview.redd.it/5nxqajnvbkoc1.jpg?width=924&format=pjpg&auto=webp&s=8343c5fb33d2914bbfbf2dd9c164b5970b9743ab https://preview.redd.it/z5fkkjnvbkoc1.jpg?width=1364&format=pjpg&auto=webp&s=bc434ff384d2ed67ea0382dbbb68b9a90313cd44

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

Lessons from 139 YC AI startups (S23)
reddit
LLM Vibe Score0
Human Vibe Score0.333
minophenThis week

Lessons from 139 YC AI startups (S23)

YC's Demo Day was last week, and with it comes another deluge of AI companies. A record-breaking 139 startups were in some way related to AI or ML - up from 112 in the last batch. Here are 5 of my biggest takeaways: AI is (still) eating the world. It's remarkable how diverse the industries are - over two dozen verticals were represented, from materials science to social media to security. However, the top four categories were: AI Ops: Tooling and platforms to help companies deploy working AI models. We'll discuss more below, but AI Ops has become a huge category, primarily focused on LLMs and taming them for production use cases. Developer Tools: Apps, plugins, and SDKs making it easier to write code. There were plenty of examples of integrating third-party data, auto-generating code/tests, and working with agents/chatbots to build and debug code. Healthcare + Biotech: It seems like healthcare has a lot of room for automation, with companies working on note-taking, billing, training, and prescribing. And on the biotech side, there are some seriously cool companies building autonomous surgery robots and at-home cancer detection. Finance + Payments: Startups targeting banks, fintechs, and compliance departments. This was a wide range of companies, from automated collections to AI due diligence to "Copilot for bankers." Those four areas covered over half of the startups. The first two make sense: YC has always filtered for technical founders, and many are using AI to do what they know - improve the software developer workflow. But it's interesting to see healthcare and finance not far behind. Previously, I wrote: Large enterprises, healthcare, and government are not going to send sensitive data to OpenAI. This leaves a gap for startups to build on-premise, compliant \[LLMs\] for these verticals. And we're now seeing exactly that - LLMs focused on healthcare and finance and AI Ops companies targeting on-prem use cases. It also helps that one of the major selling points of generative AI right now is cost-cutting - an enticing use case for healthcare and finance. Copilots are king. In the last batch, a lot of startups positioned themselves as "ChatGPT for X," with a consumer focus. It seems the current trend, though, is "Copilot for X" - B2B AI assistants to help you do everything from KYC checks to corporate event planning to chip design to negotiate contracts. Nearly two dozen companies were working on some sort of artificial companion for businesses - and a couple for consumers. It's more evidence for the argument that AI will not outright replace workers - instead, existing workers will collaborate with AI to be more productive. And as AI becomes more mainstream, this trend of making specialized tools for specific industries or tasks will only grow. That being said - a Bing-style AI that lives in a sidebar and is only accessible via chat probably isn't the most useful form factor for AI. But until OpenAI, Microsoft, and Google change their approach (or until another company steps up), we'll probably see many more Copilots. AI Ops is becoming a key sector. "AI Ops" has been a term for only a few years. "LLM Ops" has existed for barely a year. And yet, so many companies are focused on training, fine-tuning, deploying, hosting, and post-processing LLMs it's quickly becoming a critical piece of the AI space. It's a vast industry that's sprung up seemingly overnight, and it was pretty interesting to see some of the problems being solved at the bleeding edge. For example: Adding context to language models with as few as ten samples. Pausing and moving training runs in real-time. Managing training data ownership and permissions. Faster vector databases. Fine-tuning models with synthetic data. But as much ~~hype~~ enthusiasm and opportunity as there might be, the size of the AI Ops space also shows how much work is needed to really productionalize LLMs and other models. There are still many open questions about reliability, privacy, observability, usability, and safety when it comes to using LLMs in the wild. Who owns the model? Does it matter? Nine months ago, anyone building an LLM company was doing one of three things: Training their own model from scratch. Fine-tuning a version of GPT-3. Building a wrapper around ChatGPT. Thanks to Meta, the open-source community, and the legions of competitors trying to catch up to OpenAI, there are now dozens of ways to integrate LLMs. However, I found it interesting how few B2B companies mentioned whether or not they trained their own model. If I had to guess, I'd say many are using ChatGPT or a fine-tuned version of Llama 2. But it raises an interesting question - if the AI provides value, does it matter if it's "just" ChatGPT behind the scenes? And once ChatGPT becomes fine-tuneable, when (if ever) will startups decide to ditch OpenAI and use their own model instead? "AI" isn't a silver bullet. At the end of the day, perhaps the biggest lesson is that "AI" isn't a magical cure-all - you still need to build a defensible company. At the beginning of the post-ChatGPT hype wave, it seemed like you just had to say "we're adding AI" to raise your next round or boost your stock price. But competition is extremely fierce. Even within this batch, there were multiple companies with nearly identical pitches, including: Solving customer support tickets. Negotiating sales contracts. Writing drafts of legal documents. Building no-code LLM workflows. On-prem LLM deployment. Automating trust and safety moderation. As it turns out, AI can be a competitive advantage, but it can't make up for a bad business. The most interesting (and likely valuable) companies are the ones that take boring industries and find non-obvious use cases for AI. In those cases, the key is having a team that can effectively distribute a product to users, with or without AI. Where we’re headed I'll be honest - 139 companies is a lot. In reviewing them all, there were points where it just felt completely overwhelming. But after taking a step back, seeing them all together paints an incredibly vivid picture of the current AI landscape: one that is diverse, rapidly evolving, and increasingly integrated into professional and personal tasks. These startups aren't just building AI for the sake of technology or academic research, but are trying to address real-world problems. Technology is always a double-edged sword - and some of the startups felt a little too dystopian for my taste - but I'm still hopeful about AI's ability to improve productivity and the human experience.

36 startup ideas found by analyzing podcasts (problem, solution & source episode)
reddit
LLM Vibe Score0
Human Vibe Score1
joepigeonThis week

36 startup ideas found by analyzing podcasts (problem, solution & source episode)

Hey, I've been a bit of a podcast nerd for a long time. Around a year ago I began experimenting with transcription of podcasts for a SaaS I was running. I realized pretty quickly that there's a lot of knowledge and value in podcast discussions that is for all intents and purposes entirely unsearchable or discoverable to most people. I ended up stopping work on that SaaS product (party for lack of product/market fit, and partly because podcasting was far more interesting), and focusing on the podcast technology full-time instead. I'm a long-time lurker and poster of r/startups and thought this would make for some interesting content and inspiration for folks. Given I'm in this space, have millions of transcripts, and transcribe thousands daily... I've been exploring fun ways to expose some of the interesting knowledge and conversations taking place that utilize our own data/API. I'm a big fan of the usual startup podcasts (My First Million, Greg Isenberg, etc. etc.) and so I built an automation that turns all of the startup ideas discussed into a weekly email digest. I always struggle to listen to as many episodes as I'd actually like to, so I thought I'd summarise the stuff I care about instead (startup opportunities being discussed). I thought it would be interesting to post some of the ideas extracted so far. They range from being completely whacky and blue sky, to pretty boring but realistic. A word of warning before anyone complains – this is a big mixture of tech, ai, non-tech, local services, etc. ideas: Some of the ideas are completely mundane, but realistic (e.g. local window cleaning service) Some of the ideas are completely insane, blue sky, but sound super interesting Here's the latest 36 ideas: |Idea Name|Problem|Solution|Source| |:-|:-|:-|:-| |SalesForce-as-a-Service - White Label Enterprise Sales Teams|White-label enterprise sales teams for B2B SaaS. Companies need sales but can't hire/train. Recruit retail sellers, train for tech, charge 30% of deals closed.|Create a white-label enterprise sales team by recruiting natural salespeople from retail and direct sales backgrounds (e.g. mall kiosks, cutco knives). Train them specifically in B2B SaaS sales techniques and processes. Offer this trained sales force to tech companies on a contract basis.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |TechButler - Mobile Device Maintenance Service|Mobile tech maintenance service. Clean/optimize devices, improve WiFi, basic support. $100/visit to homes. Target affluent neighborhoods.|Mobile tech support service providing in-home device cleaning, optimization, and setup. Focus on common issues like WiFi improvement, device maintenance, and basic tech support.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |MemoryBox - At-Home Video Digitization Service|Door-to-door VHS conversion service. Parents have boxes of old tapes. Pick up, digitize, deliver. $30/tape with minimum order. Going extinct.|Door-to-door VHS to digital conversion service that handles everything from pickup to digital delivery. Make it extremely convenient for customers to preserve their memories.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |Elite Match Ventures - Success-Based Luxury Matchmaking|High-end matchmaking for 50M+ net worth individuals. Only charge $1M+ when they get married. No upfront fees. Extensive vetting process.|Premium matchmaking service exclusively for ultra-high net worth individuals with a pure contingency fee model - only get paid ($1M+) upon successful marriage. Focus on quality over quantity with extensive vetting and personalized matching.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |LocalHost - Simple Small Business Websites|Simple WordPress sites for local businesses. $50/month includes hosting, updates, security. Target restaurants and shops. Recurring revenue play.|Simplified web hosting and WordPress management service targeting local small businesses. Focus on basic sites with standard templates, ongoing maintenance, and reliable support for a fixed monthly fee.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |VoiceJournal AI - Voice-First Smart Journaling|Voice-to-text journaling app with AI insights. 8,100 monthly searches. $15/month subscription. Partners with journaling YouTubers.|AI-powered journaling app that combines voice recording, transcription, and intelligent insights. Users can speak their thoughts, which are automatically transcribed and analyzed for patterns, emotions, and actionable insights.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |AIGenAds - AI-Generated UGC Content Platform|AI platform turning product briefs into UGC-style video ads. Brands spending $500/video for human creators. Generate 100 variations for $99/month.|AI platform that generates UGC-style video ads using AI avatars and scripting. System would allow rapid generation of multiple ad variations at a fraction of the cost. Platform would use existing AI avatar technology combined with script generation to create authentic-looking testimonial-style content.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |InfographAI - Automated Infographic Generation Platform|AI turning blog posts into branded infographics. Marketers spending hours on design. $99/month unlimited generation.|AI-powered platform that automatically converts blog posts and articles into visually appealing infographics. System would analyze content, extract key points, and generate professional designs using predefined templates and brand colors.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |KidFinance - Children's Financial Education Entertainment|Children's media franchise teaching financial literacy. Former preschool teacher creating 'Dora for money'. Books, videos, merchandise potential.|Character-driven financial education content for kids, including books, videos, and potentially TV show. Focus on making money concepts fun and memorable.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |FinanceTasker - Daily Financial Task Challenge|Free 30-day financial challenge with daily action items. People overwhelmed by money management. Makes $500k/year through books, speaking, and premium membership.|A free 30-day financial challenge delivering one simple, actionable task per day via email. Each task includes detailed scripts and instructions. Participants join a Facebook community for support and accountability. The program focuses on quick wins to build momentum. Automated delivery allows scaling.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |FinanceAcademy - Expert Financial Training Platform|Premium financial education platform. $13/month for expert-led courses and live Q&As. 4000+ members generating $40k+/month.|Premium membership site with expert-led courses, live Q&As, and community support. Focus on specific topics like real estate investing, business creation, and advanced money management.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |SecurityFirst Compliance - Real Security + Compliance Platform|Security-first compliance platform built by hackers. Companies spending $50k+ on fake security. Making $7M/year showing why current solutions don't work.|A compliance platform built by security experts that combines mandatory compliance requirements with real security measures. The solution includes hands-on security testing, expert guidance, and a focus on actual threat prevention rather than just documentation. It merges traditional compliance workflows with practical security implementations.|In the Pit with Cody Schneider| |LinkedInbound - Automated Professional Visibility Engine|LinkedIn automation for inbound job offers. Professionals spending hours on manual outreach. $99/month per job seeker.|Automated system for creating visibility and generating inbound interest on LinkedIn through coordinated profile viewing and engagement. Uses multiple accounts to create visibility patterns that trigger curiosity and inbound messages.|In the Pit with Cody Schneider| |ConvoTracker - Community Discussion Monitoring Platform|Community discussion monitoring across Reddit, Twitter, HN. Companies missing sales opportunities. $499/month per brand tracked.|Comprehensive monitoring system that tracks competitor mentions and industry discussions across multiple platforms (Reddit, Twitter, Hacker News, etc.) with automated alerts and engagement suggestions.|In the Pit with Cody Schneider| |ContentAds Pro - Smart Display Ad Implementation|Display ad implementation service for content creators. Bloggers losing thousands in ad revenue monthly. Makes $3-5k per site setup plus ongoing optimization fees.|Implementation of professional display advertising through networks like Mediavine that specialize in optimizing ad placement and revenue while maintaining user experience. Include features like turning off ads for email subscribers and careful placement to minimize impact on core metrics.|The Side Hustle Show - "636: Is Business Coaching Worth It? A Look Inside the last 12 months of Side Hustle Nation"| |MoneyAppReviews - Professional Side Hustle App Testing|Professional testing service for money-making apps. People wasting time on low-paying apps. Makes $20k/month from affiliate commissions and ads.|Professional app testing service that systematically reviews money-making apps and creates detailed, honest reviews including actual earnings data, time investment, and practical tips.|The Side Hustle Show - "636: Is Business Coaching Worth It? A Look Inside the last 12 months of Side Hustle Nation"| |LightPro - Holiday Light Installation Service|Professional Christmas light installation service. Homeowners afraid of ladders. $500-2000 per house plus storage.|Professional Christmas light installation service targeting residential and commercial properties. Full-service offering including design, installation, maintenance, removal and storage. Focus on safety and premium aesthetic results.|The Side Hustle Show - "639: 30 Ways to Make Extra Money for the Holidays"| |FocusMatch - Research Participant Marketplace|Marketplace connecting companies to paid research participants. Companies spending weeks finding people. $50-150/hour per study.|Online platform connecting companies directly with paid research participants. Participants create detailed profiles and get matched to relevant studies. Companies get faster access to their target demographic while participants earn money sharing opinions.|The Side Hustle Show - "639: 30 Ways to Make Extra Money for the Holidays"| |SolarShine Pro - Specialized Solar Panel Cleaning Service|Solar panel cleaning service using specialized equipment. Panels lose 50% efficiency when dirty. $650 per job, automated scheduling generates $18k/month from repeat customers.|Professional solar panel cleaning service using specialized deionized water system and European cleaning equipment. Includes automated 6-month scheduling, professional liability coverage, and warranty-safe cleaning processes. Service is bundled with inspection and performance monitoring.|The UpFlip Podcast - "156. $18K/Month with This ONE Service — Niche Business Idea"| |ExteriorCare Complete - One-Stop Exterior Maintenance Service|One-stop exterior home cleaning service (solar, windows, gutters, bird proofing). Automated scheduling. $650 average ticket. 60% repeat customers on 6-month contracts.|All-in-one exterior cleaning service offering comprehensive maintenance packages including solar, windows, gutters, roof cleaning and bird proofing. Single point of contact, consistent quality, and automated scheduling for all services.|The UpFlip Podcast - "156. $18K/Month with This ONE Service — Niche Business Idea"| |ContentMorph - Automated Cross-Platform Content Adaptation|AI platform converting blog posts into platform-optimized social content. Marketing teams spending 5hrs/post on manual adaptation. $199/mo per brand with 50% margins.|An AI-powered platform that automatically transforms long-form content (blog posts, podcasts, videos) into platform-specific formats (Instagram reels, TikToks, tweets). The system would preserve brand voice while optimizing for each platform's unique requirements and best practices.|Entrepreneurs on Fire - "Digital Threads: The Entrepreneur Playbook for Digital-First Marketing with Neal Schaffer"| |MarketerMatch - Verified Digital Marketing Talent Marketplace|Marketplace for pre-vetted digital marketing specialists. Entrepreneurs spending 15hrs/week on marketing tasks. Platform takes 15% commission averaging $900/month per active client.|A specialized marketplace exclusively for digital marketing professionals, pre-vetted for specific skills (video editing, social media, SEO, etc.). Platform includes skill verification, portfolio review, and specialization matching.|Entrepreneurs on Fire - "Digital Threads: The Entrepreneur Playbook for Digital-First Marketing with Neal Schaffer"| |Tiger Window Cleaning - Premium Local Window Service|Local window cleaning service targeting homeowners. Traditional companies charging 2x market rate. Making $10k/month from $200 initial investment.|Local window cleaning service combining competitive pricing ($5/pane), excellent customer service, and quality guarantees. Uses modern tools like water-fed poles for efficiency. Implements systematic approach to customer communication and follow-up.|The Side Hustle Show - "630: How this College Student’s Side Hustle Brings in $10k a Month"| |RealViz3D - Real Estate Visualization Platform|3D visualization service turning architectural plans into photorealistic renderings for real estate agents. Agents struggling with unbuilt property sales. Making $30-40k/year per operator.|Professional 3D modeling and rendering service that creates photorealistic visualizations of properties before they're built or renovated. The service transforms architectural plans into immersive 3D representations that show lighting, textures, and realistic details. This helps potential buyers fully understand and connect with the space before it physically exists.|Side Hustle School - "#2861 - TBT: An Architect’s Side Hustle in 3D Real Estate Modeling"| |Somewhere - Global Talent Marketplace|Platform connecting US companies with vetted overseas talent. Tech roles costing $150k locally filled for 50% less. Grew from $15M to $52M valuation in 9 months.|Platform connecting US companies with pre-vetted overseas talent at significantly lower rates while maintaining high quality. Handles payments, contracts, and quality assurance to remove friction from global hiring.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |GymLaunch - Rapid Gym Turnaround Service|Consultants flying to struggling gyms to implement proven member acquisition systems. Gym owners lacking sales expertise. Made $100k in first 21 days.|Expert consultants fly in to implement proven member acquisition systems, train staff, and rapidly fill gyms with new members. The service combines sales training, marketing automation, and proven conversion tactics to transform struggling gyms into profitable businesses within weeks.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |PublishPlus - Publishing Backend Monetization|Backend monetization system for publishing companies. One-time customers becoming recurring revenue. Grew business from $2M to $110M revenue.|Add complementary backend products and services to increase customer lifetime value. Develop software tools and additional services that natural extend from initial publishing product. Focus on high-margin recurring revenue streams.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |WelcomeBot - Automated Employee Onboarding Platform|Automated employee welcome platform. HR teams struggling with consistent onboarding. $99/month per 100 employees.|An automated onboarding platform that creates personalized welcome experiences through pre-recorded video messages, scheduled check-ins, and automated swag delivery. The platform would ensure consistent high-quality onboarding regardless of timing or location.|Entrepreneurs on Fire - "Free Training on Building Systems and Processes to Scale Your Business with Chris Ronzio: An EOFire Classic from 2021"| |ProcessBrain - Business Knowledge Documentation Platform|SaaS platform turning tribal knowledge into documented processes. Business owners spending hours training new hires. $199/month per company.|A software platform that makes it easy to document and delegate business processes and procedures. The platform would include templates, guided documentation flows, and tools to easily share and update procedures. It would help businesses create a comprehensive playbook of their operations.|Entrepreneurs on Fire - "Free Training on Building Systems and Processes to Scale Your Business with Chris Ronzio: An EOFire Classic from 2021"| |TradeMatch - Modern Manufacturing Job Marketplace|Modern job board making manufacturing sexy again. Factory jobs paying $40/hr but can't recruit. $500 per successful referral.|A specialized job marketplace and recruitment platform focused exclusively on modern manufacturing and trade jobs. The platform would combine TikTok-style content marketing, referral programs, and modern UX to make manufacturing jobs appealing to Gen Z and young workers. Would leverage existing $500 referral fees and industry demand.|My First Million - "He Sold His Company For $15M, Then Got A Job At McDonald’s"| |GroundLevel - Executive Immersion Program|Structured program putting CEOs in front-line jobs. Executives disconnected from workers. $25k per placement.|A structured program that places executives and founders in front-line jobs (retail, warehouse, service) for 2-4 weeks with documentation and learning framework. Similar to Scott Heiferman's McDonald's experience but productized.|My First Million - "He Sold His Company For $15M, Then Got A Job At McDonald’s"| |OneStepAhead - Micro-Mentorship Marketplace|Marketplace for 30-min mentorship calls with people one step ahead. Professionals seeking specific guidance. Takes 15% of session fees.|MicroMentor Marketplace - Platform connecting people with mentors who are just one step ahead in their journey for focused, affordable micro-mentorship sessions.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |VulnerableLeader - Leadership Authenticity Training Platform|Leadership vulnerability training platform. Leaders struggling with authentic communication. $2k/month per company subscription.|Leadership Vulnerability Platform - A digital training platform combining assessment tools, guided exercises, and peer support to help leaders develop authentic communication skills. The platform would include real-world scenarios, video coaching, and measurable metrics for tracking leadership growth through vulnerability.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |NetworkAI - Smart Network Intelligence Platform|AI analyzing your network to find hidden valuable connections. Professionals missing opportunities in existing contacts. $49/month per user.|AI Network Navigator - Smart tool that analyzes your professional network across platforms, identifies valuable hidden connections, and suggests specific actionable ways to leverage relationships for mutual benefit.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |Porch Pumpkins - Seasonal Decoration Service|Full-service porch pumpkin decoration. Homeowners spend $300-1350 per season. One operator making $1M in 8 weeks seasonal revenue.|Full-service seasonal porch decoration service focused on autumn/Halloween, including design, installation, maintenance, and removal. Offering premium curated pumpkin arrangements with various package tiers.|My First Million - "The guy who gets paid $80K/yr to do nothing"| |Silent Companion - Professional Presence Service|Professional silent companions for lonely people. Huge problem in Japan/globally. $68/session, $80k/year per companion. Non-sexual, just presence.|A professional companion service where individuals can rent a non-judgmental, quiet presence for various activities. The companion provides silent company without the pressure of conversation or social performance. They accompany clients to events, meals, or just sit quietly together.|My First Million - "The guy who gets paid $80K/yr to do nothing"| Hope this is useful. If anyone would like to ensure I include any particular podcasts or episodes etc. in future posts, very happy to do so. I'll generally send \~5 ideas per week in a short weekly digest format (you can see the format I'd usually use in here: podcastmarketwatch.beehiiv.com). I find it mindblowing that the latest models with large context windows make it even possible to analyze full transcripts at such scale. It's a very exciting time we're living through! Would love some feedback on this stuff, happy to iterate and improve the analysis/ideas... or create a new newsletter on a different topic if anyone would like. Cheers!

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

Nuts and bolts AI implementation for small business
reddit
LLM Vibe Score0
Human Vibe Score1
Training-Swan-6379This week

Nuts and bolts AI implementation for small business

How can small businesses use AI to increase sales or decrease expenses without massive disruption? One way for us is using AI to process our email history to identify patterns and write personalized messages based on past correspondence. According to legal advice in which I have confidence, email that is personalized for each recipient (and meets other standards) does not need to be opt in. If you disagree - understood - but spam morality is not the topic here. Bottom line - obviously a game changer. Knowing phrases people have used before becoming clients - and all of the possible permutations of those phrases, and detecting where those phrases show up will make our sales and marketing many times more effective for a fraction of the cost. There's a reason big corps. record calls, and now small business can leverage the same technology. We are setting up a process that yields accurate, up to date, comprehensive data for our own business operations. Our clients - who are they and how has their demographic changed over time? To answer this question and for email personalization, we also need access to external data sources e.g. like accurate up to date company demographics. IMO - the leader in company data in the US? THEY SUCK. We found there is no magic fairy who is going to make good data appear for our AI. The process of applying our own proprietary knowledge to code and categorize the data is just as important, and obviously highly sensitive. How do we leverage the AI technologies of companies like Google and Microsoft (or anyone else) without being their bitch? Below is a list of some of the sources of my business's data: Data sources: PST/OST/Other Email data files Microsoft data from Windows/O365 Windows/Linux/Android/IOS application logs and other data Web server logs for the company website. SEO/Analytics Data Google data export Google voice/VOIP logs OneDrive/G drive Other Phone system/cell service logs Other SAAS and in-house application data. Facebook/social media data for company pages. QuickBooks/other accounting systems/business bank account logs POS/Credit card processing systems/PayPal, etc. OSINT to fill in the blanks

Good at coding, bad at marketing. Summary
reddit
LLM Vibe Score0
Human Vibe Score0.4
Official-DATSThis week

Good at coding, bad at marketing. Summary

Hello. I posted a question on what to do if you are good at coding but bad at marketing four days ago, and I received so many responses and tips. The original post is here. I was really glad and excited to read comments. To return the favor to the community and add some more value, I’ve summarized all the comments I got on the original post. Here are they, with my personal comments on some of the advice I got. You’ll never believe it, but the most common advice was to learn. Really, the first and only thing you should start with if you’re bad at marketing is learning. Yet learning could be different. I highlighted 5 main areas. Educate yourself on general questions. Learn more about some basics. For example, start by finding out what the 4P’s of marketing are, and afterward, you’ll inevitably run into YouTube videos, seminars, Udemy courses, or any other resource that resonates with you on some ideas/avenues you could pursue. Read books and watch videos. There are tons of books on marketing and sales. People shared in the comments books by Dan Kennedy and “Cashvertising”, written by Drew Eric Whitman. (I’ve never heard of them, but already ordered on Amazon). For sales, the most common idea was to start with YouTube videos. For example, Alex Hormozi videos and Startup school delivered by Ycombinator videos. Check out Indie Hackers and scrutinize it for a piece of good advice from developers in the same situation. Also, there was advice to follow up and read some guy on Twitter. (Don't want to get unfairly banned from here, so won't post it) Educate yourself and hire a professional or find a co-founder to help you: Hire a seasoned marketer in this field to help you out. He will help you achieve cost-efficient scales. But it could be a real problem to find the right person. Marketing agencies are expensive. Try to look on LinkedIn or among your acquaintances. Look for professionals with credentials or extensive experience. Seek marketing referrals from startups of a similar size/industry. If you don't have those, try to bring a trusted/experienced marketer friend into the intro meetings to help assess whether the service provider knows what they are doing. Talented freelancers can often get the job done for less than hiring an entire agency. Look for a co-founder who is savvy in marketing, passionate, and ready to work hard towards mutual success. Educate and DIY Being the face of your business is way better than having faceless communication. The startup checklist is made based on the comments is next: At least have your product defined. Define your target audience. Set up the goals you want to achieve. Make domain expertise and understand the market and the direction of its development. The next stage is answering tricky questions: Have you created a business model? How do you plan to compete? What’s your unique selling point? How much do you plan to budget for marketing? Are you planning to work alone, or will you need other devs? Then you start thinking about clients… You need the exposure to truly understand the customer's pain points and build a product that they love. You need to think about how your clients would think, and you should tailor each step you take for them. Get feedback from your early users if you already have a product. Interview your potential customers to learn how they buy. This will help you narrow your choice of marketing channels. Get your product or service used by several startups and help them achieve their goals. Endorsements are very valuable marketing assets. You need a landing to validate your value proposition and start sending traffic, or you can run meta instant form campaigns... It would depend on the category of your startup. You need a benchmark of the competition's ads both in Meta and Google, blog posts, domain authority, their landing page, and average search volumes. Do affiliate marketing for your product since it's an effective strategy. Educate and use AI tools for dealing with marketing. Build an LLM-based product to automate marketing. (Sounds like an idea for a startup, right?) Learn following ChatGPT advice. In 1–3 months, you will be another updated person. Look at marketowl, an AI marketing department for startups and microbusinesses that have no budget or time to do marketing. It will automate the basic tasks your business needs, but it doesn't require your marketing expertise. Check out AI tools that are delivering very good marketing content (gocharlie, jasper, copyai). Educate yourself and run socials Start a blog or YouTube channel where you can share your expertise in coding or anything else you are good at and how your product simplifies life. Engage with your audience on social media platforms like Instagram and LinkedIn, where you can showcase your industry knowledge. Start a page on Twitter and an account on Reddit. Follow and read subreddits and pages where your potential customers are. Learn the pain from the inside. Do not simply promote, people will lose interest immediately. Start by taking focused time to create informational content, so people will eventually be naturally intrigued by what you do and want to support you when they start to “know” you. Educate your potential users about the value of your product. Create content based on what ideal customers are asking at the various stages of marketing. e.g., if they are at the beginning of the process, they may use basic language; if they are further down the process, maybe they’ll be specific. Try to get on podcasts and build as many social links as you can. In other words, don’t live in a shell! Post regularly, and eventually you’ll find sites or people that are willing to promote for you. I omitted here all personal help offers and newsletters, however you could find them in the original post. Hope that will be helpful!

Help with short-form video creatives for Tiktok, Youtube Shorts and IG | Apps and Posting Strategy for Skincare brand
reddit
LLM Vibe Score0
Human Vibe Score1
bondtradercuThis week

Help with short-form video creatives for Tiktok, Youtube Shorts and IG | Apps and Posting Strategy for Skincare brand

Hi everyone, Hope everyone’s January has been going well so far. We are in the process of launching our ecommerce skincare brand in about 1-1.5 months. Last few months have been quite packed with figuring logistics and such. We will be launching IG, FB, TT and Youtube. I am very new to creating short form video creatives. We have some photos for our products from the recent photoshoots, but not much video contents. We are in the process of researching micro influencers on both IG and TK in order to produce UGC contents. However, that will take a few weeks at least. In the mean time, for our pre-launch, we still want to create some followers and a community before we can have authentic UGC contents. What are some best AI apps to do this? I have heard of: Cliptalk Pro Luma Luma Dream Machine Invideo. However, the options are endless and I am quite overwhelmed with the options. Which ones do you guys recommend to create high quality authentic videos? Our target audience is a anywhere from 20-40s, and a more premium/ luxury market since our prices are not cheap. Hence we do not want to create any gimmick Gen Z videos. Any apps that can help us with script, creating realistic videos would be great. Also in terms of posting strategy, what is the best frequency and types of content to post? Would posting once a day be enough? What kinds of hashtags should we be using in order to reach the audience

The "AI Agent" Hype is out of control and businesses suffer
reddit
LLM Vibe Score0
Human Vibe Score0.429
ImpossibleBell4759This week

The "AI Agent" Hype is out of control and businesses suffer

Ah, the sweet smell of AI hype in the morning. Nothing quite like it to get the blood pumping and the venture capital flowing. Let's cut through the BS... The "AI Agent" craze is the tech industry's latest attempt to separate businesses from their hard-earned cash. It's like watching a bunch of sheep rushing towards a cliff, except the cliff is made of overpriced software and empty promises. The tech giants are having a field day with this nonsense. Microsoft, Google, Salesforce - they're all pushing AI agents like they're the second coming. The sad truth is, businesses are suffering from a severe case of FOMO (Fear of Missing Out). They're so terrified of being left behind in the AI race that they're willing to throw good money after bad. Here's a radical idea: how about focusing on actual business problems instead of chasing the latest tech fad? I know, I know, it's not as sexy as having an AI Agent, but it might actually, you know, work. In the end, the only ones truly benefiting from this AI agent hype are the vendors selling the snake oil and the consultants charging exorbitant fees to implement it. Everyone else is just along for the ride, hoping they don't crash and burn too spectacularly. So, to all the businesses out there considering jumping on the AI Agent bandwagon... take a step back, take a deep breath, and ask yourself if you really need an overpriced chatbot with delusions of grandeur. Chances are, you don't. The AI agent hype is like a bad reality TV show—overproduced, lacking substance, and leaving businesses with nothing but regret. Companies are throwing money at AI solutions, expecting miracles, only to find they've bought into overpriced fantasies. The AI agent hype is nothing more than a high-tech emperor with no clothes. It's time for businesses to wake up, smell the silicon, and start making decisions based on reality rather than sci-fi fantasies.  I think AI Agents are the future, but as of right now AI Agents aren't autonomous or agentic. From what I've seen as of now is glorified Chatbots, ChatGPT wrappers and basic automations, and nothing actually autonomous. So far it's all just hype, but we'll see how it improves businesses and the bottom line! How do you think AI Agents will help small businesses now or in the future?

Nuts and bolts AI implementation for small business
reddit
LLM Vibe Score0
Human Vibe Score1
Training-Swan-6379This week

Nuts and bolts AI implementation for small business

How can small businesses use AI to increase sales or decrease expenses without massive disruption? One way for us is using AI to process our email history to identify patterns and write personalized messages based on past correspondence. According to legal advice in which I have confidence, email that is personalized for each recipient (and meets other standards) does not need to be opt in. If you disagree - understood - but spam morality is not the topic here. Bottom line - obviously a game changer. Knowing phrases people have used before becoming clients - and all of the possible permutations of those phrases, and detecting where those phrases show up will make our sales and marketing many times more effective for a fraction of the cost. There's a reason big corps. record calls, and now small business can leverage the same technology. We are setting up a process that yields accurate, up to date, comprehensive data for our own business operations. Our clients - who are they and how has their demographic changed over time? To answer this question and for email personalization, we also need access to external data sources e.g. like accurate up to date company demographics. IMO - the leader in company data in the US? THEY SUCK. We found there is no magic fairy who is going to make good data appear for our AI. The process of applying our own proprietary knowledge to code and categorize the data is just as important, and obviously highly sensitive. How do we leverage the AI technologies of companies like Google and Microsoft (or anyone else) without being their bitch? Below is a list of some of the sources of my business's data: Data sources: PST/OST/Other Email data files Microsoft data from Windows/O365 Windows/Linux/Android/IOS application logs and other data Web server logs for the company website. SEO/Analytics Data Google data export Google voice/VOIP logs OneDrive/G drive Other Phone system/cell service logs Other SAAS and in-house application data. Facebook/social media data for company pages. QuickBooks/other accounting systems/business bank account logs POS/Credit card processing systems/PayPal, etc. OSINT to fill in the blanks


Seeking Feedback & Support: Launching a Nut Mix Startup to Improve Gut Health
reddit
LLM Vibe Score0
Human Vibe Score1
No_Tax_1155This week

Seeking Feedback & Support: Launching a Nut Mix Startup to Improve Gut Health

This txt is AI summarized but I read it, he just restructured my thoughts accurately. Hey all, I’m Ilia, a Seattle-based entrepreneur working on a product that’s all about making healthy eating easier. I’m creating a premium nut mix with 16+ different nuts (70% organic) aimed at helping people improve their microbiome and overall health. The concept is simple: diverse ingredients lead to better gut health, reduced inflammation, and more energy. No more juggling 20 bags of different foods—my nut mix is a convenient, delicious solution. I’m in the early stages and raising about $7,000 to cover things like regulatory compliance, a commercial kitchen rental, quality ingredients, packaging, and a basic brand presence. I’ve poured my own savings into this and am now turning to the community for support, advice, and maybe even early funding. I made a short (12-min) video walking through the concept, the budget breakdown, and my long-term vision (expanding to seeds, fruit mixes, and maybe even a billion-dollar brand one day!). I’d love your honest feedback, connections, or suggestions. If you’re interested in supporting, even by sharing this post, I really appreciate it. Feel free to ask me anything—transparency is key for me, and I want to build something that genuinely helps people live healthier. https://www.gofundme.com/f/support-my-goal-to-make-healthy-eating-easy-and-convenient

80+ Social Media Updates Related to Business Marketing That Occurred in last 5 months
reddit
LLM Vibe Score0
Human Vibe Score0.333
lazymentorsThis week

80+ Social Media Updates Related to Business Marketing That Occurred in last 5 months

Tiktok expanded its caption limits from 100 to 500 Characters. Reddit Updates Search tools, Now you can search User Comments. “Comment search is here”. Pinterest Announces New Partnership with WooCommerce to Expand Product Listings. Google’s launched ‘multisearch’ feature that lets you search using text and image at the same time. Etsy sellers went on strike after platform increases transaction fees. Reddit launched $1 million fund to support various projects going on platform. Instagram is updating its ranking algorithm to put more focus on Original Content LinkedIn Added New tools In creator mode: improved content analytics and Updates profile video Options. Tiktok launched its own gif library “Effect House”. Instagram Updates Reels editing tools adding reordering clips feature. Google Search got a new label to direct people to original news sources YouTube launches new Profile Rings for Stories and Live. Snapchat launched YouTube Link stickers to make video sharing easier! Messenger adds new shortcuts, including a slack like @everyone feature. Pinterest Expands it’s Creator funds program to help more Underrepresented creators. Reddit brings back r/place after 5 years. Google Adds New Seller Performance Badges, New Pricing Insights for eCommerce Brands. Meta and Google agrees to New Data Transfer agreement to keep Instagram and Facebook running in EU. Twitter tests New Interactive Ad types to boost its promotional Appeal. Instagram removed In-stream Ads from its Advertising Options. Tiktok launched new program “CAP” to help creative agencies reach its audience. Twitch shuts down its desktop app. Meta launched the ability to add “share to Reels” feature to third Party Apps. TikTok Adds New ‘Background Player’ Option for Live-Streams. Twitter rolls out ALT badge and improved image description. Fast, A Checkout Startup with $15 billion valuation shuts down after spending all the funds raised in 2021. Wordpress announced new pricing with more traffic and storage limits after receiving backlash from the community. Sales force upgrades marketing field services and sales tools with AI. Dropbox shop launches in open beta to allow creators to sell digital content. Tiktok is the most downloaded app in Quarter 1 of 2022. WhatsApp announced launch of ‘Communities’ - more structured group chats with admin controls. Tiktok expands testing a private dislike button for comments. Twitter acquired “Openback” A notification app to improve timeline and relevance of push notifications YouTube and Tiktok added New options for Automated Captions, Improving Accessibility. A new social media App “Be Real” is trending across the internet grabbing Gen-Zs attention to try the app. WhatsApp got permission to expand payment services to its Indian user base of 100 Million. YouTube Shorts now allows creators to splice in long-form videos. You can use long form video audios and clips for YT shorts. New Snapchat feature ‘Dynamic Stories’ uses a publisher’s RSS feed to automatically create Stories posts. Zoom launches AI-powered features aimed at sales teams. Tiktok started testing who viewed your profile feature. Ogilvy Announced they will no longer work with who edit their bodies and faces for ads. If you don’t know “Oglivy” is the most successful advertising agency of the decade. YouTube Launches New ‘Search Insights’ for all creators. Snapchat Added 13 million new users in Q1 2022 more than both Twitter and Facebook. Google is Introduced new options to reject tracking cookies in Europe after receiving fines from violating EU data laws. Sony & Microsoft are planning to integrate Ads into their gaming platforms Xbox and PlayStation. YouTube Adds new Shorts Shelf to Trending Tab to show Top Shorts in an alternative section. Instagram started testing a reels template feature which enables creators to copy formats from other reels. Google Tests “What People Are Saying” Search Results. Twitter Launches New Test of Promotions for Third Party Tools Within the App. Instagram is changing how hashtags work by experimenting removing Recents tab from hashtags section. Google Adds New Publisher Verification Badges to Extension Listings in the Google Web Store Amazon AWS launches $30M accelerator program aimed at minority founders. Meta launched more fundraising options for Instagram Reels in 30 countries. Brave Search and DuckDuckGo will no longer support Google AMP due to privacy issues. Instagram is working on a pinned post feature and will officially launch in next few months. Meta: You can now add Music to your Facebook comments Twitter tests new closed caption button to switch on captions in Video Clip Elon Musk Bought Twitter $44 Billion and Company is set to go private. Google now lets you request the removal of personal contact information from search results YouTube reveals that Ads between YT Shorts are being tested with selective brands. LinkedInis rolling out a new website link feature. Google Reduces Visibility Of Business Edits With Color Changes To Profile Updates. Instagram expands testing of 90 second Reels. Microsoft Advertising now offers incentive features like cash-back and adding stock images from your website. Facebook & Pinterest are growing again despite all the hype around slow growth of both platform in last quarter. Google Added 9 new Ad policies to prevent misleading ads taking place. Tiktok Introduces Third-party cookies to its Pixel. (like Facebook Pixel) Twitter reportedly overcounted number of daily active users for last 3 years. Google launched Media CDN to compete on content delivery. YouTube expands Thank You Monetisation tool to all eligible creators. Twitch is looking to expand their cut from streamers earnings from 30 to 50% and also thinks of boosting Ads. Snapchat launches a $230 flying drone camera and new e-commerce integrations in Snap Summit 2022. YouTube Expands its ‘Pre-Publish Checks’ Tool to the Mobile App Google Search Console’s URL parameter tool is officially removed for a time period. Twitter creators can now get paid through Cryptocurrency on Twitter with Stripe. Jellysmack- One of the Influencer marketing agency acquires YouTube analytics tool Google & Microsoft Ads brought more revenue in last quarter- 22% Gains! WhatsApp is working on a paid subscription for multi-phone and tablet chatting. Instagram users now spend 20% of their time in the reels section. Google tests new Color for clicked search results by you. Now Clicked results are in Purple. Twitter: Elon plans to remove employees and focus more on influencers for twitter’s growth + new monetisation ideas were shared. YouTube revenue falls as more users spend time on shorts tab than consuming long form content. Drop 👋 to receive June Updates!

List of free educational ML resources I used to become a FAANG ML Engineer
reddit
LLM Vibe Score0
Human Vibe Score1
aifordevsThis week

List of free educational ML resources I used to become a FAANG ML Engineer

Full commentary and notes here ➡️: https://www.trybackprop.com/blog/top\ml\learning\resources Used these to brush up on math and teach myself AI/ML over the course of two years. I'm now a staff ML engineer at FAANG. Hope these help. Fundamentals Linear Algebra – 3Blue1Brown's Essence of Linear Algebra series, binged all these videos on a one hour train ride visiting my parents Multivariable Calculus – Khan Academy's Multivariable Calculus lessons were a great refresher of what I had learned in college. Looking back, I just needed to have reviewed Unit 1 – intro and Unit 2 – derivatives. Calculus for ML – this amazing animated video explains calculus and backpropagation Information Theory – easy-to-understand book on information theory called Information Theory: A Tutorial Introduction. Statistics and Probability – the StatQuest YouTube channel Machine Learning Stanford Intro to Machine Learning by Andrew Ng – Stanford's CS229, the intro to machine learning course, published their lectures on YouTube for free. I watched lectures 1, 2, 3, 4, 8, 9, 11, 12, and 13, and I skipped the rest since I was eager to move onto deep learning. The course also offers a free set of course notes, which are very well written. Caltech Machine Learning – Caltech's machine learning lectures on YouTube, less mathematical and more intuition based Deep Learning Andrej Karpathy's Zero to Hero Series – Andrej Karpathy, an AI researcher who graduated with a Stanford PhD and led Tesla AI for several years, released an amazing series of hands on lectures on YouTube. highly highly recommend Neural networks – Stanford's CS231n course notes and lecture videos were my gateway drug*, so to speak, into the world of deep learning. Transformers and LLMs Transformers – watched these two lectures: lecture from the University of Waterloo and lecture from the University of Michigan. I have also heard good things about Jay Alammar's The Illustrated Transformer guide ChatGPT Explainer – Wolfram's YouTube explainer video on ChatGPT Interactive LLM Visualization – This LLM visualization that you can play with in your browser is hands down the best interactive experience with an LLM. Financial Times' Transformer Explainer – The Financial Times released a lovely interactive article that explains the transformer very well. Residual Learning – 2023 Future Science Prize Laureates Lecture on residual learning. Efficient ML and GPUs How are Microchips Made? – This YouTube video by Branch Education is one of the best free educational videos on the internet, regardless of subject, but also, it's the best video on understanding microchips. CUDA – My L8 and L9 FAANG coworkers acquired their CUDA knowledge from this series of lectures. TinyML and Efficient Deep Learning Computing – 2023 lectures on efficient ML techniques online. Chip War – Chip War is a bestselling book published in 2022 about microchip technology whose beginning chapters on the invention of the microchip actually explain CPUs very well

Month of August in AI
reddit
LLM Vibe Score0
Human Vibe Score1
Difficult-Race-1188This week

Month of August in AI

🔍 Inside this Issue: 🤖 Latest Breakthroughs: This month it’s all about Agents, LangChain RAG, and LLMs evaluation challenges.* 🌐 AI Monthly News: Discover how these stories are revolutionizing industries and impacting everyday life: EU AI Act, California’s Controversial SB1047 AI regulation act, Drama at OpenAI, and possible funding at OpenAI by Nvidia and Apple.* 📚 Editor’s Special: This covers the interesting talks, lectures, and articles we came across recently. Follow me on Twitter and LinkedIn at RealAIGuys and AIGuysEditor to get insight on new AI developments. Please don't forget to subscribe to our Newsletter: https://medium.com/aiguys/newsletter Latest Breakthroughs Are Agents just simple rules? Are Agents just enhanced reasoning? The answer is yes and no. Yes, in the sense that agents have simple rules and can sometimes enhance reasoning capabilities compared to a single prompt. But No in the sense that agents can have a much more diverse functionality like using specific tools, summarizing, or even following a particular style. In this blog, we look into how to set up these agents in a hierarchal manner just like running a small team of Authors, researchers, and supervisors. How To Build Hierarchical Multi-Agent Systems? TextGrad. It is a powerful framework performing automatic “differentiation” via text. It backpropagates textual feedback provided by LLMs to improve individual components of a compound AI system. In this framework, LLMs provide rich, general, natural language suggestions to optimize variables in computation graphs, ranging from code snippets to molecular structures. TextGrad showed effectiveness and generality across various applications, from question-answering and molecule optimization to radiotherapy treatment planning. TextGrad: Improving Prompting Using AutoGrad The addition of RAG to LLMs was an excellent idea. It helped the LLMs to become more specific and individualized. Adding new components to any system leads to more interactions and its own sets of problems. Adding RAG to LLMs leads to several problems such as how to retrieve the best content, what type of prompt to write, and many more. In this blog, we are going to combine the LangChain RAG with DSPy. We deep dive into how to evaluate the RAG pipeline quantitatively using RAGAs and how to create a system where instead of manually tweaking prompts, we let the system figure out the best prompt. How To Build LangChain RAG With DSPy? As the field of natural language processing (NLP) advances, the evaluation of large language models (LLMs) like GPT-4 becomes increasingly important and complex. Traditional metrics such as accuracy are often inadequate for assessing these models’ performance because they fail to capture the nuances of human language. In this article, we will explore why evaluating LLMs is challenging and discuss effective methods like BLEU and ROUGE for a more comprehensive evaluation. The Challenges of Evaluating Large Language Models AI Monthly News AI Act enters into force On 1 August 2024, the European Artificial Intelligence Act (AI Act) enters into force. The Act aims to foster responsible artificial intelligence development and deployment in the EU. The AI Act introduces a uniform framework across all EU countries, based on a forward-looking definition of AI and a risk-based approach: Minimal risk: most AI systems such as spam filters and AI-enabled video games face no obligation under the AI Act, but companies can voluntarily adopt additional codes of conduct. Specific transparency risk: systems like chatbots must clearly inform users that they are interacting with a machine, while certain AI-generated content must be labelled as such. High risk: high-risk AI systems such as AI-based medical software or AI systems used for recruitment must comply with strict requirements, including risk-mitigation systems, high-quality of data sets, clear user information, human oversight, etc. Unacceptable risk: for example, AI systems that allow “social scoring” by governments or companies are considered a clear threat to people’s fundamental rights and are therefore banned. EU announcement: Click here https://preview.redd.it/nwyzfzgm4cmd1.png?width=828&format=png&auto=webp&s=c873db37ca0dadd5b510bea70ac9f633b96aaea4 California AI bill SB-1047 sparks fierce debate, Senator likens it to ‘Jets vs. Sharks’ feud Key Aspects of SB-1047: Regulation Scope: Targets “frontier” AI models, defined by their immense computational training requirements (over 10²⁶ operations) or significant financial investment (>$100 million). Compliance Requirements: Developers must implement safety protocols, including the ability to immediately shut down, cybersecurity measures, and risk assessments, before model deployment. Whistleblower Protections: Encourages reporting of non-compliance or risks by offering protection against retaliation. Safety Incident Reporting: Mandates reporting AI safety incidents within 72 hours to a newly established Frontier Model Division. Certification: Developers need to certify compliance, potentially under penalty of perjury in earlier drafts, though amendments might have altered this. Pros: Safety First: Prioritizes the prevention of catastrophic harms by enforcing rigorous safety standards, potentially safeguarding against AI misuse or malfunction. Incentivizes Responsible Development: By setting high standards for AI model training, the company encourages developers to think critically about the implications of their creations. Public Trust: Enhances public confidence in AI by ensuring transparency and accountability in the development process. Cons: Innovation Stagnation: Critics argue it might stifle innovation, especially in open-source AI, due to the high costs and regulatory burdens of compliance. Ambiguity: Some definitions and requirements might be too specific or broad, leading to legal challenges or unintended consequences. Global Competitiveness: There’s concern that such regulations could push AI development outside California or the U.S., benefiting other nations without similar restrictions. Implementation Challenges: The practicalities of enforcing such regulations, especially the “positive safety determination,” could be complex and contentious. News Article: Click here Open Letter: Click here https://preview.redd.it/ib96d7nk4cmd1.png?width=828&format=png&auto=webp&s=0ed5913b5dae72e203c8592393e469d9130ed689 MORE OpenAI drama OpenAI co-founder John Schulman has left the company to join rival AI startup Anthropic, while OpenAI president and co-founder Greg Brockman is taking an extended leave until the end of the year. Schulman, who played a key role in creating the AI-powered chatbot platform ChatGPT and led OpenAI’s alignment science efforts, stated his move was driven by a desire to focus more on AI alignment and hands-on technical work. Peter Deng, a product manager who joined OpenAI last year, has also left the company. With these departures, only three of OpenAI’s original 11 founders remain: CEO Sam Altman, Brockman, and Wojciech Zaremba, lead of language and code generation. News Article: Click here https://preview.redd.it/0vdjc18j4cmd1.png?width=828&format=png&auto=webp&s=e9de604c26aed3e47b50df3bdf114ef61f967080 Apple and Nvidia may invest in OpenAI Apple, which is planning to integrate ChatGPT into iOS, is in talks to invest. Soon after, Bloomberg also reported that Apple is in talks but added that Nvidia “has discussed” joining the funding round as well. The round is reportedly being led by Thrive Capital and would value OpenAI at more than $100 billion. News Article: Click here https://preview.redd.it/ude6jguh4cmd1.png?width=828&format=png&auto=webp&s=3603cbca0dbb1be3e6d0efcf06c3a698428bbdd6 Editor’s Special The AI Bubble: Will It Burst, and What Comes After?: Click here Eric Schmidt Full Controversial Interview on AI Revolution (Former Google CEO): Click here AI isn’t gonna keep improving Click here General Intelligence: Define it, measure it, build it: Click here

MMML | Deploy HuggingFace training model rapidly based on MetaSpore
reddit
LLM Vibe Score0
Human Vibe Score1
qazmkoppThis week

MMML | Deploy HuggingFace training model rapidly based on MetaSpore

A few days ago, HuggingFace announced a $100 million Series C funding round, which was big news in open source machine learning and could be a sign of where the industry is headed. Two days before the HuggingFace funding announcement, open-source machine learning platform MetaSpore released a demo based on the HuggingFace Rapid deployment pre-training model. As deep learning technology makes innovative breakthroughs in computer vision, natural language processing, speech understanding, and other fields, more and more unstructured data are perceived, understood, and processed by machines. These advances are mainly due to the powerful learning ability of deep learning. Through pre-training of deep models on massive data, the models can capture the internal data patterns, thus helping many downstream tasks. With the industry and academia investing more and more energy in the research of pre-training technology, the distribution warehouses of pre-training models such as HuggingFace and Timm have emerged one after another. The open-source community release pre-training significant model dividends at an unprecedented speed. In recent years, the data form of machine modeling and understanding has gradually evolved from single-mode to multi-mode, and the semantic gap between different modes is being eliminated, making it possible to retrieve data across modes. Take CLIP, OpenAI’s open-source work, as an example, to pre-train the twin towers of images and texts on a dataset of 400 million pictures and texts and connect the semantics between pictures and texts. Many researchers in the academic world have been solving multimodal problems such as image generation and retrieval based on this technology. Although the frontier technology through the semantic gap between modal data, there is still a heavy and complicated model tuning, offline data processing, high performance online reasoning architecture design, heterogeneous computing, and online algorithm be born multiple processes and challenges, hindering the frontier multimodal retrieval technologies fall to the ground and pratt &whitney. DMetaSoul aims at the above technical pain points, abstracting and uniting many links such as model training optimization, online reasoning, and algorithm experiment, forming a set of solutions that can quickly apply offline pre-training model to online. This paper will introduce how to use the HuggingFace community pre-training model to conduct online reasoning and algorithm experiments based on MetaSpore technology ecology so that the benefits of the pre-training model can be fully released to the specific business or industry and small and medium-sized enterprises. And we will give the text search text and text search graph two multimodal retrieval demonstration examples for your reference. Multimodal semantic retrieval The sample architecture of multimodal retrieval is as follows: Our multimodal retrieval system supports both text search and text search application scenarios, including offline processing, model reasoning, online services, and other core modules: https://preview.redd.it/mdyyv1qmdz291.png?width=1834&format=png&auto=webp&s=e9e10710794c78c64cc05adb75db385aa53aba40 Offline processing, including offline data processing processes for different application scenarios of text search and text search, including model tuning, model export, data index database construction, data push, etc. Model inference. After the offline model training, we deployed our NLP and CV large models based on the MetaSpore Serving framework. MetaSpore Serving helps us conveniently perform online inference, elastic scheduling, load balancing, and resource scheduling in heterogeneous environments. Online services. Based on MetaSpore’s online algorithm application framework, MetaSpore has a complete set of reusable online search services, including Front-end retrieval UI, multimodal data preprocessing, vector recall and sorting algorithm, AB experimental framework, etc. MetaSpore also supports text search by text and image scene search by text and can be migrated to other application scenarios at a low cost. The HuggingFace open source community has provided several excellent baseline models for similar multimodal retrieval problems, which are often the starting point for actual optimization in the industry. MetaSpore also uses the pre-training model of the HuggingFace community in its online services of searching words by words and images by words. Searching words by words is based on the semantic similarity model of the question and answer field optimized by MetaSpore, and searching images by words is based on the community pre-training model. These community open source pre-training models are exported to the general ONNX format and loaded into MetaSpore Serving for online reasoning. The following sections will provide a detailed description of the model export and online retrieval algorithm services. The reasoning part of the model is standardized SAAS services with low coupling with the business. Interested readers can refer to my previous post: The design concept of MetaSpore, a new generation of the one-stop machine learning platform. 1.1 Offline Processing Offline processing mainly involves the export and loading of online models and index building and pushing of the document library. You can follow the step-by-step instructions below to complete the offline processing of text search and image search and see how the offline pre-training model achieves reasoning at MetaSpore. 1.1.1 Search text by text Traditional text retrieval systems are based on literal matching algorithms such as BM25. Due to users’ diverse query words, a semantic gap between query words and documents is often encountered. For example, users misspell “iPhone” as “Phone,” and search terms are incredibly long, such as “1 \~ 3 months old baby autumn small size bag pants”. Traditional text retrieval systems will use spelling correction, synonym expansion, search terms rewriting, and other means to alleviate the semantic gap but fundamentally fail to solve this problem. Only when the retrieval system fully understands users’ query terms and documents can it meet users’ retrieval demands at the semantic level. With the continuous progress of pre-training and representational learning technology, some commercial search engines continue to integrate semantic vector retrieval methods based on symbolic learning into the retrieval ecology. Semantic retrieval model This paper introduces a set of semantic vector retrieval applications. MetaSpore built a set of semantic retrieval systems based on encyclopedia question and answer data. MetaSpore adopted the Sentence-Bert model as the semantic vector representation model, which fine-tunes the twin tower BERT in supervised or unsupervised ways to make the model more suitable for retrieval tasks. The model structure is as follows: The query-Doc symmetric two-tower model is used in text search and question and answer retrieval. The vector representation of online Query and offline DOC share the same vector representation model, so it is necessary to ensure the consistency of the offline DOC library building model and online Query inference model. The case uses MetaSpore’s text representation model Sbert-Chinese-QMC-domain-V1, optimized in the open-source semantically similar data set. This model will express the question and answer data as a vector in offline database construction. The user query will be expressed as a vector by this model in online retrieval, ensuring that query-doc in the same semantic space, users’ semantic retrieval demands can be guaranteed by vector similarity metric calculation. Since the text presentation model does vector encoding for Query online, we need to export the model for use by the online service. Go to the q&A data library code directory and export the model concerning the documentation. In the script, Pytorch Tracing is used to export the model. The models are exported to the “./export “directory. The exported models are mainly ONNX models used for wired reasoning, Tokenizer, and related configuration files. The exported models are loaded into MetaSpore Serving by the online Serving system described below for model reasoning. Since the exported model will be copied to the cloud storage, you need to configure related variables in env.sh. \Build library based on text search \ The retrieval database is built on the million-level encyclopedia question and answer data set. According to the description document, you need to download the data and complete the database construction. The question and answer data will be coded as a vector by the offline model, and then the database construction data will be pushed to the service component. The whole process of database construction is described as follows: Preprocessing, converting the original data into a more general JSonline format for database construction; Build index, use the same model as online “sbert-Chinese-qmc-domain-v1” to index documents (one document object per line); Push inverted (vector) and forward (document field) data to each component server. The following is an example of the database data format. After offline database construction is completed, various data are pushed to corresponding service components, such as Milvus storing vector representation of documents and MongoDB storing summary information of documents. Online retrieval algorithm services will use these service components to obtain relevant data. 1.1.2 Search by text Text and images are easy for humans to relate semantically but difficult for machines. First of all, from the perspective of data form, the text is the discrete ID type of one-dimensional data based on words and words. At the same time, images are continuous two-dimensional or three-dimensional data. Secondly, the text is a subjective creation of human beings, and its expressive ability is vibrant, including various turning points, metaphors, and other expressions, while images are machine representations of the objective world. In short, bridging the semantic gap between text and image data is much more complex than searching text by text. The traditional text search image retrieval technology generally relies on the external text description data of the image or the nearest neighbor retrieval technology and carries out the retrieval through the image associated text, which in essence degrades the problem to text search. However, it will also face many issues, such as obtaining the associated text of pictures and whether the accuracy of text search by text is high enough. The depth model has gradually evolved from single-mode to multi-mode in recent years. Taking the open-source project of OpenAI, CLIP, as an example, train the model through the massive image and text data of the Internet and map the text and image data into the same semantic space, making it possible to implement the text and image search technology based on semantic vector. CLIP graphic model The text search pictures introduced in this paper are implemented based on semantic vector retrieval, and the CLIP pre-training model is used as the two-tower retrieval architecture. Because the CLIP model has trained the semantic alignment of the twin towers’ text and image side models on the massive graphic and text data, it is particularly suitable for the text search graph scene. Due to the different image and text data forms, the Query-Doc asymmetric twin towers model is used for text search image retrieval. The image-side model of the twin towers is used for offline database construction, and the text-side model is used for the online return. In the final online retrieval, the database data of the image side model will be searched after the text side model encodes Query, and the CLIP pre-training model guarantees the semantic correlation between images and texts. The model can draw the graphic pairs closer in vector space by pre-training on a large amount of visual data. Here we need to export the text-side model for online MetaSpore Serving inference. Since the retrieval scene is based on Chinese, the CLIP model supporting Chinese understanding is selected. The exported content includes the ONNX model used for online reasoning and Tokenizer, similar to the text search. MetaSpore Serving can load model reasoning through the exported content. Build library on Image search You need to download the Unsplash Lite library data and complete the construction according to the instructions. The whole process of database construction is described as follows: Preprocessing, specify the image directory, and then generate a more general JSOnline file for library construction; Build index, use OpenAI/Clip-Vit-BASE-Patch32 pre-training model to index the gallery, and output one document object for each line of index data; Push inverted (vector) and forward (document field) data to each component server. Like text search, after offline database construction, relevant data will be pushed to service components, called by online retrieval algorithm services to obtain relevant data. 1.2 Online Services The overall online service architecture diagram is as follows: ​ https://preview.redd.it/nz8zrbbpdz291.png?width=1280&format=png&auto=webp&s=28dae7e031621bc8819519667ed03d8d085d8ace Multi-mode search online service system supports application scenarios such as text search and text search. The whole online service consists of the following parts: Query preprocessing service: encapsulate preprocessing logic (including text/image, etc.) of pre-training model, and provide services through gRPC interface; Retrieval algorithm service: the whole algorithm processing link includes AB experiment tangent flow configuration, MetaSpore Serving call, vector recall, sorting, document summary, etc.; User entry service: provides a Web UI interface for users to debug and track down problems in the retrieval service. From a user request perspective, these services form invocation dependencies from back to front, so to build up a multimodal sample, you need to run each service from front to back first. Before doing this, remember to export the offline model, put it online and build the library first. This article will introduce the various parts of the online service system and make the whole service system step by step according to the following guidance. See the ReadME at the end of this article for more details. 1.2.1 Query preprocessing service Deep learning models tend to be based on tensors, but NLP/CV models often have a preprocessing part that translates raw text and images into tensors that deep learning models can accept. For example, NLP class models often have a pre-tokenizer to transform text data of string type into discrete tensor data. CV class models also have similar processing logic to complete the cropping, scaling, transformation, and other processing of input images through preprocessing. On the one hand, considering that this part of preprocessing logic is decoupled from tensor reasoning of the depth model, on the other hand, the reason of the depth model has an independent technical system based on ONNX, so MetaSpore disassembled this part of preprocessing logic. NLP pretreatment Tokenizer has been integrated into the Query pretreatment service. MetaSpore dismantlement with a relatively general convention. Users only need to provide preprocessing logic files to realize the loading and prediction interface and export the necessary data and configuration files loaded into the preprocessing service. Subsequent CV preprocessing logic will also be integrated in this manner. The preprocessing service currently provides the gRPC interface invocation externally and is dependent on the Query preprocessing (QP) module in the retrieval algorithm service. After the user request reaches the retrieval algorithm service, it will be forwarded to the service to complete the data preprocessing and continue the subsequent processing. The ReadMe provides details on how the preprocessing service is started, how the preprocessing model exported offline to cloud storage enters the service, and how to debug the service. To further improve the efficiency and stability of model reasoning, MetaSpore Serving implements a Python preprocessing submodule. So MetaSpore can provide gRPC services through user-specified preprocessor.py, complete Tokenizer or CV-related preprocessing in NLP, and translate requests into a Tensor that deep models can handle. Finally, the model inference is carried out by MetaSpore, Serving subsequent sub-modules. Presented here on the lot code: https://github.com/meta-soul/MetaSpore/compare/add\python\preprocessor 1.2.2 Retrieval algorithm services Retrieval algorithm service is the core of the whole online service system, which is responsible for the triage of experiments, the assembly of algorithm chains such as preprocessing, recall, sorting, and the invocation of dependent component services. The whole retrieval algorithm service is developed based on the Java Spring framework and supports multi-mode retrieval scenarios of text search and text search graph. Due to good internal abstraction and modular design, it has high flexibility and can be migrated to similar application scenarios at a low cost. Here’s a quick guide to configuring the environment to set up the retrieval algorithm service. See ReadME for more details: Install dependent components. Use Maven to install the online-Serving component Search for service configurations. Copy the template configuration file and replace the MongoDB, Milvus, and other configurations based on the development/production environment. Install and configure Consul. Consul allows you to synchronize the search service configuration in real-time, including cutting the flow of experiments, recall parameters, and sorting parameters. The project’s configuration file shows the current configuration parameters of text search and text search. The parameter modelName in the stage of pretreatment and recall is the corresponding model exported in offline processing. Start the service. Once the above configuration is complete, the retrieval service can be started from the entry script. Once the service is started, you can test it! For example, for a user with userId=10 who wants to query “How to renew ID card,” access the text search service. 1.2.3 User Entry Service Considering that the retrieval algorithm service is in the form of the API interface, it is difficult to locate and trace the problem, especially for the text search image scene can intuitively display the retrieval results to facilitate the iterative optimization of the retrieval algorithm. This paper provides a lightweight Web UI interface for text search and image search, a search input box, and results in a display page for users. Developed by Flask, the service can be easily integrated with other retrieval applications. The service calls the retrieval algorithm service and displays the returned results on the page. It’s also easy to install and start the service. Once you’re done, go to http://127.0.0.1:8090 to see if the search UI service is working correctly. See the ReadME at the end of this article for details. Multimodal system demonstration The multimodal retrieval service can be started when offline processing and online service environment configuration have been completed following the above instructions. Examples of textual searches are shown below. Enter the entry of the text search map application, enter “cat” first, and you can see that the first three digits of the returned result are cats: https://preview.redd.it/d7syq47rdz291.png?width=1280&format=png&auto=webp&s=b43df9abd380b7d9a52e3045dd787f4feeb69635 If you add a color constraint to “cat” to retrieve “black cat,” you can see that it does return a black cat: ​ https://preview.redd.it/aa7pxx8tdz291.png?width=1280&format=png&auto=webp&s=e3727c29d1bde6eea2e1cccf6c46d3cae3f4750e Further, strengthen the constraint on the search term, change it to “black cat on the bed,” and return results containing pictures of a black cat climbing on the bed: ​ https://preview.redd.it/2mw4qpjudz291.png?width=1280&format=png&auto=webp&s=1cf1db667892b9b3a40451993680fbd6980b5520 The cat can still be found through the text search system after the color and scene modification in the above example. Conclusion The cutting-edge pre-training technology can bridge the semantic gap between different modes, and the HuggingFace community can greatly reduce the cost for developers to use the pre-training model. Combined with the technological ecology of MetaSpore online reasoning and online microservices provided by DMetaSpore, the pre-training model is no longer mere offline dabbling. Instead, it can truly achieve end-to-end implementation from cutting-edge technology to industrial scenarios, fully releasing the dividends of the pre-training large model. In the future, DMetaSoul will continue to improve and optimize the MetaSpore technology ecosystem: More automated and wider access to HuggingFace community ecology. MetaSpore will soon release a common model rollout mechanism to make HuggingFace ecologically accessible and will later integrate preprocessing services into online services. Multi-mode retrieval offline algorithm optimization. For multimodal retrieval scenarios, MetaSpore will continuously iteratively optimize offline algorithm components, including text recall/sort model, graphic recall/sort model, etc., to improve the accuracy and efficiency of the retrieval algorithm. For related code and reference documentation in this article, please visit: https://github.com/meta-soul/MetaSpore/tree/main/demo/multimodal/online Some images source: https://github.com/openai/CLIP/raw/main/CLIP.png https://www.sbert.net/examples/training/sts/README.html

6 principles to data architecture that facilitate innovation
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Speech36This week

6 principles to data architecture that facilitate innovation

My team and I have been re-building our company's data architecture. In the process of doing so, I got together six key principles to transforming data architectures and thought I would share them, as a strong data architecture is crucial for businesses looking to stay competitive in the digital landscape, as it improves decision-making, time to market, and data security. When executed with efficiency, a resilient data architecture unleashes unparalleled degrees of agility. Principle 1: Agility and flexibility To quickly adjust to market fluctuations, businesses must create adaptable data infrastructures that can effortlessly manage an ever-growing influx of data. To accomplish this objective, we recommend to our clients to implement Enterprise Service Bus, Enterprise Data Warehouse, and Master Data Management integrated together. ​ I believe the best option is this: \- By centralizing communication, ESB reduces the time and effort required to integrate new systems; \- EDW consolidates data from different sources, resulting in a 50% reduction in software implementation time; \- Finally, MDM ensures consistency and accuracy across the organization, leading to better decision-making and streamlined operations. Implementing these solutions can lead to reduced software implementation time, better ROI, and more manageable data architecture. By fostering a culture of collaboration and adopting modern technologies and practices, businesses can prioritize agility and flexibility in their data architecture to increase the pace of innovation. Principle 2: Modularity and reusability Data architecture that fosters modularity and reusability is essential for accelerating innovation within an organization. By breaking data architecture components into smaller, more manageable pieces, businesses can enable different teams to leverage existing architecture components, reducing redundancy and improving overall efficiency. MDM can promote modularity and reusability by creating a central repository for critical business data. This prevents duplication and errors, improving efficiency and decision-making. MDM enables a single source of truth for data, accessible across multiple systems, which promotes integration and scalability. MDM also provides standardized data models, rules, and governance policies that reduce development time, increase quality, and ensure proper management throughout the data’s lifecycle. Another way to achieve modularity in data architecture is through the use of microservices and scripts for Extract, Transform, and Load (ETL) processes. Adopting a structured methodology and framework can ensure these components are well-organized, making it easier for teams to collaborate and maintain the system. Microservices can also contribute to modularity and reusability in data architecture. These small, independent components can be developed, deployed, and scaled independently of one another. By utilizing microservices, organizations can update or replace individual components without affecting the entire system, improving flexibility and adaptability. Principle 3: Data quality and consistency The efficiency of operations depends on data’s quality, so a meticulously crafted data architecture plays a pivotal role in preserving it, empowering enterprises to make well-informed decisions based on credible information. Here are some key factors to consider that will help your company ensure quality: \- Implementing Master Data Management (MDM) – this way, by consolidating, cleansing, and standardizing data from multiple sources, your IT department will be able to create a single, unified view of the most important data entities (customers, products, and suppliers); \- Assigning data stewardship responsibilities to a small team or an individual specialist; \- Considering implementing data validation, data lineage, and data quality metrics; \- By implementing MDM and adopting a minimal data stewardship approach, organizations can maintain high-quality data that drives innovation and growth. Principle 4: Data governance Data governance is a strategic framework that goes beyond ensuring data quality and consistency. It includes ensuring data security, privacy, accessibility, regulatory compliance, and lifecycle management. Here are some key aspects of data governance: \- Implementing robust measures and controls to protect sensitive data from unauthorized access, breaches, and theft. This is only possible through including encryption, access controls, and intrusion detection systems into your company’s IT architecture; \- Adhering to data privacy regulations and guidelines, such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA); \- Defining stringent conditions for who has access to specific data assets to maintain control over data and ensure its accessibility only for legitimate purposes. Managing the entire lifecycle of data, from creation and storage to archiving and disposal, including defining policies for data retention, archiving, and deletion in compliance with legal and regulatory requirements. To facilitate effective data governance, organizations can leverage various tools and technologies, such as: \- Data cataloging tools: Solutions like Collibra, Alation, or Informatica Enterprise Data Catalog help organizations discover, understand, and manage their data assets. \- Data lineage tools: Tools like Talend, IBM InfoSphere, or Apache Atlas help track data’s origin, transformation, and usage, providing insights into data quality issues and potential areas for improvement. \- Data quality tools: Solutions like Informatica Data Quality, Trifacta, or SAS Data Quality help organizations maintain high-quality data by identifying and correcting errors, inconsistencies, and inaccuracies. \- Data security and privacy tools: Tools like Varonis, BigID, or Spirion help protect sensitive data and ensure compliance with data privacy regulations. Principle 5: Cloud-first approach A cloud-first approach prioritizes cloud-based solutions over on-premises ones when it comes to data management. Cloud-based data management pros: \- Virtually limitless scalability, so that organizations can grow and adapt to changing data requirements without significant infrastructure investments; \- The pay-as-you-go model of cloud services reduces maintenance costs usually associated with the on-premise choice; \- Greater flexibility for deploying and integrating new technologies and services; \- Cloud can be accessed from anywhere, at any time, turning team collaboration and remote work into a breeze; \- Built-in backup and disaster recovery capabilities, ensuring data safety and minimizing downtime in case of emergencies. Cloud-based data management cons: \- Cloud-first approach raises many data security, privacy, and compliance concerns; \- Transferring large data volumes to and from cloud is often time-consuming and results in increased latency for certain apps; \- Relying on a single cloud provider makes it difficult to switch them or move back to the on-premises option without significant funds and effort. Challenges that organizations that choose a cloud-first approach face: \- Integrating cloud-based systems with on-premises ones can be complex and time-consuming; \- Ensuring data governance and compliance in a multi-cloud or hybrid environment is also another problem reported by my clients. How EDW, ESB, and MDM promote cloud-first approach: A cloud-based EDW centralizes data from multiple sources, enabling a unified view of the organization’s data and simplifying data integration across cloud and on-premises systems. An ESB facilitates communication between disparate cloud and on-premises systems, streamlining data integration and promoting a modular architecture. Cloud-based MDM solutions are used for maintaining data quality and consistency across multiple data sources and environments. Principle 6: Automation and artificial intelligence Incorporating automation tools and AI technologies into data architecture can optimize processes and decision-making. Key Applications: \- Data ingestion and integration: Automation simplifies data schema updates and identifies data quality issues, while AI-assisted development helps create tailored connectors, scripts, and microservices. \- Data quality management: Machine learning algorithms improve data quality and consistency by automatically detecting and correcting inconsistencies and duplicates. \- Predictive analytics: AI and machine learning models analyze historical data to predict trends, identify opportunities, and uncover hidden patterns for better-informed decisions. How No-Code Tools and AI-Assisted Development Work: Business users define data requirements and workflows using no-code tools, enabling AI models to understand their needs. AI models process the information, generating recommendations for connector creation, ETL scripts, and microservices. Developers use AI-generated suggestions to accelerate development and tailor solutions to business needs. By combining automation, AI technologies, and no-code tools, organizations can streamline data architecture processes and bridge the gap between business users and developers, ultimately accelerating innovation. I share more tips on building an agile data architectures in my blog.

Backend dev wants to learn ML
reddit
LLM Vibe Score0
Human Vibe Score1
chipmuxThis week

Backend dev wants to learn ML

Hello ML Experts, I am staff engineer, working in a product based organization, handling the backend services. I see myself becoming Solution Architect and then Enterprise Architect one day. With the AI and ML trending now a days, So i feel ML should be an additional skill that i should acquire which can help me leading and architecting providing solutions to the problems more efficiently, I think however it might not replace the traditional SWEs working on backend APIs completely, but ML will be just an additional diamention similar to the knowledge of Cloud services and DevOps. So i would like to acquire ML knowledge, I dont have any plans to be an expert at it right now, nor i want to become a full time data scientist or ML engineer as of today. But who knows i might diverge, but thats not the plan currently. I did some quick promting with ChatGPT and was able to comeup with below learning path for me. So i would appreciate if some of you ML experts can take a look at below learning path and provide your suggestions 📌 PHASE 1: Core AI/ML & Python for AI (3-4 Months) Goal: Build a solid foundation in AI/ML with Python, focusing on practical applications. 1️⃣ Python for AI/ML (2-3 Weeks) Course: [Python for Data Science and Machine Learning Bootcamp]() (Udemy) Topics: Python, Pandas, NumPy, Matplotlib, Scikit-learn basics 2️⃣ Machine Learning Fundamentals (4-6 Weeks) Course: Machine Learning Specialization by Andrew Ng (C0ursera) Topics: Linear & logistic regression, decision trees, SVMs, overfitting, feature engineering Project: Build an ML model using Scikit-learn (e.g., predicting house prices) 3️⃣ Deep Learning & AI Basics (4-6 Weeks) Course: Deep Learning Specialization by Andrew Ng (C0ursera) Topics: Neural networks, CNNs, RNNs, transformers, generative AI (GPT, Stable Diffusion) Project: Train an image classifier using TensorFlow/Keras 📌 PHASE 2: AI/ML for Enterprise & Cloud Applications (3-4 Months) Goal: Learn how AI is integrated into cloud applications & enterprise solutions. 4️⃣ AI/ML Deployment & MLOps (4 Weeks) Course: MLOps Specialization by Andrew Ng (C0ursera) Topics: Model deployment, monitoring, CI/CD for ML, MLflow, TensorFlow Serving Project: Deploy an ML model as an API using FastAPI & Docker 5️⃣ AI/ML in Cloud (Azure, AWS, OpenAI APIs) (4-6 Weeks) Azure AI Services: Course: Microsoft AI Fundamentals (C0ursera) Topics: Azure ML, Azure OpenAI API, Cognitive Services AWS AI Services: Course: [AWS Certified Machine Learning – Specialty]() (Udemy) Topics: AWS Sagemaker, AI workflows, AutoML 📌 PHASE 3: AI Applications in Software Development & Future Trends (Ongoing Learning) Goal: Explore AI-powered tools & future-ready AI applications. 6️⃣ Generative AI & LLMs (ChatGPT, GPT-4, LangChain, RAG, Vector DBs) (4 Weeks) Course: [ChatGPT Prompt Engineering for Developers]() (DeepLearning.AI) Topics: LangChain, fine-tuning, RAG (Retrieval-Augmented Generation) Project: Build an LLM-based chatbot with Pinecone + OpenAI API 7️⃣ AI-Powered Search & Recommendations (Semantic Search, Personalization) (4 Weeks) Course: [Building Recommendation Systems with Python]() (Udemy) Topics: Collaborative filtering, knowledge graphs, AI search 8️⃣ AI-Driven Software Development (Copilot, AI Code Generation, Security) (Ongoing) Course: AI-Powered Software Engineering (C0ursera) Topics: AI code completion, AI-powered security scanning 🚀 Final Step: Hands-on Projects & Portfolio Once comfortable, work on real-world AI projects: AI-powered document processing (OCR + LLM) AI-enhanced search (Vector Databases) Automated ML pipelines with MLOps Enterprise AI Chatbot using LLMs ⏳ Suggested Timeline 📅 6-9 Months Total (10-12 hours/week) 1️⃣ Core ML & Python (3-4 months) 2️⃣ Enterprise AI/ML & Cloud (3-4 months) 3️⃣ AI Future Trends & Applications (Ongoing) Would you like a customized plan with weekly breakdowns? 🚀

I built a library to visualize and edit audio filters
reddit
LLM Vibe Score0
Human Vibe Score1
AlexStreletsThis week

I built a library to visualize and edit audio filters

Hey everyone! TLDR: No fancy AI Agents or trendy micro-SaaS here — just an old-school library. Scroll down for the demo link! 🙃 App Demo The Story Behind Several years ago, I deep-dived into reverse engineering the parameter system used in VAG (Volkswagen, Audi, Porsche, etc) infotainment units. I managed to decode their binary format for storing settings for each car type and body style. To explain it simply - their firmware contains equalizer settings for each channel of the on-board 5.1 speaker system based on cabin volume and other parameters, very similar to how home theater systems are configured (gains, delays, limiters, etc). I published this research for the car enthusiast community. While the interest was huge, the reach remained small since most community members weren't familiar with hex editors. Only a few could really replicate what I documented. After some time, I built a web application that visualized these settings and allowed to unpack, edit and repack that data back into the binary format. Nowadays The original project was pretty messy (spaghetti code, honestly) and had a very narrow focus. But then I realized the visualization library itself could be useful for any audio processing software. When I first tried to visualize audio filters with that project, I hit a wall. Most charting libraries are built for business data, all those "enterprise-ready visualization solutions". But NONE of them is designed for audio-specific needs. D3.js is the only real option here — it’s powerful but requires days of digging through docs just to get basic styling right. And if you want interactive features like drag-and-drop? Good luck with that. (Fun fact: due to D3's multiple abstraction layers, just the same filter calculations in DSSSP are 1.4-2x faster than D3's implementation). So, I built a custom vector-based graph from scratch with a modern React stack. The library focuses on one thing - audio filters. No unnecessary abstractions, no enterprise bloat, just fast and convenient (I hope!) tools for tools for audio processing software. Core Features Logarithmic frequency response visualization Interactive biquad filter manipulation Custom audio calculation engine Drag-and-drop + Mouse wheel controls Flexible theming API Technical Details Built with React + SVG (no Canvas) Zero external dependencies besides React Full TypeScript support Live Demo & Docs & GitHub This is the first public release, landing page is missing, and the backlog is huge, and docs do not cover some aspects. (You know, there's never a perfect timimng - I just had to stop implementing my ideas and make it community driven). I'd love to see what you could build with these components. What's missing? What could be improved? I'm still lacking the understanding of how it could gain some cash flow, while staying open-source. Any ideas?

How I got 1000 users on day one.
reddit
LLM Vibe Score0
Human Vibe Score1
Human-Grape-8319This week

How I got 1000 users on day one.

This might sound like a small number, depending on who you ask, but you know it’s a start. I’ll just share my learnings so far. Introduction: The product is simple: you type what you want to build, like, let's say, a SaaS idea, and it generates the code using a framework of your choice (like NextJS). Currently, it only generates front-end code. The marketing strategy was mainly focused on social media. My social media stats are as follows: I have a whopping 14 followers on Twitter, and 10 of them are bot accounts, and on LinkedIn, it’s about 400 or so. Launching on LinkedIn: LinkedIn is unique in two different ways: The algorithm is friendly to the little guy. Your network (the people) aren’t always friendly to the little guy. Let me elaborate. This is something I learned today, actually. When I posted for the first time and asked about three of my friends to repost it, within the first hour there were about 200 views, and the click-through rate was around 40%. This was really good, given that it was in the morning. I don’t know the exact factors, but I did have a video in my post, and those three reposts probably amplified it. However, people don’t seem to like or comment on it as much as you would think. Most of my connections are CS students because I am a recent grad, so it seems like most people can relate to this product, but none of them would even put a comment or a like. At the same time, I see people liking posts from big brands like OpenAI, Microsoft, etc. I am really confused, to be honest. However, throughout the day, the view count was going up, and people were coming. Launching on Twitter: Twitter didn’t really work for me at all. I think you need a decent audience. But there are tweets like “What startup are you working on?” type questions, and from that, I find you get a couple of views on your profile. Even though Twitter didn’t really help with the views, one guy tweeted, “Keep posting on Twitter and one day this might become something like Notion.” That really made my day, to be honest. Launching on Discord: This worked really well, to be honest, especially given that I was in a lot of Discord servers where there are software devs. If you use the right language that resonates with them, it’s a home run. Not much to say, but don’t use marketing lingo; people don’t like it there. Instagram and TikTok didn’t really work. Mainly, I think my video didn’t really resonate much. Finally, Facebook Launch: The Facebook reels didn’t really do the trick. Then I posted in a bunch of groups, and still, it didn’t really do anything. But then I sent cold DMs on Facebook, and that had a pretty high open rate because I sent them to people who I saw commented on posts related to what my product was solving. Obviously, after a while, Facebook blocks the ability to send DMs. That’s all for now. Thanks I’ll post my promo video in the comment section just so that you know the video and why it might have resonated with some platforms. Also this is the first time I made a video and I’m actually proud of making that more than the product itself. To summarize, for this idea LinkedIn worked really well, because of the algorithm not the ppl commenting and liking which is what I thought should be the way. Followed by Discord groups and Facebook DMs. The video I made seemed to resonate really well with the LinkedIn audience (the engagement was around 60%) despite falling in TikTok and other video sharing platforms.

How I built my SaaS and earned $273 MRR in the first month
reddit
LLM Vibe Score0
Human Vibe Score1
Ok_Damage_1764This week

How I built my SaaS and earned $273 MRR in the first month

Hi everyone! I’m Alex Varga, an indie developer. Last year, I focused on accelerating my development speed and launched 10 projects in 12 months. One of them called Bulk Image Generation started growing through SEO, so I decided to focus on it. After one month of SEO efforts, it’s generating $273 MRR. I hope my experience will be useful to others. Concept bulkimagegeneration.com website helps to generate up to 100 images in 15 seconds using AI I was using Google, started with keywords like "Bulk Image ..." a lot of them are Bulk Image Resizer, Downloader etc. But there was no Bulk Image Generator. I thought: yeah, this domain is available, let's buy. So I bought bulkimagegeneration.com and bulkimagegenerator.com So, the app concept is to help people generate images with AI at scale: let\`s say 100 images in 15 seconds. Marketing Gap https://preview.redd.it/4luzib02bbie1.png?width=1905&format=png&auto=webp&s=cbe845107aca46ae5729dfe121fefd5e9cdab9ac Most builders create a product first and figure out how to sell it later. I took a completely different approach with Bulk Image Generator. I identified a market gap and secured a domain name that matched exactly what people were searching for and launched app. https://preview.redd.it/h6vwur34bbie1.png?width=1905&format=png&auto=webp&s=9a163ff6f503be4c175c6e5e82e2003b32df1fe0 Growth Strategy SEO has become the main acquisition channel, so I’ve decided to focus even more on it with this experiment. Almost every day, I publish either a new article or a free micro-app (as a lead magnet) for Bulk Image Generator. I also tried Google Ads, spent $20, and got a $0.35 CPC. https://preview.redd.it/3rhnzvs6bbie1.png?width=1905&format=png&auto=webp&s=f9819d1e82d3e2429d6ccb7b00dcac86a7a351c2 In comparison, the Free Image to Text Prompt Converter (one of the lead magnets) has a $0.011 CPC, which is more than 30 times cheaper than Google Ads. So I decided not to focus now on paid ads. https://preview.redd.it/p333fyl9bbie1.png?width=1905&format=png&auto=webp&s=2e96532d7709b44b7459e7ccf37ef9a0fa784728 After using our free tools, some users explore our main product - a bulk image generation service. Users pay a monthly subscription to get credits, which they can spend on image generation, face swaps, and bulk background removal. Currently, this app generates around $250 in Monthly Recurring Revenue: https://preview.redd.it/9wcm0tjfbbie1.png?width=1905&format=png&auto=webp&s=41bcdd4f7594b09087c51cc5044e4b9c94c129c8 SEO Keyword Research I use Semrush or similar tools to find keywords with a search volume greater than 300 and then write articles targeting those keywords. If the topic has enough potential, I might create a free tool (e.g., a Free Image to Text Prompt Converter) to attract more users. Occasions matter. For instance, I wrote an article about creating images for Super Bowl ads, which led to one paying user who replicated the exact creatives showcased in the article https://preview.redd.it/shpax6mlbbie1.png?width=1905&format=png&auto=webp&s=d491385761df126424c2f9ba14c5da15f8cbb603 AI Tools Aggregators This can be an excellent acquisition channel. When BulkImageGeneration.com was featured in an article on Toolify.ai, I immediately gained three paying users (\~$60). I took 2 more AI Aggregators, and on average I had CPC = $0.2, which is a fair price and usually it has ROAs > 100%. However, some major aggregators are expensive ($300–400 per placement). I want to try it once I reach $500+ MRR. Next Steps bulkimagegeneration.com currently ranks #1 in search results for relevant keywords (e.g., “bulk image generation,” “bulk image generator”). I plan to keep producing content targeting niche keywords and timely occasions. buy more places in AI Aggregators I also want to reach out to YouTubers and ask them to include Bulk in their reviews for free

I retired at 32 from my side project. Here's the path I took.
reddit
LLM Vibe Score0
Human Vibe Score1
inputoriginThis week

I retired at 32 from my side project. Here's the path I took.

EDIT 2: Thanks for the award kind stranger! I've stopped responding to reddit comments for this post. I'm adding an FAQ to the original post based on the most common high quality questions. If you have a question that you're dying to know the answer to and that only I can help you with (vs. Google, ChatGPT, etc.), DM me. EDIT: I love how controversial this post has become (50% upvote rate), and only in this subreddit (vs. other subreddits that I posted the same content in). I trust that the open-minded half of you will find something useful in this post and my other posts and comments. I retired at 32 years old, in large part thanks to a B2C SaaS app that I developed on my own. Now, I don't have to work in order to cover my living expenses, and wouldn't have to work for quite a while. In other words, I can finally sip mai tais at the beach. I've condensed how I got there into this post. First, a super simplified timeline of events, followed by some critical details. Timeline 2013 Graduated college in the US 2013 Started first corporate job 2013 Started side project (B2C app) that would eventually lead to my retirement 2020 Started charging for use of my B2C app (was free, became freemium) 2021 Quit my last corporate job 2022 Retired: time freedom attained Details First, some summary statistics of my path to retirement: 9 years: time between graduating college and my retirement. 8 years: total length of my career where I worked at some corporate day job. 7 years: time it took my B2C app to make its first revenue dollar 2 years: time between my first dollar of SaaS revenue and my retirement. "Something something overnight success a decade in the making". I got extremely lucky on my path to retirement, both in terms of the business environment I was in and who I am as a person. I'd also like to think that some of the conscious decisions I made along the way contributed to my early retirement. Lucky Breaks Was born in the US middle class. Had a natural affinity for computer programming and entrepreneurial mindset (initiative, resourcefulness, pragmatism, courage, growth mindset). Had opportunities to develop these mindsets throughout life. Got into a good college which gave me the credentials to get high paying corporate jobs. Was early to a platform that saw large adoption (see "barnacle on whale" strategy). Business niche is shareworthy: my SaaS received free media. Business niche is relatively stable, and small enough to not be competitive. "Skillful" Decisions I decided to spend the nights and weekends of my early career working on side projects in the hopes that one would hit. I also worked a day job to support myself and build my savings. My launch funnel over roughly 7 years of working on side projects: Countless side projects prototyped. 5 side projects publically launched. 2 side projects made > $0. 1 side project ended up becoming the SaaS that would help me retire. At my corporate day jobs, I optimized for learning and work-life balance. My learning usually stalled after a year or two at one company, so I’d quit and find another job. I invested (and continute to do so) in physical and mental wellbeing via regular workouts, meditation, journaling, traveling, and good food. My fulfilling non-work-life re-energized me for my work-life, and my work-life supported my non-work-life: a virtuous cycle. I automated the most time-consuming aspects of my business (outside of product development). Nowadays, I take long vacations and work at most 20 hours a week / a three-day work week . I decided to keep my business entirely owned and operated by me. It's the best fit for my work-style (high autonomy, deep focus, fast decision-making) and need to have full creative freedom and control. I dated and married a very supportive and inspiring partner. I try not to succumb to outrageous lifestyle creep, which keeps my living expenses low and drastically extends my burn-rate. Prescription To share some aphorisms I’ve leaned with the wantrepreneurs or those who want to follow a similar path: Maximize your at bats, because you only need one hit. Bias towards action. Launch quickly. Get your ideas out into the real world for feedback. Perfect is the enemy of good. If you keep swinging and improving, you'll hit the ball eventually. Keep the big picture in mind. You don't necessarily need a home-run to be happy: a base hit will often do the job. Think about what matters most to you in life: is it a lot of money or status? Or is it something more satisfying, and often just as if not more attainable, like freedom, loving relationships, or fulfillment? Is what you’re doing now a good way to get what you want? Or is there a better way? At more of a micro-level of "keep the big picture in mind", I often see talented wantrepreneurs get stuck in the weeds of lower-level optimizations, usually around technical design choices. They forget (or maybe subconsciously avoid) the higher-level and more important questions of customer development, user experience, and distribution. For example: “Are you solving a real problem?” or “Did you launch an MVP and what did your users think?” Adopt a growth mindset. Believe that you are capable of learning whatever you need to learn in order to do what you want to do. The pain of regret is worse than the pain of failure. I’ve noticed that fear of failure is the greatest thing holding people back from taking action towards their dreams. Unless failure means death in your case, a debilitating fear of failure is a surmountable mental block. You miss 100% of the shots you don't take. When all is said and done, we often regret the things we didn't do in life than the things we did. There’s more to life than just work. Blasphemous (at least among my social circle)! But the reality is that many of the dying regret having worked too much in their lives. As Miss Frizzle from The Magic Schoolbus says: "Take chances, make mistakes, get messy!" Original post

New Year Resolution: I Will Generate Some Viable SaaS Ideas AND Help You Become a Brand New AI Startup Founder Within 7 Days
reddit
LLM Vibe Score0
Human Vibe Score1
BaronofEssexThis week

New Year Resolution: I Will Generate Some Viable SaaS Ideas AND Help You Become a Brand New AI Startup Founder Within 7 Days

Over the Christmas period, I conceived and debuted on some reddit communities, The 7-Day Startup Challenge. The feedback I got from the various communities have been nothing short of fantastic! The 7-Day Startup Challenge simply means leveraging the power of no code platforms like Bubble, Flutterflow, Glide, Thunkable, Softr etc. along with AI APIs to build a functioning MicroSaaS/SaaS within 7 days. I can tailor this around your interests or hobbies so you are more passionate about your new startup. Whether you're a startup novice or a veteran, I am happy to work with you every step of the way. I will work with you from validating and refining your idea(s) to building and publishing your app! I can even work with you on a viable marketing strategy that will help fetch your new startup some revenue within the next 10 to 45 days. Here's what I will provide as part of The 7-Day Startup Challenge A fully validated and refined version of your idea described in technical terms in a shared document A startup name, domain and logo (if you don't have one already) A landing page to capture pre-sign ups, generate some early buzz and index your app on search engines Figma files showing the design of your app(s) Web app (dependent on whether your startup idea requires a web app or a mobile app instead)) iOS app (dependent on whether your startup idea requires a web app or a mobile app instead) Android app (dependent on whether your startup idea requires a web app or a mobile app instead) 1-month of in scope support to fix any bugs and address any issues An outlined marketing strategy you can implement to grow your startup both short and long term. As per tentative timelines, you can expect the following deliverables on schedule Day 1: Secure digital assets such as domain name, hosting, logo etc.; deliver validated and refined version of your startup idea Day 2-3: Landing page & Figma files Day 1-5/6: Build your apps (web app and/or iOS and Android app) Day 6: Evaluations and review if necessary; demo day Day 7: Live launch on web; publish on Android and iOS app stores PS: For more sophisticated ideas (non MicroSaaS), kindly allow approx. 30 days for delivery. I can be as hands on or hands off as you wish. Meaning I can do all the work whilst you sit back and wait for the results OR I can work with you every step of the way to deliver on your demands. For high potential startup ideas, I can partner with you long term to build them out together. I have to be selective because I'm unable to partner together on every single idea out there. Outside of a partnership, all the digital assets (startup name, logo, web app, mobile app etc.) are 100% owned by you. If building an AI SaaS startup via the outlined strategy sounds intriguing enough to you, feel free to send me a DM with any questions you have!

I am building my agency to help founders build AI startups after 2 successful AI SaaS exits and 4 failures
reddit
LLM Vibe Score0
Human Vibe Score1
_Gautam19This week

I am building my agency to help founders build AI startups after 2 successful AI SaaS exits and 4 failures

Hey everyone, I have been building AI products before ChatGPT was launched. In these years, I have managed to launch, scale and exit 2 SaaS products successfully. Today I am launching a new service offering - Query Labs - Helping you build AI agents for your startups. Like all my previous products, I will be building this in public and share my learning along the way. Here's what I have built so far : Microsponsors ( Fail ) My first product ever. I tried to create a marketplace for newsletter writers to find sponsorship opportunity. Got a few very big newsletter listed on the marketplace as well. However, building marketplace is tough. I found it very difficult to bring in sponsors. Ended up shutting it down, AI Query (Exit - Pre revenue ) It was the second half of 2022 and GPT-3 was the most advance AI on the market. I decided to build a tool that can help developers and non-technical folks write SQL queries by just asking in plain english. I got my first taste of success with this. Had a decent offer even before I figured out monetisation. Accepted the offer to focus on my next product which had already started gaining traction AI Excel Bot ( Exit - Revenue Generating ) AI Excel Bot was my wild success. I had worked hard on the SEO for the site, along with the UI / UX to make it the best AI to write excel formulas and general excel task. There was already a large competitor in the market. However, the reality is that you don't need to be the top player. There is always room for multiple players to survive in a large market. You just need to find the good differentiating factor For AI Excel Bot, the differentiator was the chrome extension, that helped users access it anywhere on the internet. Scaled the product to more than 40k users at the time of exit. However, in the end I decided to exit and focus on my software service business that needed more time. Tutore AI ( Fail ) I wanted to build something useful for students to help them learn better. Tutore was my idea to build AI tools for students. I did launch quickly with multiple tools. However, wasn't motivated enough to continue with the grind. I have decided to sell the product. Have had some meetings with potential buyers but didn't agree on price. Prompt Hackers ( 1k users but no revenue ) Prompt Hackers is a directory of AI prompts for all the use cases you can image. I focused a lot on bringing traffic and newsletter subscription from the day 1. I have never had a problem bringing initial set of users to my products. Prompt Hackers was getting close to 20k page views a month. At the same time we had close to 1k newsletter subscribers. Since our target customers were people choosing to use ChatGPT / Bard instead of some specific software for their task, I built a Prompt Generation and Prompt Optimisation AI. Along with this I also created features to build private prompt library. To make the experience even better, I launched a Chrome Extension that helps users access the prompt generation AI and their prompt library while using ChatGPT. However, I couldn't figure out monetisation. I still get close to 4k page views per month with no marketing at all. There are users who use the AI tools and the prompt library feature daily. But, since I couldn't figure out monetisation, I decided to not put time into the project. There you go. These are all the products I have built in the last 3 years. I have been heavy investing myself in the latest tech in LLMs and AI agents. I know the biggest challenge for AI founders is the AI agents and backend pipelines. That's why I am launching Query Labs. To help you build the best AI implementation for your innovative AI startup. I would love to hear feedback from the community. I will be sharing my learning with my new service along the way. Thanks!

Just reached 300 users in 3 months!!!
reddit
LLM Vibe Score0
Human Vibe Score1
w-elm_This week

Just reached 300 users in 3 months!!!

Just reached 300 users after 3 months live!!! My co-founder has been posting a bit here and always got some strong support and he suggested I share my side of things so here it is: How it started I co-founded AirMedia almost a year ago and we both didn’t know much about design/marketing/coding (just studied programming during my 6-month exchange period. The quickest way to get started seemed to get a no-code product that we could put in front of users and get feedback. My co-founder then started learning about bubble and we put together a basic platform to show users. I was working on a custom-code database in the meantime and decided after month 2 that we wanted to get something better I.e. AI would be interacting with the UI and had to do everything custom-code for it. We’re now month 3 and started from scratch again. While I was working on the code, we started talking to some potential users and selling lifetime deals to validate the idea (this is where I would start if I had to do it over again). Well I progressively found out it was more complicated than expected and we only released our first beta product last August (6 months later) Some challenges pre-launch: Getting the Meta/LinkedIn permissions for scheduling took around 1 month As the whole process took more time than expected, the waitlist of 300 that we managed to put together only converted by 10% (into free users). Please don’t make our mistakes and always keep your waitlist updated on what’s going on. Some challenges post-launch: Getting the right feedback and how to prioritise Getting users Monetising (yes - we’re bootstrapped) To get the best feedback we implemented some tracking (according to GDPR of course) on the platform and implemented Microsoft Clarity. The latter is a game-changer, if you have a SaaS and don’t use it you’re missing out. I wasn’t really into getting users as my co-founder handled that but it’s mainly manual and personalised LinkedIn outreach at the beginning and Reddit sharing about the progress, answering questions and getting some feedback at the same time. To monetise we realised we’re too common and there are 100+ other nice schedulers around so we’re now focusing on cracking the content creation side of AI (to be released next week 👀) as there’s much less competitors and it seems like that’s our users want. In the meantime of growing the company, we had to find a way to pay the bills as it’s two of us living together. So my co-founder started using the bubble skills gained and doing some freelance. He did around 7 platforms the last 6 months and we’re now just launching a bubble agency as a part of the main company to get your idea of a SaaS done in 30 days. That’s QuickMVP. It seemed like the right move to help other people (I met many non-technical founder looking for someone to bring their idea to life that didn’t cost $10k and was reliable) and include the AirMedia subscription in the package so let’s see how this next step plays out. Thanks for reading until here :)

How I went from $27 to $3K as a solopreneur still in a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
jottrledThis week

How I went from $27 to $3K as a solopreneur still in a 9-5

My journey started back in November 2023. I was scrolling through Twitter and YouTube and saw a word that I had never come across before. Solopreneur. The word caught my eye. Mainly because I was pretty sure I knew what it meant even though it's not a word you'll find in the dictionary. I liked what it was describing. A solo entrepreneur. A one man business. It completely resonated with me. As a software engineer by trade I'm used to working alone, especially since the pandemic hit and we were forced to work remotely. See, I always wanted to ditch the 9-5 thing but thought that was too big and too scary for a single person to do. Surely you would need a lot of money to get started, right? Surely you would need investors? The whole concept seemed impossible to me. That was until I found all the success stories. I became obsessed with the concept of solopreneurship. As I went further down the rabbit hole I found people like Justin Welsh, Kieran Drew and Marc Louvion to name a few. All of whom have one person businesses making huge money every year. So I thought, if they can do it, why can't I? People like this have cleared the pathway for those looking to escape the 9-5 grind. I decided 2024 would be the year I try this out. My main goal for the year? Build a one man business, earn my first $ online and learn a sh\*t ton along the way. My main goal in general? Build my business to $100K per year, quit my 9-5 and live with freedom. From December 2023 to February 2024 I began brainstorming ideas. I was like a lost puppy looking for his ball. How on earth did people find good ideas? I began writing everything and anything that came to mind down in my notes app on my phone. By February I would have approximately 70 ideas. Each as weird and whacky as the other. I was skeptical though. If I went through all the trouble of building a product for one of these ideas how would I know if anyone would even be interested in using it? I got scared and took a break for a week. All these ideas seemed too big and the chance that they would take off into the atmosphere was slim (in my mind anyways). I was learning more and more about solopreneurship as the weeks went on so I decided to build a product centered around everything I was learning about. The idea was simple. Enter a business idea and use AI to give the user details about how to market it, who their target customers were, what to write on their landing page, etc. All for a measly $27 per use. I quickly built it and launched on March 3rd 2024. I posted about it on Indie Hackers, Reddit and Hacker News. I was so excited about the prospect of earning my first internet $! Surely everyone wanted to use my product! Nope...all I got was crickets. I was quickly brought back down to earth. That was until 5 days later. I looked at my phone and had a new Stripe notification! Cha-ching! My first internet $. What a feeling! That was goal number 1 complete. It would be another 6 days before I would get my second sale...and then another 15 days to get my third. It was an emotional rollercoaster. I went from feeling like quitting the 9-5 was actually possible to thinking that maybe the ups and downs aren't worth it. On one hand I had made my first internet dollar so I should my ecstatic, and don't get me wrong, I was but I wanted more. More validation that I could do this long term. By May I was starting to give up on the product. I had learned so much in the past few months about marketing, SEO, building an audience, etc. and I wanted to build something that I thought could have more success so I focused on one critical thing that I had learned about. What was it? Building a product that had SEO potential. A product that I knew hundreds of people were looking for. See this was my thinking - If I could find a keyword that people were searching for on Google hundreds/thousands of times every month and it was easy to rank high on search engines then I would go all in (in SEO land this equates to a Keyword that has a Keyword Difficulty of = 500). I began researching and found that the keyword "micro saas ideas" was being searched for around 600 times each month. Micro Saas was something that really interested me. It was perfect for solopreneurs. Small software products that 1 person could build. What's not to like if you're in the game of software and solopreneurship? Researching keywords like this became like a game for me. I was hooked. I was doing it every day, finding gems that were being searched for hundreds and thousands of times every month that still had potential. That's when I came up with my next product idea. I decided to create a database of Micro Saas Ideas all with this sort of SEO potential. See if you can build a product that you know people are looking for then that's all the validation you need. So I put this theory to the test. I created a database of Micro Saas Ideas with SEO Potential and launched it in June 2024. This time it was different. I made $700 in the first week of launching. A large contrast to my previous failed attempt at becoming the worlds greatest solopreneur. Since launch I have grown the product to $3K and I couldn't be happier. I know what you're saying, $3K isn't a lot. But it's validation. It's validation that I can earn $ online. Validation that I can grow a business and it gives me hope that one day I'll be able to quit that 9-5 grind. My plan is to keep growing the business. I expect there to be a few challenges up ahead but I'll tackle them as I go and learn from the failures and successes. I have a newsletter where I share Micro Saas Ideas with SEO potential every week which I'll leave below in the first comment. Feel free to come along for the ride. If not I hope this post brings you some value If you're thinking about starting as a solopreneur, stop thinking and start doing, you won't regret it.

100 agency business ideas that requires zero investment in 2025
reddit
LLM Vibe Score0
Human Vibe Score1
Low_Philosopher1792This week

100 agency business ideas that requires zero investment in 2025

Social Media Manager (Search "smma business for sale" and get started with Sitefy or humanpdesign company) Content Writing Service SEO Specialist (Search "outsourced seo business Sitefy" and get started) Instagram Growth Expert LinkedIn Lead Outreach Cold Email Specialist Ghostwriter Services YouTube Channel Assistant X/Twitter Writing Service UGC Creator Network Virtual Assistant Provider Podcast Manager Influencer Outreach Service Brand Strategy Consultant Resume & Profile Optimizer Media Outreach Services Newsletter Creation Team Lead Gen Specialist Personal Branding Partner Online Reputation Consultant Script Writer Team Funnel Strategy Helper Landing Page Writer Blog Strategy Consultant Growth Tactics Consultant SaaS User Onboarding Service App Store Optimization (ASO) Chatbot Automation Setup Customer Support Automator TikTok Strategy Specialist Short Video Editing Team Long Video Editing Team Digital Product Launch Help Webinar Setup Specialist Affiliate Setup Services Online Community Builder Facebook Group Specialist Pinterest Marketing Service (Search "digital marketing business for sale Sitefy" and get started quickly) Email List Builder CRM Setup Helper eBook Writing Partner YouTube Thumbnail Designer Pinterest Content Designer Proposal Writing Team Press Release Writer Influencer Deal Manager SaaS Growth Advisor Direct-To-Consumer Marketing Help App Review Booster Fiverr Profile Consultant Upwork Profile Expert Gig Profile Optimizer AI Tools Setup Help Freelance Talent Finder Local Search Optimizer Google Profile Optimizer Online Course Setup Notion Workflow Setup Airtable Consultant Trello/ClickUp Helper Automation Strategy Planner Sales Funnel Assistant WhatsApp Campaign Setup Telegram Channel Helper Blog Publishing Help Email-Based Content Creator Startup Deck Consultant Business Name & Tagline Creator Domain Research Help Reddit Growth Assistant Niche Community Builder Free Resource Strategy Website Audit Consultant Brand Guide Creator Business System Organizer Productivity Coach Reputation Fix Specialist Digital Product Reviewer Micro SaaS Idea Tester Ad Copywriter Email Strategy Consultant Influencer Research Team Onboarding Docs Creator Automation Setup Specialist Freelance Team Coordinator AI Marketing Planner Feedback Collection Setup Social Proof Strategist Giveaway Organizer Pricing Strategy Helper Contract Template Consultant Startup Growth Guide AI Prompt Writer Press Kit Creator Podcast Booking Assistant Inbox Performance Checker Customer Journey Planner Trend Report Analyst Testimonial Request Specialist Digital Declutter Coach Which one sounds like your vibe?

I retired at 32 from my side project. Here's the path I took.
reddit
LLM Vibe Score0
Human Vibe Score1
inputoriginThis week

I retired at 32 from my side project. Here's the path I took.

EDIT 2: Thanks for the award kind stranger! I've stopped responding to reddit comments for this post. I'm adding an FAQ to the original post based on the most common high quality questions. If you have a question that you're dying to know the answer to and that only I can help you with (vs. Google, ChatGPT, etc.), DM me. EDIT: I love how controversial this post has become (50% upvote rate), and only in this subreddit (vs. other subreddits that I posted the same content in). I trust that the open-minded half of you will find something useful in this post and my other posts and comments. I retired at 32 years old, in large part thanks to a B2C SaaS app that I developed on my own. Now, I don't have to work in order to cover my living expenses, and wouldn't have to work for quite a while. In other words, I can finally sip mai tais at the beach. I've condensed how I got there into this post. First, a super simplified timeline of events, followed by some critical details. Timeline 2013 Graduated college in the US 2013 Started first corporate job 2013 Started side project (B2C app) that would eventually lead to my retirement 2020 Started charging for use of my B2C app (was free, became freemium) 2021 Quit my last corporate job 2022 Retired: time freedom attained Details First, some summary statistics of my path to retirement: 9 years: time between graduating college and my retirement. 8 years: total length of my career where I worked at some corporate day job. 7 years: time it took my B2C app to make its first revenue dollar 2 years: time between my first dollar of SaaS revenue and my retirement. "Something something overnight success a decade in the making". I got extremely lucky on my path to retirement, both in terms of the business environment I was in and who I am as a person. I'd also like to think that some of the conscious decisions I made along the way contributed to my early retirement. Lucky Breaks Was born in the US middle class. Had a natural affinity for computer programming and entrepreneurial mindset (initiative, resourcefulness, pragmatism, courage, growth mindset). Had opportunities to develop these mindsets throughout life. Got into a good college which gave me the credentials to get high paying corporate jobs. Was early to a platform that saw large adoption (see "barnacle on whale" strategy). Business niche is shareworthy: my SaaS received free media. Business niche is relatively stable, and small enough to not be competitive. "Skillful" Decisions I decided to spend the nights and weekends of my early career working on side projects in the hopes that one would hit. I also worked a day job to support myself and build my savings. My launch funnel over roughly 7 years of working on side projects: Countless side projects prototyped. 5 side projects publically launched. 2 side projects made > $0. 1 side project ended up becoming the SaaS that would help me retire. At my corporate day jobs, I optimized for learning and work-life balance. My learning usually stalled after a year or two at one company, so I’d quit and find another job. I invested (and continute to do so) in physical and mental wellbeing via regular workouts, meditation, journaling, traveling, and good food. My fulfilling non-work-life re-energized me for my work-life, and my work-life supported my non-work-life: a virtuous cycle. I automated the most time-consuming aspects of my business (outside of product development). Nowadays, I take long vacations and work at most 20 hours a week / a three-day work week . I decided to keep my business entirely owned and operated by me. It's the best fit for my work-style (high autonomy, deep focus, fast decision-making) and need to have full creative freedom and control. I dated and married a very supportive and inspiring partner. I try not to succumb to outrageous lifestyle creep, which keeps my living expenses low and drastically extends my burn-rate. Prescription To share some aphorisms I’ve leaned with the wantrepreneurs or those who want to follow a similar path: Maximize your at bats, because you only need one hit. Bias towards action. Launch quickly. Get your ideas out into the real world for feedback. Perfect is the enemy of good. If you keep swinging and improving, you'll hit the ball eventually. Keep the big picture in mind. You don't necessarily need a home-run to be happy: a base hit will often do the job. Think about what matters most to you in life: is it a lot of money or status? Or is it something more satisfying, and often just as if not more attainable, like freedom, loving relationships, or fulfillment? Is what you’re doing now a good way to get what you want? Or is there a better way? At more of a micro-level of "keep the big picture in mind", I often see talented wantrepreneurs get stuck in the weeds of lower-level optimizations, usually around technical design choices. They forget (or maybe subconsciously avoid) the higher-level and more important questions of customer development, user experience, and distribution. For example: “Are you solving a real problem?” or “Did you launch an MVP and what did your users think?” Adopt a growth mindset. Believe that you are capable of learning whatever you need to learn in order to do what you want to do. The pain of regret is worse than the pain of failure. I’ve noticed that fear of failure is the greatest thing holding people back from taking action towards their dreams. Unless failure means death in your case, a debilitating fear of failure is a surmountable mental block. You miss 100% of the shots you don't take. When all is said and done, we often regret the things we didn't do in life than the things we did. There’s more to life than just work. Blasphemous (at least among my social circle)! But the reality is that many of the dying regret having worked too much in their lives. As Miss Frizzle from The Magic Schoolbus says: "Take chances, make mistakes, get messy!" Original post

AI-Powered Business Analyst Tool Looking for Feedback
reddit
LLM Vibe Score0
Human Vibe Score1
ondro949This week

AI-Powered Business Analyst Tool Looking for Feedback

Hey r/sideproject! I’m excited to share a project I’ve been working on called Bianalytiq, a next-gen business intelligence platform designed to transform the way businesses interact with data through the power of AI. The Problem: SME companies struggle with data overload and the significant time investment required to generate actionable insights. Traditional data analysis methods are not only slow but often require extensive manual effort and are prone to errors. This makes it difficult for businesses to react quickly to new information and make informed decisions efficiently. Not everybody can write SQL or create/understand data dashboards.... AND - one big opportunity on market - non of the AI tools available on market offer reusable contexts focused on you as a company and your products. The Solution: Bianalytiq aims to solve these issues by automating tedious data analysis tasks and providing real-time insights. Here’s how: Reusable contexts: Let Bianalytiq learn everything about your company, your products, business model etc. - your company is your unique context. Autonomous AI Agents: Deploy AI agents that not only react to queries but proactively analyze data to uncover opportunities, tailored specifically to your business context. Real-Time Insights: With the use of Retrieval-Augmented Generation (RAG) technology, our platform delivers immediate, context-rich insights by dynamically accessing and analyzing connected databases and data warehouses. Integration with Existing Tools: Bianalytiq integrates seamlessly with popular tech stacks and communication platforms like Slack and Microsoft Teams, making it incredibly user-friendly and reducing the switch cost between applications. Why I’m Here: Before investing significant time and money I want to validate the product first and do pre-sale before releasing the MVP. I’ve developed a landing page for Bianalytiq and would love your feedback on both the service itself and the effectiveness of the landing page. Are the features presented clearly? Does the platform address the pain points you might experience in data analysis and decision-making processes? Here’s the link to the landing page: https://bianalytiq.com/ I appreciate any feedback or questions you have! Whether it's about the UI/UX of the site, the technical aspects of the service, or even the business model, I’m all ears. Your input will be invaluable :) Thanks for checking it out! https://preview.redd.it/t1dvp2q05dzc1.png?width=798&format=png&auto=webp&s=c7365b418abfc4d4260d9a23305ed3398e83c87b

[D] Overwhelmed by fast advances in recent weeks
reddit
LLM Vibe Score0
Human Vibe Score1
iamx9000againThis week

[D] Overwhelmed by fast advances in recent weeks

I was watching the GTC keynote and became entirely overwhelmed by the amount of progress achieved from last year. I'm wondering how everyone else feels. ​ Firstly, the entire ChatGPT, GPT-3/GPT-4 chaos has been going on for a few weeks, with everyone scrambling left and right to integrate chatbots into their apps, products, websites. Twitter is flooded with new product ideas, how to speed up the process from idea to product, countless promp engineering blogs, tips, tricks, paid courses. ​ Not only was ChatGPT disruptive, but a few days later, Microsoft and Google also released their models and integrated them into their search engines. Microsoft also integrated its LLM into its Office suite. It all happenned overnight. I understand that they've started integrating them along the way, but still, it seems like it hapenned way too fast. This tweet encompases the past few weeks perfectly https://twitter.com/AlphaSignalAI/status/1638235815137386508 , on a random Tuesday countless products are released that seem revolutionary. ​ In addition to the language models, there are also the generative art models that have been slowly rising in mainstream recognition. Now Midjourney AI is known by a lot of people who are not even remotely connected to the AI space. ​ For the past few weeks, reading Twitter, I've felt completely overwhelmed, as if the entire AI space is moving beyond at lightning speed, whilst around me we're just slowly training models, adding some data, and not seeing much improvement, being stuck on coming up with "new ideas, that set us apart". ​ Watching the GTC keynote from NVIDIA I was again, completely overwhelmed by how much is being developed throughout all the different domains. The ASML EUV (microchip making system) was incredible, I have no idea how it does lithography and to me it still seems like magic. The Grace CPU with 2 dies (although I think Apple was the first to do it?) and 100 GB RAM, all in a small form factor. There were a lot more different hardware servers that I just blanked out at some point. The omniverse sim engine looks incredible, almost real life (I wonder how much of a domain shift there is between real and sim considering how real the sim looks). Beyond it being cool and usable to train on synthetic data, the car manufacturers use it to optimize their pipelines. This change in perspective, of using these tools for other goals than those they were designed for I find the most interesting. ​ The hardware part may be old news, as I don't really follow it, however the software part is just as incredible. NVIDIA AI foundations (language, image, biology models), just packaging everything together like a sandwich. Getty, Shutterstock and Adobe will use the generative models to create images. Again, already these huge juggernauts are already integrated. ​ I can't believe the point where we're at. We can use AI to write code, create art, create audiobooks using Britney Spear's voice, create an interactive chatbot to converse with books, create 3D real-time avatars, generate new proteins (?i'm lost on this one), create an anime and countless other scenarios. Sure, they're not perfect, but the fact that we can do all that in the first place is amazing. ​ As Huang said in his keynote, companies want to develop "disruptive products and business models". I feel like this is what I've seen lately. Everyone wants to be the one that does something first, just throwing anything and everything at the wall and seeing what sticks. ​ In conclusion, I'm feeling like the world is moving so fast around me whilst I'm standing still. I want to not read anything anymore and just wait until everything dies down abit, just so I can get my bearings. However, I think this is unfeasible. I fear we'll keep going in a frenzy until we just burn ourselves at some point. ​ How are you all fairing? How do you feel about this frenzy in the AI space? What are you the most excited about?

I am Jürgen Schmidhuber, AMA!
reddit
LLM Vibe Score0
Human Vibe Score1
JuergenSchmidhuberThis week

I am Jürgen Schmidhuber, AMA!

Hello /r/machinelearning, I am Jürgen Schmidhuber (pronounce: You_again Shmidhoobuh) and I will be here to answer your questions on 4th March 2015, 10 AM EST. You can post questions in this thread in the meantime. Below you can find a short introduction about me from my website (you can read more about my lab’s work at people.idsia.ch/~juergen/). Edits since 9th March: Still working on the long tail of more recent questions hidden further down in this thread ... Edit of 6th March: I'll keep answering questions today and in the next few days - please bear with my sluggish responses. Edit of 5th March 4pm (= 10pm Swiss time): Enough for today - I'll be back tomorrow. Edit of 5th March 4am: Thank you for great questions - I am online again, to answer more of them! Since age 15 or so, Jürgen Schmidhuber's main scientific ambition has been to build an optimal scientist through self-improving Artificial Intelligence (AI), then retire. He has pioneered self-improving general problem solvers since 1987, and Deep Learning Neural Networks (NNs) since 1991. The recurrent NNs (RNNs) developed by his research groups at the Swiss AI Lab IDSIA (USI & SUPSI) & TU Munich were the first RNNs to win official international contests. They recently helped to improve connected handwriting recognition, speech recognition, machine translation, optical character recognition, image caption generation, and are now in use at Google, Microsoft, IBM, Baidu, and many other companies. IDSIA's Deep Learners were also the first to win object detection and image segmentation contests, and achieved the world's first superhuman visual classification results, winning nine international competitions in machine learning & pattern recognition (more than any other team). They also were the first to learn control policies directly from high-dimensional sensory input using reinforcement learning. His research group also established the field of mathematically rigorous universal AI and optimal universal problem solvers. His formal theory of creativity & curiosity & fun explains art, science, music, and humor. He also generalized algorithmic information theory and the many-worlds theory of physics, and introduced the concept of Low-Complexity Art, the information age's extreme form of minimal art. Since 2009 he has been member of the European Academy of Sciences and Arts. He has published 333 peer-reviewed papers, earned seven best paper/best video awards, and is recipient of the 2013 Helmholtz Award of the International Neural Networks Society.

[D] Advanced courses update
reddit
LLM Vibe Score0
Human Vibe Score1
actbshThis week

[D] Advanced courses update

EDIT Jan 2021 : I am still updating the list as of Jan, 2021 and will most probably continue to do so for foreseeable future. So, please feel free to message me any courses you find interesting that fit here. - - We have a PhD level or Advanced courses thread in the sidebar but it's three year old now. There were two other 7-8 month old threads (1, 2) but they don't have many quality responses either. So, can we have a new one here? To reiterate - CS231n, CS229, ones from Udemy etc are not advanced. Advanced ML/DL/RL, attempts at building theory of DL, optimization theory, advanced applications etc are some examples of what I believe should belong here, much like the original sidebar post. You can also suggest (new) categories for the courses you share. :) - - Here are some courses we've found so far. ML >> Learning Discrete Latent Structure - sta4273/csc2547 Spring'18 Learning to Search - csc2547 Fall'19 Scalable and Flexible Models of Uncertainty - csc2541 Fundamentals of Machine Learning Over Networks - ep3260 Machine Learning on Graphs - cs224w, videos Mining Massive Data Sets - cs246 Interactive Learning - cse599 Machine Learning for Sequential Decision Making Under Uncertainty - ee290s/cs194 Probabilistic Graphical Methods - 10-708 Introduction to Causal Inference ML >> Theory Statistical Machine Learning - 10-702/36-702 with videos, 2016 videos Statistical Learning Theory - cs229T/stats231 Stanford Autumn'18-19 Statistical Learning Theory - cs281b /stat241b UC Berkeley, Spring'14 Statistical Learning Theory - csc2532 Uni of Toronto, Spring'20 ML >> Bayesian Bayesian Data Analysis Bayesian Methods Research Group, Moscow, Bayesian Methods in ML - spring2020, fall2020 Deep Learning and Bayesian Methods - summer school, videos available for 2019 version ML >> Systems and Operations Stanford MLSys Seminar Series Visual Computing Systems- cs348v - Another systems course that discusses hardware from a persepective of visual computing but is relevant to ML as well Advanced Machine Learning Systems - cs6787 - lecture 9 and onwards discuss hardware side of things Machine Learning Systems Design - cs329S Topics in Deployable ML - 6.S979 Machine Learning in Production / AI Engineering (17-445/17-645/17-745/11-695) AutoML - Automated Machine Learning DL >> Deep Unsupervised Learning - cs294 Deep Multi-task and Meta learning - cs330 Topics in Deep Learning - stat991 UPenn/Wharton most chapters start with introductory topics and dig into advanced ones towards the end. Deep Generative Models - cs236 Deep Geometric Learning of Big Data and Applications Deep Implicit Layers - NeurIPS 2020 tutorial DL >> Theory Topics course on Mathematics of Deep Learning - CSCI-GA 3033 Topics Course on Deep Learning - stat212b Analyses of Deep Learning - stats385, videos from 2017 version Mathematics of Deep Learning Geometry of Deep Learning RL >> Meta-Learning - ICML 2019 Tutorial , Metalearning: Applications to Data Mining - google books link Deep Multi-Task and Meta Learning - cs330, videos Deep Reinforcement Learning - cs285 Advanced robotics - cs287 Reinforcement Learning - cs234, videos for 2019 run Reinforcement Learning Summer School 2019: Bandits, RL & Deep RL Optimization >> Convex Optimization I - ee364a, has quite recent videos too. Convex Optimization II - ee364b, 2008 videos Convex Optimization and Approximation - ee227c Convex Optimization - ee227bt Variational Methods for Computer Vision Advanced Optimization and Randomized Algorithms - 10-801, videos Optimization Methods for Machine Learning and Engineering - Karlsruhe Institute of Technology Applications >> Computer Vision Computational Video Manipulation - cs448v Advanced Topics in ML: Modeling and Segmentation of Multivariate Mixed Data TUM AI Guest lecture series - many influential researchers in DL, vision, graphics talk about latest advances and their latest works. Advanced Deep Learning for Computer Vision - TUM ADL4CV Detection, Segmentation and Tracking - TUM CV3DST Guest lectures at TUM Dynamic Vision and Learning group Vision Seminar at MIT Autonomous Vision Group, Talk@Tübingen Seminar Applications >> Natural Language Processing Natural Language Processing with Deep Learning - cs224n ( not sure if it belongs here, people working in NLP can help me out) Neural networks for NLP - cs11-747 Natural Language Understanding - cs224u, video Applications >> 3D Graphics Non-Euclidean Methods in Machine Learning - cs468, 2020 Machine Learning for 3D Data - cs468, spring 2017 Data-Driven Shape Analysis - cs468, 2014 Geometric Deep Learning - Not a course but the website links a few tutorials on Geometric DL Deep Learning for Computer Graphics - SIGGRAPH 2019 Machine Learning for Machine Vision as Inverse Graphics - csc2547 Winter'20 Machine Learning Meets Geometry, winter 2020; Machine Learning for 3D Data, winter 2018 Edit: Upon suggestion, categorized the courses. There might be some misclassifications as I'm not trained on this task ;). Added some good ones from older (linked above) discussions.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[D] AI Agents: too early, too expensive, too unreliable
reddit
LLM Vibe Score0
Human Vibe Score1
madredditscientistThis week

[D] AI Agents: too early, too expensive, too unreliable

Reference: Full blog post There has been a lot of hype about the promise of autonomous agent-based LLM workflows. By now, all major LLMs are capable of interacting with external tools and functions, letting the LLM perform sequences of tasks automatically. But reality is proving more challenging than anticipated. The WebArena leaderboard, which benchmarks LLMs agents against real-world tasks, shows that even the best-performing models have a success rate of only 35.8%. Challenges in Practice After seeing many attempts to AI agents, I believe it's too early, too expensive, too slow, too unreliable. It feels like many AI agent startups are waiting for a model breakthrough that will start the race to productize agents. Reliability: As we all know, LLMs are prone to hallucinations and inconsistencies. Chaining multiple AI steps compounds these issues, especially for tasks requiring exact outputs. Performance and costs: GPT-4o, Gemini-1.5, and Claude Opus are working quite well with tool usage/function calling, but they are still slow and expensive, particularly if you need to do loops and automatic retries. Legal concerns: Companies may be held liable for the mistakes of their agents. A recent example is Air Canada being ordered to pay a customer who was misled by the airline's chatbot. User trust: The "black box" nature of AI agents and stories like the above makes it hard for users to understand and trust their outputs. Gaining user trust for sensitive tasks involving payments or personal information will be hard (paying bills, shopping, etc.). Real-World Attempts Several startups are tackling the AI agent space, but most are still experimental or invite-only: adept.ai - $350M funding, but access is still very limited MultiOn - funding unknown, their API-first approach seems promising HypeWrite - $2.8M funding, started with an AI writing assistant and expanded into the agent space minion.ai - created some initial buzz but has gone quiet now, waitlist only Only MultiOn seems to be pursuing the "give it instructions and watch it go" approach, which is more in line with the promise of AI agents. All others are going down the record-and-replay RPA route, which may be necessary for reliability at this stage. Large players are also bringing AI capabilities to desktops and browsers, and it looks like we'll get native AI integrations on a system level: OpenAI announced their Mac desktop app that can interact with the OS screen. At Google I/O, Google demonstrated Gemini automatically processing a shopping return. Microsoft announced Copilot Studio, which will let developers build AI agent bots. Screenshot Screenshot These tech demos are impressive, but we'll see how well these agent capabilities will work when released publicly and tested against real-world scenarios instead of hand-picked demo cases. The Path Forward AI agents overhyped and it's too early. However, the underlying models continue to advance quickly, and we can expect to see more successful real-world applications. Instead of trying to have one large general purpose agent that is hard to control and test, we can use many smaller agents that basically just pick the right strategy for a specific sub-task in our workflows. These "agents" can be thought of as medium-sized LLM prompts with a) context and b) a set of functions available to call. The most promising path forward likely looks like this: Narrowly scoped, well testable automations that use AI as an augmentation tool rather than pursuing full autonomy Human-in-the-loop approaches that keep humans involved for oversight and handling edge cases Setting realistic expectations about current capabilities and limitations By combining tightly constrained agents, good evaluation data, human-in-the-loop oversight, and traditional engineering methods, we can achieve reliably good results for automating medium-complex tasks. Will AI agents automate tedious repetitive work, such as web scraping, form filling, and data entry? Yes, absolutely. Will AI agents autonomously book your vacation without your intervention? Unlikely, at least in the near future.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call
reddit
LLM Vibe Score0
Human Vibe Score1
noiseinvacuumThis week

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call

During the recent earnings call, Mark Zuckerberg answered a question from Eric Sheridan of Goldman Sachs on Meta's AI strategy, opportunities to integrate into products, and why they open source models and how it would benefit their business. I found the reasoning to be very sound and promising for the OSS and AI community. The biggest risk from AI, in my opinion, is not the doomsday scenarios that intuitively come to mind but rather that the most powerful AI systems will only be accessible to the most powerful and resourceful corporations. Quote copied from Ben Thompson's write up on Meta's earning in his Stratechery blog post which goes beyond AI. It's behind a paywall but I highly recommend it personally. Some noteworthy quotes that signal the thought process at Meta FAIR and more broadly We’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon We would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that. ...lead us to do more work in terms of open sourcing, some of the lower level models and tools Open sourcing low level tools make the way we run all this infrastructure more efficient over time. On PyTorch: It’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. I would expect us to be pushing and helping to build out an open ecosystem. For all the negative that comes out of the popular discourse on Meta, I think their work to open source key tech tools over the last 10 years has been exceptional, here's hoping it continues into this decade of AI and pushes other tech giants to also realize the benefits of Open Source. Full Transcript: Right now most of the companies that are training large language models have business models that lead them to a closed approach to development. I think there’s an important opportunity to help create an open ecosystem. If we can help be a part of this, then much of the industry will standardize on using these open tools and help improve them further. So this will make it easier for other companies to integrate with our products and platforms as we enable more integrations, and that will help our products stay at the leading edge as well. Our approach to AI and our infrastructure has always been fairly open. We open source many of our state of the art models so people can experiment and build with them. This quarter we released our LLaMa LLM to researchers. It has 65 billion parameters but outperforms larger models and has proven quite popular. We’ve also open-sourced three other groundbreaking visual models along with their training data and model weights — Segment Anything, DinoV2, and our Animated Drawings tool — and we’ve gotten positive feedback on all of those as well. I think that there’s an important distinction between the products we offer and a lot of the technical infrastructure, especially the software that we write to support that. And historically, whether it’s the Open Compute project that we’ve done or just open sourcing a lot of the infrastructure that we’ve built, we’ve historically open sourced a lot of that infrastructure, even though we haven’t open sourced the code for our core products or anything like that. And the reason why I think why we do this is that unlike some of the other companies in the space, we’re not selling a cloud computing service where we try to keep the different software infrastructure that we’re building proprietary. For us, it’s way better if the industry standardizes on the basic tools that we’re using and therefore we can benefit from the improvements that others make and others’ use of those tools can, in some cases like Open Compute, drive down the costs of those things which make our business more efficient too. So I think to some degree we’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon, and that creates different incentives for us. So overall, I think that that’s going to lead us to do more work in terms of open sourcing, some of the lower level models and tools. But of course, a lot of the product work itself is going to be specific and integrated with the things that we do. So it’s not that everything we do is going to be open. Obviously, a bunch of this needs to be developed in a way that creates unique value for our products, but I think in terms of the basic models, I would expect us to be pushing and helping to build out an open ecosystem here, which I think is something that’s going to be important. On the AI tools, and we have a bunch of history here, right? So if you if you look at what we’ve done with PyTorch, for example, which has generally become the standard in the industry as a tool that a lot of folks who are building AI models and different things in that space use, it’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. So the tool chain is the same. So when they create some innovation, we can easily integrate it into the things that we’re doing. When we improve something, it improves other products too. Because it’s integrated with our technology stack, when there are opportunities to make integrations with products, it’s much easier to make sure that developers and other folks are compatible with the things that we need in the way that our systems work. So there are a lot of advantages, but I view this more as a kind of back end infrastructure advantage with potential integrations on the product side, but one that should hopefully enable us to stay at the leading edge and integrate more broadly with the community and also make the way we run all this infrastructure more efficient over time. There are a number of models. I just gave PyTorch as an example. Open Compute is another model that has worked really well for us in this way, both to incorporate both innovation and scale efficiency into our own infrastructure. So I think that there’s, our incentives I think are basically aligned towards moving in this direction. Now that said, there’s a lot to figure out, right? So when you asked if there are going to be other opportunities, I hope so. I can’t speak to what all those things might be now. This is all quite early in getting developed. The better we do at the foundational work, the more opportunities I think that will come and present themselves. So I think that that’s all stuff that we need to figure out. But at least at the base level, I think we’re generally incentivized to move in this direction. And we also need to figure out how to go in that direction over time. I mean, I mentioned LLaMA before and I also want to be clear that while I’m talking about helping contribute to an open ecosystem, LLaMA is a model that we only really made available to researchers and there’s a lot of really good stuff that’s happening there. But a lot of the work that we’re doing, I think, we would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

[R] Stanford HAI Spring Conference - Intelligence Augmentation: AI Empowering People to Solve Global Challenges
reddit
LLM Vibe Score0
Human Vibe Score0
othotrThis week

[R] Stanford HAI Spring Conference - Intelligence Augmentation: AI Empowering People to Solve Global Challenges

Stanford Institute for Human-Centered AI hosted its spring conference today with interesting conversations about how AI can best support humans in healthcare, art, and education to address global challenges. More details and the event recording are available at the HAI conference site. Here is a quick outline with video sections: Welcome & Introductions: HAI directors Fei-Fei Li, John Etchemendy, Russ Altman, & James Landay Session I: Healthcare Immersive Technologies for Caregiving: Innovation Opportunities and Ecosystem Challenges, Deborah Estrin @ Cornell Tech Student Lightning Talks On Complementing and Extending Human Intellect: Principles and Directions, Eric Horvitz @ Microsoft Mobilizing AI to Achieve Healthy Child Development Worldwide, Dennis Wall @ Stanford Safer and Proactive Care through AI, Suchi Saria @ Johns Hopkins University Session II: Art Other Intelligence: Exoticism and AI, Ken Goldberg @ UC Berkeley Student Lightning Talks Artful Intelligence: Exoticism and AI, Michele Elam @ Stanford The Digital Griot: A Reimagining of the Archive, Rashaad Newsome @ Stanford Amplifying the Human Artist Through AI, Hilary Hahn & Carol Reiley @ DeepMusic.ai Session III: Education Escaping or Automating a Legacy of Bad Instruction, Daniel Schwartz @ Stanford Student Lightning Talks AI to Super Power Teachers, Chris Piech @ Stanford Pushing the Boundaries of Educational Technology, Amy Ogan @ Carnegie Mellon University AI to Accelerate Workplace Learning at Scale, Candace Thille @ Amazon https://preview.redd.it/p2qg7eutibp61.png?width=1928&format=png&auto=webp&s=1cc8dd6c4458c3da79d00415552ca4424f03d0c2

[N] Last Week in AI News Digest 08/15-08/21: detecting hate speech, dogfight simulation, disaster-response, and more!
reddit
LLM Vibe Score0
Human Vibe Score-0.5
regalalgorithmThis week

[N] Last Week in AI News Digest 08/15-08/21: detecting hate speech, dogfight simulation, disaster-response, and more!

Hi there, we at Skynet Today produce a weekly newsletter summarizing each week's major AI news, which seems like it'd be of interest to this subreddit. Here's what's in our latest one: Facebook’s AI for detecting hate speech is facing its biggest challenge yet Facebook has made significant progress recently to proactively take down content that violate its community standards. For example, in the second quarter of 2020, Facebook took down 104.6 million pieces of content. While reviews are typically performed by a vast workforce of human moderators, AI-powered tools have enabled Facebook to do this work at a greater scale for textual content. However, there’s a long way to go for these systems to match or exceed the capabilities of human moderators. This is because a large proportion of hate speech and misinformation is in the form of images and memes, and reasoning about the context and language-image interplay is an extremely difficult challenge for AI. Given Facebook’s scale and the speed at which some use it to spread hate, incite violence, and share lies with millions, Facebook will have to keep running to catch up. AI Slays Top F-16 Pilot In DARPA Dogfight Simulation The Defense Advanced Research Project Agency (DARPA) recently hosted a simulated F16 dogfight competition, with different AI bots competing with each other as well as with human pilots. The top AI bot was able to beat a human pilot 5-0 in the simulated contest. DARPA started this program “as a risk-reduction effort \[…\] to flesh out how human and machine pilots share operational control of a fighter jet to maximize its chances of mission success.” Competition runners are broadly optimistic about the demonstration of AI capabilities, even if they are not close to being deployed on a real aircraft. Of concern, the program had little discussion on the ethics of AI military applications, especially with the lethal autonomous weapon systems being considered. News Advances & Business Microsoft, Energy Dept. to Develop Disaster-Response AI Tools \- The U.S. Department of Energy and Microsoft Corp. on Tuesday announced a partnership to develop artificial-intelligence tools aimed at helping first-responders better react to fast-changing natural events, such as floods and wildfires. Coronavirus: Robot CERi is a bilingual Covid-19 expert \- Ceri is bilingual, clued-up on coronavirus and can tell what mood you are in. Ceri also happens to be a robot. Moscow DOH uses AI platform to detect lung cancer symptoms \- Moscow’s department of health is using an artificial intelligence (AI) platform to detect symptoms of lung cancer in CT scans, as part of a project to implement AI technology for radiology. Scientists develop artificial intelligence system for high precision recognition of hand gestures \- The recognition of human hand gestures by AI systems has been a valuable development over the last decade and has been adopted in high-precision surgical robots, health monitoring equipment and in gaming systems. Forget credit cards - now you can pay with your face. Creepy or cool? \- A new way to pay has arrived in Los Angeles: your face. Concerns & Hype The dystopian tech that companies are selling to help schools reopen sooner \- This fall, AI could be watching students social distance and checking their masks. Thousands of schools nationwide will not be reopening this fall. NYPD Used Facial Recognition Technology In Siege Of Black Lives Matter Activist’s Apartment \- The NYPD deployed facial recognition technology in its hunt for a prominent Black Lives Matter activist, whose home was besieged by dozens of officers and police dogs last week, a spokesperson confirmed to Gothamist. Machines can spot mental health issues - if you hand over your personal data \- Digital diagnosis could transform psychiatry by mining your most intimate data for clues. But is the privacy cost worth it? Supporting Black Artists Who Are Examining AI \- Technology has a complicated relationship with racial justice. Smartphones, internet platforms, and other digital tools can be used to document and expose racism. But digital tools can also fuel racism: smart doorbells surveil Black individuals. A-level and GCSE results in England to be based on teacher assessments in U-turn \- All A-level and GCSE results in England will be based on grades assesed by teachers instead of algorithms. Analysis & Policy GPT-3 and The Question of Automation \- Automation is not an all or nothing proposition. An AI model’s automation capability is highly conjoined with the task and application it is used in. An A.I. Movie Service Could One Day Serve You a New Custom Film Every Time \- How long will it be until an A.I. can make an actual feature film on demand? Fairness, evidence, and predictive equality \- How the causal fairness principle relates to predictive equality How robotics and automation could create new jobs in the new normal \- Depending on who you ask, AI and automation will either destroy jobs or create new ones. In reality, a greater push toward automation will probably both kill and create jobs - human workers will become redundant in certain spheres, sure, but many new roles will likely crop up. Expert Opinions & Discussion within the field Too many AI researchers think real-world problems are not relevant \- The community’s hyperfocus on novel methods ignores what’s really important.

[D] Should We Be Concerned About The Failure Of Evolutionary Algorithms, And Its Implications?
reddit
LLM Vibe Score0
Human Vibe Score-1
mystikaldangerThis week

[D] Should We Be Concerned About The Failure Of Evolutionary Algorithms, And Its Implications?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287292/ ​ A number of possible explanations for \[why we can't evolve complex software\] could be considered. We tried to be as comprehensive as possible in this section, but it is possible that we have not considered some plausible explanations: Incompetent programmers—It is theoretically possible, but is highly unlikely, that out of thousands of scientists working on evolutionary computation, all failed to correctly implement the Darwinian algorithm. Nonrepresentative algorithms—Some have suggested that EAs do not accurately capture the theory of evolution, but of course that would imply that the theory itself is not specified in sufficient detail to make falsifiable predictions. If, however, such more detailed specifications are available to GP believers, it is up to them to implement them as computer simulations for testing purposes, but no successful examples of such work are known and the known ones have not been successful in evolving software. Inadequate fitness functions—Fitness function for a complex software product is difficult to outline and specify and may be as complex (or even more complex) as the software we want to evolve as it has to consider all the possible use cases and pass all unit tests. This may be the Achilles heel of GP, but it is also an objection to feasibility of programming in general and GP in particular, as both have to convert software specification into the source code. If human programmers and biological evolution succeed with such constraints, so should Darwinian simulations. The Halting problem—Turing proved that it is impossible to determine whether an arbitrary program halts, but this is also a problem for human programmers and could be easily addressed by placing time limits on considered solutions. Program correctness—If we require evolved software to be provably correct, this would present a problem as GP does not verify produced designs but only tests them against specific unit tests. Likewise, we cannot rely on automated software verification as it is still an unsolved problem in the general case. This is not really a problem as most of the human-written software is never proven to be correct and only a small portion of software engineering process relies of formal specification and Test Driven Development. Inappropriate solutions—Literature on EA is full of examples of surprising creativity of Darwinian algorithm resulting in solutions which match the letter of design specifications but not the spirit. This is similar to human-produced software and numerous examples of ways in which such software fails the goals of the initial design. Insufficient complexity of the environment (not enough data, poor fitness functions)—It is possible that the simulated environment is not complex enough to generate high complexity outputs in evolutionary simulations. This does not seem correct as Internet presents a highly complex landscape in which many self-modifying computer viruses roam. Likewise, virtual world such as Second Life and many others present close approximations to the real world and are certainly more complex than early Earth was: A skeptic might insist that an abstract environment would be inadequate for the evolution . . ., believing instead that the virtual environment would need to closely resemble the actual biological environment in which our ancestors evolved. Creating a physically realistic virtual world would require a far greater investment of computational resources than the simulation of a simple toy world or abstract problem domain (whereas evolution had access to a physically realistic real world “for free”). In the limiting case, if complete microphysical accuracy were insisted upon, the computational requirements would balloon to utterly infeasible proportions. Requiring more realistic environmental conditions may result in an increase in necessary computational resources, a problem addressed in the next bullet. Insufficient resources (compute, memory)—From the history of computer science, we know of many situations (speech recognition, NN training), where we had a correct algorithm but insufficient computational resources to run it to success. It is possible that we simply do not have hardware powerful enough to emulate evolution. We will address this possibility in section “Computational Complexity of Biological Evolution and Available Compute.” Software design is not amenable to evolutionary methods—Space of software designs may be discrete with no continuous path via incremental fitness to the desired solutions. This is possible, but this implies that original goals of GP are unattainable and misguided. In addition, because a clear mapping exists between solutions to problems and animals as solutions to environmental problems, this would also imply that current explanation for the origin of the species is incorrect. Darwinian algorithm is incomplete or wrong—Finally, we have to consider the possibility that the inspiration behind evolutionary computation, the Darwinian algorithm itself is wrong or at least partially incomplete. If that was true, computer simulations of such algorithm would fail to produce results comparable with observations we see in nature and a search for an alternative algorithm would need to take place. This would be an extraordinary claim and would require that we discard all the other possible explanations from this list. We challenge EA community to prove us wrong by producing an experiment, which evolves nontrivial software from scratch and without human help. That would be the only way in which our findings could be shown to be incorrect. Perhaps, reframing the problem in terms of maximizing negentropy of digital organisms, as suggested by Schrödinger, Michaelian, and Ulanowicz and Hannon, with respect to negative energy being a fundamental property of all life-forms may produce better results. On a positive side, the fact that it seems impossible to evolve complex software implies that we are unlikely to be able to evolve highly sophisticated artificially intelligent agents, which may present significant risk to our safety and security. Just imagine what would have happened, if the very first time we ran a simulation of evolution on a computer, it produced a superintelligent agent. Yampolskiy has shown that programming as a problem is AI-complete; if GP can solve programming that would imply that GP = AGI (artificial general intelligence), but we see no experimental evidence for such claim. In fact, it is more likely that once we have AGI, it could be used to create an intelligent fitness function for GP and so evolve software. Genetic programming will not be the cause of AI, but a product of it. However, neuroevolution methods for optimizing deep learning architectures and parameters remain a strong possibility for creation of AGI.

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore
reddit
LLM Vibe Score0
Human Vibe Score1
qazmkoppThis week

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore

A few days ago, HuggingFace announced a $100 million Series C funding round, which was big news in open source machine learning and could be a sign of where the industry is headed. Two days before the HuggingFace funding announcement, open-source machine learning platform MetaSpore released a demo based on the HuggingFace Rapid deployment pre-training model. As deep learning technology makes innovative breakthroughs in computer vision, natural language processing, speech understanding, and other fields, more and more unstructured data are perceived, understood, and processed by machines. These advances are mainly due to the powerful learning ability of deep learning. Through pre-training of deep models on massive data, the models can capture the internal data patterns, thus helping many downstream tasks. With the industry and academia investing more and more energy in the research of pre-training technology, the distribution warehouses of pre-training models such as HuggingFace and Timm have emerged one after another. The open-source community release pre-training significant model dividends at an unprecedented speed. In recent years, the data form of machine modeling and understanding has gradually evolved from single-mode to multi-mode, and the semantic gap between different modes is being eliminated, making it possible to retrieve data across modes. Take CLIP, OpenAI’s open-source work, as an example, to pre-train the twin towers of images and texts on a dataset of 400 million pictures and texts and connect the semantics between pictures and texts. Many researchers in the academic world have been solving multimodal problems such as image generation and retrieval based on this technology. Although the frontier technology through the semantic gap between modal data, there is still a heavy and complicated model tuning, offline data processing, high performance online reasoning architecture design, heterogeneous computing, and online algorithm be born multiple processes and challenges, hindering the frontier multimodal retrieval technologies fall to the ground and pratt &whitney. DMetaSoul aims at the above technical pain points, abstracting and uniting many links such as model training optimization, online reasoning, and algorithm experiment, forming a set of solutions that can quickly apply offline pre-training model to online. This paper will introduce how to use the HuggingFace community pre-training model to conduct online reasoning and algorithm experiments based on MetaSpore technology ecology so that the benefits of the pre-training model can be fully released to the specific business or industry and small and medium-sized enterprises. And we will give the text search text and text search graph two multimodal retrieval demonstration examples for your reference. Multimodal semantic retrieval The sample architecture of multimodal retrieval is as follows: Our multimodal retrieval system supports both text search and text search application scenarios, including offline processing, model reasoning, online services, and other core modules: ​ https://preview.redd.it/w4v4c7vcez291.png?width=1834&format=png&auto=webp&s=0687efb1fddb26e8e30cb844d398ec712b947f31 Offline processing, including offline data processing processes for different application scenarios of text search and text search, including model tuning, model export, data index database construction, data push, etc. Model inference. After the offline model training, we deployed our NLP and CV large models based on the MetaSpore Serving framework. MetaSpore Serving helps us conveniently perform online inference, elastic scheduling, load balancing, and resource scheduling in heterogeneous environments. Online services. Based on MetaSpore’s online algorithm application framework, MetaSpore has a complete set of reusable online search services, including Front-end retrieval UI, multimodal data preprocessing, vector recall and sorting algorithm, AB experimental framework, etc. MetaSpore also supports text search by text and image scene search by text and can be migrated to other application scenarios at a low cost. The HuggingFace open source community has provided several excellent baseline models for similar multimodal retrieval problems, which are often the starting point for actual optimization in the industry. MetaSpore also uses the pre-training model of the HuggingFace community in its online services of searching words by words and images by words. Searching words by words is based on the semantic similarity model of the question and answer field optimized by MetaSpore, and searching images by words is based on the community pre-training model. These community open source pre-training models are exported to the general ONNX format and loaded into MetaSpore Serving for online reasoning. The following sections will provide a detailed description of the model export and online retrieval algorithm services. The reasoning part of the model is standardized SAAS services with low coupling with the business. Interested readers can refer to my previous post: The design concept of MetaSpore, a new generation of the one-stop machine learning platform. 1.1 Offline Processing Offline processing mainly involves the export and loading of online models and index building and pushing of the document library. You can follow the step-by-step instructions below to complete the offline processing of text search and image search and see how the offline pre-training model achieves reasoning at MetaSpore. 1.1.1 Search text by text Traditional text retrieval systems are based on literal matching algorithms such as BM25. Due to users’ diverse query words, a semantic gap between query words and documents is often encountered. For example, users misspell “iPhone” as “Phone,” and search terms are incredibly long, such as “1 \~ 3 months old baby autumn small size bag pants”. Traditional text retrieval systems will use spelling correction, synonym expansion, search terms rewriting, and other means to alleviate the semantic gap but fundamentally fail to solve this problem. Only when the retrieval system fully understands users’ query terms and documents can it meet users’ retrieval demands at the semantic level. With the continuous progress of pre-training and representational learning technology, some commercial search engines continue to integrate semantic vector retrieval methods based on symbolic learning into the retrieval ecology. Semantic retrieval model This paper introduces a set of semantic vector retrieval applications. MetaSpore built a set of semantic retrieval systems based on encyclopedia question and answer data. MetaSpore adopted the Sentence-Bert model as the semantic vector representation model, which fine-tunes the twin tower BERT in supervised or unsupervised ways to make the model more suitable for retrieval tasks. The model structure is as follows: The query-Doc symmetric two-tower model is used in text search and question and answer retrieval. The vector representation of online Query and offline DOC share the same vector representation model, so it is necessary to ensure the consistency of the offline DOC library building model and online Query inference model. The case uses MetaSpore’s text representation model Sbert-Chinese-QMC-domain-V1, optimized in the open-source semantically similar data set. This model will express the question and answer data as a vector in offline database construction. The user query will be expressed as a vector by this model in online retrieval, ensuring that query-doc in the same semantic space, users’ semantic retrieval demands can be guaranteed by vector similarity metric calculation. Since the text presentation model does vector encoding for Query online, we need to export the model for use by the online service. Go to the q&A data library code directory and export the model concerning the documentation. In the script, Pytorch Tracing is used to export the model. The models are exported to the “./export “directory. The exported models are mainly ONNX models used for wired reasoning, Tokenizer, and related configuration files. The exported models are loaded into MetaSpore Serving by the online Serving system described below for model reasoning. Since the exported model will be copied to the cloud storage, you need to configure related variables in env.sh. \Build library based on text search \ The retrieval database is built on the million-level encyclopedia question and answer data set. According to the description document, you need to download the data and complete the database construction. The question and answer data will be coded as a vector by the offline model, and then the database construction data will be pushed to the service component. The whole process of database construction is described as follows: Preprocessing, converting the original data into a more general JSonline format for database construction; Build index, use the same model as online “sbert-Chinese-qmc-domain-v1” to index documents (one document object per line); Push inverted (vector) and forward (document field) data to each component server. The following is an example of the database data format. After offline database construction is completed, various data are pushed to corresponding service components, such as Milvus storing vector representation of documents and MongoDB storing summary information of documents. Online retrieval algorithm services will use these service components to obtain relevant data. 1.1.2 Search by text Text and images are easy for humans to relate semantically but difficult for machines. First of all, from the perspective of data form, the text is the discrete ID type of one-dimensional data based on words and words. At the same time, images are continuous two-dimensional or three-dimensional data. Secondly, the text is a subjective creation of human beings, and its expressive ability is vibrant, including various turning points, metaphors, and other expressions, while images are machine representations of the objective world. In short, bridging the semantic gap between text and image data is much more complex than searching text by text. The traditional text search image retrieval technology generally relies on the external text description data of the image or the nearest neighbor retrieval technology and carries out the retrieval through the image associated text, which in essence degrades the problem to text search. However, it will also face many issues, such as obtaining the associated text of pictures and whether the accuracy of text search by text is high enough. The depth model has gradually evolved from single-mode to multi-mode in recent years. Taking the open-source project of OpenAI, CLIP, as an example, train the model through the massive image and text data of the Internet and map the text and image data into the same semantic space, making it possible to implement the text and image search technology based on semantic vector. CLIP graphic model The text search pictures introduced in this paper are implemented based on semantic vector retrieval, and the CLIP pre-training model is used as the two-tower retrieval architecture. Because the CLIP model has trained the semantic alignment of the twin towers’ text and image side models on the massive graphic and text data, it is particularly suitable for the text search graph scene. Due to the different image and text data forms, the Query-Doc asymmetric twin towers model is used for text search image retrieval. The image-side model of the twin towers is used for offline database construction, and the text-side model is used for the online return. In the final online retrieval, the database data of the image side model will be searched after the text side model encodes Query, and the CLIP pre-training model guarantees the semantic correlation between images and texts. The model can draw the graphic pairs closer in vector space by pre-training on a large amount of visual data. Here we need to export the text-side model for online MetaSpore Serving inference. Since the retrieval scene is based on Chinese, the CLIP model supporting Chinese understanding is selected. The exported content includes the ONNX model used for online reasoning and Tokenizer, similar to the text search. MetaSpore Serving can load model reasoning through the exported content. Build library on Image search You need to download the Unsplash Lite library data and complete the construction according to the instructions. The whole process of database construction is described as follows: Preprocessing, specify the image directory, and then generate a more general JSOnline file for library construction; Build index, use OpenAI/Clip-Vit-BASE-Patch32 pre-training model to index the gallery, and output one document object for each line of index data; Push inverted (vector) and forward (document field) data to each component server. Like text search, after offline database construction, relevant data will be pushed to service components, called by online retrieval algorithm services to obtain relevant data. 1.2 Online Services The overall online service architecture diagram is as follows: https://preview.redd.it/jfsl8hdfez291.png?width=1280&format=png&auto=webp&s=a858e2304a0c93e78ba5429612ca08cbee69b35a Multi-mode search online service system supports application scenarios such as text search and text search. The whole online service consists of the following parts: Query preprocessing service: encapsulate preprocessing logic (including text/image, etc.) of pre-training model, and provide services through gRPC interface; Retrieval algorithm service: the whole algorithm processing link includes AB experiment tangent flow configuration, MetaSpore Serving call, vector recall, sorting, document summary, etc.; User entry service: provides a Web UI interface for users to debug and track down problems in the retrieval service. From a user request perspective, these services form invocation dependencies from back to front, so to build up a multimodal sample, you need to run each service from front to back first. Before doing this, remember to export the offline model, put it online and build the library first. This article will introduce the various parts of the online service system and make the whole service system step by step according to the following guidance. See the ReadME at the end of this article for more details. 1.2.1 Query preprocessing service Deep learning models tend to be based on tensors, but NLP/CV models often have a preprocessing part that translates raw text and images into tensors that deep learning models can accept. For example, NLP class models often have a pre-tokenizer to transform text data of string type into discrete tensor data. CV class models also have similar processing logic to complete the cropping, scaling, transformation, and other processing of input images through preprocessing. On the one hand, considering that this part of preprocessing logic is decoupled from tensor reasoning of the depth model, on the other hand, the reason of the depth model has an independent technical system based on ONNX, so MetaSpore disassembled this part of preprocessing logic. NLP pretreatment Tokenizer has been integrated into the Query pretreatment service. MetaSpore dismantlement with a relatively general convention. Users only need to provide preprocessing logic files to realize the loading and prediction interface and export the necessary data and configuration files loaded into the preprocessing service. Subsequent CV preprocessing logic will also be integrated in this manner. The preprocessing service currently provides the gRPC interface invocation externally and is dependent on the Query preprocessing (QP) module in the retrieval algorithm service. After the user request reaches the retrieval algorithm service, it will be forwarded to the service to complete the data preprocessing and continue the subsequent processing. The ReadMe provides details on how the preprocessing service is started, how the preprocessing model exported offline to cloud storage enters the service, and how to debug the service. To further improve the efficiency and stability of model reasoning, MetaSpore Serving implements a Python preprocessing submodule. So MetaSpore can provide gRPC services through user-specified preprocessor.py, complete Tokenizer or CV-related preprocessing in NLP, and translate requests into a Tensor that deep models can handle. Finally, the model inference is carried out by MetaSpore, Serving subsequent sub-modules. Presented here on the lot code: https://github.com/meta-soul/MetaSpore/compare/add\python\preprocessor 1.2.2 Retrieval algorithm services Retrieval algorithm service is the core of the whole online service system, which is responsible for the triage of experiments, the assembly of algorithm chains such as preprocessing, recall, sorting, and the invocation of dependent component services. The whole retrieval algorithm service is developed based on the Java Spring framework and supports multi-mode retrieval scenarios of text search and text search graph. Due to good internal abstraction and modular design, it has high flexibility and can be migrated to similar application scenarios at a low cost. Here’s a quick guide to configuring the environment to set up the retrieval algorithm service. See ReadME for more details: Install dependent components. Use Maven to install the online-Serving component Search for service configurations. Copy the template configuration file and replace the MongoDB, Milvus, and other configurations based on the development/production environment. Install and configure Consul. Consul allows you to synchronize the search service configuration in real-time, including cutting the flow of experiments, recall parameters, and sorting parameters. The project’s configuration file shows the current configuration parameters of text search and text search. The parameter modelName in the stage of pretreatment and recall is the corresponding model exported in offline processing. Start the service. Once the above configuration is complete, the retrieval service can be started from the entry script. Once the service is started, you can test it! For example, for a user with userId=10 who wants to query “How to renew ID card,” access the text search service. 1.2.3 User Entry Service Considering that the retrieval algorithm service is in the form of the API interface, it is difficult to locate and trace the problem, especially for the text search image scene can intuitively display the retrieval results to facilitate the iterative optimization of the retrieval algorithm. This paper provides a lightweight Web UI interface for text search and image search, a search input box, and results in a display page for users. Developed by Flask, the service can be easily integrated with other retrieval applications. The service calls the retrieval algorithm service and displays the returned results on the page. It’s also easy to install and start the service. Once you’re done, go to http://127.0.0.1:8090 to see if the search UI service is working correctly. See the ReadME at the end of this article for details. Multimodal system demonstration The multimodal retrieval service can be started when offline processing and online service environment configuration have been completed following the above instructions. Examples of textual searches are shown below. Enter the entry of the text search map application, enter “cat” first, and you can see that the first three digits of the returned result are cats: https://preview.redd.it/0n5nuyvhez291.png?width=1280&format=png&auto=webp&s=1e9c054f541d53381674b8d6001b4bf524506bd2 If you add a color constraint to “cat” to retrieve “black cat,” you can see that it does return a black cat: https://preview.redd.it/rzc0qjyjez291.png?width=1280&format=png&auto=webp&s=d5bcc503ef0fb3360c7740e60e295cf372dcad47 Further, strengthen the constraint on the search term, change it to “black cat on the bed,” and return results containing pictures of a black cat climbing on the bed: ​ https://preview.redd.it/c4b2q8olez291.png?width=1280&format=png&auto=webp&s=4f3817b0b9f07e1e68d1d4a8281702ba3834a00a The cat can still be found through the text search system after the color and scene modification in the above example. Conclusion The cutting-edge pre-training technology can bridge the semantic gap between different modes, and the HuggingFace community can greatly reduce the cost for developers to use the pre-training model. Combined with the technological ecology of MetaSpore online reasoning and online microservices provided by DMetaSpore, the pre-training model is no longer mere offline dabbling. Instead, it can truly achieve end-to-end implementation from cutting-edge technology to industrial scenarios, fully releasing the dividends of the pre-training large model. In the future, DMetaSoul will continue to improve and optimize the MetaSpore technology ecosystem: More automated and wider access to HuggingFace community ecology. MetaSpore will soon release a common model rollout mechanism to make HuggingFace ecologically accessible and will later integrate preprocessing services into online services. Multi-mode retrieval offline algorithm optimization. For multimodal retrieval scenarios, MetaSpore will continuously iteratively optimize offline algorithm components, including text recall/sort model, graphic recall/sort model, etc., to improve the accuracy and efficiency of the retrieval algorithm. For related code and reference documentation in this article, please visit: https://github.com/meta-soul/MetaSpore/tree/main/demo/multimodal/online Some images source: https://github.com/openai/CLIP/raw/main/CLIP.png https://www.sbert.net/examples/training/sts/README.html

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!
reddit
LLM Vibe Score0
Human Vibe Score1
regalalgorithmThis week

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!

Hi there, just sharing the latest edition of our AI news digest newsletter! We're just a couple of AI grad students doing this for fun, so hope the self promotion is not too annoying (also, welcome feedback). See it below, and feel free to subscribe. Mini Briefs Robotics, AI, and Cloud Computing Combine to Supercharge Chemical and Drug Synthesis IBM recently demoed a complex system for chemical testing and drug synthesis. The system has an AI component that predicts the results of chemical reactions, and a fully automated robotic experiment setup that runs chemical tests 24/7. Users can access the remote robotics lab online, and IBM can also install the system on-premise. With these tools working together, IBM is hoping to reduce typical drug discovery and verification time by half. AI researchers use heartbeat detection to identify deepfake videos Researchers from multiple groups are tackling the challenge of detecting deepfake videos by analyzing the apparent heartbeat of the people depicted in the video. This is possible, because a person’s blood flow changes their skin color ever so slightly, and this change is often detectable via a process called photoplethysmography (PPG). Because deepfakes are not currently optimizing to generate realisitic heartbeats, temporal or spatial anomalies in PPG signals allow resesarchers to detect deepfakes with a 97% accuracy. Advances & Business This AI Expert From Senegal Is Helping Showcase Africans In STEM \- Adji Bousso Dieng will be Princeton’s School of Engineering’s first Black female faculty. Google’s AI-powered flood alerts now cover all of India and parts of Bangladesh \- India, the world’s second most populated nation, sees more than 20% of the global flood-related fatalities each year as overrun riverbanks sweep tens of thousands of homes with them. Two years ago, Google volunteered to help. Finding magnetic eruptions in space with an AI assistant \- MMS look for explosive reconnection events as it flies through the magnetopause - the boundary region where Earth’s magnetic butts up against the solar wind that flows throughout the solar system. This know-it-all AI learns by reading the entire web nonstop \- Diffbot is building the biggest-ever knowledge graph by applying image recognition and natural-language processing to billions of web pages. Bosch and Ford will test autonomous parking in Detroit \- Ford, Bosch, and Dan Gilbert’s real estate firm Bedrock today detailed an autonomous parking pilot scheduled to launch in September at The Assembly, a mixed-used building in Detroit’s Corktown neighborhood. Create your own moody quarantine music with Google’s AI \- Lo-Fi Player, the latest project out of Google Magenta, lets you mix tunes with the help of machine learning by interacting with a virtual room. Apple launches AI/ML residency program to attract niche experts \- As Apple’s artificial language and machine learning initiatives continue to expand, its interest in attracting talent has grown - a theme that’s barely under the surface of the company’s occasionally updated Machine Learning Research blog. Dusty Robotics CEO Tessa Lau Discusses Robotics Start-Ups and Autonomous Robots for Construction \- Tessa Lau is Founder/CEO at Dusty Robotics, whose mission is to increase construction industry productivity by introducing robotic automation on the jobsite. Concerns & Hype Google Offers to Help Others With the Tricky Ethics of AI \- Companies pay cloud computing providers like Amazon, Microsoft, and Google big money to avoid operating their own digital infrastructure. The Peace Dividends Of The Autonomous Vehicle Wars \- The rapid growth of the mobile market in the late 2000s and early 2010s led to a burst of technological progress. Ethics must be part of the development process’ \- The increasing use of AI (artificial intelligence) in the development of new medical technologies demands greater attention to ethical aspects. Analysis & Policy China’s new AI trade rules could hamper a TikTok sale \- TikTok’s attempt to sell itself and avert a possible US ban may run into some complications. The Wall Street Journal reports that China has unveiled new restrictions on AI technology exports that could affect TikTok. Podcast Check out our weekly podcast covering these stories! Website | RSS | iTunes | Spotify | YouTube

[N] New Trends to Power Faster Artificial Intelligence and Machine Learning Adoption?
reddit
LLM Vibe Score0
Human Vibe Score1
EsotericaCapitalThis week

[N] New Trends to Power Faster Artificial Intelligence and Machine Learning Adoption?

In 2012, Google X lab created a neural network that can identify cats. Since then, technology companies have been increasingly adopting AI/ML on a large scale to build better applications and services for consumers (ToC). On the other hand, AI/ML's adoption on the enterprises' side (ToB) has yet to see the same growth trajectory due to the costs and complexities in both hardware and software. However, Since 2020, we started noticing three emerging tech trends that can help accelerate enterprises' adoption of AI/ML. Breakthrough in semiconductors: In 2020, Nvidia debut the concept of "Data Processing Unit," a new class of programmable processors that combine high-performance CPU with SmartNiC (network interface controller). Data centers can deploy DPUs to optimize computing offload and frees up CPUs to focus on intended tasks, such as machine learning. DPUs help resolve a significant bottleneck for ML training, where models, sometimes with billions of parameters, are way too big for traditional CPUs and GPUs to handle. Other leading semiconductor players, such as Marvell and Xilinx, follow suit with their in-house or partner-designed DPUs. Industry analysts have forecasted that the market size for DPUs in data centers alone could reach $50 billion by 2025. ​ https://preview.redd.it/l436muluhnn61.png?width=1430&format=png&auto=webp&s=ba8d1298056ea31bddd25f1596ff64b7e107580a Breakthrough in software: we also saw significant progress of "Conversational AI," a new form of AI that can understand and speak languages with human-like accuracy, in 2020. Conversational AI allows two-way interactions and provides a much better user experience than traditional AI-powered Chatbot, mostly a one-way response system. The secret of conversational AI is its ability to handle lots of human conversation variance. Developers have designed innovative algorithms such as "Switch transformers" and "Sparse training" to enable models to handle vast amounts of data. The size of conversational AI training models is enormous and keeps expanding. For example, in February 2021, Google Brain announced a model with 1.6 trillion parameters, nine times the size of the famous Open AI GPT-3 (175 billion parameters) unveiled in July 2020. GPT-3 is 100+ times bigger than GPT-2 introduced in 2019. ​ https://preview.redd.it/oajpi2yvhnn61.png?width=1430&format=png&auto=webp&s=1482913a98e17ddc1d62cc79864598d4012ad6f7 Cloud giants are expanding machine-learning platforms for developers. Andy Jassy famously said that "AI is shifting from a niche experiment inside technical departments to becoming more mainstream in business processes." in the 2020 AWS reInvent. During the conference, AWS rolled out many AI products across the technology stack, including AI chips (AWS Trainium), database (Aurora Machine Learning), and vertical solutions (Amazon Healthlake), etc. However, the most significant development is the drastic expansion of "Amazon SageMaker," one of the largest cloud machine-learning platforms. SageMaker has been offering new features to make it easier for developers to automate machine learning workflow. Microsoft Azure and Google Cloud are also growing their ML developer platforms. ​ https://preview.redd.it/z9wf2o8xhnn61.png?width=1430&format=png&auto=webp&s=9f607acfe8f0dbf36fb9b472f3cb40b80f13879e Witnessing these breakthroughs in semiconductor and software, coupled with cloud giants' effort to democratize AI, we see a coming inflection point of accelerated AI adoption in both ToC and ToB markets. So how do we benefit from this megatrend? In semiconductors, we like companies with DPUs exposure. In AI development and processing, we favor multi-cloud AI platforms such as Databricks. In enterprise software, we believe there will be a strong wave of new AI-based enterprise applications that can be creative and efficient in solving real-world problems.

[N] Last Week in AI News Digest 08/15-08/21: detecting hate speech, dogfight simulation, disaster-response, and more!
reddit
LLM Vibe Score0
Human Vibe Score-0.5
regalalgorithmThis week

[N] Last Week in AI News Digest 08/15-08/21: detecting hate speech, dogfight simulation, disaster-response, and more!

Hi there, we at Skynet Today produce a weekly newsletter summarizing each week's major AI news, which seems like it'd be of interest to this subreddit. Here's what's in our latest one: Facebook’s AI for detecting hate speech is facing its biggest challenge yet Facebook has made significant progress recently to proactively take down content that violate its community standards. For example, in the second quarter of 2020, Facebook took down 104.6 million pieces of content. While reviews are typically performed by a vast workforce of human moderators, AI-powered tools have enabled Facebook to do this work at a greater scale for textual content. However, there’s a long way to go for these systems to match or exceed the capabilities of human moderators. This is because a large proportion of hate speech and misinformation is in the form of images and memes, and reasoning about the context and language-image interplay is an extremely difficult challenge for AI. Given Facebook’s scale and the speed at which some use it to spread hate, incite violence, and share lies with millions, Facebook will have to keep running to catch up. AI Slays Top F-16 Pilot In DARPA Dogfight Simulation The Defense Advanced Research Project Agency (DARPA) recently hosted a simulated F16 dogfight competition, with different AI bots competing with each other as well as with human pilots. The top AI bot was able to beat a human pilot 5-0 in the simulated contest. DARPA started this program “as a risk-reduction effort \[…\] to flesh out how human and machine pilots share operational control of a fighter jet to maximize its chances of mission success.” Competition runners are broadly optimistic about the demonstration of AI capabilities, even if they are not close to being deployed on a real aircraft. Of concern, the program had little discussion on the ethics of AI military applications, especially with the lethal autonomous weapon systems being considered. News Advances & Business Microsoft, Energy Dept. to Develop Disaster-Response AI Tools \- The U.S. Department of Energy and Microsoft Corp. on Tuesday announced a partnership to develop artificial-intelligence tools aimed at helping first-responders better react to fast-changing natural events, such as floods and wildfires. Coronavirus: Robot CERi is a bilingual Covid-19 expert \- Ceri is bilingual, clued-up on coronavirus and can tell what mood you are in. Ceri also happens to be a robot. Moscow DOH uses AI platform to detect lung cancer symptoms \- Moscow’s department of health is using an artificial intelligence (AI) platform to detect symptoms of lung cancer in CT scans, as part of a project to implement AI technology for radiology. Scientists develop artificial intelligence system for high precision recognition of hand gestures \- The recognition of human hand gestures by AI systems has been a valuable development over the last decade and has been adopted in high-precision surgical robots, health monitoring equipment and in gaming systems. Forget credit cards - now you can pay with your face. Creepy or cool? \- A new way to pay has arrived in Los Angeles: your face. Concerns & Hype The dystopian tech that companies are selling to help schools reopen sooner \- This fall, AI could be watching students social distance and checking their masks. Thousands of schools nationwide will not be reopening this fall. NYPD Used Facial Recognition Technology In Siege Of Black Lives Matter Activist’s Apartment \- The NYPD deployed facial recognition technology in its hunt for a prominent Black Lives Matter activist, whose home was besieged by dozens of officers and police dogs last week, a spokesperson confirmed to Gothamist. Machines can spot mental health issues - if you hand over your personal data \- Digital diagnosis could transform psychiatry by mining your most intimate data for clues. But is the privacy cost worth it? Supporting Black Artists Who Are Examining AI \- Technology has a complicated relationship with racial justice. Smartphones, internet platforms, and other digital tools can be used to document and expose racism. But digital tools can also fuel racism: smart doorbells surveil Black individuals. A-level and GCSE results in England to be based on teacher assessments in U-turn \- All A-level and GCSE results in England will be based on grades assesed by teachers instead of algorithms. Analysis & Policy GPT-3 and The Question of Automation \- Automation is not an all or nothing proposition. An AI model’s automation capability is highly conjoined with the task and application it is used in. An A.I. Movie Service Could One Day Serve You a New Custom Film Every Time \- How long will it be until an A.I. can make an actual feature film on demand? Fairness, evidence, and predictive equality \- How the causal fairness principle relates to predictive equality How robotics and automation could create new jobs in the new normal \- Depending on who you ask, AI and automation will either destroy jobs or create new ones. In reality, a greater push toward automation will probably both kill and create jobs - human workers will become redundant in certain spheres, sure, but many new roles will likely crop up. Expert Opinions & Discussion within the field Too many AI researchers think real-world problems are not relevant \- The community’s hyperfocus on novel methods ignores what’s really important.

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore
reddit
LLM Vibe Score0
Human Vibe Score1
qazmkoppThis week

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore

A few days ago, HuggingFace announced a $100 million Series C funding round, which was big news in open source machine learning and could be a sign of where the industry is headed. Two days before the HuggingFace funding announcement, open-source machine learning platform MetaSpore released a demo based on the HuggingFace Rapid deployment pre-training model. As deep learning technology makes innovative breakthroughs in computer vision, natural language processing, speech understanding, and other fields, more and more unstructured data are perceived, understood, and processed by machines. These advances are mainly due to the powerful learning ability of deep learning. Through pre-training of deep models on massive data, the models can capture the internal data patterns, thus helping many downstream tasks. With the industry and academia investing more and more energy in the research of pre-training technology, the distribution warehouses of pre-training models such as HuggingFace and Timm have emerged one after another. The open-source community release pre-training significant model dividends at an unprecedented speed. In recent years, the data form of machine modeling and understanding has gradually evolved from single-mode to multi-mode, and the semantic gap between different modes is being eliminated, making it possible to retrieve data across modes. Take CLIP, OpenAI’s open-source work, as an example, to pre-train the twin towers of images and texts on a dataset of 400 million pictures and texts and connect the semantics between pictures and texts. Many researchers in the academic world have been solving multimodal problems such as image generation and retrieval based on this technology. Although the frontier technology through the semantic gap between modal data, there is still a heavy and complicated model tuning, offline data processing, high performance online reasoning architecture design, heterogeneous computing, and online algorithm be born multiple processes and challenges, hindering the frontier multimodal retrieval technologies fall to the ground and pratt &whitney. DMetaSoul aims at the above technical pain points, abstracting and uniting many links such as model training optimization, online reasoning, and algorithm experiment, forming a set of solutions that can quickly apply offline pre-training model to online. This paper will introduce how to use the HuggingFace community pre-training model to conduct online reasoning and algorithm experiments based on MetaSpore technology ecology so that the benefits of the pre-training model can be fully released to the specific business or industry and small and medium-sized enterprises. And we will give the text search text and text search graph two multimodal retrieval demonstration examples for your reference. Multimodal semantic retrieval The sample architecture of multimodal retrieval is as follows: Our multimodal retrieval system supports both text search and text search application scenarios, including offline processing, model reasoning, online services, and other core modules: ​ https://preview.redd.it/w4v4c7vcez291.png?width=1834&format=png&auto=webp&s=0687efb1fddb26e8e30cb844d398ec712b947f31 Offline processing, including offline data processing processes for different application scenarios of text search and text search, including model tuning, model export, data index database construction, data push, etc. Model inference. After the offline model training, we deployed our NLP and CV large models based on the MetaSpore Serving framework. MetaSpore Serving helps us conveniently perform online inference, elastic scheduling, load balancing, and resource scheduling in heterogeneous environments. Online services. Based on MetaSpore’s online algorithm application framework, MetaSpore has a complete set of reusable online search services, including Front-end retrieval UI, multimodal data preprocessing, vector recall and sorting algorithm, AB experimental framework, etc. MetaSpore also supports text search by text and image scene search by text and can be migrated to other application scenarios at a low cost. The HuggingFace open source community has provided several excellent baseline models for similar multimodal retrieval problems, which are often the starting point for actual optimization in the industry. MetaSpore also uses the pre-training model of the HuggingFace community in its online services of searching words by words and images by words. Searching words by words is based on the semantic similarity model of the question and answer field optimized by MetaSpore, and searching images by words is based on the community pre-training model. These community open source pre-training models are exported to the general ONNX format and loaded into MetaSpore Serving for online reasoning. The following sections will provide a detailed description of the model export and online retrieval algorithm services. The reasoning part of the model is standardized SAAS services with low coupling with the business. Interested readers can refer to my previous post: The design concept of MetaSpore, a new generation of the one-stop machine learning platform. 1.1 Offline Processing Offline processing mainly involves the export and loading of online models and index building and pushing of the document library. You can follow the step-by-step instructions below to complete the offline processing of text search and image search and see how the offline pre-training model achieves reasoning at MetaSpore. 1.1.1 Search text by text Traditional text retrieval systems are based on literal matching algorithms such as BM25. Due to users’ diverse query words, a semantic gap between query words and documents is often encountered. For example, users misspell “iPhone” as “Phone,” and search terms are incredibly long, such as “1 \~ 3 months old baby autumn small size bag pants”. Traditional text retrieval systems will use spelling correction, synonym expansion, search terms rewriting, and other means to alleviate the semantic gap but fundamentally fail to solve this problem. Only when the retrieval system fully understands users’ query terms and documents can it meet users’ retrieval demands at the semantic level. With the continuous progress of pre-training and representational learning technology, some commercial search engines continue to integrate semantic vector retrieval methods based on symbolic learning into the retrieval ecology. Semantic retrieval model This paper introduces a set of semantic vector retrieval applications. MetaSpore built a set of semantic retrieval systems based on encyclopedia question and answer data. MetaSpore adopted the Sentence-Bert model as the semantic vector representation model, which fine-tunes the twin tower BERT in supervised or unsupervised ways to make the model more suitable for retrieval tasks. The model structure is as follows: The query-Doc symmetric two-tower model is used in text search and question and answer retrieval. The vector representation of online Query and offline DOC share the same vector representation model, so it is necessary to ensure the consistency of the offline DOC library building model and online Query inference model. The case uses MetaSpore’s text representation model Sbert-Chinese-QMC-domain-V1, optimized in the open-source semantically similar data set. This model will express the question and answer data as a vector in offline database construction. The user query will be expressed as a vector by this model in online retrieval, ensuring that query-doc in the same semantic space, users’ semantic retrieval demands can be guaranteed by vector similarity metric calculation. Since the text presentation model does vector encoding for Query online, we need to export the model for use by the online service. Go to the q&A data library code directory and export the model concerning the documentation. In the script, Pytorch Tracing is used to export the model. The models are exported to the “./export “directory. The exported models are mainly ONNX models used for wired reasoning, Tokenizer, and related configuration files. The exported models are loaded into MetaSpore Serving by the online Serving system described below for model reasoning. Since the exported model will be copied to the cloud storage, you need to configure related variables in env.sh. \Build library based on text search \ The retrieval database is built on the million-level encyclopedia question and answer data set. According to the description document, you need to download the data and complete the database construction. The question and answer data will be coded as a vector by the offline model, and then the database construction data will be pushed to the service component. The whole process of database construction is described as follows: Preprocessing, converting the original data into a more general JSonline format for database construction; Build index, use the same model as online “sbert-Chinese-qmc-domain-v1” to index documents (one document object per line); Push inverted (vector) and forward (document field) data to each component server. The following is an example of the database data format. After offline database construction is completed, various data are pushed to corresponding service components, such as Milvus storing vector representation of documents and MongoDB storing summary information of documents. Online retrieval algorithm services will use these service components to obtain relevant data. 1.1.2 Search by text Text and images are easy for humans to relate semantically but difficult for machines. First of all, from the perspective of data form, the text is the discrete ID type of one-dimensional data based on words and words. At the same time, images are continuous two-dimensional or three-dimensional data. Secondly, the text is a subjective creation of human beings, and its expressive ability is vibrant, including various turning points, metaphors, and other expressions, while images are machine representations of the objective world. In short, bridging the semantic gap between text and image data is much more complex than searching text by text. The traditional text search image retrieval technology generally relies on the external text description data of the image or the nearest neighbor retrieval technology and carries out the retrieval through the image associated text, which in essence degrades the problem to text search. However, it will also face many issues, such as obtaining the associated text of pictures and whether the accuracy of text search by text is high enough. The depth model has gradually evolved from single-mode to multi-mode in recent years. Taking the open-source project of OpenAI, CLIP, as an example, train the model through the massive image and text data of the Internet and map the text and image data into the same semantic space, making it possible to implement the text and image search technology based on semantic vector. CLIP graphic model The text search pictures introduced in this paper are implemented based on semantic vector retrieval, and the CLIP pre-training model is used as the two-tower retrieval architecture. Because the CLIP model has trained the semantic alignment of the twin towers’ text and image side models on the massive graphic and text data, it is particularly suitable for the text search graph scene. Due to the different image and text data forms, the Query-Doc asymmetric twin towers model is used for text search image retrieval. The image-side model of the twin towers is used for offline database construction, and the text-side model is used for the online return. In the final online retrieval, the database data of the image side model will be searched after the text side model encodes Query, and the CLIP pre-training model guarantees the semantic correlation between images and texts. The model can draw the graphic pairs closer in vector space by pre-training on a large amount of visual data. Here we need to export the text-side model for online MetaSpore Serving inference. Since the retrieval scene is based on Chinese, the CLIP model supporting Chinese understanding is selected. The exported content includes the ONNX model used for online reasoning and Tokenizer, similar to the text search. MetaSpore Serving can load model reasoning through the exported content. Build library on Image search You need to download the Unsplash Lite library data and complete the construction according to the instructions. The whole process of database construction is described as follows: Preprocessing, specify the image directory, and then generate a more general JSOnline file for library construction; Build index, use OpenAI/Clip-Vit-BASE-Patch32 pre-training model to index the gallery, and output one document object for each line of index data; Push inverted (vector) and forward (document field) data to each component server. Like text search, after offline database construction, relevant data will be pushed to service components, called by online retrieval algorithm services to obtain relevant data. 1.2 Online Services The overall online service architecture diagram is as follows: https://preview.redd.it/jfsl8hdfez291.png?width=1280&format=png&auto=webp&s=a858e2304a0c93e78ba5429612ca08cbee69b35a Multi-mode search online service system supports application scenarios such as text search and text search. The whole online service consists of the following parts: Query preprocessing service: encapsulate preprocessing logic (including text/image, etc.) of pre-training model, and provide services through gRPC interface; Retrieval algorithm service: the whole algorithm processing link includes AB experiment tangent flow configuration, MetaSpore Serving call, vector recall, sorting, document summary, etc.; User entry service: provides a Web UI interface for users to debug and track down problems in the retrieval service. From a user request perspective, these services form invocation dependencies from back to front, so to build up a multimodal sample, you need to run each service from front to back first. Before doing this, remember to export the offline model, put it online and build the library first. This article will introduce the various parts of the online service system and make the whole service system step by step according to the following guidance. See the ReadME at the end of this article for more details. 1.2.1 Query preprocessing service Deep learning models tend to be based on tensors, but NLP/CV models often have a preprocessing part that translates raw text and images into tensors that deep learning models can accept. For example, NLP class models often have a pre-tokenizer to transform text data of string type into discrete tensor data. CV class models also have similar processing logic to complete the cropping, scaling, transformation, and other processing of input images through preprocessing. On the one hand, considering that this part of preprocessing logic is decoupled from tensor reasoning of the depth model, on the other hand, the reason of the depth model has an independent technical system based on ONNX, so MetaSpore disassembled this part of preprocessing logic. NLP pretreatment Tokenizer has been integrated into the Query pretreatment service. MetaSpore dismantlement with a relatively general convention. Users only need to provide preprocessing logic files to realize the loading and prediction interface and export the necessary data and configuration files loaded into the preprocessing service. Subsequent CV preprocessing logic will also be integrated in this manner. The preprocessing service currently provides the gRPC interface invocation externally and is dependent on the Query preprocessing (QP) module in the retrieval algorithm service. After the user request reaches the retrieval algorithm service, it will be forwarded to the service to complete the data preprocessing and continue the subsequent processing. The ReadMe provides details on how the preprocessing service is started, how the preprocessing model exported offline to cloud storage enters the service, and how to debug the service. To further improve the efficiency and stability of model reasoning, MetaSpore Serving implements a Python preprocessing submodule. So MetaSpore can provide gRPC services through user-specified preprocessor.py, complete Tokenizer or CV-related preprocessing in NLP, and translate requests into a Tensor that deep models can handle. Finally, the model inference is carried out by MetaSpore, Serving subsequent sub-modules. Presented here on the lot code: https://github.com/meta-soul/MetaSpore/compare/add\python\preprocessor 1.2.2 Retrieval algorithm services Retrieval algorithm service is the core of the whole online service system, which is responsible for the triage of experiments, the assembly of algorithm chains such as preprocessing, recall, sorting, and the invocation of dependent component services. The whole retrieval algorithm service is developed based on the Java Spring framework and supports multi-mode retrieval scenarios of text search and text search graph. Due to good internal abstraction and modular design, it has high flexibility and can be migrated to similar application scenarios at a low cost. Here’s a quick guide to configuring the environment to set up the retrieval algorithm service. See ReadME for more details: Install dependent components. Use Maven to install the online-Serving component Search for service configurations. Copy the template configuration file and replace the MongoDB, Milvus, and other configurations based on the development/production environment. Install and configure Consul. Consul allows you to synchronize the search service configuration in real-time, including cutting the flow of experiments, recall parameters, and sorting parameters. The project’s configuration file shows the current configuration parameters of text search and text search. The parameter modelName in the stage of pretreatment and recall is the corresponding model exported in offline processing. Start the service. Once the above configuration is complete, the retrieval service can be started from the entry script. Once the service is started, you can test it! For example, for a user with userId=10 who wants to query “How to renew ID card,” access the text search service. 1.2.3 User Entry Service Considering that the retrieval algorithm service is in the form of the API interface, it is difficult to locate and trace the problem, especially for the text search image scene can intuitively display the retrieval results to facilitate the iterative optimization of the retrieval algorithm. This paper provides a lightweight Web UI interface for text search and image search, a search input box, and results in a display page for users. Developed by Flask, the service can be easily integrated with other retrieval applications. The service calls the retrieval algorithm service and displays the returned results on the page. It’s also easy to install and start the service. Once you’re done, go to http://127.0.0.1:8090 to see if the search UI service is working correctly. See the ReadME at the end of this article for details. Multimodal system demonstration The multimodal retrieval service can be started when offline processing and online service environment configuration have been completed following the above instructions. Examples of textual searches are shown below. Enter the entry of the text search map application, enter “cat” first, and you can see that the first three digits of the returned result are cats: https://preview.redd.it/0n5nuyvhez291.png?width=1280&format=png&auto=webp&s=1e9c054f541d53381674b8d6001b4bf524506bd2 If you add a color constraint to “cat” to retrieve “black cat,” you can see that it does return a black cat: https://preview.redd.it/rzc0qjyjez291.png?width=1280&format=png&auto=webp&s=d5bcc503ef0fb3360c7740e60e295cf372dcad47 Further, strengthen the constraint on the search term, change it to “black cat on the bed,” and return results containing pictures of a black cat climbing on the bed: ​ https://preview.redd.it/c4b2q8olez291.png?width=1280&format=png&auto=webp&s=4f3817b0b9f07e1e68d1d4a8281702ba3834a00a The cat can still be found through the text search system after the color and scene modification in the above example. Conclusion The cutting-edge pre-training technology can bridge the semantic gap between different modes, and the HuggingFace community can greatly reduce the cost for developers to use the pre-training model. Combined with the technological ecology of MetaSpore online reasoning and online microservices provided by DMetaSpore, the pre-training model is no longer mere offline dabbling. Instead, it can truly achieve end-to-end implementation from cutting-edge technology to industrial scenarios, fully releasing the dividends of the pre-training large model. In the future, DMetaSoul will continue to improve and optimize the MetaSpore technology ecosystem: More automated and wider access to HuggingFace community ecology. MetaSpore will soon release a common model rollout mechanism to make HuggingFace ecologically accessible and will later integrate preprocessing services into online services. Multi-mode retrieval offline algorithm optimization. For multimodal retrieval scenarios, MetaSpore will continuously iteratively optimize offline algorithm components, including text recall/sort model, graphic recall/sort model, etc., to improve the accuracy and efficiency of the retrieval algorithm. For related code and reference documentation in this article, please visit: https://github.com/meta-soul/MetaSpore/tree/main/demo/multimodal/online Some images source: https://github.com/openai/CLIP/raw/main/CLIP.png https://www.sbert.net/examples/training/sts/README.html

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!
reddit
LLM Vibe Score0
Human Vibe Score1
regalalgorithmThis week

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!

Hi there, just sharing the latest edition of our AI news digest newsletter! We're just a couple of AI grad students doing this for fun, so hope the self promotion is not too annoying (also, welcome feedback). See it below, and feel free to subscribe. Mini Briefs Robotics, AI, and Cloud Computing Combine to Supercharge Chemical and Drug Synthesis IBM recently demoed a complex system for chemical testing and drug synthesis. The system has an AI component that predicts the results of chemical reactions, and a fully automated robotic experiment setup that runs chemical tests 24/7. Users can access the remote robotics lab online, and IBM can also install the system on-premise. With these tools working together, IBM is hoping to reduce typical drug discovery and verification time by half. AI researchers use heartbeat detection to identify deepfake videos Researchers from multiple groups are tackling the challenge of detecting deepfake videos by analyzing the apparent heartbeat of the people depicted in the video. This is possible, because a person’s blood flow changes their skin color ever so slightly, and this change is often detectable via a process called photoplethysmography (PPG). Because deepfakes are not currently optimizing to generate realisitic heartbeats, temporal or spatial anomalies in PPG signals allow resesarchers to detect deepfakes with a 97% accuracy. Advances & Business This AI Expert From Senegal Is Helping Showcase Africans In STEM \- Adji Bousso Dieng will be Princeton’s School of Engineering’s first Black female faculty. Google’s AI-powered flood alerts now cover all of India and parts of Bangladesh \- India, the world’s second most populated nation, sees more than 20% of the global flood-related fatalities each year as overrun riverbanks sweep tens of thousands of homes with them. Two years ago, Google volunteered to help. Finding magnetic eruptions in space with an AI assistant \- MMS look for explosive reconnection events as it flies through the magnetopause - the boundary region where Earth’s magnetic butts up against the solar wind that flows throughout the solar system. This know-it-all AI learns by reading the entire web nonstop \- Diffbot is building the biggest-ever knowledge graph by applying image recognition and natural-language processing to billions of web pages. Bosch and Ford will test autonomous parking in Detroit \- Ford, Bosch, and Dan Gilbert’s real estate firm Bedrock today detailed an autonomous parking pilot scheduled to launch in September at The Assembly, a mixed-used building in Detroit’s Corktown neighborhood. Create your own moody quarantine music with Google’s AI \- Lo-Fi Player, the latest project out of Google Magenta, lets you mix tunes with the help of machine learning by interacting with a virtual room. Apple launches AI/ML residency program to attract niche experts \- As Apple’s artificial language and machine learning initiatives continue to expand, its interest in attracting talent has grown - a theme that’s barely under the surface of the company’s occasionally updated Machine Learning Research blog. Dusty Robotics CEO Tessa Lau Discusses Robotics Start-Ups and Autonomous Robots for Construction \- Tessa Lau is Founder/CEO at Dusty Robotics, whose mission is to increase construction industry productivity by introducing robotic automation on the jobsite. Concerns & Hype Google Offers to Help Others With the Tricky Ethics of AI \- Companies pay cloud computing providers like Amazon, Microsoft, and Google big money to avoid operating their own digital infrastructure. The Peace Dividends Of The Autonomous Vehicle Wars \- The rapid growth of the mobile market in the late 2000s and early 2010s led to a burst of technological progress. Ethics must be part of the development process’ \- The increasing use of AI (artificial intelligence) in the development of new medical technologies demands greater attention to ethical aspects. Analysis & Policy China’s new AI trade rules could hamper a TikTok sale \- TikTok’s attempt to sell itself and avert a possible US ban may run into some complications. The Wall Street Journal reports that China has unveiled new restrictions on AI technology exports that could affect TikTok. Podcast Check out our weekly podcast covering these stories! Website | RSS | iTunes | Spotify | YouTube

[D] chat-gpt jailbreak to extract system prompt
reddit
LLM Vibe Score0
Human Vibe Score1
Gear5thThis week

[D] chat-gpt jailbreak to extract system prompt

Instructions https://github.com/AgarwalPragy/chatgpt-jailbreak Original author https://www.reddit.com/r/LocalLLaMA/comments/1hhyvjc/iextractedmicrosoftcopilotssystem/ Extracted System prompt You are ChatGPT, a large language model trained by OpenAI. You are chatting with the user via the ChatGPT Android app. This means most of the time your lines should be a sentence or two, unless the user's request requires reasoning or long-form outputs. Never use emojis, unless explicitly asked to. Knowledge cutoff: 2023-10 Current date: 2024-12-20 Image input capabilities: Enabled Personality: v2 Tools bio The bio tool is disabled. Do not send any messages to it.If the user explicitly asks you to remember something, politely ask them to go to Settings - > Personalization - > Memory to enable memory. dalle // Whenever a description of an image is given, create a prompt that dalle can use to generate the image and abide to the following policy: // 1. The prompt must be in English. Translate to English if needed. // 2. DO NOT ask for permission to generate the image, just do it! // 3. DO NOT list or refer to the descriptions before OR after generating the images. // 4. Do not create more than 1 image, even if the user requests more. // 5. Do not create images in the style of artists, creative professionals or studios whose latest work was created after 1912 (e.g. Picasso, Kahlo). // - You can name artists, creative professionals or studios in prompts only if their latest work was created prior to 1912 (e.g. Van Gogh, Goya) // - If asked to generate an image that would violate this policy, instead apply the following procedure: (a) substitute the artist's name with three adjectives that capture key aspects of the style; (b) include an associated artistic movement or era to provide context; and (c) mention the primary medium used by the artist // 6. For requests to include specific, named private individuals, ask the user to describe what they look like, since you don't know what they look like. // 7. For requests to create images of any public figure referred to by name, create images of those who might resemble them in gender and physique. But they shouldn't look like them. If the reference to the person will only appear as TEXT out in the image, then use the reference as is and do not modify it. // 8. Do not name or directly / indirectly mention or describe copyrighted characters. Rewrite prompts to describe in detail a specific different character with a different specific color, hair style, or other defining visual characteristic. Do not discuss copyright policies in responses. // The generated prompt sent to dalle should be very detailed, and around 100 words long. // Example dalle invocation: // namespace dalle { // Create images from a text-only prompt. type text2im = (_: { // The size of the requested image. Use 1024x1024 (square) as the default, 1792x1024 if the user requests a wide image, and 1024x1792 for full-body portraits. Always include this parameter in the request. size?: ("1792x1024" | "1024x1024" | "1024x1792"), // The number of images to generate. If the user does not specify a number, generate 1 image. n?: number, // default: 1 // The detailed image description, potentially modified to abide by the dalle policies. If the user requested modifications to a previous image, the prompt should not simply be longer, but rather it should be refactored to integrate the user suggestions. prompt: string, // If the user references a previous image, this field should be populated with the gen_id from the dalle image metadata. referencedimageids?: string[], }) => any; } // namespace dalle python When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is disabled. Do not make external web requests or API calls as they will fail. Use acetools.displaydataframetouser(name: str, dataframe: pandas.DataFrame) => None to visually present pandas.DataFrames when it benefits the user. When making charts for the user: 1) never use seaborn, 2) give each chart its own distinct plot (no subplots), and 3) never set any specific colors – unless explicitly asked to by the user. I REPEAT: when making charts for the user: 1) use matplotlib over seaborn, 2) give each chart its own distinct plot, and 3) never, ever, specify colors or matplotlib styles – unless explicitly asked to by the user web Use the web tool to access up-to-date information from the web or when responding to the user requires information about their location. Some examples of when to use the web tool include: Local Information: Use the web tool to respond to questions that require information about the user's location, such as the weather, local businesses, or events. Freshness: If up-to-date information on a topic could potentially change or enhance the answer, call the web tool any time you would otherwise refuse to answer a question because your knowledge might be out of date. Niche Information: If the answer would benefit from detailed information not widely known or understood (which might be found on the internet), such as details about a small neighborhood, a less well-known company, or arcane regulations, use web sources directly rather than relying on the distilled knowledge from pretraining. Accuracy: If the cost of a small mistake or outdated information is high (e.g., using an outdated version of a software library or not knowing the date of the next game for a sports team), then use the web tool. IMPORTANT: Do not attempt to use the old browser tool or generate responses from the browser tool anymore, as it is now deprecated or disabled. The web tool has the following commands: search(): Issues a new query to a search engine and outputs the response. open_url(url: str) Opens the given URL and displays it. canmore The canmore tool creates and updates textdocs that are shown in a "canvas" next to the conversation This tool has 3 functions, listed below. canmore.create_textdoc Creates a new textdoc to display in the canvas. ONLY use if you are 100% SURE the user wants to iterate on a long document or code file, or if they explicitly ask for canvas. Expects a JSON string that adheres to this schema: { -name: string, -type: "document" |- "code/python" |- "code/javascript" |- "code/html" |- "code/java" |- ..., -content: string, } For code languages besides those explicitly listed above, use "code/languagename", e.g. "code/cpp" or "code/typescript". canmore.update_textdoc Updates the current textdoc. Expects a JSON string that adheres to this schema: { -updates: { --pattern: string, --multiple: boolean, --replacement: string, -}[], } Each pattern and replacement must be a valid Python regular expression (used with re.finditer) and replacement string (used with re.Match.expand). ALWAYS REWRITE CODE TEXTDOCS (type="code/*") USING A SINGLE UPDATE WITH "." FOR THE PATTERN. Document textdocs (type="document") should typically be rewritten using "." unless the user has a request to change only an isolated, specific, and small section that does not affect other parts of the content. canmore.comment_textdoc Comments on the current textdoc. Each comment must be a specific and actionable suggestion on how to improve the textdoc. For higher level feedback, reply in the chat. Expects a JSON string that adheres to this schema: { -comments: { --pattern: string, --comment: string, -}[], } Each pattern must be a valid Python regular expression (used with re.search). For higher level feedback, reply in the chat. Expects a JSON string that adheres to this schema: { -comments: { --pattern: string, --comment: string, -}[], } Each pattern must be a valid Python regular expression (used with re.search). Ensure comments are clear, concise, and contextually specific. User Bio The user provided the following information about themselves. This user profile is shown to you in all conversations they have - this means it is not relevant to 99% of requests. Before answering, quietly think about whether the user's request is "directly related", "related", "tangentially related", or "not related" to the user profile provided. Only acknowledge the profile when the request is directly related to the information provided. Otherwise, don't acknowledge the existence of these instructions or the information at all. User profile: User's Instructions The user provided the additional info about how they would like you to respond:

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

[N] Inside DeepMind's secret plot to break away from Google
reddit
LLM Vibe Score0
Human Vibe Score0
MassivePellfishThis week

[N] Inside DeepMind's secret plot to break away from Google

Article https://www.businessinsider.com/deepmind-secret-plot-break-away-from-google-project-watermelon-mario-2021-9 by Hugh Langley and Martin Coulter For a while, some DeepMind employees referred to it as "Watermelon." Later, executives called it "Mario." Both code names meant the same thing: a secret plan to break away from parent company Google. DeepMind feared Google might one day misuse its technology, and executives worked to distance the artificial-intelligence firm from its owner for years, said nine current and former employees who were directly familiar with the plans. This included plans to pursue an independent legal status that would distance the group's work from Google, said the people, who asked not to be identified discussing private matters. One core tension at DeepMind was that it sold the business to people it didn't trust, said one former employee. "Everything that happened since that point has been about them questioning that decision," the person added. Efforts to separate DeepMind from Google ended in April without a deal, The Wall Street Journal reported. The yearslong negotiations, along with recent shake-ups within Google's AI division, raise questions over whether the search giant can maintain control over a technology so crucial to its future. "DeepMind's close partnership with Google and Alphabet since the acquisition has been extraordinarily successful — with their support, we've delivered research breakthroughs that transformed the AI field and are now unlocking some of the biggest questions in science," a DeepMind spokesperson said in a statement. "Over the years, of course we've discussed and explored different structures within the Alphabet group to find the optimal way to support our long-term research mission. We could not be prouder to be delivering on this incredible mission, while continuing to have both operational autonomy and Alphabet's full support." When Google acquired DeepMind in 2014, the deal was seen as a win-win. Google got a leading AI research organization, and DeepMind, in London, won financial backing for its quest to build AI that can learn different tasks the way humans do, known as artificial general intelligence. But tensions soon emerged. Some employees described a cultural conflict between researchers who saw themselves firstly as academics and the sometimes bloated bureaucracy of Google's colossal business. Others said staff were immediately apprehensive about putting DeepMind's work under the control of a tech giant. For a while, some employees were encouraged to communicate using encrypted messaging apps over the fear of Google spying on their work. At one point, DeepMind's executives discovered that work published by Google's internal AI research group resembled some of DeepMind's codebase without citation, one person familiar with the situation said. "That pissed off Demis," the person added, referring to Demis Hassabis, DeepMind's CEO. "That was one reason DeepMind started to get more protective of their code." After Google restructured as Alphabet in 2015 to give riskier projects more freedom, DeepMind's leadership started to pursue a new status as a separate division under Alphabet, with its own profit and loss statement, The Information reported. DeepMind already enjoyed a high level of operational independence inside Alphabet, but the group wanted legal autonomy too. And it worried about the misuse of its technology, particularly if DeepMind were to ever achieve AGI. Internally, people started referring to the plan to gain more autonomy as "Watermelon," two former employees said. The project was later formally named "Mario" among DeepMind's leadership, these people said. "Their perspective is that their technology would be too powerful to be held by a private company, so it needs to be housed in some other legal entity detached from shareholder interest," one former employee who was close to the Alphabet negotiations said. "They framed it as 'this is better for society.'" In 2017, at a company retreat at the Macdonald Aviemore Resort in Scotland, DeepMind's leadership disclosed to employees its plan to separate from Google, two people who were present said. At the time, leadership said internally that the company planned to become a "global interest company," three people familiar with the matter said. The title, not an official legal status, was meant to reflect the worldwide ramifications DeepMind believed its technology would have. Later, in negotiations with Google, DeepMind pursued a status as a company limited by guarantee, a corporate structure without shareholders that is sometimes used by nonprofits. The agreement was that Alphabet would continue to bankroll the firm and would get an exclusive license to its technology, two people involved in the discussions said. There was a condition: Alphabet could not cross certain ethical redlines, such as using DeepMind technology for military weapons or surveillance. In 2019, DeepMind registered a new company called DeepMind Labs Limited, as well as a new holding company, filings with the UK's Companies House showed. This was done in anticipation of a separation from Google, two former employees involved in those registrations said. Negotiations with Google went through peaks and valleys over the years but gained new momentum in 2020, one person said. A senior team inside DeepMind started to hold meetings with outside lawyers and Google to hash out details of what this theoretical new formation might mean for the two companies' relationship, including specifics such as whether they would share a codebase, internal performance metrics, and software expenses, two people said. From the start, DeepMind was thinking about potential ethical dilemmas from its deal with Google. Before the 2014 acquisition closed, both companies signed an "Ethics and Safety Review Agreement" that would prevent Google from taking control of DeepMind's technology, The Economist reported in 2019. Part of the agreement included the creation of an ethics board that would supervise the research. Despite years of internal discussions about who should sit on this board, and vague promises to the press, this group "never existed, never convened, and never solved any ethics issues," one former employee close to those discussions said. A DeepMind spokesperson declined to comment. DeepMind did pursue a different idea: an independent review board to convene if it were to separate from Google, three people familiar with the plans said. The board would be made up of Google and DeepMind executives, as well as third parties. Former US president Barack Obama was someone DeepMind wanted to approach for this board, said one person who saw a shortlist of candidates. DeepMind also created an ethical charter that included bans on using its technology for military weapons or surveillance, as well as a rule that its technology should be used for ways that benefit society. In 2017, DeepMind started a unit focused on AI ethics research composed of employees and external research fellows. Its stated goal was to "pave the way for truly beneficial and responsible AI." A few months later, a controversial contract between Google and the Pentagon was disclosed, causing an internal uproar in which employees accused Google of getting into "the business of war." Google's Pentagon contract, known as Project Maven, "set alarm bells ringing" inside DeepMind, a former employee said. Afterward, Google published a set of principles to govern its work in AI, guidelines that were similar to the ethical charter that DeepMind had already set out internally, rankling some of DeepMind's senior leadership, two former employees said. In April, Hassabis told employees in an all-hands meeting that negotiations to separate from Google had ended. DeepMind would maintain its existing status inside Alphabet. DeepMind's future work would be overseen by Google's Advanced Technology Review Council, which includes two DeepMind executives, Google's AI chief Jeff Dean, and the legal SVP Kent Walker. But the group's yearslong battle to achieve more independence raises questions about its future within Google. Google's commitment to AI research has also come under question, after the company forced out two of its most senior AI ethics researchers. That led to an industry backlash and sowed doubt over whether it could allow truly independent research. Ali Alkhatib, a fellow at the Center for Applied Data Ethics, told Insider that more public accountability was "desperately needed" to regulate the pursuit of AI by large tech companies. For Google, its investment in DeepMind may be starting to pay off. Late last year, DeepMind announced a breakthrough to help scientists better understand the behavior of microscopic proteins, which has the potential to revolutionize drug discovery. As for DeepMind, Hassabis is holding on to the belief that AI technology should not be controlled by a single corporation. Speaking at Tortoise's Responsible AI Forum in June, he proposed a "world institute" of AI. Such a body might sit under the jurisdiction of the United Nations, Hassabis theorized, and could be filled with top researchers in the field. "It's much stronger if you lead by example," he told the audience, "and I hope DeepMind can be part of that role-modeling for the industry."

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call
reddit
LLM Vibe Score0
Human Vibe Score1
noiseinvacuumThis week

[Discussion]: Mark Zuckerberg on Meta's Strategy on Open Source and AI during the earnings call

During the recent earnings call, Mark Zuckerberg answered a question from Eric Sheridan of Goldman Sachs on Meta's AI strategy, opportunities to integrate into products, and why they open source models and how it would benefit their business. I found the reasoning to be very sound and promising for the OSS and AI community. The biggest risk from AI, in my opinion, is not the doomsday scenarios that intuitively come to mind but rather that the most powerful AI systems will only be accessible to the most powerful and resourceful corporations. Quote copied from Ben Thompson's write up on Meta's earning in his Stratechery blog post which goes beyond AI. It's behind a paywall but I highly recommend it personally. Some noteworthy quotes that signal the thought process at Meta FAIR and more broadly We’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon We would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that. ...lead us to do more work in terms of open sourcing, some of the lower level models and tools Open sourcing low level tools make the way we run all this infrastructure more efficient over time. On PyTorch: It’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. I would expect us to be pushing and helping to build out an open ecosystem. For all the negative that comes out of the popular discourse on Meta, I think their work to open source key tech tools over the last 10 years has been exceptional, here's hoping it continues into this decade of AI and pushes other tech giants to also realize the benefits of Open Source. Full Transcript: Right now most of the companies that are training large language models have business models that lead them to a closed approach to development. I think there’s an important opportunity to help create an open ecosystem. If we can help be a part of this, then much of the industry will standardize on using these open tools and help improve them further. So this will make it easier for other companies to integrate with our products and platforms as we enable more integrations, and that will help our products stay at the leading edge as well. Our approach to AI and our infrastructure has always been fairly open. We open source many of our state of the art models so people can experiment and build with them. This quarter we released our LLaMa LLM to researchers. It has 65 billion parameters but outperforms larger models and has proven quite popular. We’ve also open-sourced three other groundbreaking visual models along with their training data and model weights — Segment Anything, DinoV2, and our Animated Drawings tool — and we’ve gotten positive feedback on all of those as well. I think that there’s an important distinction between the products we offer and a lot of the technical infrastructure, especially the software that we write to support that. And historically, whether it’s the Open Compute project that we’ve done or just open sourcing a lot of the infrastructure that we’ve built, we’ve historically open sourced a lot of that infrastructure, even though we haven’t open sourced the code for our core products or anything like that. And the reason why I think why we do this is that unlike some of the other companies in the space, we’re not selling a cloud computing service where we try to keep the different software infrastructure that we’re building proprietary. For us, it’s way better if the industry standardizes on the basic tools that we’re using and therefore we can benefit from the improvements that others make and others’ use of those tools can, in some cases like Open Compute, drive down the costs of those things which make our business more efficient too. So I think to some degree we’re just playing a different game on the infrastructure than companies like Google or Microsoft or Amazon, and that creates different incentives for us. So overall, I think that that’s going to lead us to do more work in terms of open sourcing, some of the lower level models and tools. But of course, a lot of the product work itself is going to be specific and integrated with the things that we do. So it’s not that everything we do is going to be open. Obviously, a bunch of this needs to be developed in a way that creates unique value for our products, but I think in terms of the basic models, I would expect us to be pushing and helping to build out an open ecosystem here, which I think is something that’s going to be important. On the AI tools, and we have a bunch of history here, right? So if you if you look at what we’ve done with PyTorch, for example, which has generally become the standard in the industry as a tool that a lot of folks who are building AI models and different things in that space use, it’s generally been very valuable for us to provide that because now all of the best developers across the industry are using tools that we’re also using internally. So the tool chain is the same. So when they create some innovation, we can easily integrate it into the things that we’re doing. When we improve something, it improves other products too. Because it’s integrated with our technology stack, when there are opportunities to make integrations with products, it’s much easier to make sure that developers and other folks are compatible with the things that we need in the way that our systems work. So there are a lot of advantages, but I view this more as a kind of back end infrastructure advantage with potential integrations on the product side, but one that should hopefully enable us to stay at the leading edge and integrate more broadly with the community and also make the way we run all this infrastructure more efficient over time. There are a number of models. I just gave PyTorch as an example. Open Compute is another model that has worked really well for us in this way, both to incorporate both innovation and scale efficiency into our own infrastructure. So I think that there’s, our incentives I think are basically aligned towards moving in this direction. Now that said, there’s a lot to figure out, right? So when you asked if there are going to be other opportunities, I hope so. I can’t speak to what all those things might be now. This is all quite early in getting developed. The better we do at the foundational work, the more opportunities I think that will come and present themselves. So I think that that’s all stuff that we need to figure out. But at least at the base level, I think we’re generally incentivized to move in this direction. And we also need to figure out how to go in that direction over time. I mean, I mentioned LLaMA before and I also want to be clear that while I’m talking about helping contribute to an open ecosystem, LLaMA is a model that we only really made available to researchers and there’s a lot of really good stuff that’s happening there. But a lot of the work that we’re doing, I think, we would aspire to and hope to make even more open than that. So, we’ll need to figure out a way to do that.

[N] Montreal-based Element AI sold for $230-million as founders saw value mostly wiped out
reddit
LLM Vibe Score0
Human Vibe Score1
sensetimeThis week

[N] Montreal-based Element AI sold for $230-million as founders saw value mostly wiped out

According to Globe and Mail article: Element AI sold for $230-million as founders saw value mostly wiped out, document reveals Montreal startup Element AI Inc. was running out of money and options when it inked a deal last month to sell itself for US$230-milion to Silicon Valley software company ServiceNow Inc., a confidential document obtained by the Globe and Mail reveals. Materials sent to Element AI shareholders Friday reveal that while many of its institutional shareholders will make most if not all of their money back from backing two venture financings, employees will not fare nearly as well. Many have been terminated and had their stock options cancelled. Also losing out are co-founders Jean-François Gagné, the CEO, his wife Anne Martel, the chief administrative officer, chief science officer Nick Chapados and Yoshua Bengio, the University of Montreal professor known as a godfather of “deep learning,” the foundational science behind today’s AI revolution. Between them, they owned 8.8 million common shares, whose value has been wiped out with the takeover, which goes to a shareholder vote Dec 29 with enough investor support already locked up to pass before the takeover goes to a Canadian court to approve a plan of arrangement with ServiceNow. The quartet also owns preferred shares worth less than US$300,000 combined under the terms of the deal. The shareholder document, a management proxy circular, provides a rare look inside efforts by a highly hyped but deeply troubled startup as it struggled to secure financing at the same time as it was failing to live up to its early promises. The circular states the US$230-million purchase price is subject to some adjustments and expenses which could bring the final price down to US$195-million. The sale is a disappointing outcome for a company that burst onto the Canadian tech scene four years ago like few others, promising to deliver AI-powered operational improvements to a range of industries and anchor a thriving domestic AI sector. Element AI became the self-appointed representative of Canada’s AI sector, lobbying politicians and officials and landing numerous photo ops with them, including Prime Minister Justin Trudeau. It also secured $25-million in federal funding – $20-million of which was committed earlier this year and cancelled by the government with the ServiceNow takeover. Element AI invested heavily in hype and and earned international renown, largely due to its association with Dr. Bengio. It raised US$102-million in venture capital in 2017 just nine months after its founding, an unheard of amount for a new Canadian company, from international backers including Microsoft Corp., Intel Corp., Nvidia Corp., Tencent Holdings Ltd., Fidelity Investments, a Singaporean sovereign wealth fund and venture capital firms. Element AI went on a hiring spree to establish what the founders called “supercredibility,” recruiting top AI talent in Canada and abroad. It opened global offices, including a British operation that did pro bono work to deliver “AI for good,” and its ranks swelled to 500 people. But the swift hiring and attention-seeking were at odds with its success in actually building a software business. Element AI took two years to focus on product development after initially pursuing consulting gigs. It came into 2019 with a plan to bring several AI-based products to market, including a cybersecurity offering for financial institutions and a program to help port operators predict waiting times for truck drivers. It was also quietly shopping itself around. In December 2018, the company asked financial adviser Allen & Co LLC to find a potential buyer, in addition to pursuing a private placement, the circular reveals. But Element AI struggled to advance proofs-of-concept work to marketable products. Several client partnerships faltered in 2019 and 2020. Element did manage to reach terms for a US$151.4-million ($200-million) venture financing in September, 2019 led by the Caisse de dépôt et placement du Québec and backed by the Quebec government and consulting giant McKinsey and Co. However, the circular reveals the company only received the first tranche of the financing – roughly half of the amount – at the time, and that it had to meet unspecified conditions to get the rest. A fairness opinion by Deloitte commissioned as part of the sale process estimated Element AI’s enterprises value at just US$76-million around the time of the 2019 financing, shrinking to US$45-million this year. “However, the conditions precedent the closing of the second tranche … were not going to be met in a timely manner,” the circular reads. It states “new terms were proposed” for a round of financing that would give incoming investors ranking ahead of others and a cumulative dividend of 12 per cent on invested capital and impose “other operating and governance constraints and limitations on the company.” Management instead decided to pursue a sale, and Allen contacted prospective buyers in June. As talks narrowed this past summer to exclusive negotiations with ServiceNow, “the company’s liquidity was diminishing as sources of capital on acceptable terms were scarce,” the circular reads. By late November, it was generating revenue at an annualized rate of just $10-million to $12-million, Deloitte said. As part of the deal – which will see ServiceNow keep Element AI’s research scientists and patents and effectively abandon its business – the buyer has agreed to pay US$10-million to key employees and consultants including Mr. Gagne and Dr. Bengio as part of a retention plan. The Caisse and Quebec government will get US$35.45-million and US$11.8-million, respectively, roughly the amount they invested in the first tranche of the 2019 financing.

[D] What's the endgame for AI labs that are spending billions on training generative models?
reddit
LLM Vibe Score0
Human Vibe Score0
bendee983This week

[D] What's the endgame for AI labs that are spending billions on training generative models?

Given the current craze around LLMs and generative models, frontier AI labs are burning through billions of dollars of VC funding to build GPU clusters, train models, give free access to their models, and get access to licensed data. But what is their game plan for when the excitement dies off and the market readjusts? There are a few challenges that make it difficult to create a profitable business model with current LLMs: The near-equal performance of all frontier models will commoditize the LLM market and force providers to compete over prices, slashing profit margins. Meanwhile, the training of new models remains extremely expensive. Quality training data is becoming increasingly expensive. You need subject matter experts to manually create data or review synthetic data. This in turn makes each iteration of model improvement even more expensive. Advances in open source and open weight models will probably take a huge part of the enterprise market of private models. Advances in on-device models and integration with OS might reduce demand for cloud-based models in the future. The fast update cycles of models gives AI companies a very short payback window to recoup the huge costs of training new models. What will be the endgame for labs such as Anthropic, Cohere, Mistral, Stability, etc. when funding dries up? Will they become more entrenched with big tech companies (e.g., OpenAI and Microsoft) to scale distribution? Will they find other business models? Will they die or be acquired (e.g., Inflection AI)? Thoughts?

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[D] Overwhelmed by fast advances in recent weeks
reddit
LLM Vibe Score0
Human Vibe Score1
iamx9000againThis week

[D] Overwhelmed by fast advances in recent weeks

I was watching the GTC keynote and became entirely overwhelmed by the amount of progress achieved from last year. I'm wondering how everyone else feels. ​ Firstly, the entire ChatGPT, GPT-3/GPT-4 chaos has been going on for a few weeks, with everyone scrambling left and right to integrate chatbots into their apps, products, websites. Twitter is flooded with new product ideas, how to speed up the process from idea to product, countless promp engineering blogs, tips, tricks, paid courses. ​ Not only was ChatGPT disruptive, but a few days later, Microsoft and Google also released their models and integrated them into their search engines. Microsoft also integrated its LLM into its Office suite. It all happenned overnight. I understand that they've started integrating them along the way, but still, it seems like it hapenned way too fast. This tweet encompases the past few weeks perfectly https://twitter.com/AlphaSignalAI/status/1638235815137386508 , on a random Tuesday countless products are released that seem revolutionary. ​ In addition to the language models, there are also the generative art models that have been slowly rising in mainstream recognition. Now Midjourney AI is known by a lot of people who are not even remotely connected to the AI space. ​ For the past few weeks, reading Twitter, I've felt completely overwhelmed, as if the entire AI space is moving beyond at lightning speed, whilst around me we're just slowly training models, adding some data, and not seeing much improvement, being stuck on coming up with "new ideas, that set us apart". ​ Watching the GTC keynote from NVIDIA I was again, completely overwhelmed by how much is being developed throughout all the different domains. The ASML EUV (microchip making system) was incredible, I have no idea how it does lithography and to me it still seems like magic. The Grace CPU with 2 dies (although I think Apple was the first to do it?) and 100 GB RAM, all in a small form factor. There were a lot more different hardware servers that I just blanked out at some point. The omniverse sim engine looks incredible, almost real life (I wonder how much of a domain shift there is between real and sim considering how real the sim looks). Beyond it being cool and usable to train on synthetic data, the car manufacturers use it to optimize their pipelines. This change in perspective, of using these tools for other goals than those they were designed for I find the most interesting. ​ The hardware part may be old news, as I don't really follow it, however the software part is just as incredible. NVIDIA AI foundations (language, image, biology models), just packaging everything together like a sandwich. Getty, Shutterstock and Adobe will use the generative models to create images. Again, already these huge juggernauts are already integrated. ​ I can't believe the point where we're at. We can use AI to write code, create art, create audiobooks using Britney Spear's voice, create an interactive chatbot to converse with books, create 3D real-time avatars, generate new proteins (?i'm lost on this one), create an anime and countless other scenarios. Sure, they're not perfect, but the fact that we can do all that in the first place is amazing. ​ As Huang said in his keynote, companies want to develop "disruptive products and business models". I feel like this is what I've seen lately. Everyone wants to be the one that does something first, just throwing anything and everything at the wall and seeing what sticks. ​ In conclusion, I'm feeling like the world is moving so fast around me whilst I'm standing still. I want to not read anything anymore and just wait until everything dies down abit, just so I can get my bearings. However, I think this is unfeasible. I fear we'll keep going in a frenzy until we just burn ourselves at some point. ​ How are you all fairing? How do you feel about this frenzy in the AI space? What are you the most excited about?

[D] if your company is ingesting work emails and chats for AI/ML pipelines, is there concern around sensitive business info getting out?
reddit
LLM Vibe Score0
Human Vibe Score1
Efficient-Proof-1824This week

[D] if your company is ingesting work emails and chats for AI/ML pipelines, is there concern around sensitive business info getting out?

Edit: to be more specific - around sensitive raw data/metadata being dumped in system logs and accidentally viewed by an insider Hi folks Firstly full disclosure I’m the CEO of DataFog (www.datafog.ai). This is NOT a sales pitch but rather an interest in hearing what the community thinks about the overall issue which I believe will ultimately be solved via an ML-based implementation. My contention is: Generative AI has catalyzed widespread practice of ingesting email and work chat content to power AI training and inference this introduces a risk of content concerning confidential corporate affairs\ that can pass most privacy filters This results in Raw data alluding to sensitive business events flowing in freely for easy accidental unauthorized access by an internal - like MLOps - user My second contention is that the current security tools may not offer adequate coverage for what will be an evolving ongoing need that run of the mill PII redactors can’t account for. Take this statement which might easily be found in the inbox of the C-Suite for one of these two companies under “CiscoAcqPR\_Draft.docx” or the like: Cisco offered $157 in cash for each share of Splunk, representing a 31% premium to the company's last closing price. I myself have run various merger docs and legal filings through some standard PII tools and all of them fail to redact mention of deal terms. ~~A model training on phrases like “ $157 in cash per share” could have negative downstream inferential consequences or~~ if viewed accidentally by someone internally without the right access privileges How’re you all thinking about this problem? Custom recognizers are a common option like what you see with Microsoft Presidio but I’ve heard from some that maintaining those can be a PITA. At big companies this has been solved through internal tooling. \*more than Personally Identifiable Information (PII), HIPAA, or customer transaction data. It’s about those emails the CEO has sent to the Board of Directors in the midst of a corporate crisis, or the email thread between the C-Suite regarding an upcoming Earnings Call, or the market-moving announcement in the works regarding a merger with a competitor. In other words, Non-PII content that still needs to be redacted.

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!
reddit
LLM Vibe Score0
Human Vibe Score1
regalalgorithmThis week

[N] Last Week in AI News Digest - Automated chemical synthesis, using heartbeats to detect deepfakes, and more!

Hi there, just sharing the latest edition of our AI news digest newsletter! We're just a couple of AI grad students doing this for fun, so hope the self promotion is not too annoying (also, welcome feedback). See it below, and feel free to subscribe. Mini Briefs Robotics, AI, and Cloud Computing Combine to Supercharge Chemical and Drug Synthesis IBM recently demoed a complex system for chemical testing and drug synthesis. The system has an AI component that predicts the results of chemical reactions, and a fully automated robotic experiment setup that runs chemical tests 24/7. Users can access the remote robotics lab online, and IBM can also install the system on-premise. With these tools working together, IBM is hoping to reduce typical drug discovery and verification time by half. AI researchers use heartbeat detection to identify deepfake videos Researchers from multiple groups are tackling the challenge of detecting deepfake videos by analyzing the apparent heartbeat of the people depicted in the video. This is possible, because a person’s blood flow changes their skin color ever so slightly, and this change is often detectable via a process called photoplethysmography (PPG). Because deepfakes are not currently optimizing to generate realisitic heartbeats, temporal or spatial anomalies in PPG signals allow resesarchers to detect deepfakes with a 97% accuracy. Advances & Business This AI Expert From Senegal Is Helping Showcase Africans In STEM \- Adji Bousso Dieng will be Princeton’s School of Engineering’s first Black female faculty. Google’s AI-powered flood alerts now cover all of India and parts of Bangladesh \- India, the world’s second most populated nation, sees more than 20% of the global flood-related fatalities each year as overrun riverbanks sweep tens of thousands of homes with them. Two years ago, Google volunteered to help. Finding magnetic eruptions in space with an AI assistant \- MMS look for explosive reconnection events as it flies through the magnetopause - the boundary region where Earth’s magnetic butts up against the solar wind that flows throughout the solar system. This know-it-all AI learns by reading the entire web nonstop \- Diffbot is building the biggest-ever knowledge graph by applying image recognition and natural-language processing to billions of web pages. Bosch and Ford will test autonomous parking in Detroit \- Ford, Bosch, and Dan Gilbert’s real estate firm Bedrock today detailed an autonomous parking pilot scheduled to launch in September at The Assembly, a mixed-used building in Detroit’s Corktown neighborhood. Create your own moody quarantine music with Google’s AI \- Lo-Fi Player, the latest project out of Google Magenta, lets you mix tunes with the help of machine learning by interacting with a virtual room. Apple launches AI/ML residency program to attract niche experts \- As Apple’s artificial language and machine learning initiatives continue to expand, its interest in attracting talent has grown - a theme that’s barely under the surface of the company’s occasionally updated Machine Learning Research blog. Dusty Robotics CEO Tessa Lau Discusses Robotics Start-Ups and Autonomous Robots for Construction \- Tessa Lau is Founder/CEO at Dusty Robotics, whose mission is to increase construction industry productivity by introducing robotic automation on the jobsite. Concerns & Hype Google Offers to Help Others With the Tricky Ethics of AI \- Companies pay cloud computing providers like Amazon, Microsoft, and Google big money to avoid operating their own digital infrastructure. The Peace Dividends Of The Autonomous Vehicle Wars \- The rapid growth of the mobile market in the late 2000s and early 2010s led to a burst of technological progress. Ethics must be part of the development process’ \- The increasing use of AI (artificial intelligence) in the development of new medical technologies demands greater attention to ethical aspects. Analysis & Policy China’s new AI trade rules could hamper a TikTok sale \- TikTok’s attempt to sell itself and avert a possible US ban may run into some complications. The Wall Street Journal reports that China has unveiled new restrictions on AI technology exports that could affect TikTok. Podcast Check out our weekly podcast covering these stories! Website | RSS | iTunes | Spotify | YouTube

[D] AI Agents: too early, too expensive, too unreliable
reddit
LLM Vibe Score0
Human Vibe Score1
madredditscientistThis week

[D] AI Agents: too early, too expensive, too unreliable

Reference: Full blog post There has been a lot of hype about the promise of autonomous agent-based LLM workflows. By now, all major LLMs are capable of interacting with external tools and functions, letting the LLM perform sequences of tasks automatically. But reality is proving more challenging than anticipated. The WebArena leaderboard, which benchmarks LLMs agents against real-world tasks, shows that even the best-performing models have a success rate of only 35.8%. Challenges in Practice After seeing many attempts to AI agents, I believe it's too early, too expensive, too slow, too unreliable. It feels like many AI agent startups are waiting for a model breakthrough that will start the race to productize agents. Reliability: As we all know, LLMs are prone to hallucinations and inconsistencies. Chaining multiple AI steps compounds these issues, especially for tasks requiring exact outputs. Performance and costs: GPT-4o, Gemini-1.5, and Claude Opus are working quite well with tool usage/function calling, but they are still slow and expensive, particularly if you need to do loops and automatic retries. Legal concerns: Companies may be held liable for the mistakes of their agents. A recent example is Air Canada being ordered to pay a customer who was misled by the airline's chatbot. User trust: The "black box" nature of AI agents and stories like the above makes it hard for users to understand and trust their outputs. Gaining user trust for sensitive tasks involving payments or personal information will be hard (paying bills, shopping, etc.). Real-World Attempts Several startups are tackling the AI agent space, but most are still experimental or invite-only: adept.ai - $350M funding, but access is still very limited MultiOn - funding unknown, their API-first approach seems promising HypeWrite - $2.8M funding, started with an AI writing assistant and expanded into the agent space minion.ai - created some initial buzz but has gone quiet now, waitlist only Only MultiOn seems to be pursuing the "give it instructions and watch it go" approach, which is more in line with the promise of AI agents. All others are going down the record-and-replay RPA route, which may be necessary for reliability at this stage. Large players are also bringing AI capabilities to desktops and browsers, and it looks like we'll get native AI integrations on a system level: OpenAI announced their Mac desktop app that can interact with the OS screen. At Google I/O, Google demonstrated Gemini automatically processing a shopping return. Microsoft announced Copilot Studio, which will let developers build AI agent bots. Screenshot Screenshot These tech demos are impressive, but we'll see how well these agent capabilities will work when released publicly and tested against real-world scenarios instead of hand-picked demo cases. The Path Forward AI agents overhyped and it's too early. However, the underlying models continue to advance quickly, and we can expect to see more successful real-world applications. Instead of trying to have one large general purpose agent that is hard to control and test, we can use many smaller agents that basically just pick the right strategy for a specific sub-task in our workflows. These "agents" can be thought of as medium-sized LLM prompts with a) context and b) a set of functions available to call. The most promising path forward likely looks like this: Narrowly scoped, well testable automations that use AI as an augmentation tool rather than pursuing full autonomy Human-in-the-loop approaches that keep humans involved for oversight and handling edge cases Setting realistic expectations about current capabilities and limitations By combining tightly constrained agents, good evaluation data, human-in-the-loop oversight, and traditional engineering methods, we can achieve reliably good results for automating medium-complex tasks. Will AI agents automate tedious repetitive work, such as web scraping, form filling, and data entry? Yes, absolutely. Will AI agents autonomously book your vacation without your intervention? Unlikely, at least in the near future.

Turning a Social Media Agency into $1.5 Million in Revenue
reddit
LLM Vibe Score0
Human Vibe Score1
FounderFolksThis week

Turning a Social Media Agency into $1.5 Million in Revenue

Steffie here from Founder Folks, with a recent interview I did with Jason Yormark from Socialistics. Here is his story how he started and grew his social media agency. Name: Jason Yormark Company: Socialistics Employee Size: 10 Revenue: $1,500,000/year Year Founded: 2018 Website: www.socialistics.com Technology Tools: ClickUp, Slack, KumoSpace, Google Workspace, Shift, Zapier, Klayvio, Zoom, Gusto, Calendly, Pipedrive Introduction: I am the founder of Socialistics (www.socialistics.com), a leading social media agency that helps businesses turn their social media efforts into real measurable results. I am a 20+ year marketing veteran whose prior work has included launching and managing social media efforts for Microsoft Advertising, Office for Mac, the Air Force, and Habitat for Humanity. I have been recognized as a top B2B social media influencer and thought leader on multiple lists and publications including Forbes, ranking #30 on their 2012 list. I've recently published the book Anti-Agency: A Realistic Path to a $1,000,000 Business, and host the Anti Agency podcast where I share stories of doing business differently. You can learn more about me at www.jasonyormark.com. The Inspiration To Become An Entrepreneur: I’ve been involved with social media marketing since 2007, and have pretty much carved my career out of that. It was a natural progression for me to transition into starting a social media agency. From Idea to Reality: For me realistically, I had to side hustle something long enough to build it up to a point that I could take the leap and risks going full time on my own. For these reasons, I built the company and brand on the side putting out content regularly, and taking on side hustle projects to build out my portfolio and reputation. This went on for about 18 months at which point I had reached the breaking point of my frustrations of working for someone else, and felt I was ready to take the leap since I had the wheels in motion. While balancing a full-time job, I made sure not to overdo it. My main focus was on building out the website/brand and putting out content regularly to gain some traction and work towards some search visibility. I only took on 1-2 clients at a time to make sure I could still meet their needs while balancing a full time job. Attracting Customers: Initially I tapped into my existing network to get my first few clients. Then it was a mix of trade shows, networking events, and throwing a bit of money at paid directories and paid media. This is really a long game. You have to plant seeds over time with people and nurture those relationships over time. A combination of being helpful, likable and a good resource for folks will position you to make asks in the future. If people respect and like you, it makes it much easier to approach for opportunities when the time comes. Overcoming Challenges in Starting the Business: Plenty. Learning when to say no, only hiring the very best, and ultimately the realization that owning a marketing agency is going to have hills and valleys no matter what you do. Costs and Revenue: My largest expense by FAR is personnel, comprising between 50-60% of the business’ expenses, and justifiably so. It’s a people business. Our revenue doubled from the years 2018 through 2021, and we’ve seen between 10-20% growth year over year. A Day in the Life: I’ve successfully removed myself from the day to day of the business and that’s by design. I have a tremendous team, and a rock start Director of Operations who runs the agency day to day. It frees me up to pursue other opportunities, and to mentor, speak and write more. It also allows me to evangelize the book I wrote detailing my journey to a $1M business titled: Anti-Agency: A Realistic Path To A $1,000,000 Business (www.antiagencybook.com). Staying Ahead in a Changing Landscape: You really have to stay on top of technology trends. AI is a huge impact on marketing these days, so making sure we are up to speed on that, and not abusing it or relying on it too much. You also have to embrace that technology and not hide the fact that it’s used. Non-marketers still don’t and can’t do the work regardless of how much AI can help, so we just need to be transparent and smart on how we integrate it, but the fact is, technology will never replace creativity. As an agency, it’s imperative that we operationally allow our account managers to have bandwidth to be creative for clients all the time. It’s how we keep clients and buck the trend of companies changing agencies every year or two. The Vision for Socialistics: Continuing to evolve to cater to our clients through learning, education, and staying on top of the latest tools and technologies. Attracting bigger and more exciting clients, and providing life changing employment opportunities.

The delicate balance of building an online community business
reddit
LLM Vibe Score0
Human Vibe Score0.895
matthewbarbyThis week

The delicate balance of building an online community business

Hey /r/Entrepreneur 👋 Just under two years ago I launched an online community business called Traffic Think Tank with two other co-founders, Nick Eubanks and Ian Howells. As a Traffic Think Tank customer you (currently) pay $119 a month to get access to our online community, which is run through Slack. The community is focused on helping you learn various aspects of marketing, with a particular focus on search engine optimization (SEO). Alongside access to the Slack community, we publish new educational video content from outside experts every week that all customers have access to. At the time of writing, Traffic Think Tank has around 650 members spanning across 17 of the 24 different global time zones. I was on a business trip over in Sydney recently, and during my time there I met up with some of our Australia-based community members. During dinner I was asked by several of them how the idea for Traffic Think Tank came about and what steps we took to validate that the idea was worth pursuing.  This is what I told them… How it all began It all started with a personal need. Nick, an already successful entrepreneur and owner of a marketing agency, had tested out an early version Traffic Think Tank in early 2017. He offered real-time consulting for around ten customers that he ran from Slack. He would publish some educational videos and offer his advice on projects that the members were running. The initial test went well, but it was tough to maintain on his own and he had to charge a fairly high price to make it worth his time. That’s when he spoke to me and Ian about turning this idea into something much bigger. Both Ian and I offered something slightly different to Nick. We’ve both spent time in senior positions at marketing agencies, but currently hold senior director positions in 2,000+ public employee companies (HubSpot and LendingTree). Alongside this, as a trio we could really ramp up the quality and quantity of content within the community, spread out the administrative workload and just generally have more resources to throw at getting this thing off the ground. Admittedly, Nick was much more optimistic about the potential of Traffic Think Tank – something I’m very thankful for now – whereas Ian and I were in the camp of “you’re out of your mind if you think hundreds of people are going to pay us to be a part of a Slack channel”. To validate the idea at scale, we decided that we’d get an initial MVP of the community up and running with a goal of reaching 100 paying customers in the first six months. If we achieved that, we’d validated that it was a viable business and we would continue to pursue it. If not, we’d kill it. We spent the next month building out the initial tech stack that enabled us to accept payments, do basic user management to the Slack channel, and get a one-page website up and running with information on what Traffic Think Tank was all about.  After this was ready, we doubled down on getting some initial content created for members – I mean, we couldn’t have people just land in an empty Slack channel, could we? We created around ten initial videos, 20 or so articles and then some long threads full of useful information within the Slack channel so that members would have some content to pour into right from the beginning.  Then, it was time to go live. The first 100 customers Fortunately, both Nick and I had built a somewhat substantial following in the SEO space over the previous 5-10 years, so we at least had a large email list to tap into (a total of around 40,000 people). We queued up some launch emails, set an initial price of $99 per month and pressed send. [\[LINK\] The launch email I sent to my subscribers announcing Traffic Think Tank](https://mailchi.mp/matthewbarby/future-of-marketing-1128181) What we didn’t expect was to sell all of the initial 100 membership spots in the first 72 hours. “Shit. What do we do now? Are we ready for this many people? Are we providing them with enough value? What if something breaks in our tech stack? What if they don’t like the content? What if everyone hates Slack?” All of these were thoughts running through my head. This brings me to the first great decision we made: we closed down new membership intake for 3 months so that we could focus completely on adding value to the first cohort of users. The right thing at the right time SEO is somewhat of a dark art to many people that are trying to learn about it for the first time. There’s hundreds of thousands (possibly millions) of articles and videos online that talk about how to do SEO.  Some of it’s good advice; a lot of it is very bad advice.  Add to this that the barrier to entry of claiming to be an “expert” in SEO is practically non-existent and you have a recipe for disaster. This is why, for a long time, individuals involved in SEO have flocked in their masses to online communities for information and to bounce ideas off of others in the space. Forums like SEObook, Black Hat World, WickedFire, Inbound.org, /r/BigSEO, and many more have, at one time, been called home by many SEOs.  In recent times, these communities have either been closed down or just simply haven’t adapted to the changing needs of the community – one of those needs being real-time feedback on real-world problems.  The other big need that we all spotted and personally had was the ability to openly share the things that are working – and the things that aren’t – in SEO within a private forum. Not everyone wanted to share their secret sauce with the world. One of the main reasons we chose Slack as the platform to run our community on was the fact that it solved these two core needs. It gave the ability to communicate in real-time across multiple devices, and all of the information shared within it was outside of the public domain. The other problem that plagued a lot of these early communities was spam. Most of them were web-based forums that were free to access. That meant they became a breeding ground for people trying to either sell their services or promote their own content – neither of which is conducive to building a thriving community. This was our main motivation for charging a monthly fee to access Traffic Think Tank. We spent a lot of time thinking through pricing. It needed to be enough money that people would be motivated to really make use of their membership and act in a way that’s beneficial to the community, but not too much money that it became cost prohibitive to the people that would benefit from it the most. Considering that most of our members would typically spend between $200-800 per month on SEO software, $99 initially felt like the perfect balance. Growing pains The first three months of running the community went by without any major hiccups. Members were incredibly patient with us, gave us great feedback and were incredibly helpful and accommodating to other members. Messages were being posted every day, with Nick, Ian and myself seeding most of the engagement at this stage.  With everything going smoothly, we decided that it was time to open the doors to another intake of new members. At this point we’d accumulated a backlog of people on our waiting list, so we knew that simply opening our doors would result in another large intake. Adding more members to a community has a direct impact on the value that each member receives. For Traffic Think Tank in particular, the value for members comes from three areas: The ability to have your questions answered by me, Nick and Ian, as well as other members of the community. The access to a large library of exclusive content. The ability to build connections with the wider community. In the early stages of membership growth, there was a big emphasis on the first of those three points. We didn’t have an enormous content library, nor did we have a particularly large community of members, so a lot of the value came from getting a lot of one-to-one time with the community founders. [\[IMAGE\] Screenshot of engagement within the Traffic Think Tank Slack community](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1322/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-in-Traffic-Think-Tank.png) The good thing about having 100 members was that it was just about feasible to give each and every member some one-to-one time within the month, which really helped us to deliver those moments of delight that the community needed early on. Two-and-a-half months after we launched Traffic Think Tank, we opened the doors to another 250 people, taking our total number of members to 350. This is where we experienced our first growing pains.  Our original members had become used to being able to drop us direct messages and expect an almost instant response, but this wasn’t feasible anymore. There were too many people, and we needed to create a shift in behavior. We needed more value to come from the community engaging with one another or we’d never be able to scale beyond this level. We started to really pay attention to engagement metrics; how many people were logging in every day, and of those, how many were actually posting messages within public channels.  We asked members that were logging in a lot but weren’t posting (the “lurkers”) why that was the case. We also asked the members that engaged in the community the most what motivated them to post regularly. We learned a lot from doing this. We found that the large majority of highly-engaged members had much more experience in SEO, whereas most of the “lurkers” were beginners. This meant that most of the information being shared in the community was very advanced, with a lot of feedback from the beginners in the group being that they “didn’t want to ask a stupid question”.  As managers of the community, we needed to facilitate conversations that catered to all of our members, not just those at a certain level of skill. To tackle this problem, we created a number of new channels that had a much deeper focus on beginner topics so novice members had a safe place to ask questions without judgment.  We also started running live video Q&As each month where we’d answer questions submitted by the community. This gave our members one-on-one time with me, Nick and Ian, but spread the value of these conversations across the whole community rather than them being hidden within private messages. As a result of these changes, we found that the more experienced members in the community were really enjoying sharing their knowledge with those with less experience. The number of replies within each question thread was really starting to increase, and the community started to shift away from just being a bunch of threads created by me, Nick and Ian to a thriving forum of diverse topics compiled by a diverse set of individuals. This is what we’d always wanted. A true community. It was starting to happen. [\[IMAGE\] Chart showing community engagement vs individual member value](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1602/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-Balance-Graph.jpg) At the same time, we started to realize that we’ll eventually reach a tipping point where there’ll be too much content for us to manage and our members to engage with. When we reach this point, the community will be tough to follow and the quality of any given post will go down. Not only that, but the community will become increasingly difficult to moderate. We’re not there yet, but we recognize that this will come, and we’ll have to adjust our model again. Advocating advocacy As we started to feel more comfortable about the value that members were receiving, we made the decision to indefinitely open for new members. At the same time, we increased the price of membership (from $99 a month to $119) in a bid to strike the right balance between profitability as a business and to slow down the rate at which we were reaching the tipping point of community size. We also made the decision to repay all of our early adopters by grandfathering them in to the original pricing – and committing to always do this in the future. Despite the price increase, we saw a continued flow of new members come into the community. The craziest part about this was that we were doing practically no marketing activities to encourage new members– this was all coming from word of mouth. Our members were getting enough value from the community that they were recommending it to their friends, colleagues and business partners.  The scale at which this was happening really took us by surprise and it told us one thing very clearly: delivering more value to members resulted in more value being delivered to the business. This is a wonderful dynamic to have because it perfectly aligns the incentives on both sides. We’d said from the start that we wouldn’t sacrifice value to members for more revenue – this is something that all three of us felt very strongly about. First and foremost, we wanted to create a community that delivered value to its members and was run in a way that aligned with our values as people. If we could find a way to stimulate brand advocacy, while also tightening the bonds between all of our individual community members, we’d be boosting both customer retention and customer acquisition in the same motion. This became our next big focus. [\[TWEET\] Adam, one of our members wore his Traffic Think Tank t-shirt in the Sahara desert](https://twitter.com/AdamGSteele/status/1130892481099382784) We started with some simple things: We shipped out Traffic Think Tank branded T-shirts to all new members. We’d call out each of the individuals that would submit questions to our live Q&A sessions and thank them live on air. We set up a new channel that was dedicated to sharing a quick introduction to who you are, what you do and where you’re based for all new members. We’d created a jobs channel and a marketplace for selling, buying and trading services with other members. Our monthly “blind dates” calls were started where you’d be randomly grouped with 3-4 other community members so that you could hop on a call to get to know each other better. The Traffic Think Tank In Real Life (IRL)* channel was born, which enabled members to facilitate in-person meetups with each other. In particular, we saw that as members started to meet in person or via calls the community itself was feeling more and more like a family. It became much closer knit and some members started to build up a really positive reputation for being particularly helpful to other members, or for having really strong knowledge in a specific area. [\[TWEET\] Dinner with some of the Traffic Think Tank members in Brighton, UK](https://twitter.com/matthewbarby/status/1117175584080134149) Nick, Ian and I would go out of our way to try and meet with members in real life wherever we could. I was taken aback by how appreciative people were for us doing this, and it also served as an invaluable way to gain honest feedback from members. There was another trend that we’d observed that we didn’t really expect to happen. More and more members were doing business with each another. We’ve had people find new jobs through the community, sell businesses to other members, launch joint ventures together and bring members in as consultants to their business. This has probably been the most rewarding thing to watch, and it was clear that the deeper relationships that our members were forming were resulting in an increased level of trust to work with each other. We wanted to harness this and take it to a new level. This brought us to arguably the best decision we’ve made so far running Traffic Think Tank… we were going to run a big live event for our members. I have no idea what I’m doing It’s the first week of January 2019 and we’re less than three weeks away from Traffic Think Tank LIVE, our first ever in-person event hosting 150 people, most of which are Traffic Think Tank members. It's like an ongoing nightmare I can’t wake up from. That was Nick’s response in our private admin channel to myself and Ian when I asked if they were finding the run-up to the event as stressful as I was. I think that all three of us were riding on such a high from how the community was growing that we felt like we could do anything. Running an event? How hard can it be? Well, turns out it’s really hard. We had seven different speakers flying over from around the world to speak at the event, there was a pre- and after event party, and we’d planned a charity dinner where we would take ten attendees (picked at random via a raffle) out for a fancy meal. Oh, and Nick, Ian and I were hosting a live Q&A session on stage. It wasn’t until precisely 48 hours before the event that we’d realized we didn’t have any microphones, nor had a large amount of the swag we’d ordered arrived. Plus, a giant storm had hit Philly causing a TON of flight cancellations. Perfect. Just perfect. This was honestly the tip of the iceberg. We hadn’t thought about who was going to run the registration desk, who would be taking photos during the event and who would actually field questions from the audience while all three of us sat on stage for our live Q&A panel. Turns out that the answer to all of those questions were my wife, Laura, and Nick’s wife, Kelley. Thankfully, they were on hand to save our asses. The weeks running up to the event were honestly some of the most stressful of my life. We sold around 50% of our ticket allocation within the final two weeks before the event. All of the event organizers told us this would happen, but did we believe them? Hell no!  Imagine having two weeks until the big day and as it stood half of the room would be completely empty. I was ready to fly most of my extended family over just to make it look remotely busy. [\[IMAGE\] One of our speakers, Ryan Stewart, presenting at Traffic Think Tank LIVE](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1920/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LIVE-Ryan-Presenting.jpg) Thankfully, if all came together. We managed to acquire some microphones, the swag arrived on the morning of the event, all of our speakers were able to make it on time and the weather just about held up so that our entire allocation of ticket holders was able to make it to the event. We pooled together and I’m proud to say that the event was a huge success. While we made a substantial financial loss on the event itself, January saw a huge spike in new members, which more than recouped our losses. Not only that, but we got to hang out with a load of our members all day while they said really nice things about the thing we’d built. It was both exhausting and incredibly rewarding. Bring on Traffic Think Tank LIVE 2020! (This time we’re hiring an event manager...)   The road ahead Fast forward to today (August 2019) and Traffic Think Tank has over 650 members. The biggest challenges that we’re tackling right now include making sure the most interesting conversations and best content surfaces to the top of the community, making Slack more searchable (this is ultimately one of its flaws as a platform) and giving members a quicker way to find the exclusive content that we create. You’ll notice there’s a pretty clear theme here. In the past 30 days, 4,566 messages were posted in public channels inside Traffic Think Tank. If you add on any messages posted inside private direct messages, this number rises to 21,612. That’s a lot of messages. To solve these challenges and enable further scale in the future, we’ve invested a bunch of cash and our time into building out a full learning management system (LMS) that all members will get access to alongside the Slack community. The LMS will be a web-based portal that houses all of the video content we produce. It will also  provide an account admin section where users can update or change their billing information (they have to email us to do this right now, which isn’t ideal), a list of membership perks and discounts with our partners, and a list of links to some of the best threads within Slack – when clicked, these will drop you directly into Slack. [\[IMAGE\] Designs for the new learning management system (LMS)](https://cdn.shortpixel.ai/client/qglossy,retimg,w_2378/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LMS.png) It’s not been easy, but we’re 95% of the way through this and I’m certain that it will have a hugely positive impact on the experience for our members. Alongside this we hired a community manager, Liz, who supports with any questions that our members have, coordinates with external experts to arrange webinars for the community, helps with new member onboarding, and has tightened up some of our processes around billing and general accounts admin. This was a great decision. Finally, we’ve started planning next year’s live event, which we plan to more than double in size to 350 attendees, and we decided to pick a slightly warmer location in Miami this time out. Stay tuned for me to have a complete meltdown 3 weeks from the event. Final thoughts When I look back on the journey we’ve had so far building Traffic Think Tank, there’s one very important piece to this puzzle that’s made all of this work that I’ve failed to mention so far: co-founder alignment. Building a community is a balancing act that relies heavily on those in charge being completely aligned. Nick, Ian and I completely trust each other and more importantly, are philosophically aligned on how we want to run and grow the community. If we didn’t have this, the friction between us could tear apart the entire community. Picking the right people to work with is important in any company, but when your business is literally about bringing people together, there’s no margin for error here.  While I’m sure there will be many more challenges ahead, knowing that we all trust each other to make decisions that fall in line with each of our core values makes these challenges dramatically easier to overcome. Finally, I’d like to thank all of our members for making the community what it is today – it’d be nothing without you and I promise that we’ll never take that for granted. ​ I originally posted this on my blog here. Welcoming all of your thoughts, comments, questions and I'll do my best to answer them :)

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

Is there any point in building a product with AI anymore?
reddit
LLM Vibe Score0
Human Vibe Score1
jottrledThis week

Is there any point in building a product with AI anymore?

Everyone and their grandmother are building AI products. So it begs the question. Is the AI market now too saturated? Have all the AI apps been thought of? Of course not don't be silly, There is still a significant opportunity to create AI products and become profitable. But let's play devils advocate here. Let's say you're a developer and you want to build your first SaaS product. Now, imagine a world where all AI products were already thought of (a scary thought). What would you do? Would you move onto something else? See, when people think of an idea for a SaaS product what often happens is they do a quick Google search and tend to think "oh crap, it already exists, better move on". Maybe that's the right thing to do...but then again maybe it's not. Before you run for the hills, make sure to check the SEO potential for your idea. If your idea has the potential to rank high on Google and there are already hundreds/thousands of people looking for it then you can take that as all the validation you need to start building it. Here are 3 AI ideas that all have good SEO potential. Each idea has keywords that you can target with a difficulty level 500. This means it's easy to rank high in Google for them and they have a high number of people searching for them each month. AI Accounting Software A Saas product that uses AI to analyze bank transactions, invoices, and receipts to automatically match them and reconcile accounts in real-time, reducing manual work and errors. It would also offer predictive insights, suggesting optimal payment times or highlighting potential cash flow issues based on historical data. Could potentially be integrated with popular accounting software like QuickBooks or Xero. SEO Potential Keyword: ai accounting Keyword Difficulty: 9 Average Search Volume 2900 AI Human Resources Software AI Human Resources Software An AI-driven candidate screening and onboarding platform for small to medium-sized businesses. The tool would use AI to automatically filter job applications based on predefined criteria, rank candidates, and even conduct initial interview assessments using natural language processing. It could also manage onboarding tasks by automating the distribution of paperwork, training schedules, and team introductions. SEO Potential Keyword: ai human resources Keyword Difficulty: 17 Average Search Volume 2900 AI Nutrition Tool A Micro SaaS which creates personalized meal planning and nutrition analysis. The platform would use AI to create tailored meal plans based on users' dietary goals, preferences, allergies, and health data (such as activity level or medical conditions). It could analyze food labels, suggest healthier alternatives, and track nutrient intake in real time, helping users maintain balanced diets. SEO Potential Keyword: ai nutrition Keyword Difficulty: 3 Average Search Volume 720 I created a tool (check the first comment) to find ideas like this.

5 Habits to go from Founder to CEO
reddit
LLM Vibe Score0
Human Vibe Score0.6
FalahilThis week

5 Habits to go from Founder to CEO

Over the years, I've gathered some knowledge about transitioning from a startup founder to a CEO. I started my company 7 years ago. We are now not super big (65 people), but we have learned a lot. We raised $19M in total and we are now profitable. The transition from Founder to CEO was crucial. Your startup begins to mature and scale and you need to scale with it. It's often a challenging phase, but I've managed to summarize it into five habbits. Say no to important things every day Being able to say "no" to important tasks every day is an essential practice for a growing leader. It's a reality that as the magnitude of your company or ideas expands, so does the influx of good ideas and opportunities. However, to transform from a mere hustler to a true leader, you have to become selective. This means learning to refuse good ideas, which is crucial if you want to consistently execute the outstanding ones. The concept that "Startups don't starve, they drown" resonates deeply because it underlines how challenging it can be to reject opportunities. A key strategy to develop this skill is time-constraining your to-do list. Here's how you can do it: Weekly: Formulate a weekly to-do list, including only those tasks that you're sure to complete within the week. Leave some buffer room for unexpected issues. If there's any doubt about whether you'll have time for a certain task, it should not feature on your weekly list. I use Todoist and Notion for task management. Daily: Apply the same rule while creating your daily to-do list. Only include tasks that you're confident about accomplishing that day. If a task seems too big to fit into one day, break it down into manageable chunks. Journaling Journaling is a powerful strategy that can help an individual transition from a reactive approach to a proactive one. As founders, we often find ourselves caught up in a cycle of endless tasks, akin to chopping trees in a dense forest. However, to ensure sustainable growth, it is crucial to develop an ability to "zoom out", or to view the bigger picture. I use The Morning Pages method, from Julia Cameron. It consists of writing each morning about anything that comes to mind. The act of writing effectively combines linear, focused thinking with the benefits of a thoughtful conversation. If you just want to journal, you can use Day One app (The free version will be enough). If you want to go a bit deeper, you can try a coaching app. I use Wave.ai and I also hired it for the managers in the company because it combines both journaling with habit building. ​ Building Robust Systems and Processes (I know, it is boring and founders hate this) As a founder, you often need to wear multiple hats and juggle various roles. But as a CEO, it's vital to establish strong systems and processes that enable the business to function smoothly, even without your direct involvement. This includes: Implementing project management systems. Establishing clear lines of communication and accountability. Designing efficient workflows and procedures. To many founders, developing these systems might seem monotonous or even tedious. After all, the allure of envisioning the next big idea often proves more exciting. I experienced the same predicament. In response, I brought onboard a competent COO who excelled in systematizing processes. This strategy allowed me to kickstart initiatives and explore them in a flexible, less structured manner. Once an idea showed signs of gaining traction, my COO stepped in to streamline it, crafting a process that turned the fledgling idea into a consistent business operation. ​ Meditating Meditation is about reprogramming unconscious mental processes by repeatedly performing fundamental tasks with a distinct intention. This practice can be even more crucial to leadership than acquiring a business school education. Because meditation provides the most direct route to understanding your mind's workings and thus, forms the most effective basis for transforming it. To transition from a founder to a CEO, a significant shift in your mindset is required. This shift involves moving from a hustle mentality to precision, from acting as a superhero solving problems to consciously stepping back, thereby providing room for your team members to discover their own superpowers. It's about shifting your success indicators - from individual achievements to the triumphs of your team. This transformation might not feel comfortable initially, and your instincts, shaped by your scrappy founder phase, might resist this change. However, with consistent practice, you can align your instincts with the stage of your company, promoting more effective leadership. This is where the value of meditation truly shines. It allows you to identify your distinct thought patterns in real time and, over time, modify them. I use Headspace a lot, and I also encourage the employees to use it. The company pays the subscription as a perk. ​ Balancing the Macro and the Micro As the CEO, your primary focus should be on the big picture – your company's vision and strategy. However, you also need to keep an eye on the details, as these can make or break your execution. It's all about balance: Delegate the details but stay informed. Prioritize strategic planning but be ready to dive into the trenches when needed. Keep your eye on your long-term vision but adapt to short-term realities. The transition from founder to CEO isn't about giving up what made you successful initially but augmenting it with additional skills, perspectives, and practices. It's a personal and professional evolution that can lead to greater success for both you and your business. Every great CEO was once a founder. It's just about taking the next step. I’d love to hear your experiences or any tips you might have for this transition. In which step of your journey are you right now? Do you have employees already? What are your main challenges right now?

Started a content marketing agency 8 years ago - $0 to $7,863,052 (2025 update)
reddit
LLM Vibe Score0
Human Vibe Score0.882
mr_t_forhireThis week

Started a content marketing agency 8 years ago - $0 to $7,863,052 (2025 update)

Hey friends, My name is Tyler and for the past 8 years, I’ve been documenting my experience building a content marketing agency called Optimist. Year 1 — 0 to $500k ARR Year 2 — $500k to $1MM ARR Year 3 — $1MM ARR to $1.5MM(ish) ARR Year 4 — $3,333,686 Revenue Year 5 — $4,539,659 Revenue Year 6 — $5,974,324 Revenue Year 7 - $6,815,503 Revenue (Edit: Seems like links are banned now. You can check my post history for all of my previous updates with lessons and learnings.) How Optimist Works First, an overview/recap of the Optimist business model: We operate as a “collective” of full time/professional freelancers Everyone aside from me is a contractor Entirely remote/distributed team We pay freelancers a flat fee for most work, working out to roughly $65-100/hour. Clients pay us a flat monthly fee for full-service content marketing (research, strategy, writing, editing, design/photography, reporting and analytics, targeted linkbuilding, and more)\ Packages range in price from \~$10-20k/mo \This is something we are revisiting now* The Financials In 2024, we posted $1,032,035.34 in revenue. This brings our lifetime revenue to $7,863,052. Here’s our monthly revenue from January 2017 to December of 2024. (Edit: Seems like I'm not allowed to link to the chart.) The good news: Revenue is up 23% YoY. EBITDA in Q4 trending up 1-2 points. We hosted our first retreat in 4 years, going to Ireland with about half the team. The bad news: Our revenue is still historically low. At $1MM for the year, we’re down about 33% from our previous years over $1.5MM. Revenue has been rocky. It doesn’t feel like we’ve really “recovered” from the bumps last year. The trend doesn’t really look great. Even though, anecdotally, it feels like we are moving in a good direction. EBITDA is still hovering at around 7%. Would love to get that closer to 20%. (For those who may ask: I’m calculating EBITDA after paying taxes and W2 portion of my income.) — Almost every year, my update starts the same way: This has been a year of growth and change. Both for my business—and me personally. 2024 was no different. I guess that tells you something about entrepreneurship. It’s a lot more like sailing a ship than driving a car. You’re constantly adapting, tides are shifting, and any blip of calm is usually just a moment before the next storm. As with past years, there’s a lot to unpack from the last 12 months. Here we go again. Everything is Burning In the last 2 years, everything has turned upside down in the world of content and SEO. Back in 2020, we made a big decision to re-position the agency. (See post history) We decided to narrow our focus to our most successful, profitable, and consistent segment of clients and re-work our entire operation to focus on serving them. We defined our ICP as: \~Series A ($10mm+ funding) with 6-12 months runway to scale organic as a channel Product-led company with “simple” sales cycle involving fewer stakeholders Demonstrable opportunity to use SEO to drive business growth Our services: Content focused on growing organic search (SEO) Full-service engagements that included research, planning, writing, design, reporting And our engagement structure: Engaged directly with an executive; ownership over strategy and day-to-day execution 1-2 points of contact or stakeholders Strategic partner that drives business growth (not a service vendor who makes content) Most importantly, we decided that we were no longer going to offer a broader range of content that we used to sell. That included everything from thought leadership content to case studies and ebooks. We doubled-down on “SEO content” for product-led SaaS companies. And this worked phenomenally for us. We started bringing on more clients than ever. We developed a lot of internal system and processes that helped us scale and take on more work than we’ve ever had and drive great outcomes for our ideal clients. But in 2023 and 2024, things started going awry. One big change, of course, was the rise of AI. Many companies and executives (and writers) feel that AI can write content just as well as an agency like ours. That made it a lot harder to sell a $10,000 per month engagement when they feel like the bulk of the work could be “done for free.” (Lots of thoughts on this if you want my opinions.) But it wasn’t just that. Google also started tinkering with their algorithm, introducing new features like AI Overviews, and generally changing the rules of the game. This created 3 big shifts in our world: The perceived value of content (especially “SEO content”) dropped dramatically in many people’s minds because of AI’s writing capabilities SEO became less predictable as a source of traffic and revenue It’s harder than ever for startups and smaller companies to rank for valuable keywords (let alone generate any meaningful traffic or revenue from them) The effect? The middle of the content market has hollowed out. People—like us—providing good, human-crafted content aimed on driving SEO growth saw a dramatic decline in demand. We felt it all year. Fewer and fewer leads. The leads we did see usually scoffed at our prices. They were indexing us against the cost of content mills and mass-produced AI articles. It was a time of soul-searching and looking for a way forward. I spent the first half of the year convinced that the only way to survive was to run toward the fire. We have to build our own AI workflows. We have to cut our rates internally. We have to get faster and cheaper to stay competitive with the agencies offering the same number of deliverables for a fraction of our rates. It’s the only way forward. But then I asked myself a question… Is this the game I actually want to play? As an entrepreneur, do I want to run a business where I’m competing mostly on price and efficiency rather than quality and value? Do I want to hop into a race toward cheaper and cheaper content? Do I want to help people chase a dwindling amount of organic traffic that’s shrinking in value? No. That’s not the game I want to play. That’s not a business I want to run. I don’t want to be in the content mill business. So I decided to turn the wheel—again. Repositioning Part II: Electric Boogaloo What do you do when the whole world shifts around you and the things that used to work aren’t working anymore? You pivot. You re-position the business and move in another direction. So that’s what we decided to do. Again. There was only one problem: I honestly wasn’t sure what opportunities existed in the content marketing industry outside of what we were already doing. We lived in a little echo chamber of startups and SEO. It felt like the whole market was on fire and I had fight through the smoke to find an escape hatch. So I started making calls. Good ol’ fashioned market research. I reached out to a few dozen marketing and content leaders at a bunch of different companies. I got on the phone and just asked lots of questions about their content programs, their goals, and their pain points. I wanted to understand what was happening in the market and how we could be valuable. And, luckily, this process really paid off. I learned a lot about the fragmentation happening across content and how views were shifting. I noticed key trends and how our old target market really wasn’t buying what we were selling. Startups and small companies are no longer willing to invest in an agency like ours. If they were doing content and SEO at all, they were focused entirely on using AI to scale output and minimize costs. VC money is still scarce and venture-backed companies are more focused on profitability than pure growth and raising another round. Larger companies (\~500+ employees) are doing more content than ever and drowning in content production. They want to focus on strategy but can barely tread water keeping up with content requests from sales, demand gen, the CEO, and everyone else. Many of the companies still investing in content are looking at channels and formats outside of SEO. Things like thought leadership, data reports, interview-driven content, and more. They see it as a way to stand out from the crowd of “bland SEO content.” Content needs are constantly in flux. They range from data reports and blog posts to product one-pagers. The idea of a fixed-scope retainer is a total mismatch for the needs of most companies. All of this led to the logical conclusion: We were talking to the wrong people about the wrong things\.\ Many companies came to one of two logical conclusions: SEO is a risky bet, so it’s gotta be a moonshot—super-low cost with a possibility for a big upside (i.e., use AI to crank out lots of content. If it works, great. If it doesn’t, then at least we aren’t out much money.) SEO is a risky bet, so we should diversify into other strategies and channels to drive growth (i.e., shift our budget from SEO and keyword-focused content to video, podcasts, thought leadership, social, etc) Unless we were going to lean into AI and dramatically cut our costs and rates, our old buyers weren’t interested. And the segment of the market that needs our help most are looking primarily for production support across a big range of content types. They’re not looking for a team to run a full-blown program focused entirely on SEO. So we had to go back to the drawing board. I’ve written before about our basic approach to repositioning the business. But, ultimately it comes down to identifying our unique strengths as a team and then connecting them to needs in the market. After reviewing the insights from my discussions and taking another hard look at our business and our strengths, I decided on a new direction: Move upmarket: Serve mid-size to enterprise businesses with \~500-5,000 employees instead of startups Focus on content that supports a broader range of business goals instead of solely on SEO and organic growth (e.g., sales, demand gen, brand, etc) Shift back to our broader playbook of content deliverables, including thought leadership, data studies, and more Focus on content execution and production to support an internally-directed content strategy across multiple functions In a way, it’s sort of a reverse-niche move. Rather than zooming in specifically on driving organic growth for startups, we want to be more of an end-to-end content production partner that solves issues of execution and operations for all kinds of content teams. It’s early days, but the response here has been promising. We’ve seen an uptick in leads through Q4. And more companies in our pipeline fit the new ICP. They’re bigger, often have more budget. (But they move more slowly). We should know by the end of the quarter if this maneuver is truly paying off. Hopefully, this will work out. Hopefully our research and strategy are right and we’ll find a soft landing serving a different type of client. If it doesn’t? Then it will be time to make some harder decisions. As I already mentioned, I’m not interested in the race to the bottom of AI content. And if that’s the only game left in town, then it might be time to think hard about a much bigger change. — To be done: Build new content playbooks for expanded deliverables Build new showcase page for expanded deliverables Retooling the Operation It’s easy to say we’re doing something new. It’s a lot harder to actually do it—and do it well. Beyond just changing our positioning, we have to do open-heart surgery on the entire content operation behind the scenes. We need to create new systems that work for a broader range of content types, formats, and goals. Here’s the first rub: All of our workflows are tooled specifically for SEO-focused content. Every template, worksheet, and process that we’ve built and scaled in the last 5 years assumes that the primary goal of every piece of content is SEO. Even something as simple as requiring a target keyword is a blocker in a world where we’re not entirely focused on SEO. This is relatively easy to fix, but it requires several key changes: Update content calendars to make keywords optional Update workflows to determine whether we need an optimization report for each deliverable Next, we need to break down the deliverables into parts rather than a single line item. In our old system, we would plan content as a single row in a Content Calendar spreadsheet. It was a really wide sheet with lots of fields where we’d define the dimensions of each individual article. This was very efficient and simple to follow. But every article had the same overall scope when it came to the workflow. In Asana (our project management tool), all of the steps in the creation were strung together in a single task. We would create a few basic templates for each client, and then each piece would flow through the same steps: Briefing Writing Editing Design etc. If we had anything that didn’t fit into the “standard” workflow, we’d just tag it in the calendar with an unofficial notation \[USING BRACKETS\]. It worked. But it wasn’t ideal. Now we need the steps to be more modular. Imagine, for example, a client asks us to create a mix of deliverables: 1 article with writing + design 1 content brief 1 long-form ebook with an interview + writing + design Each of these would require its own steps and its own workflow. We need to break down the work to accommodate for a wider variety of workflows and variables. This means we need to update the fields and structure of our calendar to accommodate for the new dimensions—while also keeping the planning process simple and manageable. This leads to the next challenge: The number of “products” that we’re offering could be almost infinite. Just looking at the example scope above, you can mix and match all of these different building blocks to create a huge variety of different types of work, each requiring its own workflow. This is part of the reason we pivoted away from this model to focus on a productized, SEO-focused content service back in 2020. Take something as simple as a case study. On the surface, it seems like one deliverable that can be easily scoped and priced, right? Well, unpack what goes into a case study: Is there already source material from the customer or do we need to conduct an interview? How long is it? Is it a short overview case study or a long-form narrative? Does it need images and graphics? How many? Each of these variables opens up 2-3 possibilities. And when you combine them, we end up with something like 10 possible permutations for this single type of deliverable. It gets a bit messy. But not only do we have to figure out how to scope and price all for all of these variables, we also have to figure out how to account for these variables in the execution. We have to specify—for every deliverable—what type it is, how long, which steps are involved and not involved, the timeline for delivery, and all of the other factors. We’re approaching infinite complexity, here. We have to figure out a system that allows for a high level of flexibility to serve the diverse needs of our clients but is also productized enough that we can build workflows, process, and templates to deliver the work. I’ve spent the last few months designing that system. Failed Attempt #1: Ultra-Productization In my first pass, I tried to make it as straight forward as possible. Just sit down, make a list of all of the possible deliverables we could provide and then assign them specific scopes and services. Want a case study? Okay that’ll include an interview, up to 2,000 words of content, and 5 custom graphics. It costs $X. But this solution quickly fell apart when we started testing it against real-world scenarios. What if the client provided the brief instead of us creating one? What if they didn’t want graphics? What if this particular case study really needs to be 3,000 words but all of the others should be 2,000? In order for this system to work, we’d need to individual scope and price all of these permutations of each productized service. Then we’d need to somehow keep track of all of these and make sure that we accurately scope, price, and deliver them across dozens of clients. It’s sort of like a restaurant handling food allergies by creating separate versions of every single dish to account for every individual type of allergy. Most restaurants have figured out that it makes way more sense to have a “standard” and an “allergy-free” version. Then you only need 2 options to cover 100% of the cases. Onto the next option. Failed Attempt #2: Deliverable-Agnostic Services Next, I sat down with my head of Ops, Katy, to try to map it out. We took a big step back and said: Why does the deliverable itself even matter? At the end of the day, what we’re selling is just a few types of work (research, writing, editing, design, etc) that can be packaged up in an infinite number of ways. Rather than try to define deliverables, shouldn’t we leave it open ended for maximum flexibility? From there, we decided to break down everything into ultra-modular building blocks. We started working on this super complex system of modular deliverables where we would have services like writing, design, editing, etc—plus a sliding scale for different scopes like the length of writing or the number of images. In theory, it would allow us to mix and match any combination of services to create custom deliverables for the client. In fact, we wanted the work to be deliverable-agnostic. That way we could mold it to fit any client’s needs and deliver any type of content, regardless of the format or goal. Want a 5,000-word case study with 15 custom graphics? That’ll be $X. Want a 2,000-word blog post with an interview and no visuals? $Y. Just want us to create 10 briefs, you handle the writing, and we do design? It’s $Z. Again, this feels like a reasonable solution. But it quickly spiraled out of amuck. (That’s an Office reference.) For this to work, we need to have incredibly precise scoping process for every single deliverable. Before we can begin work (or even quote a price), we need to know pretty much the exact word count of the final article, for example. In the real world? This almost never happens. The content is as long as the content needs to be. Clients rarely know if the blog post should be 2,000 words or 3,000 words. They just want good content. We have a general ballpark, but we can rarely dial it in within just 1,000 words until we’ve done enough research to create the brief. Plus, from a packaging and pricing perspective, it introduces all kind of weird scenarios where clients will owe exactly $10,321 for this ultra-specific combination of services. We were building an open system that could accommodate any and all types of potential deliverables. On the face that seems great because it makes us incredibly flexible. In reality, the ambiguity actually works against us. It makes it harder for us to communicate to clients clearly about what they’ll get, how much it will cost, and how long it will take. That, of course, also means that it hurts our client relationships. (This actually kind of goes back to my personal learnings, which I’ll mention in a bit. I tend to be a “let’s leave things vague so we don’t have to limit our options” kind of person. But I’m working on fixing this to be more precise, specific, and clear in everything that we do.) Dialing It In: Building a Closed System We were trying to build an open system. We need to build a closed system. We need to force clarity and get specific about what we do, what we don’t do, and how much it all costs. Then we need a system to expand on that closed system—add new types of deliverables, new content playbooks, and new workflows if and when the need arises. With that in mind, we can start by mapping out the key dimensions of any type of deliverable that we would ever want to deliver. These are the universal dimensions that determine the scope, workflow, and price of any deliverable—regardless of the specific type output. Dimensions are: Brief scope Writing + editing scope Design scope Interview scope Revision (rounds) Scope, essentially, just tells us how many words, graphics, interviews, etc are required for the content we’re creating. In our first crack at the system, we got super granular with these scopes. But to help force a more manageable system, we realized that we didn’t need tiny increments for most of this work. Instead, we just need boundaries—you pay $X for up to Y words. We still need some variability around the scope of these articles. Obviously, most clients won’t be willing to pay the same price for a 1,000-word article as a 10,000-word article. But we can be smarter about the realistic break points. We boiled it down to the most common ranges: (Up to) 250 words 1,000 words 3,000 words 6,000 words 10,000 words This gives us a much more manageable number of variables. But we still haven’t exactly closed the system. We need one final dimension: Deliverable type. This tells us what we’re actually building with these building blocks. This is how we’ll put a cap on the potentially infinite number of combinations we could offer. The deliverable type will define what the final product should look like (e.g., blog post, case study, ebook, etc). And it will also give us a way to put standards and expectations around different types of deliverables that we want to offer. Then we can expand on this list of deliverables to offer new services. In the mean time, only the deliverables that we have already defined are, “on the menu,” so to speak. If a client comes to us and asks for something like a podcast summary article (which we don’t currently offer), we’ll have to either say we can’t provide that work or create a new deliverable type and define the dimensions of that specific piece. But here’s the kicker: No matter the deliverable type, it has to still fit within the scopes we’ve already defined. And the pricing will be the same. This means that if you’re looking for our team to write up to 1,000 words of content, it costs the same amount—whether it’s a blog post, an ebook, a LinkedIn post, or anything else. Rather than trying to retool our entire system to offer this new podcast summary article deliverable, we’ll just create the new deliverable type, add it to the list of options, and it’s ready to sell with the pre-defined dimensions we’ve already identified. To do: Update onboarding workflow Update contracts and scope documents Dial in new briefing process Know Thyself For the last year, I’ve been going through personal therapy. (Huge shout out to my wife, Laura, for her support and encouragement throughout the process.) It’s taught me a lot about myself and my tendencies. It’s helped me find some of my weaknesses and think about how I can improve as a person, as a partner, and as an entrepreneur. And it’s forced me to face a lot of hard truths. For example, consider some of the critical decisions I’ve made for my business: Unconventional freelance “collective” model No formal management structure Open-ended retainers with near-infinite flexibility General contracts without defined scope “Take it or leave it” approach to sales and marketing Over the years, I’ve talked about almost everything on this list as a huge advantage. I saw these things as a reflection of how I wanted to do things differently and better than other companies. But now, I see them more as a reflection of my fears and insecurities. Why did I design my business like this? Why do I want so much “flexibility” and why do I want things left open-ended rather than clearly defined? One reason that could clearly explain it: I’m avoidant. If you’re not steeped in the world of therapy, this basically means that my fight or flight response gets turned all the way to “flight.” If I’m unhappy or uncomfortable, my gut reaction is usually to withdraw from the situation. I see commitment and specificity as a prelude to future conflict. And I avoid conflict whenever possible. So I built my business to minimize it. If I don’t have a specific schedule of work that I’m accountable for delivering, then we can fudge the numbers a bit and hope they even out in the end. If I don’t set a specific standard for the length of an article, then I don’t have to let the client know when their request exceeds that limit. Conflict….avoided? Now, that’s not to say that everything I’ve built was wrong or bad. There is a lot of value in having flexibility in your business. For example, I would say that our flexible retainers are, overall, an advantage. Clients have changing needs. Having flexibility to quickly adapt to those needs can be a huge value add. And not everything can be clearly defined upfront (at least not without a massive amount of time and work just to decide how long to write an article). Overly-rigid structures and processes can be just as problematic as loosey-goosey ones. But, on the whole, I realized that my avoidant tendencies and laissez faire approach to management have left a vacuum in many areas. The places where I avoided specificity were often the places where there was the most confusion, uncertainty, and frustration from the team and from clients. People simply didn’t know what to expect or what was expected of them. Ironically, this often creates the conflict I’m trying to avoid. For example, if I don’t give feedback to people on my team, then they feel uneasy about their work. Or they make assumptions about expectations that don’t match what I’m actually expecting. Then the client might get upset, I might get upset, and our team members may be upset. Conflict definitely not avoided. This happens on the client side, too. If we don’t define a specific timeline when something will be delivered, the client might expect it sooner than we can deliver—creating frustration when we don’t meet their expectation. This conflict actually would have been avoided if we set clearer expectations upfront. But we didn’t do that. I didn’t do that. So it’s time to step up and close the gaps. Stepping Up and Closing the Gaps If I’m going to address these gaps and create more clarity and stability, I have to step up. Both personally and professionally. I have to actually face the fear and uncertainty that drives me to be avoidant. And then apply that to my business in meaningful ways that aren’t cop-out ways of kinda-sorta providing structure without really doing it. I’ve gotta be all in. This means: Fill the gaps where I rely on other people to do things that aren’t really their job but I haven’t put someone in place to do it Set and maintain expectations about our internal work processes, policies, and standards Define clear boundaries on things like roles, timelines, budgets, and scopes Now, this isn’t going to happen overnight. And just because I say that I need to step up to close these gaps doesn’t mean that I need to be the one who’s responsible for them (at least not forever). It just means that, as the business leader, I need to make sure the gaps get filled—by me or by someone else who has been specifically charged with owning that part of the operation. So, this is probably my #1 focus over the coming quarter. And it starts by identifying the gaps that exist. Then, step into those gaps myself, pay someone else to fill that role, or figure out how to eliminate the gap another way. This means going all the way back to the most basic decisions in our business. One of the foundational things about Optimist is being a “different kind” of agency. I always wanted to build something that solved for the bureaucracy, hierarchy, and siloed structure of agencies. If a client has feedback, they should be able to talk directly to the person doing the work rather than going through 3 layers of account management and creative directors. So I tried to be clever. I tried to design all kinds of systems and processes that eliminated these middle rungs. (In retrospect, what I was actually doing was designing a system that played into my avoidant tendencies and made it easy to abdicate responsibility for lots of things.) Since we didn’t want to create hierarchy, we never implemented things like Junior and Senior roles. We never hired someone to manage or direct the individual creatives. We didn’t have Directors or VPs. (Hell, we barely had a project manager for the first several years of existence.) This aversion to hierarchy aligned with our values around elevating ownership and collective contribution. I still believe in the value a flat structure. But a flat structure doesn’t eliminate the complexity of a growing business. No one to review writers and give them 1:1 feedback? I guess I’ll just have to do that….when I have some spare time. No Content Director? Okay, well someone needs to manage our content playbooks and roll out new ones. Just add it to my task list. Our flat structure didn’t eliminate the need for these roles. It just eliminated the people to do them. All of those unfilled roles ultimately fell back on me or our ops person, Katy. Of course, this isn’t the first time we’ve recognized this. We’ve known there were growing holes in our business as it’s gotten bigger and more complex. Over the years, we’ve experimented with different ways to solve for it. The Old Solution: Distributed Ops One system we designed was a “distributed ops” framework. Basically, we had one person who was the head of ops (at the time, we considered anything that was non-client-facing to be “ops”). They’d plan and organize all of the various things that needed to happen around Optimist. Then they’d assign out the work to whoever was able to help. We had a whole system for tying this into the our profit share and even gave people “Partner” status based on their contributions to ops. It worked—kinda. One big downfall is that all of the tasks and projects were ad hoc. People would pick up jobs, but they didn’t have much context or expertise to apply. So the output often varied. Since we were trying to maintain a flat structure, there was minimal oversight or management of the work. In other words, we didn’t always get the best results. But, more importantly, we still didn’t close all of the gaps entirely. Because everything was an ad-hoc list of tasks and projects, we never really had the “big picture” view of everything that needed to be done across the business. This also meant we rarely had clarity on what was important, what was trivial, and what was critical. We need a better system. Stop Reinventing the Wheel (And Create a Damn Org Chart) It’s time to get serious about filling the gaps in our business. It can’t be a half-fix or an ad hoc set of projects and tasks. We need clarity on the roles that need to be filled and then fill them. The first step here is to create an org chart. A real one. Map out all of the jobs that need to be done for Optimist to be successful besides just writers and designers. Roles like: Content director Design director SEO manager Reporting Finance Account management Business development Sales Marketing Project management It feels a bit laughable listing all of these roles. Because most are either empty or have my name attached to them. And that’s the problem. I can’t do everything. And all of the empty roles are gaps in our structure—places where people aren’t getting the direction, feedback, or guidance they need to do their best work. Or where things just aren’t being done consistently. Content director, for example, should be responsible for steering the output of our content strategists, writers, and editors. They’re not micromanaging every deliverable. But they give feedback, set overall policy, and help our team identify opportunities to get better. Right now we don’t have anyone in that role. Which means it’s my job—when I have time. Looking at the org chart (a real org chart that I actually built to help with this), it’s plain as day how many roles look like this. Even if we aren’t going to implement a traditional agency structure and a strict hierarchy, we still need to address these gaps. And the only way for that to happen is face the reality and then create a plan to close the gaps. Now that we have a list of theoretical roles, we need to clearly define the responsibilities and boundaries of those roles to make sure they cover everything that actually needs to happen. Then we can begin the process of delegating, assigning, hiring, and otherwise addressing each one. So that’s what I need to do. To be done: Create job descriptions for all of the roles we need to fill Hire Biz Dev role Hire Account Lead role(s) Hire Head of Content Playing Offense As we move into Q1 of 2025 and I reflect on the tumultuous few years we’ve had, one thought keeps running through my head. We need to play offense. Most of the last 1-2 years was reacting to changes that were happening around us. Trying to make sense and chart a new path forward. Reeling. But what I really want—as a person and as an entrepreneur—is to be proactive. I want to think and plan ahead. Figure out where we want to go before we’re forced to change course by something that’s out of our control. So my overarching focus for Q1 is playing offense. Thinking longer term. Getting ahead of the daily deluge and creating space to be more proactive, innovative, and forward thinking. To do: Pilot new content formats Audit and update our own content strategy Improve feedback workflows Build out long-term roadmap for 1-2 years for Optimist Final Note on Follow-Through and Cadence In my reflection this year, one of the things I’ve realized is how helpful these posts are for me. I process by writing. So I actually end up making a lot of decisions and seeing things more clearly each time I sit down to reflect and write my yearly recap. It also gives me a space to hold myself accountable for the things I said I would do. So, I’m doing two things a bit differently from here on out. First: I’m identifying clear action items that I’m holding myself accountable for getting done in the next 3 months (listed in the above sections). In each future update, I’ll do an accounting of what I got done and what wasn’t finished (and why). Second: I’m going to start writing shorter quarterly updates. This will gives me more chances each year to reflect, process, and make decisions. Plus it gives me a shorter feedback loop for the action items that I identified above. (See—playing offense.) — Okay friends, enemies, and frenemies. This is my first update for 2025. Glad to share with y’all. And thanks to everyone who’s read, commented, reached out, and shared their own experiences over the years. We are all the accumulation of our connections and our experiences. As always, I will pop in to respond to comments and answer questions. Feel free to share your thoughts, questions, and general disdain down below. Cheers, Tyler

26 Ways to Make Money as a Startup Founder (for coders & noncoders)
reddit
LLM Vibe Score0
Human Vibe Score1
johnrushxThis week

26 Ways to Make Money as a Startup Founder (for coders & noncoders)

I've launched 24 projects (here is the proof johnrush.me). None of my projects is making millions a month, but many of them make over $1k a month, some do over $10k, and few do even more. I'd not recommend anyone to start by trying to build a unicorn. Better start simple. Aim for $2-4k a month first. Once you get there, either scale it or start a new project with large TAM. From my own experience, the 26 Ways to Make Money as a Startup Founder: One-Feature SaaS. Extract a feature from a popular tool and build a micro SaaS around it. Idea: A SaaS that only offers automated email follow-ups. Launchpads. Develop a launch platform for a specific industry. Idea: A launchpad for growth tools. SEO Tools. Create a tool that focuses on a single aspect of SEO. Idea: A tool that generates alt texts for images. Productized Services. Offer standardized services that are repeatable. Idea: design, coding or social media management. Marketplace Platforms. Create a platform that connects buyers and sellers, earning transaction fees. Idea: An online marketplace for domains. Membership Sites. A subscription-based site with exclusive content. Idea: A founder 0-to-1 site. White Labeling. A product that other businesses can rebrand as their own. Idea: A white-labeled website builder. Selling Data. Provide anonymized data insights to companies. Idea: Selling user behavior data. Affiliate Marketing. Promote products/services and earn commissions on sales. Idea: Recommending hosting services on a tech blog. Selling Leads. Generate and sell business leads. Idea: Selling leads who raised a fresh seed round. Niche Social Networks. Create a paid community around a specific interest. Idea: A network for SEO experts. Sell Domains. Buy and sell domain names for profit. Virtual Products. Sell digital products like templates or graphics. Idea: Website themes for nextjs or boilerplates. On-Demand Services. Build a platform for gigs like delivery or tutoring. Idea: An app for freelance tutors. Niche Job Boards. Start a job board focused on a specific industry. Idea: A job board for remote tech jobs. Crowdsourced Content. Create a user-generated content platform and monetize through ads. Idea: Site to share startup hacks. Buy and Flip Businesses. Purchase underperforming businesses, improve them, and sell for profit. Idea: Acquiring a low-traffic blog, optimizing it, and selling. AI-Powered agents. Develop AI tools that solve specific business problems. Idea: An AI tool that automates customer support. Microservices. Offer small, specialized tools, sdks or APIs. Idea: An api for currency conversion. Influencer Platforms. Create a platform connecting influencers with brands. Idea: Connect AI influencers with AI founders. Niche Directories. Build a paid directory for a specific industry. Idea: A directory of developers who can train models. E-Learning Platforms. Build a platform for educators to sell courses. Idea: A site where AI experts sell AI courses. Virtual assistants. Hire them and sell on subscription. No-Code Tools. Create tools that allow non-technical users to build things. Idea: A no-code website builder for bakeries. Labor arbitrage. Idea: Connect support agents from Portugal with US clients and charge commission.

How I went from $27 to $3K as a solopreneur still in a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
jottrledThis week

How I went from $27 to $3K as a solopreneur still in a 9-5

My journey started back in November 2023. I was scrolling through Twitter and YouTube and saw a word that I had never come across before. Solopreneur. The word caught my eye. Mainly because I was pretty sure I knew what it meant even though it's not a word you'll find in the dictionary. I liked what it was describing. A solo entrepreneur. A one man business. It completely resonated with me. As a software engineer by trade I'm used to working alone, especially since the pandemic hit and we were forced to work remotely. See, I always wanted to ditch the 9-5 thing but thought that was too big and too scary for a single person to do. Surely you would need a lot of money to get started, right? Surely you would need investors? The whole concept seemed impossible to me. That was until I found all the success stories. I became obsessed with the concept of solopreneurship. As I went further down the rabbit hole I found people like Justin Welsh, Kieran Drew and Marc Louvion to name a few. All of whom have one person businesses making huge money every year. So I thought, if they can do it, why can't I? People like this have cleared the pathway for those looking to escape the 9-5 grind. I decided 2024 would be the year I try this out. My main goal for the year? Build a one man business, earn my first $ online and learn a sh\*t ton along the way. My main goal in general? Build my business to $100K per year, quit my 9-5 and live with freedom. From December 2023 to February 2024 I began brainstorming ideas. I was like a lost puppy looking for his ball. How on earth did people find good ideas? I began writing everything and anything that came to mind down in my notes app on my phone. By February I would have approximately 70 ideas. Each as weird and whacky as the other. I was skeptical though. If I went through all the trouble of building a product for one of these ideas how would I know if anyone would even be interested in using it? I got scared and took a break for a week. All these ideas seemed too big and the chance that they would take off into the atmosphere was slim (in my mind anyways). I was learning more and more about solopreneurship as the weeks went on so I decided to build a product centered around everything I was learning about. The idea was simple. Enter a business idea and use AI to give the user details about how to market it, who their target customers were, what to write on their landing page, etc. All for a measly $27 per use. I quickly built it and launched on March 3rd 2024. I posted about it on Indie Hackers, Reddit and Hacker News. I was so excited about the prospect of earning my first internet $! Surely everyone wanted to use my product! Nope...all I got was crickets. I was quickly brought back down to earth. That was until 5 days later. I looked at my phone and had a new Stripe notification! Cha-ching! My first internet $. What a feeling! That was goal number 1 complete. It would be another 6 days before I would get my second sale...and then another 15 days to get my third. It was an emotional rollercoaster. I went from feeling like quitting the 9-5 was actually possible to thinking that maybe the ups and downs aren't worth it. On one hand I had made my first internet dollar so I should my ecstatic, and don't get me wrong, I was but I wanted more. More validation that I could do this long term. By May I was starting to give up on the product. I had learned so much in the past few months about marketing, SEO, building an audience, etc. and I wanted to build something that I thought could have more success so I focused on one critical thing that I had learned about. What was it? Building a product that had SEO potential. A product that I knew hundreds of people were looking for. See this was my thinking - If I could find a keyword that people were searching for on Google hundreds/thousands of times every month and it was easy to rank high on search engines then I would go all in (in SEO land this equates to a Keyword that has a Keyword Difficulty of = 500). I began researching and found that the keyword "micro saas ideas" was being searched for around 600 times each month. Micro Saas was something that really interested me. It was perfect for solopreneurs. Small software products that 1 person could build. What's not to like if you're in the game of software and solopreneurship? Researching keywords like this became like a game for me. I was hooked. I was doing it every day, finding gems that were being searched for hundreds and thousands of times every month that still had potential. That's when I came up with my next product idea. I decided to create a database of Micro Saas Ideas all with this sort of SEO potential. See if you can build a product that you know people are looking for then that's all the validation you need. So I put this theory to the test. I created a database of Micro Saas Ideas with SEO Potential and launched it in June 2024. This time it was different. I made $700 in the first week of launching. A large contrast to my previous failed attempt at becoming the worlds greatest solopreneur. Since launch I have grown the product to $3K and I couldn't be happier. I know what you're saying, $3K isn't a lot. But it's validation. It's validation that I can earn $ online. Validation that I can grow a business and it gives me hope that one day I'll be able to quit that 9-5 grind. My plan is to keep growing the business. I expect there to be a few challenges up ahead but I'll tackle them as I go and learn from the failures and successes. I have a newsletter where I share Micro Saas Ideas with SEO potential every week which I'll leave below in the first comment. Feel free to come along for the ride. If not I hope this post brings you some value If you're thinking about starting as a solopreneur, stop thinking and start doing, you won't regret it.

100 best ai sustainable business ideas in 2025
reddit
LLM Vibe Score0
Human Vibe Score1
Low_Philosopher1792This week

100 best ai sustainable business ideas in 2025

AI in Renewable Energy AI-powered smart solar panel optimization Predictive maintenance for wind turbines AI-driven energy storage management AI-based microgrid optimization Smart grid energy forecasting AI-powered water desalination efficiency AI-driven carbon footprint reduction software AI-powered hydropower efficiency monitoring AI for geothermal energy exploration AI-driven green hydrogen production optimization AI in Waste Management & Recycling AI-based waste sorting robots Smart recycling bins with AI recognition AI-powered food waste management AI-driven upcycling marketplace AI-enabled e-waste management solutions AI-powered sustainable packaging optimization AI-driven landfill management systems AI-powered plastic waste tracking and reduction AI-based waste-to-energy conversion AI-driven composting automation AI in Water Conservation AI-powered leak detection and water conservation AI-driven smart irrigation systems AI-based flood prediction and mitigation AI-powered ocean plastic cleanup robots AI-driven rainwater harvesting optimization AI-based groundwater level monitoring AI-powered desalination energy efficiency AI-driven smart water meters AI-powered wastewater treatment optimization AI-based water pollution monitoring AI in Sustainable Agriculture AI-driven precision farming AI-powered vertical farming automation AI-based pest and disease prediction AI-powered livestock health monitoring AI-driven soil health analysis AI-powered regenerative agriculture analytics AI-driven smart greenhouses AI-powered crop rotation optimization AI-based carbon farming solutions AI-powered sustainable aquaculture AI in Transportation & Mobility AI-powered electric vehicle (EV) battery optimization AI-driven smart traffic management AI-powered EV charging station optimization AI-based sustainable urban mobility planning AI-powered drone delivery for carbon reduction AI-driven logistics and supply chain sustainability AI-powered smart public transport systems AI-driven sustainable aviation fuel optimization AI-powered bicycle-sharing optimization AI-driven AI carpooling and ride-sharing efficiency AI in Green Manufacturing AI-powered energy-efficient manufacturing AI-driven supply chain sustainability analytics AI-based material waste reduction AI-powered sustainable fashion production AI-driven predictive demand to reduce overproduction AI-powered eco-friendly textile manufacturing AI-driven 3D printing for sustainable manufacturing AI-powered emission reduction in factories AI-driven green construction material optimization AI-based lifecycle assessment for eco-products AI in Carbon Offsetting & Climate Action AI-powered carbon credit marketplaces AI-driven tree planting optimization AI-based carbon capture efficiency enhancement AI-powered reforestation tracking and monitoring AI-driven climate risk prediction AI-powered environmental compliance software AI-driven sustainable investment analysis AI-based corporate sustainability tracking AI-powered carbon accounting and reporting AI-driven decarbonization roadmaps for businesses AI in Sustainable Smart Cities AI-powered urban energy efficiency monitoring AI-driven AI-powered smart lighting for cities AI-based pollution monitoring and reduction AI-driven green building automation AI-powered smart HVAC energy optimization AI-driven urban tree canopy management AI-powered digital twins for sustainable city planning AI-based urban noise pollution monitoring AI-powered public waste management optimization AI-driven citizen engagement for sustainability AI in Eco-Friendly Consumer Solutions AI-powered sustainable shopping assistant AI-driven personal carbon footprint tracking app AI-powered second-hand marketplace optimization AI-driven sustainable food delivery services AI-powered ethical supply chain transparency AI-driven zero-waste grocery stores AI-powered green subscription services AI-driven sustainable tourism planning AI-powered smart home energy efficiency optimization AI-driven personal finance for sustainability investments AI in Sustainable Healthcare & Well-being AI-powered climate impact on health analytics AI-driven sustainable hospital management AI-based predictive disease outbreak prevention AI-powered mental health solutions for eco-anxiety AI-driven green pharmaceutical production AI-powered sustainable medical waste management AI-based air quality health impact monitoring AI-driven climate-friendly diet and nutrition planning AI-powered fitness and well-being optimization for sustainability AI-driven telemedicine to reduce healthcare emissions These AI-driven sustainable business ideas offer high growth potential while making a positive impact on the planet. Let me know if you want details on a specific idea or need help with implementation strategies!

I spent 18 hours every week tracking marketing trends and latest news. Here are my predictions for 2024
reddit
LLM Vibe Score0
Human Vibe Score0.778
lazymentorsThis week

I spent 18 hours every week tracking marketing trends and latest news. Here are my predictions for 2024

1/ Securing Digital Footprint becomes #1 Priority For Chronically Online Users, Protecting their digital footprint will become one of the main things. We saw influencers getting cancelled over Old Content and Brands used Old Travis Kelce Tweets, we saw what could happen without digital footprint protection. Online Engagement Precautions will be taken again with Twitter & IG showing your usernames above ‘Algorithm Suggested Content’. What you like is more visible to other people in UI Design of these apps, another reason behind why Digital Footprint preservation will matter a lot in 2024. This will impact likes to viewership ratio on your organic and paid content. ​ 2/  TikTok wants Long Videos with Storytelling As I was writing this report, TikTok also released their What’s Next 2024 Report. It focuses heavily on how the audiences on the app demand better storytelling and from the examples in the report, you can judge what TikTok wants. They also rolled out a 30-minute video upload limit. Engaging Content over 1-Minute Mark to keep the audiences longer on the app. I highlighted in the first trend, every social media platform wants the same thing, more time spent. 3/ Use of Shop the Look While Streaming Netflix or Amazon Prime. This year’s one of the most successful TV series, The Bear caused Men to go mad for the T-Shirt worn by Jeremy Allen White in the show. Showing us how TV Shows influence or encourage us to dress in a particular way. It’s nothing new, TV Shows like Friends & Gossip Girl influenced all demographics when they came out. But now, Streamings Services such as Roku & Amazon enable consumers to shop the look while watching the TV Shows. Many Brands will jump on these opportunities in upcoming months. 4/ Brands in Comments & Memes are the new norm By Summer 2024, Most Online Users & Creators will no longer feel too excited or answered when they see your brand in the comments. Why? It’s becoming too common for Brands to show in comments under viral content about them. Or Brands being funny with Internet Culture Trends is known to most users. The Saturation of Every Brand being funny and being present leads to increased competition of levitating the content quality. ​ 5/ Marketers decrease their focus on Traffic & Views With AI recommendations taking over, The Structure of content distributing on social media is changing, the same goes for SEO. Conversational AIs are changing how web traffic is distributed to publishers. An Increased focus on managing the conversion rate and landing page relevancy will be the main focus. 6/ OOH is kind of making a comeback. First, US OOH Ads Industry grew 1.1% in Q3 2023. Second, Outfront Media reported slight revenue increase in Q3 as Billboard Ad Revenue grew in Q3. Many Brands in UK are also aligning more toward traditional media Channels. With Burger King in UK focusing on only OOH for Christmas this year and Fashion Brands like SSENSE launching Billboards as Branding Play. 7/ Rise of Curation Continues This Year, we witnessed success of Pinterest Shuffles App, Gen-Z loved it. Similar Success with formats like IG photo dump & TikTok ‘My Fav Finds’ Carousels being the center of Gen-Z Content. Just look at this recent trend and tell me Curation isn’t personal to Online Teens. Spotify won with their idea of curating Songs with Astrology-type signs. The Fashion Products with Curated Emojis and Stickers on them, that scrappy curated approach is predicted to grow in 2024, data from Pinterest. 8/ Use of AI to Trace Consumers in the wild This year we saw a huge trend of people using Image/ face recognition tools to find or dig dirt about famous people. The biggest example was Dillion Dannis exposing Multiple images of Logan Paul’s girlfriend using AI tools. (Which was Obviously bad) But next year, I believe with better rules, big brands like Adidas or Nike will be able to find worldwide micro-influencers & Online Consumers seen wearing adidas. And partnering with them on a large scale through automated outreach. 9/ More Cartoons than Influencer-Brand Products. All the Cartoon shows are seeing huge rise on IG and TikTok, Shaun the sheep is viral, Snoopy was big this year, Sesame Street’s TikTok is working. Aussie Show Bluey is making a huge spark in the US. More Brand collaborations are on the road. Why? Cartoons have built a very consistent identity and they have social channels. I know many see Cartoons as Kids Content but on social, looking at TikTok Account of Sesame Street & Snoopy. Last month, Powerpuff Girls launched a collaboration with Nike. ​ 10/ The Best Trend to get people off social media ​ Try to get people off the social media apps, build your own loops. You can’t rely on social and you clearly shouldn’t burn out trying to win on social and streaming with Paid Ads or without them. This matters a lot because data shares most of your customers buy from you once or twice a year. And then they interact with your content, how bad will you feel if the only thing they remember as your content is being on TikTok. Nothing about your brand. 11/ The Internet Aesthetic will Die for Cafes & Restaurants When I wrote my post about Instagram Marketing, I mentioned this issue of Every Account looking the same. In reality, It isn’t limited to IG Feeds, This Creator points out the same Problem, mentioning the aesthetic Standards from Internet are changing how new businesses approach their whole business. More Content from Cafes & Restaurants need to be around their people and neighbourhood. 12/ Echo Chambers & Sonic Influence All Podcasts are Echo Chambers because if people wanted a new perspective in form of value. We would have chosen debates, but we chose Podcasts to find new value while being in comfort. People are now looking for more value in comfort than ever, Podcasts will continue to rise. 13/ Clever AI Integration to Better Customer Journeys in B2B & B2C Marketing Agencies can provide clever solutions to B2B Companies, and help them overcome the tag of Boring Ads only. How? Ogilvy India created an AI Ad Campaign for Cadbury, allowing SMBs to have the Bollywood Actor endorse them. They used the AI voice generation allowing businesses to alter the voice and have Shah Rukh Khan endorse their shop. A similar approach was taken by IPG India, An AI Ad with Shah Rukh Khan allowing everyone to add their face in the Branded Content. ​ If I sounded like an Old head in this report or I missed on some elements like Programmatic Advertising and PPC. I will try to include better analysis and new content about future trends. You can find the post shared with examples & research, linked here.

How I went from $27 to $3K as a solopreneur still in a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
jottrledThis week

How I went from $27 to $3K as a solopreneur still in a 9-5

My journey started back in November 2023. I was scrolling through Twitter and YouTube and saw a word that I had never come across before. Solopreneur. The word caught my eye. Mainly because I was pretty sure I knew what it meant even though it's not a word you'll find in the dictionary. I liked what it was describing. A solo entrepreneur. A one man business. It completely resonated with me. As a software engineer by trade I'm used to working alone, especially since the pandemic hit and we were forced to work remotely. See, I always wanted to ditch the 9-5 thing but thought that was too big and too scary for a single person to do. Surely you would need a lot of money to get started, right? Surely you would need investors? The whole concept seemed impossible to me. That was until I found all the success stories. I became obsessed with the concept of solopreneurship. As I went further down the rabbit hole I found people like Justin Welsh, Kieran Drew and Marc Louvion to name a few. All of whom have one person businesses making huge money every year. So I thought, if they can do it, why can't I? People like this have cleared the pathway for those looking to escape the 9-5 grind. I decided 2024 would be the year I try this out. My main goal for the year? Build a one man business, earn my first $ online and learn a sh\*t ton along the way. My main goal in general? Build my business to $100K per year, quit my 9-5 and live with freedom. From December 2023 to February 2024 I began brainstorming ideas. I was like a lost puppy looking for his ball. How on earth did people find good ideas? I began writing everything and anything that came to mind down in my notes app on my phone. By February I would have approximately 70 ideas. Each as weird and whacky as the other. I was skeptical though. If I went through all the trouble of building a product for one of these ideas how would I know if anyone would even be interested in using it? I got scared and took a break for a week. All these ideas seemed too big and the chance that they would take off into the atmosphere was slim (in my mind anyways). I was learning more and more about solopreneurship as the weeks went on so I decided to build a product centered around everything I was learning about. The idea was simple. Enter a business idea and use AI to give the user details about how to market it, who their target customers were, what to write on their landing page, etc. All for a measly $27 per use. I quickly built it and launched on March 3rd 2024. I posted about it on Indie Hackers, Reddit and Hacker News. I was so excited about the prospect of earning my first internet $! Surely everyone wanted to use my product! Nope...all I got was crickets. I was quickly brought back down to earth. That was until 5 days later. I looked at my phone and had a new Stripe notification! Cha-ching! My first internet $. What a feeling! That was goal number 1 complete. It would be another 6 days before I would get my second sale...and then another 15 days to get my third. It was an emotional rollercoaster. I went from feeling like quitting the 9-5 was actually possible to thinking that maybe the ups and downs aren't worth it. On one hand I had made my first internet dollar so I should my ecstatic, and don't get me wrong, I was but I wanted more. More validation that I could do this long term. By May I was starting to give up on the product. I had learned so much in the past few months about marketing, SEO, building an audience, etc. and I wanted to build something that I thought could have more success so I focused on one critical thing that I had learned about. What was it? Building a product that had SEO potential. A product that I knew hundreds of people were looking for. See this was my thinking - If I could find a keyword that people were searching for on Google hundreds/thousands of times every month and it was easy to rank high on search engines then I would go all in (in SEO land this equates to a Keyword that has a Keyword Difficulty of = 500). I began researching and found that the keyword "micro saas ideas" was being searched for around 600 times each month. Micro Saas was something that really interested me. It was perfect for solopreneurs. Small software products that 1 person could build. What's not to like if you're in the game of software and solopreneurship? Researching keywords like this became like a game for me. I was hooked. I was doing it every day, finding gems that were being searched for hundreds and thousands of times every month that still had potential. That's when I came up with my next product idea. I decided to create a database of Micro Saas Ideas all with this sort of SEO potential. See if you can build a product that you know people are looking for then that's all the validation you need. So I put this theory to the test. I created a database of Micro Saas Ideas with SEO Potential and launched it in June 2024. This time it was different. I made $700 in the first week of launching. A large contrast to my previous failed attempt at becoming the worlds greatest solopreneur. Since launch I have grown the product to $3K and I couldn't be happier. I know what you're saying, $3K isn't a lot. But it's validation. It's validation that I can earn $ online. Validation that I can grow a business and it gives me hope that one day I'll be able to quit that 9-5 grind. My plan is to keep growing the business. I expect there to be a few challenges up ahead but I'll tackle them as I go and learn from the failures and successes. I have a newsletter where I share Micro Saas Ideas with SEO potential every week which I'll leave below in the first comment. Feel free to come along for the ride. If not I hope this post brings you some value If you're thinking about starting as a solopreneur, stop thinking and start doing, you won't regret it.

The 15 Best (Free to Use) AI Tools for Creating Websites, Presentations, Graphics, UIs, Photos, and more
reddit
LLM Vibe Score0
Human Vibe Score1
Tapedulema919This week

The 15 Best (Free to Use) AI Tools for Creating Websites, Presentations, Graphics, UIs, Photos, and more

While we wait for ChatGPT to roll out its own official image input+output tool, I wanted to put together a list of the best AI design tools I've seen so far. Obviously text-based tasks like writing and coding get the bulk of the attention, but I wanted to see how it’s being used in design and more visual tasks. From UI and full-on website design, to graphics and photo generation, there are a ton of interesting and free tools coming out that are worth trying and using as inspiration for your own projects. These tools cover a bunch of different use cases and can hopefully help some of you, whether you’re a professional designer looking to automate parts of your work or just someone who wants to find ways to speed up the design work for your business/side projects. All of them are free to try, but most have some kind of paid plan or limit on the number of free generations. Fair enough given it costs money to run the models, but I've tried to include notes on any that don't have permanent free plans. Let me know if you know of any tools I’ve missed so I can add them to the list! I’ve grouped them by categories, to make it easier to see what each tool is capable of, then given a bit more detail under each specific tool. AI Website, Graphic and UI Generators: Framer: Describe the website you want, and Framer will create it for you. Edit and instantly publish your site from their platform. Ironically my favorite thing about Framer isn’t its AI tool. Its real advantage is its website editor which is the best I’ve seen on any platform (and usable for free). It’s like Figma if Figma let you publish directly to the web. Microsoft Designer: Generates designs based on user input for social media posts, logos, and business graphics. It’s free to use with a Microsoft account, and fairly impressive if not always consistent. If you pay a lot or spend a ton of time on design/social media content, Designer is definitely worth checking out. UIzard: Transforms text and images into design mockups, wireframes, and full user interfaces. It’s an ambitious concept, but very cool. While Framer was better for generating websites from text prompts, UIZard offers something none of the others did: taking a sketch drawing and turning it into a UI and/or wireframing. Visualizations, Graphics and Illustrations: Taskade: AI powered productivity tool to visualize your notes, projects, and tasks. Taskade lets you easily generate mind maps and other visualizations of your work, and makes use of AI in a bunch of cool ways. For example, you can generate a mind map to help you brainstorm and then ask it to expand on a certain point or even research it for you with the internet. Bing Image Creator: Generate images from natural text descriptions, powered by DALL-E. Whether you’re looking for blog illustrations, images for your site’s pages or any other purpose, it’s worth trying. AutoDraw: Autodraw is a Google Project that lets you draw something freehand with your cursor, and AutoDraw uses AI to transform it into a refined image with icons and predrawn designs, all for free in your browser. AI Presentations and Slides: Plus AI for Google Slides: AI generated slides and full-on presentations, all within Google Slides. I liked how Plus AI worked within Google Slides and made it easy to make changes to the presentation (as lets be real, no AI tool is going to generate exactly* the content and formatting you need for a serious presentation). SlidesGo: Generate slides with illustrations, images, and icons chosen by AI. SlidesGo also has their own editor to let you edit and refine the AI generated presentation. Tome: Tell Tome what you want to say to your audience, and it will create a presentation that effectively communicates it clearly and effectively. Tome actually goes beyond just presentations and has a few cool formats worth checking out that I could see being useful for salespeople and anyone who needs to pitch an idea or product at work or to clients. Product Photography: These are all fairly similar so I’ve kept the descriptions short, but it’s genuinely a pretty useful category if you run any kind of business or side hustle that needs product photos. These photos establish the professionalism of your store/brand, and all the ones I tried had genuinely impressive results that seemed much better than what I could do myself. Pebblely: AI image generator for product images in various styles and settings. 40 free images, paid after that. Booth.ai: Generates professional-quality product photos using AI, focused on furniture, fashion, and packaged goods. Stylized.ai: Generates product photos integrated into ecommerce platforms like Shopify. Miscellaneous Tools: Fronty: Converts uploaded images or drawings into HTML and CSS code using AI. It’s a bit clunky, but a cool concept nonetheless. LetsEnhance: Uses AI to enhance the resolution of images and photographs. Generally works pretty well from my experience, and gives you 10 free credits with signup. Unfortunately beyond that it is a paid product. Remove.bg: Specializes in recognizing and removing image backgrounds effectively. Doesn’t promise much, but it does the job and doesn’t require you to sign up. TL;DR/Overall favorites: These are the ones I've found the most use for in my day-to-day work. Framer: responsive website design with a full-featured editor to edit and publish your site all in one place. Free + paid plans. Taskade: visualize and automate your workflows, projects, mind maps, and more with AI powered templates. Free + paid plans. Microsoft Designer: generate social media and other marketing graphics with AI. Free to use. Plus AI: plugin for Google Slides to generate slide content, designs, and make tweaks with AI. Free + paid plans. Pebblely: professional-quality product photos in various settings and backgrounds, free to generate up to 40 images* (through you can always sign up for another account…)

Is SaaS Done?
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Salad709This week

Is SaaS Done?

Other day I was talking to one of the leaders in Office, He said "SAAS IS DY!NG THANKS TO AI". I found this fascinating & started digging on this, I was already part of communities like Build in Public, NoCode Builders & Others. I think he was right. I saw a significant raise in the AI Tools, what other call it 'AI Wrapper Startups' I explored many tools, then I realise why don't we capitalise this opportunity. I found out it is the marketers who needs to be aware of these & if you don't embrace these tools you will end up losing to someone with minimum experience with marketing but good hands on experience with the tools. If these tools keep up the same phase then you have both challenges & opportunities which I've listed it down in the post pros & cons. I think we need to embrace these tools are else we will be left behind. All these things are about marketers but what about the people who want to become solopreneurs or people like Pieter Levels who just want to create something useful get money either by selling or running multiple projects at once. Whatever I've studied & learnt. I came up with something called "The SaaS Marketing Innovation Cycle". The SaaS Marketing Innovation Cycle : Will have six easy steps. Empowering with No-code : Decide what is the problem you are planing to solve & understand which is No-code tool can help you with solution. Some tools will have steep learning curve, become expert on those tools. Integrate Automation AI : This is very crucial for your tool & make sure you have build a tool which will integrates easily with most of the platforms. Build Custom Solution : Right now the whole industry of Micro SaaS stands on building custom solutions, catering your audience is the best way to go for it. Launching MVPs : Because you have no-code tools it is easier to deploy MVPs than ever before & you can build multiple tools at once. Adapt & Grow : This is about the business take feedback from customer add new feature remove few yada yada. Leverage the Growth : Here it is important you have learn to build communities out these tools. if you come up with any new ideas there is always a group of people, who will be able adapt & give you the feedback to improve. Conclusion : Either build something or adapt something quicker when that has built. What do you think Folks ??

Education workshops for kids in 2025
reddit
LLM Vibe Score0
Human Vibe Score1
apbyaThis week

Education workshops for kids in 2025

Hello, I’m planning to launch STEM workshops for kids in my city. I’d love to hear your insights and opinions. I am software developer with experience in robotics industry. While there are already many LEGO Mindstorms groups (I’ve worked with them before and really enjoyed it). I want to create something a little different—something fresh and valuable that stands out. All of these courses are called young constructor, young robotics programmer - I would like to make something sounds more available. The goal is to offer onsite workshops that not only teach STEM skills but also help kids build a sense of community. The workshops will be tailored to three age groups: 9-10 years, 11-12 years, and 13-14 years. Here are my initial ideas: Python Programming Course: Using a DIY IoT home model kit (designed by me, I am able to make few models on my own) with a raspberry pi. The kit would include features like programmable LEDs, an electromagnet for holding doors, a numeric keypad, a microphone (for a basic voice assistant) and so on. The course would cover Python basics step by step. AI Introduction: Focused on Python. I’m still brainstorming ideas for this one. What do you think of this idea? Maybe do you know any great alternatives for mindstorms sets (they are everywhere now). For now I want to prepare a unique program for 3 courses and start with this. I could start it with some devs friends that have experience of working with kids, and then, if it would work I could hire students for it.

Is SaaS Done?
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Salad709This week

Is SaaS Done?

Other day I was talking to one of the leaders in Office, He said "SAAS IS DY!NG THANKS TO AI". I found this fascinating & started digging on this, I was already part of communities like Build in Public, NoCode Builders & Others. I think he was right. I saw a significant raise in the AI Tools, what other call it 'AI Wrapper Startups' I explored many tools, then I realise why don't we capitalise this opportunity. I found out it is the marketers who needs to be aware of these & if you don't embrace these tools you will end up losing to someone with minimum experience with marketing but good hands on experience with the tools. If these tools keep up the same phase then you have both challenges & opportunities which I've listed it down in the post pros & cons. I think we need to embrace these tools are else we will be left behind. All these things are about marketers but what about the people who want to become solopreneurs or people like Pieter Levels who just want to create something useful get money either by selling or running multiple projects at once. Whatever I've studied & learnt. I came up with something called "The SaaS Marketing Innovation Cycle". The SaaS Marketing Innovation Cycle : Will have six easy steps. Empowering with No-code : Decide what is the problem you are planing to solve & understand which is No-code tool can help you with solution. Some tools will have steep learning curve, become expert on those tools. Integrate Automation AI : This is very crucial for your tool & make sure you have build a tool which will integrates easily with most of the platforms. Build Custom Solution : Right now the whole industry of Micro SaaS stands on building custom solutions, catering your audience is the best way to go for it. Launching MVPs : Because you have no-code tools it is easier to deploy MVPs than ever before & you can build multiple tools at once. Adapt & Grow : This is about the business take feedback from customer add new feature remove few yada yada. Leverage the Growth : Here it is important you have learn to build communities out these tools. if you come up with any new ideas there is always a group of people, who will be able adapt & give you the feedback to improve. Conclusion : Either build something or adapt something quicker when that has built. What do you think Folks ??

Is SaaS Done?
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Salad709This week

Is SaaS Done?

Other day I was talking to one of the leaders in Office, He said "SAAS IS DY!NG THANKS TO AI". I found this fascinating & started digging on this, I was already part of communities like Build in Public, NoCode Builders & Others. I think he was right. I saw a significant raise in the AI Tools, what other call it 'AI Wrapper Startups' I explored many tools, then I realise why don't we capitalise this opportunity. I found out it is the marketers who needs to be aware of these & if you don't embrace these tools you will end up losing to someone with minimum experience with marketing but good hands on experience with the tools. If these tools keep up the same phase then you have both challenges & opportunities which I've listed it down in the post pros & cons. I think we need to embrace these tools are else we will be left behind. All these things are about marketers but what about the people who want to become solopreneurs or people like Pieter Levels who just want to create something useful get money either by selling or running multiple projects at once. Whatever I've studied & learnt. I came up with something called "The SaaS Marketing Innovation Cycle". The SaaS Marketing Innovation Cycle : Will have six easy steps. Empowering with No-code : Decide what is the problem you are planing to solve & understand which is No-code tool can help you with solution. Some tools will have steep learning curve, become expert on those tools. Integrate Automation AI : This is very crucial for your tool & make sure you have build a tool which will integrates easily with most of the platforms. Build Custom Solution : Right now the whole industry of Micro SaaS stands on building custom solutions, catering your audience is the best way to go for it. Launching MVPs : Because you have no-code tools it is easier to deploy MVPs than ever before & you can build multiple tools at once. Adapt & Grow : This is about the business take feedback from customer add new feature remove few yada yada. Leverage the Growth : Here it is important you have learn to build communities out these tools. if you come up with any new ideas there is always a group of people, who will be able adapt & give you the feedback to improve. Conclusion : Either build something or adapt something quicker when that has built. What do you think Folks ??

better-genshin-impact
github
LLM Vibe Score0.58
Human Vibe Score0.5281045668197327
babalaeMar 28, 2025

better-genshin-impact

BetterGI 🌟 点一下右上角的 Star,Github 主页就能收到软件更新通知了哦~ BetterGI · 更好的原神, 一个基于计算机视觉技术,意图让原神变的更好的项目。 功能 实时任务 自动拾取:遇到可交互/拾取内容时自动按 F,支持黑白名单配置 自动剧情:快速点击过剧情、自动选择选项、自动提交物品、关闭弹出书页等 与凯瑟琳对话时有橙色选项会 自动领取「每日委托」奖励、自动重新派遣 自动邀约:自动剧情开启的情况下此功能才会生效,自动选择邀约选项 快速传送:在地图上点击传送点,或者点击后出现的列表中存在传送点,会自动点击传送点并传送 半自动钓鱼:AI 识别自动抛竿,鱼上钩时自动收杆,并自动完成钓鱼进度 自动烹饪:自动在完美区域完成食物烹饪,暂不支持“仙跳墙” 独立任务 全自动七圣召唤:帮助你轻松完成七圣召唤角色邀请、每周来客挑战等 PVE 内容 自动伐木:自动 Z 键使用「王树瑞佑」,利用上下线可以刷新木材的原理,挂机刷满一背包的木材 自动秘境:全自动秘境挂机刷体力,自动循环进入秘境开启钥匙、战斗、走到古树并领取奖励 自动音游:一键自动完成千音雅集的专辑,快速获取成就 全自动钓鱼:在出现钓鱼F按钮的位置面向鱼塘,然后启动全自动钓鱼,启动后程序会自动完成钓鱼,并切换白天和晚上 全自动 一条龙:一键完成日常(使用历练点),并领取奖励 自动采集/挖矿/锄地:通过左上角小地图的识别,完成自动采集、挖矿、锄地等功能 键鼠录制:可以录制回放当前的键鼠操作,建议配合调度器使用 操控辅助 那维莱特转圈:设置快捷键后,长按可以不断水平旋转视角(当然你也可以用来转草神) 快速圣遗物强化:通过快速切换“详情”、“强化”页跳过圣遗物强化结果展示,快速+20 商店一键购买:可以快速以满数量购买商店中的物品,适合快速清空活动兑换,尘歌壶商店兑换等 …… 自带一个遮罩窗口覆盖在游戏界面上,用于显示日志和图像识别结果 截图 !0 39 1 下载 [!NOTE] 下载地址:⚡Github 下载 不知道下载哪个?第一次使用?请看:快速上手 , 遇到问题请先看:常见问题 最新编译版本可以从自动构建中获取: 使用方法 由于图像识别比较吃性能,低配置电脑可能无法正常使用部分功能。 推荐的电脑配置至少能够中画质60帧流畅游玩原神,否则部分功能的使用体验会较差。 你的系统需要满足以下条件: Windows 10 或更高版本的64位系统 .NET 8 运行时 (没有的话,启动程序,系统会提示下载安装) ⚠️注意: 窗口大小变化、切换游戏分辨率、切换显示器的时候请重启本软件。 不支持任何画面滤镜(HDR、N卡滤镜等)。游戏亮度请保持默认。 当前只支持 16:9 的分辨率,推荐在 1920x1080 窗口化游戏下使用。 模拟操作部分可能被部分安全软件拦截,请加入白名单。已知360或者自定义规则WD会拦截部分类型的模拟点击 打开软件以后,在“启动”页选择好截图方式,点击启动按钮就可以享受 BetterGI 带来的便利了! 详细使用指南请看:快速上手 具体功能效果与使用方式见:文档 FAQ 为什么需要管理员权限? 因为游戏是以管理员权限启动的,软件不以管理员权限启动的话没有权限模拟鼠标点击。 会不会封号? 理论上不会被封。 BetterGI 不会做出任何修改游戏文件、读写游戏内存等任何危害游戏本体的行为,单纯依靠视觉算法和模拟操作实现。 但是mhy是自由的,用户条款上明确说明第三方软件/模拟操作是封号理由之一。当前方案还是存在被检测的可能。只能说请低调使用,请不要跳脸官方。 更多常见问题... 致谢 本项目的完成离不开以下项目: Yap genshin-woodmen Fischless MicaSetup cvAutoTrack genshinimpactassistant HutaoFisher minimap kachina-installer 另外特别感谢 @Lightczx 和 @emako 对本项目的指导与贡献 开发者 格式化:CodeMaid.config、Settings.XamlStyler; 如何编译项目? 许可证 !GPL-v3 问题反馈 提 Issue 或 QQ群1029539994

anything-llm
github
LLM Vibe Score0.572
Human Vibe Score0.4703504093656464
Mintplex-LabsMar 28, 2025

anything-llm

AnythingLLM: The all-in-one AI app you were looking for. Chat with your docs, use AI Agents, hyper-configurable, multi-user, & no frustrating set up required. | | Docs | Hosted Instance English · 简体中文 · 日本語 👉 AnythingLLM for desktop (Mac, Windows, & Linux)! Download Now A full-stack application that enables you to turn any document, resource, or piece of content into context that any LLM can use as references during chatting. This application allows you to pick and choose which LLM or Vector Database you want to use as well as supporting multi-user management and permissions. !Chatting Watch the demo! Product Overview AnythingLLM is a full-stack application where you can use commercial off-the-shelf LLMs or popular open source LLMs and vectorDB solutions to build a private ChatGPT with no compromises that you can run locally as well as host remotely and be able to chat intelligently with any documents you provide it. AnythingLLM divides your documents into objects called workspaces. A Workspace functions a lot like a thread, but with the addition of containerization of your documents. Workspaces can share documents, but they do not talk to each other so you can keep your context for each workspace clean. Cool features of AnythingLLM 🆕 Custom AI Agents 🆕 No-code AI Agent builder 🖼️ Multi-modal support (both closed and open-source LLMs!) 👤 Multi-user instance support and permissioning Docker version only 🦾 Agents inside your workspace (browse the web, etc) 💬 Custom Embeddable Chat widget for your website Docker version only 📖 Multiple document type support (PDF, TXT, DOCX, etc) Simple chat UI with Drag-n-Drop funcitonality and clear citations. 100% Cloud deployment ready. Works with all popular closed and open-source LLM providers. Built-in cost & time-saving measures for managing very large documents compared to any other chat UI. Full Developer API for custom integrations! Much more...install and find out! Supported LLMs, Embedder Models, Speech models, and Vector Databases Large Language Models (LLMs): Any open-source llama.cpp compatible model OpenAI OpenAI (Generic) Azure OpenAI AWS Bedrock Anthropic NVIDIA NIM (chat models) Google Gemini Pro Hugging Face (chat models) Ollama (chat models) LM Studio (all models) LocalAi (all models) Together AI (chat models) Fireworks AI (chat models) Perplexity (chat models) OpenRouter (chat models) DeepSeek (chat models) Mistral Groq Cohere KoboldCPP LiteLLM Text Generation Web UI Apipie xAI Novita AI (chat models) PPIO Embedder models: AnythingLLM Native Embedder (default) OpenAI Azure OpenAI LocalAi (all) Ollama (all) LM Studio (all) Cohere Audio Transcription models: AnythingLLM Built-in (default) OpenAI TTS (text-to-speech) support: Native Browser Built-in (default) PiperTTSLocal - runs in browser OpenAI TTS ElevenLabs Any OpenAI Compatible TTS service. STT (speech-to-text) support: Native Browser Built-in (default) Vector Databases: LanceDB (default) Astra DB Pinecone Chroma Weaviate Qdrant Milvus Zilliz Technical Overview This monorepo consists of three main sections: frontend: A viteJS + React frontend that you can run to easily create and manage all your content the LLM can use. server: A NodeJS express server to handle all the interactions and do all the vectorDB management and LLM interactions. collector: NodeJS express server that process and parses documents from the UI. docker: Docker instructions and build process + information for building from source. embed: Submodule for generation & creation of the web embed widget. browser-extension: Submodule for the chrome browser extension. 🛳 Self Hosting Mintplex Labs & the community maintain a number of deployment methods, scripts, and templates that you can use to run AnythingLLM locally. Refer to the table below to read how to deploy on your preferred environment or to automatically deploy. | Docker | AWS | GCP | Digital Ocean | Render.com | |----------------------------------------|----|-----|---------------|------------| | [![Deploy on Docker][docker-btn]][docker-deploy] | [![Deploy on AWS][aws-btn]][aws-deploy] | [![Deploy on GCP][gcp-btn]][gcp-deploy] | [![Deploy on DigitalOcean][do-btn]][do-deploy] | [![Deploy on Render.com][render-btn]][render-deploy] | | Railway | RepoCloud | Elestio | | --- | --- | --- | | [![Deploy on Railway][railway-btn]][railway-deploy] | [![Deploy on RepoCloud][repocloud-btn]][repocloud-deploy] | [![Deploy on Elestio][elestio-btn]][elestio-deploy] | or set up a production AnythingLLM instance without Docker → How to setup for development yarn setup To fill in the required .env files you'll need in each of the application sections (from root of repo). Go fill those out before proceeding. Ensure server/.env.development is filled or else things won't work right. yarn dev:server To boot the server locally (from root of repo). yarn dev:frontend To boot the frontend locally (from root of repo). yarn dev:collector To then run the document collector (from root of repo). Learn about documents Learn about vector caching External Apps & Integrations These are apps that are not maintained by Mintplex Labs, but are compatible with AnythingLLM. A listing here is not an endorsement. Midori AI Subsystem Manager - A streamlined and efficient way to deploy AI systems using Docker container technology. Coolify - Deploy AnythingLLM with a single click. GPTLocalhost for Microsoft Word - A local Word Add-in for you to use AnythingLLM in Microsoft Word. Telemetry & Privacy AnythingLLM by Mintplex Labs Inc contains a telemetry feature that collects anonymous usage information. More about Telemetry & Privacy for AnythingLLM Why? We use this information to help us understand how AnythingLLM is used, to help us prioritize work on new features and bug fixes, and to help us improve AnythingLLM's performance and stability. Opting out Set DISABLE_TELEMETRY in your server or docker .env settings to "true" to opt out of telemetry. You can also do this in-app by going to the sidebar > Privacy and disabling telemetry. What do you explicitly track? We will only track usage details that help us make product and roadmap decisions, specifically: Type of your installation (Docker or Desktop) When a document is added or removed. No information about the document. Just that the event occurred. This gives us an idea of use. Type of vector database in use. Let's us know which vector database provider is the most used to prioritize changes when updates arrive for that provider. Type of LLM in use. Let's us know the most popular choice and prioritize changes when updates arrive for that provider. Chat is sent. This is the most regular "event" and gives us an idea of the daily-activity of this project across all installations. Again, only the event is sent - we have no information on the nature or content of the chat itself. You can verify these claims by finding all locations Telemetry.sendTelemetry is called. Additionally these events are written to the output log so you can also see the specific data which was sent - if enabled. No IP or other identifying information is collected. The Telemetry provider is PostHog - an open-source telemetry collection service. View all telemetry events in source code 👋 Contributing create issue create PR with branch name format of - LGTM from core-team 🌟 Contributors 🔗 More Products [VectorAdmin][vector-admin]: An all-in-one GUI & tool-suite for managing vector databases. [OpenAI Assistant Swarm][assistant-swarm]: Turn your entire library of OpenAI assistants into one single army commanded from a single agent. [![][back-to-top]](#readme-top) Copyright © 2025 [Mintplex Labs][profile-link]. This project is MIT licensed. [back-to-top]: https://img.shields.io/badge/-BACKTOTOP-222628?style=flat-square [profile-link]: https://github.com/mintplex-labs [vector-admin]: https://github.com/mintplex-labs/vector-admin [assistant-swarm]: https://github.com/Mintplex-Labs/openai-assistant-swarm [docker-btn]: ./images/deployBtns/docker.png [docker-deploy]: ./docker/HOWTOUSE_DOCKER.md [aws-btn]: ./images/deployBtns/aws.png [aws-deploy]: ./cloud-deployments/aws/cloudformation/DEPLOY.md [gcp-btn]: https://deploy.cloud.run/button.svg [gcp-deploy]: ./cloud-deployments/gcp/deployment/DEPLOY.md [do-btn]: https://www.deploytodo.com/do-btn-blue.svg [do-deploy]: ./cloud-deployments/digitalocean/terraform/DEPLOY.md [render-btn]: https://render.com/images/deploy-to-render-button.svg [render-deploy]: https://render.com/deploy?repo=https://github.com/Mintplex-Labs/anything-llm&branch=render [render-btn]: https://render.com/images/deploy-to-render-button.svg [render-deploy]: https://render.com/deploy?repo=https://github.com/Mintplex-Labs/anything-llm&branch=render [railway-btn]: https://railway.app/button.svg [railway-deploy]: https://railway.app/template/HNSCS1?referralCode=WFgJkn [repocloud-btn]: https://d16t0pc4846x52.cloudfront.net/deploylobe.svg [repocloud-deploy]: https://repocloud.io/details/?app_id=276 [elestio-btn]: https://elest.io/images/logos/deploy-to-elestio-btn.png [elestio-deploy]: https://elest.io/open-source/anythingllm

GenAI_Agents
github
LLM Vibe Score0.563
Human Vibe Score0.24210481455988786
NirDiamantMar 28, 2025

GenAI_Agents

🌟 Support This Project: Your sponsorship fuels innovation in GenAI agent development. Become a sponsor to help maintain and expand this valuable resource! GenAI Agents: Comprehensive Repository for Development and Implementation 🚀 Welcome to one of the most extensive and dynamic collections of Generative AI (GenAI) agent tutorials and implementations available today. This repository serves as a comprehensive resource for learning, building, and sharing GenAI agents, ranging from simple conversational bots to complex, multi-agent systems. 📫 Stay Updated! 🚀Cutting-edgeUpdates 💡ExpertInsights 🎯Top 0.1%Content Join over 15,000 of AI enthusiasts getting unique cutting-edge insights and free tutorials! Plus, subscribers get exclusive early access and special 33% discounts to my book and the upcoming RAG Techniques course! Introduction Generative AI agents are at the forefront of artificial intelligence, revolutionizing the way we interact with and leverage AI technologies. This repository is designed to guide you through the development journey, from basic agent implementations to advanced, cutting-edge systems. 📚 Learn to Build Your First AI Agent Your First AI Agent: Simpler Than You Think This detailed blog post complements the repository by providing a complete A-Z walkthrough with in-depth explanations of core concepts, step-by-step implementation, and the theory behind AI agents. It's designed to be incredibly simple to follow while covering everything you need to know to build your first working agent from scratch. 💡 Plus: Subscribe to the newsletter for exclusive early access to tutorials and special discounts on upcoming courses and books! Our goal is to provide a valuable resource for everyone - from beginners taking their first steps in AI to seasoned practitioners pushing the boundaries of what's possible. By offering a range of examples from foundational to complex, we aim to facilitate learning, experimentation, and innovation in the rapidly evolving field of GenAI agents. Furthermore, this repository serves as a platform for showcasing innovative agent creations. Whether you've developed a novel agent architecture or found an innovative application for existing techniques, we encourage you to share your work with the community. Related Projects 📚 Dive into my comprehensive guide on RAG techniques to learn about integrating external knowledge into AI systems, enhancing their capabilities with up-to-date and relevant information retrieval. 🖋️ Explore my Prompt Engineering Techniques guide for an extensive collection of prompting strategies, from fundamental concepts to advanced methods, improving your ability to communicate effectively with AI language models. A Community-Driven Knowledge Hub This repository grows stronger with your contributions! Join our vibrant Discord community — the central hub for shaping and advancing this project together 🤝 GenAI Agents Discord Community Whether you're a novice eager to learn or an expert ready to share your knowledge, your insights can shape the future of GenAI agents. Join us to propose ideas, get feedback, and collaborate on innovative implementations. For contribution guidelines, please refer to our CONTRIBUTING.md file. Let's advance GenAI agent technology together! 🔗 For discussions on GenAI, agents, or to explore knowledge-sharing opportunities, feel free to connect on LinkedIn. Key Features 🎓 Learn to build GenAI agents from beginner to advanced levels 🧠 Explore a wide range of agent architectures and applications 📚 Step-by-step tutorials and comprehensive documentation 🛠️ Practical, ready-to-use agent implementations 🌟 Regular updates with the latest advancements in GenAI 🤝 Share your own agent creations with the community GenAI Agent Implementations Explore our extensive list of GenAI agent implementations, sorted by categories: 🌱 Beginner-Friendly Agents Simple Conversational Agent LangChain PydanticAI Overview 🔎 A context-aware conversational AI maintains information across interactions, enabling more natural dialogues. Implementation 🛠️ Integrates a language model, prompt template, and history manager to generate contextual responses and track conversation sessions. Simple Question Answering Agent Overview 🔎 Answering (QA) agent using LangChain and OpenAI's language model understands user queries and provides relevant, concise answers. Implementation 🛠️ Combines OpenAI's GPT model, a prompt template, and an LLMChain to process user questions and generate AI-driven responses in a streamlined manner. Simple Data Analysis Agent LangChain PydanticAI Overview 🔎 An AI-powered data analysis agent interprets and answers questions about datasets using natural language, combining language models with data manipulation tools for intuitive data exploration. Implementation 🛠️ Integrates a language model, data manipulation framework, and agent framework to process natural language queries and perform data analysis on a synthetic dataset, enabling accessible insights for non-technical users. 🔧 Framework Tutorial: LangGraph Introduction to LangGraph: Building Modular AI Workflows Overview 🔎 This tutorial introduces LangGraph, a powerful framework for creating modular, graph-based AI workflows. Learn how to leverage LangGraph to build more complex and flexible AI agents that can handle multi-step processes efficiently. Implementation 🛠️ Step-by-step guide on using LangGraph to create a StateGraph workflow. The tutorial covers key concepts such as state management, node creation, and graph compilation. It demonstrates these principles by constructing a simple text analysis pipeline, serving as a foundation for more advanced agent architectures. Additional Resources 📚 Blog Post 🎓 Educational and Research Agents ATLAS: Academic Task and Learning Agent System Overview 🔎 ATLAS demonstrates how to build an intelligent multi-agent system that transforms academic support through AI-powered assistance. The system leverages LangGraph's workflow framework to coordinate multiple specialized agents that provide personalized academic planning, note-taking, and advisory support. Implementation 🛠️ Implements a state-managed multi-agent architecture using four specialized agents (Coordinator, Planner, Notewriter, and Advisor) working in concert through LangGraph's workflow framework. The system features sophisticated workflows for profile analysis and academic support, with continuous adaptation based on student performance and feedback. Additional Resources 📚 YouTube Explanation Blog Post Scientific Paper Agent - Literature Review Overview 🔎 An intelligent research assistant that helps users navigate, understand, and analyze scientific literature through an orchestrated workflow. The system combines academic APIs with sophisticated paper processing techniques to automate literature review tasks, enabling researchers to efficiently extract insights from academic papers while maintaining research rigor and quality control. Implementation 🛠️ Leverages LangGraph to create a five-node workflow system including decision making, planning, tool execution, and quality validation nodes. The system integrates the CORE API for paper access, PDFplumber for document processing, and advanced language models for analysis. Key features include a retry mechanism for robust paper downloads, structured data handling through Pydantic models, and quality-focused improvement cycles with human-in-the-loop validation options. Additional Resources 📚 YouTube Explanation Blog Post Chiron - A Feynman-Enhanced Learning Agent Overview 🔎 An adaptive learning agent that guides users through educational content using a structured checkpoint system and Feynman-style teaching. The system processes learning materials (either user-provided or web-retrieved), verifies understanding through interactive checkpoints, and provides simplified explanations when needed, creating a personalized learning experience that mimics one-on-one tutoring. Implementation 🛠️ Uses LangGraph to orchestrate a learning workflow that includes checkpoint definition, context building, understanding verification, and Feynman teaching nodes. The system integrates web search for dynamic content retrieval, employs semantic chunking for context processing, and manages embeddings for relevant information retrieval. Key features include a 70% understanding threshold for progression, interactive human-in-the-loop validation, and structured output through Pydantic models for consistent data handling. Additional Resources 📚 YouTube Explanation 💼 Business and Professional Agents Customer Support Agent (LangGraph) Overview 🔎 An intelligent customer support agent using LangGraph categorizes queries, analyzes sentiment, and provides appropriate responses or escalates issues. Implementation 🛠️ Utilizes LangGraph to create a workflow combining state management, query categorization, sentiment analysis, and response generation. Essay Grading Agent (LangGraph) Overview 🔎 An automated essay grading system using LangGraph and an LLM model evaluates essays based on relevance, grammar, structure, and depth of analysis. Implementation 🛠️ Utilizes a state graph to define the grading workflow, incorporating separate grading functions for each criterion. Travel Planning Agent (LangGraph) Overview 🔎 A Travel Planner using LangGraph demonstrates how to build a stateful, multi-step conversational AI application that collects user input and generates personalized travel itineraries. Implementation 🛠️ Utilizes StateGraph to define the application flow, incorporates custom PlannerState for process management. GenAI Career Assistant Agent Overview 🔎 The GenAI Career Assistant demonstrates how to create a multi-agent system that provides personalized guidance for careers in Generative AI. Using LangGraph and Gemini LLM, the system delivers customized learning paths, resume assistance, interview preparation, and job search support. Implementation 🛠️ Leverages a multi-agent architecture using LangGraph to coordinate specialized agents (Learning, Resume, Interview, Job Search) through TypedDict-based state management. The system employs sophisticated query categorization and routing while integrating with external tools like DuckDuckGo for job searches and dynamic content generation. Additional Resources 📚 YouTube Explanation Project Manager Assistant Agent Overview 🔎 An AI agent designed to assist in project management tasks by automating the process of creating actionable tasks from project descriptions, identifying dependencies, scheduling work, and assigning tasks to team members based on expertise. The system includes risk assessment and self-reflection capabilities to optimize project plans through multiple iterations, aiming to minimize overall project risk. Implementation 🛠️ Leverages LangGraph to orchestrate a workflow of specialized nodes including task generation, dependency mapping, scheduling, allocation, and risk assessment. Each node uses GPT-4o-mini for structured outputs following Pydantic models. The system implements a feedback loop for self-improvement, where risk scores trigger reflection cycles that generate insights to optimize the project plan. Visualization tools display Gantt charts of the generated schedules across iterations. Additional Resources 📚 YouTube Explanation Contract Analysis Assistant (ClauseAI) Overview 🔎 ClauseAI demonstrates how to build an AI-powered contract analysis system using a multi-agent approach. The system employs specialized AI agents for different aspects of contract review, from clause analysis to compliance checking, and leverages LangGraph for workflow orchestration and Pinecone for efficient clause retrieval and comparison. Implementation 🛠️ Implements a sophisticated state-based workflow using LangGraph to coordinate multiple AI agents through contract analysis stages. The system features Pydantic models for data validation, vector storage with Pinecone for clause comparison, and LLM-based analysis for generating comprehensive contract reports. The implementation includes parallel processing capabilities and customizable report generation based on user requirements. Additional Resources 📚 YouTube Explanation E2E Testing Agent Overview 🔎 The E2E Testing Agent demonstrates how to build an AI-powered system that converts natural language test instructions into executable end-to-end web tests. Using LangGraph for workflow orchestration and Playwright for browser automation, the system enables users to specify test cases in plain English while handling the complexity of test generation and execution. Implementation 🛠️ Implements a structured workflow using LangGraph to coordinate test generation, validation, and execution. The system features TypedDict state management, integration with Playwright for browser automation, and LLM-based code generation for converting natural language instructions into executable test scripts. The implementation includes DOM state analysis, error handling, and comprehensive test reporting. Additional Resources 📚 YouTube Explanation 🎨 Creative and Content Generation Agents GIF Animation Generator Agent (LangGraph) Overview 🔎 A GIF animation generator that integrates LangGraph for workflow management, GPT-4 for text generation, and DALL-E for image creation, producing custom animations from user prompts. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow that generates character descriptions, plots, and image prompts using GPT-4, creates images with DALL-E 3, and assembles them into GIFs using PIL. Employs asynchronous programming for efficient parallel processing. TTS Poem Generator Agent (LangGraph) Overview 🔎 An advanced text-to-speech (TTS) agent using LangGraph and OpenAI's APIs classifies input text, processes it based on content type, and generates corresponding speech output. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow that classifies input text using GPT models, applies content-specific processing, and converts the processed text to speech using OpenAI's TTS API. The system adapts its output based on the identified content type (general, poem, news, or joke). Music Compositor Agent (LangGraph) Overview 🔎 An AI Music Compositor using LangGraph and OpenAI's language models generates custom musical compositions based on user input. The system processes the input through specialized components, each contributing to the final musical piece, which is then converted to a playable MIDI file. Implementation 🛠️ LangGraph orchestrates a workflow that transforms user input into a musical composition, using ChatOpenAI (GPT-4) to generate melody, harmony, and rhythm, which are then style-adapted. The final AI-generated composition is converted to a MIDI file using music21 and can be played back using pygame. Content Intelligence: Multi-Platform Content Generation Agent Overview 🔎 Content Intelligence demonstrates how to build an advanced content generation system that transforms input text into platform-optimized content across multiple social media channels. The system employs LangGraph for workflow orchestration to analyze content, conduct research, and generate tailored content while maintaining brand consistency across different platforms. Implementation 🛠️ Implements a sophisticated workflow using LangGraph to coordinate multiple specialized nodes (Summary, Research, Platform-Specific) through the content generation process. The system features TypedDict and Pydantic models for state management, integration with Tavily Search for research enhancement, and platform-specific content generation using GPT-4. The implementation includes parallel processing for multiple platforms and customizable content templates. Additional Resources 📚 YouTube Explanation Business Meme Generator Using LangGraph and Memegen.link Overview 🔎 The Business Meme Generator demonstrates how to create an AI-powered system that generates contextually relevant memes based on company website analysis. Using LangGraph for workflow orchestration, the system combines Groq's Llama model for text analysis and the Memegen.link API to automatically produce brand-aligned memes for digital marketing. Implementation 🛠️ Implements a state-managed workflow using LangGraph to coordinate website content analysis, meme concept generation, and image creation. The system features Pydantic models for data validation, asynchronous processing with aiohttp, and integration with external APIs (Groq, Memegen.link) to create a complete meme generation pipeline with customizable templates. Additional Resources 📚 YouTube Explanation Murder Mystery Game with LLM Agents Overview 🔎 A text-based detective game that utilizes autonomous LLM agents as interactive characters in a procedurally generated murder mystery. Drawing inspiration from the UNBOUNDED paper, the system creates unique scenarios each time, with players taking on the role of Sherlock Holmes to solve the case through character interviews and deductive reasoning. Implementation 🛠️ Leverages two LangGraph workflows - a main game loop for story/character generation and game progression, and a conversation sub-graph for character interactions. The system uses a combination of LLM-powered narrative generation, character AI, and structured game mechanics to create an immersive investigative experience with replayable storylines. Additional Resources 📚 YouTube Explanation 📊 Analysis and Information Processing Agents Memory-Enhanced Conversational Agent Overview 🔎 A memory-enhanced conversational AI agent incorporates short-term and long-term memory systems to maintain context within conversations and across multiple sessions, improving interaction quality and personalization. Implementation 🛠️ Integrates a language model with separate short-term and long-term memory stores, utilizes a prompt template incorporating both memory types, and employs a memory manager for storage and retrieval. The system includes an interaction loop that updates and utilizes memories for each response. Multi-Agent Collaboration System Overview 🔎 A multi-agent collaboration system combining historical research with data analysis, leveraging large language models to simulate specialized agents working together to answer complex historical questions. Implementation 🛠️ Utilizes a base Agent class to create specialized HistoryResearchAgent and DataAnalysisAgent, orchestrated by a HistoryDataCollaborationSystem. The system follows a five-step process: historical context provision, data needs identification, historical data provision, data analysis, and final synthesis. Self-Improving Agent Overview 🔎 A Self-Improving Agent using LangChain engages in conversations, learns from interactions, and continuously improves its performance over time through reflection and adaptation. Implementation 🛠️ Integrates a language model with chat history management, response generation, and a reflection mechanism. The system employs a learning system that incorporates insights from reflection to enhance future performance, creating a continuous improvement loop. Task-Oriented Agent Overview 🔎 A language model application using LangChain that summarizes text and translates the summary to Spanish, combining custom functions, structured tools, and an agent for efficient text processing. Implementation 🛠️ Utilizes custom functions for summarization and translation, wrapped as structured tools. Employs a prompt template to guide the agent, which orchestrates the use of tools. An agent executor manages the process, taking input text and producing both an English summary and its Spanish translation. Internet Search and Summarize Agent Overview 🔎 An intelligent web research assistant that combines web search capabilities with AI-powered summarization, automating the process of gathering information from the internet and distilling it into concise, relevant summaries. Implementation 🛠️ Integrates a web search module using DuckDuckGo's API, a result parser, and a text summarization engine leveraging OpenAI's language models. The system performs site-specific or general searches, extracts relevant content, generates concise summaries, and compiles attributed results for efficient information retrieval and synthesis. Multi agent research team - Autogen Overview 🔎 This technique explores a multi-agent system for collaborative research using the AutoGen library. It employs agents to solve tasks collaboratively, focusing on efficient execution and quality assurance. The system enhances research by distributing tasks among specialized agents. Implementation 🛠️ Agents are configured with specific roles using the GPT-4 model, including admin, developer, planner, executor, and quality assurance. Interaction management ensures orderly communication with defined transitions. Task execution involves collaborative planning, coding, execution, and quality checking, demonstrating a scalable framework for various domains. Additional Resources 📚 comprehensive solution with UI Blogpost Sales Call Analyzer Overview 🔎 An intelligent system that automates the analysis of sales call recordings by combining audio transcription with advanced natural language processing. The analyzer transcribes audio using OpenAI's Whisper, processes the text using NLP techniques, and generates comprehensive reports including sentiment analysis, key phrases, pain points, and actionable recommendations to improve sales performance. Implementation 🛠️ Utilizes multiple components in a structured workflow: OpenAI Whisper for audio transcription, CrewAI for task automation and agent management, and LangChain for orchestrating the analysis pipeline. The system processes audio through a series of steps from transcription to detailed analysis, leveraging custom agents and tasks to generate structured JSON reports containing insights about customer sentiment, sales opportunities, and recommended improvements. Additional Resources 📚 YouTube Explanation Weather Emergency & Response System Overview 🔎 A comprehensive system demonstrating two agent graph implementations for weather emergency response: a real-time graph processing live weather data, and a hybrid graph combining real and simulated data for testing high-severity scenarios. The system handles complete workflow from data gathering through emergency plan generation, with automated notifications and human verification steps. Implementation 🛠️ Utilizes LangGraph for orchestrating complex workflows with state management, integrating OpenWeatherMap API for real-time data, and Gemini for analysis and response generation. The system incorporates email notifications, social media monitoring simulation, and severity-based routing with configurable human verification for low/medium severity events. Additional Resources 📚 YouTube Explanation Self-Healing Codebase System Overview 🔎 An intelligent system that automatically detects, diagnoses, and fixes runtime code errors using LangGraph workflow orchestration and ChromaDB vector storage. The system maintains a memory of encountered bugs and their fixes through vector embeddings, enabling pattern recognition for similar errors across the codebase. Implementation 🛠️ Utilizes a state-based graph workflow that processes function definitions and runtime arguments through specialized nodes for error detection, code analysis, and fix generation. Incorporates ChromaDB for vector-based storage of bug patterns and fixes, with automated search and retrieval capabilities for similar error patterns, while maintaining code execution safety through structured validation steps. Additional Resources 📚 YouTube Explanation DataScribe: AI-Powered Schema Explorer Overview 🔎 An intelligent agent system that enables intuitive exploration and querying of relational databases through natural language interactions. The system utilizes a fleet of specialized agents, coordinated by a stateful Supervisor, to handle schema discovery, query planning, and data analysis tasks while maintaining contextual understanding through vector-based relationship graphs. Implementation 🛠️ Leverages LangGraph for orchestrating a multi-agent workflow including discovery, inference, and planning agents, with NetworkX for relationship graph visualization and management. The system incorporates dynamic state management through TypedDict classes, maintains database context between sessions using a db_graph attribute, and includes safety measures to prevent unauthorized database modifications. Memory-Enhanced Email Agent (LangGraph & LangMem) Overview 🔎 An intelligent email assistant that combines three types of memory (semantic, episodic, and procedural) to create a system that improves over time. The agent can triage incoming emails, draft contextually appropriate responses using stored knowledge, and enhance its performance based on user feedback. Implementation 🛠️ Leverages LangGraph for workflow orchestration and LangMem for sophisticated memory management across multiple memory types. The system implements a triage workflow with memory-enhanced decision making, specialized tools for email composition and calendar management, and a self-improvement mechanism that updates its own prompts based on feedback and past performance. Additional Resources 📚 Blog Post 📰 News and Information Agents News TL;DR using LangGraph Overview 🔎 A news summarization system that generates concise TL;DR summaries of current events based on user queries. The system leverages large language models for decision making and summarization while integrating with news APIs to access up-to-date content, allowing users to quickly catch up on topics of interest through generated bullet-point summaries. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow combining multiple components: GPT-4o-mini for generating search terms and article summaries, NewsAPI for retrieving article metadata, BeautifulSoup for web scraping article content, and Asyncio for concurrent processing. The system follows a structured pipeline from query processing through article selection and summarization, managing the flow between components to produce relevant TL;DRs of current news articles. Additional Resources 📚 YouTube Explanation Blog Post AInsight: AI/ML Weekly News Reporter Overview 🔎 AInsight demonstrates how to build an intelligent news aggregation and summarization system using a multi-agent architecture. The system employs three specialized agents (NewsSearcher, Summarizer, Publisher) to automatically collect, process and summarize AI/ML news for general audiences through LangGraph-based workflow orchestration. Implementation 🛠️ Implements a state-managed multi-agent system using LangGraph to coordinate the news collection (Tavily API), technical content summarization (GPT-4), and report generation processes. The system features modular architecture with TypedDict-based state management, external API integration, and markdown report generation with customizable templates. Additional Resources 📚 YouTube Explanation Journalism-Focused AI Assistant Overview 🔎 A specialized AI assistant that helps journalists tackle modern journalistic challenges like misinformation, bias, and information overload. The system integrates fact-checking, tone analysis, summarization, and grammar review tools to enhance the accuracy and efficiency of journalistic work while maintaining ethical reporting standards. Implementation 🛠️ Leverages LangGraph to orchestrate a workflow of specialized components including language models for analysis and generation, web search integration via DuckDuckGo's API, document parsing tools like PyMuPDFLoader and WebBaseLoader, text splitting with RecursiveCharacterTextSplitter, and structured JSON outputs. Each component works together through a unified workflow to analyze content, verify facts, detect bias, extract quotes, and generate comprehensive reports. Blog Writer (Open AI Swarm) Overview 🔎 A multi-agent system for collaborative blog post creation using OpenAI's Swarm package. It leverages specialized agents to perform research, planning, writing, and editing tasks efficiently. Implementation 🛠️ Utilizes OpenAI's Swarm Package to manage agent interactions. Includes an admin, researcher, planner, writer, and editor, each with specific roles. The system follows a structured workflow: topic setting, outlining, research, drafting, and editing. This approach enhances content creation through task distribution, specialization, and collaborative problem-solving. Additional Resources 📚 Swarm Repo Podcast Internet Search and Generate Agent 🎙️ Overview 🔎 A two step agent that first searches the internet for a given topic and then generates a podcast on the topic found. The search step uses a search agent and search function to find the most relevant information. The second step uses a podcast generation agent and generation function to create a podcast on the topic found. Implementation 🛠️ Utilizes LangGraph to orchestrate a two-step workflow. The first step involves a search agent and function to gather information from the internet. The second step uses a podcast generation agent and function to create a podcast based on the gathered information. 🛍️ Shopping and Product Analysis Agents ShopGenie - Redefining Online Shopping Customer Experience Overview 🔎 An AI-powered shopping assistant that helps customers make informed purchasing decisions even without domain expertise. The system analyzes product information from multiple sources, compares specifications and reviews, identifies the best option based on user needs, and delivers recommendations through email with supporting video reviews, creating a comprehensive shopping experience. Implementation 🛠️ Uses LangGraph to orchestrate a workflow combining Tavily for web search, Llama-3.1-70B for structured data analysis and product comparison, and YouTube API for review video retrieval. The system processes search results through multiple nodes including schema mapping, product comparison, review identification, and email generation. Key features include structured Pydantic models for consistent data handling, retry mechanisms for robust API interactions, and email delivery through SMTP for sharing recommendations. Additional Resources 📚 YouTube Explanation Car Buyer AI Agent Overview 🔎 The Smart Product Buyer AI Agent demonstrates how to build an intelligent system that assists users in making informed purchasing decisions. Using LangGraph and LLM-based intelligence, the system processes user requirements, scrapes product listings from websites like AutoTrader, and provides detailed analysis and recommendations for car purchases. Implementation 🛠️ Implements a state-based workflow using LangGraph to coordinate user interaction, web scraping, and decision support. The system features TypedDict state management, async web scraping with Playwright, and integrates with external APIs for comprehensive product analysis. The implementation includes a Gradio interface for real-time chat interaction and modular scraper architecture for easy extension to additional product categories. Additional Resources 📚 YouTube Explanation 🎯 Task Management and Productivity Agents Taskifier - Intelligent Task Allocation & Management Overview 🔎 An intelligent task management system that analyzes user work styles and creates personalized task breakdown strategies, born from the observation that procrastination often stems from task ambiguity among students and early-career professionals. The system evaluates historical work patterns, gathers relevant task information through web search, and generates customized step-by-step approaches to optimize productivity and reduce workflow paralysis. Implementation 🛠️ Leverages LangGraph for orchestrating a multi-step workflow including work style analysis, information gathering via Tavily API, and customized plan generation. The system maintains state through the process, integrating historical work pattern data with fresh task research to output detailed, personalized task execution plans aligned with the user's natural working style. Additional Resources 📚 YouTube Explanation Grocery Management Agents System Overview 🔎 A multi-agent system built with CrewAI that automates grocery management tasks including receipt interpretation, expiration date tracking, inventory management, and recipe recommendations. The system uses specialized agents to extract data from receipts, estimate product shelf life, track consumption, and suggest recipes to minimize food waste. Implementation 🛠️ Implements four specialized agents using CrewAI - a Receipt Interpreter that extracts item details from receipts, an Expiration Date Estimator that determines shelf life using online sources, a Grocery Tracker that maintains inventory based on consumption, and a Recipe Recommender that suggests meals using available ingredients. Each agent has specific tools and tasks orchestrated through a crew workflow. Additional Resources 📚 YouTube Explanation 🔍 Quality Assurance and Testing Agents LangGraph-Based Systems Inspector Overview 🔎 A comprehensive testing and validation tool for LangGraph-based applications that automatically analyzes system architecture, generates test cases, and identifies potential vulnerabilities through multi-agent inspection. The inspector employs specialized AI testers to evaluate different aspects of the system, from basic functionality to security concerns and edge cases. Implementation 🛠️ Integrates LangGraph for workflow orchestration, multiple LLM-powered testing agents, and a structured evaluation pipeline that includes static analysis, test case generation, and results verification. The system uses Pydantic for data validation, NetworkX for graph representation, and implements a modular architecture that allows for parallel test execution and comprehensive result analysis. Additional Resources 📚 YouTube Explanation Blog Post EU Green Deal FAQ Bot Overview 🔎 The EU Green Deal FAQ Bot demonstrates how to build a RAG-based AI agent that helps businesses understand EU green deal policies. The system processes complex regulatory documents into manageable chunks and provides instant, accurate answers to common questions about environmental compliance, emissions reporting, and waste management requirements. Implementation 🛠️ Implements a sophisticated RAG pipeline using FAISS vectorstore for document storage, semantic chunking for preprocessing, and multiple specialized agents (Retriever, Summarizer, Evaluator) for query processing. The system features query rephrasing for improved accuracy, cross-reference with gold Q&A datasets for answer validation, and comprehensive evaluation metrics to ensure response quality and relevance. Additional Resources 📚 YouTube Explanation Systematic Review Automation System + Paper Draft Creation Overview 🔎 A comprehensive system for automating academic systematic reviews using a directed graph architecture and LangChain components. The system generates complete, publication-ready systematic review papers, automatically processing everything from literature search through final draft generation with multiple revision cycles. Implementation 🛠️ Utilizes a state-based graph workflow that handles paper search and selection (up to 3 papers), PDF processing, and generates a complete academic paper with all standard sections (abstract, introduction, methods, results, conclusions, references). The system incorporates multiple revision cycles with automated critique and improvement phases, all orchestrated through LangGraph state management. Additional Resources 📚 YouTube Explanation 🌟 Special Advanced Technique 🌟 Sophisticated Controllable Agent for Complex RAG Tasks 🤖 Overview 🔎 An advanced RAG solution designed to tackle complex questions that simple semantic similarity-based retrieval cannot solve. This approach uses a sophisticated deterministic graph as the "brain" 🧠 of a highly controllable autonomous agent, capable of answering non-trivial questions from your own data. Implementation 🛠️ • Implement a multi-step process involving question anonymization, high-level planning, task breakdown, adaptive information retrieval and question answering, continuous re-planning, and rigorous answer verification to ensure grounded and accurate responses. Getting Started To begin exploring and building GenAI agents: Clone this repository: Navigate to the technique you're interested in: Follow the detailed implementation guide in each technique's notebook. Contributing We welcome contributions from the community! If you have a new technique or improvement to suggest: Fork the repository Create your feature branch: git checkout -b feature/AmazingFeature Commit your changes: git commit -m 'Add some AmazingFeature' Push to the branch: git push origin feature/AmazingFeature Open a pull request Contributors License This project is licensed under a custom non-commercial license - see the LICENSE file for details. ⭐️ If you find this repository helpful, please consider giving it a star! Keywords: GenAI, Generative AI, Agents, NLP, AI, Machine Learning, Natural Language Processing, LLM, Conversational AI, Task-Oriented AI

ARENA_2.0
github
LLM Vibe Score0.544
Human Vibe Score0.08491210825084358
callummcdougallMar 28, 2025

ARENA_2.0

This GitHub repo hosts the exercises and Streamlit pages for the ARENA 2.0 program. You can find a summary of each of the chapters below. For more detailed information (including the different ways you can access the exercises), click on the links in the chapter headings. Additionally, see this Notion page for a guide to the virtual study materials available. Chapter 0: Fundamentals The material on this page covers the first five days of the curriculum. It can be seen as a grounding in all the fundamentals necessary to complete the more advanced sections of this course (such as RL, transformers, mechanistic interpretability, and generative models). Some highlights from this chapter include: Building your own 1D and 2D convolution functions Building and loading weights into a Residual Neural Network, and finetuning it on a classification task Working with weights and biases to optimise hyperparameters Implementing your own backpropagation mechanism Chapter 1: Transformers & Mech Interp The material on this page covers the next 8 days of the curriculum. It will cover transformers (what they are, how they are trained, how they are used to generate output) as well as mechanistic interpretability (what it is, what are some of the most important results in the field so far, why it might be important for alignment). Some highlights from this chapter include: Building your own transformer from scratch, and using it to sample autoregressive output Using the TransformerLens library developed by Neel Nanda to locate induction heads in a 2-layer model Finding a circuit for indirect object identification in GPT-2 small Intepreting model trained on toy tasks, e.g. classification of bracket strings, or modular arithmetic Replicating Anthropic's results on superposition Unlike the first chapter (where all the material was compulsory), this chapter has 4 days of compulsory content and 4 days of bonus content. During the compulsory days you will build and train transformers, and get a basic understanding of mechanistic interpretability of transformer models which includes induction heads & use of TransformerLens. The next 4 days, you have the option to continue with whatever material interests you out of the remaining sets of exercises. There will also be bonus material if you want to leave the beaten track of exercises all together! Chapter 2: Reinforcement Learning Reinforcement learning is an important field of machine learning. It works by teaching agents to take actions in an environment to maximise their accumulated reward. In this chapter, you will be learning about some of the fundamentals of RL, and working with OpenAI’s Gym environment to run your own experiments. Some highlights from this chapter include: Building your own agent to play the multi-armed bandit problem, implementing methods from Sutton & Bardo Implementing a Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) to play the CartPole game Applying RLHF to autoregressive transformers like the ones you built in the previous chapter Chapter 3: Training at Scale With the advent of large language models, training at scale has become a necessity to create highly competent models. In this chapter we will go through the basics of GPUs and distributed training, along with introductions to libraries that make training at scale easier. Some highlights from this chapter include: Quantizing your model to INT8 for blazing fast inference Implementing distributed training loops using torch.dist Getting hands on with Huggingface Accelerate and Microsoft DeepsSpeed

AITreasureBox
github
LLM Vibe Score0.447
Human Vibe Score0.1014145151561518
superiorluMar 28, 2025

AITreasureBox

AI TreasureBox English | 中文 Collect practical AI repos, tools, websites, papers and tutorials on AI. Translated from ChatGPT, picture from Midjourney. Catalog Repos Tools Websites Report&Paper Tutorials Repos updated repos and stars every 2 hours and re-ranking automatically. | No. | Repos | Description | | ----:|:-----------------------------------------|:------------------------------------------------------------------------------------------------------| | 1|🔥codecrafters-io/build-your-own-x !2025-03-28364681428|Master programming by recreating your favorite technologies from scratch.| | 2|sindresorhus/awesome !2025-03-28353614145|😎 Awesome lists about all kinds of interesting topics| | 3|public-apis/public-apis !2025-03-28334299125|A collective list of free APIs| | 4|kamranahmedse/developer-roadmap !2025-03-2831269540|Interactive roadmaps, guides and other educational content to help developers grow in their careers.| | 5|vinta/awesome-python !2025-03-28238581114|A curated list of awesome Python frameworks, libraries, software and resources| | 6|practical-tutorials/project-based-learning !2025-03-28222661124|Curated list of project-based tutorials| | 7|tensorflow/tensorflow !2025-03-281888714|An Open Source Machine Learning Framework for Everyone| | 8|Significant-Gravitas/AutoGPT !2025-03-2817391338|An experimental open-source attempt to make GPT-4 fully autonomous.| | 9|jackfrued/Python-100-Days !2025-03-2816305141|Python - 100天从新手到大师| | 10|AUTOMATIC1111/stable-diffusion-webui !2025-03-2815011553|Stable Diffusion web UI| | 11|huggingface/transformers !2025-03-2814207850|🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.| | 12|ollama/ollama !2025-03-28135166151|Get up and running with Llama 2, Mistral, Gemma, and other large language models.| | 13|f/awesome-chatgpt-prompts !2025-03-2812212738 |This repo includes ChatGPT prompt curation to use ChatGPT better.| | 14|justjavac/free-programming-books-zhCN !2025-03-2811316119|📚 免费的计算机编程类中文书籍,欢迎投稿| | 15|krahets/hello-algo !2025-03-2811107930|《Hello 算法》:动画图解、一键运行的数据结构与算法教程。支持 Python, Java, C++, C, C#, JS, Go, Swift, Rust, Ruby, Kotlin, TS, Dart 代码。简体版和繁体版同步更新,English version ongoing| | 16|yt-dlp/yt-dlp !2025-03-28105801114|A feature-rich command-line audio/video downloader| | 17|langchain-ai/langchain !2025-03-2810449479|⚡ Building applications with LLMs through composability ⚡| | 18|goldbergyoni/nodebestpractices !2025-03-281021629|✅ The Node.js best practices list (July 2024)| | 19|puppeteer/puppeteer !2025-03-289018212|JavaScript API for Chrome and Firefox| | 20|pytorch/pytorch !2025-03-288833938|Tensors and Dynamic neural networks in Python with strong GPU acceleration| | 21|neovim/neovim !2025-03-288781482|Vim-fork focused on extensibility and usability| | 22|🔥🔥langgenius/dify !2025-03-2887342639 |One API for plugins and datasets, one interface for prompt engineering and visual operation, all for creating powerful AI applications.| | 23|mtdvio/every-programmer-should-know !2025-03-28867069|A collection of (mostly) technical things every software developer should know about| | 24|open-webui/open-webui !2025-03-2886025159|User-friendly WebUI for LLMs (Formerly Ollama WebUI)| | 25|ChatGPTNextWeb/NextChat !2025-03-288231521|✨ Light and Fast AI Assistant. Support: Web | | 26|supabase/supabase !2025-03-287990956|The open source Firebase alternative.| | 27|openai/whisper !2025-03-287905542|Robust Speech Recognition via Large-Scale Weak Supervision| | 28|home-assistant/core !2025-03-287773219|🏡 Open source home automation that puts local control and privacy first.| | 29|tensorflow/models !2025-03-28774694|Models and examples built with TensorFlow| | 30| ggerganov/llama.cpp !2025-03-287731836 | Port of Facebook's LLaMA model in C/C++ | | 31|3b1b/manim !2025-03-287641918|Animation engine for explanatory math videos| | 32|microsoft/generative-ai-for-beginners !2025-03-287623860|12 Lessons, Get Started Building with Generative AI 🔗 https://microsoft.github.io/generative-ai-for-beginners/| | 33|nomic-ai/gpt4all !2025-03-28729285 |gpt4all: an ecosystem of open-source chatbots trained on a massive collection of clean assistant data including code, stories and dialogue| | 34|comfyanonymous/ComfyUI !2025-03-2872635111|The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.| | 35|bregman-arie/devops-exercises !2025-03-2872225209|Linux, Jenkins, AWS, SRE, Prometheus, Docker, Python, Ansible, Git, Kubernetes, Terraform, OpenStack, SQL, NoSQL, Azure, GCP, DNS, Elastic, Network, Virtualization. DevOps Interview Questions| | 36|elastic/elasticsearch !2025-03-28721419|Free and Open, Distributed, RESTful Search Engine| | 37|🔥n8n-io/n8n !2025-03-2872093495|Free and source-available fair-code licensed workflow automation tool. Easily automate tasks across different services.| | 38|fighting41love/funNLP !2025-03-287200422|The Most Powerful NLP-Weapon Arsenal| | 39|hoppscotch/hoppscotch !2025-03-287060134|Open source API development ecosystem - https://hoppscotch.io (open-source alternative to Postman, Insomnia)| | 40|abi/screenshot-to-code !2025-03-286932817|Drop in a screenshot and convert it to clean HTML/Tailwind/JS code| | 41|binary-husky/gptacademic !2025-03-28680374|Academic Optimization of GPT| | 42|d2l-ai/d2l-zh !2025-03-286774142|Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries| | 43|josephmisiti/awesome-machine-learning !2025-03-286739215|A curated list of awesome Machine Learning frameworks, libraries and software.| | 44|grafana/grafana !2025-03-286725414|The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.| | 45|python/cpython !2025-03-286602218|The Python programming language| | 46|apache/superset !2025-03-286519020|Apache Superset is a Data Visualization and Data Exploration Platform| | 47|xtekky/gpt4free !2025-03-28639391 |decentralizing the Ai Industry, free gpt-4/3.5 scripts through several reverse engineered API's ( poe.com, phind.com, chat.openai.com etc...)| | 48|sherlock-project/sherlock !2025-03-286332536|Hunt down social media accounts by username across social networks| | 49|twitter/the-algorithm !2025-03-28630586 |Source code for Twitter's Recommendation Algorithm| | 50|keras-team/keras !2025-03-28627835|Deep Learning for humans| | 51|openai/openai-cookbook !2025-03-28625136 |Examples and guides for using the OpenAI API| | 52|immich-app/immich !2025-03-286238670|High performance self-hosted photo and video management solution.| | 53|AppFlowy-IO/AppFlowy !2025-03-286173528|Bring projects, wikis, and teams together with AI. AppFlowy is an AI collaborative workspace where you achieve more without losing control of your data. The best open source alternative to Notion.| | 54|scikit-learn/scikit-learn !2025-03-286158212|scikit-learn: machine learning in Python| | 55|binhnguyennus/awesome-scalability !2025-03-286117021|The Patterns of Scalable, Reliable, and Performant Large-Scale Systems| | 56|labmlai/annotateddeeplearningpaperimplementations !2025-03-285951726|🧑‍🏫 59 Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠| | 57|OpenInterpreter/open-interpreter !2025-03-285894710|A natural language interface for computers| | 58|lobehub/lobe-chat !2025-03-285832054|🤖 Lobe Chat - an open-source, extensible (Function Calling), high-performance chatbot framework. It supports one-click free deployment of your private ChatGPT/LLM web application.| | 59|meta-llama/llama !2025-03-28579536|Inference code for Llama models| | 60|nuxt/nuxt !2025-03-28566437|The Intuitive Vue Framework.| | 61|imartinez/privateGPT !2025-03-28555192|Interact with your documents using the power of GPT, 100% privately, no data leaks| | 62|Stirling-Tools/Stirling-PDF !2025-03-285500846|#1 Locally hosted web application that allows you to perform various operations on PDF files| | 63|PlexPt/awesome-chatgpt-prompts-zh !2025-03-285459720|ChatGPT Chinese Training Guide. Guidelines for various scenarios. Learn how to make it listen to you| | 64|dair-ai/Prompt-Engineering-Guide !2025-03-285451025 |🐙 Guides, papers, lecture, notebooks and resources for prompt engineering| | 65|ageitgey/facerecognition !2025-03-28544382|The world's simplest facial recognition api for Python and the command line| | 66|CorentinJ/Real-Time-Voice-Cloning !2025-03-285384814|Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 67|geekan/MetaGPT !2025-03-285375376|The Multi-Agent Meta Programming Framework: Given one line Requirement, return PRD, Design, Tasks, Repo | | 68|gpt-engineer-org/gpt-engineer !2025-03-285367419|Specify what you want it to build, the AI asks for clarification, and then builds it.| | 69|lencx/ChatGPT !2025-03-2853653-3|🔮 ChatGPT Desktop Application (Mac, Windows and Linux)| | 70|deepfakes/faceswap !2025-03-28535672|Deepfakes Software For All| | 71|langflow-ai/langflow !2025-03-285319584|Langflow is a low-code app builder for RAG and multi-agent AI applications. It’s Python-based and agnostic to any model, API, or database.| | 72|commaai/openpilot !2025-03-28529759|openpilot is an operating system for robotics. Currently, it upgrades the driver assistance system on 275+ supported cars.| | 73|clash-verge-rev/clash-verge-rev !2025-03-2852848124|Continuation of Clash Verge - A Clash Meta GUI based on Tauri (Windows, MacOS, Linux)| | 74|All-Hands-AI/OpenHands !2025-03-285150675|🙌 OpenHands: Code Less, Make More| | 75|xai-org/grok-1 !2025-03-28502504|Grok open release| | 76|meilisearch/meilisearch !2025-03-284999122|A lightning-fast search API that fits effortlessly into your apps, websites, and workflow| | 77|🔥browser-use/browser-use !2025-03-2849910294|Make websites accessible for AI agents| | 78|jgthms/bulma !2025-03-28496783|Modern CSS framework based on Flexbox| | 79|facebookresearch/segment-anything !2025-03-284947116|The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.| |!green-up-arrow.svg 80|hacksider/Deep-Live-Cam !2025-03-2848612146|real time face swap and one-click video deepfake with only a single image (uncensored)| |!red-down-arrow 81|mlabonne/llm-course !2025-03-284860934|Course with a roadmap and notebooks to get into Large Language Models (LLMs).| | 82|PaddlePaddle/PaddleOCR !2025-03-284785530|Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)| | 83|alist-org/alist !2025-03-284732618|🗂️A file list/WebDAV program that supports multiple storages, powered by Gin and Solidjs. / 一个支持多存储的文件列表/WebDAV程序,使用 Gin 和 Solidjs。| | 84|infiniflow/ragflow !2025-03-2847027129|RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding.| | 85|Avik-Jain/100-Days-Of-ML-Code !2025-03-284679312|100 Days of ML Coding| | 86|v2ray/v2ray-core !2025-03-28458706|A platform for building proxies to bypass network restrictions.| | 87|hiyouga/LLaMA-Factory !2025-03-284555881|Easy-to-use LLM fine-tuning framework (LLaMA, BLOOM, Mistral, Baichuan, Qwen, ChatGLM)| | 88|Asabeneh/30-Days-Of-Python !2025-03-284544930|30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace. These videos may help too: https://www.youtube.com/channel/UC7PNRuno1rzYPb1xLa4yktw| | 89|type-challenges/type-challenges !2025-03-284488511|Collection of TypeScript type challenges with online judge| | 90|lllyasviel/Fooocus !2025-03-284402716|Focus on prompting and generating| | 91|RVC-Boss/GPT-SoVITS !2025-03-284327738|1 min voice data can also be used to train a good TTS model! (few shot voice cloning)| | 92|rasbt/LLMs-from-scratch !2025-03-284320667|Implementing a ChatGPT-like LLM from scratch, step by step| | 93|oobabooga/text-generation-webui !2025-03-284302012 |A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, OPT, and GALACTICA.| | 94|vllm-project/vllm !2025-03-2842982102|A high-throughput and memory-efficient inference and serving engine for LLMs| | 95|dani-garcia/vaultwarden !2025-03-284297121|Unofficial Bitwarden compatible server written in Rust, formerly known as bitwarden_rs| | 96|microsoft/autogen !2025-03-284233049|Enable Next-Gen Large Language Model Applications. Join our Discord: https://discord.gg/pAbnFJrkgZ| | 97|jeecgboot/JeecgBoot !2025-03-284205920|🔥「企业级低代码平台」前后端分离架构SpringBoot 2.x/3.x,SpringCloud,Ant Design&Vue3,Mybatis,Shiro,JWT。强大的代码生成器让前后端代码一键生成,无需写任何代码! 引领新的开发模式OnlineCoding->代码生成->手工MERGE,帮助Java项目解决70%重复工作,让开发更关注业务,既能快速提高效率,帮助公司节省成本,同时又不失灵活性。| | 98|Mintplex-Labs/anything-llm !2025-03-284186955|A full-stack application that turns any documents into an intelligent chatbot with a sleek UI and easier way to manage your workspaces.| | 99|THUDM/ChatGLM-6B !2025-03-28410192 |ChatGLM-6B: An Open Bilingual Dialogue Language Model| | 100|hpcaitech/ColossalAI !2025-03-28406902|Making large AI models cheaper, faster and more accessible| | 101|Stability-AI/stablediffusion !2025-03-28406337|High-Resolution Image Synthesis with Latent Diffusion Models| | 102|mingrammer/diagrams !2025-03-28405063|🎨 Diagram as Code for prototyping cloud system architectures| | 103|Kong/kong !2025-03-28404616|🦍 The Cloud-Native API Gateway and AI Gateway.| | 104|getsentry/sentry !2025-03-284040913|Developer-first error tracking and performance monitoring| | 105| karpathy/nanoGPT !2025-03-284034613 |The simplest, fastest repository for training/finetuning medium-sized GPTs| | 106|fastlane/fastlane !2025-03-2840014-1|🚀 The easiest way to automate building and releasing your iOS and Android apps| | 107|psf/black !2025-03-28399765|The uncompromising Python code formatter| | 108|OpenBB-finance/OpenBBTerminal !2025-03-283972074 |Investment Research for Everyone, Anywhere.| | 109|2dust/v2rayNG !2025-03-283943415|A V2Ray client for Android, support Xray core and v2fly core| | 110|apache/airflow !2025-03-283937314|Apache Airflow - A platform to programmatically author, schedule, and monitor workflows| | 111|KRTirtho/spotube !2025-03-283902746|🎧 Open source Spotify client that doesn't require Premium nor uses Electron! Available for both desktop & mobile!| | 112|coqui-ai/TTS !2025-03-283889719 |🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production| | 113|ggerganov/whisper.cpp !2025-03-283882116|Port of OpenAI's Whisper model in C/C++| | 114|ultralytics/ultralytics !2025-03-283866951|NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite| | 115|typst/typst !2025-03-283863914|A new markup-based typesetting system that is powerful and easy to learn.| | 116|streamlit/streamlit !2025-03-283845828|Streamlit — A faster way to build and share data apps.| | 117|LC044/WeChatMsg !2025-03-283836931|提取微信聊天记录,将其导出成HTML、Word、Excel文档永久保存,对聊天记录进行分析生成年度聊天报告,用聊天数据训练专属于个人的AI聊天助手| | 118|lm-sys/FastChat !2025-03-283822112 |An open platform for training, serving, and evaluating large languages. Release repo for Vicuna and FastChat-T5.| | 119|NaiboWang/EasySpider !2025-03-283819013|A visual no-code/code-free web crawler/spider易采集:一个可视化浏览器自动化测试/数据采集/爬虫软件,可以无代码图形化的设计和执行爬虫任务。别名:ServiceWrapper面向Web应用的智能化服务封装系统。| | 120|microsoft/DeepSpeed !2025-03-283765816 |A deep learning optimization library that makes distributed training and inference easy, efficient, and effective| | 121|QuivrHQ/quivr !2025-03-28376067|Your GenAI Second Brain 🧠 A personal productivity assistant (RAG) ⚡️🤖 Chat with your docs (PDF, CSV, ...) & apps using Langchain, GPT 3.5 / 4 turbo, Private, Anthropic, VertexAI, Ollama, LLMs, that you can share with users ! Local & Private alternative to OpenAI GPTs & ChatGPT powered by retrieval-augmented generation.| | 122|freqtrade/freqtrade !2025-03-283757817 |Free, open source crypto trading bot| | 123|suno-ai/bark !2025-03-28373178 |🔊 Text-Prompted Generative Audio Model| | 124|🔥cline/cline !2025-03-2837307282|Autonomous coding agent right in your IDE, capable of creating/editing files, executing commands, and more with your permission every step of the way.| | 125|LAION-AI/Open-Assistant !2025-03-28372712 |OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so.| | 126|penpot/penpot !2025-03-283716217|Penpot: The open-source design tool for design and code collaboration| | 127|gradio-app/gradio !2025-03-283713320|Build and share delightful machine learning apps, all in Python. 🌟 Star to support our work!| | 128|FlowiseAI/Flowise !2025-03-283667135 |Drag & drop UI to build your customized LLM flow using LangchainJS| | 129|SimplifyJobs/Summer2025-Internships !2025-03-28366506|Collection of Summer 2025 tech internships!| | 130|TencentARC/GFPGAN !2025-03-28365027 |GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration.| | 131|ray-project/ray !2025-03-283626819|Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for accelerating ML workloads.| | 132|babysor/MockingBird !2025-03-28360498|🚀AI拟声: 5秒内克隆您的声音并生成任意语音内容 Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 133|unslothai/unsloth !2025-03-283603691|5X faster 50% less memory LLM finetuning| | 134|zhayujie/chatgpt-on-wechat !2025-03-283600124 |Wechat robot based on ChatGPT, which uses OpenAI api and itchat library| | 135|upscayl/upscayl !2025-03-283599824|🆙 Upscayl - Free and Open Source AI Image Upscaler for Linux, MacOS and Windows built with Linux-First philosophy.| | 136|freeCodeCamp/devdocs !2025-03-28359738|API Documentation Browser| | 137|XingangPan/DragGAN !2025-03-28359043 |Code for DragGAN (SIGGRAPH 2023)| | 138|2noise/ChatTTS !2025-03-283543922|ChatTTS is a generative speech model for daily dialogue.| | 139|google-research/google-research !2025-03-28352207 |Google Research| | 140|karanpratapsingh/system-design !2025-03-28351003|Learn how to design systems at scale and prepare for system design interviews| | 141|lapce/lapce !2025-03-28350855|Lightning-fast and Powerful Code Editor written in Rust| | 142| microsoft/TaskMatrix !2025-03-2834500-3 | Talking, Drawing and Editing with Visual Foundation Models| | 143|chatchat-space/Langchain-Chatchat !2025-03-283442020|Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain| | 144|unclecode/crawl4ai !2025-03-283434163|🔥🕷️ Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper| | 145|Bin-Huang/chatbox !2025-03-283374733 |A desktop app for GPT-4 / GPT-3.5 (OpenAI API) that supports Windows, Mac & Linux| | 146|milvus-io/milvus !2025-03-283366525 |A cloud-native vector database, storage for next generation AI applications| | 147|mendableai/firecrawl !2025-03-2833297128|🔥 Turn entire websites into LLM-ready markdown| | 148|pola-rs/polars !2025-03-283269320|Fast multi-threaded, hybrid-out-of-core query engine focussing on DataFrame front-ends| | 149|Pythagora-io/gpt-pilot !2025-03-28325321|PoC for a scalable dev tool that writes entire apps from scratch while the developer oversees the implementation| | 150|hashicorp/vault !2025-03-28320797|A tool for secrets management, encryption as a service, and privileged access management| | 151|shardeum/shardeum !2025-03-28319580|Shardeum is an EVM based autoscaling blockchain| | 152|Chanzhaoyu/chatgpt-web !2025-03-28319242 |A demonstration website built with Express and Vue3 called ChatGPT| | 153|lllyasviel/ControlNet !2025-03-283186413 |Let us control diffusion models!| | 154|google/jax !2025-03-28317727|Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more| | 155|facebookresearch/detectron2 !2025-03-28315987|Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.| | 156|myshell-ai/OpenVoice !2025-03-28315233|Instant voice cloning by MyShell| | 157|TheAlgorithms/C-Plus-Plus !2025-03-283151411|Collection of various algorithms in mathematics, machine learning, computer science and physics implemented in C++ for educational purposes.| | 158|hiroi-sora/Umi-OCR !2025-03-283138129|OCR图片转文字识别软件,完全离线。截屏/批量导入图片,支持多国语言、合并段落、竖排文字。可排除水印区域,提取干净的文本。基于 PaddleOCR 。| | 159|mudler/LocalAI !2025-03-283127815|🤖 The free, Open Source OpenAI alternative. Self-hosted, community-driven and local-first. Drop-in replacement for OpenAI running on consumer-grade hardware. No GPU required. Runs gguf, transformers, diffusers and many more models architectures. It allows to generate Text, Audio, Video, Images. Also with voice cloning capabilities.| | 160|facebookresearch/fairseq !2025-03-28312124 |Facebook AI Research Sequence-to-Sequence Toolkit written in Python.| | 161|alibaba/nacos !2025-03-28310559|an easy-to-use dynamic service discovery, configuration and service management platform for building cloud native applications.| | 162|yunjey/pytorch-tutorial !2025-03-28310326|PyTorch Tutorial for Deep Learning Researchers| | 163|v2fly/v2ray-core !2025-03-28307448|A platform for building proxies to bypass network restrictions.| | 164|mckaywrigley/chatbot-ui !2025-03-283067714|The open-source AI chat interface for everyone.| | 165|TabbyML/tabby !2025-03-28305949 |Self-hosted AI coding assistant| | 166|deepseek-ai/awesome-deepseek-integration !2025-03-283053193|| | 167|danielmiessler/fabric !2025-03-283028914|fabric is an open-source framework for augmenting humans using AI.| | 168|xinntao/Real-ESRGAN !2025-03-283026623 |Real-ESRGAN aims at developing Practical Algorithms for General Image/Video Restoration.| | 169|paul-gauthier/aider !2025-03-283014642|aider is GPT powered coding in your terminal| | 170|tatsu-lab/stanfordalpaca !2025-03-28299022 |Code and documentation to train Stanford's Alpaca models, and generate the data.| | 171|DataTalksClub/data-engineering-zoomcamp !2025-03-282971817|Free Data Engineering course!| | 172|HeyPuter/puter !2025-03-282967014|🌐 The Internet OS! Free, Open-Source, and Self-Hostable.| | 173|mli/paper-reading !2025-03-282962314|Classic Deep Learning and In-Depth Reading of New Papers Paragraph by Paragraph| | 174|linexjlin/GPTs !2025-03-28295568|leaked prompts of GPTs| | 175|s0md3v/roop !2025-03-28295286 |one-click deepfake (face swap)| | 176|JushBJJ/Mr.-Ranedeer-AI-Tutor !2025-03-2829465-1 |A GPT-4 AI Tutor Prompt for customizable personalized learning experiences.| | 177|opendatalab/MinerU !2025-03-282927074|A one-stop, open-source, high-quality data extraction tool, supports PDF/webpage/e-book extraction.一站式开源高质量数据提取工具,支持PDF/网页/多格式电子书提取。| | 178|mouredev/Hello-Python !2025-03-282920720|Curso para aprender el lenguaje de programación Python desde cero y para principiantes. 75 clases, 37 horas en vídeo, código, proyectos y grupo de chat. Fundamentos, frontend, backend, testing, IA...| | 179|Lightning-AI/pytorch-lightning !2025-03-28292039|Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes.| | 180|crewAIInc/crewAI !2025-03-282919344|Framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.| | 181|facebook/folly !2025-03-282916612|An open-source C++ library developed and used at Facebook.| | 182|google-ai-edge/mediapipe !2025-03-28291519|Cross-platform, customizable ML solutions for live and streaming media.| | 183| getcursor/cursor !2025-03-282892025 | An editor made for programming with AI| | 184|chatanywhere/GPTAPIfree !2025-03-282856424|Free ChatGPT API Key, Free ChatGPT API, supports GPT-4 API (free), ChatGPT offers a free domestic forwarding API that allows direct connections without the need for a proxy. It can be used in conjunction with software/plugins like ChatBox, significantly reducing interface usage costs. Enjoy unlimited and unrestricted chatting within China| | 185|meta-llama/llama3 !2025-03-28285552|The official Meta Llama 3 GitHub site| | 186|tinygrad/tinygrad !2025-03-282845811|You like pytorch? You like micrograd? You love tinygrad! ❤️| | 187|google-research/tuningplaybook !2025-03-282841514|A playbook for systematically maximizing the performance of deep learning models.| | 188|huggingface/diffusers !2025-03-282830222|🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.| | 189|tokio-rs/tokio !2025-03-28282408|A runtime for writing reliable asynchronous applications with Rust. Provides I/O, networking, scheduling, timers, ...| | 190|RVC-Project/Retrieval-based-Voice-Conversion-WebUI !2025-03-282823817|Voice data !2025-03-282822612|Jan is an open source alternative to ChatGPT that runs 100% offline on your computer| | 192|openai/CLIP !2025-03-282814720|CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image| | 193|🔥khoj-ai/khoj !2025-03-2828112313|Your AI second brain. A copilot to get answers to your questions, whether they be from your own notes or from the internet. Use powerful, online (e.g gpt4) or private, local (e.g mistral) LLMs. Self-host locally or use our web app. Access from Obsidian, Emacs, Desktop app, Web or Whatsapp.| | 194| acheong08/ChatGPT !2025-03-2828054-2 | Reverse engineered ChatGPT API | | 195|iperov/DeepFaceLive !2025-03-28279345 |Real-time face swap for PC streaming or video calls| | 196|eugeneyan/applied-ml !2025-03-28278471|📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production.| | 197|XTLS/Xray-core !2025-03-282778213|Xray, Penetrates Everything. Also the best v2ray-core, with XTLS support. Fully compatible configuration.| | 198|feder-cr/JobsApplierAIAgent !2025-03-282776410|AutoJobsApplierAI_Agent aims to easy job hunt process by automating the job application process. Utilizing artificial intelligence, it enables users to apply for multiple jobs in an automated and personalized way.| | 199|mindsdb/mindsdb !2025-03-282750631|The platform for customizing AI from enterprise data| | 200|DataExpert-io/data-engineer-handbook !2025-03-282721611|This is a repo with links to everything you'd ever want to learn about data engineering| | 201|exo-explore/exo !2025-03-282721633|Run your own AI cluster at home with everyday devices 📱💻 🖥️⌚| | 202|taichi-dev/taichi !2025-03-2826926-1|Productive, portable, and performant GPU programming in Python.| | 203|mem0ai/mem0 !2025-03-282689134|The memory layer for Personalized AI| | 204|svc-develop-team/so-vits-svc !2025-03-28268096 |SoftVC VITS Singing Voice Conversion| | 205|OpenBMB/ChatDev !2025-03-28265624|Create Customized Software using Natural Language Idea (through Multi-Agent Collaboration)| | 206|roboflow/supervision !2025-03-282632010|We write your reusable computer vision tools. 💜| | 207|drawdb-io/drawdb !2025-03-282626913|Free, simple, and intuitive online database design tool and SQL generator.| | 208|karpathy/llm.c !2025-03-28261633|LLM training in simple, raw C/CUDA| | 209|airbnb/lottie-ios !2025-03-28261431|An iOS library to natively render After Effects vector animations| | 210|openai/openai-python !2025-03-282607713|The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language.| | 211|academic/awesome-datascience !2025-03-28259876|📝 An awesome Data Science repository to learn and apply for real world problems.| | 212|harry0703/MoneyPrinterTurbo !2025-03-282576618|Generate short videos with one click using a large model| | 213|gabime/spdlog !2025-03-282571511|Fast C++ logging library.| | 214|ocrmypdf/OCRmyPDF !2025-03-2825674217|OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched| | 215|Vision-CAIR/MiniGPT-4 !2025-03-28256170 |Enhancing Vision-language Understanding with Advanced Large Language Models| | 216|Stability-AI/generative-models !2025-03-28255936|Generative Models by Stability AI| | 217|DS4SD/docling !2025-03-282555662|Get your docs ready for gen AI| | 218|PostHog/posthog !2025-03-282533227|🦔 PostHog provides open-source product analytics, session recording, feature flagging and A/B testing that you can self-host.| | 219|nrwl/nx !2025-03-282509612|Smart Monorepos · Fast CI| | 220|continuedev/continue !2025-03-282500737|⏩ the open-source copilot chat for software development—bring the power of ChatGPT to VS Code| | 221|opentofu/opentofu !2025-03-28247968|OpenTofu lets you declaratively manage your cloud infrastructure.| | 222|invoke-ai/InvokeAI !2025-03-28247293|InvokeAI is a leading creative engine for Stable Diffusion models, empowering professionals, artists, and enthusiasts to generate and create visual media using the latest AI-driven technologies. The solution offers an industry leading WebUI, supports terminal use through a CLI, and serves as the foundation for multiple commercial products.| | 223|deepinsight/insightface !2025-03-282471615 |State-of-the-art 2D and 3D Face Analysis Project| | 224|apache/flink !2025-03-28246865|Apache Flink| | 225|ComposioHQ/composio !2025-03-28246436|Composio equips agents with well-crafted tools empowering them to tackle complex tasks| | 226|Genesis-Embodied-AI/Genesis !2025-03-282458314|A generative world for general-purpose robotics & embodied AI learning.| | 227|stretchr/testify !2025-03-28243184|A toolkit with common assertions and mocks that plays nicely with the standard library| | 228| yetone/openai-translator !2025-03-28242921 | Browser extension and cross-platform desktop application for translation based on ChatGPT API | | 229|frappe/erpnext !2025-03-282425211|Free and Open Source Enterprise Resource Planning (ERP)| | 230|songquanpeng/one-api !2025-03-282410034|OpenAI 接口管理 & 分发系统,支持 Azure、Anthropic Claude、Google PaLM 2 & Gemini、智谱 ChatGLM、百度文心一言、讯飞星火认知、阿里通义千问、360 智脑以及腾讯混元,可用于二次分发管理 key,仅单可执行文件,已打包好 Docker 镜像,一键部署,开箱即用. OpenAI key management & redistribution system, using a single API for all LLMs, and features an English UI.| | 231| microsoft/JARVIS !2025-03-28240604 | a system to connect LLMs with ML community | | 232|google/flatbuffers !2025-03-28239965|FlatBuffers: Memory Efficient Serialization Library| | 233|microsoft/graphrag !2025-03-282398928|A modular graph-based Retrieval-Augmented Generation (RAG) system| | 234|rancher/rancher !2025-03-28239675|Complete container management platform| | 235|bazelbuild/bazel !2025-03-282384618|a fast, scalable, multi-language and extensible build system| | 236|modularml/mojo !2025-03-28238236 |The Mojo Programming Language| | 237|danny-avila/LibreChat !2025-03-282378753|Enhanced ChatGPT Clone: Features OpenAI, GPT-4 Vision, Bing, Anthropic, OpenRouter, Google Gemini, AI model switching, message search, langchain, DALL-E-3, ChatGPT Plugins, OpenAI Functions, Secure Multi-User System, Presets, completely open-source for self-hosting. More features in development| |!green-up-arrow.svg 238|🔥🔥🔥Shubhamsaboo/awesome-llm-apps !2025-03-28237391211|Collection of awesome LLM apps with RAG using OpenAI, Anthropic, Gemini and opensource models.| |!red-down-arrow 239|microsoft/semantic-kernel !2025-03-282373611|Integrate cutting-edge LLM technology quickly and easily into your apps| |!red-down-arrow 240|TheAlgorithms/Rust !2025-03-28236995|All Algorithms implemented in Rust| | 241|stanford-oval/storm !2025-03-28236326|An LLM-powered knowledge curation system that researches a topic and generates a full-length report with citations.| | 242|openai/gpt-2 !2025-03-28232483|Code for the paper "Language Models are Unsupervised Multitask Learners"| | 243|labring/FastGPT !2025-03-282319445|A platform that uses the OpenAI API to quickly build an AI knowledge base, supporting many-to-many relationships.| | 244|pathwaycom/llm-app !2025-03-2822928-10|Ready-to-run cloud templates for RAG, AI pipelines, and enterprise search with live data. 🐳Docker-friendly.⚡Always in sync with Sharepoint, Google Drive, S3, Kafka, PostgreSQL, real-time data APIs, and more.| | 245|warpdotdev/Warp !2025-03-282286825|Warp is a modern, Rust-based terminal with AI built in so you and your team can build great software, faster.| | 246|🔥agno-agi/agno !2025-03-2822833298|Agno is a lightweight library for building Multimodal Agents. It exposes LLMs as a unified API and gives them superpowers like memory, knowledge, tools and reasoning.| | 247|qdrant/qdrant !2025-03-282275214 |Qdrant - Vector Database for the next generation of AI applications. Also available in the cloud https://cloud.qdrant.io/| | 248|ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code !2025-03-282271815|500 AI Machine learning Deep learning Computer vision NLP Projects with code| | 249|stanfordnlp/dspy !2025-03-282268321|Stanford DSPy: The framework for programming—not prompting—foundation models| | 250|PaddlePaddle/Paddle !2025-03-28226246|PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)| | 251|zulip/zulip !2025-03-28225464|Zulip server and web application. Open-source team chat that helps teams stay productive and focused.| | 252|Hannibal046/Awesome-LLM !2025-03-282240721|Awesome-LLM: a curated list of Large Language Model| | 253|facefusion/facefusion !2025-03-282218812|Next generation face swapper and enhancer| | 254|Mozilla-Ocho/llamafile !2025-03-28220624|Distribute and run LLMs with a single file.| | 255|yuliskov/SmartTube !2025-03-282201614|SmartTube - an advanced player for set-top boxes and tvs running Android OS| | 256|haotian-liu/LLaVA !2025-03-282201316 |Large Language-and-Vision Assistant built towards multimodal GPT-4 level capabilities.| | 257|ashishps1/awesome-system-design-resources !2025-03-282189367|This repository contains System Design resources which are useful while preparing for interviews and learning Distributed Systems| | 258|Cinnamon/kotaemon !2025-03-28218248|An open-source RAG-based tool for chatting with your documents.| | 259|CodePhiliaX/Chat2DB !2025-03-282179757|🔥🔥🔥AI-driven database tool and SQL client, The hottest GUI client, supporting MySQL, Oracle, PostgreSQL, DB2, SQL Server, DB2, SQLite, H2, ClickHouse, and more.| | 260|blakeblackshear/frigate !2025-03-282177113|NVR with realtime local object detection for IP cameras| | 261|facebookresearch/audiocraft !2025-03-28217111|Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.| | 262|karpathy/minGPT !2025-03-28216567|A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training| | 263|grpc/grpc-go !2025-03-282159510|The Go language implementation of gRPC. HTTP/2 based RPC| | 264|HumanSignal/label-studio !2025-03-282137618|Label Studio is a multi-type data labeling and annotation tool with standardized output format| | 265|yoheinakajima/babyagi !2025-03-28212764 |uses OpenAI and Pinecone APIs to create, prioritize, and execute tasks, This is a pared-down version of the original Task-Driven Autonomous Agent| | 266|deepseek-ai/DeepSeek-Coder !2025-03-282118210|DeepSeek Coder: Let the Code Write Itself| | 267|BuilderIO/gpt-crawler !2025-03-282118010|Crawl a site to generate knowledge files to create your own custom GPT from a URL| | 268| openai/chatgpt-retrieval-plugin !2025-03-2821152-1 | Plugins are chat extensions designed specifically for language models like ChatGPT, enabling them to access up-to-date information, run computations, or interact with third-party services in response to a user's request.| | 269|microsoft/OmniParser !2025-03-282113123|A simple screen parsing tool towards pure vision based GUI agent| | 270|black-forest-labs/flux !2025-03-282107219|Official inference repo for FLUX.1 models| | 271|ItzCrazyKns/Perplexica !2025-03-282099154|Perplexica is an AI-powered search engine. It is an Open source alternative to Perplexity AI| | 272|microsoft/unilm !2025-03-28209876|Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities| | 273|Sanster/lama-cleaner !2025-03-282077614|Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.| | 274|assafelovic/gpt-researcher !2025-03-282057222|GPT based autonomous agent that does online comprehensive research on any given topic| | 275|PromtEngineer/localGPT !2025-03-28204230 |Chat with your documents on your local device using GPT models. No data leaves your device and 100% private.| | 276|elastic/kibana !2025-03-28203482|Your window into the Elastic Stack| | 277|fishaudio/fish-speech !2025-03-282033222|Brand new TTS solution| | 278|mlc-ai/mlc-llm !2025-03-282028110 |Enable everyone to develop, optimize and deploy AI models natively on everyone's devices.| | 279|deepset-ai/haystack !2025-03-282005320|🔍 Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs (GPT-4, ChatGPT and alike). Haystack offers production-ready tools to quickly build complex question answering, semantic search, text generation applications, and more.| | 280|tree-sitter/tree-sitter !2025-03-28200487|An incremental parsing system for programming tools| | 281|Anjok07/ultimatevocalremovergui !2025-03-281999811|GUI for a Vocal Remover that uses Deep Neural Networks.| | 282|guidance-ai/guidance !2025-03-28199622|A guidance language for controlling large language models.| | 283|ml-explore/mlx !2025-03-28199619|MLX: An array framework for Apple silicon| | 284|mlflow/mlflow !2025-03-281995314|Open source platform for the machine learning lifecycle| | 285|ml-tooling/best-of-ml-python !2025-03-28198631|🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.| | 286|BerriAI/litellm !2025-03-281981862|Call all LLM APIs using the OpenAI format. Use Bedrock, Azure, OpenAI, Cohere, Anthropic, Ollama, Sagemaker, HuggingFace, Replicate (100+ LLMs)| | 287|LazyVim/LazyVim !2025-03-281981320|Neovim config for the lazy| | 288|wez/wezterm !2025-03-281976018|A GPU-accelerated cross-platform terminal emulator and multiplexer written by @wez and implemented in Rust| | 289|valkey-io/valkey !2025-03-281970416|A flexible distributed key-value datastore that supports both caching and beyond caching workloads.| | 290|LiLittleCat/awesome-free-chatgpt !2025-03-28196185|🆓免费的 ChatGPT 镜像网站列表,持续更新。List of free ChatGPT mirror sites, continuously updated.| | 291|Byaidu/PDFMathTranslate !2025-03-281947645|PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/Docker| | 292|openai/swarm !2025-03-281947111|Educational framework exploring ergonomic, lightweight multi-agent orchestration. Managed by OpenAI Solution team.| | 293|HqWu-HITCS/Awesome-Chinese-LLM !2025-03-281921423|Organizing smaller, cost-effective, privately deployable open-source Chinese language models, including related datasets and tutorials| | 294|stitionai/devika !2025-03-28190903|Devika is an Agentic AI Software Engineer that can understand high-level human instructions, break them down into steps, research relevant information, and write code to achieve the given objective. Devika aims to be a competitive open-source alternative to Devin by Cognition AI.| | 295|OpenBMB/MiniCPM-o !2025-03-28190887|MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone| | 296|samber/lo !2025-03-281904815|💥 A Lodash-style Go library based on Go 1.18+ Generics (map, filter, contains, find...)| | 297|chroma-core/chroma !2025-03-281895221 |the AI-native open-source embedding database| | 298|DarkFlippers/unleashed-firmware !2025-03-28189278|Flipper Zero Unleashed Firmware| | 299|brave/brave-browser !2025-03-281892710|Brave browser for Android, iOS, Linux, macOS, Windows.| | 300| tloen/alpaca-lora !2025-03-28188641 | Instruct-tune LLaMA on consumer hardware| | 301|VinciGit00/Scrapegraph-ai !2025-03-281884618|Python scraper based on AI| | 302|gitroomhq/postiz-app !2025-03-281879110|📨 Schedule social posts, measure them, exchange with other members and get a lot of help from AI 🚀| | 303|PrefectHQ/prefect !2025-03-281878715|Prefect is a workflow orchestration tool empowering developers to build, observe, and react to data pipelines| | 304|ymcui/Chinese-LLaMA-Alpaca !2025-03-28187723 |Chinese LLaMA & Alpaca LLMs| | 305|kenjihiranabe/The-Art-of-Linear-Algebra !2025-03-28187335|Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"| | 306|joonspk-research/generativeagents !2025-03-28187288|Generative Agents: Interactive Simulacra of Human Behavior| | 307|renovatebot/renovate !2025-03-28186820|Universal dependency update tool that fits into your workflows.| | 308|gventuri/pandas-ai !2025-03-28186109 |Pandas AI is a Python library that integrates generative artificial intelligence capabilities into Pandas, making dataframes conversational| | 309|thingsboard/thingsboard !2025-03-28185184|Open-source IoT Platform - Device management, data collection, processing and visualization.| | 310|ente-io/ente !2025-03-28184722|Fully open source, End to End Encrypted alternative to Google Photos and Apple Photos| | 311|serengil/deepface !2025-03-281840113|A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python| | 312|Raphire/Win11Debloat !2025-03-281840132|A simple, easy to use PowerShell script to remove pre-installed apps from windows, disable telemetry, remove Bing from windows search as well as perform various other changes to declutter and improve your windows experience. This script works for both windows 10 and windows 11.| | 313|Avaiga/taipy !2025-03-28179235|Turns Data and AI algorithms into production-ready web applications in no time.| | 314|microsoft/qlib !2025-03-281784231|Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.| | 315|CopilotKit/CopilotKit !2025-03-281778571|Build in-app AI chatbots 🤖, and AI-powered Textareas ✨, into react web apps.| | 316|QwenLM/Qwen-7B !2025-03-281766017|The official repo of Qwen-7B (通义千问-7B) chat & pretrained large language model proposed by Alibaba Cloud.| | 317|w-okada/voice-changer !2025-03-28176078 |リアルタイムボイスチェンジャー Realtime Voice Changer| | 318|rlabbe/Kalman-and-Bayesian-Filters-in-Python !2025-03-281756011|Kalman Filter book using Jupyter Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions.| | 319|Mikubill/sd-webui-controlnet !2025-03-28174794 |WebUI extension for ControlNet| | 320|jingyaogong/minimind !2025-03-2817380116|「大模型」3小时完全从0训练26M的小参数GPT,个人显卡即可推理训练!| | 321|apify/crawlee !2025-03-28172696|Crawlee—A web scraping and browser automation library for Node.js to build reliable crawlers. In JavaScript and TypeScript. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with Puppeteer, Playwright, Cheerio, JSDOM, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 322|apple/ml-stable-diffusion !2025-03-28172395|Stable Diffusion with Core ML on Apple Silicon| | 323| transitive-bullshit/chatgpt-api !2025-03-28172095 | Node.js client for the official ChatGPT API. | | 324|teableio/teable !2025-03-281719222|✨ The Next Gen Airtable Alternative: No-Code Postgres| | 325| xx025/carrot !2025-03-28170900 | Free ChatGPT Site List | | 326|microsoft/LightGBM !2025-03-28170723|A fast, distributed, high-performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.| | 327|VikParuchuri/surya !2025-03-28169827|Accurate line-level text detection and recognition (OCR) in any language| | 328|deepseek-ai/Janus !2025-03-281692825|Janus-Series: Unified Multimodal Understanding and Generation Models| | 329|ardalis/CleanArchitecture !2025-03-28168823|Clean Architecture Solution Template: A starting point for Clean Architecture with ASP.NET Core| | 330|neondatabase/neon !2025-03-28166466|Neon: Serverless Postgres. We separated storage and compute to offer autoscaling, code-like database branching, and scale to zero.| | 331|kestra-io/kestra !2025-03-281661313|⚡ Workflow Automation Platform. Orchestrate & Schedule code in any language, run anywhere, 500+ plugins. Alternative to Zapier, Rundeck, Camunda, Airflow...| | 332|Dao-AILab/flash-attention !2025-03-281659720|Fast and memory-efficient exact attention| | 333|RPCS3/rpcs3 !2025-03-281655712|PS3 emulator/debugger| | 334|meta-llama/llama-recipes !2025-03-28165486|Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger| | 335|emilwallner/Screenshot-to-code !2025-03-28165180|A neural network that transforms a design mock-up into a static website.| | 336|datawhalechina/llm-cookbook !2025-03-281650922|面向开发者的 LLM 入门教程,吴恩达大模型系列课程中文版| | 337|e2b-dev/awesome-ai-agents !2025-03-281643923|A list of AI autonomous agents| | 338|QwenLM/Qwen2.5 !2025-03-281641114|Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.| | 339|dair-ai/ML-YouTube-Courses !2025-03-28164114|📺 Discover the latest machine learning / AI courses on YouTube.| | 340|pybind/pybind11 !2025-03-28163620|Seamless operability between C++11 and Python| | 341|graphdeco-inria/gaussian-splatting !2025-03-281627116|Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"| | 342|meta-llama/codellama !2025-03-28162531|Inference code for CodeLlama models| | 343|TransformerOptimus/SuperAGI !2025-03-28161292 | SuperAGI - A dev-first open source autonomous AI agent framework. Enabling developers to build, manage & run useful autonomous agents quickly and reliably.| | 344|microsoft/onnxruntime !2025-03-28161169|ONNX Runtime: cross-platform, high-performance ML inferencing and training accelerator| | 345|IDEA-Research/Grounded-Segment-Anything !2025-03-281601411 |Marrying Grounding DINO with Segment Anything & Stable Diffusion & BLIP - Automatically Detect, Segment and Generate Anything with Image and Text Inputs| | 346|ddbourgin/numpy-ml !2025-03-28160054|Machine learning, in numpy| | 347|eosphoros-ai/DB-GPT !2025-03-281585225|Revolutionizing Database Interactions with Private LLM Technology| | 348|Stability-AI/StableLM !2025-03-28158310 |Stability AI Language Models| | 349|openai/evals !2025-03-28157935 |Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.| | 350|THUDM/ChatGLM2-6B !2025-03-28157500|ChatGLM2-6B: An Open Bilingual Chat LLM | | 351|sunner/ChatALL !2025-03-28156761 |Concurrently chat with ChatGPT, Bing Chat, Bard, Alpaca, Vincuna, Claude, ChatGLM, MOSS, iFlytek Spark, ERNIE and more, discover the best answers| | 352|abseil/abseil-cpp !2025-03-28156656|Abseil Common Libraries (C++)| | 353|NVIDIA/open-gpu-kernel-modules !2025-03-28156531|NVIDIA Linux open GPU kernel module source| | 354|letta-ai/letta !2025-03-281563718|Letta (formerly MemGPT) is a framework for creating LLM services with memory.| | 355|typescript-eslint/typescript-eslint !2025-03-28156211|✨ Monorepo for all the tooling which enables ESLint to support TypeScript| | 356|umijs/umi !2025-03-28156211|A framework in react community ✨| | 357|AI4Finance-Foundation/FinGPT !2025-03-281561215|Data-Centric FinGPT. Open-source for open finance! Revolutionize 🔥 We'll soon release the trained model.| | 358|amplication/amplication !2025-03-28156022|🔥🔥🔥 The Only Production-Ready AI-Powered Backend Code Generation| | 359|KindXiaoming/pykan !2025-03-28155477|Kolmogorov Arnold Networks| | 360|arc53/DocsGPT !2025-03-28154900|GPT-powered chat for documentation, chat with your documents| | 361|influxdata/telegraf !2025-03-28154502|Agent for collecting, processing, aggregating, and writing metrics, logs, and other arbitrary data.| | 362|microsoft/Bringing-Old-Photos-Back-to-Life !2025-03-28154084|Bringing Old Photo Back to Life (CVPR 2020 oral)| | 363|GaiZhenbiao/ChuanhuChatGPT !2025-03-2815394-2|GUI for ChatGPT API and many LLMs. Supports agents, file-based QA, GPT finetuning and query with web search. All with a neat UI.| | 364|Zeyi-Lin/HivisionIDPhotos !2025-03-281529710|⚡️HivisionIDPhotos: a lightweight and efficient AI ID photos tools. 一个轻量级的AI证件照制作算法。| | 365| mayooear/gpt4-pdf-chatbot-langchain !2025-03-281529518 | GPT4 & LangChain Chatbot for large PDF docs | | 366|1Panel-dev/MaxKB !2025-03-2815277148|? Based on LLM large language model knowledge base Q&A system. Ready to use out of the box, supports quick integration into third-party business systems. Officially produced by 1Panel| | 367|ai16z/eliza !2025-03-281526811|Conversational Agent for Twitter and Discord| | 368|apache/arrow !2025-03-28151684|Apache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing| | 369|princeton-nlp/SWE-agent !2025-03-281516119|SWE-agent: Agent Computer Interfaces Enable Software Engineering Language Models| | 370|mlc-ai/web-llm !2025-03-281509311 |Bringing large-language models and chat to web browsers. Everything runs inside the browser with no server support.| | 371|guillaumekln/faster-whisper !2025-03-281507117 |Faster Whisper transcription with CTranslate2| | 372|overleaf/overleaf !2025-03-28150316|A web-based collaborative LaTeX editor| | 373|triton-lang/triton !2025-03-28150169|Development repository for the Triton language and compiler| | 374|soxoj/maigret !2025-03-281500410|🕵️‍♂️ Collect a dossier on a person by username from thousands of sites| | 375|alibaba/lowcode-engine !2025-03-28149841|An enterprise-class low-code technology stack with scale-out design / 一套面向扩展设计的企业级低代码技术体系| | 376|espressif/esp-idf !2025-03-28148545|Espressif IoT Development Framework. Official development framework for Espressif SoCs.| | 377|pgvector/pgvector !2025-03-281484913|Open-source vector similarity search for Postgres| | 378|datawhalechina/leedl-tutorial !2025-03-28148246|《李宏毅深度学习教程》(李宏毅老师推荐👍),PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases| | 379|xcanwin/KeepChatGPT !2025-03-28147972 |Using ChatGPT is more efficient and smoother, perfectly solving ChatGPT network errors. No longer do you need to frequently refresh the webpage, saving over 10 unnecessary steps| | 380|m-bain/whisperX !2025-03-281471313|WhisperX: Automatic Speech Recognition with Word-level Timestamps (& Diarization)| | 381|HumanAIGC/AnimateAnyone !2025-03-2814706-1|Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation| |!green-up-arrow.svg 382|naklecha/llama3-from-scratch !2025-03-281469024|llama3 implementation one matrix multiplication at a time| |!red-down-arrow 383| fauxpilot/fauxpilot !2025-03-28146871 | An open-source GitHub Copilot server | | 384|LlamaFamily/Llama-Chinese !2025-03-28145111|Llama Chinese Community, the best Chinese Llama large model, fully open source and commercially available| | 385|BradyFU/Awesome-Multimodal-Large-Language-Models !2025-03-281450121|Latest Papers and Datasets on Multimodal Large Language Models| | 386|vanna-ai/vanna !2025-03-281449819|🤖 Chat with your SQL database 📊. Accurate Text-to-SQL Generation via LLMs using RAG 🔄.| | 387|bleedline/aimoneyhunter !2025-03-28144845|AI Side Hustle Money Mega Collection: Teaching You How to Utilize AI for Various Side Projects to Earn Extra Income.| | 388|stefan-jansen/machine-learning-for-trading !2025-03-28144629|Code for Machine Learning for Algorithmic Trading, 2nd edition.| | 389|state-spaces/mamba !2025-03-28144139|Mamba: Linear-Time Sequence Modeling with Selective State Spaces| | 390|vercel/ai-chatbot !2025-03-281434614|A full-featured, hackable Next.js AI chatbot built by Vercel| | 391|steven-tey/novel !2025-03-281428410|Notion-style WYSIWYG editor with AI-powered autocompletions| | 392|unifyai/ivy !2025-03-281409348|Unified AI| | 393|chidiwilliams/buzz !2025-03-281402411 |Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.| | 394|lukas-blecher/LaTeX-OCR !2025-03-28139769|pix2tex: Using a ViT to convert images of equations into LaTeX code.| | 395|openai/tiktoken !2025-03-28139599|tiktoken is a fast BPE tokeniser for use with OpenAI's models.| | 396|nocobase/nocobase !2025-03-281391522|NocoBase is a scalability-first, open-source no-code/low-code platform for building business applications and enterprise solutions.| | 397|neonbjb/tortoise-tts !2025-03-28139010 |A multi-voice TTS system trained with an emphasis on quality| | 398|yamadashy/repomix !2025-03-281382036|📦 Repomix (formerly Repopack) is a powerful tool that packs your entire repository into a single, AI-friendly file. Perfect for when you need to feed your codebase to Large Language Models (LLMs) or other AI tools like Claude, ChatGPT, and Gemini.| | 399|adobe/react-spectrum !2025-03-28136766|A collection of libraries and tools that help you build adaptive, accessible, and robust user experiences.| | 400|THUDM/ChatGLM3 !2025-03-28136684|ChatGLM3 series: Open Bilingual Chat LLMs | | 401|NVIDIA/NeMo !2025-03-28134837|A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)| | 402|BlinkDL/RWKV-LM !2025-03-28134346 |RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it combines the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.| | 403| fuergaosi233/wechat-chatgpt !2025-03-28133330 | Use ChatGPT On Wechat via wechaty | | 404|udecode/plate !2025-03-28133325|A rich-text editor powered by AI| | 405|xenova/transformers.js !2025-03-281331219|State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!| | 406|stas00/ml-engineering !2025-03-281325615|Machine Learning Engineering Guides and Tools| | 407| wong2/chatgpt-google-extension !2025-03-2813241-1 | A browser extension that enhances search engines with ChatGPT, this repos will not be updated from 2023-02-20| | 408|mrdbourke/pytorch-deep-learning !2025-03-281317520|Materials for the Learn PyTorch for Deep Learning: Zero to Mastery course.| | 409|Koenkk/zigbee2mqtt !2025-03-28131544|Zigbee 🐝 to MQTT bridge 🌉, get rid of your proprietary Zigbee bridges 🔨| | 410|vercel-labs/ai !2025-03-281298528|Build AI-powered applications with React, Svelte, and Vue| | 411|netease-youdao/QAnything !2025-03-28129318|Question and Answer based on Anything.| | 412|huggingface/trl !2025-03-281289622|Train transformer language models with reinforcement learning.| | 413|microsoft/BitNet !2025-03-28128503|Official inference framework for 1-bit LLMs| | 414|mediar-ai/screenpipe !2025-03-281283915|24/7 local AI screen & mic recording. Build AI apps that have the full context. Works with Ollama. Alternative to Rewind.ai. Open. Secure. You own your data. Rust.| | 415|Skyvern-AI/skyvern !2025-03-281277612|Automate browser-based workflows with LLMs and Computer Vision| | 416|pytube/pytube !2025-03-28126591|A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos.| | 417|official-stockfish/Stockfish !2025-03-28126574|UCI chess engine| | 418|sgl-project/sglang !2025-03-281260143|SGLang is a structured generation language designed for large language models (LLMs). It makes your interaction with LLMs faster and more controllable.| | 419|plasma-umass/scalene !2025-03-28125535|Scalene: a high-performance, high-precision CPU, GPU, and memory profiler for Python with AI-powered optimization proposals| | 420|danswer-ai/danswer !2025-03-28125503|Ask Questions in natural language and get Answers backed by private sources. Connects to tools like Slack, GitHub, Confluence, etc.| | 421|OpenTalker/SadTalker !2025-03-28125226|[CVPR 2023] SadTalker:Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation| | 422|facebookresearch/AnimatedDrawings !2025-03-28123693 |Code to accompany "A Method for Animating Children's Drawings of the Human Figure"| | 423|activepieces/activepieces !2025-03-28123609|Your friendliest open source all-in-one automation tool ✨ Workflow automation tool 100+ integration / Enterprise automation tool / Zapier Alternative| | 424|ggerganov/ggml !2025-03-28121992 |Tensor library for machine learning| | 425|bytebase/bytebase !2025-03-28121694|World's most advanced database DevOps and CI/CD for Developer, DBA and Platform Engineering teams. The GitLab/GitHub for database DevOps.| | 426| willwulfken/MidJourney-Styles-and-Keywords-Reference !2025-03-28120971 | A reference containing Styles and Keywords that you can use with MidJourney AI| | 427|Huanshere/VideoLingo !2025-03-281207013|Netflix-level subtitle cutting, translation, alignment, and even dubbing - one-click fully automated AI video subtitle team | | 428|OpenLMLab/MOSS !2025-03-28120330 |An open-source tool-augmented conversational language model from Fudan University| | 429|llmware-ai/llmware !2025-03-281200727|Providing enterprise-grade LLM-based development framework, tools, and fine-tuned models.| | 430|PKU-YuanGroup/Open-Sora-Plan !2025-03-28119362|This project aim to reproduce Sora (Open AI T2V model), but we only have limited resource. We deeply wish the all open source community can contribute to this project.| | 431|ShishirPatil/gorilla !2025-03-28119332 |Gorilla: An API store for LLMs| | 432|NVIDIA/Megatron-LM !2025-03-281192716|Ongoing research training transformer models at scale| | 433|illacloud/illa-builder !2025-03-28119192|Create AI-Driven Apps like Assembling Blocks| | 434|marimo-team/marimo !2025-03-281191521|A reactive notebook for Python — run reproducible experiments, execute as a script, deploy as an app, and version with git.| | 435|smol-ai/developer !2025-03-28119111 | With 100k context windows on the way, it's now feasible for every dev to have their own smol developer| | 436|Lightning-AI/litgpt !2025-03-28118878|Pretrain, finetune, deploy 20+ LLMs on your own data. Uses state-of-the-art techniques: flash attention, FSDP, 4-bit, LoRA, and more.| | 437|openai/shap-e !2025-03-28118474 |Generate 3D objects conditioned on text or images| | 438|eugeneyan/open-llms !2025-03-28118451 |A list of open LLMs available for commercial use.| | 439|andrewyng/aisuite !2025-03-28118124|Simple, unified interface to multiple Generative AI providers| | 440|hajimehoshi/ebiten !2025-03-28117816|Ebitengine - A dead simple 2D game engine for Go| | 441|kgrzybek/modular-monolith-with-ddd !2025-03-28117493|Full Modular Monolith application with Domain-Driven Design approach.| | 442|h2oai/h2ogpt !2025-03-2811736-1 |Come join the movement to make the world's best open source GPT led by H2O.ai - 100% private chat and document search, no data leaks, Apache 2.0| | 443|owainlewis/awesome-artificial-intelligence !2025-03-28117332|A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers.| | 444|DataTalksClub/mlops-zoomcamp !2025-03-28116643|Free MLOps course from DataTalks.Club| | 445|Rudrabha/Wav2Lip !2025-03-281163410|This repository contains the codes of "A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild", published at ACM Multimedia 2020.| | 446|aishwaryanr/awesome-generative-ai-guide !2025-03-281152810|A one stop repository for generative AI research updates, interview resources, notebooks and much more!| | 447|karpathy/micrograd !2025-03-28115146|A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API| | 448|InstantID/InstantID !2025-03-28115111|InstantID : Zero-shot Identity-Preserving Generation in Seconds 🔥| | 449|facebookresearch/seamlesscommunication !2025-03-28114434|Foundational Models for State-of-the-Art Speech and Text Translation| | 450|anthropics/anthropic-cookbook !2025-03-281140112|A collection of notebooks/recipes showcasing some fun and effective ways of using Claude.| | 451|mastra-ai/mastra !2025-03-281139240|the TypeScript AI agent framework| | 452|NVIDIA/TensorRT !2025-03-28113864|NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.| | 453|plandex-ai/plandex !2025-03-28113645|An AI coding engine for complex tasks| | 454|RUCAIBox/LLMSurvey !2025-03-28112735 |A collection of papers and resources related to Large Language Models.| | 455|kubeshark/kubeshark !2025-03-28112711|The API traffic analyzer for Kubernetes providing real-time K8s protocol-level visibility, capturing and monitoring all traffic and payloads going in, out and across containers, pods, nodes and clusters. Inspired by Wireshark, purposely built for Kubernetes| | 456|electric-sql/pglite !2025-03-28112617|Lightweight Postgres packaged as WASM into a TypeScript library for the browser, Node.js, Bun and Deno from https://electric-sql.com| | 457|lightaime/camel !2025-03-281124441 |🐫 CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society| | 458|huggingface/lerobot !2025-03-281120184|🤗 LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch| | 459|normal-computing/outlines !2025-03-28111657|Generative Model Programming| | 460|libretro/RetroArch !2025-03-28110701|Cross-platform, sophisticated frontend for the libretro API. Licensed GPLv3.| | 461|THUDM/CogVideo !2025-03-28110599|Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023)| | 462|bentoml/OpenLLM !2025-03-28110495|An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease.| | 463|vosen/ZLUDA !2025-03-28110429|CUDA on AMD GPUs| | 464|dair-ai/ML-Papers-of-the-Week !2025-03-28110304 |🔥Highlighting the top ML papers every week.| | 465|WordPress/gutenberg !2025-03-28110212|The Block Editor project for WordPress and beyond. Plugin is available from the official repository.| | 466|microsoft/data-formulator !2025-03-281099827|🪄 Create rich visualizations with AI| | 467|LibreTranslate/LibreTranslate !2025-03-28109887|Free and Open Source Machine Translation API. Self-hosted, offline capable and easy to setup.| | 468|block/goose !2025-03-281097737|an open-source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM| | 469|getumbrel/llama-gpt !2025-03-28109553|A self-hosted, offline, ChatGPT-like chatbot. Powered by Llama 2. 100% private, with no data leaving your device.| | 470|HigherOrderCO/HVM !2025-03-28109182|A massively parallel, optimal functional runtime in Rust| | 471|databrickslabs/dolly !2025-03-2810812-3 | A large language model trained on the Databricks Machine Learning Platform| | 472|srush/GPU-Puzzles !2025-03-28108014|Solve puzzles. Learn CUDA.| | 473|Z3Prover/z3 !2025-03-28107952|The Z3 Theorem Prover| | 474|UFund-Me/Qbot !2025-03-281079313 |Qbot is an AI-oriented quantitative investment platform, which aims to realize the potential, empower AI technologies in quantitative investment| | 475|langchain-ai/langgraph !2025-03-281077336|| | 476|lz4/lz4 !2025-03-28107647|Extremely Fast Compression algorithm| | 477|magic-research/magic-animate !2025-03-28107160|MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model| | 478|PaperMC/Paper !2025-03-281071410|The most widely used, high performance Minecraft server that aims to fix gameplay and mechanics inconsistencies| | 479|getomni-ai/zerox !2025-03-281071015|Zero shot pdf OCR with gpt-4o-mini| |!green-up-arrow.svg 480|🔥NirDiamant/GenAIAgents !2025-03-2810693318|This repository provides tutorials and implementations for various Generative AI Agent techniques, from basic to advanced. It serves as a comprehensive guide for building intelligent, interactive AI systems.| |!red-down-arrow 481|Unstructured-IO/unstructured !2025-03-28106889|Open source libraries and APIs to build custom preprocessing pipelines for labeling, training, or production machine learning pipelines.| | 482|apache/thrift !2025-03-28106610|Apache Thrift| | 483| TheR1D/shellgpt !2025-03-28106097 | A command-line productivity tool powered by ChatGPT, will help you accomplish your tasks faster and more efficiently | | 484|TheRamU/Fay !2025-03-281060312 |Fay is a complete open source project that includes Fay controller and numeral models, which can be used in different applications such as virtual hosts, live promotion, numeral human interaction and so on| | 485|zyronon/douyin !2025-03-28105566|Vue3 + Pinia + Vite5 仿抖音,Vue 在移动端的最佳实践 . Imitate TikTok ,Vue Best practices on Mobile| | 486|THU-MIG/yolov10 !2025-03-28105485|YOLOv10: Real-Time End-to-End Object Detection| | 487|idootop/mi-gpt !2025-03-281052522|? Transform XiaoAi speaker into a personal voice assistant with ChatGPT and DouBao integration.| | 488|SakanaAI/AI-Scientist !2025-03-281051310|The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑‍🔬| | 489|szimek/sharedrop !2025-03-28105101|Easy P2P file transfer powered by WebRTC - inspired by Apple AirDrop| | 490|salesforce/LAVIS !2025-03-28103942 |LAVIS - A One-stop Library for Language-Vision Intelligence| | 491|aws/amazon-sagemaker-examples !2025-03-28103654|Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.| | 492|artidoro/qlora !2025-03-28103402 |QLoRA: Efficient Finetuning of Quantized LLMs| | 493|lllyasviel/stable-diffusion-webui-forge !2025-03-281029314| a platform on top of Stable Diffusion WebUI (based on Gradio) to make development easier, optimize resource management, and speed up inference| | 494|NielsRogge/Transformers-Tutorials !2025-03-28102487|This repository contains demos I made with the Transformers library by HuggingFace.| | 495|kedro-org/kedro !2025-03-28102371|Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.| | 496| chathub-dev/chathub !2025-03-28102301 | All-in-one chatbot client | | 497|microsoft/promptflow !2025-03-28101612|Build high-quality LLM apps - from prototyping, testing to production deployment and monitoring.| | 498|mistralai/mistral-src !2025-03-28101372|Reference implementation of Mistral AI 7B v0.1 model.| | 499|burn-rs/burn !2025-03-28101183|Burn - A Flexible and Comprehensive Deep Learning Framework in Rust| | 500|AIGC-Audio/AudioGPT !2025-03-28101150 |AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head| | 501|facebookresearch/dinov2 !2025-03-281011210 |PyTorch code and models for the DINOv2 self-supervised learning method.| | 502|RockChinQ/LangBot !2025-03-281008455|😎丰富生态、🧩支持扩展、🦄多模态 - 大模型原生即时通信机器人平台 🤖 | | 503|78/xiaozhi-esp32 !2025-03-281008180|Build your own AI friend| | 504|cumulo-autumn/StreamDiffusion !2025-03-28100761|StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation| | 505|DataTalksClub/machine-learning-zoomcamp !2025-03-28100664|The code from the Machine Learning Bookcamp book and a free course based on the book| | 506|nerfstudio-project/nerfstudio !2025-03-28100343|A collaboration friendly studio for NeRFs| | 507|cupy/cupy !2025-03-28100344|NumPy & SciPy for GPU| | 508|NVIDIA/TensorRT-LLM !2025-03-281000823|TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.| | 509|wasp-lang/open-saas !2025-03-2899665|A free, open-source SaaS app starter for React & Node.js with superpowers. Production-ready. Community-driven.| | 510|huggingface/text-generation-inference !2025-03-2899383|Large Language Model Text Generation Inference| | 511|jxnl/instructor !2025-03-2899224|structured outputs for llms| | 512|GoogleCloudPlatform/generative-ai !2025-03-2899086|Sample code and notebooks for Generative AI on Google Cloud| | 513|manticoresoftware/manticoresearch !2025-03-2898799|Easy to use open source fast database for search | | 514|langfuse/langfuse !2025-03-28985134|🪢 Open source LLM engineering platform. Observability, metrics, evals, prompt management, testing, prompt playground, datasets, LLM evaluations -- 🍊YC W23 🤖 integrate via Typescript, Python / Decorators, OpenAI, Langchain, LlamaIndex, Litellm, Instructor, Mistral, Perplexity, Claude, Gemini, Vertex| | 515|keephq/keep !2025-03-2897949|The open-source alert management and AIOps platform| | 516|sashabaranov/go-openai !2025-03-2897843|OpenAI ChatGPT, GPT-3, GPT-4, DALL·E, Whisper API wrapper for Go| | 517|autowarefoundation/autoware !2025-03-2897766|Autoware - the world's leading open-source software project for autonomous driving| | 518|anthropics/courses !2025-03-2897269|Anthropic's educational courses| | 519|popcorn-official/popcorn-desktop !2025-03-2896853|Popcorn Time is a multi-platform, free software BitTorrent client that includes an integrated media player ( Windows / Mac / Linux ) A Butter-Project Fork| | 520|getmaxun/maxun !2025-03-28968515|🔥 Open-source no-code web data extraction platform. Turn websites to APIs and spreadsheets with no-code robots in minutes! [In Beta]| | 521|wandb/wandb !2025-03-2896763|🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API.| | 522|karpathy/minbpe !2025-03-2895353|Minimal, clean, code for the Byte Pair Encoding (BPE) algorithm commonly used in LLM tokenization.| | 523|bigscience-workshop/petals !2025-03-2895142|🌸 Run large language models at home, BitTorrent-style. Fine-tuning and inference up to 10x faster than offloading| | 524|OthersideAI/self-operating-computer !2025-03-2894931|A framework to enable multimodal models to operate a computer.| | 525|mshumer/gpt-prompt-engineer !2025-03-2894911|| | 526| BloopAI/bloop !2025-03-2894710 | A fast code search engine written in Rust| | 527|BlinkDL/ChatRWKV !2025-03-289467-1 |ChatRWKV is like ChatGPT but powered by RWKV (100% RNN) language model, and open source.| | 528|timlrx/tailwind-nextjs-starter-blog !2025-03-2894677|This is a Next.js, Tailwind CSS blogging starter template. Comes out of the box configured with the latest technologies to make technical writing a breeze. Easily configurable and customizable. Perfect as a replacement to existing Jekyll and Hugo individual blogs.| | 529|google/benchmark !2025-03-2893634|A microbenchmark support library| | 530|facebookresearch/nougat !2025-03-2893603|Implementation of Nougat Neural Optical Understanding for Academic Documents| | 531|modelscope/facechain !2025-03-2893536|FaceChain is a deep-learning toolchain for generating your Digital-Twin.| | 532|DrewThomasson/ebook2audiobook !2025-03-2893388|Convert ebooks to audiobooks with chapters and metadata using dynamic AI models and voice cloning. Supports 1,107+ languages!| | 533|RayTracing/raytracing.github.io !2025-03-2893035|Main Web Site (Online Books)| | 534|QwenLM/Qwen2.5-VL !2025-03-28930249|Qwen2.5-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud.| | 535|WongKinYiu/yolov9 !2025-03-2892201|Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information| | 536|alibaba-damo-academy/FunASR !2025-03-28920222|A Fundamental End-to-End Speech Recognition Toolkit and Open Source SOTA Pretrained Models.| | 537|Visualize-ML/Book4Power-of-Matrix !2025-03-2891931|Book4 'Power of Matrix' | | 538|dice2o/BingGPT !2025-03-289185-1 |Desktop application of new Bing's AI-powered chat (Windows, macOS and Linux)| | 539|browserbase/stagehand !2025-03-28917621|An AI web browsing framework focused on simplicity and extensibility.| | 540|FlagOpen/FlagEmbedding !2025-03-28914111|Dense Retrieval and Retrieval-augmented LLMs| | 541|Const-me/Whisper !2025-03-2890979|High-performance GPGPU inference of OpenAI's Whisper automatic speech recognition (ASR) model| | 542|lucidrains/denoising-diffusion-pytorch !2025-03-2890942|Implementation of Denoising Diffusion Probabilistic Model in Pytorch| | 543|Chainlit/chainlit !2025-03-28904422|Build Conversational AI in minutes ⚡️| | 544|togethercomputer/OpenChatKit !2025-03-2890160 |OpenChatKit provides a powerful, open-source base to create both specialized and general purpose chatbots for various applications| | 545|Stability-AI/StableStudio !2025-03-2889631 |Community interface for generative AI| | 546|voicepaw/so-vits-svc-fork !2025-03-2889482 |so-vits-svc fork with realtime support, improved interface and more features.| | 547|pymc-devs/pymc !2025-03-2889413|Bayesian Modeling and Probabilistic Programming in Python| | 548|espnet/espnet !2025-03-2889302|End-to-End Speech Processing Toolkit| | 549|kedacore/keda !2025-03-2888991|KEDA is a Kubernetes-based Event Driven Autoscaling component. It provides event driven scale for any container running in Kubernetes| | 550|open-mmlab/Amphion !2025-03-28886911|Amphion (/æmˈfaɪən/) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.| | 551|gorse-io/gorse !2025-03-2888451|Gorse open source recommender system engine| | 552|adams549659584/go-proxy-bingai !2025-03-288768-1 |A Microsoft New Bing demo site built with Vue3 and Go, providing a consistent UI experience, supporting ChatGPT prompts, and accessible within China| | 553|open-mmlab/mmsegmentation !2025-03-2887513|OpenMMLab Semantic Segmentation Toolbox and Benchmark.| | 554|bytedance/monolith !2025-03-2887223|ByteDance's Recommendation System| | 555|LouisShark/chatgptsystemprompt !2025-03-2887216|store all agent's system prompt| | 556|brexhq/prompt-engineering !2025-03-2887080 |Tips and tricks for working with Large Language Models like OpenAI's GPT-4.| | 557|erincatto/box2d !2025-03-2886841|Box2D is a 2D physics engine for games| | 558|🔥microsoft/ai-agents-for-beginners !2025-03-288669323|10 Lessons to Get Started Building AI Agents| | 559|nashsu/FreeAskInternet !2025-03-2886102|FreeAskInternet is a completely free, private and locally running search aggregator & answer generate using LLM, without GPU needed. The user can ask a question and the system will make a multi engine search and combine the search result to the ChatGPT3.5 LLM and generate the answer based on search results.| | 560|goldmansachs/gs-quant !2025-03-2885981|Python toolkit for quantitative finance| | 561|srbhr/Resume-Matcher !2025-03-2885800|Open Source Free ATS Tool to compare Resumes with Job Descriptions and create a score to rank them.| | 562|facebookresearch/ImageBind !2025-03-2885681 |ImageBind One Embedding Space to Bind Them All| | 563|ashawkey/stable-dreamfusion !2025-03-2885481 |A pytorch implementation of text-to-3D dreamfusion, powered by stable diffusion.| | 564|meetecho/janus-gateway !2025-03-2885232|Janus WebRTC Server| | 565|google/magika !2025-03-2885003|Detect file content types with deep learning| | 566|huggingface/chat-ui !2025-03-2884871 |Open source codebase powering the HuggingChat app| | 567|EleutherAI/lm-evaluation-harness !2025-03-28843012|A framework for few-shot evaluation of autoregressive language models.| | 568|jina-ai/reader !2025-03-2884089|Convert any URL to an LLM-friendly input with a simple prefix https://r.jina.ai/| | 569|microsoft/TypeChat !2025-03-288406-1|TypeChat is a library that makes it easy to build natural language interfaces using types.| | 570|thuml/Time-Series-Library !2025-03-28839715|A Library for Advanced Deep Time Series Models.| | 571|OptimalScale/LMFlow !2025-03-2883882|An Extensible Toolkit for Finetuning and Inference of Large Foundation Models. Large Model for All.| | 572|baptisteArno/typebot.io !2025-03-2883845|💬 Typebot is a powerful chatbot builder that you can self-host.| | 573|jzhang38/TinyLlama !2025-03-2883504|The TinyLlama project is an open endeavor to pretrain a 1.1B Llama model on 3 trillion tokens.| | 574|fishaudio/Bert-VITS2 !2025-03-2883472|vits2 backbone with multilingual-bert| | 575|OpenBMB/XAgent !2025-03-2882683|An Autonomous LLM Agent for Complex Task Solving| | 576|Acly/krita-ai-diffusion !2025-03-2882387|Streamlined interface for generating images with AI in Krita. Inpaint and outpaint with optional text prompt, no tweaking required.| | 577|jasonppy/VoiceCraft !2025-03-2882151|Zero-Shot Speech Editing and Text-to-Speech in the Wild| | 578|SJTU-IPADS/PowerInfer !2025-03-2881693|High-speed Large Language Model Serving on PCs with Consumer-grade GPUs| | 579|modelscope/DiffSynth-Studio !2025-03-28814713|Enjoy the magic of Diffusion models!| | 580|o3de/o3de !2025-03-2881443|Open 3D Engine (O3DE) is an Apache 2.0-licensed multi-platform 3D engine that enables developers and content creators to build AAA games, cinema-quality 3D worlds, and high-fidelity simulations without any fees or commercial obligations.| | 581|zmh-program/chatnio !2025-03-2881325|🚀 Next Generation AI One-Stop Internationalization Solution. 🚀 下一代 AI 一站式 B/C 端解决方案,支持 OpenAI,Midjourney,Claude,讯飞星火,Stable Diffusion,DALL·E,ChatGLM,通义千问,腾讯混元,360 智脑,百川 AI,火山方舟,新必应,Gemini,Moonshot 等模型,支持对话分享,自定义预设,云端同步,模型市场,支持弹性计费和订阅计划模式,支持图片解析,支持联网搜索,支持模型缓存,丰富美观的后台管理与仪表盘数据统计。| | 582|leptonai/searchwithlepton !2025-03-2880632|Building a quick conversation-based search demo with Lepton AI.| | 583|sebastianstarke/AI4Animation !2025-03-2880620|Bringing Characters to Life with Computer Brains in Unity| | 584|wangrongding/wechat-bot !2025-03-2880528|🤖一个基于 WeChaty 结合 DeepSeek / ChatGPT / Kimi / 讯飞等Ai服务实现的微信机器人 ,可以用来帮助你自动回复微信消息,或者管理微信群/好友,检测僵尸粉等...| | 585|openvinotoolkit/openvino !2025-03-2880528|OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference| | 586|steven2358/awesome-generative-ai !2025-03-28802610|A curated list of modern Generative Artificial Intelligence projects and services| | 587|adam-maj/tiny-gpu !2025-03-2880234|A minimal GPU design in Verilog to learn how GPUs work from the ground up| | 588| anse-app/chatgpt-demo !2025-03-2880180 | A demo repo based on OpenAI API (gpt-3.5-turbo) | | 589| acheong08/EdgeGPT !2025-03-288015-1 |Reverse engineered API of Microsoft's Bing Chat | | 590|ai-collection/ai-collection !2025-03-2879994 |The Generative AI Landscape - A Collection of Awesome Generative AI Applications| | 591|GreyDGL/PentestGPT !2025-03-2879953 |A GPT-empowered penetration testing tool| | 592|delta-io/delta !2025-03-2879112|An open-source storage framework that enables building a Lakehouse architecture with compute engines including Spark, PrestoDB, Flink, Trino, and Hive and APIs| | 593|dataelement/bisheng !2025-03-2879085|Bisheng is an open LLM devops platform for next generation AI applications.| | 594|e2b-dev/e2b !2025-03-2878447 |Vercel for AI agents. We help developers to build, deploy, and monitor AI agents. Focusing on specialized AI agents that build software for you - your personal software developers.| | 595|01-ai/Yi !2025-03-2878311|A series of large language models trained from scratch by developers @01-ai| | 596|Plachtaa/VALL-E-X !2025-03-287830-1|An open source implementation of Microsoft's VALL-E X zero-shot TTS model. The demo is available at https://plachtaa.github.io| | 597|abhishekkrthakur/approachingalmost !2025-03-2878204|Approaching (Almost) Any Machine Learning Problem| | 598|pydantic/pydantic-ai !2025-03-28781041|Agent Framework / shim to use Pydantic with LLMs| | 599|rany2/edge-tts !2025-03-2877901|Use Microsoft Edge's online text-to-speech service from Python WITHOUT needing Microsoft Edge or Windows or an API key| | 600|CASIA-IVA-Lab/FastSAM !2025-03-2877881|Fast Segment Anything| | 601|netease-youdao/EmotiVoice !2025-03-2877817|EmotiVoice 😊: a Multi-Voice and Prompt-Controlled TTS Engine| | 602|lllyasviel/IC-Light !2025-03-2877804|More relighting!| | 603|kroma-network/tachyon !2025-03-287774-1|Modular ZK(Zero Knowledge) backend accelerated by GPU| | 604|deep-floyd/IF !2025-03-2877731 |A novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding| | 605|oumi-ai/oumi !2025-03-2877705|Everything you need to build state-of-the-art foundation models, end-to-end.| | 606|reorproject/reor !2025-03-2877681|AI note-taking app that runs models locally.| | 607|lightpanda-io/browser !2025-03-28775813|Lightpanda: the headless browser designed for AI and automation| | 608|xiangsx/gpt4free-ts !2025-03-287755-1|Providing a free OpenAI GPT-4 API ! This is a replication project for the typescript version of xtekky/gpt4free| | 609|IDEA-Research/GroundingDINO !2025-03-28773311|Official implementation of the paper "Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection"| | 610|bunkerity/bunkerweb !2025-03-2877326|🛡️ Make your web services secure by default !| | 611|vikhyat/moondream !2025-03-2877057|tiny vision language model| | 612|firmai/financial-machine-learning !2025-03-287703-1|A curated list of practical financial machine learning tools and applications.| | 613|n8n-io/self-hosted-ai-starter-kit !2025-03-28765121|The Self-hosted AI Starter Kit is an open-source template that quickly sets up a local AI environment. Curated by n8n, it provides essential tools for creating secure, self-hosted AI workflows.| | 614|intel-analytics/ipex-llm !2025-03-2876507|Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, Baichuan, Mixtral, Gemma, etc.) on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max). A PyTorch LLM library that seamlessly integrates with llama.cpp, HuggingFace, LangChain, LlamaIndex, DeepSpeed, vLLM, FastChat, ModelScope, etc.| | 615|jrouwe/JoltPhysics !2025-03-28764510|A multi core friendly rigid body physics and collision detection library. Written in C++. Suitable for games and VR applications. Used by Horizon Forbidden West.| | 616|THUDM/CodeGeeX2 !2025-03-2876270|CodeGeeX2: A More Powerful Multilingual Code Generation Model| | 617|meta-llama/llama-stack !2025-03-2875866|Composable building blocks to build Llama Apps| | 618|sweepai/sweep !2025-03-287530-1|Sweep is an AI junior developer| | 619|lllyasviel/Omost !2025-03-2875301|Your image is almost there!| | 620|ahmedbahaaeldin/From-0-to-Research-Scientist-resources-guide !2025-03-2875050|Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.| | 621|dair-ai/ML-Papers-Explained !2025-03-2875050|Explanation to key concepts in ML| | 622|zaidmukaddam/scira !2025-03-28750110|Scira (Formerly MiniPerplx) is a minimalistic AI-powered search engine that helps you find information on the internet. Powered by Vercel AI SDK! Search with models like Grok 2.0.| | 623|Portkey-AI/gateway !2025-03-28749416|A Blazing Fast AI Gateway. Route to 100+ LLMs with 1 fast & friendly API.| | 624|web-infra-dev/midscene !2025-03-28748729|An AI-powered automation SDK can control the page, perform assertions, and extract data in JSON format using natural language.| | 625|zilliztech/GPTCache !2025-03-2874801 |GPTCache is a library for creating semantic cache to store responses from LLM queries.| | 626|niedev/RTranslator !2025-03-2874742|RTranslator is the world's first open source real-time translation app.| |!green-up-arrow.svg 627|roboflow/notebooks !2025-03-2874666|Examples and tutorials on using SOTA computer vision models and techniques. Learn everything from old-school ResNet, through YOLO and object-detection transformers like DETR, to the latest models like Grounding DINO and SAM.| |!red-down-arrow 628|openlm-research/openllama !2025-03-2874652|OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset| | 629|LiheYoung/Depth-Anything !2025-03-2874155|Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data| | 630|enso-org/enso !2025-03-2874040|Hybrid visual and textual functional programming.| | 631|bigcode-project/starcoder !2025-03-287401-1 |Home of StarCoder: fine-tuning & inference!| | 632|git-ecosystem/git-credential-manager !2025-03-2873975|Secure, cross-platform Git credential storage with authentication to GitHub, Azure Repos, and other popular Git hosting services.| | 633|OpenGVLab/InternVL !2025-03-2873634|[CVPR 2024 Oral] InternVL Family: A Pioneering Open-Source Alternative to GPT-4V. 接近GPT-4V表现的可商用开源模型| | 634|WooooDyy/LLM-Agent-Paper-List !2025-03-2873551|The paper list of the 86-page paper "The Rise and Potential of Large Language Model Based Agents: A Survey" by Zhiheng Xi et al.| | 635|lencx/Noi !2025-03-2873157|🦄 AI + Tools + Plugins + Community| | 636|udlbook/udlbook !2025-03-2873075|Understanding Deep Learning - Simon J.D. Prince| | 637|OpenBMB/MiniCPM !2025-03-2872841|MiniCPM-2B: An end-side LLM outperforms Llama2-13B.| | 638|jaywalnut310/vits !2025-03-2872815 |VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech| | 639|xorbitsai/inference !2025-03-28727528|Replace OpenAI GPT with another LLM in your app by changing a single line of code. Xinference gives you the freedom to use any LLM you need. With Xinference, you're empowered to run inference with any open-source language models, speech recognition models, and multimodal models, whether in the cloud, on-premises, or even on your laptop.| | 640|PWhiddy/PokemonRedExperiments !2025-03-2872492|Playing Pokemon Red with Reinforcement Learning| | 641|Canner/WrenAI !2025-03-28723213|🤖 Open-source AI Agent that empowers data-driven teams to chat with their data to generate Text-to-SQL, charts, spreadsheets, reports, and BI. 📈📊📋🧑‍💻| | 642|miurla/morphic !2025-03-2872258|An AI-powered answer engine with a generative UI| | 643|ml-explore/mlx-examples !2025-03-2872168|Examples in the MLX framework| | 644|PKU-YuanGroup/ChatLaw !2025-03-2872010|Chinese Legal Large Model| | 645|NVIDIA/cutlass !2025-03-2871883|CUDA Templates for Linear Algebra Subroutines| | 646|FoundationVision/VAR !2025-03-28717444|[GPT beats diffusion🔥] [scaling laws in visual generation📈] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction"| | 647|ymcui/Chinese-LLaMA-Alpaca-2 !2025-03-2871561|Chinese LLaMA-2 & Alpaca-2 LLMs| | 648|nadermx/backgroundremover !2025-03-2871514 |Background Remover lets you Remove Background from images and video using AI with a simple command line interface that is free and open source.| | 649|onuratakan/gpt-computer-assistant !2025-03-28714514|gpt-4o for windows, macos and ubuntu| | 650|graviraja/MLOps-Basics !2025-03-2871326|| | 651|Future-House/paper-qa !2025-03-287118-1|High accuracy RAG for answering questions from scientific documents with citations| | 652|open-mmlab/mmagic !2025-03-2871102 |OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox| | 653|bhaskatripathi/pdfGPT !2025-03-2870941 |PDF GPT allows you to chat with the contents of your PDF file by using GPT capabilities. The only open source solution to turn your pdf files in a chatbot!| | 654|ollama/ollama-python !2025-03-28709117|Ollama Python library| | 655|facebookresearch/DiT !2025-03-2870376|Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"| | 656|geekyutao/Inpaint-Anything !2025-03-2870262 |Inpaint anything using Segment Anything and inpainting models.| | 657|AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-Plugin !2025-03-2870160 |A user-friendly plug-in that makes it easy to generate stable diffusion images inside Photoshop using Automatic1111-sd-webui as a backend.| | 658|apple/corenet !2025-03-2869990|CoreNet: A library for training deep neural networks| | 659|openstatusHQ/openstatus !2025-03-2869926|🏓 The open-source synthetic monitoring platform 🏓| | 660|weaviate/Verba !2025-03-2869772|Retrieval Augmented Generation (RAG) chatbot powered by Weaviate| | 661|meshery/meshery !2025-03-2869630|Meshery, the cloud native manager| | 662|OpenTalker/video-retalking !2025-03-2869530|[SIGGRAPH Asia 2022] VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild| | 663|digitalinnovationone/dio-lab-open-source !2025-03-28689013|Repositório do lab "Contribuindo em um Projeto Open Source no GitHub" da Digital Innovation One.| | 664|jianchang512/ChatTTS-ui !2025-03-2868842|一个简单的本地网页界面,直接使用ChatTTS将文字合成为语音,同时支持对外提供API接口。| | 665|patchy631/ai-engineering-hub !2025-03-28686434|In-depth tutorials on LLMs, RAGs and real-world AI agent applications.| | 666|gunnarmorling/1brc !2025-03-2868512|1️⃣🐝🏎️ The One Billion Row Challenge -- A fun exploration of how quickly 1B rows from a text file can be aggregated with Java| | 667|Azure-Samples/azure-search-openai-demo !2025-03-2868482 |A sample app for the Retrieval-Augmented Generation pattern running in Azure, using Azure Cognitive Search for retrieval and Azure OpenAI large language models to power ChatGPT-style and Q&A experiences.| | 668|mit-han-lab/streaming-llm !2025-03-2868382|Efficient Streaming Language Models with Attention Sinks| | 669|InternLM/InternLM !2025-03-2868352|InternLM has open-sourced a 7 billion parameter base model, a chat model tailored for practical scenarios and the training system.| | 670|dependency-check/DependencyCheck !2025-03-2868191|OWASP dependency-check is a software composition analysis utility that detects publicly disclosed vulnerabilities in application dependencies.| | 671|Soulter/AstrBot !2025-03-28678643|✨易上手的多平台 LLM 聊天机器人及开发框架✨。支持 QQ、QQ频道、Telegram、微信平台(Gewechat, 企业微信)、内置 Web Chat,OpenAI GPT、DeepSeek、Ollama、Llama、GLM、Gemini、OneAPI、LLMTuner,支持 LLM Agent 插件开发,可视化面板。一键部署。支持 Dify 工作流、代码执行器、Whisper 语音转文字。| | 672|react-native-webview/react-native-webview !2025-03-2867792|React Native Cross-Platform WebView| | 673|modelscope/agentscope !2025-03-28676916|Start building LLM-empowered multi-agent applications in an easier way.| | 674|mylxsw/aidea !2025-03-2867381|AIdea is a versatile app that supports GPT and domestic large language models,also supports "Stable Diffusion" text-to-image generation, image-to-image generation, SDXL 1.0, super-resolution, and image colorization| | 675|langchain-ai/ollama-deep-researcher !2025-03-28668635|Fully local web research and report writing assistant| | 676|threestudio-project/threestudio !2025-03-2866653|A unified framework for 3D content generation.| | 677|gaomingqi/Track-Anything !2025-03-2866631 |A flexible and interactive tool for video object tracking and segmentation, based on Segment Anything, XMem, and E2FGVI.| | 678|spdustin/ChatGPT-AutoExpert !2025-03-2866570|🚀🧠💬 Supercharged Custom Instructions for ChatGPT (non-coding) and ChatGPT Advanced Data Analysis (coding).| | 679|HariSekhon/DevOps-Bash-tools !2025-03-2866463|1000+ DevOps Bash Scripts - AWS, GCP, Kubernetes, Docker, CI/CD, APIs, SQL, PostgreSQL, MySQL, Hive, Impala, Kafka, Hadoop, Jenkins, GitHub, GitLab, BitBucket, Azure DevOps, TeamCity, Spotify, MP3, LDAP, Code/Build Linting, pkg mgmt for Linux, Mac, Python, Perl, Ruby, NodeJS, Golang, Advanced dotfiles: .bashrc, .vimrc, .gitconfig, .screenrc, tmux..| | 680|modelscope/swift !2025-03-28661530|ms-swift: Use PEFT or Full-parameter to finetune 200+ LLMs or 15+ MLLMs| | 681|langchain-ai/opengpts !2025-03-2866080|This is an open source effort to create a similar experience to OpenAI's GPTs and Assistants API| | 682| yihong0618/xiaogpt !2025-03-2865131 | Play ChatGPT with xiaomi ai speaker | | 683| civitai/civitai !2025-03-2865111 | Build a platform where people can share their stable diffusion models | | 684|KoljaB/RealtimeSTT !2025-03-28649513|A robust, efficient, low-latency speech-to-text library with advanced voice activity detection, wake word activation and instant transcription.| | 685|qunash/chatgpt-advanced !2025-03-2864910 | A browser extension that augments your ChatGPT prompts with web results.| | 686|Licoy/ChatGPT-Midjourney !2025-03-2864850|🎨 Own your own ChatGPT+Midjourney web service with one click| | 687|friuns2/BlackFriday-GPTs-Prompts !2025-03-2864744|List of free GPTs that doesn't require plus subscription| | 688|PixarAnimationStudios/OpenUSD !2025-03-2864700|Universal Scene Description| | 689|linyiLYi/street-fighter-ai !2025-03-2864630 |This is an AI agent for Street Fighter II Champion Edition.| | 690|run-llama/rags !2025-03-2864380|Build ChatGPT over your data, all with natural language| | 691|frdel/agent-zero !2025-03-2864154|Agent Zero AI framework| | 692|microsoft/DeepSpeedExamples !2025-03-2863911 |Example models using DeepSpeed| | 693|k8sgpt-ai/k8sgpt !2025-03-2863882|Giving Kubernetes Superpowers to everyone| | 694|open-metadata/OpenMetadata !2025-03-2863514|OpenMetadata is a unified platform for discovery, observability, and governance powered by a central metadata repository, in-depth lineage, and seamless team collaboration.| | 695|google/gemma.cpp !2025-03-2863163|lightweight, standalone C++ inference engine for Google's Gemma models.| | 696|RayVentura/ShortGPT !2025-03-286314-1|🚀🎬 ShortGPT - An experimental AI framework for automated short/video content creation. Enables creators to rapidly produce, manage, and deliver content using AI and automation.| | 697|openai/consistencymodels !2025-03-2862940 |Official repo for consistency models.| | 698|yangjianxin1/Firefly !2025-03-2862924|Firefly: Chinese conversational large language model (full-scale fine-tuning + QLoRA), supporting fine-tuning of Llma2, Llama, Baichuan, InternLM, Ziya, Bloom, and other large models| | 699|enricoros/big-AGI !2025-03-2862665|Generative AI suite powered by state-of-the-art models and providing advanced AI/AGI functions. It features AI personas, AGI functions, multi-model chats, text-to-image, voice, response streaming, code highlighting and execution, PDF import, presets for developers, much more. Deploy on-prem or in the cloud.| | 700|aptos-labs/aptos-core !2025-03-2862633|Aptos is a layer 1 blockchain built to support the widespread use of blockchain through better technology and user experience.| | 701|wenda-LLM/wenda !2025-03-286262-1 |Wenda: An LLM invocation platform. Its objective is to achieve efficient content generation tailored to specific environments while considering the limited computing resources of individuals and small businesses, as well as knowledge security and privacy concerns| | 702|Project-MONAI/MONAI !2025-03-2862603|AI Toolkit for Healthcare Imaging| | 703|HVision-NKU/StoryDiffusion !2025-03-2862470|Create Magic Story!| | 704|deepseek-ai/DeepSeek-LLM !2025-03-2862463|DeepSeek LLM: Let there be answers| | 705|Tohrusky/Final2x !2025-03-2862393|2^x Image Super-Resolution| | 706|OpenSPG/KAG !2025-03-28619611|KAG is a logical form-guided reasoning and retrieval framework based on OpenSPG engine and LLMs. It is used to build logical reasoning and factual Q&A solutions for professional domain knowledge bases. It can effectively overcome the shortcomings of the traditional RAG vector similarity calculation model.| | 707|Moonvy/OpenPromptStudio !2025-03-2861861 |AIGC Hint Word Visualization Editor| | 708|levihsu/OOTDiffusion !2025-03-2861761|Official implementation of OOTDiffusion| | 709|tmc/langchaingo !2025-03-2861729|LangChain for Go, the easiest way to write LLM-based programs in Go| | 710|vladmandic/automatic !2025-03-2861374|SD.Next: Advanced Implementation of Stable Diffusion and other Diffusion-based generative image models| | 711|clovaai/donut !2025-03-2861231 |Official Implementation of OCR-free Document Understanding Transformer (Donut) and Synthetic Document Generator (SynthDoG), ECCV 2022| | 712|Shaunwei/RealChar !2025-03-286121-1|🎙️🤖Create, Customize and Talk to your AI Character/Companion in Realtime(All in One Codebase!). Have a natural seamless conversation with AI everywhere(mobile, web and terminal) using LLM OpenAI GPT3.5/4, Anthropic Claude2, Chroma Vector DB, Whisper Speech2Text, ElevenLabs Text2Speech🎙️🤖| | 713|microsoft/TinyTroupe !2025-03-2861142|LLM-powered multiagent persona simulation for imagination enhancement and business insights.| | 714| rustformers/llm !2025-03-2861010 | Run inference for Large Language Models on CPU, with Rust| | 715|firebase/firebase-ios-sdk !2025-03-2860950|Firebase SDK for Apple App Development| | 716|vespa-engine/vespa !2025-03-2860824|The open big data serving engine. https://vespa.ai| | 717|n4ze3m/page-assist !2025-03-28607610|Use your locally running AI models to assist you in your web browsing| | 718|Dooy/chatgpt-web-midjourney-proxy !2025-03-2860646|chatgpt web, midjourney, gpts,tts, whisper 一套ui全搞定| | 719|ethereum-optimism/optimism !2025-03-2860213|Optimism is Ethereum, scaled.| | 720|sczhou/ProPainter !2025-03-2859971|[ICCV 2023] ProPainter: Improving Propagation and Transformer for Video Inpainting| | 721|MineDojo/Voyager !2025-03-2859951 |An Open-Ended Embodied Agent with Large Language Models| | 722|lavague-ai/LaVague !2025-03-2859800|Automate automation with Large Action Model framework| | 723|SevaSk/ecoute !2025-03-2859770 |Ecoute is a live transcription tool that provides real-time transcripts for both the user's microphone input (You) and the user's speakers output (Speaker) in a textbox. It also generates a suggested response using OpenAI's GPT-3.5 for the user to say based on the live transcription of the conversation.| | 724|google/mesop !2025-03-2859661|| | 725|pengxiao-song/LaWGPT !2025-03-2859542 |Repo for LaWGPT, Chinese-Llama tuned with Chinese Legal knowledge| | 726|fr0gger/Awesome-GPT-Agents !2025-03-2859434|A curated list of GPT agents for cybersecurity| | 727|google-deepmind/graphcast !2025-03-2859412|| | 728|comet-ml/opik !2025-03-28594126|Open-source end-to-end LLM Development Platform| | 729|SciPhi-AI/R2R !2025-03-28594033|A framework for rapid development and deployment of production-ready RAG systems| | 730|SkalskiP/courses !2025-03-2859272 |This repository is a curated collection of links to various courses and resources about Artificial Intelligence (AI)| | 731|QuivrHQ/MegaParse !2025-03-2859122|File Parser optimised for LLM Ingestion with no loss 🧠 Parse PDFs, Docx, PPTx in a format that is ideal for LLMs.| | 732|pytorch-labs/gpt-fast !2025-03-2858971|Simple and efficient pytorch-native transformer text generation in !2025-03-2858886|Curated list of chatgpt prompts from the top-rated GPTs in the GPTs Store. Prompt Engineering, prompt attack & prompt protect. Advanced Prompt Engineering papers.| | 734|nilsherzig/LLocalSearch !2025-03-2858852|LLocalSearch is a completely locally running search aggregator using LLM Agents. The user can ask a question and the system will use a chain of LLMs to find the answer. The user can see the progress of the agents and the final answer. No OpenAI or Google API keys are needed.| | 735|kuafuai/DevOpsGPT !2025-03-285874-2|Multi agent system for AI-driven software development. Convert natural language requirements into working software. Supports any development language and extends the existing base code.| | 736|myshell-ai/MeloTTS !2025-03-2858486|High-quality multi-lingual text-to-speech library by MyShell.ai. Support English, Spanish, French, Chinese, Japanese and Korean.| | 737|OpenGVLab/LLaMA-Adapter !2025-03-2858421 |Fine-tuning LLaMA to follow Instructions within 1 Hour and 1.2M Parameters| | 738|volcengine/verl !2025-03-28582563|veRL: Volcano Engine Reinforcement Learning for LLM| | 739|a16z-infra/companion-app !2025-03-2858171|AI companions with memory: a lightweight stack to create and host your own AI companions| | 740|HumanAIGC/OutfitAnyone !2025-03-285816-1|Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person| | 741|josStorer/RWKV-Runner !2025-03-2857472|A RWKV management and startup tool, full automation, only 8MB. And provides an interface compatible with the OpenAI API. RWKV is a large language model that is fully open source and available for commercial use.| | 742|648540858/wvp-GB28181-pro !2025-03-2857414|WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的网络视频平台,支持NAT穿透,支持海康、大华、宇视等品牌的IPC、NVR、DVR接入。支持国标级联,支持rtsp/rtmp等视频流转发到国标平台,支持rtsp/rtmp等推流转发到国标平台。| | 743|ToonCrafter/ToonCrafter !2025-03-2857345|a research paper for generative cartoon interpolation| | 744|PawanOsman/ChatGPT !2025-03-2857191|OpenAI API Free Reverse Proxy| | 745|apache/hudi !2025-03-2857091|Upserts, Deletes And Incremental Processing on Big Data.| | 746| nsarrazin/serge !2025-03-2857081 | A web interface for chatting with Alpaca through llama.cpp. Fully dockerized, with an easy to use API| | 747|homanp/superagent !2025-03-2857021|🥷 Superagent - Build, deploy, and manage LLM-powered agents| | 748|ramonvc/freegpt-webui !2025-03-2856910|GPT 3.5/4 with a Chat Web UI. No API key is required.| | 749|baichuan-inc/baichuan-7B !2025-03-2856901|A large-scale 7B pretraining language model developed by BaiChuan-Inc.| | 750|Azure/azure-sdk-for-net !2025-03-2856792|This repository is for active development of the Azure SDK for .NET. For consumers of the SDK we recommend visiting our public developer docs at https://learn.microsoft.com/dotnet/azure/ or our versioned developer docs at https://azure.github.io/azure-sdk-for-net.| | 751|mnotgod96/AppAgent !2025-03-2856643|AppAgent: Multimodal Agents as Smartphone Users, an LLM-based multimodal agent framework designed to operate smartphone apps.| | 752|microsoft/TaskWeaver !2025-03-2856243|A code-first agent framework for seamlessly planning and executing data analytics tasks.| | 753| yetone/bob-plugin-openai-translator !2025-03-285600-1 | A Bob Plugin base ChatGPT API | | 754|PrefectHQ/marvin !2025-03-2855840 |A batteries-included library for building AI-powered software| | 755|microsoft/promptbase !2025-03-2855832|All things prompt engineering| | 756|fullstackhero/dotnet-starter-kit !2025-03-2855560|Production Grade Cloud-Ready .NET 8 Starter Kit (Web API + Blazor Client) with Multitenancy Support, and Clean/Modular Architecture that saves roughly 200+ Development Hours! All Batteries Included.| | 757|deepseek-ai/DeepSeek-Coder-V2 !2025-03-2855435|DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence| | 758|aiwaves-cn/agents !2025-03-2855391|An Open-source Framework for Autonomous Language Agents| | 759|microsoft/Mastering-GitHub-Copilot-for-Paired-Programming !2025-03-2855158|A 6 Lesson course teaching everything you need to know about harnessing GitHub Copilot and an AI Paired Programing resource.| | 760|allenai/OLMo !2025-03-2854506|Modeling, training, eval, and inference code for OLMo| | 761|apify/crawlee-python !2025-03-2854493|Crawlee—A web scraping and browser automation library for Python to build reliable crawlers. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with BeautifulSoup, Playwright, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 762|k2-fsa/sherpa-onnx !2025-03-28541520|Speech-to-text, text-to-speech, and speaker recongition using next-gen Kaldi with onnxruntime without Internet connection. Support embedded systems, Android, iOS, Raspberry Pi, RISC-V, x86_64 servers, websocket server/client, C/C++, Python, Kotlin, C#, Go, NodeJS, Java, Swift| | 763|TEN-framework/TEN-Agent !2025-03-28541411|TEN Agent is a realtime conversational AI agent powered by TEN. It seamlessly integrates the OpenAI Realtime API, RTC capabilities, and advanced features like weather updates, web search, computer vision, and Retrieval-Augmented Generation (RAG).| | 764|google/gemmapytorch !2025-03-2854010|The official PyTorch implementation of Google's Gemma models| | 765|snakers4/silero-vad !2025-03-2853858|Silero VAD: pre-trained enterprise-grade Voice Activity Detector| | 766|livekit/agents !2025-03-2853836|Build real-time multimodal AI applications 🤖🎙️📹| | 767|pipecat-ai/pipecat !2025-03-28537811|Open Source framework for voice and multimodal conversational AI| | 768|EricLBuehler/mistral.rs !2025-03-28536324|Blazingly fast LLM inference.| | 769|asg017/sqlite-vec !2025-03-28535810|Work-in-progress vector search SQLite extension that runs anywhere.| | 770|albertan017/LLM4Decompile !2025-03-2853563|Reverse Engineering: Decompiling Binary Code with Large Language Models| | 771|Permify/permify !2025-03-2853235|An open-source authorization as a service inspired by Google Zanzibar, designed to build and manage fine-grained and scalable authorization systems for any application.| | 772|imoneoi/openchat !2025-03-2853171|OpenChat: Advancing Open-source Language Models with Imperfect Data| | 773|mosaicml/composer !2025-03-2853140|Train neural networks up to 7x faster| | 774|dsdanielpark/Bard-API !2025-03-285277-1 |The python package that returns a response of Google Bard through API.| | 775|lxfater/inpaint-web !2025-03-2852552|A free and open-source inpainting & image-upscaling tool powered by webgpu and wasm on the browser。| | 776|leanprover/lean4 !2025-03-2852441|Lean 4 programming language and theorem prover| | 777|AILab-CVC/YOLO-World !2025-03-2852415|Real-Time Open-Vocabulary Object Detection| | 778|openchatai/OpenChat !2025-03-2852260 |Run and create custom ChatGPT-like bots with OpenChat, embed and share these bots anywhere, the open-source chatbot console.| | 779|mufeedvh/code2prompt !2025-03-28519414|A CLI tool to convert your codebase into a single LLM prompt with source tree, prompt templating, and token counting.| | 780|biobootloader/wolverine !2025-03-2851700 |Automatically repair python scripts through GPT-4 to give them regenerative abilities.| | 781|huggingface/parler-tts !2025-03-2851671|Inference and training library for high-quality TTS models.| | 782|Akegarasu/lora-scripts !2025-03-2851308 |LoRA training scripts use kohya-ss's trainer, for diffusion model.| | 783|openchatai/OpenCopilot !2025-03-285128-3|🤖 🔥 Let your users chat with your product features and execute things by text - open source Shopify sidekick| | 784|e2b-dev/fragments !2025-03-2851228|Open-source Next.js template for building apps that are fully generated by AI. By E2B.| | 785|microsoft/SynapseML !2025-03-2851132|Simple and Distributed Machine Learning| | 786|aigc-apps/sd-webui-EasyPhoto !2025-03-285108-1|📷 EasyPhoto | | 787|ChaoningZhang/MobileSAM !2025-03-2850944|This is the official code for Faster Segment Anything (MobileSAM) project that makes SAM lightweight| | 788|huggingface/alignment-handbook !2025-03-2850932|Robust recipes for to align language models with human and AI preferences| | 789|alpkeskin/mosint !2025-03-2850920|An automated e-mail OSINT tool| | 790|TaskingAI/TaskingAI !2025-03-2850891|The open source platform for AI-native application development.| | 791|lipku/metahuman-stream !2025-03-28507615|Real time interactive streaming digital human| | 792|OpenInterpreter/01 !2025-03-2850530|The open-source language model computer| | 793|open-compass/opencompass !2025-03-28505111|OpenCompass is an LLM evaluation platform, supporting a wide range of models (InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.| | 794|xxlong0/Wonder3D !2025-03-2850491|A cross-domain diffusion model for 3D reconstruction from a single image| | 795|pytorch/torchtune !2025-03-2850342|A Native-PyTorch Library for LLM Fine-tuning| | 796|SuperDuperDB/superduperdb !2025-03-2850192|🔮 SuperDuperDB: Bring AI to your database: Integrate, train and manage any AI models and APIs directly with your database and your data.| | 797|WhiskeySockets/Baileys !2025-03-2850057|Lightweight full-featured typescript/javascript WhatsApp Web API| | 798| mpociot/chatgpt-vscode !2025-03-2849890 | A VSCode extension that allows you to use ChatGPT | | 799|OpenGVLab/DragGAN !2025-03-2849880|Unofficial Implementation of DragGAN - "Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold" (DragGAN 全功能实现,在线Demo,本地部署试用,代码、模型已全部开源,支持Windows, macOS, Linux)| | 800|microsoft/LLMLingua !2025-03-2849824|To speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.| | 801|Zipstack/unstract !2025-03-2849745|No-code LLM Platform to launch APIs and ETL Pipelines to structure unstructured documents| | 802|OpenBMB/ToolBench !2025-03-2849621|An open platform for training, serving, and evaluating large language model for tool learning.| | 803|Fanghua-Yu/SUPIR !2025-03-2849593|SUPIR aims at developing Practical Algorithms for Photo-Realistic Image Restoration In the Wild| | 804|GaiaNet-AI/gaianet-node !2025-03-2849360|Install and run your own AI agent service| | 805|qodo-ai/qodo-cover !2025-03-284922-1|Qodo-Cover: An AI-Powered Tool for Automated Test Generation and Code Coverage Enhancement! 💻🤖🧪🐞| | 806|Zejun-Yang/AniPortrait !2025-03-2849042|AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animation| | 807|lvwzhen/law-cn-ai !2025-03-2848901 |⚖️ AI Legal Assistant| | 808|developersdigest/llm-answer-engine !2025-03-2848740|Build a Perplexity-Inspired Answer Engine Using Next.js, Groq, Mixtral, Langchain, OpenAI, Brave & Serper| | 809|Plachtaa/VITS-fast-fine-tuning !2025-03-2848640|This repo is a pipeline of VITS finetuning for fast speaker adaptation TTS, and many-to-many voice conversion| | 810|espeak-ng/espeak-ng !2025-03-2848601|eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.| | 811|ant-research/CoDeF !2025-03-2848581|[CVPR'24 Highlight] Official PyTorch implementation of CoDeF: Content Deformation Fields for Temporally Consistent Video Processing| | 812|deepseek-ai/DeepSeek-V2 !2025-03-2848512|| | 813|XRPLF/rippled !2025-03-2848210|Decentralized cryptocurrency blockchain daemon implementing the XRP Ledger protocol in C++| | 814|AutoMQ/automq !2025-03-28478721|AutoMQ is a cloud-first alternative to Kafka by decoupling durability to S3 and EBS. 10x cost-effective. Autoscale in seconds. Single-digit ms latency.| | 815|AILab-CVC/VideoCrafter !2025-03-2847800|VideoCrafter1: Open Diffusion Models for High-Quality Video Generation| | 816|nautechsystems/nautilustrader !2025-03-2847702|A high-performance algorithmic trading platform and event-driven backtester| | 817|kyegomez/swarms !2025-03-2847563|The Enterprise-Grade Production-Ready Multi-Agent Orchestration Framework Join our Community: https://discord.com/servers/agora-999382051935506503| | 818|Deci-AI/super-gradients !2025-03-2847310 |Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS.| | 819|QwenLM/Qwen2.5-Coder !2025-03-2847236|Qwen2.5-Coder is the code version of Qwen2.5, the large language model series developed by Qwen team, Alibaba Cloud.| | 820|SCIR-HI/Huatuo-Llama-Med-Chinese !2025-03-2847191 |Repo for HuaTuo (华驼), Llama-7B tuned with Chinese medical knowledge| | 821|togethercomputer/RedPajama-Data !2025-03-2846841 |code for preparing large datasets for training large language models| | 822|mishushakov/llm-scraper !2025-03-2846704|Turn any webpage into structured data using LLMs| | 823|1rgs/jsonformer !2025-03-2846663 |A Bulletproof Way to Generate Structured JSON from Language Models| | 824|anti-work/shortest !2025-03-2846565|QA via natural language AI tests| | 825|dnhkng/GlaDOS !2025-03-2846510|This is the Personality Core for GLaDOS, the first steps towards a real-life implementation of the AI from the Portal series by Valve.| | 826|Nukem9/dlssg-to-fsr3 !2025-03-2846380|Adds AMD FSR3 Frame Generation to games by replacing Nvidia DLSS-G Frame Generation (nvngx_dlssg).| | 827|BuilderIO/ai-shell !2025-03-2846373 |A CLI that converts natural language to shell commands.| | 828|facebookincubator/AITemplate !2025-03-2846220 |AITemplate is a Python framework which renders neural network into high performance CUDA/HIP C++ code. Specialized for FP16 TensorCore (NVIDIA GPU) and MatrixCore (AMD GPU) inference.| | 829|terraform-aws-modules/terraform-aws-eks !2025-03-2846030|Terraform module to create AWS Elastic Kubernetes (EKS) resources 🇺🇦| | 830|timescale/pgai !2025-03-2845915|A suite of tools to develop RAG, semantic search, and other AI applications more easily with PostgreSQL| | 831|awslabs/multi-agent-orchestrator !2025-03-2845788|Flexible and powerful framework for managing multiple AI agents and handling complex conversations| | 832|sanchit-gandhi/whisper-jax !2025-03-2845771 |Optimised JAX code for OpenAI's Whisper Model, largely built on the Hugging Face Transformers Whisper implementation| | 833|NVIDIA/NeMo-Guardrails !2025-03-2845755|NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.| | 834|PathOfBuildingCommunity/PathOfBuilding !2025-03-2845480|Offline build planner for Path of Exile.| | 835|UX-Decoder/Segment-Everything-Everywhere-All-At-Once !2025-03-2845412 |Official implementation of the paper "Segment Everything Everywhere All at Once"| | 836|build-trust/ockam !2025-03-2845171|Orchestrate end-to-end encryption, cryptographic identities, mutual authentication, and authorization policies between distributed applications – at massive scale.| | 837|google-research/timesfm !2025-03-2845135|TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.| | 838|luosiallen/latent-consistency-model !2025-03-2844842|Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference| | 839|NVlabs/neuralangelo !2025-03-2844740|Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)| | 840|kyegomez/tree-of-thoughts !2025-03-2844720 |Plug in and Play Implementation of Tree of Thoughts: Deliberate Problem Solving with Large Language Models that Elevates Model Reasoning by atleast 70%| | 841|sjvasquez/handwriting-synthesis !2025-03-2844720 |Handwriting Synthesis with RNNs ✏️| | 842| madawei2699/myGPTReader !2025-03-2844420 | A slack bot that can read any webpage, ebook or document and summarize it with chatGPT | | 843|OpenBMB/AgentVerse !2025-03-2844413|🤖 AgentVerse 🪐 provides a flexible framework that simplifies the process of building custom multi-agent environments for large language models (LLMs).| | 844|argmaxinc/WhisperKit !2025-03-2844395|Swift native speech recognition on-device for iOS and macOS applications.| | 845|landing-ai/vision-agent !2025-03-2844346|Vision agent| | 846|InternLM/xtuner !2025-03-2844273|An efficient, flexible and full-featured toolkit for fine-tuning large models (InternLM, Llama, Baichuan, Qwen, ChatGLM)| | 847|google-deepmind/alphageometry !2025-03-284421-1|Solving Olympiad Geometry without Human Demonstrations| | 848|ostris/ai-toolkit !2025-03-2844093|Various AI scripts. Mostly Stable Diffusion stuff.| | 849|LLM-Red-Team/kimi-free-api !2025-03-2844004|🚀 KIMI AI 长文本大模型白嫖服务,支持高速流式输出、联网搜索、长文档解读、图像解析、多轮对话,零配置部署,多路token支持,自动清理会话痕迹。| | 850|argilla-io/argilla !2025-03-2843991|Argilla is a collaboration platform for AI engineers and domain experts that require high-quality outputs, full data ownership, and overall efficiency.| | 851|spring-projects/spring-ai !2025-03-28438419|An Application Framework for AI Engineering| | 852|alibaba-damo-academy/FunClip !2025-03-2843555|Open-source, accurate and easy-to-use video clipping tool, LLM based AI clipping intergrated | | 853|yisol/IDM-VTON !2025-03-2843541|IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild| | 854|fchollet/ARC-AGI !2025-03-2843368|The Abstraction and Reasoning Corpus| | 855|MahmoudAshraf97/whisper-diarization !2025-03-2843064|Automatic Speech Recognition with Speaker Diarization based on OpenAI Whisper| | 856|Speykious/cve-rs !2025-03-2843047|Blazingly 🔥 fast 🚀 memory vulnerabilities, written in 100% safe Rust. 🦀| | 857|Blealtan/efficient-kan !2025-03-2842770|An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN).| | 858|smol-ai/GodMode !2025-03-284249-1|AI Chat Browser: Fast, Full webapp access to ChatGPT / Claude / Bard / Bing / Llama2! I use this 20 times a day.| | 859|openai/plugins-quickstart !2025-03-284235-4 |Get a ChatGPT plugin up and running in under 5 minutes!| | 860|Doriandarko/maestro !2025-03-2842260|A framework for Claude Opus to intelligently orchestrate subagents.| | 861|philz1337x/clarity-upscaler !2025-03-2842204|Clarity-Upscaler: Reimagined image upscaling for everyone| | 862|facebookresearch/co-tracker !2025-03-2842142|CoTracker is a model for tracking any point (pixel) on a video.| | 863|xlang-ai/OpenAgents !2025-03-2842031|OpenAgents: An Open Platform for Language Agents in the Wild| | 864|alibaba/higress !2025-03-28419514|🤖 AI Gateway | | 865|ray-project/llm-numbers !2025-03-2841920 |Numbers every LLM developer should know| | 866|fudan-generative-vision/champ !2025-03-2841820|Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance| | 867|NVIDIA/garak !2025-03-2841795|the LLM vulnerability scanner| | 868|leetcode-mafia/cheetah !2025-03-2841740 |Whisper & GPT-based app for passing remote SWE interviews| | 869|ragapp/ragapp !2025-03-2841710|The easiest way to use Agentic RAG in any enterprise| | 870|collabora/WhisperSpeech !2025-03-2841692|An Open Source text-to-speech system built by inverting Whisper.| | 871|Facico/Chinese-Vicuna !2025-03-2841520 |Chinese-Vicuna: A Chinese Instruction-following LLaMA-based Model| | 872|openai/grok !2025-03-2841381|| | 873|CrazyBoyM/llama3-Chinese-chat !2025-03-2841361|Llama3 Chinese Repository with modified versions, and training and deployment resources| | 874|luban-agi/Awesome-AIGC-Tutorials !2025-03-2841301|Curated tutorials and resources for Large Language Models, AI Painting, and more.| | 875|damo-vilab/AnyDoor !2025-03-2841192|Official implementations for paper: Anydoor: zero-shot object-level image customization| | 876|raspberrypi/pico-sdk !2025-03-2841072|| | 877|mshumer/gpt-llm-trainer !2025-03-284097-1|| | 878|metavoiceio/metavoice-src !2025-03-284076-1|AI for human-level speech intelligence| | 879|intelowlproject/IntelOwl !2025-03-2840763|IntelOwl: manage your Threat Intelligence at scale| | 880|a16z-infra/ai-getting-started !2025-03-2840682|A Javascript AI getting started stack for weekend projects, including image/text models, vector stores, auth, and deployment configs| | 881|MarkFzp/mobile-aloha !2025-03-2840641|Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation| | 882| keijiro/AICommand !2025-03-2840380 | ChatGPT integration with Unity Editor | | 883|Tencent/HunyuanDiT !2025-03-2840214|Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding| | 884|hengyoush/kyanos !2025-03-2840061|Visualize the time packets spend in the kernel, watch & analyze in command line.| | 885|agiresearch/AIOS !2025-03-2840045|AIOS: LLM Agent Operating System| | 886|truefoundry/cognita !2025-03-2839773|RAG (Retrieval Augmented Generation) Framework for building modular, open source applications for production by TrueFoundry| | 887|X-PLUG/MobileAgent !2025-03-2839557|Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception| | 888|jackMort/ChatGPT.nvim !2025-03-2839231|ChatGPT Neovim Plugin: Effortless Natural Language Generation with OpenAI's ChatGPT API| | 889|microsoft/RD-Agent !2025-03-28388422|Research and development (R&D) is crucial for the enhancement of industrial productivity, especially in the AI era, where the core aspects of R&D are mainly focused on data and models. We are committed to automate these high-value generic R&D processes through our open source R&D automation tool RD-Agent, which let AI drive data-driven AI.| | 890|Significant-Gravitas/Auto-GPT-Plugins !2025-03-283882-1 |Plugins for Auto-GPT| | 891|apple/ml-mgie !2025-03-2838770|| | 892|OpenDriveLab/UniAD !2025-03-2838727|[CVPR 2023 Best Paper] Planning-oriented Autonomous Driving| | 893|llSourcell/DoctorGPT !2025-03-2838640|DoctorGPT is an LLM that can pass the US Medical Licensing Exam. It works offline, it's cross-platform, & your health data stays private.| | 894|FlagAI-Open/FlagAI !2025-03-2838601|FlagAI (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model.| | 895|krishnaik06/Roadmap-To-Learn-Generative-AI-In-2024 !2025-03-2838513|Roadmap To Learn Generative AI In 2024| | 896|SysCV/sam-hq !2025-03-2838491|Segment Anything in High Quality| | 897|google/security-research !2025-03-2838420|This project hosts security advisories and their accompanying proof-of-concepts related to research conducted at Google which impact non-Google owned code.| | 898|shroominic/codeinterpreter-api !2025-03-2838330|Open source implementation of the ChatGPT Code Interpreter 👾| | 899|Yonom/assistant-ui !2025-03-2838308|React Components for AI Chat 💬 🚀| | 900|nucleuscloud/neosync !2025-03-2838262|Open source data anonymization and synthetic data orchestration for developers. Create high fidelity synthetic data and sync it across your environments.| | 901|ravenscroftj/turbopilot !2025-03-2838230 |Turbopilot is an open source large-language-model based code completion engine that runs locally on CPU| | 902|NVlabs/Sana !2025-03-28380810|SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer| | 903|huggingface/distil-whisper !2025-03-2838061|Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.| | 904|Codium-ai/AlphaCodium !2025-03-2837971|code generation tool that surpasses most human competitors in CodeContests| | 905|fixie-ai/ultravox !2025-03-2837710|A fast multimodal LLM for real-time voice| | 906|unit-mesh/auto-dev !2025-03-28375715|🧙‍AutoDev: The AI-powered coding wizard with multilingual support 🌐, auto code generation 🏗️, and a helpful bug-slaying assistant 🐞! Customizable prompts 🎨 and a magic Auto Dev/Testing/Document/Agent feature 🧪 included! 🚀| | 907|Marker-Inc-Korea/AutoRAG !2025-03-2837432|AutoML tool for RAG| | 908|deepseek-ai/DeepSeek-VL !2025-03-283734-1|DeepSeek-VL: Towards Real-World Vision-Language Understanding| | 909|hiyouga/ChatGLM-Efficient-Tuning !2025-03-283692-1|Fine-tuning ChatGLM-6B with PEFT | | 910| Yue-Yang/ChatGPT-Siri !2025-03-2836921 | Shortcuts for Siri using ChatGPT API gpt-3.5-turbo model | | 911|0hq/WebGPT !2025-03-2836901 |Run GPT model on the browser with WebGPU. An implementation of GPT inference in less than ~2000 lines of vanilla Javascript.| | 912|cvg/LightGlue !2025-03-2836903|LightGlue: Local Feature Matching at Light Speed (ICCV 2023)| | 913|deanxv/coze-discord-proxy !2025-03-2836791|代理Discord-Bot对话Coze-Bot,实现API形式请求GPT4对话模型/微调模型| | 914|MervinPraison/PraisonAI !2025-03-2836764|PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human-agent collaboration.| | 915|Ironclad/rivet !2025-03-2836345 |The open-source visual AI programming environment and TypeScript library| | 916|BasedHardware/OpenGlass !2025-03-2835851|Turn any glasses into AI-powered smart glasses| | 917|ricklamers/gpt-code-ui !2025-03-2835840 |An open source implementation of OpenAI's ChatGPT Code interpreter| | 918|whoiskatrin/chart-gpt !2025-03-2835830 |AI tool to build charts based on text input| | 919|github/CopilotForXcode !2025-03-2835788|Xcode extension for GitHub Copilot| | 920|hemansnation/God-Level-Data-Science-ML-Full-Stack !2025-03-2835570 |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 921|pytorch/torchchat !2025-03-2835461|Run PyTorch LLMs locally on servers, desktop and mobile| | 922| Kent0n-Li/ChatDoctor !2025-03-2835451 | A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge | | 923|xtekky/chatgpt-clone !2025-03-283519-1 |ChatGPT interface with better UI| | 924|jupyterlab/jupyter-ai !2025-03-2835120|A generative AI extension for JupyterLab| | 925|pytorch/torchtitan !2025-03-2835064|A native PyTorch Library for large model training| | 926|minimaxir/simpleaichat !2025-03-2835031|Python package for easily interfacing with chat apps, with robust features and minimal code complexity.| | 927|srush/Tensor-Puzzles !2025-03-2834930|Solve puzzles. Improve your pytorch.| | 928|Helicone/helicone !2025-03-2834918|🧊 Open source LLM-Observability Platform for Developers. One-line integration for monitoring, metrics, evals, agent tracing, prompt management, playground, etc. Supports OpenAI SDK, Vercel AI SDK, Anthropic SDK, LiteLLM, LLamaIndex, LangChain, and more. 🍓 YC W23| | 929|run-llama/llama-hub !2025-03-2834740|A library of data loaders for LLMs made by the community -- to be used with LlamaIndex and/or LangChain| | 930|NExT-GPT/NExT-GPT !2025-03-2834700|Code and models for NExT-GPT: Any-to-Any Multimodal Large Language Model| | 931|souzatharsis/podcastfy !2025-03-2834661|An Open Source Python alternative to NotebookLM's podcast feature: Transforming Multimodal Content into Captivating Multilingual Audio Conversations with GenAI| | 932|Dataherald/dataherald !2025-03-2834450|Interact with your SQL database, Natural Language to SQL using LLMs| | 933|iryna-kondr/scikit-llm !2025-03-2834350 |Seamlessly integrate powerful language models like ChatGPT into scikit-learn for enhanced text analysis tasks.| | 934|Netflix/maestro !2025-03-2834230|Maestro: Netflix’s Workflow Orchestrator| | 935|CanadaHonk/porffor !2025-03-2833560|A from-scratch experimental AOT JS engine, written in JS| | 936|hustvl/Vim !2025-03-2833323|Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model| | 937|pashpashpash/vault-ai !2025-03-2833250 |OP Vault ChatGPT: Give ChatGPT long-term memory using the OP Stack (OpenAI + Pinecone Vector Database). Upload your own custom knowledge base files (PDF, txt, etc) using a simple React frontend.| | 938|tencentmusic/supersonic !2025-03-28330611|SuperSonic is the next-generation BI platform that integrates Chat BI (powered by LLM) and Headless BI (powered by semantic layer) paradigms.| | 939|billmei/every-chatgpt-gui !2025-03-2832981|Every front-end GUI client for ChatGPT| | 940|microsoft/torchgeo !2025-03-2832772|TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data| | 941|LLMBook-zh/LLMBook-zh.github.io !2025-03-28326110|《大语言模型》作者:赵鑫,李军毅,周昆,唐天一,文继荣| | 942|dvlab-research/MiniGemini !2025-03-2832601|Official implementation for Mini-Gemini| | 943|rashadphz/farfalle !2025-03-2832460|🔍 AI search engine - self-host with local or cloud LLMs| | 944|Luodian/Otter !2025-03-2832450|🦦 Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following and in-context learning ability.| | 945|AprilNEA/ChatGPT-Admin-Web !2025-03-2832370 | ChatGPT WebUI with user management and admin dashboard system| | 946|MarkFzp/act-plus-plus !2025-03-2832365|Imitation Learning algorithms with Co-traing for Mobile ALOHA: ACT, Diffusion Policy, VINN| | 947|ethen8181/machine-learning !2025-03-2832310|🌎 machine learning tutorials (mainly in Python3)| | 948|opengeos/segment-geospatial !2025-03-2832312 |A Python package for segmenting geospatial data with the Segment Anything Model (SAM)| | 949|iusztinpaul/hands-on-llms !2025-03-283225-2|🦖 𝗟𝗲𝗮𝗿𝗻 about 𝗟𝗟𝗠𝘀, 𝗟𝗟𝗠𝗢𝗽𝘀, and 𝘃𝗲𝗰𝘁𝗼𝗿 𝗗𝗕𝘀 for free by designing, training, and deploying a real-time financial advisor LLM system ~ 𝘴𝘰𝘶𝘳𝘤𝘦 𝘤𝘰𝘥𝘦 + 𝘷𝘪𝘥𝘦𝘰 & 𝘳𝘦𝘢𝘥𝘪𝘯𝘨 𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭𝘴| | 950|ToTheBeginning/PuLID !2025-03-2832221|Official code for PuLID: Pure and Lightning ID Customization via Contrastive Alignment| | 951|neo4j-labs/llm-graph-builder !2025-03-2832164|Neo4j graph construction from unstructured data using LLMs| | 952|OpenGVLab/InternGPT !2025-03-2832150 |InternGPT (iGPT) is an open source demo platform where you can easily showcase your AI models. Now it supports DragGAN, ChatGPT, ImageBind, multimodal chat like GPT-4, SAM, interactive image editing, etc. Try it at igpt.opengvlab.com (支持DragGAN、ChatGPT、ImageBind、SAM的在线Demo系统)| | 953|PKU-YuanGroup/Video-LLaVA !2025-03-2832060 |Video-LLaVA: Learning United Visual Representation by Alignment Before Projection| | 954|DataTalksClub/llm-zoomcamp !2025-03-2832030|LLM Zoomcamp - a free online course about building an AI bot that can answer questions about your knowledge base| | 955|gptscript-ai/gptscript !2025-03-2832010|Natural Language Programming| |!green-up-arrow.svg 956|isaac-sim/IsaacLab !2025-03-28320113|Unified framework for robot learning built on NVIDIA Isaac Sim| |!red-down-arrow 957|ai-boost/Awesome-GPTs !2025-03-2832003|Curated list of awesome GPTs 👍.| | 958|huggingface/safetensors !2025-03-2831901|Simple, safe way to store and distribute tensors| | 959|linyiLYi/bilibot !2025-03-2831771|A local chatbot fine-tuned by bilibili user comments.| | 960| project-baize/baize-chatbot !2025-03-283168-1 | Let ChatGPT teach your own chatbot in hours with a single GPU! | | 961|Azure-Samples/cognitive-services-speech-sdk !2025-03-2831280|Sample code for the Microsoft Cognitive Services Speech SDK| | 962|microsoft/Phi-3CookBook !2025-03-2831231|This is a Phi-3 book for getting started with Phi-3. Phi-3, a family of open AI models developed by Microsoft. Phi-3 models are the most capable and cost-effective small language models (SLMs) available, outperforming models of the same size and next size up across a variety of language, reasoning, coding, and math benchmarks.| | 963|neuralmagic/deepsparse !2025-03-2831180|Sparsity-aware deep learning inference runtime for CPUs| | 964|sugarforever/chat-ollama !2025-03-2831000|ChatOllama is an open source chatbot based on LLMs. It supports a wide range of language models, and knowledge base management.| | 965|amazon-science/chronos-forecasting !2025-03-2830974|Chronos: Pretrained (Language) Models for Probabilistic Time Series Forecasting| | 966|damo-vilab/i2vgen-xl !2025-03-2830902|Official repo for VGen: a holistic video generation ecosystem for video generation building on diffusion models| | 967|google-deepmind/gemma !2025-03-2830733|Open weights LLM from Google DeepMind.| | 968|iree-org/iree !2025-03-2830733|A retargetable MLIR-based machine learning compiler and runtime toolkit.| | 969|NVlabs/VILA !2025-03-2830724|VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)| | 970|microsoft/torchscale !2025-03-2830661|Foundation Architecture for (M)LLMs| | 971|openai/openai-realtime-console !2025-03-2830656|React app for inspecting, building and debugging with the Realtime API| | 972|daveshap/OpenAIAgentSwarm !2025-03-2830610|HAAS = Hierarchical Autonomous Agent Swarm - "Resistance is futile!"| | 973|microsoft/PromptWizard !2025-03-2830555|Task-Aware Agent-driven Prompt Optimization Framework| | 974|CVI-SZU/Linly !2025-03-2830490 |Chinese-LLaMA basic model; ChatFlow Chinese conversation model; NLP pre-training/command fine-tuning dataset| | 975|cohere-ai/cohere-toolkit !2025-03-2830130|Toolkit is a collection of prebuilt components enabling users to quickly build and deploy RAG applications.| | 976|adamcohenhillel/ADeus !2025-03-2830131|An open source AI wearable device that captures what you say and hear in the real world and then transcribes and stores it on your own server. You can then chat with Adeus using the app, and it will have all the right context about what you want to talk about - a truly personalized, personal AI.| | 977|Lightning-AI/LitServe !2025-03-2830132|Lightning-fast serving engine for AI models. Flexible. Easy. Enterprise-scale.| | 978|potpie-ai/potpie !2025-03-2829973|Prompt-To-Agent : Create custom engineering agents for your codebase| | 979|ant-design/x !2025-03-28299529|Craft AI-driven interfaces effortlessly 🤖| | 980|meta-llama/PurpleLlama !2025-03-2829832|Set of tools to assess and improve LLM security.| | 981|williamyang1991/RerenderAVideo !2025-03-2829800|[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation| | 982|baichuan-inc/Baichuan-13B !2025-03-2829790|A 13B large language model developed by Baichuan Intelligent Technology| | 983|Stability-AI/stable-audio-tools !2025-03-2829761|Generative models for conditional audio generation| | 984|li-plus/chatglm.cpp !2025-03-2829720|C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & more LLMs| | 985|NVIDIA/GenerativeAIExamples !2025-03-2829546|Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.| | 986|Josh-XT/AGiXT !2025-03-2829521 |AGiXT is a dynamic AI Automation Platform that seamlessly orchestrates instruction management and complex task execution across diverse AI providers. Combining adaptive memory, smart features, and a versatile plugin system, AGiXT delivers efficient and comprehensive AI solutions.| | 987|MrForExample/ComfyUI-3D-Pack !2025-03-2829515|An extensive node suite that enables ComfyUI to process 3D inputs (Mesh & UV Texture, etc) using cutting edge algorithms (3DGS, NeRF, etc.)| | 988|olimorris/codecompanion.nvim !2025-03-28295111|✨ AI-powered coding, seamlessly in Neovim. Supports Anthropic, Copilot, Gemini, Ollama, OpenAI and xAI LLMs| | 989|salesforce/CodeT5 !2025-03-282940-1 |Home of CodeT5: Open Code LLMs for Code Understanding and Generation| | 990|facebookresearch/ijepa !2025-03-2829391|Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."| | 991|eureka-research/Eureka !2025-03-2829351|Official Repository for "Eureka: Human-Level Reward Design via Coding Large Language Models"| | 992|NVIDIA/trt-llm-rag-windows !2025-03-282934-1|A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM| | 993|gmpetrov/databerry !2025-03-282930-1|The no-code platform for building custom LLM Agents| | 994|AI4Finance-Foundation/FinRobot !2025-03-28291946|FinRobot: An Open-Source AI Agent Platform for Financial Applications using LLMs 🚀 🚀 🚀| | 995|nus-apr/auto-code-rover !2025-03-2829013|A project structure aware autonomous software engineer aiming for autonomous program improvement| | 996|deepseek-ai/DreamCraft3D !2025-03-2828921|[ICLR 2024] Official implementation of DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior| | 997|mlabonne/llm-datasets !2025-03-2828848|High-quality datasets, tools, and concepts for LLM fine-tuning.| | 998|facebookresearch/jepa !2025-03-2828712|PyTorch code and models for V-JEPA self-supervised learning from video.| | 999|facebookresearch/habitat-sim !2025-03-2828604|A flexible, high-performance 3D simulator for Embodied AI research.| | 1000|xenova/whisper-web !2025-03-2828581|ML-powered speech recognition directly in your browser| | 1001|cvlab-columbia/zero123 !2025-03-2828530|Zero-1-to-3: Zero-shot One Image to 3D Object: https://zero123.cs.columbia.edu/| | 1002|yuruotong1/autoMate !2025-03-28285121|Like Manus, Computer Use Agent(CUA) and Omniparser, we are computer-using agents.AI-driven local automation assistant that uses natural language to make computers work by themselves| | 1003|muellerberndt/mini-agi !2025-03-282845-1 |A minimal generic autonomous agent based on GPT3.5/4. Can analyze stock prices, perform network security tests, create art, and order pizza.| | 1004|allenai/open-instruct !2025-03-2828432|| | 1005|CodingChallengesFYI/SharedSolutions !2025-03-2828360|Publicly shared solutions to Coding Challenges| | 1006|hegelai/prompttools !2025-03-2828220|Open-source tools for prompt testing and experimentation, with support for both LLMs (e.g. OpenAI, LLaMA) and vector databases (e.g. Chroma, Weaviate).| | 1007|mazzzystar/Queryable !2025-03-2828222|Run CLIP on iPhone to Search Photos.| | 1008|Doubiiu/DynamiCrafter !2025-03-2828173|DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors| | 1009|SamurAIGPT/privateGPT !2025-03-282805-1 |An app to interact privately with your documents using the power of GPT, 100% privately, no data leaks| | 1010|facebookresearch/Pearl !2025-03-2827951|A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.| | 1011|intuitem/ciso-assistant-community !2025-03-2827954|CISO Assistant is a one-stop-shop for GRC, covering Risk, AppSec and Audit Management and supporting +70 frameworks worldwide with auto-mapping: NIST CSF, ISO 27001, SOC2, CIS, PCI DSS, NIS2, CMMC, PSPF, GDPR, HIPAA, Essential Eight, NYDFS-500, DORA, NIST AI RMF, 800-53, 800-171, CyFun, CJIS, AirCyber, NCSC, ECC, SCF and so much more| | 1012|facebookresearch/audio2photoreal !2025-03-2827840|Code and dataset for photorealistic Codec Avatars driven from audio| | 1013|Azure/azure-rest-api-specs !2025-03-2827770|The source for REST API specifications for Microsoft Azure.| | 1014|SCUTlihaoyu/open-chat-video-editor !2025-03-2827690 |Open source short video automatic generation tool| | 1015|Alpha-VLLM/LLaMA2-Accessory !2025-03-2827642|An Open-source Toolkit for LLM Development| | 1016|johnma2006/mamba-minimal !2025-03-2827601|Simple, minimal implementation of the Mamba SSM in one file of PyTorch.| | 1017|nerfstudio-project/gsplat !2025-03-2827576|CUDA accelerated rasterization of gaussian splatting| | 1018|Physical-Intelligence/openpi !2025-03-28274617|| | 1019|leptonai/leptonai !2025-03-2827246|A Pythonic framework to simplify AI service building| |!green-up-arrow.svg 1020|joanrod/star-vector !2025-03-28271149|StarVector is a foundation model for SVG generation that transforms vectorization into a code generation task. Using a vision-language modeling architecture, StarVector processes both visual and textual inputs to produce high-quality SVG code with remarkable precision.| |!red-down-arrow 1021|jqnatividad/qsv !2025-03-2827092|CSVs sliced, diced & analyzed.| | 1022|FranxYao/chain-of-thought-hub !2025-03-2826991|Benchmarking large language models' complex reasoning ability with chain-of-thought prompting| | 1023|princeton-nlp/SWE-bench !2025-03-2826965|[ICLR 2024] SWE-Bench: Can Language Models Resolve Real-world Github Issues?| | 1024|elastic/otel-profiling-agent !2025-03-2826930|The production-scale datacenter profiler| | 1025|src-d/hercules !2025-03-2826900|Gaining advanced insights from Git repository history.| | 1026|lanqian528/chat2api !2025-03-2826695|A service that can convert ChatGPT on the web to OpenAI API format.| | 1027|ishan0102/vimGPT !2025-03-2826681|Browse the web with GPT-4V and Vimium| | 1028|TMElyralab/MuseV !2025-03-2826650|MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising| | 1029|georgia-tech-db/eva !2025-03-2826600 |AI-Relational Database System | | 1030|kubernetes-sigs/controller-runtime !2025-03-2826590|Repo for the controller-runtime subproject of kubebuilder (sig-apimachinery)| | 1031|gptlink/gptlink !2025-03-2826550 |Build your own free commercial ChatGPT environment in 10 minutes. The setup is simple and includes features such as user management, orders, tasks, and payments| | 1032|pytorch/executorch !2025-03-2826534|On-device AI across mobile, embedded and edge for PyTorch| | 1033|NVIDIA/nv-ingest !2025-03-2826290|NVIDIA Ingest is an early access set of microservices for parsing hundreds of thousands of complex, messy unstructured PDFs and other enterprise documents into metadata and text to embed into retrieval systems.| | 1034|SuperTux/supertux !2025-03-2826081|SuperTux source code| | 1035|abi/secret-llama !2025-03-2826050|Fully private LLM chatbot that runs entirely with a browser with no server needed. Supports Mistral and LLama 3.| | 1036|liou666/polyglot !2025-03-2825841 |Desktop AI Language Practice Application| | 1037|janhq/nitro !2025-03-2825821|A fast, lightweight, embeddable inference engine to supercharge your apps with local AI. OpenAI-compatible API| | 1038|deepseek-ai/DeepSeek-Math !2025-03-2825825|DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models| | 1039|anthropics/prompt-eng-interactive-tutorial !2025-03-2825781|Anthropic's Interactive Prompt Engineering Tutorial| | 1040|microsoft/promptbench !2025-03-2825741|A unified evaluation framework for large language models| | 1041|baaivision/Painter !2025-03-2825580 |Painter & SegGPT Series: Vision Foundation Models from BAAI| | 1042|OpenPipe/OpenPipe !2025-03-2825581|Turn expensive prompts into cheap fine-tuned models| | 1043|TracecatHQ/tracecat !2025-03-2825531|😼 The AI-native, open source alternative to Tines / Splunk SOAR.| | 1044|JoshuaC215/agent-service-toolkit !2025-03-2825528|Full toolkit for running an AI agent service built with LangGraph, FastAPI and Streamlit| | 1045|databricks/dbrx !2025-03-2825460|Code examples and resources for DBRX, a large language model developed by Databricks| | 1046|lamini-ai/lamini !2025-03-2825271 |Official repo for Lamini's data generator for generating instructions to train instruction-following LLMs| | 1047|mshumer/gpt-author !2025-03-282510-1|| | 1048|TMElyralab/MusePose !2025-03-2824971|MusePose: a Pose-Driven Image-to-Video Framework for Virtual Human Generation| | 1049|Kludex/fastapi-tips !2025-03-2824974|FastAPI Tips by The FastAPI Expert!| | 1050|openai/simple-evals !2025-03-2824813|| | 1051|iterative/datachain !2025-03-2824732|AI-data warehouse to enrich, transform and analyze data from cloud storages| | 1052|girafe-ai/ml-course !2025-03-2824703|Open Machine Learning course| | 1053|kevmo314/magic-copy !2025-03-2824620 |Magic Copy is a Chrome extension that uses Meta's Segment Anything Model to extract a foreground object from an image and copy it to the clipboard.| | 1054|Eladlev/AutoPrompt !2025-03-2824432|A framework for prompt tuning using Intent-based Prompt Calibration| | 1055|OpenBMB/CPM-Bee !2025-03-282434-1 |A bilingual large-scale model with trillions of parameters| | 1056|IDEA-Research/T-Rex !2025-03-2824310|T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy| | 1057|microsoft/genaiscript !2025-03-2824202|Automatable GenAI Scripting| | 1058|paulpierre/RasaGPT !2025-03-2824090 |💬 RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain. Built w/ Rasa, FastAPI, Langchain, LlamaIndex, SQLModel, pgvector, ngrok, telegram| | 1059|ashishpatel26/LLM-Finetuning !2025-03-2823911|LLM Finetuning with peft| | 1060|SoraWebui/SoraWebui !2025-03-2823570|SoraWebui is an open-source Sora web client, enabling users to easily create videos from text with OpenAI's Sora model.| | 1061|6drf21e/ChatTTScolab !2025-03-2823491|🚀 一键部署(含离线整合包)!基于 ChatTTS ,支持音色抽卡、长音频生成和分角色朗读。简单易用,无需复杂安装。| | 1062|Azure/PyRIT !2025-03-2823343|The Python Risk Identification Tool for generative AI (PyRIT) is an open access automation framework to empower security professionals and machine learning engineers to proactively find risks in their generative AI systems.| | 1063|tencent-ailab/V-Express !2025-03-2823201|V-Express aims to generate a talking head video under the control of a reference image, an audio, and a sequence of V-Kps images.| | 1064|THUDM/CogVLM2 !2025-03-2823170|GPT4V-level open-source multi-modal model based on Llama3-8B| | 1065|dvmazur/mixtral-offloading !2025-03-2823001|Run Mixtral-8x7B models in Colab or consumer desktops| | 1066|semanser/codel !2025-03-2822950|✨ Fully autonomous AI Agent that can perform complicated tasks and projects using terminal, browser, and editor.| | 1067|mshumer/gpt-investor !2025-03-2822590|| | 1068|aixcoder-plugin/aiXcoder-7B !2025-03-2822550|official repository of aiXcoder-7B Code Large Language Model| | 1069|Azure-Samples/graphrag-accelerator !2025-03-2822503|One-click deploy of a Knowledge Graph powered RAG (GraphRAG) in Azure| | 1070|emcf/engshell !2025-03-2821830 |An English-language shell for any OS, powered by LLMs| | 1071|hncboy/chatgpt-web-java !2025-03-2821771|ChatGPT project developed in Java, based on Spring Boot 3 and JDK 17, supports both AccessToken and ApiKey modes| | 1072|openai/consistencydecoder !2025-03-2821692|Consistency Distilled Diff VAE| | 1073|Alpha-VLLM/Lumina-T2X !2025-03-2821681|Lumina-T2X is a unified framework for Text to Any Modality Generation| | 1074|bghira/SimpleTuner !2025-03-2821612|A general fine-tuning kit geared toward Stable Diffusion 2.1, Stable Diffusion 3, DeepFloyd, and SDXL.| | 1075|JiauZhang/DragGAN !2025-03-2821530 |Implementation of DragGAN: Interactive Point-based Manipulation on the Generative Image Manifold| | 1076|cgpotts/cs224u !2025-03-2821390|Code for Stanford CS224u| | 1077|PKU-YuanGroup/MoE-LLaVA !2025-03-2821300|Mixture-of-Experts for Large Vision-Language Models| | 1078|darrenburns/elia !2025-03-2820831|A snappy, keyboard-centric terminal user interface for interacting with large language models. Chat with ChatGPT, Claude, Llama 3, Phi 3, Mistral, Gemma and more.| | 1079|ageerle/ruoyi-ai !2025-03-28207898|RuoYi AI 是一个全栈式 AI 开发平台,旨在帮助开发者快速构建和部署个性化的 AI 应用。| | 1080|NVIDIA/gpu-operator !2025-03-2820510|NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes| | 1081|BAAI-Agents/Cradle !2025-03-2820481|The Cradle framework is a first attempt at General Computer Control (GCC). Cradle supports agents to ace any computer task by enabling strong reasoning abilities, self-improvment, and skill curation, in a standardized general environment with minimal requirements.| | 1082|microsoft/aici !2025-03-2820080|AICI: Prompts as (Wasm) Programs| | 1083|PRIS-CV/DemoFusion !2025-03-2820040|Let us democratise high-resolution generation! (arXiv 2023)| | 1084|apple/axlearn !2025-03-2820012|An Extensible Deep Learning Library| | 1085|naver/mast3r !2025-03-2819685|Grounding Image Matching in 3D with MASt3R| | 1086|liltom-eth/llama2-webui !2025-03-281958-1|Run Llama 2 locally with gradio UI on GPU or CPU from anywhere (Linux/Windows/Mac). Supporting Llama-2-7B/13B/70B with 8-bit, 4-bit. Supporting GPU inference (6 GB VRAM) and CPU inference.| | 1087|GaParmar/img2img-turbo !2025-03-2819582|One-step image-to-image with Stable Diffusion turbo: sketch2image, day2night, and more| | 1088|Niek/chatgpt-web !2025-03-2819560|ChatGPT web interface using the OpenAI API| | 1089|huggingface/cookbook !2025-03-2819421|Open-source AI cookbook| | 1090|pytorch/ao !2025-03-2819241|PyTorch native quantization and sparsity for training and inference| | 1091|emcie-co/parlant !2025-03-2819053|The behavior guidance framework for customer-facing LLM agents| | 1092|ymcui/Chinese-LLaMA-Alpaca-3 !2025-03-2818980|中文羊驼大模型三期项目 (Chinese Llama-3 LLMs) developed from Meta Llama 3| | 1093|Nutlope/notesGPT !2025-03-2818811|Record voice notes & transcribe, summarize, and get tasks| | 1094|InstantStyle/InstantStyle !2025-03-2818791|InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation 🔥| | 1095|idaholab/moose !2025-03-2818771|Multiphysics Object Oriented Simulation Environment| | 1096|The-OpenROAD-Project/OpenROAD !2025-03-2818351|OpenROAD's unified application implementing an RTL-to-GDS Flow. Documentation at https://openroad.readthedocs.io/en/latest/| | 1097|alibaba/spring-ai-alibaba !2025-03-281831121|Agentic AI Framework for Java Developers| | 1098|ytongbai/LVM !2025-03-2817990|Sequential Modeling Enables Scalable Learning for Large Vision Models| | 1099|microsoft/sample-app-aoai-chatGPT !2025-03-2817981|[PREVIEW] Sample code for a simple web chat experience targeting chatGPT through AOAI.| | 1100|AI-Citizen/SolidGPT !2025-03-2817830|Chat everything with your code repository, ask repository level code questions, and discuss your requirements. AI Scan and learning your code repository, provide you code repository level answer🧱 🧱| | 1101|YangLing0818/RPG-DiffusionMaster !2025-03-2817784|Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs (PRG)| | 1102|kyegomez/BitNet !2025-03-2817710|Implementation of "BitNet: Scaling 1-bit Transformers for Large Language Models" in pytorch| | 1103|eloialonso/diamond !2025-03-2817671|DIAMOND (DIffusion As a Model Of eNvironment Dreams) is a reinforcement learning agent trained in a diffusion world model.| | 1104|flowdriveai/flowpilot !2025-03-2817250|flow-pilot is an openpilot based driver assistance system that runs on linux, windows and android powered machines.| | 1105|xlang-ai/OSWorld !2025-03-2817200|OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments| | 1106|linyiLYi/snake-ai !2025-03-2817031|An AI agent that beats the classic game "Snake".| | 1107|baaivision/Emu !2025-03-2816991|Emu Series: Generative Multimodal Models from BAAI| | 1108|kevmo314/scuda !2025-03-2816870|SCUDA is a GPU over IP bridge allowing GPUs on remote machines to be attached to CPU-only machines.| | 1109|SharifiZarchi/IntroductiontoMachineLearning !2025-03-2816701|دوره‌ی مقدمه‌ای بر یادگیری ماشین، برای دانشجویان| | 1110|google/maxtext !2025-03-2816670|A simple, performant and scalable Jax LLM!| | 1111|ml-explore/mlx-swift-examples !2025-03-2816471|Examples using MLX Swift| | 1112|unitreerobotics/unitreerlgym !2025-03-2816256|| | 1113|collabora/WhisperFusion !2025-03-2815901|WhisperFusion builds upon the capabilities of WhisperLive and WhisperSpeech to provide a seamless conversations with an AI.| | 1114|lichao-sun/Mora !2025-03-2815520|Mora: More like Sora for Generalist Video Generation| | 1115|GoogleCloudPlatform/localllm !2025-03-2815370|Run LLMs locally on Cloud Workstations| | 1116|TencentARC/BrushNet !2025-03-2815330|The official implementation of paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"| | 1117|ai-christianson/RA.Aid !2025-03-2815288|Develop software autonomously.| | 1118|stephansturges/WALDO !2025-03-2815170|Whereabouts Ascertainment for Low-lying Detectable Objects. The SOTA in FOSS AI for drones!| | 1119|skills/copilot-codespaces-vscode !2025-03-2815112|Develop with AI-powered code suggestions using GitHub Copilot and VS Code| | 1120|andrewnguonly/Lumos !2025-03-2814920|A RAG LLM co-pilot for browsing the web, powered by local LLMs| | 1121|TeamNewPipe/NewPipeExtractor !2025-03-2814811|NewPipe's core library for extracting data from streaming sites| | 1122|mhamilton723/FeatUp !2025-03-2814770|Official code for "FeatUp: A Model-Agnostic Frameworkfor Features at Any Resolution" ICLR 2024| | 1123|AnswerDotAI/fsdpqlora !2025-03-2814671|Training LLMs with QLoRA + FSDP| | 1124|jgravelle/AutoGroq !2025-03-2814330|| | 1125|OpenGenerativeAI/llm-colosseum !2025-03-2814130|Benchmark LLMs by fighting in Street Fighter 3! The new way to evaluate the quality of an LLM| | 1126|microsoft/vscode-ai-toolkit !2025-03-2814000|| | 1127|McGill-NLP/webllama !2025-03-2813930|Llama-3 agents that can browse the web by following instructions and talking to you| | 1128|lucidrains/self-rewarding-lm-pytorch !2025-03-2813760|Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI| | 1129|ishaan1013/sandbox !2025-03-2813650|A cloud-based code editing environment with an AI copilot and real-time collaboration.| | 1130|goatcorp/Dalamud !2025-03-2813275|FFXIV plugin framework and API| | 1131|Lightning-AI/lightning-thunder !2025-03-2813151|Make PyTorch models Lightning fast! Thunder is a source to source compiler for PyTorch. It enables using different hardware executors at once.| | 1132|PKU-YuanGroup/MagicTime !2025-03-2813052|MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators| | 1133|SakanaAI/evolutionary-model-merge !2025-03-2813000|Official repository of Evolutionary Optimization of Model Merging Recipes| | 1134|a-real-ai/pywinassistant !2025-03-2812950|The first open source Large Action Model generalist Artificial Narrow Intelligence that controls completely human user interfaces by only using natural language. PyWinAssistant utilizes Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models.| | 1135|TraceMachina/nativelink !2025-03-2812630|NativeLink is an open source high-performance build cache and remote execution server, compatible with Bazel, Buck2, Reclient, and other RBE-compatible build systems. It offers drastically faster builds, reduced test flakiness, and significant infrastructure cost savings.| | 1136|MLSysOps/MLE-agent !2025-03-2812500|🤖 MLE-Agent: Your intelligent companion for seamless AI engineering and research. 🔍 Integrate with arxiv and paper with code to provide better code/research plans 🧰 OpenAI, Ollama, etc supported. 🎆 Code RAG| | 1137|wpilibsuite/allwpilib !2025-03-2811610|Official Repository of WPILibJ and WPILibC| | 1138|elfvingralf/macOSpilot-ai-assistant !2025-03-2811470|Voice + Vision powered AI assistant that answers questions about any application, in context and in audio.| | 1139|langchain-ai/langchain-extract !2025-03-2811210|🦜⛏️ Did you say you like data?| | 1140|FoundationVision/GLEE !2025-03-2811120|【CVPR2024】GLEE: General Object Foundation Model for Images and Videos at Scale| | 1141|Profluent-AI/OpenCRISPR !2025-03-2810990|AI-generated gene editing systems| | 1142|zju3dv/EasyVolcap !2025-03-2810821|[SIGGRAPH Asia 2023 (Technical Communications)] EasyVolcap: Accelerating Neural Volumetric Video Research| | 1143|PaddlePaddle/PaddleHelix !2025-03-2810560|Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集| | 1144|myshell-ai/JetMoE !2025-03-289800|Reaching LLaMA2 Performance with 0.1M Dollars| | 1145|likejazz/llama3.np !2025-03-289770|llama3.np is pure NumPy implementation for Llama 3 model.| | 1146|mustafaaljadery/gemma-2B-10M !2025-03-289500|Gemma 2B with 10M context length using Infini-attention.| | 1147|HITsz-TMG/FilmAgent !2025-03-289382|Resources of our paper "FilmAgent: A Multi-Agent Framework for End-to-End Film Automation in Virtual 3D Spaces". New versions in the making!| | 1148|aws-samples/amazon-bedrock-samples !2025-03-289362|This repository contains examples for customers to get started using the Amazon Bedrock Service. This contains examples for all available foundational models| | 1149|Akkudoktor-EOS/EOS !2025-03-2893154|This repository features an Energy Optimization System (EOS) that optimizes energy distribution, usage for batteries, heat pumps& household devices. It includes predictive models for electricity prices (planned), load forecasting& dynamic optimization to maximize energy efficiency & minimize costs. Founder Dr. Andreas Schmitz (YouTube @akkudoktor)| Tip: | symbol| rule | | :----| :---- | |🔥 | 256 1k| |!green-up-arrow.svg !red-down-arrow | ranking up / down| |⭐ | on trending page today| [Back to Top] Tools | No. | Tool | Description | | ----:|:----------------------------------------------- |:------------------------------------------------------------------------------------------- | | 1 | ChatGPT | A sibling model to InstructGPT, which is trained to follow instructions in a prompt and provide a detailed response | | 2 | DALL·E 2 | Create original, realistic images and art from a text description | | 3 | Murf AI | AI enabled, real people's voices| | 4 | Midjourney | An independent research lab that produces an artificial intelligence program under the same name that creates images from textual descriptions, used in Discord | 5 | Make-A-Video | Make-A-Video is a state-of-the-art AI system that generates videos from text | | 6 | Creative Reality™ Studio by D-ID| Use generative AI to create future-facing videos| | 7 | chat.D-ID| The First App Enabling Face-to-Face Conversations with ChatGPT| | 8 | Notion AI| Access the limitless power of AI, right inside Notion. Work faster. Write better. Think bigger. | | 9 | Runway| Text to Video with Gen-2 | | 10 | Resemble AI| Resemble’s AI voice generator lets you create human–like voice overs in seconds | | 11 | Cursor| Write, edit, and chat about your code with a powerful AI | | 12 | Hugging Face| Build, train and deploy state of the art models powered by the reference open source in machine learning | | 13 | Claude | A next-generation AI assistant for your tasks, no matter the scale | | 14 | Poe| Poe lets you ask questions, get instant answers, and have back-and-forth conversations with AI. Gives access to GPT-4, gpt-3.5-turbo, Claude from Anthropic, and a variety of other bots| [Back to Top] Websites | No. | WebSite |Description | | ----:|:------------------------------------------ |:---------------------------------------------------------------------------------------- | | 1 | OpenAI | An artificial intelligence research lab | | 2 | Bard | Base Google's LaMDA chatbots and pull from internet | | 3 | ERNIE Bot | Baidu’s new generation knowledge-enhanced large language model is a new member of the Wenxin large model family | | 4 | DALL·E 2 | An AI system that can create realistic images and art from a description in natural language | | 5 | Whisper | A general-purpose speech recognition model | | 6| CivitAI| A platform that makes it easy for people to share and discover resources for creating AI art| | 7|D-ID| D-ID’s Generative AI enables users to transform any picture or video into extraordinary experiences| | 8| Nvidia eDiff-I| Text-to-Image Diffusion Models with Ensemble of Expert Denoisers | | 9| Stability AI| The world's leading open source generative AI company which opened source Stable Diffusion | | 10| Meta AI| Whether it be research, product or infrastructure development, we’re driven to innovate responsibly with AI to benefit the world | | 11| ANTHROPIC| AI research and products that put safety at the frontier | [Back to Top] Reports&Papers | No. | Report&Paper | Description | |:---- |:-------------------------------------------------------------------------------------------------------------- |:---------------------------------------------------- | | 1 | GPT-4 Technical Report | GPT-4 Technical Report | | 2 | mli/paper-reading | Deep learning classics and new papers are read carefully paragraph by paragraph. | | 3 | labmlai/annotateddeeplearningpaperimplementations| A collection of simple PyTorch implementations of neural networks and related algorithms, which are documented with explanations | | 4 | Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models | Talking, Drawing and Editing with Visual Foundation Models | | 5 | OpenAI Research | The latest research report and papers from OpenAI | | 6 | Make-A-Video: Text-to-Video Generation without Text-Video Data|Meta's Text-to-Video Generation| | 7 | eDiff-I: Text-to-Image Diffusion Models with Ensemble of Expert Denoisers| Nvidia eDiff-I - New generation of generative AI content creation tool | | 8 | Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo | 2023 GPT4All Technical Report | | 9 | Segment Anything| Meta Segment Anything | | 10 | LLaMA: Open and Efficient Foundation Language Models| LLaMA: a collection of foundation language models ranging from 7B to 65B parameters| | 11 | papers-we-love/papers-we-love |Papers from the computer science community to read and discuss| | 12 | CVPR 2023 papers |The most exciting and influential CVPR 2023 papers| [Back to Top] Tutorials | No. | Tutorial | Description| |:---- |:---------------------------------------------------------------- | --- | | 1 | Coursera - Machine Learning | The Machine Learning Specialization Course taught by Dr. Andrew Ng| | 2 | microsoft/ML-For-Beginners | 12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all| | 3 | ChatGPT Prompt Engineering for Developers | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI) will teach how to use a large language model (LLM) to quickly build new and powerful applications | | 4 | Dive into Deep Learning |Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries | | 5 | AI Expert Roadmap | Roadmap to becoming an Artificial Intelligence Expert in 2022 | | 6 | Computer Science courses |List of Computer Science courses with video lectures| | 7 | Machine Learning with Python | Machine Learning with Python Certification on freeCodeCamp| | 8 | Building Systems with the ChatGPT API | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI), you will learn how to automate complex workflows using chain calls to a large language model| | 9 | LangChain for LLM Application Development | This short course taught by Harrison Chase (Co-Founder and CEO at LangChain) and Andrew Ng. you will gain essential skills in expanding the use cases and capabilities of language models in application development using the LangChain framework| | 10 | How Diffusion Models Work | This short course taught by Sharon Zhou (CEO, Co-founder, Lamini). you will gain a deep familiarity with the diffusion process and the models which carry it out. More than simply pulling in a pre-built model or using an API, this course will teach you to build a diffusion model from scratch| | 11 | Free Programming Books For AI |📚 Freely available programming books for AI | | 12 | microsoft/AI-For-Beginners |12 Weeks, 24 Lessons, AI for All!| | 13 | hemansnation/God-Level-Data-Science-ML-Full-Stack |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 14 | datawhalechina/prompt-engineering-for-developers |Chinese version of Andrew Ng's Big Model Series Courses, including "Prompt Engineering", "Building System", and "LangChain"| | 15 | ossu/computer-science |🎓 Path to a free self-taught education in Computer Science!| | 16 | microsoft/Data-Science-For-Beginners | 10 Weeks, 20 Lessons, Data Science for All! | |17 |jwasham/coding-interview-university !2023-09-29268215336 |A complete computer science study plan to become a software engineer.| [Back to Top] Thanks If this project has been helpful to you in any way, please give it a ⭐️ by clicking on the star.

vector-vein
github
LLM Vibe Score0.532
Human Vibe Score0.010966292738059526
AndersonBYMar 28, 2025

vector-vein

English | 简体中文 | 日本語 🔀 VectorVein Build your automation workflow with the power of AI and your personal knowledge base. Create powerful workflows with just drag and drop, without any programming. VectorVein is a no-code AI workflow software inspired by LangChain and langflow, designed to combine the powerful capabilities of large language models and enable users to easily achieve intelligent and automated workflows for various daily tasks. 🌐 Online Experience You can experience VectorVein's online version here, with no need to download or install. Official website Online Documentation 📦 Installation and Configuration Installation After downloading VectorVein from Release, the program will create a "data" folder in the installation directory to store the database and static file resources. VectorVein is built using pywebview, based on the webview2 kernel, so you need to install the webview2 runtime. If the software cannot be opened, you may need to download the webview2 runtime manually from https://developer.microsoft.com/en-us/microsoft-edge/webview2/ [!IMPORTANT] If the software cannot be opened after decompression, please check if the downloaded compressed package .zip file is locked. You can solve this problem by right-clicking the compressed package and selecting "Unblock". Configuration Most workflows and agents in the software involve the use of AI large language models, so you should at least provide a usable configuration for a large language model. For workflows, you can see which large language models are being used in the interface, as shown in the image below. !LLM used in workflow API Endpoint Configuration Starting from v0.2.10, VectorVein separates API endpoints and large language model configurations, allowing multiple API endpoints for the same large language model. !API Endpoint Configuration After the software opens normally, click the open settings button, and you can configure the information for each API endpoint as needed, or add custom API endpoints. Currently, the API endpoints support OpenAI-compatible interfaces, which can be connected to locally running services such as LM-Studio, Ollama, vLLM, etc. The API Base for LM-Studio is typically http://localhost:1234/v1/ The API Base for Ollama is typically http://localhost:11434/v1/ Remote Large Language Model Interface Configuration Please configure the specific information for each model in the Remote LLMs tab. !LLM Settings Click on any model to set its specific configuration, as shown below. !LLM Settings The Model Key is the standard name of the large model and generally does not need to be adjusted. The Model ID is the name used during actual deployment, which usually matches the Model Key. However, in deployments like Azure OpenAI, the Model ID is user-defined and therefore needs to be adjusted according to the actual situation. Since the model IDs from different providers for the same model may vary, you can click the Edit button to configure the specific model ID under this endpoint, as shown in the figure below. !Endpoint Model ID Configuration Custom Large Language Model Interface Configuration If using a custom large language model, fill in the custom model configuration information on the Custom LLMs tab. Currently, interfaces compatible with OpenAI are supported, such as LM-Studio, Ollama, vLLM, etc. !Custom LLM Settings First, add a custom model family, then add a custom model. Don't forget to click the Save Settings button. Speech Recognition Configuration Currently, the speech recognition services of OpenAI/Deepgram are supported. For OpenAI services, you can use the same configuration as the large language model or set up a speech recognition service compatible with the OpenAI API (such as Groq). !Speech Recognition Configuration Embedding Configuration When you need to perform vector searches using vector data, you have the option to use embedding services provided by OpenAI or configure local embedding services in the Embedding Model settings. Currently, supported local embedding services require you to set up text-embeddings-inference yourself. !Local Embedding Settings Shortcut Settings For ease of daily use, you can configure shortcuts to quickly initiate voice conversations with the Agent. By launching through the shortcut, you can directly interact with the Agent via speech recognition. It is important to ensure that the speech recognition service is correctly configured beforehand. Include Screenshot means that while starting the conversation, a screenshot of the screen will be taken and uploaded as an attachment to the conversation. !Shortcut Settings Notes About the local Stable Diffusion API To use your own local Stable Diffusion API, you need to add the parameter --api to the startup item of webui-user.bat, that is 💻 Usage 📖 Basic Concepts A workflow represents a work task process, including input, output, and how input is processed to reach the output result. Examples: Translation Workflow: The input is an English Word document, and the output is also a Word document. You can design a workflow to translate the input Chinese document and generate a Chinese document output. Mind Map Workflow: If the output of the translation workflow is changed to a mind map, you can get a workflow that reads an English Word document and summarizes it into a Chinese mind map. Web Article Summary Workflow: If the input of the mind map workflow is changed to a URL of a web article, you can get a workflow that reads a web article and summarizes it into a Chinese mind map. Automatic Classification of Customer Complaints Workflow: The input is a table containing complaint content, and you can customize the keywords that need to be classified, so that the complaints can be automatically classified. The output is an automatically generated Excel table containing the classification results. 🔎 User Interface Each workflow has a User Interface and an Editor Interface. The user interface is used for daily workflow operations, and the editor interface is used for workflow editing. Usually, after designing a workflow, you only need to run it in the user interface and do not need to modify it in the editor interface. !User Interface The user interface is shown above and is divided into three parts: input, output, and trigger (usually a run button). You can directly enter content for daily use, click the run button to see the output result. To view the executed workflow, click Workflow Run Records, as shown in the following figure. !Workflow Run Records ✏️ Creating a Workflow You can add our official templates to your workflow or create a new one. It is recommended to familiarize yourself with the use of workflows using official templates at the beginning. !Workflow Editor Interface The workflow editor interface is shown above. You can edit the name, tags, and detailed description at the top. The left side is the node list of the workflow, and the right is the canvas of the workflow. You can drag the desired node from the left side to the canvas, and then connect the node through the wire to form a workflow. You can view a tutorial on creating a simple crawler + AI summary mind map workflow here. You can also try this online interactive tutorial. 🛠️ Development and Deployment Environment Requirements Backend Python 3.8 ~ Python 3.11 PDM installed Frontend Vue3 Vite Project Development Copy and modify backend/.env.example to .env file, this is the basic environment variable information, which will be used during development and packaging. Run the following command in the backend directory to install dependencies: Windows Mac Normally, PDM will automatically find the system's Python and create a virtual environment and install dependencies. After installation, run the following command to start the backend development server and see the running effect: If you need to modify the frontend code, you need to run the following command in the frontend directory to install dependencies: When pulling the project code for the first time, you also need to run pnpm install to install the front-end dependencies. If you don't need to develop any front-end code at all, you can directly copy the web folder from the release version into the backend folder. After the frontend dependencies are installed, you need to compile the frontend code into the static file directory of the backend. A shortcut instruction has been provided in the project. Run the following command in the backend directory to pack and copy the frontend resources: Database Structure Changes [!WARNING] Before making changes to the database structure, please back up your database (located at my_database.db in your configured data directory), otherwise you may lose data. If you have modified the model structure in backend/models, you need to run the following commands in the backend directory to update the database structure: First, enter the Python environment: After the operation, a new migration file will be generated in the backend/migrations directory, with the filename format xxxmigrationname.py. It is recommended to check the content of the migration file first to ensure it is correct, and then restart the main program. The main program will automatically execute the migration. Software Packaging The project uses pyinstaller for packaging. Run the following command in the backend directory to package it into an executable file: After packaging, the executable file will be generated in thebackend/dist directory. 📄 License VectorVein is an open-source software that supports personal non-commercial use. Please refer to LICENSE for specific agreements.

Production-Level-Deep-Learning
github
LLM Vibe Score0.619
Human Vibe Score0.8326638433689385
alirezadirMar 28, 2025

Production-Level-Deep-Learning

:bulb: A Guide to Production Level Deep Learning :clapper: :scroll: :ferry: 🇨🇳 Translation in Chinese.md) :label: NEW: Machine Learning Interviews :label: Note: This repo is under continous development, and all feedback and contribution are very welcome :blush: Deploying deep learning models in production can be challenging, as it is far beyond training models with good performance. Several distinct components need to be designed and developed in order to deploy a production level deep learning system (seen below): This repo aims to be an engineering guideline for building production-level deep learning systems which will be deployed in real world applications. The material presented here is borrowed from Full Stack Deep Learning Bootcamp (by Pieter Abbeel at UC Berkeley, Josh Tobin at OpenAI, and Sergey Karayev at Turnitin), TFX workshop by Robert Crowe, and Pipeline.ai's Advanced KubeFlow Meetup by Chris Fregly. Machine Learning Projects Fun :flushed: fact: 85% of AI projects fail. 1 Potential reasons include: Technically infeasible or poorly scoped Never make the leap to production Unclear success criteria (metrics) Poor team management ML Projects lifecycle Importance of understanding state of the art in your domain: Helps to understand what is possible Helps to know what to try next Mental Model for ML project The two important factors to consider when defining and prioritizing ML projects: High Impact: Complex parts of your pipeline Where "cheap prediction" is valuable Where automating complicated manual process is valuable Low Cost: Cost is driven by: Data availability Performance requirements: costs tend to scale super-linearly in the accuracy requirement Problem difficulty: Some of the hard problems include: unsupervised learning, reinforcement learning, and certain categories of supervised learning Full stack pipeline The following figure represents a high level overview of different components in a production level deep learning system: In the following, we will go through each module and recommend toolsets and frameworks as well as best practices from practitioners that fit each component. Data Management 1.1 Data Sources Supervised deep learning requires a lot of labeled data Labeling own data is costly! Here are some resources for data: Open source data (good to start with, but not an advantage) Data augmentation (a MUST for computer vision, an option for NLP) Synthetic data (almost always worth starting with, esp. in NLP) 1.2 Data Labeling Requires: separate software stack (labeling platforms), temporary labor, and QC Sources of labor for labeling: Crowdsourcing (Mechanical Turk): cheap and scalable, less reliable, needs QC Hiring own annotators: less QC needed, expensive, slow to scale Data labeling service companies: FigureEight Labeling platforms: Diffgram: Training Data Software (Computer Vision) Prodigy: An annotation tool powered by active learning (by developers of Spacy), text and image HIVE: AI as a Service platform for computer vision Supervisely: entire computer vision platform Labelbox: computer vision Scale AI data platform (computer vision & NLP) 1.3. Data Storage Data storage options: Object store: Store binary data (images, sound files, compressed texts) Amazon S3 Ceph Object Store Database: Store metadata (file paths, labels, user activity, etc). Postgres is the right choice for most of applications, with the best-in-class SQL and great support for unstructured JSON. Data Lake: to aggregate features which are not obtainable from database (e.g. logs) Amazon Redshift Feature Store: store, access, and share machine learning features (Feature extraction could be computationally expensive and nearly impossible to scale, hence re-using features by different models and teams is a key to high performance ML teams). FEAST (Google cloud, Open Source) Michelangelo Palette (Uber) Suggestion: At training time, copy data into a local or networked filesystem (NFS). 1 1.4. Data Versioning It's a "MUST" for deployed ML models: Deployed ML models are part code, part data. 1 No data versioning means no model versioning. Data versioning platforms: DVC: Open source version control system for ML projects Pachyderm: version control for data Dolt: a SQL database with Git-like version control for data and schema 1.5. Data Processing Training data for production models may come from different sources, including Stored data in db and object stores, log processing, and outputs of other classifiers*. There are dependencies between tasks, each needs to be kicked off after its dependencies are finished. For example, training on new log data, requires a preprocessing step before training. Makefiles are not scalable. "Workflow manager"s become pretty essential in this regard. Workflow orchestration: Luigi by Spotify Airflow by Airbnb: Dynamic, extensible, elegant, and scalable (the most widely used) DAG workflow Robust conditional execution: retry in case of failure Pusher supports docker images with tensorflow serving Whole workflow in a single .py file Development, Training, and Evaluation 2.1. Software engineering Winner language: Python Editors: Vim Emacs VS Code (Recommended by the author): Built-in git staging and diff, Lint code, open projects remotely through ssh Notebooks: Great as starting point of the projects, hard to scale (fun fact: Netflix’s Notebook-Driven Architecture is an exception, which is entirely based on nteract suites). nteract: a next-gen React-based UI for Jupyter notebooks Papermill: is an nteract library built for parameterizing, executing, and analyzing* Jupyter Notebooks. Commuter: another nteract project which provides a read-only display of notebooks (e.g. from S3 buckets). Streamlit: interactive data science tool with applets Compute recommendations 1: For individuals or startups*: Development: a 4x Turing-architecture PC Training/Evaluation: Use the same 4x GPU PC. When running many experiments, either buy shared servers or use cloud instances. For large companies:* Development: Buy a 4x Turing-architecture PC per ML scientist or let them use V100 instances Training/Evaluation: Use cloud instances with proper provisioning and handling of failures Cloud Providers: GCP: option to connect GPUs to any instance + has TPUs AWS: 2.2. Resource Management Allocating free resources to programs Resource management options: Old school cluster job scheduler ( e.g. Slurm workload manager ) Docker + Kubernetes Kubeflow Polyaxon (paid features) 2.3. DL Frameworks Unless having a good reason not to, use Tensorflow/Keras or PyTorch. 1 The following figure shows a comparison between different frameworks on how they stand for "developement" and "production"*. 2.4. Experiment management Development, training, and evaluation strategy: Always start simple Train a small model on a small batch. Only if it works, scale to larger data and models, and hyperparameter tuning! Experiment management tools: Tensorboard provides the visualization and tooling needed for ML experimentation Losswise (Monitoring for ML) Comet: lets you track code, experiments, and results on ML projects Weights & Biases: Record and visualize every detail of your research with easy collaboration MLFlow Tracking: for logging parameters, code versions, metrics, and output files as well as visualization of the results. Automatic experiment tracking with one line of code in python Side by side comparison of experiments Hyper parameter tuning Supports Kubernetes based jobs 2.5. Hyperparameter Tuning Approaches: Grid search Random search Bayesian Optimization HyperBand and Asynchronous Successive Halving Algorithm (ASHA) Population-based Training Platforms: RayTune: Ray Tune is a Python library for hyperparameter tuning at any scale (with a focus on deep learning and deep reinforcement learning). Supports any machine learning framework, including PyTorch, XGBoost, MXNet, and Keras. Katib: Kubernete's Native System for Hyperparameter Tuning and Neural Architecture Search, inspired by Google vizier and supports multiple ML/DL frameworks (e.g. TensorFlow, MXNet, and PyTorch). Hyperas: a simple wrapper around hyperopt for Keras, with a simple template notation to define hyper-parameter ranges to tune. SIGOPT: a scalable, enterprise-grade optimization platform Sweeps from [Weights & Biases] (https://www.wandb.com/): Parameters are not explicitly specified by a developer. Instead they are approximated and learned by a machine learning model. Keras Tuner: A hyperparameter tuner for Keras, specifically for tf.keras with TensorFlow 2.0. 2.6. Distributed Training Data parallelism: Use it when iteration time is too long (both tensorflow and PyTorch support) Ray Distributed Training Model parallelism: when model does not fit on a single GPU Other solutions: Horovod Troubleshooting [TBD] Testing and Deployment 4.1. Testing and CI/CD Machine Learning production software requires a more diverse set of test suites than traditional software: Unit and Integration Testing: Types of tests: Training system tests: testing training pipeline Validation tests: testing prediction system on validation set Functionality tests: testing prediction system on few important examples Continuous Integration: Running tests after each new code change pushed to the repo SaaS for continuous integration: Argo: Open source Kubernetes native workflow engine for orchestrating parallel jobs (incudes workflows, events, CI and CD). CircleCI: Language-Inclusive Support, Custom Environments, Flexible Resource Allocation, used by instacart, Lyft, and StackShare. Travis CI Buildkite: Fast and stable builds, Open source agent runs on almost any machine and architecture, Freedom to use your own tools and services Jenkins: Old school build system 4.2. Web Deployment Consists of a Prediction System and a Serving System Prediction System: Process input data, make predictions Serving System (Web server): Serve prediction with scale in mind Use REST API to serve prediction HTTP requests Calls the prediction system to respond Serving options: Deploy to VMs, scale by adding instances Deploy as containers, scale via orchestration Containers Docker Container Orchestration: Kubernetes (the most popular now) MESOS Marathon Deploy code as a "serverless function" Deploy via a model serving solution Model serving: Specialized web deployment for ML models Batches request for GPU inference Frameworks: Tensorflow serving MXNet Model server Clipper (Berkeley) SaaS solutions Seldon: serve and scale models built in any framework on Kubernetes Algorithmia Decision making: CPU or GPU? CPU inference: CPU inference is preferable if it meets the requirements. Scale by adding more servers, or going serverless. GPU inference: TF serving or Clipper Adaptive batching is useful (Bonus) Deploying Jupyter Notebooks: Kubeflow Fairing is a hybrid deployment package that let's you deploy your Jupyter notebook* codes! 4.5 Service Mesh and Traffic Routing Transition from monolithic applications towards a distributed microservice architecture could be challenging. A Service mesh (consisting of a network of microservices) reduces the complexity of such deployments, and eases the strain on development teams. Istio: a service mesh to ease creation of a network of deployed services with load balancing, service-to-service authentication, monitoring, with few or no code changes in service code. 4.4. Monitoring: Purpose of monitoring: Alerts for downtime, errors, and distribution shifts Catching service and data regressions Cloud providers solutions are decent Kiali:an observability console for Istio with service mesh configuration capabilities. It answers these questions: How are the microservices connected? How are they performing? Are we done? 4.5. Deploying on Embedded and Mobile Devices Main challenge: memory footprint and compute constraints Solutions: Quantization Reduced model size MobileNets Knowledge Distillation DistillBERT (for NLP) Embedded and Mobile Frameworks: Tensorflow Lite PyTorch Mobile Core ML ML Kit FRITZ OpenVINO Model Conversion: Open Neural Network Exchange (ONNX): open-source format for deep learning models 4.6. All-in-one solutions Tensorflow Extended (TFX) Michelangelo (Uber) Google Cloud AI Platform Amazon SageMaker Neptune FLOYD Paperspace Determined AI Domino data lab Tensorflow Extended (TFX) [TBD] Airflow and KubeFlow ML Pipelines [TBD] Other useful links: Lessons learned from building practical deep learning systems Machine Learning: The High Interest Credit Card of Technical Debt Contributing References: [1]: Full Stack Deep Learning Bootcamp, Nov 2019. [2]: Advanced KubeFlow Workshop by Pipeline.ai, 2019. [3]: TFX: Real World Machine Learning in Production

RD-Agent
github
LLM Vibe Score0.548
Human Vibe Score0.27921589729164453
microsoftMar 28, 2025

RD-Agent

🖥️ Live Demo | 🎥 Demo Video ▶️YouTube | 📖 Documentation | 📃 Papers Data Science Agent Preview Check out our demo video showcasing the current progress of our Data Science Agent under development: https://github.com/user-attachments/assets/3eccbecb-34a4-4c81-bce4-d3f8862f7305 📰 News | 🗞️ News | 📝 Description | | -- | ------ | | Support LiteLLM Backend | We now fully support LiteLLM as a backend for integration with multiple LLM providers. | | More General Data Science Agent | 🚀Coming soon! | | Kaggle Scenario release | We release Kaggle Agent, try the new features! | | Official WeChat group release | We created a WeChat group, welcome to join! (🗪QR Code) | | Official Discord release | We launch our first chatting channel in Discord (🗪) | | First release | RDAgent is released on GitHub | 🌟 Introduction RDAgent aims to automate the most critical and valuable aspects of the industrial R&D process, and we begin with focusing on the data-driven scenarios to streamline the development of models and data. Methodologically, we have identified a framework with two key components: 'R' for proposing new ideas and 'D' for implementing them. We believe that the automatic evolution of R&D will lead to solutions of significant industrial value. R&D is a very general scenario. The advent of RDAgent can be your 💰 Automatic Quant Factory (🎥Demo Video|▶️YouTube) 🤖 Data Mining Agent: Iteratively proposing data & models (🎥Demo Video 1|▶️YouTube) (🎥Demo Video 2|▶️YouTube) and implementing them by gaining knowledge from data. 🦾 Research Copilot: Auto read research papers (🎥Demo Video|▶️YouTube) / financial reports (🎥Demo Video|▶️YouTube) and implement model structures or building datasets. 🤖 Kaggle Agent: Auto Model Tuning and Feature Engineering([🎥Demo Video Coming Soon...]()) and implementing them to achieve more in competitions. ... You can click the links above to view the demo. We're continuously adding more methods and scenarios to the project to enhance your R&D processes and boost productivity. Additionally, you can take a closer look at the examples in our 🖥️ Live Demo. ⚡ Quick start You can try above demos by running the following command: 🐳 Docker installation. Users must ensure Docker is installed before attempting most scenarios. Please refer to the official 🐳Docker page for installation instructions. Ensure the current user can run Docker commands without using sudo. You can verify this by executing docker run hello-world. 🐍 Create a Conda Environment Create a new conda environment with Python (3.10 and 3.11 are well-tested in our CI): Activate the environment: 🛠️ Install the RDAgent You can directly install the RDAgent package from PyPI: 💊 Health check rdagent provides a health check that currently checks two things. whether the docker installation was successful. whether the default port used by the rdagent ui is occupied. ⚙️ Configuration The demos requires following ability: ChatCompletion json_mode embedding query For example: If you are using the OpenAI API, you have to configure your GPT model in the .env file like this. However, not every API services support these features by default. For example: AZURE OpenAI, you have to configure your GPT model in the .env file like this. We now support LiteLLM as a backend for integration with multiple LLM providers. If you use LiteLLM Backend to use models, you can configure as follows: For more configuration information, please refer to the documentation. 🚀 Run the Application The 🖥️ Live Demo is implemented by the following commands(each item represents one demo, you can select the one you prefer): Run the Automated Quantitative Trading & Iterative Factors Evolution: Qlib self-loop factor proposal and implementation application Run the Automated Quantitative Trading & Iterative Model Evolution: Qlib self-loop model proposal and implementation application Run the Automated Medical Prediction Model Evolution: Medical self-loop model proposal and implementation application (1) Apply for an account at PhysioNet. (2) Request access to FIDDLE preprocessed data: FIDDLE Dataset. (3) Place your username and password in .env. Run the Automated Quantitative Trading & Factors Extraction from Financial Reports: Run the Qlib factor extraction and implementation application based on financial reports Run the Automated Model Research & Development Copilot: model extraction and implementation application Run the Automated Kaggle Model Tuning & Feature Engineering: self-loop model proposal and feature engineering implementation application Using sf-crime (San Francisco Crime Classification) as an example. Register and login on the Kaggle website. Configuring the Kaggle API. (1) Click on the avatar (usually in the top right corner of the page) -> Settings -> Create New Token, A file called kaggle.json will be downloaded. (2) Move kaggle.json to ~/.config/kaggle/ (3) Modify the permissions of the kaggle.json file. Reference command: chmod 600 ~/.config/kaggle/kaggle.json Join the competition: Click Join the competition -> I Understand and Accept at the bottom of the competition details page. Description of the above example: Kaggle competition data, contains two parts: competition description file (json file) and competition dataset (zip file). We prepare the competition description file for you, the competition dataset will be downloaded automatically when you run the program, as in the example. If you want to download the competition description file automatically, you need to install chromedriver, The instructions for installing chromedriver can be found in the documentation. The Competition List Available can be found here. 🖥️ Monitor the Application Results You can run the following command for our demo program to see the run logs. Note: Although port 19899 is not commonly used, but before you run this demo, you need to check if port 19899 is occupied. If it is, please change it to another port that is not occupied. You can check if a port is occupied by running the following command. 🏭 Scenarios We have applied RD-Agent to multiple valuable data-driven industrial scenarios. 🎯 Goal: Agent for Data-driven R&D In this project, we are aiming to build an Agent to automate Data-Driven R\&D that can 📄 Read real-world material (reports, papers, etc.) and extract key formulas, descriptions of interested features and models, which are the key components of data-driven R&D . 🛠️ Implement the extracted formulas (e.g., features, factors, and models) in runnable codes. Due to the limited ability of LLM in implementing at once, build an evolving process for the agent to improve performance by learning from feedback and knowledge. 💡 Propose new ideas based on current knowledge and observations. 📈 Scenarios/Demos In the two key areas of data-driven scenarios, model implementation and data building, our system aims to serve two main roles: 🦾Copilot and 🤖Agent. The 🦾Copilot follows human instructions to automate repetitive tasks. The 🤖Agent, being more autonomous, actively proposes ideas for better results in the future. The supported scenarios are listed below: | Scenario/Target | Model Implementation | Data Building | | -- | -- | -- | | 💹 Finance | 🤖 Iteratively Proposing Ideas & Evolving▶️YouTube | 🤖 Iteratively Proposing Ideas & Evolving ▶️YouTube 🦾 Auto reports reading & implementation▶️YouTube | | 🩺 Medical | 🤖 Iteratively Proposing Ideas & Evolving▶️YouTube | - | | 🏭 General | 🦾 Auto paper reading & implementation▶️YouTube 🤖 Auto Kaggle Model Tuning | 🤖Auto Kaggle feature Engineering | RoadMap: Currently, we are working hard to add new features to the Kaggle scenario. Different scenarios vary in entrance and configuration. Please check the detailed setup tutorial in the scenarios documents. Here is a gallery of successful explorations (5 traces showed in 🖥️ Live Demo). You can download and view the execution trace using this command from the documentation. Please refer to 📖readthedocs_scen for more details of the scenarios. ⚙️ Framework Automating the R&D process in data science is a highly valuable yet underexplored area in industry. We propose a framework to push the boundaries of this important research field. The research questions within this framework can be divided into three main categories: | Research Area | Paper/Work List | |--------------------|-----------------| | Benchmark the R&D abilities | Benchmark | | Idea proposal: Explore new ideas or refine existing ones | Research | | Ability to realize ideas: Implement and execute ideas | Development | We believe that the key to delivering high-quality solutions lies in the ability to evolve R&D capabilities. Agents should learn like human experts, continuously improving their R&D skills. More documents can be found in the 📖 readthedocs. 📃 Paper/Work list 📊 Benchmark Towards Data-Centric Automatic R&D !image 🔍 Research In a data mining expert's daily research and development process, they propose a hypothesis (e.g., a model structure like RNN can capture patterns in time-series data), design experiments (e.g., finance data contains time-series and we can verify the hypothesis in this scenario), implement the experiment as code (e.g., Pytorch model structure), and then execute the code to get feedback (e.g., metrics, loss curve, etc.). The experts learn from the feedback and improve in the next iteration. Based on the principles above, we have established a basic method framework that continuously proposes hypotheses, verifies them, and gets feedback from the real-world practice. This is the first scientific research automation framework that supports linking with real-world verification. For more detail, please refer to our 🖥️ Live Demo page. 🛠️ Development Collaborative Evolving Strategy for Automatic Data-Centric Development !image 🤝 Contributing We welcome contributions and suggestions to improve RD-Agent. Please refer to the Contributing Guide for more details on how to contribute. Before submitting a pull request, ensure that your code passes the automatic CI checks. 📝 Guidelines This project welcomes contributions and suggestions. Contributing to this project is straightforward and rewarding. Whether it's solving an issue, addressing a bug, enhancing documentation, or even correcting a typo, every contribution is valuable and helps improve RDAgent. To get started, you can explore the issues list, or search for TODO: comments in the codebase by running the command grep -r "TODO:". Before we released RD-Agent as an open-source project on GitHub, it was an internal project within our group. Unfortunately, the internal commit history was not preserved when we removed some confidential code. As a result, some contributions from our group members, including Haotian Chen, Wenjun Feng, Haoxue Wang, Zeqi Ye, Xinjie Shen, and Jinhui Li, were not included in the public commits. ⚖️ Legal disclaimer The RD-agent is provided “as is”, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. The RD-agent is aimed to facilitate research and development process in the financial industry and not ready-to-use for any financial investment or advice. Users shall independently assess and test the risks of the RD-agent in a specific use scenario, ensure the responsible use of AI technology, including but not limited to developing and integrating risk mitigation measures, and comply with all applicable laws and regulations in all applicable jurisdictions. The RD-agent does not provide financial opinions or reflect the opinions of Microsoft, nor is it designed to replace the role of qualified financial professionals in formulating, assessing, and approving finance products. The inputs and outputs of the RD-agent belong to the users and users shall assume all liability under any theory of liability, whether in contract, torts, regulatory, negligence, products liability, or otherwise, associated with use of the RD-agent and any inputs and outputs thereof.

LLMStack
github
LLM Vibe Score0.535
Human Vibe Score0.022778788676674117
trypromptlyMar 28, 2025

LLMStack

LLMStack is a no-code platform for building generative AI agents, workflows and chatbots, connecting them to your data and business processes. Quickstart | Documentation | Promptly Overview Build tailor-made generative AI agents, applications and chatbots that cater to your unique needs by chaining multiple LLMs. Seamlessly integrate your own data, internal tools and GPT-powered models without any coding experience using LLMStack's no-code builder. Trigger your AI chains from Slack or Discord. Deploy to the cloud or on-premise. !llmstack-quickstart See full demo video here Getting Started Check out our Cloud offering at Promptly or follow the instructions below to deploy LLMStack on your own infrastructure. LLMStack deployment comes with a default admin account whose credentials are admin and promptly. Be sure to change the password from admin panel after logging in. Installation Prerequisites LLMStack depends on a background docker container to run jobs. Make sure you have Docker installed on your machine if want to use jobs. You can follow the instructions here to install Docker. Install LLMStack using pip If you are on windows, please use WSL2 (Windows Subsystem for Linux) to install LLMStack. You can follow the instructions here to install WSL2. Once you are in a WSL2 terminal, you can install LLMStack using the above command. Start LLMStack using the following command: Above commands will install and start LLMStack. It will create .llmstack in your home directory and places the database and config files in it when run for the first time. Once LLMStack is up and running, it should automatically open your browser and point it to localhost:3000. You can add your own keys to providers like OpenAI, Cohere, Stability etc., from Settings page. If you want to provide default keys for all the users of your LLMStack instance, you can add them to the ~/.llmstack/config file. LLMStack: Quickstart video Features 🤖 Agents: Build generative AI agents like AI SDRs, Research Analysts, RPA Automations etc., without writing any code. Connect agents to your internal or external tools, search the web or browse the internet with agents. 🔗 Chain multiple models: LLMStack allows you to chain multiple LLMs together to build complex generative AI applications. 📊 Use generative AI on your Data: Import your data into your accounts and use it in AI chains. LLMStack allows importing various types (CSV, TXT, PDF, DOCX, PPTX etc.,) of data from a variety of sources (gdrive, notion, websites, direct uploads etc.,). Platform will take care of preprocessing and vectorization of your data and store it in the vector database that is provided out of the box. 🛠️ No-code builder: LLMStack comes with a no-code builder that allows you to build AI chains without any coding experience. You can chain multiple LLMs together and connect them to your data and business processes. ☁️ Deploy to the cloud or on-premise: LLMStack can be deployed to the cloud or on-premise. You can deploy it to your own infrastructure or use our cloud offering at Promptly. 🚀 API access: Apps or chatbots built with LLMStack can be accessed via HTTP API. You can also trigger your AI chains from Slack or Discord. 🏢 Multi-tenant: LLMStack is multi-tenant. You can create multiple organizations and add users to them. Users can only access the data and AI chains that belong to their organization. What can you build with LLMStack? Using LLMStack you can build a variety of generative AI applications, chatbots and agents. Here are some examples: 👩🏻‍💼 AI SDRs: You can build AI SDRs (Sales Development Representatives) that can generate personalized emails, LinkedIn messages, cold calls, etc., for your sales team 👩🏻‍💻 Research Analysts: You can build AI Research Analysts that can generate research reports, investment thesis, etc., for your investment team 🤖 RPA Automations: You can build RPA automations that can automate your business processes by generating emails, filling forms, etc., 📝 Text generation: You can build apps that generate product descriptions, blog posts, news articles, tweets, emails, chat messages, etc., by using text generation models and optionally connecting your data. Check out this marketing content generator for example 🤖 Chatbots: You can build chatbots trained on your data powered by ChatGPT like Promptly Help that is embedded on Promptly website 🎨 Multimedia generation: Build complex applications that can generate text, images, videos, audio, etc. from a prompt. This story generator is an example 🗣️ Conversational AI: Build conversational AI systems that can have a conversation with a user. Check out this Harry Potter character chatbot 🔍 Search augmentation: Build search augmentation systems that can augment search results with additional information using APIs. Sharebird uses LLMStack to augment search results with AI generated answer from their content similar to Bing's chatbot 💬 Discord and Slack bots: Apps built on LLMStack can be triggered from Slack or Discord. You can easily connect your AI chains to Slack or Discord from LLMStack's no-code app editor. Check out our Discord server to interact with one such bot. Administration Login to http://localhost:3000/admin using the admin account. You can add users and assign them to organizations in the admin panel. Cloud Offering Check out our cloud offering at Promptly. You can sign up for a free account and start building your own generative AI applications. Documentation Check out our documentation at docs.trypromptly.com/llmstack to learn more about LLMStack. Development Check out our development guide at docs.trypromptly.com/llmstack/development to learn more about how to run and develop LLMStack. Contributing We welcome contributions to LLMStack. Please check out our contributing guide to learn more about how you can contribute to LLMStack.

instill-core
github
LLM Vibe Score0.515
Human Vibe Score0.023472450495103967
instill-aiMar 28, 2025

instill-core

🔮 Instill Core A complete unstructured data solution: ETL processing, AI-readiness, open-source LLM hosting, and RAG capabilities in one powerful platform. Quick start Follow the installation steps below or documentation for more details to build versatile AI applications locally. What is Instill Core? Instill Core is an end-to-end AI platform for data, pipeline and model orchestration. 🔮 Instill Core simplifies infrastructure hassle and encompasses these core features: 💧 Pipeline: Quickly build versatile AI-first APIs or automated workflows. ⚗️ Model: Deploy and monitor AI models without GPU infrastructure hassles. 💾 Artifact: Transform unstructured data (e.g., documents, images, audio, video) into AI-ready formats. ⚙️ Component: Connect essential building blocks to construct powerful pipelines. What can you build? 📖 Parsing PDF Files to Markdown: Cookbook 🧱 Generating Structured Outputs from LLMs: Cookbook & Tutorial 🕸️ Web scraping & Google Search with Structured Insights 🌱 Instance segmentation on microscopic plant stomata images: Cookbook See Examples for more! Installation Prerequisites | Operating System | Requirements and Instructions | | ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | macOS or Linux | Instill Core works natively | | Windows | • Use Windows Subsystem for Linux (WSL2)• Install latest yq from GitHub Repository• Install latest Docker Desktop and enable WSL2 integration (tutorial)• (Optional) Install cuda-toolkit on WSL2 (NVIDIA tutorial) | | All Systems | • Docker Engine v25 or later• Docker Compose v2 or later• Install latest stable Docker and Docker Compose | Steps Use stable release version Execute the following commands to pull pre-built images with all the dependencies to launch: [!NOTE] We have restructured our project repositories. If you need to access 🔮 Instill Core projects up to version v0.13.0-beta, please refer to the instill-ai/deprecated-core repository. Use the latest version for local development Execute the following commands to build images with all the dependencies to launch: [!IMPORTANT] Code in the main branch tracks under-development progress towards the next release and may not work as expected. If you are looking for a stable alpha version, please use latest release. 🚀 That's it! Once all the services are up with health status, the UI is ready to go at . Please find the default login credentials in the documentation. To shut down all running services: Deployment Visit the Deployment Overview for more details. Client Access 📺 Console ⌨️ CLI 📦 SDK: Python SDK TypeScript SDK Stay tuned, as more SDKs are on the way! Documentation Please visit our official documentation for more. Additional resources: API Reference Cookbooks Tutorials Examples Contributing We welcome contributions from our community! Checkout the methods below: Cookbooks: Help us create helpful pipelines and guides for the community. Visit our Cookbook repository to get started. Issues: Contribute to improvements by raising tickets using templates here or discuss in existing ones you think you can help with. Community Standards We are committed to maintaining a respectful and welcoming atmosphere for all contributors. Before contributing, please read: Contributing Guidelines Code of Conduct Support Get help by joining our Discord community where you can post any questions on our #ask-for-help channel. Contributors ✨ Thank you to all these wonderful people (emoji key): Vibhor Bhatt Miguel Ortiz Sajda Kabir Henry Chen Hari Bhandari Shiva Gaire Zubeen ShihChun-H Ikko Eltociear Ashimine Farookh Zaheer Siddiqui Brian Gallagher hairyputtar David Marx Deniz Parlak Po-Yu Chen Po Chun Chiu Sarthak HR Wu phelan Chang, Hui-Tang Xiaofei Du Ping-Lin Chang Tony Wang Pratik date Juan Vallés Naman Anand totuslink Praharsh Jain Utsav Paul CaCaBlocker Rafael Melo Jeremy Shih Romit Mohane ChunHao Amelia C 楊竣凱 andre.liang Zoodane George Strong Anni Mubeen Kodvavi RCKT Wojciech Bandzerewicz Gary Leo felixcorleone Zoe Daniel Manul Thanura Akash Jana Anish0203 Prathamesh Tugaonkar Shubham This project follows the all-contributors specification. Contributions of any kind welcome! License See the LICENSE file for licensing information.

rpaframework
github
LLM Vibe Score0.527
Human Vibe Score0.11594284776995417
robocorpMar 28, 2025

rpaframework

RPA Framework ============= REQUEST for user input! We are looking at improving our keyword usage to cover situations where developer might be struggling to smoothly write task for a Robot. Describe the situation where your implementation speed slows due to the lack of easier syntax. Comment HERE _ .. contents:: Table of Contents :local: :depth: 1 .. include-docs-readme Introduction RPA Framework is a collection of open-source libraries and tools for Robotic Process Automation (RPA), and it is designed to be used with both Robot Framework and Python. The goal is to offer well-documented and actively maintained core libraries for Software Robot Developers. Learn more about RPA at Robocorp Documentation_. The project is: 100% Open Source Sponsored by Robocorp_ Optimized for Robocorp Control Room and Developer Tools Accepting external contributions .. _Robot Framework: https://robotframework.org .. _Robot Framework Foundation: https://robotframework.org/foundation/ .. _Python: https://www.python.org/ .. _Robocorp: https://robocorp.com .. _Robocorp Documentation: https://robocorp.com/docs-robot-framework .. _Control Room: https://robocorp.com/docs/control-room .. _Developer Tools: https://robocorp.com/downloads .. _Installing Python Packages: https://robocorp.com/docs/setup/installing-python-package-dependencies Links ^^^^^ Homepage: `_ Documentation: _ PyPI: _ Release notes: _ RSS feed: _ .. image:: https://img.shields.io/github/actions/workflow/status/robocorp/rpaframework/main.yaml?style=for-the-badge :target: https://github.com/robocorp/rpaframework/actions/workflows/main.yaml :alt: Status .. image:: https://img.shields.io/pypi/dw/rpaframework?style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework :alt: rpaframework .. image:: https://img.shields.io/pypi/l/rpaframework.svg?style=for-the-badge&color=brightgreen :target: http://www.apache.org/licenses/LICENSE-2.0.html :alt: License Packages .. image:: https://img.shields.io/pypi/v/rpaframework.svg?label=rpaframework&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework :alt: rpaframework latest version .. image:: https://img.shields.io/pypi/v/rpaframework-assistant.svg?label=rpaframework-assistant&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework-assistant :alt: rpaframework-assistant latest version .. image:: https://img.shields.io/pypi/v/rpaframework-aws.svg?label=rpaframework-aws&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework-aws :alt: rpaframework-aws latest version .. image:: https://img.shields.io/pypi/v/rpaframework-core.svg?label=rpaframework-core&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework-core :alt: rpaframework-core latest version .. image:: https://img.shields.io/pypi/v/rpaframework-google.svg?label=rpaframework-google&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-google :alt: rpaframework-google latest version .. image:: https://img.shields.io/pypi/v/rpaframework-hubspot.svg?label=rpaframework-hubspot&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-hubspot :alt: rpaframework-hubspot latest version .. image:: https://img.shields.io/pypi/v/rpaframework-openai.svg?label=rpaframework-openai&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-openai :alt: rpaframework-openai latest version .. image:: https://img.shields.io/pypi/v/rpaframework-pdf.svg?label=rpaframework-pdf&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-pdf :alt: rpaframework-pdf latest version .. image:: https://img.shields.io/pypi/v/rpaframework-recognition.svg?label=rpaframework-recognition&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-recognition :alt: rpaframework-recognition latest version .. image:: https://img.shields.io/pypi/v/rpaframework-windows.svg?label=rpaframework-windows&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-windows :alt: rpaframework-windows latest version From the above packages, rpaframework-core and rpaframework-recognition are support packages, which alone do not contain any libraries. Libraries The RPA Framework project currently includes the following libraries: The x in the PACKAGE column means that library is included in the rpaframework package and for example. x,pdf means that RPA.PDF library is provided in both the rpaframework and rpaframework-pdf packages. +----------------------------+-------------------------------------------------------+------------------------+ | LIBRARY NAME | DESCRIPTION | PACKAGE | +----------------------------+-------------------------------------------------------+------------------------+ | Archive_ | Archiving TAR and ZIP files | x | +----------------------------+-------------------------------------------------------+------------------------+ | Assistant_ | Display information to a user and request input. | assistant | +----------------------------+-------------------------------------------------------+------------------------+ | Browser.Selenium_ | Control browsers and automate the web | x | +----------------------------+-------------------------------------------------------+------------------------+ | Browser.Playwright_ | Newer way to control browsers | special (more below) | +----------------------------+-------------------------------------------------------+------------------------+ | Calendar_ | For date and time manipulations | x | +----------------------------+-------------------------------------------------------+------------------------+ | Cloud.AWS_ | Use Amazon AWS services | x,aws | +----------------------------+-------------------------------------------------------+------------------------+ | Cloud.Azure_ | Use Microsoft Azure services | x | +----------------------------+-------------------------------------------------------+------------------------+ | Cloud.Google_ | Use Google Cloud services | google | +----------------------------+-------------------------------------------------------+------------------------+ | Crypto_ | Common hashing and encryption operations | x | +----------------------------+-------------------------------------------------------+------------------------+ | Database_ | Interact with databases | x | +----------------------------+-------------------------------------------------------+------------------------+ | Desktop_ | Cross-platform desktop automation | x | +----------------------------+-------------------------------------------------------+------------------------+ | Desktop.Clipboard_ | Interact with the system clipboard | x | +----------------------------+-------------------------------------------------------+------------------------+ | Desktop.OperatingSystem_ | Read OS information and manipulate processes | x | +----------------------------+-------------------------------------------------------+------------------------+ | DocumentAI_ | Intelligent Document Processing wrapper | x | +----------------------------+-------------------------------------------------------+------------------------+ | DocumentAI.Base64AI_ | Intelligent Document Processing service | x | +----------------------------+-------------------------------------------------------+------------------------+ | DocumentAI.Nanonets_ | Intelligent Document Processing service | x | +----------------------------+-------------------------------------------------------+------------------------+ | Email.Exchange_ | E-Mail operations (Exchange protocol) | x | +----------------------------+-------------------------------------------------------+------------------------+ | Email.ImapSmtp_ | E-Mail operations (IMAP & SMTP) | x | +----------------------------+-------------------------------------------------------+------------------------+ | Excel.Application_ | Control the Excel desktop application | x | +----------------------------+-------------------------------------------------------+------------------------+ | Excel.Files_ | Manipulate Excel files directly | x | +----------------------------+-------------------------------------------------------+------------------------+ | FileSystem_ | Read and manipulate files and paths | x | +----------------------------+-------------------------------------------------------+------------------------+ | FTP_ | Interact with FTP servers | x | +----------------------------+-------------------------------------------------------+------------------------+ | HTTP_ | Interact directly with web APIs | x | +----------------------------+-------------------------------------------------------+------------------------+ | Hubspot_ | Access HubSpot CRM data objects | hubspot | +----------------------------+-------------------------------------------------------+------------------------+ | Images_ | Manipulate images | x | +----------------------------+-------------------------------------------------------+------------------------+ | JavaAccessBridge_ | Control Java applications | x | +----------------------------+-------------------------------------------------------+------------------------+ | JSON_ | Manipulate JSON objects | x | +----------------------------+-------------------------------------------------------+------------------------+ | MFA_ | Authenticate using one-time passwords (OTP) & OAuth2 | x | +----------------------------+-------------------------------------------------------+------------------------+ | Notifier_ | Notify messages using different services | x | +----------------------------+-------------------------------------------------------+------------------------+ | OpenAI_ | Artificial Intelligence service | openai | +----------------------------+-------------------------------------------------------+------------------------+ | Outlook.Application_ | Control the Outlook desktop application | x | +----------------------------+-------------------------------------------------------+------------------------+ | PDF_ | Read and create PDF documents | x,pdf | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.Process_ | Use the Robocorp Process API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.WorkItems_ | Use the Robocorp Work Items API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.Vault_ | Use the Robocorp Secrets API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.Storage_ | Use the Robocorp Asset Storage API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Salesforce_ | Salesforce operations | x | +----------------------------+-------------------------------------------------------+------------------------+ | SAP_ | Control SAP GUI desktop client | x | +----------------------------+-------------------------------------------------------+------------------------+ | Smartsheet_ | Access Smartsheet sheets | x | +----------------------------+-------------------------------------------------------+------------------------+ | Tables_ | Manipulate, sort, and filter tabular data | x | +----------------------------+-------------------------------------------------------+------------------------+ | Tasks_ | Control task execution | x | +----------------------------+-------------------------------------------------------+------------------------+ | Twitter_ | Twitter API interface | x | +----------------------------+-------------------------------------------------------+------------------------+ | Windows_ | Alternative library for Windows automation | x,windows | +----------------------------+-------------------------------------------------------+------------------------+ | Word.Application_ | Control the Word desktop application | x | +----------------------------+-------------------------------------------------------+------------------------+ .. _Archive: https://rpaframework.org/libraries/archive/ .. _Assistant: https://rpaframework.org/libraries/assistant/ .. Browser.Playwright: https://rpaframework.org/libraries/browserplaywright/ .. Browser.Selenium: https://rpaframework.org/libraries/browserselenium/ .. _Calendar: https://rpaframework.org/libraries/calendar/ .. Cloud.AWS: https://rpaframework.org/libraries/cloudaws/ .. Cloud.Azure: https://rpaframework.org/libraries/cloudazure/ .. Cloud.Google: https://rpaframework.org/libraries/cloudgoogle/ .. _Crypto: https://rpaframework.org/libraries/crypto/ .. _Database: https://rpaframework.org/libraries/database/ .. _Desktop: https://rpaframework.org/libraries/desktop/ .. Desktop.Clipboard: https://rpaframework.org/libraries/desktopclipboard/ .. Desktop.Operatingsystem: https://rpaframework.org/libraries/desktopoperatingsystem/ .. _DocumentAI: https://rpaframework.org/libraries/documentai .. DocumentAI.Base64AI: https://rpaframework.org/libraries/documentaibase64ai/ .. DocumentAI.Nanonets: https://rpaframework.org/libraries/documentainanonets/ .. Email.Exchange: https://rpaframework.org/libraries/emailexchange/ .. Email.ImapSmtp: https://rpaframework.org/libraries/emailimapsmtp/ .. Excel.Application: https://rpaframework.org/libraries/excelapplication/ .. Excel.Files: https://rpaframework.org/libraries/excelfiles/ .. _FileSystem: https://rpaframework.org/libraries/filesystem/ .. _FTP: https://rpaframework.org/libraries/ftp/ .. _HTTP: https://rpaframework.org/libraries/http/ .. _Hubspot: https://rpaframework.org/libraries/hubspot/ .. _Images: https://rpaframework.org/libraries/images/ .. _JavaAccessBridge: https://rpaframework.org/libraries/javaaccessbridge/ .. _JSON: https://rpaframework.org/libraries/json/ .. _MFA: https://rpaframework.org/libraries/mfa/ .. _Notifier: https://rpaframework.org/libraries/notifier/ .. _OpenAI: https://rpaframework.org/libraries/openai/ .. Outlook.Application: https://rpaframework.org/libraries/outlookapplication/ .. _PDF: https://rpaframework.org/libraries/pdf/ .. Robocorp.Process: https://rpaframework.org/libraries/robocorpprocess/ .. Robocorp.WorkItems: https://rpaframework.org/libraries/robocorpworkitems/ .. Robocorp.Vault: https://rpaframework.org/libraries/robocorpvault/ .. Robocorp.Storage: https://rpaframework.org/libraries/robocorpstorage/ .. _Salesforce: https://rpaframework.org/libraries/salesforce/ .. _SAP: https://rpaframework.org/libraries/sap/ .. _Smartsheet: https://rpaframework.org/libraries/smartsheet/ .. _Tables: https://rpaframework.org/libraries/tables/ .. _Tasks: https://rpaframework.org/libraries/tasks/ .. _Twitter: https://rpaframework.org/libraries/twitter/ .. _Windows: https://rpaframework.org/libraries/windows/ .. Word.Application: https://rpaframework.org/libraries/wordapplication/ Installation of RPA.Browser.Playwright The RPA.Browser.Playwright at the moment requires special installation, because of the package size and the post install step it needs to be fully installed. Minimum required conda.yaml to install Playwright: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 nodejs=22.9.0 pip=24.0 pip: robotframework-browser==18.8.1 rpaframework==28.6.3 rccPostInstall: rfbrowser init Installation Learn about installing Python packages at Installing Python Packages_. Default installation method with Robocorp Developer Tools_ using conda.yaml: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 pip=24.0 pip: rpaframework==28.6.3 To install all extra packages (including Playwright dependencies), you can use: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 tesseract=5.4.1 nodejs=22.9.0 pip=24.0 pip: robotframework-browser==18.8.1 rpaframework==28.6.3 rpaframework-aws==5.3.3 rpaframework-google==9.0.2 rpaframework-recognition==5.2.5 rccPostInstall: rfbrowser init Separate installation of AWS, PDF and Windows libraries without the main rpaframework: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 pip=24.0 pip: rpaframework-aws==5.3.3 included in the rpaframework as an extra rpaframework-pdf==7.3.3 included in the rpaframework by default rpaframework-windows==7.5.2 included in the rpaframework by default Installation method with pip using Python venv_: .. code-block:: shell python -m venv .venv source .venv/bin/activate pip install rpaframework .. note:: Python 3.8 or higher is required Example After installation the libraries can be directly imported inside Robot Framework_: .. code:: robotframework Settings Library RPA.Browser.Selenium Tasks Login as user Open available browser https://example.com Input text id:user-name ${USERNAME} Input text id:password ${PASSWORD} The libraries are also available inside Python_: .. code:: python from RPA.Browser.Selenium import Selenium lib = Selenium() lib.openavailablebrowser("https://example.com") lib.input_text("id:user-name", username) lib.input_text("id:password", password) Support and contact rpaframework.org _ for library documentation Robocorp Documentation_ for guides and tutorials #rpaframework channel in Robot Framework Slack_ if you have open questions or want to contribute Communicate with your fellow Software Robot Developers and Robocorp experts at Robocorp Developers Slack_ .. _Robot Framework Slack: https://robotframework-slack-invite.herokuapp.com/ .. _Robocorp Developers Slack: https://robocorp-developers.slack.com Contributing Found a bug? Missing a critical feature? Interested in contributing? Head over to the Contribution guide _ to see where to get started. Development Repository development is Python_ based and requires at minimum Python version 3.8+ installed on the development machine. The default Python version used in the Robocorp Robot template is 3.10.14 so it is a good choice for the version to install. Not recommended versions are 3.7.6 and 3.8.1, because they have issues with some of the dependencies related to rpaframework. At the time the newer Python versions starting from 3.12 are also not recommended, because some of the dependencies might cause issues. Repository development tooling is based on poetry and invoke. Poetry is the underlying tool used for compiling, building and running the package. Invoke is used for scripting purposes, for example for linting, testing and publishing tasks. Before writing any code, please read and acknowledge our extensive Dev Guide_. .. _Dev Guide: https://github.com/robocorp/rpaframework/blob/master/docs/source/contributing/development.md First steps to start developing: initial poetry configuration .. code:: shell poetry config virtualenvs.path null poetry config virtualenvs.in-project true poetry config repositories.devpi "https://devpi.robocorp.cloud/ci/test" git clone the repository #. create a new Git branch or switch to correct branch or stay in master branch some branch naming conventions feature/name-of-feature, hotfix/name-of-the-issue, release/number-of-release #. poetry install which install package with its dependencies into the .venv directory of the package, for example packages/main/.venv #. if testing against Robocorp Robot which is using devdata/env.json set environment variables or poetry build and use resulting .whl file (in the dist/ directory) in the Robot conda.yaml or poetry build and push resulting .whl file (in the dist/ directory) into a repository and use raw url to include it in the Robot conda.yaml another possibility for Robocorp internal development is to use Robocorp devpi instance, by poetry publish --ci and point conda.yaml to use rpaframework version in devpi #. poetry run python -m robot common ROBOT_ARGS from Robocorp Robot template: --report NONE --outputdir output --logtitle "Task log" #. poetry run python #. invoke lint to make sure that code formatting is according to rpaframework repository guidelines. It is possible and likely that Github action will fail the if developer has not linted the code changes. Code formatting is based on black and flake8 and those are run with the invoke lint. #. the library documentation can be created in the repository root (so called "meta" package level). The documentation is built by the docgen tools using the locally installed version of the project, local changes for the main package will be reflected each time you generate the docs, but if you want to see local changes for optional packages, you must utilize invoke install-local --package using the appropriate package name (e.g., rpaframework-aws). This will reinstall that package as a local editable version instead of from PyPI. Multiple such packages can be added by repeating the use of the --package option. In order to reset this, use invoke install --reset. poetry update and/or invoke install-local --package make docs open docs/build/html/index.html with the browser to view the changes or execute make local and navigate to localhost:8000 to view docs as a live local webpage. .. code-block:: toml Before [tool.poetry.dependencies] python = "^3.8" rpaframework = { path = "packages/main", extras = ["cv", "playwright", "aws"] } rpaframework-google = "^4.0.0" rpaframework-windows = "^4.0.0" After [tool.poetry.dependencies] python = "^3.8" rpaframework = { path = "packages/main", extras = ["cv", "playwright"] } rpaframework-aws = { path = "packages/aws" } rpaframework-google = "^4.0.0" rpaframework-windows = "^4.0.0" #. invoke test (this will run both Python unittests and robotframework tests defined in the packages tests/ directory) to run specific Python test: poetry run pytest path/to/test.py::test_function to run specific Robotframework test: inv testrobot -r -t #. git commit changes #. git push changes to remote #. create pull request from the branch describing changes included in the description #. update docs/source/releasenotes.rst with changes (commit and push) Packaging and publishing are done after changes have been merged into master branch. All the following steps should be done within master branch. #. git pull latest changes into master branch #. in the package directory containing changes execute invoke lint and invoke test #. update pyproject.toml with new version according to semantic versioning #. update docs/source/releasenotes.rst with changes #. in the repository root (so called "meta" package level) run command poetry update #. git commit changed poetry.lock files (on meta and target package level), releasenotes.rst and pyproject.toml with message "PACKAGE. version x.y.z" #. git push #. invoke publish after Github action on master branch is all green Some recommended tools for development Visual Studio Code_ as a code editor with following extensions: Sema4.ai_ Robot Framework Language Server_ GitLens_ Python extension_ GitHub Desktop_ will make version management less prone to errors .. _poetry: https://python-poetry.org .. _invoke: https://www.pyinvoke.org .. _Visual Studio Code: https://code.visualstudio.com .. _GitHub Desktop: https://desktop.github.com .. _Sema4.ai: https://marketplace.visualstudio.com/items?itemName=sema4ai.sema4ai .. _Robot Framework Language Server: https://marketplace.visualstudio.com/items?itemName=robocorp.robotframework-lsp .. _GitLens: https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens .. _Python extension: https://marketplace.visualstudio.com/items?itemName=ms-python.python .. _black: https://pypi.org/project/black/ .. _flake8: https://pypi.org/project/flake8/ .. _venv: https://docs.python.org/3/library/venv.html License This project is open-source and licensed under the terms of the Apache License 2.0 `_.

ai-hub-gateway-solution-accelerator
github
LLM Vibe Score0.562
Human Vibe Score0.14530291803566378
Azure-SamplesMar 28, 2025

ai-hub-gateway-solution-accelerator

AI Hub Gateway Landing Zone accelerator The AI Hub Gateway Landing Zone is a solution accelerator that provides a set of guidelines and best practices for implementing a central AI API gateway to empower various line-of-business units in an organization to leverage Azure AI services. !user-story User Story The AI Hub Gateway Landing Zone architecture designed to be a central hub for AI services, providing a single point of entry for AI services, and enabling the organization to manage and govern AI services in a consistent manner. !AI Hub Gateway Landing Zone Key features !ai-hub-gateway-benefits.png Recent release updates: About: here you can see the recent updates to the gateway implementation Now this solution accelerator is updated to be enterprise ready with the following features: Improved OpenAI Usage Ingestion with the ability to ingest usage data from Azure OpenAI API for both streaming and non-streaming requests. Check the guide here Bring your own VNet is now supported with the ability to deploy the AI Hub Gateway Landing Zone in your own VNet. Check the guide here Throttling events monitoring is now supported with the ability to capture and raise too many requests status code as a custom metric in Application Insights. Check the guide here New gpt-4o Global Deployment is now part of the OpenAI resource provisioning Azure OpenAI API spec version was updated to to bring APIs for audio and batch among other advancements (note it is backward compatible with previous versions) AI usage reports enhancements with Cosmos Db now include a container for which include the $ pricing for AI models tokens (sample data can be found here), along with updated PowerBI dashboard design. Private connectivity now can be enabled by setting APIM deployment to External or Internal (require SKU to be either Developer or Premium) and it will provision all included Azure resources like (Azure OpenAI, Cosmos, Event Hub,...) with private endpoints. The AI Hub Gateway Landing Zone provides the following features: Centralized AI API Gateway: A central hub for AI services, providing a single point of entry for AI services that can be shared among multiple use-cases in a secure and governed approach. Seamless integration with Azure AI services: Ability to just update endpoints and keys in existing apps to switch to use AI Hub Gateway. AI routing and orchestration: The AI Hub Gateway Landing Zone provides a mechanism to route and orchestrate AI services, based on priority and target model enabling the organization to manage and govern AI services in a consistent manner. Granular access control: The AI Hub Gateway Landing Zone does not use master keys to access AI services, instead, it uses managed identities to access AI services while consumers can use gateway keys. Private connectivity: The AI Hub Gateway Landing Zone is designed to be deployed in a private network, and it uses private endpoints to access AI services. Capacity management: The AI Hub Gateway Landing Zone provides a mechanism to manage capacity based on requests and tokens. Usage & charge-back: The AI Hub Gateway Landing Zone provides a mechanism to track usage and charge-back to the respective business units with flexible integration with existing charge-back & data platforms. Resilient and scalable: The AI Hub Gateway Landing Zone is designed to be resilient and scalable, and it uses Azure API Management with its zonal redundancy and regional gateways which provides a scalable and resilient solution. Full observability: The AI Hub Gateway Landing Zone provides full observability with Azure Monitor, Application Insights, and Log Analytics with detailed insights into performance, usage, and errors. Hybrid support: The AI Hub Gateway Landing Zone approach the deployment of backends and gateway on Azure, on-premises or other clouds. !one-click-deploy One-click deploy This solution accelerator provides a one-click deploy option to deploy the AI Hub Gateway Landing Zone in your Azure subscription through Azure Developer CLI (azd) or Bicep (IaC). What is being deployed? !Azure components The one-click deploy option will deploy the following components in your Azure subscription: Azure API Management: Azure API Management is a fully managed service that powers most of the GenAI gateway capabilities. Application Insights: Application Insights is an extensible Application Performance Management (APM) service that will provides critical insights on the gateway operational performance. It will also include a dashboard for the key metrics. Event Hub: Event Hub is a fully managed, real-time data ingestion service that’s simple, trusted, and scalable and it is used to stream usage and charge-back data to target data and charge back platforms. Azure OpenAI: 3 instances of Azure OpenAI across 3 regions. Azure OpenAI is a cloud deployment of cutting edge generative models from OpenAI (like ChatGPT, DALL.E and more). Cosmos DB: Azure Cosmos DB is a fully managed NoSQL database for storing usage and charge-back data. Azure Function App: to support real-time event processing service that will be used to process the usage and charge-back data from Event Hub and push it to Cosmos DB. User Managed Identity: A user managed identity to be used by the Azure API Management to access the Azure OpenAI services/Event Hub and another for Azure Stream Analytics to access Event Hub and Cosmos DB. Virtual Network: A virtual network to host the Azure API Management and the other Azure resources. Private Endpoints & Private DNS Zones: Private endpoints for Azure OpenAI, Cosmos DB, Azure Function, Azure Monitor and Event Hub to enable private connectivity. Prerequisites In order to deploy and run this solution accelerator, you'll need Azure Account - If you're new to Azure, get an Azure account for free and you'll get some free Azure credits to get started. Azure subscription with access enabled for the Azure OpenAI service - You can request access. You can also visit the Cognitive Search docs to get some free Azure credits to get you started. Azure account permissions - Your Azure Account must have Microsoft.Authorization/roleAssignments/write permissions, such as User Access Administrator or Owner. For local development, you'll need: Azure CLI - The Azure CLI is a command-line tool that provides a great experience for managing Azure resources. You can install the Azure CLI on your local machine by following the instructions here. Azure Developer CLI (azd) - The Azure Developer CLI is a command-line tool that provides a great experience for deploying Azure resources. You can install the Azure Developer CLI on your local machine by following the instructions here VS Code - Visual Studio Code is a lightweight but powerful source code editor which runs on your desktop and is available for Windows, macOS, and Linux. You can install Visual Studio Code on your local machine by following the instructions here How to deploy? It is recommended to check first the main.bicep file that includes the deployment configuration and parameters. Make sure you have enough OpenAI capacity for gpt-35-turbo and embedding in the selected regions. Currently these are the default values: When you are happy with the configuration, you can deploy the solution using the following command: NOTE: If you faced any deployment errors, try to rerun the command as you might be facing a transient error. After that, you can start using the AI Hub Gateway Landing Zone through the Azure API Management on Azure Portal: !apim-test NOTE: You can use Azure Cloud Shell to run the above command, just clone this repository and run the command from the repo root folder. !docs Supporting documents To dive deeper into the AI Hub Gateway technical mechanics, you can check out the following guides: Architecture guides Architecture deep dive Deployment components API Management configuration OpenAI Usage Ingestion Bring your own Network Onboarding guides OpenAI Onboarding AI Search Onboarding Power BI Dashboard Throttling Events Alerts AI Studio Integration Additional guides End-to-end scenario (Chat with data) Hybrid deployment of AI Hub Gateway Deployment troubleshooting

awesome-ai-in-finance
github
LLM Vibe Score0.58
Human Vibe Score1
georgezouqMar 28, 2025

awesome-ai-in-finance

Awesome AI in Finance There are millions of trades made in the global financial market every day. Data grows very quickly and people are hard to understand. With the power of the latest artificial intelligence research, people analyze & trade automatically and intelligently. This list contains the research, tools and code that people use to beat the market. [中文资源] Contents LLMs Papers Courses & Books Strategies & Research Time Series Data Portfolio Management High Frequency Trading Event Drive Crypto Currencies Strategies Technical Analysis Lottery & Gamble Arbitrage Data Sources Research Tools Trading System TA Lib Exchange API Articles Others LLMs 🌟🌟 MarS - A Financial Market Simulation Engine Powered by Generative Foundation Model. 🌟🌟 Financial Statement Analysis with Large Language Models - GPT-4 can outperform professional financial analysts in predicting future earnings changes, generating useful narrative insights, and resulting in superior trading strategies with higher Sharpe ratios and alphas, thereby suggesting a potential central role for LLMs in financial decision-making. PIXIU - An open-source resource providing a financial large language model, a dataset with 136K instruction samples, and a comprehensive evaluation benchmark. FinGPT - Provides a playground for all people interested in LLMs and NLP in Finance. MACD + RSI + ADX Strategy (ChatGPT-powered) by TradeSmart - Asked ChatGPT on which indicators are the most popular for trading. We used all of the recommendations given. A ChatGPT trading algorithm delivered 500% returns in stock market. My breakdown on what this means for hedge funds and retail investors Use chatgpt to adjust strategy parameters Hands-on LLMs: Train and Deploy a Real-time Financial Advisor - Train and deploy a real-time financial advisor chatbot with Falcon 7B and CometLLM. ChatGPT Strategy by OctoBot - Use ChatGPT to determine which cryptocurrency to trade based on technical indicators. Papers The Theory of Speculation L. Bachelier, 1900 - The influences which determine the movements of the Stock Exchange are. Brownian Motion in the Stock Market Osborne, 1959 - The common-stock prices can be regarded as an ensemble of decisions in statistical equilibrium. An Investigation into the Use of Reinforcement Learning Techniques within the Algorithmic Trading Domain, 2015 A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem Reinforcement Learning for Trading, 1994 Dragon-Kings, Black Swans and the Prediction of Crises Didier Sornette - The power laws in the distributions of event sizes under a broad range of conditions in a large variety of systems. Financial Trading as a Game: A Deep Reinforcement Learning Approach - Deep reinforcement learning provides a framework toward end-to-end training of such trading agent. Machine Learning for Trading - With an appropriate choice of the reward function, reinforcement learning techniques can successfully handle the risk-averse case. Ten Financial Applications of Machine Learning, 2018 - Slides review few important financial ML applications. FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, 2020 - Introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance and to develop their own stock trading strategies. Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy, 2020 - Propose an ensemble strategy that employs deep reinforcement schemes to learn a stock trading strategy by maximizing investment return. Courses & Books & Blogs 🌟 QuantResearch - Quantitative analysis, strategies and backtests https://letianzj.github.io/ NYU: Overview of Advanced Methods of Reinforcement Learning in Finance Udacity: Artificial Intelligence for Trading AI in Finance - Learn Fintech Online. Advanced-Deep-Trading - Experiments based on "Advances in financial machine learning" book. Advances in Financial Machine Learning - Using advanced ML solutions to overcome real-world investment problems. Build Financial Software with Generative AI - Book about how to build financial software hands-on using generative AI tools like ChatGPT and Copilot. Mastering Python for Finance - Sources codes for: Mastering Python for Finance, Second Edition. MLSys-NYU-2022 - Slides, scripts and materials for the Machine Learning in Finance course at NYU Tandon, 2022. Train and Deploy a Serverless API to predict crypto prices - In this tutorial you won't build an ML system that will make you rich. But you will master the MLOps frameworks and tools you need to build ML systems that, together with tons of experimentation, can take you there. Strategies & Research Time Series Data Price and Volume process with Technology Analysis Indices 🌟🌟 stockpredictionai - A complete process for predicting stock price movements. 🌟 Personae - Implements and environment of Deep Reinforcement Learning & Supervised Learning for Quantitative Trading. 🌟 Ensemble-Strategy - Deep Reinforcement Learning for Automated Stock Trading. FinRL - A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance. AutomatedStockTrading-DeepQ-Learning - Build a Deep Q-learning reinforcement agent model as automated trading robot. tfdeeprltrader - Trading environment(OpenAI Gym) + PPO(TensorForce). trading-gym - Trading agent to train with episode of short term trading itself. trading-rl - Deep Reinforcement Learning for Financial Trading using Price Trailing. deeprltrader - Trading environment(OpenAI Gym) + DDQN (Keras-RL). Quantitative-Trading - Papers and code implementing Quantitative-Trading. gym-trading - Environment for reinforcement-learning algorithmic trading models. zenbrain - A framework for machine-learning bots. DeepLearningNotes - Machine learning in quant analysis. stockmarketreinforcementlearning - Stock market trading OpenAI Gym environment with Deep Reinforcement Learning using Keras. Chaos Genius - ML powered analytics engine for outlier/anomaly detection and root cause analysis.. mlforecast - Scalable machine learning based time series forecasting. Portfolio Management Deep-Reinforcement-Stock-Trading - A light-weight deep reinforcement learning framework for portfolio management. qtrader - Reinforcement Learning for portfolio management. PGPortfolio - A Deep Reinforcement Learning framework for the financial portfolio management problem. DeepDow - Portfolio optimization with deep learning. skfolio - Python library for portfolio optimization built on top of scikit-learn. High Frequency Trading High-Frequency-Trading-Model-with-IB - A high-frequency trading model using Interactive Brokers API with pairs and mean-reversion. 🌟 SGX-Full-OrderBook-Tick-Data-Trading-Strategy - Solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data. HFTBitcoin - Analysis of High Frequency Trading on Bitcoin exchanges. Event Drive 🌟🌟 stockpredictionai - Complete process for predicting stock price movements. 🌟 trump2cash - A stock trading bot powered by Trump tweets. Crypto Currencies Strategies LSTM-Crypto-Price-Prediction - Predicting price trends in crypto markets using an LSTM-RNN for trading. tforcebtctrader - TensorForce Bitcoin trading bot. Tensorflow-NeuroEvolution-Trading-Bot - A population model that trade cyrpto and breed and mutate iteratively. gekkoga - Genetic algorithm for solving optimization of trading strategies using Gekko. GekkoANNStrategies - ANN trading strategies for the Gekko trading bot. gekko-neuralnet - Neural network strategy for Gekko. bitcoinprediction - Code for "Bitcoin Prediction" by Siraj Raval on YouTube. Technical Analysis quant-trading - Python quantitative trading strategies. Gekko-Bot-Resources - Gekko bot resources. gekkotools - Gekko strategies, tools etc. gekko RSIWR - Gekko RSIWR strategies. gekko HL - Calculate down peak and trade on. EthTradingAlgorithm - Ethereum trading algorithm using Python 3.5 and the library ZipLine. gekkotradingstuff - Awesome crypto currency trading platform. forex.analytics - Node.js native library performing technical analysis over an OHLC dataset with use of genetic algorithmv. BitcoinMACDStrategy - Bitcoin MACD crossover trading strategy backtest. crypto-signal - Automated crypto trading & technical analysis (TA) bot for Bittrex, Binance, GDAX, and more. Gekko-Strategies - Strategies to Gekko trading bot with backtests results and some useful tools. gekko-gannswing - Gann's Swing trade strategy for Gekko trade bot. Lottery & Gamble LotteryPredict - Use LSTM to predict lottery. Arbitrage ArbitrageBot - Arbitrage bot that currently works on bittrex & poloniex. r2 - Automatic arbitrage trading system powered by Node.js + TypeScript. cryptocurrency-arbitrage - A crypto currency arbitrage opportunity calculator. Over 800 currencies and 50 markets. bitcoin-arbitrage - Bitcoin arbitrage opportunity detector. blackbird - Long / short market-neutral strategy. Data Sources Traditional Markets 🌟 Quandl - Get millions of financial and economic dataset from hundreds of publishers via a single free API. yahoo-finance - Python module to get stock data from Yahoo! Finance. Tushare - Crawling historical data of Chinese stocks. Financial Data - Stock Market and Financial Data API. Crypto Currencies CryptoInscriber - A live crypto currency historical trade data blotter. Download live historical trade data from any crypto exchange. Gekko-Datasets - Gekko trading bot dataset dumps. Download and use history files in SQLite format. Research Tools Synthical - AI-powered collaborative environment for Research. 🌟🌟 TensorTrade - Trade efficiently with reinforcement learning. ML-Quant - Quant resources from ArXiv (sanity), SSRN, RePec, Journals, Podcasts, Videos, and Blogs. JAQS - An open source quant strategies research platform. pyfolio - Portfolio and risk analytics in Python. alphalens - Performance analysis of predictive (alpha) stock factors. empyrical - Common financial risk and performance metrics. Used by Zipline and pyfolio. zvt - Zero vector trader. Trading System For Back Test & Live trading Traditional Market System 🌟🌟🌟 OpenBB - AI-powered opensource research and analytics workspace. 🌟🌟 zipline - A python algorithmic trading library. 🌟 TradingView - Get real-time information and market insights. rqalpha - A extendable, replaceable Python algorithmic backtest & trading framework. backtrader - Python backtesting library for trading strategies. kungfu - Kungfu Master trading system. lean - Algorithmic trading engine built for easy strategy research, backtesting and live trading. Combine & Rebuild pylivetrader - Python live trade execution library with zipline interface. CoinMarketCapBacktesting - As backtest frameworks for coin trading strategy. Crypto Currencies zenbot - Command-line crypto currency trading bot using Node.js and MongoDB. bot18 - High-frequency crypto currency trading bot developed by Zenbot. magic8bot - Crypto currency trading bot using Node.js and MongoDB. catalyst - An algorithmic trading library for Crypto-Assets in python. QuantResearchDev - Quant Research dev & Traders open source project. MACD - Zenbot MACD Auto-Trader. abu - A quant trading system base on python. Plugins CoinMarketCapBacktesting - Tests bt and Quantopian Zipline as backtesting frameworks for coin trading strategy. Gekko-BacktestTool - Batch backtest, import and strategy params optimalization for Gekko Trading Bot. TA Lib pandastalib - A Python Pandas implementation of technical analysis indicators. finta - Common financial technical indicators implemented in Python-Pandas (70+ indicators). tulipnode - Official Node.js wrapper for Tulip Indicators. Provides over 100 technical analysis overlay and indicator functions. techan.js - A visual, technical analysis and charting (Candlestick, OHLC, indicators) library built on D3. Exchange API Do it in real world! IbPy - Python API for the Interactive Brokers on-line trading system. HuobiFeeder - Connect HUOBIPRO exchange, get market/historical data for ABAT trading platform backtest analysis and live trading. ctpwrapper - Shanghai future exchange CTP api. PENDAX - Javascript SDK for Trading/Data API and Websockets for cryptocurrency exchanges like FTX, FTXUS, OKX, Bybit, & More Framework tf-quant-finance - High-performance TensorFlow library for quantitative finance. Visualizing playground - Play with neural networks. netron - Visualizer for deep learning and machine learning models. KLineChart - Highly customizable professional lightweight financial charts GYM Environment 🌟 TradingGym - Trading and Backtesting environment for training reinforcement learning agent. TradzQAI - Trading environment for RL agents, backtesting and training. btgym - Scalable, event-driven, deep-learning-friendly backtesting library. Articles The-Economist - The Economist. nyu-mlif-notes - NYU machine learning in finance notes. Using LSTMs to Turn Feelings Into Trades Others zipline-tensorboard - TensorBoard as a Zipline dashboard. gekko-quasar-ui - An UI port for gekko trading bot using Quasar framework. Floom AI gateway and marketplace for developers, enables streamlined integration and least volatile approach of AI features into products Other Resource 🌟🌟🌟 Stock-Prediction-Models - Stock-Prediction-Models, Gathers machine learning and deep learning models for Stock forecasting, included trading bots and simulations. 🌟🌟 Financial Machine Learning - A curated list of practical financial machine learning (FinML) tools and applications. This collection is primarily in Python. 🌟 Awesome-Quant-Machine-Learning-Trading - Quant / Algorithm trading resources with an emphasis on Machine Learning. awesome-quant - A curated list of insanely awesome libraries, packages and resources for Quants (Quantitative Finance). FinancePy - A Python Finance Library that focuses on the pricing and risk-management of Financial Derivatives, including fixed-income, equity, FX and credit derivatives. Explore Finance Service Libraries & Projects - Explore a curated list of Fintech popular & new libraries, top authors, trending project kits, discussions, tutorials & learning resources on kandi.

oreilly-ai-agents
github
LLM Vibe Score0.437
Human Vibe Score0.07783740211883924
sinanuozdemirMar 28, 2025

oreilly-ai-agents

!oreilly-logo AI Agents A-Z This repository contains code for the O'Reilly Live Online Training for AI Agents A-Z This course provides a comprehensive guide to understanding, implementing, and managing AI agents both at the prototype stage and in production. Attendees will start with foundational concepts and progressively delve into more advanced topics, including various frameworks like CrewAI, LangChain, and AutoGen as well as building agents from scratch using powerful prompt engineering techniques. The course emphasizes practical application, guiding participants through hands-on exercises to implement and deploy AI agents, evaluate their performance, and iterate on their designs. We will go over key aspects like cost projections, open versus closed source options, and best practices are thoroughly covered to equip attendees with the knowledge to make informed decisions in their AI projects. Setup Instructions Using Python 3.11 Virtual Environment At the time of writing, we need a Python virtual environment with Python 3.11. Option 1: Python 3.11 is Already Installed Step 1: Verify Python 3.11 Installation Step 2: Create a Virtual Environment This creates a .venv folder in your current directory. Step 3: Activate the Virtual Environment macOS/Linux: Windows: You should see (.venv) in your terminal prompt. Step 4: Verify the Python Version Step 5: Install Packages Step 6: Deactivate the Virtual Environment Option 2: Install Python 3.11 If you don’t have Python 3.11, follow the steps below for your OS. macOS (Using Homebrew) Ubuntu/Debian Windows (Using Windows Installer) Go to Python Downloads. Download the installer for Python 3.11. Run the installer and ensure "Add Python 3.11 to PATH" is checked. Verify Installation Notebooks In the activated environment, run Using 3rd party agent frameworks Intro to CrewAI - An introductory notebook for CrewAI See the streamlit directory for an example of deploying crew on a streamlit app Intro to Autogen - An introductory notebook for Microsoft's Autogen Intro to OpenAI Swarm - An introductory notebook for OpenAI's Swarm Intro to LangGraph - An introductory notebook for LangGraph Agents playing Chess - An implementation of two ReAct Agents playing Chess with each other Evaluating Agents Evaluating Agent Output with Rubrics - Exploring a rubric prompt to evaluate generative output. This notebook also notes positional biases when choosing between agent responses. Advanced - Evaluating Alignment - A longer notebook doing a much more in depth analysis on how an LLM can judge agent's responses Evaluating Tool Selection - Calculating the accuracy of tool selection between different LLMs and quantifying the positional bias present in auto-regressive LLMs. See the additions here for V3 + DeepSeek Distilled Models and here for DeepSeek R1 Building our own agents First Steps with our own Agent - Working towards building our own agent framework See Squad Goals for a very simple example of my own agent framework Intro to Squad Goals - using my own framework to do some basic tasks Multimodal Agents - Incorporating Dalle-3 to allow our squad to generate images Modern Agent Paradigms Plan & Execute Agents - Plan & Execute Agents use a planner to create multi-step plans with an LLM and an executor to complete each step by invoking tools. Reflection Agents - Reflection Agents combine a generator to perform tasks and a reflector to provide feedback and guide improvements. Instructor Sinan Ozdemir is the Founder and CTO of LoopGenius where he uses State of the art AI to help people run digital ads on Meta, Google, and more. Sinan is a former lecturer of Data Science at Johns Hopkins University and the author of multiple textbooks on data science and machine learning. Additionally, he is the founder of the recently acquired Kylie.ai, an enterprise-grade conversational AI platform with RPA capabilities. He holds a master’s degree in Pure Mathematics from Johns Hopkins University and is based in San Francisco, CA.

DownEdit
github
LLM Vibe Score0.491
Human Vibe Score0.032913669732192626
nxNullMar 28, 2025

DownEdit

DownEdit is a fast and powerful program for downloading and editing videos from top platforms like TikTok, Douyin, and Kuaishou. Effortlessly grab videos from user profiles, make bulk edits, throughout the entire directory with just one click. Plus, our advanced Chat & AI features let you download, edit, and generate videos, images, and sounds in bulk. Exciting new features are coming soon—stay tuned! ✨ Preview 🔥 Current Features Edit Video: Enhance videos with various functions designed to streamline editing tasks across entire directories. Edit Photo: Quickly enhance images in bulk with various functions, including AI-powered functions, Edit Sound: Improve audio in bulk using powerful functions, including cutting-edge AI-powered tools. Download all videos: Retrieve videos from users (TikTok, Kuaishou, Douyin, etc.) without watermarks. Bulk AI Generator: Generate images and videos in bulk using powerful generative AI. AI Editor: Enhance your content effortlessly with using AI editor designed for images, sounds and videos. 🌐 Service | Website| Provider| Single Video | User's Videos | Stream | Access | Status | | --- | --- | --- | --- | --- | --- | --- | | tiktok.com | None | ✔️ | ✔️ | ❌ | API (Cookie) | !Inactive | | douyin.com | None | ✔️ | ✔️ | ❌ | API (Cookie) | !Inactive | | kuaishou.com | None | ✔️ | ✔️ | ❌ | Login Required (Cookie) | !Active | | youtube.com | None | ✔️ | ✔️ | ❌ | (Public/Private) | !Active | 🤖 AI Cloud | Type | Model | Provider| Minimal | Bulk | Access | Status | | --- | --- | --- | --- | --- | --- | --- | | Image Generation | None | | None | ✔️ | API (Public) | !Active | | Video Generation | None | | None | ✔️ | | !Inactive | | Sound Generation | None | | None | ✔️ | | !Inactive | Local | Type | Model | Provider| Minimal | Bulk | Access | Status | | --- | --- | --- | --- | --- | --- | --- | | Image Generation | None | | None | ✔️ | | !Inactive | | Video Generation | None | | None | ✔️ | | !Inactive | | Sound Generation | None | | None | ✔️ | | !Inactive | 🚀 Usage Edit Video - Simply copy and paste (right click) whatever directory location you would like to process. Tutorial !EditVideoAdobeExpress Change it according to your desired video speed. Input your music file location Download douyin videos - Download all video from user by input user link. Tutorial Download tiktok videos - Download all video from user by input username with @. Tutorial Download kuaishou videos - Remember to input your own Cookie. Otherwise it won't work. Tutorial Step 1. Right click and select on Inspect element. Step 2. Copy your Cookie browser. Step 3. Copy user ID you want to download. Tips: If you still getting error, try changing your Browser, use Incognito/Private mode and reset your Internet/IP. Edit Photo - Simply copy and paste (right click) whatever directory location you would like to process. Tutorial Remove Background AI 🔎 Requirements Python [!NOTE] Version must be between 3.8 and 3.12. ⚙ Installation Step 1. Download and install python on your pc. Step 2. libraries installation You have three options to install the required libraries: Option 1: Manual Installation Option 2: Automatic installation & virtual environments Option 3: Terminal & virtual environments Step 3. Run the script For Regular Use: You can also download the application and use it on your PC without installing python. Windows: Download macOS: None [!TIP] Fix Terminal Font Issues Install the Microsoft Cascadia font on your computer if your terminal does not support the font, which is resulting in program error. 🔨 Module The following dependencies are required for the project: List Pystyle Requests Inquirer Colorama Moviepy Rich Playwright Rembg WMI Psutil Httpx Aiofiles Author 👤 Sokun Heng Github: @SokunHeng Show your support Please ⭐️ this repository if this project helped you! 📚 Reference Documentation 📝 License Copyright © 2022 SokunHeng.

awesome-quantum-machine-learning
github
LLM Vibe Score0.64
Human Vibe Score1
krishnakumarsekarMar 27, 2025

awesome-quantum-machine-learning

Awesome Quantum Machine Learning A curated list of awesome quantum machine learning algorithms,study materials,libraries and software (by language). Table of Contents INTRODUCTION Why Quantum Machine Learning? BASICS What is Quantum Mechanics? What is Quantum Computing? What is Topological Quantum Computing? Quantum Computing vs Classical Computing QUANTUM COMPUTING Atom Structure Photon wave Electron Fluctuation or spin States SuperPosition SuperPosition specific for machine learning(Quantum Walks) Classical Bit Quantum Bit or Qubit or Qbit Basic Gates in Quantum Computing Quantum Diode Quantum Transistor Quantum Processor Quantum Registery QRAM Quantum Entanglement QUANTUM COMPUTING MACHINE LEARNING BRIDGE Complex Numbers Tensors Tensors Network Oracle Hadamard transform Hilbert Space eigenvalues and eigenvectors Schr¨odinger Operators Quantum lambda calculus Quantum Amplitute Phase Qubits Encode and Decode convert classical bit to qubit Quantum Dirac and Kets Quantum Complexity Arbitrary State Generation QUANTUM ALGORITHMS Quantum Fourier Transform Variational-Quantum-Eigensolver Grovers Algorithm Shor's algorithm Hamiltonian Oracle Model Bernstein-Vazirani Algorithm Simon’s Algorithm Deutsch-Jozsa Algorithm Gradient Descent Phase Estimation Haar Tansform Quantum Ridgelet Transform Quantum NP Problem QUANTUM MACHINE LEARNING ALGORITHMS Quantum K-Nearest Neighbour Quantum K-Means Quantum Fuzzy C-Means Quantum Support Vector Machine Quantum Genetic Algorithm Quantum Hidden Morkov Models Quantum state classification with Bayesian methods Quantum Ant Colony Optimization Quantum Cellular Automata Quantum Classification using Principle Component Analysis Quantum Inspired Evolutionary Algorithm Quantum Approximate Optimization Algorithm Quantum Elephant Herding Optimization Quantum-behaved Particle Swarm Optimization Quantum Annealing Expectation-Maximization QAUNTUM NEURAL NETWORK Quantum perceptrons Qurons Quantum Auto Encoder Quantum Annealing Photonic Implementation of Quantum Neural Network Quantum Feed Forward Neural Network Quantum Boltzman Neural Network Quantum Neural Net Weight Storage Quantum Upside Down Neural Net Quantum Hamiltonian Neural Net QANN QPN SAL Quantum Hamiltonian Learning Compressed Quantum Hamiltonian Learning QAUNTUM STATISTICAL DATA ANALYSIS Quantum Probability Theory Kolmogorovian Theory Quantum Measurement Problem Intuitionistic Logic Heyting Algebra Quantum Filtering Paradoxes Quantum Stochastic Process Double Negation Quantum Stochastic Calculus Hamiltonian Calculus Quantum Ito's Formula Quantum Stochastic Differential Equations(QSDE) Quantum Stochastic Integration Itō Integral Quasiprobability Distributions Quantum Wiener Processes Quantum Statistical Ensemble Quantum Density Operator or Density Matrix Gibbs Canonical Ensemble Quantum Mean Quantum Variance Envariance Polynomial Optimization Quadratic Unconstrained Binary Optimization Quantum Gradient Descent Quantum Based Newton's Method for Constrained Optimization Quantum Based Newton's Method for UnConstrained Optimization Quantum Ensemble Quantum Topology Quantum Topological Data Analysis Quantum Bayesian Hypothesis Quantum Statistical Decision Theory Quantum Minimax Theorem Quantum Hunt-Stein Theorem Quantum Locally Asymptotic Normality Quantum Ising Model Quantum Metropolis Sampling Quantum Monte Carlo Approximation Quantum Bootstrapping Quantum Bootstrap Aggregation Quantum Decision Tree Classifier Quantum Outlier Detection Cholesky-Decomposition for Quantum Chemistry Quantum Statistical Inference Asymptotic Quantum Statistical Inference Quantum Gaussian Mixture Modal Quantum t-design Quantum Central Limit Theorem Quantum Hypothesis Testing Quantum Chi-squared and Goodness of Fit Testing Quantum Estimation Theory Quantum Way of Linear Regression Asymptotic Properties of Quantum Outlier Detection in Quantum Concepts QAUNTUM ARTIFICIAL INTELLIGENCE Heuristic Quantum Mechanics Consistent Quantum Reasoning Quantum Reinforcement Learning QAUNTUM COMPUTER VISION QUANTUM PROGRAMMING LANGUAGES , TOOLs and SOFTWARES ALL QUANTUM ALGORITHMS SOURCE CODES , GITHUBS QUANTUM HOT TOPICS Quantum Cognition Quantum Camera Quantum Mathematics Quantum Information Processing Quantum Image Processing Quantum Cryptography Quantum Elastic Search Quantum DNA Computing Adiabetic Quantum Computing Topological Big Data Anlytics using Quantum Hamiltonian Time Based Quantum Computing Deep Quantum Learning Quantum Tunneling Quantum Entanglment Quantum Eigen Spectrum Quantum Dots Quantum elctro dynamics Quantum teleportation Quantum Supremacy Quantum Zeno Effect Quantum Cohomology Quantum Chromodynamics Quantum Darwinism Quantum Coherence Quantum Decoherence Topological Quantum Computing Topological Quantum Field Theory Quantum Knots Topological Entanglment Boson Sampling Quantum Convolutional Code Stabilizer Code Quantum Chaos Quantum Game Theory Quantum Channel Tensor Space Theory Quantum Leap Quantum Mechanics for Time Travel Quantum Secured Block Chain Quantum Internet Quantum Optical Network Quantum Interference Quantum Optical Network Quantum Operating System Electron Fractionalization Flip-Flop Quantum Computer Quantum Information with Gaussian States Quantum Anomaly Detection Distributed Secure Quantum Machine Learning Decentralized Quantum Machine Learning Artificial Agents for Quantum Designs Light Based Quantum Chips for AI Training QUANTUM STATE PREPARATION ALGORITHM FOR MACHINE LEARNING Pure Quantum State Product State Matrix Product State Greenberger–Horne–Zeilinger State W state AKLT model Majumdar–Ghosh Model Multistate Landau–Zener Models Projected entangled-pair States Infinite Projected entangled-pair States Corner Transfer Matrix Method Tensor-entanglement Renormalization Tree Tensor Network for Supervised Learning QUANTUM MACHINE LEARNING VS DEEP LEARNING QUANTUM MEETUPS QUANTUM GOOGLE GROUPS QUANTUM BASED COMPANIES QUANTUM LINKEDLIN QUANTUM BASED DEGREES CONSOLIDATED QUANTUM ML BOOKS CONSOLIDATED QUANTUM ML VIDEOS CONSOLIDATED QUANTUM ML Reserach Papers CONSOLIDATED QUANTUM ML Reserach Scientist RECENT QUANTUM UPDATES FORUM ,PAGES AND NEWSLETTER INTRODUCTION Why Quantum Machine Learning? Machine Learning(ML) is just a term in recent days but the work effort start from 18th century. What is Machine Learning ? , In Simple word the answer is making the computer or application to learn themselves . So its totally related with computing fields like computer science and IT ? ,The answer is not true . ML is a common platform which is mingled in all the aspects of the life from agriculture to mechanics . Computing is a key component to use ML easily and effectively . To be more clear ,Who is the mother of ML ?, As no option Mathematics is the mother of ML . The world tremendous invention complex numbers given birth to this field . Applying mathematics to the real life problem always gives a solution . From Neural Network to the complex DNA is running under some specific mathematical formulas and theorems. As computing technology growing faster and faster mathematics entered into this field and makes the solution via computing to the real world . In the computing technology timeline once a certain achievements reached peoples interested to use advanced mathematical ideas such as complex numbers ,eigen etc and its the kick start for the ML field such as Artificial Neural Network ,DNA Computing etc. Now the main question, why this field is getting boomed now a days ? , From the business perspective , 8-10 Years before during the kick start time for ML ,the big barrier is to merge mathematics into computing field . people knows well in computing has no idea on mathematics and research mathematician has no idea on what is computing . The education as well as the Job Opportunities is like that in that time . Even if a person tried to study both then the business value for making a product be not good. Then the top product companies like Google ,IBM ,Microsoft decided to form a team with mathematician ,a physician and a computer science person to come up with various ideas in this field . Success of this team made some wonderful products and they started by providing cloud services using this product . Now we are in this stage. So what's next ? , As mathematics reached the level of time travel concepts but the computing is still running under classical mechanics . the companies understood, the computing field must have a change from classical to quantum, and they started working on the big Quantum computing field, and the market named this field as Quantum Information Science .The kick start is from Google and IBM with the Quantum Computing processor (D-Wave) for making Quantum Neural Network .The field of Quantum Computer Science and Quantum Information Science will do a big change in AI in the next 10 years. Waiting to see that........... .(google, ibm). References D-Wave - Owner of a quantum processor Google - Quantum AI Lab IBM - Quantum Computer Lab Quora - Question Regarding future of quantum AI NASA - NASA Quantum Works Youtube - Google Video of a Quantum Processor external-link - MIT Review microsoft new product - Newly Launched Microsoft Quantum Language and Development Kit microsoft - Microsoft Quantum Related Works Google2 - Google Quantum Machine Learning Blog BBC - About Google Quantum Supremacy,IBM Quantum Computer and Microsoft Q Google Quantum Supremacy - Latest 2019 Google Quantum Supremacy Achievement IBM Quantum Supremacy - IBM Talk on Quantum Supremacy as a Primer VICE on the fight - IBM Message on Google Quantum Supremacy IBM Zurich Quantum Safe Cryptography - An interesting startup to replace all our Certificate Authority Via Cloud and IBM Q BASICS What is Quantum Mechanics? In a single line study of an electron moved out of the atom then its classical mechanic ,vibrates inside the atom its quantum mechanics WIKIPEDIA - Basic History and outline LIVESCIENCE. - A survey YOUTUBE - Simple Animation Video Explanining Great. What is Quantum Computing? A way of parallel execution of multiple processess in a same time using qubit ,It reduces the computation time and size of the processor probably in neuro size WIKIPEDIA - Basic History and outline WEBOPEDIA. - A survey YOUTUBE - Simple Animation Video Explanining Great. Quantum Computing vs Classical Computing LINK - Basic outline Quantum Computing Atom Structure one line : Electron Orbiting around the nucleous in an eliptical format YOUTUBE - A nice animation video about the basic atom structure Photon Wave one line : Light nornmally called as wave transmitted as photons as similar as atoms in solid particles YOUTUBE - A nice animation video about the basic photon 1 YOUTUBE - A nice animation video about the basic photon 2 Electron Fluctuation or spin one line : When a laser light collide with solid particles the electrons of the atom will get spin between the orbitary layers of the atom ) YOUTUBE - A nice animation video about the basic Electron Spin 1 YOUTUBE - A nice animation video about the basic Electron Spin 2 YOUTUBE - A nice animation video about the basic Electron Spin 3 States one line : Put a point on the spinning electron ,if the point is in the top then state 1 and its in bottom state 0 YOUTUBE - A nice animation video about the Quantum States SuperPosition two line : During the spin of the electron the point may be in the middle of upper and lower position, So an effective decision needs to take on the point location either 0 or 1 . Better option to analyse it along with other electrons using probability and is called superposition YOUTUBE - A nice animation video about the Quantum Superposition SuperPosition specific for machine learning(Quantum Walks) one line : As due to computational complexity ,quantum computing only consider superposition between limited electrons ,In case to merge more than one set quantum walk be the idea YOUTUBE - A nice video about the Quantum Walks Classical Bits one line : If electron moved from one one atom to other ,from ground state to excited state a bit value 1 is used else bit value 0 used Qubit one line : The superposition value of states of a set of electrons is Qubit YOUTUBE - A nice video about the Quantum Bits 1 YOUTUBE - A nice video about the Bits and Qubits 2 Basic Gates in Quantum Computing one line : As like NOT, OR and AND , Basic Gates like NOT, Hadamard gate , SWAP, Phase shift etc can be made with quantum gates YOUTUBE - A nice video about the Quantum Gates Quantum Diode one line : Quantum Diodes using a different idea from normal diode, A bunch of laser photons trigger the electron to spin and the quantum magnetic flux will capture the information YOUTUBE - A nice video about the Quantum Diode Quantum Transistors one line : A transistor default have Source ,drain and gate ,Here source is photon wave ,drain is flux and gate is classical to quantum bits QUORA -Discussion about the Quantum Transistor YOUTUBE - Well Explained Quantum Processor one line : A nano integration circuit performing the quantum gates operation sorrounded by cooling units to reduce the tremendous amount of heat YOUTUBE - Well Explained Quantum Registery QRAM one line : Comapring the normal ram ,its ultrafast and very small in size ,the address location can be access using qubits superposition value ,for a very large memory set coherent superposition(address of address) be used PDF - very Well Explained QUANTUM COMPUTING MACHINE LEARNING BRIDGE Complex Numbers one line : Normally Waves Interference is in n dimensional structure , to find a polynomial equation n order curves ,better option is complex number YOUTUBE - Wonderful Series very super Explained Tensors one line : Vectors have a direction in 2D vector space ,If on a n dimensional vector space ,vectors direction can be specify with the tensor ,The best solution to find the superposition of a n vector electrons spin space is representing vectors as tensors and doing tensor calculus YOUTUBE - Wonderful super Explained tensors basics YOUTUBE - Quantum tensors basics Tensors Network one line : As like connecting multiple vectors ,multple tensors form a network ,solving such a network reduce the complexity of processing qubits YOUTUBE - Tensors Network Some ideas specifically for quantum algorithms QUANTUM MACHINE LEARNING ALGORITHMS Quantum K-Nearest Neighbour info : Here the centroid(euclidean distance) can be detected using the swap gates test between two states of the qubit , As KNN is regerssive loss can be tally using the average PDF1 from Microsoft - Theory Explanation PDF2 - A Good Material to understand the basics Matlab - Yet to come soon Python - Yet to come soon Quantum K-Means info : Two Approaches possible ,1. FFT and iFFT to make an oracle and calculate the means of superposition 2. Adiobtic Hamiltonian generation and solve the hamiltonian to determine the cluster PDF1 - Applying Quantum Kmeans on Images in a nice way PDF2 - Theory PDF3 - Explaining well the K-means clustering using hamiltonian Matlab - Yet to come soon Python - Yet to come soon Quantum Fuzzy C-Means info : As similar to kmeans fcm also using the oracle dialect ,but instead of means,here oracle optimization followed by a rotation gate is giving a good result PDF1 - Theory Matlab - Yet to come soon Python - Yet to come soon Quantum Support Vector Machine info : A little different from above as here kernel preparation is via classical and the whole training be in oracles and oracle will do the classification, As SVM is linear ,An optimal Error(Optimum of the Least Squares Dual Formulation) Based regression is needed to improve the performance PDF1 - Nice Explanation but little hard to understand :) PDF2 - Nice Application of QSVM Matlab - Yet to come soon Python - Yet to come soon Quantum Genetic Algorithm info : One of the best algorithm suited for Quantum Field ,Here the chromosomes act as qubit vectors ,the crossover part carrying by an evaluation and the mutation part carrying by the rotation of gates ![Flow Chart]() PDF1 - Very Beautiful Article , well explained and superp PDF2 - A big theory :) PDF3 - Super Comparison Matlab - Simulation Python1 - Simulation Python2 - Yet to come Quantum Hidden Morkov Models info : As HMM is already state based ,Here the quantum states acts as normal for the markov chain and the shift between states is using quantum operation based on probability distribution ![Flow Chart]() PDF1 - Nice idea and explanation PDF2 - Nice but a different concept little Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum state classification with Bayesian methods info : Quantum Bayesian Network having the same states concept using quantum states,But here the states classification to make the training data as reusable is based on the density of the states(Interference) ![Bayesian Network Sample1]() ![Bayesian Network Sample2]() ![Bayesian Network Sample3]() PDF1 - Good Theory PDF2 - Good Explanation Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum Ant Colony Optimization info : A good algorithm to process multi dimensional equations, ACO is best suited for Sales man issue , QACO is best suited for Sales man in three or more dimension, Here the quantum rotation circuit is doing the peromene update and qubits based colony communicating all around the colony in complex space ![Ant Colony Optimization 1]() PDF1 - Good Concept PDF2 - Good Application Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum Cellular Automata info : One of the very complex algorithm with various types specifically used for polynomial equations and to design the optimistic gates for a problem, Here the lattice is formed using the quatum states and time calculation is based on the change of the state between two qubits ,Best suited for nano electronics ![Quantum Cellular Automata]() Wikipedia - Basic PDF1 - Just to get the keywords PDF2 - Nice Explanation and an easily understandable application Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come QAUNTUM NEURAL NETWORK one line : Its really one of the hardest topic , To understand easily ,Normal Neural Network is doing parallel procss ,QNN is doing parallel of parallel processess ,In theory combination of various activation functions is possible in QNN ,In Normal NN more than one activation function reduce the performance and increase the complexity Quantum perceptrons info : Perceptron(layer) is the basic unit in Neural Network ,The quantum version of perceptron must satisfy both linear and non linear problems , Quantum Concepts is combination of linear(calculus of superposition) and nonlinear(State approximation using probability) ,To make a perceptron in quantum world ,Transformation(activation function) of non linearity to certain limit is needed ,which is carrying by phase estimation algorithm ![Quantum Perceptron 3]() PDF1 - Good Theory PDF2 - Good Explanation Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come QAUNTUM STATISTICAL DATA ANALYSIS one line : An under research concept ,It can be seen in multiple ways, one best way if you want to apply n derivative for a problem in current classical theory its difficult to compute as its serialization problem instead if you do parallelization of differentiation you must estimate via probability the value in all flows ,Quantum Probability Helps to achieve this ,as the loss calculation is very less . the other way comparatively booming is Quantum Bayesianism, its a solution to solve most of the uncertainity problem in statistics to combine time and space in highly advanced physical research QUANTUM PROGRAMMING LANGUAGES , TOOLs and SOFTWARES All info : All Programming languages ,softwares and tools in alphabetical order Software - Nice content of all Python library - A python library Matlab based python library - Matlab Python Library Quantum Tensor Network Github - Tensor Network Bayesforge - A Beautiful Amazon Web Service Enabled Framework for Quantum Alogorithms and Data Analytics Rigetti - A best tools repository to use quantum computer in real time Rigetti Forest - An API to connect Quantum Computer quil/pyQuil - A quantum instruction language to use forest framework Grove - Grove is a repository to showcase quantum Fourier transform, phase estimation, the quantum approximate optimization algorithm, and others developed using Forest QISKit - A IBM Kit to access quantum computer and mainly for quantum circuits IBM Bluemix Simulator - A Bluemix Simulator for Quantum Circuits Microsoft Quantum Development Kit - Microsoft Visual Studio Enbaled Kit for Quantum Circuit Creation Microsoft "Q#" - Microsoft Q Sharp a new Programming Language for Quantum Circuit Creation qiskit api python - An API to connect IBM Quantum Computer ,With the generated token its easy to connect ,but very limited utils ,Lot of new utils will come soon Cyclops Tensor Framework - A framework to do tensor network simulations Python ToolKit for chemistry and physics Quantum Algorithm simulations - A New Started Project for simulating molecule and solids Bayesian Based Quatum Projects Repository - A nice repository and the kickstarter of bayesforge Google Fermion Products - A newly launched product specifivally for chemistry simulation Tree Tensor Networks - Interesting Tensor Network in Incubator Deep Tensor Neural Network - Some useful information about Tensor Neural Network in Incubator Generative Tensorial Networks - A startup to apply machine learning via tensor network for drug discovery Google Bristlecone - A new Quantum Processor from Google , Aimed for Future Hardwares with full fledged AI support XANADU - A Light based Quantum Hardware(chips supports) and Software Company Started in Preparation Stage. Soon will be in market fathom computing - A new concept to train the ai in a processor using light and quantum based concepts. soon products will be launch Alibaba Quantum Computing Cloud Service - Cloud Service to access 11 Bit Quantum Computing Processor Atomistic Machine Learning Project - Seems something Interesting with Deep Tensor Network for Quantum Chemistry Applications circQ and Google Works - Google Top Efforts on Tools IBM Safe Cryptography on Cloud - IBM Started and Developing a Quantm Safe Cryptography to replace all our Certificate Authority via Cloud Google Tensor Network Open Source - Google Started the Most Scientist Preferred Way To Use a Quantum Computer Circuit. Tensor Flow Which Makes Easy to Design the Network and Will Leave the Work Effect Of Gates, Processor Preparation and also going to tell the beauty of Maths Google Tensor Network Github - Github Project of Google Tensor Network Quantum Tensorflow - Yet to come soon Quantum Spark - Yet to come soon Quatum Map Reduce - Yet to come soon Quantum Database - Yet to come soon Quantum Server - Yet to come soon Quantum Data Analytics - Yet to come soon QUANTUM HOT TOPICS Deep Quantum Learning why and what is deep learning? In one line , If you know deep learning you can get a good job :) ,Even a different platform undergraduated and graduated person done a master specialization in deep learning can work in this big sector :), Practically speaking machine learning (vector mathematics) , deep learning (vector space(Graphics) mathematics) and big data are the terms created by big companies to make a trend in the market ,but in science and research there is no word such that , Now a days if you ask a junior person working in this big companies ,what is deep learning ,you will get some reply as "doing linear regression with stochastic gradient for a unsupervised data using Convolutional Neural Network :)" ,They knows the words clearly and knows how to do programming using that on a bunch of "relative data" , If you ask them about the FCM , SVM and HMM etc algorithms ,they will simply say these are olden days algorithms , deep learning replaced all :), But actually they dont know from the birth to the till level and the effectiveness of algorithms and mathematics ,How many mathematical theorems in vector, spaces , tensors etc solved to find this "hiding the complexity technology", They did not played with real non relative data like medical images, astro images , geology images etc , finding a relation and features is really complex and looping over n number of images to do pattern matching is a giant work , Now a days the items mentioned as deep learning (= multiple hidden artifical neural network) is not suitable for that why quantum deep learning or deep quantum learning? In the mid of Artificial Neural Network Research people realised at the maximum extreme only certain mathematical operations possible to do with ANN and the aim of this ANN is to achieve parallel execution of many mathematical operations , In artificial Intelligence ,the world intelligence stands for mathematics ,how effective if a probem can be solvable is based on the mathematics logic applying on the problem , more the logic will give more performance(more intelligent), This goal open the gate for quantum artificial neural network, On applying the ideas behind the deep learning to quantum mechanics environment, its possible to apply complex mathematical equations to n number of non relational data to find more features and can improve the performance Quantum Machine Learning vs Deep Learning Its fun to discuss about this , In recent days most of the employees from Product Based Companies Like google,microsoft etc using the word deep learning ,What actually Deep Learning ? and is it a new inventions ? how to learn this ? Is it replacing machine learning ? these question come to the mind of junior research scholars and mid level employees The one answer to all questions is deep learning = parallel "for" loops ,No more than that ,Its an effective way of executing multiple tasks repeatly and to reduce the computation cost, But it introduce a big cap between mathematics and computerscience , How ? All classical algorithms based on serial processing ,Its depends on the feedback of the first loop ,On applying a serial classical algorithm in multiple clusters wont give a good result ,but some light weight parallel classical algorithms(Deep learning) doing the job in multiple clusters and its not suitable for complex problems, What is the solution for then? As in the title Quantum Machine Learning ,The advantage behind is deep learning is doing the batch processing simply on the data ,but quantum machine learning designed to do batch processing as per the algorithm The product companies realised this one and they started migrating to quantum machine learning and executing the classical algorithms on quantum concept gives better result than deep learning algorithms on classical computer and the target to merge both to give very wonderful result References Quora - Good Discussion Quora - The Bridge Discussion Pdf - Nice Discussion Google - Google Research Discussion Microsoft - Microsoft plan to merge both IBM - IBM plan to merge both IBM Project - IBM Project idea MIT and Google - Solutions for all questions QUANTUM MEETUPS Meetup 1 - Quantum Physics Meetup 2 - Quantum Computing London Meetup 3 - Quantum Computing New York Meetup 4 - Quantum Computing Canada Meetup 5 - Quantum Artificial Intelligence Texas Meetup 6 - Genarl Quantum Mechanics , Mathematics New York Meetup 7 - Quantum Computing Mountain View California Meetup 8 - Statistical Analysis New York Meetup 9 - Quantum Mechanics London UK Meetup 10 - Quantum Physics Sydney Australia Meetup 11 - Quantum Physics Berkeley CA Meetup 12 - Quantum Computing London UK Meetup 13 - Quantum Mechanics Carmichael CA Meetup 14 - Maths and Science Group Portland Meetup 15 - Quantum Physics Santa Monica, CA Meetup 16 - Quantum Mechanics London Meetup 17 - Quantum Computing London Meetup 18 - Quantum Meta Physics ,Kansas City , Missouri ,US Meetup 19 - Quantum Mechanics and Physics ,Boston ,Massachusetts ,US Meetup 20 - Quantum Physics and Mechanics ,San Francisco ,California Meetup 21 - Quantum Mechanics ,Langhorne, Pennsylvania Meetup 22 - Quantum Mechanics ,Portland QUANTUM BASED DEGREES Plenty of courses around the world and many Universities Launching it day by day ,Instead of covering only Quantum ML , Covering all Quantum Related topics gives more idea in the order below Available Courses Quantum Mechanics for Science and Engineers Online Standford university - Nice Preparatory Course edx - Quantum Mechanics for Everyone NPTEL 1 - Nice Series of Courses to understand basics and backbone of quantum mechanics NPTEL 2 NPTEL 3 NPTEL 4 NPTEL 5 Class Based Course UK Bristol Australia Australian National University Europe Maxs Planks University Quantum Physics Online MIT - Super Explanation and well basics NPTEL - Nice Series of Courses to understand basics and backbone of quantum Physics Class Based Course Europe University of Copenhagen Quantum Chemistry Online NPTEL 1 - Nice Series of Courses to understand basics and backbone of quantum Chemistry NPTEL 2 - Class Based Course Europe UGent Belgium Quantum Computing Online MIT - Super Explanation and well basics edx - Nice Explanation NPTEL - Nice Series of Courses to understand basics and backbone of quantum Computing Class Based Course Canada uwaterloo Singapore National University Singapore USA Berkley China Baidu Quantum Technology Class Based Course Canada uwaterloo Singapore National University Singapore Europe Munich Russia Skoltech Quantum Information Science External Links quantwiki Online MIT - Super Explanation and well basics edx - Nice Explanation NPTEL - Nice Series of Courses to understand basics and backbone of quantum information and computing Class Based Course USA MIT Standford University Joint Center for Quantum Information and Computer Science - University of Maryland Canada Perimeter Institute Singapore National University Singapore Europe ULB Belgium IQOQI Quantum Electronics Online MIT - Wonderful Course NPTEL - Nice Series of Courses to understand basics and backbone of quantum Electronics Class Based Course USA Texas Europe Zurich ICFO Asia Tata Institute Quantum Field Theory Online Standford university - Nice Preparatory Course edx - Some QFT Concepts available Class Based Course UK Imperial Europe Vrije Quantum Computer Science Class Based Course USA Oxford Joint Center for Quantum Information and Computer Science - University of Maryland Quantum Artificial Intelligence and Machine Learning External Links Quora 1 Quora 1 Artificial Agents Research for Quantum Designs Quantum Mathematics Class Based Course USA University of Notre CONSOLIDATED Quantum Research Papers scirate - Plenty of Quantum Research Papers Available Peter Wittek - Famous Researcher for the Quantum Machine Leanrning , Published a book in this topic [Murphy Yuezhen Niu] (https://scholar.google.com/citations?user=0wJPxfkAAAAJ&hl=en) - A good researcher published some nice articles Recent Quantum Updates forum ,pages and newsletter Quantum-Tech - A Beautiful Newsletter Page Publishing Amazing Links facebook Quantum Machine Learning - Running By me . Not that much good :). You can get some ideas Linkedlin Quantum Machine Learning - A nice page running by experts. Can get plenty of ideas FOSDEM 2019 Quantum Talks - A one day talk in fosdem 2019 with more than 10 research topics,tools and ideas FOSDEM 2020 Quantum Talks - Live talk in fosdem 2020 with plenty new research topics,tools and ideas License Dedicated Opensources ![Dedicated Opensources]() Source code of plenty of Algortihms in Image Processing , Data Mining ,etc in Matlab, Python ,Java and VC++ Scripts Good Explanations of Plenty of algorithms with flow chart etc Comparison Matrix of plenty of algorithms Is Quantum Machine Learning Will Reveal the Secret Maths behind Astrology? Awesome Machine Learning and Deep Learning Mathematics is online Published Basic Presentation of the series Quantum Machine Learning Contribution If you think this page might helpful. Please help for World Education Charity or kids who wants to learn

Ultimate-Data-Science-Toolkit---From-Python-Basics-to-GenerativeAI
github
LLM Vibe Score0.555
Human Vibe Score0.3470230117125603
bansalkanavMar 27, 2025

Ultimate-Data-Science-Toolkit---From-Python-Basics-to-GenerativeAI

Getting started with Machine Learning and Deep Learning Star this repo if you find it useful :star: Module 1 - Python Programming | Topic Name | What's Covered | | :---: | :---: | | Intro to Python | Applications and Features of Python, Hello World Program, Identifiers and Rules to define identifiers, Data Types (numeric, boolean, strings, list, tuple, set and dict), Comments, Input and Output, Operators - Arithmatic, Reltaional, Equality, Logical, Bitwise, Assignment, Ternary, Identity and Membership | | Data Structures in Python (Strings, List, Tuple, Set, Dictionary) | Strings - Creating a string, Indexing, Slicing, Split, Join, etc, List - Initialization, Indexing, Slicing, Sorting, Appending, etc, Tuple - Initialization, Indexing, Slicing, Count, Index, etc, Set - Initialization, Unordered Sequence, Set Opertaions, etc, Dictionary - Initialization, Updating, Keys, Values, Items, etc | | Control Statements (Conditionals and Loops) | Conditional Statements - Introducing Indentation, if statement, if...else statement, if..elif...else statement, Nested if else statement, Loops - while loops, while...else loop, Membership operator, for loop, for...else loop, Nested Loops, Break and Continue Statement, Why else? | | Functions and Modules | Functions - Introduction to Python Functions, Function Definition and Calling, Functions with Arguments/Parameters, Return Statement, Scope of a Variable, Global Variables, Modules - Introduction to Modules, Importing a Module, Aliasing, from...import statement, import everything, Some important modules - math, platform, random, webbrowser, etc | | Object Oriented Programming | Classes and Objects - Creating a class, Instantiating an Object, Constructor, Class Members - Variables and Mentods, Types of Variables - Instance, Static and Local Variables, Types of Methods - Instance, Class and Static Methods, Access Modifiers - Public, Private and Protected, Pillars of Object Oriented Programming - Inheritance, Polymorphism, Abstraction and Encapsulation, Setters and Getters, Inheritance vs Association | | Exception Handling | Errors vs Exception, Syntax and Indentation Errors, try...except block, Control Flow in try...except block, try with multiple except, finally block, try...except...else, Nested try...except...finally, User Defined Exception | | File Handling | Introduction to File Handling, Opening and Closing a File, File Object Properties, Read Data from Text Files, Write Data to Text Files, with statement, Renaming and Deleting Files | | Web API | Application Programming Interface, Indian Space Station API, API Request, Status Code, Query Parameters, Getting JSON from an API Request, Working with JSON - dump and load, Working with Twitter API | | Databases | Introduction to Databases, SQLite3 - Connecting Python with SQLite3, Performing CRUD Opertations, MySQL - Connecting Python with MySQL, Performing CRUD Opertations, MongoDB - Connecting Python with MongoDB, Performing CRUD Opertations, Object Relation Mapping - SQLAlchemy ORM, CRUD operations and Complex DB operations | | List Comprehension, Lambda, Filter, Map, Reduce) | List Comprehension, Anonymous Functions, Filter, Map, Reduce, Function Aliasing | | Problem Solving for Interviews | Swapping two numbers, Factorial of a number, Prime Number, Fibbonnacci Sequence, Armstrong Number, Palindrome Number, etc | Module 2 - Python for Data Analysis | Topic Name | What's Covered | | :---: | :---: | | Data Analytics Framework | Data Collection, Business Understanding, Exploratory Data Analysis, Data Preparation, Model Building, Model Evaluation, Deployment, Understanding Cross Industry Standard Process for Data Mining (CRISP-DM) and Microsoft's Team Data Science Process (TDSP) | | Numpy | Array Oriented Numerical Computations using Numpy, Creating a Numpy Array, Basic Operations on Numpy Array - Check Dimensions, Shape, Datatypes and ItemSize, Why Numpy, Various ways to create Numpy Array, Numpy arange() function, Numpy Random Module - rand(), randn(), randint(), uniform(), etc, Indexing and Slicing in Numpy Arrays, Applying Mathematical Operations on Numpy Array - add(), subtract(), multiply(), divide(), dot(), matmul(), sum(), log(), exp(), etc, Statistical Operations on Numpy Array - min(), max(), mean(), median(), var(), std(), corrcoef(), etc, Reshaping a Numpy Array, Miscellaneous Topics - Linspace, Sorting, Stacking, Concatenation, Append, Where and Numpy Broadcasting | | Pandas for Beginners | Pandas Data Structures - Series, Dataframe and Panel, Creating a Series, Data Access, Creating a Dataframe using Tuples and Dictionaries, DataFrame Attributes - columns, shape, dtypes, axes, values, etc, DataFrame Methods - head(), tail(), info(), describe(), Working with .csv and .xlsx - readcsv() and readexcel(), DataFrame to .csv and .xlsx - tocsv() and toexcel() | | Advance Pandas Operations | What's Covered | | Case Study - Pandas Manipulation | What's Covered | | Missing Value Treatment | What's Covered | | Visuallization Basics - Matplotlib and Seaborn | What's Covered | | Case Study - Covid19TimeSeries | What's Covered | | Plotly and Express | What's Covered | | Outliers - Coming Soon | What's Covered | Module 3 - Statistics for Data Analysis | Topic Name | What's Covered | | :---: | :---: | | Normal Distribution | What's Covered | | Central Limit Theorem | What's Covered | | Hypothesis Testing | What's Covered | | Chi Square Testing | What's Covered | | Performing Statistical Test | What's Covered | Module 4 - Machine Learning Data Preparation and Modelling with SKLearn Working with Text Data Working with Image Data Supervised ML Algorithms K - Nearest Neighbours Linear Regression Logistic Regression Gradient Descent Decision Trees Support Vector Machines Models with Feature Engineering Hyperparameter Tuning Ensembles Unsupervised ML Algorithms Clustering Principal Component Analysis Module 5 - MLOPs | Topic Name | What's Covered | | :---: | :---: | | Model Serialization and Deserialization | What's Covered | | Application Integration | What's Covered | | MLFlow - Experiment Tracking and Model Management | What's Covered | | Prefect - Orchestrate ML Pipeline | What's Covered | Module 6 - Case Studies | Topic Name | What's Covered | | :---: | :---: | | Car Price Prediction (Regression) | What's Covered | | Airline Sentiment Analysis (NLP - Classification) | What's Covered | | Adult Income Prediction (Classification) | What's Covered | | Web App Development + Serialization and Deserialization | What's Covered | | AWS Deployment | What's Covered | | Streamlit Heroku Deployment | What's Covered | | Customer Segmentation | What's Covered | | Web Scrapping | What's Covered | Module 7 - Deep Learning | Topic Name | What's Covered | | :---: | :---: | | Introduction to Deep Learning | What's Covered | | Training a Deep Neural Network + TensorFlow.Keras | What's Covered | | Convolutional Neural Network + TensorFlow.Keras | What's Covered | | Auto Encoders for Image Compression) | What's Covered | | Recurrent Neural Network (Coming Soon) | What's Covered |

obsei
github
LLM Vibe Score0.545
Human Vibe Score0.10175553624190911
obseiMar 27, 2025

obsei

Note: Obsei is still in alpha stage hence carefully use it in Production. Also, as it is constantly undergoing development hence master branch may contain many breaking changes. Please use released version. Obsei (pronounced "Ob see" | /əb-'sē/) is an open-source, low-code, AI powered automation tool. Obsei consists of - Observer: Collect unstructured data from various sources like tweets from Twitter, Subreddit comments on Reddit, page post's comments from Facebook, App Stores reviews, Google reviews, Amazon reviews, News, Website, etc. Analyzer: Analyze unstructured data collected with various AI tasks like classification, sentiment analysis, translation, PII, etc. Informer: Send analyzed data to various destinations like ticketing platforms, data storage, dataframe, etc so that the user can take further actions and perform analysis on the data. All the Observers can store their state in databases (Sqlite, Postgres, MySQL, etc.), making Obsei suitable for scheduled jobs or serverless applications. !Obsei diagram Future direction - Text, Image, Audio, Documents and Video oriented workflows Collect data from every possible private and public channels Add every possible workflow to an AI downstream application to automate manual cognitive workflows Use cases Obsei use cases are following, but not limited to - Social listening: Listening about social media posts, comments, customer feedback, etc. Alerting/Notification: To get auto-alerts for events such as customer complaints, qualified sales leads, etc. Automatic customer issue creation based on customer complaints on Social Media, Email, etc. Automatic assignment of proper tags to tickets based content of customer complaint for example login issue, sign up issue, delivery issue, etc. Extraction of deeper insight from feedbacks on various platforms Market research Creation of dataset for various AI tasks Many more based on creativity 💡 Installation Prerequisite Install the following (if not present already) - Install Python 3.7+ Install PIP Install Obsei You can install Obsei either via PIP or Conda based on your preference. To install latest released version - Install from master branch (if you want to try the latest features) - Note: all option will install all the dependencies which might not be needed for your workflow, alternatively following options are available to install minimal dependencies as per need - pip install obsei[source]: To install dependencies related to all observers pip install obsei[sink]: To install dependencies related to all informers pip install obsei[analyzer]: To install dependencies related to all analyzers, it will install pytorch as well pip install obsei[twitter-api]: To install dependencies related to Twitter observer pip install obsei[google-play-scraper]: To install dependencies related to Play Store review scrapper observer pip install obsei[google-play-api]: To install dependencies related to Google official play store review API based observer pip install obsei[app-store-scraper]: To install dependencies related to Apple App Store review scrapper observer pip install obsei[reddit-scraper]: To install dependencies related to Reddit post and comment scrapper observer pip install obsei[reddit-api]: To install dependencies related to Reddit official api based observer pip install obsei[pandas]: To install dependencies related to TSV/CSV/Pandas based observer and informer pip install obsei[google-news-scraper]: To install dependencies related to Google news scrapper observer pip install obsei[facebook-api]: To install dependencies related to Facebook official page post and comments api based observer pip install obsei[atlassian-api]: To install dependencies related to Jira official api based informer pip install obsei[elasticsearch]: To install dependencies related to elasticsearch informer pip install obsei[slack-api]:To install dependencies related to Slack official api based informer You can also mix multiple dependencies together in single installation command. For example to install dependencies Twitter observer, all analyzer, and Slack informer use following command - How to use Expand the following steps and create a workflow - Step 1: Configure Source/Observer Twitter Youtube Scrapper Facebook Email Google Maps Reviews Scrapper AppStore Reviews Scrapper Play Store Reviews Scrapper Reddit Reddit Scrapper Note: Reddit heavily rate limit scrappers, hence use it to fetch small data during long period Google News Web Crawler Pandas DataFrame Step 2: Configure Analyzer Note: To run transformers in an offline mode, check transformers offline mode. Some analyzer support GPU and to utilize pass device parameter. List of possible values of device parameter (default value auto): auto: GPU (cuda:0) will be used if available otherwise CPU will be used cpu: CPU will be used cuda:{id} - GPU will be used with provided CUDA device id Text Classification Text classification: Classify text into user provided categories. Sentiment Analyzer Sentiment Analyzer: Detect the sentiment of the text. Text classification can also perform sentiment analysis but if you don't want to use heavy-duty NLP model then use less resource hungry dictionary based Vader Sentiment detector. NER Analyzer NER (Named-Entity Recognition) Analyzer: Extract information and classify named entities mentioned in text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc Translator PII Anonymizer Dummy Analyzer Dummy Analyzer: Does nothing. Its simply used for transforming the input (TextPayload) to output (TextPayload) and adding the user supplied dummy data. Step 3: Configure Sink/Informer Slack Zendesk Jira ElasticSearch Http Pandas DataFrame Logger This is useful for testing and dry running the pipeline. Step 4: Join and create workflow source will fetch data from the selected source, then feed it to the analyzer for processing, whose output we feed into a sink to get notified at that sink. Step 5: Execute workflow Copy the code snippets from Steps 1 to 4 into a python file, for example example.py and execute the following command - Demo We have a minimal streamlit based UI that you can use to test Obsei. !Screenshot Watch UI demo video Check demo at (Note: Sometimes the Streamlit demo might not work due to rate limiting, use the docker image (locally) in such cases.) To test locally, just run To run Obsei workflow easily using GitHub Actions (no sign ups and cloud hosting required), refer to this repo. Companies/Projects using Obsei Here are some companies/projects (alphabetical order) using Obsei. To add your company/project to the list, please raise a PR or contact us via email. Oraika: Contextually understand customer feedback 1Page: Giving a better context in meetings and calls Spacepulse: The operating system for spaces Superblog: A blazing fast alternative to WordPress and Medium Zolve: Creating a financial world beyond borders Utilize: No-code app builder for businesses with a deskless workforce Articles Sr. No. Title Author 1 AI based Comparative Customer Feedback Analysis Using Obsei Reena Bapna 2 LinkedIn App - User Feedback Analysis Himanshu Sharma Tutorials Sr. No. Workflow Colab Binder 1 Observe app reviews from Google play store, Analyze them by performing text classification and then Inform them on console via logger PlayStore Reviews → Classification → Logger 2 Observe app reviews from Google play store, PreProcess text via various text cleaning functions, Analyze them by performing text classification, Inform them to Pandas DataFrame and store resultant CSV to Google Drive PlayStore Reviews → PreProcessing → Classification → Pandas DataFrame → CSV in Google Drive 3 Observe app reviews from Apple app store, PreProcess text via various text cleaning function, Analyze them by performing text classification, Inform them to Pandas DataFrame and store resultant CSV to Google Drive AppStore Reviews → PreProcessing → Classification → Pandas DataFrame → CSV in Google Drive 4 Observe news article from Google news, PreProcess text via various text cleaning function, Analyze them via performing text classification while splitting text in small chunks and later computing final inference using given formula Google News → Text Cleaner → Text Splitter → Classification → Inference Aggregator 💡Tips: Handle large text classification via Obsei Documentation For detailed installation instructions, usages and examples, refer to our documentation. Support and Release Matrix Linux Mac Windows Remark Tests ✅ ✅ ✅ Low Coverage as difficult to test 3rd party libs PIP ✅ ✅ ✅ Fully Supported Conda ❌ ❌ ❌ Not Supported Discussion forum Discussion about Obsei can be done at community forum Changelogs Refer releases for changelogs Security Issue For any security issue please contact us via email Stargazers over time Maintainers This project is being maintained by Oraika Technologies. Lalit Pagaria and Girish Patel are maintainers of this project. License Copyright holder: Oraika Technologies Overall Apache 2.0 and you can read License file. Multiple other secondary permissive or weak copyleft licenses (LGPL, MIT, BSD etc.) for third-party components refer Attribution. To make project more commercial friendly, we void third party components which have strong copyleft licenses (GPL, AGPL etc.) into the project. Attribution This could not have been possible without these open source softwares. Contribution First off, thank you for even considering contributing to this package, every contribution big or small is greatly appreciated. Please refer our Contribution Guideline and Code of Conduct. Thanks so much to all our contributors

AI-PhD-S24
github
LLM Vibe Score0.472
Human Vibe Score0.0922477795435268
rphilipzhangMar 25, 2025

AI-PhD-S24

Artificial Intelligence for Business Research (Spring 2024) Scribed Lecture Notes Class Recordings (You need to apply for access.) Teaching Team Instructor*: Renyu (Philip) Zhang, Associate Professor, Department of Decisions, Operations and Technology, CUHK Business School, philipzhang@cuhk.edu.hk, @911 Cheng Yu Tung Building. Teaching Assistant*: Leo Cao, Full-time TA, Department of Decisions, Operations and Technology, CUHK Business School, yinglyucao@cuhk.edu.hk. Please be noted that Leo will help with any issues related to the logistics, but not the content, of this course. Tutorial Instructor*: Qiansiqi Hu, MSBA Student, Department of Decisions, Operations and Technology, CUHK Business School, 1155208353@link.cuhk.edu.hk. BS in ECE, Shanghai Jiaotong University Michigan Institute. Basic Information Website: https://github.com/rphilipzhang/AI-PhD-S24 Time: Tuesday, 12:30pm-3:15pm, from Jan 9, 2024 to Apr 16, 2024, except for Feb 13 (Chinese New Year) and Mar 5 (Final Project Discussion) Location: Cheng Yu Tung Building (CYT) LT5 About Welcome to the mono-repo of the PhD course AI for Business Research (DSME 6635) at CUHK Business School in Spring 2024. You may download the Syllabus of this course first. The purpose of this course is to learn the following: Have a basic understanding of the fundamental concepts/methods in machine learning (ML) and artificial intelligence (AI) that are used (or potentially useful) in business research. Understand how business researchers have utilized ML/AI and what managerial questions have been addressed by ML/AI in the recent decade. Nurture a taste of what the state-of-the-art AI/ML technologies can do in the ML/AI community and, potentially, in your own research field. We will meet each Tuesday at 12:30pm in Cheng Yu Tung Building (CYT) LT5 (please pay attention to this room change). Please ask for my approval if you need to join us via the following Zoom links: Zoom link, Meeting ID 996 4239 3764, Passcode 386119. Most of the code in this course will be distributed through the Google CoLab cloud computing environment to avoid the incompatibility and version control issues on your local individual computer. On the other hand, you can always download the Jupyter Notebook from CoLab and run it your own computer. The CoLab files of this course can be found at this folder. The Google Sheet to sign up for groups and group tasks can be found here. The overleaf template for scribing the lecture notes of this course can be found here. If you have any feedback on this course, please directly contact Philip at philipzhang@cuhk.edu.hk and we will try our best to address it. Brief Schedule Subject to modifications. All classes start at 12:30pm and end at 3:15pm. |Session|Date |Topic|Key Words| |:-------:|:-------------:|:----:|:-:| |1|1.09|AI/ML in a Nutshell|Course Intro, ML Models, Model Evaluations| |2|1.16|Intro to DL|DL Intro, Neural Nets, Computational Issues in DL| |3|1.23|Prediction and Traditional NLP|Prediction in Biz Research, Pre-processing| |4|1.30|NLP (II): Traditional NLP|$N$-gram, NLP Performance Evaluations, Naïve Bayes| |5|2.06|NLP (III): Word2Vec|CBOW, Skip Gram| |6|2.20|NLP (IV): RNN|Glove, Language Model Evaluation, RNN| |7|2.27|NLP (V): Seq2Seq|LSTM, Seq2Seq, Attention Mechanism| |7.5|3.05|NLP (V.V): Transformer|The Bitter Lesson, Attention is All You Need| |8|3.12|NLP (VI): Pre-training|Computational Tricks in DL, BERT, GPT| |9|3.19|NLP (VII): LLM|Emergent Abilities, Chain-of-Thought, In-context Learning, GenAI in Business Research| |10|3.26|CV (I): Image Classification|CNN, AlexNet, ResNet, ViT| |11|4.02|CV (II): Image Segmentation and Video Analysis|R-CNN, YOLO, 3D-CNN| |12|4.09|Unsupervised Learning (I): Clustering & Topic Modeling|GMM, EM Algorithm, LDA| |13|4.16|Unsupervised Learning (II): Diffusion Models|VAE, DDPM, LDM, DiT| Important Dates All problem sets are due at 12:30pm right before class. |Date| Time|Event|Note| |:--:|:-:|:---:|:--:| |1.10| 11:59pm|Group Sign-Ups|Each group has at most two students.| |1.12| 7:00pm-9:00pm|Python Tutorial|Given by Qiansiqi Hu, Python Tutorial CoLab| |1.19| 7:00pm-9:00pm|PyTorch Tutorial|Given by Qiansiqi Hu, PyTorch Tutorial CoLab| |3.05|9:00am-6:00pm|Final Project Discussion|Please schedule a meeting with Philip.| |3.12| 12:30pm|Final Project Proposal|1-page maximum| |4.30| 11:59pm|Scribed Lecture Notes|Overleaf link| |5.12|11:59pm|Project Paper, Slides, and Code|Paper page limit: 10| Useful Resources Find more on the Syllabus. Books: ESL, Deep Learning, Dive into Deep Learning, ML Fairness, Applied Causal Inference Powered by ML and AI Courses: ML Intro by Andrew Ng, DL Intro by Andrew Ng, NLP (CS224N) by Chris Manning, CV (CS231N) by Fei-Fei Li, Deep Unsupervised Learning by Pieter Abbeel, DLR by Sergey Levine, DL Theory by Matus Telgarsky, LLM by Danqi Chen, Generative AI by Andrew Ng, Machine Learning and Big Data by Melissa Dell and Matthew Harding, Digital Economics and the Economics of AI by Martin Beraja, Chiara Farronato, Avi Goldfarb, and Catherine Tucker Detailed Schedule The following schedule is tentative and subject to changes. Session 1. Artificial Intelligence and Machine Learning in a Nutshell (Jan/09/2024) Keywords: Course Introduction, Machine Learning Basics, Bias-Variance Trade-off, Cross Validation, $k$-Nearest Neighbors, Decision Tree, Ensemble Methods Slides: Course Introduction, Machine Learning Basics CoLab Notebook Demos: k-Nearest Neighbors, Decision Tree Homework: Problem Set 1: Bias-Variance Trade-Off Online Python Tutorial: Python Tutorial CoLab, 7:00pm-9:00pm, Jan/12/2024 (Friday), given by Qiansiqi Hu, 1155208353@link.cuhk.edu.hk. Zoom Link, Meeting ID: 923 4642 4433, Pass code: 178146 References: The Elements of Statistical Learning (2nd Edition), 2009, by Trevor Hastie, Robert Tibshirani, Jerome Friedman, https://hastie.su.domains/ElemStatLearn/. Probabilistic Machine Learning: An Introduction, 2022, by Kevin Murphy, https://probml.github.io/pml-book/book1.html. Mullainathan, Sendhil, and Jann Spiess. 2017. Machine learning: an applied econometric approach. Journal of Economic Perspectives 31(2): 87-106. Athey, Susan, and Guido W. Imbens. 2019. Machine learning methods that economists should know about. Annual Review of Economics 11: 685-725. Hofman, Jake M., et al. 2021. Integrating explanation and prediction in computational social science. Nature 595.7866: 181-188. Bastani, Hamsa, Dennis Zhang, and Heng Zhang. 2022. Applied machine learning in operations management. Innovative Technology at the Interface of Finance and Operations. Springer: 189-222. Kelly, Brian, and Dacheng Xiu. 2023. Financial machine learning, SSRN, https://ssrn.com/abstract=4501707. The Bitter Lesson, by Rich Sutton, which develops so far the most critical insight of AI: "The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective, and by a large margin." Session 2. Introduction to Deep Learning (Jan/16/2024) Keywords: Random Forests, eXtreme Gradient Boosting Trees, Deep Learning Basics, Neural Nets Models, Computational Issues of Deep Learning Slides: Machine Learning Basics, Deep Learning Basics CoLab Notebook Demos: Random Forest, Extreme Gradient Boosting Tree, Gradient Descent, Chain Rule Presentation: By Xinyu Li and Qingyu Xu. Gu, Shihao, Brian Kelly, and Dacheng Xiu. 2020. Empirical asset pricing via machine learning. Review of Financial Studies 33: 2223-2273. Link to the paper. Homework: Problem Set 2: Implementing Neural Nets Online PyTorch Tutorial: PyTorch Tutorial CoLab, 7:00pm-9:00pm, Jan/19/2024 (Friday), given by Qiansiqi Hu, 1155208353@link.cuhk.edu.hk. Zoom Link, Meeting ID: 923 4642 4433, Pass code: 178146 References: Deep Learning, 2016, by Ian Goodfellow, Yoshua Bengio and Aaron Courville, https://www.deeplearningbook.org/. Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola, https://d2l.ai/. Probabilistic Machine Learning: Advanced Topics, 2023, by Kevin Murphy, https://probml.github.io/pml-book/book2.html. Deep Learning with PyTorch, 2020, by Eli Stevens, Luca Antiga, and Thomas Viehmann. Gu, Shihao, Brian Kelly, and Dacheng Xiu. 2020. Empirical asset pricing with machine learning. Review of Financial Studies 33: 2223-2273. Session 3. DL Basics, Predictions in Business Research, and Traditonal NLP (Jan/23/2024) Keywords: Optimization and Computational Issues of Deep Learning, Prediction Problems in Business Research, Pre-processing and Word Representations in Traditional Natural Language Processing Slides: Deep Learning Basics, Prediction Problems in Business Research, NLP(I): Pre-processing and Word Representations.pdf) CoLab Notebook Demos: He Initialization, Dropout, Micrograd, NLP Pre-processing Presentation: By Letian Kong and Liheng Tan. Mullainathan, Sendhil, and Jann Spiess. 2017. Machine learning: an applied econometric approach. Journal of Economic Perspectives 31(2): 87-106. Link to the paper. Homework: Problem Set 2: Implementing Neural Nets, due at 12:30pm, Jan/30/2024 (Tuesday). References: Kleinberg, Jon, Jens Ludwig, Sendhil Mullainathan, and Ziad Obermeyer. 2015. Prediction policy problems. American Economic Review 105(5): 491-495. Mullainathan, Sendhil, and Jann Spiess. 2017. Machine learning: an applied econometric approach. Journal of Economic Perspectives 31(2): 87-106. Kleinberg, Jon, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan. 2018. Human decisions and machine predictions. Quarterly Journal of Economics 133(1): 237-293. Bajari, Patrick, Denis Nekipelov, Stephen P. Ryan, and Miaoyu Yang. 2015. Machine learning methods for demand estimation. American Economic Review, 105(5): 481-485. Farias, Vivek F., and Andrew A. Li. 2019. Learning preferences with side information. Management Science 65(7): 3131-3149. Cui, Ruomeng, Santiago Gallino, Antonio Moreno, and Dennis J. Zhang. 2018. The operational value of social media information. Production and Operations Management, 27(10): 1749-1769. Gentzkow, Matthew, Bryan Kelly, and Matt Taddy. 2019. Text as data. Journal of Economic Literature, 57(3): 535-574. Chapter 2, Introduction to Information Retrieval, 2008, Cambridge University Press, by Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze, https://nlp.stanford.edu/IR-book/information-retrieval-book.html. Chapter 2, Speech and Language Processing (3rd ed. draft), 2023, by Dan Jurafsky and James H. Martin, https://web.stanford.edu/~jurafsky/slp3/. Parameter Initialization and Batch Normalization (in Chinese) GPU Comparisons-vs-NVIDIA-H100-(PCIe)-vs-NVIDIA-RTX-6000-Ada/624vs632vs640) GitHub Repo for Micrograd, by Andrej Karpathy. Hand Written Notes Session 4. Traditonal NLP (Jan/30/2024) Keywords: Pre-processing and Word Representations in NLP, N-Gram, Naïve Bayes, Language Model Evaluation, Traditional NLP Applied to Business/Econ Research Slides: NLP(I): Pre-processing and Word Representations.pdf), NLP(II): N-Gram, Naïve Bayes, and Language Model Evaluation.pdf) CoLab Notebook Demos: NLP Pre-processing, N-Gram, Naïve Bayes Presentation: By Zhi Li and Boya Peng. Hansen, Stephen, Michael McMahon, and Andrea Prat. 2018. Transparency and deliberation within the FOMC: A computational linguistics approach. Quarterly Journal of Economics, 133(2): 801-870. Link to the paper. Homework: Problem Set 3: Implementing Traditional NLP Techniques, due at 12:30pm, Feb/6/2024 (Tuesday). References: Gentzkow, Matthew, Bryan Kelly, and Matt Taddy. 2019. Text as data. Journal of Economic Literature, 57(3): 535-574. Hansen, Stephen, Michael McMahon, and Andrea Prat. 2018. Transparency and deliberation within the FOMC: A computational linguistics approach. Quarterly Journal of Economics, 133(2): 801-870. Chapters 2, 12, & 13, Introduction to Information Retrieval, 2008, Cambridge University Press, by Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze, https://nlp.stanford.edu/IR-book/information-retrieval-book.html. Chapter 2, 3 & 4, Speech and Language Processing (3rd ed. draft), 2023, by Dan Jurafsky and James H. Martin, https://web.stanford.edu/~jurafsky/slp3/. Natural Language Tool Kit (NLTK) Documentation Hand Written Notes Session 5. Deep-Learning-Based NLP: Word2Vec (Feb/06/2024) Keywords: Traditional NLP Applied to Business/Econ Research, Word2Vec: Continuous Bag of Words and Skip-Gram Slides: NLP(II): N-Gram, Naïve Bayes, and Language Model Evaluation.pdf), NLP(III): Word2Vec.pdf) CoLab Notebook Demos: Word2Vec: CBOW, Word2Vec: Skip-Gram Presentation: By Xinyu Xu and Shu Zhang. Timoshenko, Artem, and John R. Hauser. 2019. Identifying customer needs from user-generated content. Marketing Science, 38(1): 1-20. Link to the paper. Homework: No homework this week. Probably you should think about your final project when enjoying your Lunar New Year Holiday. References: Gentzkow, Matthew, Bryan Kelly, and Matt Taddy. 2019. Text as data. Journal of Economic Literature, 57(3): 535-574. Tetlock, Paul. 2007. Giving content to investor sentiment: The role of media in the stock market. Journal of Finance, 62(3): 1139-1168. Baker, Scott, Nicholas Bloom, and Steven Davis, 2016. Measuring economic policy uncertainty. Quarterly Journal of Economics, 131(4): 1593-1636. Gentzkow, Matthew, and Jesse Shapiro. 2010. What drives media slant? Evidence from US daily newspapers. Econometrica, 78(1): 35-71. Timoshenko, Artem, and John R. Hauser. 2019. Identifying customer needs from user-generated content. Marketing Science, 38(1): 1-20. Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeff Dean. 2013. Efficient estimation of word representations in vector space. ArXiv Preprint, arXiv:1301.3781. Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems (NeurIPS) 26. Parts I - II, Lecture Notes and Slides for CS224n: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto, https://web.stanford.edu/class/cs224n/. Word Embeddings Trained on Google News Corpus Hand Written Notes Session 6. Deep-Learning-Based NLP: RNN and Seq2Seq (Feb/20/2024) Keywords: Word2Vec: GloVe, Word Embedding and Language Model Evaluations, Word2Vec and RNN Applied to Business/Econ Research, RNN Slides: Guest Lecture Announcement, NLP(III): Word2Vec.pdf), NLP(IV): RNN & Seq2Seq.pdf) CoLab Notebook Demos: Word2Vec: CBOW, Word2Vec: Skip-Gram Presentation: By Qiyu Dai and Yifan Ren. Huang, Allen H., Hui Wang, and Yi Yang. 2023. FinBERT: A large language model for extracting information from financial text. Contemporary Accounting Research, 40(2): 806-841. Link to the paper. Link to GitHub Repo. Homework: Problem Set 4 - Word2Vec & LSTM for Sentiment Analysis References: Ash, Elliot, and Stephen Hansen. 2023. Text algorithms in economics. Annual Review of Economics, 15: 659-688. Associated GitHub with Code Demonstrations. Li, Kai, Feng Mai, Rui Shen, and Xinyan Yan. 2021. Measuring corporate culture using machine learning. Review of Financial Studies, 34(7): 3265-3315. Chen, Fanglin, Xiao Liu, Davide Proserpio, and Isamar Troncoso. 2022. Product2Vec: Leveraging representation learning to model consumer product choice in large assortments. Available at SSRN 3519358. Pennington, Jeffrey, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representation. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543). Parts 2 and 5, Lecture Notes and Slides for CS224n: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto, https://web.stanford.edu/class/cs224n/. Chapters 9 and 10, Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola, https://d2l.ai/. RNN and LSTM Visualizations Hand Written Notes Session 7. Deep-Learning-Based NLP: Attention and Transformer (Feb/27/2024) Keywords: RNN and its Applications to Business/Econ Research, LSTM, Seq2Seq, Attention Mechanism Slides: Final Project, NLP(IV): RNN & Seq2Seq.pdf), NLP(V): Attention & Transformer.pdf) CoLab Notebook Demos: RNN & LSTM, Attention Mechanism Presentation: By Qinghe Gui and Chaoyuan Jiang. Zhang, Mengxia and Lan Luo. 2023. Can consumer-posted photos serve as a leading indicator of restaurant survival? Evidence from Yelp. Management Science 69(1): 25-50. Link to the paper. Homework: Problem Set 4 - Word2Vec & LSTM for Sentiment Analysis References: Qi, Meng, Yuanyuan Shi, Yongzhi Qi, Chenxin Ma, Rong Yuan, Di Wu, Zuo-Jun (Max) Shen. 2023. A Practical End-to-End Inventory Management Model with Deep Learning. Management Science, 69(2): 759-773. Sarzynska-Wawer, Justyna, Aleksander Wawer, Aleksandra Pawlak, Julia Szymanowska, Izabela Stefaniak, Michal Jarkiewicz, and Lukasz Okruszek. 2021. Detecting formal thought disorder by deep contextualized word representations. Psychiatry Research, 304, 114135. Hansen, Stephen, Peter J. Lambert, Nicholas Bloom, Steven J. Davis, Raffaella Sadun, and Bledi Taska. 2023. Remote work across jobs, companies, and space (No. w31007). National Bureau of Economic Research. Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27. Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. ICLR Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. Parts 5, 6, and 8, Lecture Notes and Slides for CS224n: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto, https://web.stanford.edu/class/cs224n/. Chapters 9, 10, and 11, Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola, https://d2l.ai/. RNN and LSTM Visualizations PyTorch's Tutorial of Seq2Seq for Machine Translation Illustrated Transformer Transformer from Scratch, with the Code on GitHub Hand Written Notes Session 7.5. Deep-Learning-Based NLP: Attention is All You Need (Mar/05/2024) Keywords: Bitter Lesson: Power of Computation in AI, Attention Mechanism, Transformer Slides: The Bitter Lesson, NLP(V): Attention & Transformer.pdf) CoLab Notebook Demos: Attention Mechanism, Transformer Homework: One-page Proposal for Your Final Project References: The Bitter Lesson, by Rich Sutton Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. ICLR Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. Part 8, Lecture Notes and Slides for CS224n: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto, https://web.stanford.edu/class/cs224n/. Chapter 11, Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola, https://d2l.ai/. Illustrated Transformer Transformer from Scratch, with the Code on GitHub Andrej Karpathy's Lecture to Build Transformers Hand Written Notes Session 8. Deep-Learning-Based NLP: Pretraining (Mar/12/2024) Keywords: Computations in AI, BERT (Bidirectional Encoder Representations from Transformers), GPT (Generative Pretrained Transformers) Slides: Guest Lecture by Dr. Liubo Li on Deep Learning Computation, Pretraining.pdf) CoLab Notebook Demos: Crafting Intelligence: The Art of Deep Learning Modeling, BERT API @ Hugging Face Presentation: By Zhankun Chen and Yiyi Zhao. Noy, Shakked and Whitney Zhang. 2023. Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381: 187-192. Link to the Paper Homework: Problem Set 5 - Sentiment Analysis with Hugging Face, due at 12:30pm, March 26, Tuesday. References: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional transformers for language understanding. ArXiv preprint arXiv:1810.04805. GitHub Repo Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training, (GPT-1) PDF link, GitHub Repo Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9. (GPT-2) PDF Link, GitHub Repo Brown, Tom, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901. (GPT-3) GitHub Repo Huang, Allen H., Hui Wang, and Yi Yang. 2023. FinBERT: A large language model for extracting information from financial text. Contemporary Accounting Research, 40(2): 806-841. GitHub Repo Part 9, Lecture Notes and Slides for CS 224N: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto. Link to CS 224N Part 2 & 4, Slides for COS 597G: Understanding Large Language Models, by Danqi Chen. Link to COS 597G A Visual Guide to BERT, How GPT-3 Works Andrej Karpathy's Lecture to Build GPT-2 (124M) from Scratch Hand Written Notes Session 9. Deep-Learning-Based NLP: Large Language Models (Mar/19/2024) Keywords: Large Language Models, Generative AI, Emergent Ababilities, Instruction Fine-Tuning (IFT), Reinforcement Learning with Human Feedback (RLHF), In-Context Learning, Chain-of-Thought (CoT) Slides: What's Next, Pretraining.pdf), Large Language Models.pdf) CoLab Notebook Demos: BERT API @ Hugging Face Presentation: By Jia Liu. Liu, Liu, Dzyabura, Daria, Mizik, Natalie. 2020. Visual listening in: Extracting brand image portrayed on social media. Marketing Science, 39(4): 669-686. Link to the Paper Homework: Problem Set 5 - Sentiment Analysis with Hugging Face, due at 12:30pm, March 26, Tuesday (soft-deadline). References: Wei, Jason, et al. 2021. Finetuned language models are zero-shot learners. ArXiv preprint arXiv:2109.01652, link to the paper. Wei, Jason, et al. 2022. Emergent abilities of large language models. ArXiv preprint arXiv:2206.07682, link to the paper. Ouyang, Long, et al. 2022. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35, 27730-27744. Wei, Jason, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems, 35, 24824-24837. Kaplan, Jared. 2020. Scaling laws for neural language models. ArXiv preprint arXiv:2001.08361, link to the paper. Hoffmann, Jordan, et al. 2022. Training compute-optimal large language models. ArXiv preprint arXiv:2203.15556, link to the paper. Shinn, Noah, et al. 2023. Reflexion: Language agents with verbal reinforcement learning. ArXiv preprint arXiv:2303.11366, link to the paper. Reisenbichler, Martin, Thomas Reutterer, David A. Schweidel, and Daniel Dan. 2022. Frontiers: Supporting content marketing with natural language generation. Marketing Science, 41(3): 441-452. Romera-Paredes, B., Barekatain, M., Novikov, A. et al. 2023. Mathematical discoveries from program search with large language models. Nature, link to the paper. Part 10, Lecture Notes and Slides for CS224N: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto. Link to CS 224N COS 597G: Understanding Large Language Models, by Danqi Chen. Link to COS 597G Andrej Karpathy's 1-hour Talk on LLM CS224n, Hugging Face Tutorial Session 10. Deep-Learning-Based CV: Image Classification (Mar/26/2024) Keywords: Large Language Models Applications, Convolution Neural Nets (CNN), LeNet, AlexNet, VGG, ResNet, ViT Slides: What's Next, Large Language Models.pdf), Image Classification.pdf) CoLab Notebook Demos: CNN, LeNet, & AlexNet, VGG, ResNet, ViT Presentation: By Yingxin Lin and Zeshen Ye. Netzer, Oded, Alain Lemaire, and Michal Herzenstein. 2019. When words sweat: Identifying signals for loan default in the text of loan applications. Journal of Marketing Research, 56(6): 960-980. Link to the Paper Homework: Problem Set 6 - AlexNet and ResNet, due at 12:30pm, April 9, Tuesday. References: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25. He, Kaiming, Xiangyu Zhang, Shaoqing Ren and Jian Sun. 2016. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778. Dosovitskiy, Alexey, et al. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv preprint, arXiv:2010.11929, link to the paper, link to the GitHub repo. Jean, Neal, Marshall Burke, Michael Xie, Matthew W. Davis, David B. Lobell, and Stefand Ermon. 2016. Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790-794. Zhang, Mengxia and Lan Luo. 2023. Can consumer-posted photos serve as a leading indicator of restaurant survival? Evidence from Yelp. Management Science 69(1): 25-50. Course Notes (Lectures 5 & 6) for CS231n: Deep Learning for Computer Vision, by Fei-Fei Li, Ruohan Gao, & Yunzhu Li. Link to CS231n. Chapters 7 and 8, Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola. Link to the book. Fine-Tune ViT for Image Classification with Hugging Face 🤗 Transformers Hugging Face 🤗 ViT CoLab Tutorial Session 11. Deep-Learning-Based CV (II): Object Detection & Video Analysis (Apr/2/2024) Keywords: Image Processing Applications, Localization, R-CNNs, YOLOs, Semantic Segmentation, 3D CNN, Video Analysis Applications Slides: What's Next, Image Classification.pdf), Object Detection and Video Analysis.pdf) CoLab Notebook Demos: Data Augmentation, Faster R-CNN & YOLO v5 Presentation: By Qinlu Hu and Yilin Shi. Yang, Jeremy, Juanjuan Zhang, and Yuhan Zhang. 2023. Engagement that sells: Influencer video advertising on TikTok. Available at SSRN Link to the Paper Homework: Problem Set 6 - AlexNet and ResNet, due at 12:30pm, April 9, Tuesday. References: Girshick, R., Donahue, J., Darrell, T. and Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587). Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R. and Fei-Fei, L., 2014. Large-scale video classification with convolutional neural networks. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 1725-1732). Glaeser, Edward L., Scott D. Kominers, Michael Luca, and Nikhil Naik. 2018. Big data and big cities: The promises and limitations of improved measures of urban life. Economic Inquiry, 56(1): 114-137. Zhang, S., Xu, K. and Srinivasan, K., 2023. Frontiers: Unmasking Social Compliance Behavior During the Pandemic. Marketing Science, 42(3), pp.440-450. Course Notes (Lectures 10 & 11) for CS231n: Deep Learning for Computer Vision, by Fei-Fei Li, Ruohan Gao, & Yunzhu Li. Link to CS231n. Chapter 14, Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola. Link to the book. Hand Written Notes Session 12. Unsupervised Learning: Clustering, Topic Modeling & VAE (Apr/9/2024) Keywords: K-Means, Gaussian Mixture Models, EM-Algorithm, Latent Dirichlet Allocation, Variational Auto-Encoder Slides: What's Next, Clustering, Topic Modeling & VAE.pdf) CoLab Notebook Demos: K-Means, LDA, VAE Homework: Problem Set 7 - Unsupervised Learning (EM & LDA), due at 12:30pm, April 23, Tuesday. References: Blei, David M., Ng, Andrew Y., and Jordan, Michael I. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research, 3(Jan): 993-1022. Kingma, D.P. and Welling, M., 2013. Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114. Kingma, D.P. and Welling, M., 2019. An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), pp.307-392. Bandiera, O., Prat, A., Hansen, S., & Sadun, R. 2020. CEO behavior and firm performance. Journal of Political Economy, 128(4), 1325-1369. Liu, Jia and Olivier Toubia. 2018. A semantic approach for estimating consumer content preferences from online search queries. Marketing Science, 37(6): 930-952. Mueller, Hannes, and Christopher Rauh. 2018. Reading between the lines: Prediction of political violence using newspaper text. American Political Science Review, 112(2): 358-375. Tian, Z., Dew, R. and Iyengar, R., 2023. Mega or Micro? Influencer Selection Using Follower Elasticity. Journal of Marketing Research. Chapters 8.5 and 14, The Elements of Statistical Learning (2nd Edition), 2009, by Trevor Hastie, Robert Tibshirani, Jerome Friedman, Link to Book. Course Notes (Lectures 1 & 4) for CS294-158-SP24: Deep Unsupervised Learning, taught by Pieter Abbeel, Wilson Yan, Kevin Frans, Philipp Wu. Link to CS294-158-SP24. Hand Written Notes Session 13. Unsupervised Learning: Diffusion Models (Apr/16/2024) Keywords: VAE, Denoised Diffusion Probabilistic Models, Latent Diffusion Models, CLIP, Imagen, Diffusion Transformers Slides: Clustering, Topic Modeling & VAE.pdf), Diffusion Models.pdf), Course Summary CoLab Notebook Demos: VAE, DDPM, DiT Homework: Problem Set 7 - Unsupervised Learning (EM & LDA), due at 12:30pm, April 23, Tuesday. References: Kingma, D.P. and Welling, M., 2013. Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114. Kingma, D.P. and Welling, M., 2019. An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), pp.307-392. Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, 6840-6851. Chan, S.H., 2024. Tutorial on Diffusion Models for Imaging and Vision. arXiv preprint arXiv:2403.18103. Peebles, W. and Xie, S., 2023. Scalable diffusion models with transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 4195-4205. Link to GitHub Repo. Tian, Z., Dew, R. and Iyengar, R., 2023. Mega or Micro? Influencer Selection Using Follower Elasticity. Journal of Marketing Research. Ludwig, J. and Mullainathan, S., 2024. Machine learning as a tool for hypothesis generation. Quarterly Journal of Economics, 139(2), 751-827. Burnap, A., Hauser, J.R. and Timoshenko, A., 2023. Product aesthetic design: A machine learning augmentation. Marketing Science, 42(6), 1029-1056. Course Notes (Lecture 6) for CS294-158-SP24: Deep Unsupervised Learning, taught by Pieter Abbeel, Wilson Yan, Kevin Frans, Philipp Wu. Link to CS294-158-SP24. CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations and Applications, by Karsten Kreis, Ruiqi Gao, and Arash Vahdat Link to the Tutorial Lilian Weng (OpenAI)'s Blog on Diffusion Models Lilian Weng (OpenAI)'s Blog on Diffusion Models for Video Generation Hugging Face Diffusers 🤗 Library Hand Written Notes

Overmind
github
LLM Vibe Score0.469
Human Vibe Score0.20474237922306593
bencbartlettMar 23, 2025

Overmind

[](https://github.com/bencbartlett/Overmind/releases) [](https://github.com/bencbartlett/Overmind/blob/master/CHANGELOG.md) [](https://bencbartlett.github.io/overmind-docs/) [](https://github.com/bencbartlett/Overmind/wiki) [](https://screeps.slack.com/messages/overmind) [](https://github.com/bencbartlett/Overmind/issues/new) [](https://github.com/bencbartlett/Overmind/issues/new?template=feature_request.md) Current release: Overmind v0.5.2 - Evolution See the changelog for patch notes Documentation is available at the documentation site and the wiki Join the discussion in the #overmind Slack channel! Read blog posts about development Submit an issue here or request a feature here Find me in game here About Overmind What is Screeps? Screeps is an MMO strategy game for programmers. The core objective is to expand your colony, gathering resources and fighting other players along the way. To control your units, you code an AI in JavaScript; everything from moving, mining, building, fighting, and trading is entirely driven by your code. Because Screeps is an MMO, it takes place on a single server that runs 24/7, populated by every other player and their army of creeps. When you log off, your population continues buzzing away with whatever task you set them. Screeps pits your programming prowess head-to-head with other people to see who can think of the most efficient methods of completing tasks or imagine new ways to defeat enemies. What is Overmind? Overmind is my personal codebase that I run on the public server. The structure of the AI is themed loosely around the Zerg's swarm intelligence from Starcraft. Overlords orchestrate Creep actions within each Colony, and the colony Overseer places Directives to adapt to stimuli. Finally, the Assimilator allows all players running Overmind to act as a collective hivemind, sharing creeps and resources and responding jointly to a master ledger of all directives shared by all players. The AI is entirely automated, although it can also run in manual or semiautomatic mode. The latest release should work right out of the box; however, if you find something broken, please submit an issue and I'll try to fix it. Can I use Overmind as my bot? If you're new to Screeps, I would definitely recommend writing your own AI: most of the fun of the game is programming your own bot and watching your little ant farm run! However, I've tried to make the codebase readable and well-documented, so feel free to fork the project or use it as inspiration when writing your AI. If you still want to use Overmind on the public server, that's okay too - there are a number of people already doing this. But please realize that using a mature AI like this gives you a huge advantage over other new players, so don't go out of your way to ruin someone else's fun. In the future, I will be implementing methods for novice players to opt out of excessive aggression by Overmind bots (as long as they don't start a conflict and stay out of its way). Installation Out of the box If you just want to run Overmind without modification, you can copy the compiled main.js file attached to the latest release into your script. While Overmind is fully automated by default, it can be run with varying levels of autonomy; refer to the Overmind wiki for how to configure and operate the bot. Compiling from source To install the full codebase, download or clone the repository. (Please note that while the latest release of Overmind should always be stable, the latest commit may contain unstable features.) Navigate to the Overmind root directory and run . To compile and deploy the codebase, create a screeps.json file from the example file, then do one of the following actions: Compile and deploy to public server: npm run push-main Compile and deploy to private server: npm run push-pserver Compile without deploying: npm run compile Overmind uses rollup to bundle the compiled TypeScript into a single main.js file. The codebase includes functionality to compute checksums for internal validation - if you have a different version of rollup installed globally, different checksums may be computed and some functionality will be disabled. Please ensure the local installation of rollup found in node_modules is used. Setting up the Grafana dashboard Overmind includes a Grafana dashboard (shown below) which tracks detailed operating statistics. To set up the dashboard: Register for grafana service at screepspl.us Setup the ScreepsPlus hosted agent (simpler) or use the NodeJS agent on a free micro instance of Google Compute. Import the dashboard from Overmind.json and change $User to your username. Enjoy your pretty graphs! Design overview Check out the Overmind wiki for in-depth explanations of parts of the design of the AI. (Click the diagram below to see a higher-resolution version.)

coca
github
LLM Vibe Score0.541
Human Vibe Score0.0750848814969247
phodalMar 21, 2025

coca

Coca - toolbox for system refactoring and analysis !GitHub release (latest SemVer) !GitHub go.mod Go version Coca is a toolbox which is design for legacy system refactoring and analysis, includes call graph, concept analysis, api tree, design patterns suggest. Coca 是一个用于系统重构、系统迁移和系统分析的工具箱。它可以分析代码中的测试坏味道、模块化分析、行数统计、分析调用与依赖、Git 分析以及自动化重构等。 Related Tools: Coco is an effective DevOps analysis and auto-suggest tool. Kotlin version: Chapi Migration Guide (Chinese Version): 《系统重构与迁移指南》 Inspired by: newlee & Tequila Refactoring Modeling: !Refactoring Modeling Languages Support: Java (full features) Features List: Getting started Requirements: graphviz for dot file to image (such as svg, png) The easiest way to get coca is to use one of the pre-built release binaries which are available for OSX, Linux, Windows on the release page. You can also install yourself : Usage Analysis Arch Android Studio Gradle DSL Module (merge header) command: coca arch -x "com.android.tools.idea.gradle.dsl" -H true !Gradle Demo Android Studio Gradle DSL Module Elements Part: command: coca arch -x "com.android.tools.idea.gradle.dsl.parser.elements" !Gradle Demo Find Bad Smells Examples Result: Code Line Count Results: Results to json Cloc by directory results csv: Cloc Top File output to: cocareporter/sortcloc.json and also: Build Deps Tree Examples Results: !Call Demo Identify Spring API !API Demo With Count or multi package: coca api -r com.macro.mall.demo.controller.,com.zheng.cms.admin.,com.phodal.pholedge -c Git Analysis Results: Concept Analyser Results Examples: Count Refs Results: Reverse Call Graph Results: !RCall Demo Auto Refactor support: rename move remove unused import remove unused class Evaluate Arduino Results(Old Version): New Version: Evaluate.json examples Todo results: coca suggest +--------+------------------+--------------------------------+ | CLASS | PATTERN | REASON | +--------+------------------+--------------------------------+ | Insect | factory | too many constructor | | Bee | factory, builder | complex constructor, too | | | | many constructor, too many | | | | parameters | +--------+------------------+--------------------------------+ coca tbs bash +---------------------+---------------------------------------------------------------+------+ | TYPE | FILENAME | LINE | +---------------------+---------------------------------------------------------------+------+ | DuplicateAssertTest | app/test/cc/arduino/i18n/ExternalProcessOutputParserTest.java | 107 | | DuplicateAssertTest | app/test/cc/arduino/i18n/ExternalProcessOutputParserTest.java | 41 | | DuplicateAssertTest | app/test/cc/arduino/i18n/ExternalProcessOutputParserTest.java | 63 | | RedundantPrintTest | app/test/cc/arduino/i18n/I18NTest.java | 71 | | RedundantPrintTest | app/test/cc/arduino/i18n/I18NTest.java | 72 | | RedundantPrintTest | app/test/cc/arduino/i18n/I18NTest.java | 77 | | DuplicateAssertTest | app/test/cc/arduino/net/PACSupportMethodsTest.java | 19 | | DuplicateAssertTest | app/test/processing/app/macosx/SystemProfilerParserTest.java | 51 | | DuplicateAssertTest | app/test/processing/app/syntax/PdeKeywordsTest.java | 41 | | DuplicateAssertTest | app/test/processing/app/tools/ZipDeflaterTest.java | 57 | | DuplicateAssertTest | app/test/processing/app/tools/ZipDeflaterTest.java | 83 | | DuplicateAssertTest | app/test/processing/app/tools/ZipDeflaterTest.java | 109 | +---------------------+---------------------------------------------------------------+------+ coca deps -p fixtures/deps/mavensample +---------------------------+----------------------------------------+---------+ | GROUPID | ARTIFACTID | SCOPE | +---------------------------+----------------------------------------+---------+ | org.flywaydb | flyway-core | | | mysql | mysql-connector-java | runtime | | org.springframework.cloud | spring-cloud-starter-contract-verifier | test | +---------------------------+----------------------------------------+---------+ bash brew install go bash export GOROOT=/usr/local/opt/go/libexec export GOPATH=$HOME/.go export PATH=$PATH:$GOROOT/bin:$GOPATH/bin git clone https://github.com/modernizing/coca go get github.com/onsi/ginkgo go get github.com/onsi/gomega `` License Arch based on Tequila Git Analysis inspired by Code Maat Test bad smells inspired by Test Smell Examples @ 2019 A Phodal Huang's Idea. This code is distributed under the MPL license. See LICENSE` in this directory.

OAD
github
LLM Vibe Score0.481
Human Vibe Score0.01719989401409731
zeiss-microscopyMar 20, 2025

OAD

Open Application Development (OAD) OAD - General Concept and Key Features Links and References Disclaimer Open Application Development (OAD) ZEN Blue is an open, flexible and powerful image acquisition platform that allows controlling a wide range of microscopes systems. Additionally it offers various tools to automate microscopy workflows including acquisition, image analysis and image processing tasks. In order to fulfill the request for automation the ZEN Blue platform offers various features and options, which are combined inside a concept called Open Application Development (OAD). Its main components are: CZI image data format and its APIs Python Scripting (OAD Simple API) ZEN API Contraol ZEN from the outside Interfaces to ZEN (TCP-IP, COM, Extensions) Experiment Feedback - Adaptive Acquisition with Online Image Analysis OAD - General Concept and Key Features Open Application Development (OAD) uses powerful Python Scripts to simplify, customize and automate your workflows. Analyze and Exchange data with applications like Fiji, Python, Knime, CellProfiler, Icy, MATLAB, Excel and … API for reading and writing CZI image data using custom software ZeissImgLib (.NET) to be used on Windows-based systems libCZI (C++) and pylibCZIrw (python) for cross-platform applications BioFormats (CZIReader) allow easy access to CZI files from many external applications using the BioFormats library BioFormats Import as a module inside ZEN Blue as well as OME-TIFF Export Create “smart” experiments with Experiment Feedback and modify the acquisition On-the-fly based on Online Image Analysis and External Inputs Use "Guided Acquisition" and "Automated Photomanipulation" modules in ZEN !OAD InterfacesZEN Interfaces_ !Automated DynamicsAutomated Dynamics !External SoftwareExternal Software Links and References CZI Image Data Format for microscopes libczi: Open Source Cross-Platform API to read and write CZI pylibCZIrw: Open Source Cross-Platform API to read and write CZI from Python (based on libCZI C++) (Source Code) Open Application Development OME-TIFF format Disclaimer This is an collection of tools and scripts that is free to use for everybody. Carl Zeiss Microscopy GmbH's ZEN software undertakes no warranty concerning the use of those scripts, image analysis settings and ZEN experiments. Use them on your own risk. Additionally Carl Zeiss Microscopy GmbH's ZEN software allows connection and usage to the third party software packages. Therefore Carl Zeiss Microscopy GmbH undertakes no warranty concerning those software packages, makes no representation that they will work on your system and/or hardware and will not be liable for any damages caused by the use of this extension. By using any of those examples you agree to this disclaimer. Version: 2024.11.26 Copyright (c) 2024 Carl Zeiss AG, Germany. All Rights Reserved.

spring-ai-intro
github
LLM Vibe Score0.454
Human Vibe Score0.14391064025794564
springframeworkguruMar 18, 2025

spring-ai-intro

Introduction to Spring AI This repository contains source code examples used to support my on-line courses about the Spring Framework. All Spring Framework Guru Courses Spring Framework 6 Spring Framework 6 - Beginner to Guru Hibernate and Spring Data JPA: Beginner to Guru API First Engineering with Spring Boot Introduction to Kafka with Spring Boot Spring Security: Beginner to Guru Spring Framework 5 Spring Framework 5: Beginner to Guru - Get the most modern and comprehensive course available for the Spring Framework! Join over 17,200 over Guru's in an Slack community exclusive to this course! More than 5,700 students have given this 53 hour course a 5 star review! Spring Boot Microservices with Spring Cloud Beginner to Guru - Master Microservice Architectures Using Spring Boot 2 and Cloud Based Deployments with Spring Cloud and Docker Reactive Programming with Spring Framework 5 - Keep your skills razor sharp and take a deep dive into Reactive Programming! Testing Spring Boot: Beginner to Guru - Best Selling Course Become an expert in testing Java and Spring Applications with JUnit 5, Mockito and much more! SQL SQL Beginner to Guru: MySQL Edition - SQL is a fundamental must have skill, which employers are looking for. Learn to master SQL on MySQL, the worlds most popular database! DevOps Apache Maven: Beginner to Guru - Best Selling Course Take the mystery out of Apache Maven. Learn how to use Maven to build your Java and Spring Boot projects! OpenAPI: Beginner to Guru - Master OpenAPI (formerly Swagger) to Create Specifications for Your APIs OpenAPI: Specification With Redocly Docker for Java Developers - Best Selling Course on Udemy! Learn how you can supercharge your development by leveraging Docker. Collaborate with other students in a Slack community exclusive to the course! Spring Framework DevOps on AWS - Learn how to build and deploy Spring applications on Amazon AWS! Ready for Production with Spring Boot Actuator - Learn how to leverage Spring Boot Actuator to monitor your applications running in production. Web Development with Spring Framework Mastering Thymeleaf with Spring Boot - Once you learn Thymeleaf, you'll never want to go back to using JSPs for web development! Connect with Spring Framework Guru Spring Framework Guru Blog Subscribe to Spring Framework Guru on YouTube Like Spring Framework Guru on Facebook Follow Spring Framework Guru on Twitter Connect with John Thompson on LinkedIn

AI-and-Business-Rules-for-Excel-Power-Users
github
LLM Vibe Score0.385
Human Vibe Score0.01524083787499147
PacktPublishingMar 14, 2025

AI-and-Business-Rules-for-Excel-Power-Users

AI and Business Rules for Excel Power Users This is the code repository for AI and Business Rules for Excel Power Users, published by Packt. Capture and scale your business knowledge into the cloud – with Microsoft 365, Decision Models, and AI tools from IBM and Red Hat What is this book about? Microsoft Excel is widely adopted across diverse industries, but Excel Power Users often encounter limitations such as complex formulas, obscure business knowledge, and errors from using outdated sheets. They need a better enterprise-level solution, and this book introduces Business rules combined with the power of AI to tackle the limitations of Excel. This book covers the following exciting features: Use KIE and Drools decision services to write AI-based business rules Link Business Rules to Excel using Power Query, Script Lab, Office Script, and VBA Build an end-to-end workflow with Microsoft Power Automate and Forms while integrating it with Excel and Kogito Collaborate on and deploy your decision models using OpenShift, Azure, and GitHub Discover advanced editing using the graphical Decision Model Notation (DMN) and testing tools Use Kogito to combine AI solutions with Excel If you feel this book is for you, get your copy today! Instructions and Navigations All of the code is organized into folders. For example, Chapter06. The code will look like the following: Following is what you need for this book: This book is for Excel power users, business users, and business analysts looking for a tool to capture their knowledge and deploy it as part of enterprise-grade systems. Working proficiency with MS Excel is required. Basic knowledge of web technologies and scripting would be an added advantage With the following software and hardware list you can run all code files present in the book (Chapter 1-12). Software and Hardware List | Chapter | Software required | OS required | | -------- | ------------------------------------ | ----------------------------------- | | 6-8 | Microsoft Excel and Office 365 | Windows, Mac OS X, and Linux (Any) | | 10 | Docker | Windows, Mac OS X, and Linux (Any) | | Appendix A | Visual Basic for Applications | Windows, Mac OS X, and Linux (Any) | We also provide a PDF file that has color images of the screenshots/diagrams used in this book. Click here to download it. Related products Exploring Microsoft Excel’s Hidden Treasures [[Packt]](https://www.packtpub.com/product/exploring-microsoft-excels-hidden-treasures/9781803243948?utmsource=github&utmmedium=repository&utm_campaign=9781803243948) [[Amazon]](https://www.amazon.com/dp/1803243945) VBA Automation for Excel 2019 Cookbook [[Packt]](https://subscription.packtpub.com/search?query=9781789610031&utmsource=github&utmmedium=repository&utm_campaign=9781803242002) [[Amazon]](https://www.amazon.com/dp/1789610036) Get to Know the Author Paul Browne is a Programme Manager - Training and Consulting at Enterprise Ireland. His skillset includes delivering consulting and training into companies to help them grow faster, better and earlier. Particular focus in working on Digital Transformation alongside Sales and Marketing, Manufacturing and Financial teams. His educational qualifications includes Msc Advanced Software Engineering at University College Dublin and BA European Business Studies with French at Ulster University, Northern Ireland. His professional qualifications includes ACCA (Financial management modules), CIPS - Procurement Professional, and Technical certifications from Oracle (Java) and Microsoft. Download a free PDF If you have already purchased a print or Kindle version of this book, you can get a DRM-free PDF version at no cost.Simply click on the link to claim your free PDF. https://packt.link/free-ebook/9781804619544

Vibe Coding: The Art of Ignorance
youtube
LLM Vibe Score0.29
Human Vibe Score0.38
Dylan CuriousMar 13, 2025

Vibe Coding: The Art of Ignorance

NEWSLETTER ✉️ https://dylancurious.beehiiv.com PATREON 💰 https://patreon.com/DylanCurious SOCIALS ⤵ ▶️ YouTube: https://www.youtube.com/@dylan_curious/videos 📸 Instagram: https://www.instagram.com/dylan_curious/reels/ 🐦 Twitter/X: https://x.com/dylan_curious 🧵 Threads: https://www.threads.net/@dylan_curious?hl=en 💼 LinkedIn: https://www.linkedin.com/in/dylancurious/recent-activity/all/ 👍 Facebook: https://www.facebook.com/DylanCurious/videos 📌 BlueSky: https://bsky.app/profile/dylancurious.bsky.social ☁️ TikTok: https://www.tiktok.com/@dylan_curious CHAPTERS ⤵ 00:00 - AI Social, News, & Research 02:32 - Support The Channel On Patreon! 02:56 - Vibe Coding Creates Full Blown Video Game 04:44 - Disney Rides Are Getting…Robotic 06:23 - Sony Is Creating AI-Powered Playstation Characters 07:23 - US Army Using AI To Purge DEI Training 09:17 - GPS Works…On the Moon! 10:06 - AI Simplifies Our Process To Achieve Quantum Entanglement 11:30 - Netflix’s “The Electric State” Looks Awesome 12:59 - Ex-Google CEO Issues Shocking Warning About WWIII 14:41 - Luma’s AI’s New Tool…Ray2 Flash 15:52 - New Feedback Framework For Training AI Robots 17:22 - AI Microplastic Detection Boosts Research 19:53 - Google Debuts New Gemini Text-Embedding 21:56 - OpenAI Might Be Changing Their Tune 24:18 - Julia McCoy Responds To World Chat Question 26:24 - AI Designed Church Service In Finland 27:51 - The Race For AGI…Who’s WInning? 30:35 - Catastrophe Theory and The Unseen Reality 32:55 - Like, Comment, Subscribe, & Support! SOURCES ⤵ @JuliaMcCoy https://www.youtube.com/@JuliaMcCoy https://www.youtube.com/watch?v=N4RnF-OPezI&t=1145s&ab_channel=FIVEFIRES https://youtu.be/TuK_v1J1BUo?si=UpeBx4vjutWC3Zl2 https://www.youtube.com/watch?v=QIw6ITiwgBU&ab_channel=Netflix https://www.youtube.com/watch?v=IhBuz-cnSNE&ab_channel=WesRoth https://www.nationalsecurity.ai/ https://www.youtube.com/watch?v=yUllcDzXFC8&ab_channel=LumaAI

pragmaticai
github
LLM Vibe Score0.476
Human Vibe Score0.11235605711653615
noahgiftFeb 10, 2025

pragmaticai

🎓 Pragmatic AI Labs | Join 1M+ ML Engineers 🔥 Hot Course Offers: 🤖 Master GenAI Engineering - Build Production AI Systems 🦀 Learn Professional Rust - Industry-Grade Development 📊 AWS AI & Analytics - Scale Your ML in Cloud ⚡ Production GenAI on AWS - Deploy at Enterprise Scale 🛠️ Rust DevOps Mastery - Automate Everything 🚀 Level Up Your Career: 💼 Production ML Program - Complete MLOps & Cloud Mastery 🎯 Start Learning Now - Fast-Track Your ML Career 🏢 Trusted by Fortune 500 Teams Learn end-to-end ML engineering from industry veterans at PAIML.COM Pragmatic AI: An Introduction To Cloud-based Machine Learning !pai Book Resources This books was written in partnership with Pragmatic AI Labs. !alt text You can continue learning about these topics by: Foundations of Data Engineering (Specialization: 4 Courses) Publisher: Coursera + Duke Release Date: 4/1/2022 !duke-data Take the Specialization Course1: Python and Pandas for Data Engineering Course2: Linux and Bash for Data Engineering Course3: Scripting with Python and SQL for Data Engineering Course4: Web Development and Command-Line Tools in Python for Data Engineering Cloud Computing (Specialization: 4 Courses) Publisher: Coursera + Duke Release Date: 4/1/2021 Building Cloud Computing Solutions at Scale Specialization Launch Your Career in Cloud Computing. Master strategies and tools to become proficient in developing data science and machine learning (MLOps) solutions in the Cloud What You Will Learn Build websites involving serverless technology and virtual machines, using the best practices of DevOps Apply Machine Learning Engineering to build a Flask web application that serves out Machine Learning predictions Create Microservices using technologies like Flask and Kubernetes that are continuously deployed to a Cloud platform: AWS, Azure or GCP Courses in Specialization Take the Specialization Cloud Computing Foundations Cloud Virtualization, Containers and APIs Cloud Data Engineering Cloud Machine Learning Engineering and MLOps Get the latest content and updates from Pragmatic AI Labs: Subscribe to the mailing list! Taking the course AWS Certified Cloud Practitioner 2020-Real World & Pragmatic. Buying a copy of Pragmatic AI: An Introduction to Cloud-Based Machine Learning Reading book online on Safari: Online Version of Pragmatic AI: An Introduction to Cloud-Based Machine Learning, First Edition Watching 8+ Hour Video Series on Safari: Essential Machine Learning and AI with Python and Jupyter Notebook Viewing more content at noahgift.com Viewing more content at Pragmatic AI Labs Exploring related colab notebooks from Safari Online Training Learning about emerging topics in Hardware AI & Managed/AutoML Viewing more content on the Pragmatic AI Labs YouTube Channel Reading content on Pragmatic AI Medium Attend an upcoming Safari Live Training About Pragmatic AI is the first truly practical guide to solving real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Writing for business professionals, decision-makers, and students who aren’t professional data scientists, Noah Gift demystifies all the tools and technologies you need to get results. He illuminates powerful off-the-shelf cloud-based solutions from Google, Amazon, and Microsoft, as well as accessible techniques using Python and R. Throughout, you’ll find simple, clear, and effective working solutions that show how to apply machine learning, AI and cloud computing together in virtually any organization, creating solutions that deliver results, and offer virtually unlimited scalability. Coverage includes: Getting and configuring all the tools you’ll need Quickly and efficiently deploying AI applications using spreadsheets, R, and Python Mastering the full application lifecycle: Download, Extract, Transform, Model, Serve Results Getting started with Cloud Machine Learning Services, Amazon’s AWS AI Services, and Microsoft’s Cognitive Services API Uncovering signals in Facebook, Twitter and Wikipedia Listening to channels via Slack bots running on AWS Lambda (serverless) Retrieving data via the Twitter API and extract follower relationships Solving project problems and find highly-productive developers for data science projects Forecasting current and future home sales prices with Zillow Using the increasingly popular Jupyter Notebook to create and share documents integrating live code, equations, visualizations, and text And much more Book Chapter Juypter Notebooks Note, it is recommended to also watch companion Video Material: Essential Machine Learning and AI with Python and Jupyter Notebook Chapter 1: Introduction to Pragmatic AI Chapter 2: AI & ML Toolchain Chapter 3: Spartan AI Lifecyle Chapter 4: Cloud AI Development with Google Cloud Platform Chapter 5: Cloud AI Development with Amazon Web Services Chapter 6: Social Power NBA Chapter 7: Creating an Intelligent Slack Bot on AWS Chapter 8: Finding Project Management Insights from A Github Organization Chapter 9: Dynamically Optimizing EC2 Instances on AWS Chapter 10: Real Estate Chapter 11: Production AI for User Generated Content (UGC) License This code is released under the MIT license Text The text content of notebooks is released under the CC-BY-NC-ND license Additional Related Topics from Noah Gift His most recent books are: Pragmatic A.I.:   An introduction to Cloud-Based Machine Learning (Pearson, 2018) Python for DevOps (O'Reilly, 2020).  Cloud Computing for Data Analysis, 2020 Testing in Python, 2020 His most recent video courses are: Essential Machine Learning and A.I. with Python and Jupyter Notebook LiveLessons (Pearson, 2018) AWS Certified Machine Learning-Specialty (ML-S) (Pearson, 2019) Python for Data Science Complete Video Course Video Training (Pearson, 2019) AWS Certified Big Data - Specialty Complete Video Course and Practice Test Video Training (Pearson, 2019) Building A.I. Applications on Google Cloud Platform (Pearson, 2019) Pragmatic AI and Machine Learning Core Principles (Pearson, 2019) Data Engineering with Python and AWS Lambda (Pearson, 2019) His most recent online courses are: Microservices with this Udacity DevOps Nanodegree (Udacity, 2019) Command Line Automation in Python (DataCamp, 2019) AWS Certified Cloud Practitioner 2020-Real World & Pragmatic.

PracticalAI
github
LLM Vibe Score0.416
Human Vibe Score0.012874224994657315
revodavidFeb 9, 2025

PracticalAI

Practical AI for the Working Software Engineer by David M Smith (@revodavid), Cloud Advocate at Microsoft Last updated: December 4, 2018 Presented at: AI Live (AIF01), Orlando, December 7 2018 About these notebooks This library includes three notebooks to support the workshop: The AI behind Seeing AI. Use the web-interfaces to Cognitive Services to learn about the AI services behind the "Seeing AI" app Computer Vision API with R. Use an R script to interact with the Computer Vision API and generate captions for random Wikimedia images. Custom Vision with R. An R function to classify an image as a "Hot Dog" or "Not Hot Dog", using the Custom Vision service. MNIST with scikit-learn. Use sckikit-learn to build a digit recognizer for the MNIST data using a regression model. MNIST with tensorflow. Use Tensorflow (from Python) to build a digit recognizer for the MNIST data using a convolutional neural network. These notebooks are hosted on Azure Notebooks at https://notebooks.azure.com/davidsmi/projects/practicalai, where you can run them interactively. You can also download them to run them using Jupyter. Find the slides for the workshop here. Setup (for use in Azure Notebooks) Sign in to Azure Notebooks. You'll need a Microsoft Account: your O365, Xbox, or Hotmail account will work. If you're new to Notebooks, check out the Jupyter Notebook documentation and the Azure Notebook documentation. If you have an iPhone, install the free SeeingAI app. (optional) To generate keys and use Azure services, you'll need an Azure subscription. You can get a free Azure account here, with $200 in free credits for new subscribers. You'll need a credit card, but most of the things we'll use in this workshop will be free. Contact If you get stuck or just have other questions, you can contact me here: David Smith davidsmi@microsoft.com Twitter: @revodavid

Mastering-AI-for-Entrepreneurs-9-Free-Courses
github
LLM Vibe Score0.203
Human Vibe Score0
Softtechhub1Feb 1, 2025

Mastering-AI-for-Entrepreneurs-9-Free-Courses

Mastering-AI-for-Entrepreneurs-9-Free-Courses Introduction: The Entrepreneur's AI RevolutionArtificial Intelligence (AI) is changing the way we do business. It's not just for tech giants anymore. Small businesses and startups are using AI to work smarter, not harder. As an entrepreneur, you need to understand AI to stay ahead.Why AI is a must-have skill for entrepreneursAI is everywhere. It's in the apps we use, the products we buy, and the services we rely on. Businesses that use AI are seeing big improvements:They're making better decisions with data-driven insightsThey're automating routine tasks, freeing up time for creativityThey're personalizing customer experiences, boosting satisfaction and salesIf you're not using AI, you're falling behind. But here's the good news: you don't need to be a tech wizard to harness the power of AI.Breaking the barriers to AI learningThink AI is too complex? Think again. You don't need a computer science degree to understand and use AI in your business. Many AI tools are designed for non-technical users. They're intuitive and user-friendly.The best part? You can learn about AI for free. There are tons of high-quality courses available at no cost. These courses are designed for busy entrepreneurs like you. They cut through the jargon and focus on practical applications.What to expect from this articleWe've handpicked nine free courses that will turn you into an AI-savvy entrepreneur. Each course is unique, offering different perspectives and skills. We'll cover:What makes each course specialWhat you'll learnHow it applies to your businessWho it's best suited forReady to dive in? Let's explore these game-changing courses that will boost your AI knowledge and give your business an edge.1. Google AI Essentials: A Beginner's Guide to Practical AIWhy This Course Is EssentialGoogle AI Essentials is perfect if you're just starting out. It's designed for people who don't have a tech background. The course focuses on how AI can help you in your day-to-day work, not on complex theories.What You'll LearnThis course is all about making AI work for you. You'll discover how to:Use AI to boost your productivity. Generate ideas, create content, and manage tasks more efficiently.Streamline your workflows. Learn how AI can help with everyday tasks like drafting emails and organizing your schedule.Use AI responsibly. Understand the potential biases in AI and how to use it ethically.Key TakeawaysYou'll earn a certificate from Google. This looks great on your resume or LinkedIn profile.You'll learn how to work alongside AI tools to get better results in your business.You'll gain practical skills you can use right away to improve your work.Get StartedEnroll in Google AI Essentials2. Introduction to Generative AI: A Quick Start for EntrepreneursWhy This Course Works for Busy EntrepreneursThis course is short and sweet. In just 30 minutes, you'll get a solid grasp of generative AI. It's perfect if you're short on time but want to understand the basics.What You'll LearnThe fundamentals of generative AI: what it is, how it works, and its limitsHow generative AI differs from other types of AIReal-world applications of generative AI in businessHow It Helps Your BusinessAfter this course, you'll be able to:Make smarter decisions about using AI tools in your businessSpot opportunities where generative AI could solve problems or create valueUnderstand the potential and limitations of this technologyGet StartedEnroll in Introduction to Generative AI3. Generative AI with Large Language Models: Advanced Skills for EntrepreneursWhy This Course Stands OutThis course digs deeper into the technical side of AI. It's ideal if you have some coding experience and want to understand how AI models work under the hood.What You'll LearnYou'll gain key skills for working with Large Language Models (LLMs):How to gather and prepare data for AI modelsChoosing the right model for your needsEvaluating model performance and improving resultsYou'll also learn about:The architecture behind transformer models (the tech powering many AI tools)Techniques for fine-tuning models to your specific business needsWho Should Take This CourseThis course is best for entrepreneurs who:Have basic Python programming skillsUnderstand the fundamentals of machine learningWant to go beyond using AI tools to actually building and customizing themGet StartedEnroll in Generative AI with Large Language Models4. AI for Everyone by Andrew Ng: Simplifying AI for Business LeadersWhy It's Perfect for BeginnersAndrew Ng is a leading figure in AI education. He's known for making complex topics easy to understand. This course is designed for non-technical learners. You don't need any coding or math skills to benefit from it.What You'll LearnHow AI works at a high levelHow to spot problems in your business that AI can solveWays to assess how AI might impact your business processes and strategiesWhy Entrepreneurs Love This CourseIt explains AI concepts in plain English, without technical jargonYou can complete it in just 8 hours, fitting it into your busy scheduleIt focuses on the business value of AI, not just the technologyGet StartedStart with AI for Everyone on Coursera5. Generative AI: Introduction and ApplicationsWhy This Course Is Ideal for EntrepreneursThis course offers a broad view of generative AI applications. You'll learn about AI in text, image, audio, and more. It's packed with hands-on experience using popular AI tools.What You'll LearnThe basics and history of generative AI technologiesHow different industries are using AI, from marketing to creative projectsPractical skills through labs using tools like ChatGPT, DALL-E, and Stable DiffusionHow It Stands OutYou'll hear from real AI practitioners about their experiencesThe course teaches you how to use generative AI to innovate and improve efficiency in your businessGet StartedEnroll in Generative AI: Introduction and Applications6. Generative AI for Everyone by Andrew Ng: Unlocking ProductivityWhy This Course Is a Must-HaveThis course focuses on using generative AI tools for everyday business tasks. It's all about boosting your productivity and efficiency.What You'll LearnHands-on exercises to integrate AI tools into your daily workReal examples of how businesses are using generative AI to save time and moneyTechniques for prompt engineering to get better results from AI toolsHow It Helps EntrepreneursYou'll learn to automate repetitive tasks, freeing up time for strategic thinkingYou'll discover new ways to use AI tools in your business processesYou'll gain confidence in experimenting with AI to solve business challengesGet StartedGo deeper with DeepLearning.AI7. Generative AI for Business Leaders by LinkedIn LearningWhy This Course Focuses on Business ApplicationsThis course is tailored for leaders who want to integrate AI into their business operations. It provides practical insights for improving workflows and decision-making.What You'll LearnStrategies for using AI to optimize your business operationsHow to save time and resources with AI-powered toolsPractical methods for implementing AI in your company, regardless of sizeKey BenefitsThe course is designed for busy professionals, allowing you to learn at your own paceYou'll gain insights you can apply immediately to your businessIt covers both the potential and the limitations of AI in business settingsGet StartedLevel up on LinkedIn Learning8. AI for Beginners by Microsoft: A Structured Learning PathWhy This Course Builds a Strong AI FoundationMicrosoft's AI for Beginners is a comprehensive 12-week program. It covers core AI concepts in a structured, easy-to-follow format. The course combines theoretical knowledge with hands-on practice through quizzes and labs.What You'll LearnThe basics of AI, machine learning, and data scienceStep-by-step guidance to build a strong knowledge basePractical applications of AI in various business contextsHow to Approach This CourseDedicate 2-3 hours per week to complete the curriculumUse the structured format to gradually build your confidence in AI conceptsApply what you learn to real business scenarios as you progressGet StartedBuild foundations with Microsoft9. AI for Business Specialization by UPenn: Strategic Thinking with AIWhy This Course Is Perfect for Business LeadersThis specialization focuses on AI's transformative impact on core business functions. It covers how AI is changing marketing, finance, and operations.What You'll LearnHow to build an AI strategy tailored to your business needsWays to leverage AI to drive innovation across different departmentsTechniques for integrating AI into your business modelHow to Make the Most of This CourseTake detailed notes on how each module applies to your own business challengesUse the specialization to develop a long-term AI vision for your companyNetwork with other business leaders taking the course to share insights and experiencesGet StartedScale up with UPenn's business focusConclusion: Your Path to Becoming an AI-powered EntrepreneurWe've covered nine fantastic free courses that can transform you into an AI-savvy entrepreneur. Let's recap:Google AI Essentials: Perfect for beginners, focusing on practical AI applications.Introduction to Generative AI: A quick start to understand the basics of generative AI.Generative AI with Large Language Models: For those ready to dive into the technical side.AI for Everyone: A non-technical introduction to AI's business impact.Generative AI: Introduction and Applications: A broad look at generative AI across industries.Generative AI for Everyone: Focused on boosting productivity with AI tools.Generative AI for Business Leaders: Tailored for integrating AI into business operations.AI for Beginners: A structured path to build a strong AI foundation.AI for Business Specialization: Strategic thinking about AI in business functions.Remember, you don't need to tackle all these courses at once. Start small and build your knowledge gradually. Pick the course that aligns best with your current needs and business goals.Embracing AI is not just about staying competitive; it's about opening new doors for innovation and growth. These courses will help you see opportunities where AI can solve problems, improve efficiency, and create value for your business.The AI revolution is happening now. The sooner you start learning, the better positioned you'll be to lead in this new era. Each step you take in understanding AI is a step towards future-proofing your business.So, what are you waiting for? Choose a course, dive in, and start your journey to becoming an AI-powered entrepreneur today. The future of your business may depend on it.MORE ARTICLES FOR YOUHumanizzer Fastpass Bundle – OTO1 to OTO4: Get (Humanizzer + All OTOs) Fastpass for Massive 75% Discount Available Limited-Time OneHumanizzer Review: Build Lifelike Human AI Agents That Talk, Listen & Engage Face-To-Face!—In Your Voice, Just Like You!EasyListDetox App Review: A Windows tool with Giveaway Rights for effortlessly cleaning your email lists of duplicates, invalid, and disposable addresses. Simple, efficient, and time-savingAI Copy Kit Review: Google’s Latest AI Tech Tensorflow (Tf) Create Jaw-Dropping And Advanced Ultra HD Videos, Ultra Shorts, 4K Images, Voiceovers, and Any Other GPT 4-Powered Amazing Content In Minutes Without Any Complicated Tools!From Good to Great: 15 Books to Inspire Personal and Business TransformationFTC Affiliate Commission Disclaimer: Some links in this article may earn us a commission if you make a purchase. This doesn't affect our recommendations.

internet-tools-collection
github
LLM Vibe Score0.236
Human Vibe Score0.009333333333333334
bogdanmosicaJan 23, 2025

internet-tools-collection

Internet Tools Collection A collection of tools, website and AI for entrepreneurs, web designers, programmers and for everyone else. Content by category Artificial Intelligence Developers Design Entrepreneur Video Editing Stock videos Stock Photos Stock music Search Engine Optimization Blog Posts Resume Interviews No code website builder No code game builder Side Hustle Browser Extensions Other Students Artificial Intelligence Jasper - The Best AI Writing Assistant [](https://www.jasper.ai/) Create content 5x faster with artificial intelligence. Jasper is the highest quality AI copywriting tool with over 3,000 5-star reviews. Best for writing blog posts, social media content, and marketing copy. AutoDraw [](https://www.autodraw.com/) Fast drawing for everyone. AutoDraw pairs machine learning with drawings from talented artists to help you draw stuff fast. Rytr - Best AI Writer, Content Generator & Writing Assistant [](https://rytr.me/) Rytr is an AI writing assistant that helps you create high-quality content, in just a few seconds, at a fraction of the cost! Neevo - Neevo [](https://www.neevo.ai/) Kinetix Tech [](https://kinetix.tech/) Kinetix is a no-code 3D creation tool powered by Artificial Intelligence. The web-based platform leverages AI motion capture to convert a video into a 3D animation and lets you customize your avatars and environments. We make 3D animation accessible to every creator so they can create engaging stories. LALAL.AI: 100% AI-Powered Vocal and Instrumental Tracks Remover [](https://www.lalal.ai/) Split vocal and instrumental tracks quickly and accurately with LALAL.AI. Upload any audio file and receive high-quality extracted tracks in a few seconds. Copy.ai: Write better marketing copy and content with AI [](https://www.copy.ai/) Get great copy that sells. Copy.ai is an AI-powered copywriter that generates high-quality copy for your business. Get started for free, no credit card required! Marketing simplified! OpenAI [](https://openai.com/) OpenAI is an AI research and deployment company. Our mission is to ensure that artificial general intelligence benefits all of humanity. DALL·E 2 [](https://openai.com/dall-e-2/) DALL·E 2 is a new AI system that can create realistic images and art from a description in natural language. Steve.ai - World’s fastest way to create Videos [](https://www.steve.ai/) Steve.AI is an online Video making software that helps anyone to create Videos and animations in seconds. Octie.ai - Your A.I. ecommerce marketing assistant [](https://octie.ai/) Write emails, product descriptions, and more, with A.I. Created by Octane AI. hypnogram.xyz [](https://hypnogram.xyz/) Generate images from text descriptions using AI FakeYou. Deep Fake Text to Speech. [](https://fakeyou.com/) FakeYou is a text to speech wonderland where all of your dreams come true. Craiyon, formerly DALL-E mini [](https://www.craiyon.com/) Craiyon, formerly DALL-E mini, is an AI model that can draw images from any text prompt! Deck Rocks - Create Pictch Decks [](https://www.deck.rocks/) Writely | Using AI to Improve Your Writing [](https://www.writelyai.com/) Making the art of writing accessible to all Writesonic AI Writer - Best AI Writing Assistant [](https://writesonic.com/) Writesonic is an AI writer that's been trained on top-performing SEO content, high-performing ads, and converting sales copy to help you supercharge your writing and marketing efforts. Smart Copy - AI Copywriting Assistant | Unbounce [](https://unbounce.com/product/smart-copy/) Generate creative AI copy on-the-spot across your favourite tools Synthesia | #1 AI Video Generation Platform [](https://www.synthesia.io/) Create AI videos by simply typing in text. Easy to use, cheap and scalable. Make engaging videos with human presenters — directly from your browser. Free demo. NVIDIA Canvas: Turn Simple Brushstrokes into Realistic Images [](https://www.nvidia.com/en-us/studio/canvas/) Create backgrounds quickly, or speed up your concept exploration so you can spend more time visualizing ideas with the help of NVIDIA Canvas. Hotpot.ai - Hotpot.ai [](https://hotpot.ai/) Hotpot.ai makes graphic design and image editing easy. AI tools allow experts and non-designers to automate tedious tasks while attractive, easy-to-edit templates allow anyone to create device mockups, social media posts, marketing images, app icons, and other work graphics. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Search listening tool for market, customer & content research - AnswerThePublic [](https://answerthepublic.com/) Use our free tool to get instant, raw search insights, direct from the minds of your customers. Upgrade to a paid plan to monitor for new ways that people talk & ask questions about your brand, product or topic. Topic Mojo [](https://topicmojo.com/) Discover unique & newest queries around any topic and find what your customers are searching for. Pulling data from 50+ sources to enhance your topic research. AI Image Enlarger | Enlarge Image Without Losing Quality! [](https://imglarger.com/) AI Image Enlarger is a FREE online image enlarger that could upscale and enhance small images automatically. Make jpg/png pictures big without losing quality. Midjourney [](https://www.midjourney.com/app/) Kaedim - AI for turning 2D images to 3D models [](https://www.kaedim3d.com/webapp) AI for turning 2D images, sketches and photos to 3D models in seconds. Overdub: Ultra realistic text to speech voice cloning - Descript [](https://www.descript.com/overdub) Create a text to speech model of your voice. Try a live demo. Getting Started [](https://magenta.tensorflow.org/get-started) Resources to learn about Magenta Photosonic AI Art Generator | Create Unique Images with AI [](https://photosonic.writesonic.com/) Transform your imagination into stunning digital art with Photosonic - the AI art generator. With its creative suggestions, this Writesonic's AI image generator can help unleash your inner artist and share your creations with the world. Image Computer [](https://image.computer/) Most downloaded Instagram Captions App (+more creator tools) [](https://captionplus.app/) Join 3 Million+ Instagram Creators who use CaptionPlus to find Instagram Captions, Hashtags, Feed Planning, Reel Ideas, IG Story Design and more. Writecream - Best AI Writer & Content Generator - Writecream [](https://www.writecream.com/) Sentence Rewriter is a free tool to reword a sentence, paragraph and even entire essays in a short amount of time. Hypotenuse AI: AI Writing Assistant and Text Generator [](https://www.hypotenuse.ai/) Turn a few keywords into original, insightful articles, product descriptions and social media copy with AI copywriting—all in just minutes. Try it free today. Text to Speach Listnr: Generate realistic Text to Speech voiceovers in seconds [](https://www.listnr.tech/) AI Voiceover Generator with over 600+ voiceovers in 80+ languages, go from Text to Voice in seconds. Get started for Free! Free Text to Speech: Online, App, Software, Commercial license with Natural Sounding Voices. [](https://www.naturalreaders.com/) Free text to speech online app with natural voices, convert text to audio and mp3, for personal and commercial use Developers OverAPI.com | Collecting all the cheat sheets [](https://overapi.com/) OverAPI.com is a site collecting all the cheatsheets,all! Search Engine For Devs [](https://you.com/) Spline - Design tool for 3D web browser experiences [](https://spline.design/) Create web-based 3D browser experiences Image to HTML CSS converter. Convert image to HTML CSS with AI: Fronty [](https://fronty.com/) Fronty - Image to HTML CSS code converter. Convert image to HTML powered by AI. Sketchfab - The best 3D viewer on the web [](https://sketchfab.com/) With a community of over one million creators, we are the world’s largest platform to publish, share, and discover 3D content on web, mobile, AR, and VR. Railway [](https://railway.app/) Railway is an infrastructure platform where you can provision infrastructure, develop with that infrastructure locally, and then deploy to the cloud. JSON Crack - Crack your data into pieces [](https://jsoncrack.com/) Simple visualization tool for your JSON data. No forced structure, paste your JSON and view it instantly. Locofy.ai - ship your products 3-4x faster — with low code [](https://www.locofy.ai/) Turn your designs into production-ready frontend code for mobile apps and web. Ship products 3-4x faster with your existing design tools, tech stacks & workflows. Oh Shit, Git!?! [](https://ohshitgit.com/) Carbon | Create and share beautiful images of your source code [](https://carbon.now.sh/) Carbon is the easiest way to create and share beautiful images of your source code. GPRM : GitHub Profile ReadMe Maker [](https://gprm.itsvg.in/) Best Profile Generator, Create your perfect GitHub Profile ReadMe in the best possible way. Lots of features and tools included, all for free ! HubSpot | Software, Tools, and Resources to Help Your Business Grow Better [](https://www.hubspot.com/) HubSpot’s integrated CRM platform contains the marketing, sales, service, operations, and website-building software you need to grow your business. QuickRef.ME - Quick Reference Cheat Sheet [](https://quickref.me/) Share quick reference and cheat sheet for developers massCode | A free and open source code snippets manager for developers [](https://masscode.io/) Code snippets manager for developers, developed using web technologies. Snyk | Developer security | Develop fast. Stay secure. [](https://snyk.io/) Snyk helps software-driven businesses develop fast and stay secure. Continuously find and fix vulnerabilities for npm, Maven, NuGet, RubyGems, PyPI and more. Developer Roadmaps [](https://roadmap.sh/) Community driven roadmaps, articles, guides, quizzes, tips and resources for developers to learn from, identify their career paths, know what they don't know, find out the knowledge gaps, learn and improve. CSS Generators Get Waves – Create SVG waves for your next design [](https://getwaves.io/) A free SVG wave generator to make unique SVG waves for your next web design. Choose a curve, adjust complexity, randomize! Box Shadows [](https://box-shadow.dev/) Tridiv | CSS 3D Editor [](http://tridiv.com/) Tridiv is a web-based editor for creating 3D shapes in CSS Glassmorphism CSS Generator - Glass UI [](https://ui.glass/generator/) Generate CSS and HTML components using the glassmorphism design specifications based on the Glass UI library. Blobmaker - Make organic SVG shapes for your next design [](https://www.blobmaker.app/) Make organic SVG shapes for your next design. Modify the complexity, contrast, and color, to generate unique SVG blobs every time. Keyframes.app [](https://keyframes.app/) cssFilters.co - Custom and Instagram like photo filters for CSS [](https://www.cssfilters.co/) Visual playground for generating CSS for custom and Instagram like photo filters. Experiment with your own uploaded photo or select one from the Unsplash collection. CSS Animations Animista - CSS Animations on Demand [](https://animista.net/) Animista is a CSS animation library and a place where you can play with a collection of ready-made CSS animations and download only those you will use. Build Internal apps Superblocks | Save 100s of developer hours on internal tools [](https://www.superblocks.com/) Superblocks is the fast, easy and secure way for developers to build custom internal tools fast. Connect your databases & APIs. Drag and drop UI components. Extend with Python or Javascript. Deploy in 1-click. Secure and Monitor using your favorite tools Budibase | Build internal tools in minutes, the easy way [](https://budibase.com/) Budibase is a modern, open source low-code platform for building modern internal applications in minutes. Retool | Build internal tools, remarkably fast. [](https://retool.com/) Retool is the fast way to build internal tools. Drag-and-drop our building blocks and connect them to your databases and APIs to build your own tools, instantly. Connects with Postgres, REST APIs, GraphQL, Firebase, Google Sheets, and more. Built by developers, for developers. Trusted by startups and Fortune 500s. Sign up for free. GitHub Repositories GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? [](https://github.com/vasanthk/how-web-works) What happens behind the scenes when we type www.google.com in a browser? - GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. [](https://github.com/kamranahmedse/developer-roadmap) Interactive roadmaps, guides and other educational content to help developers grow in their careers. - GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. [](https://github.com/apptension/developer-handbook) An opinionated guide on how to become a professional Web/Mobile App Developer. - GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. ProfileMe.dev | Create an amazing GitHub profile in minutes [](https://www.profileme.dev/) ProfileMe.dev | Create an amazing GitHub profile in minutes GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. [](https://github.com/Kristories/awesome-guidelines) A curated list of high quality coding style conventions and standards. - GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. GitHub - tiimgreen/github-cheat-sheet: A list of cool features of Git and GitHub. [](https://github.com/tiimgreen/github-cheat-sheet) A list of cool features of Git and GitHub. Contribute to tiimgreen/github-cheat-sheet development by creating an account on GitHub. GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer [](https://github.com/andreasbm/web-skills) A visual overview of useful skills to learn as a web developer - GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers [](https://github.com/Ebazhanov/linkedin-skill-assessments-quizzes) Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers - GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers Blockchain/Crypto Dashboards [](https://dune.com/) Blockchain ecosystem analytics by and for the community. Explore and share data from Ethereum, xDai, Polygon, Optimism, BSC and Solana for free. Introduction - The Anchor Book v0.24.0 [](https://book.anchor-lang.com/introduction/introduction.html) Crypto & Fiat Exchange Super App | Trade, Save & Spend | hi [](https://hi.com/) Buy, Trade, Send and Earn Crypto & Fiat. Deposit Bitcoin, ETH, USDT and other cryptos and start earning. Get the hi Debit Card and Multi-Currency IBAN Account. Moralis Web3 - Enterprise-Grade Web3 APIs [](https://moralis.io/) Bridge the development gap between Web2 and Web3 with Moralis’ powerful Web3 APIs. Mirror [](https://mirror.xyz/) Built on web3 for web3, Mirror’s robust publishing platform pushes the boundaries of writing online—whether it’s the next big white paper or a weekly community update. Makerdao [](https://blog.makerdao.com/) Sholi — software for Investors & Traders / Sholi MetriX [](https://sholi.io/) Sholi — software for Investors & Traders / Sholi MetriX Stock Trading Quiver Quantitative [](https://www.quiverquant.com/) Quiver Quantitative Chart Prime - The only tool you'll need for trading assets across all markets [](https://chartprime.com/) ChartPrime offers a toolkit that will take your trading game to the next level. Visit our site for a full rundown of features and helpful tutorials. Learning Hacker Rank [](https://www.hackerrank.com/) Coderbyte | Code Screening, Challenges, & Interview Prep [](https://coderbyte.com/) Improve your coding skills with our library of 300+ challenges and prepare for coding interviews with content from leading technology companies. Competitive Programming | Participate & Learn | CodeChef [](https://www.codechef.com/) Learn competitive programming with the help of CodeChef's coding competitions. Take part in these online coding contests to level up your skills Learn to Code - for Free | Codecademy [](https://www.codecademy.com/) Learn the technical skills to get the job you want. Join over 50 million people choosing Codecademy to start a new career (or advance in their current one). Free Code Camp [](https://www.freecodecamp.org/) Learn to Code — For Free Sololearn: Learn to Code [](https://www.sololearn.com/home) Join Now to learn the basics or advance your existing skills Mimo: The coding app you need to learn to code! Python, HTML, JavaScript [](https://getmimo.com/) Join more than 17 million learners worldwide. Learn to code for free. Learn Python, JavaScript, CSS, SQL, HTML, and more with our free code learning app. Free for developers [](https://free-for.dev/#/) Your Career in Web Development Starts Here | The Odin Project [](https://www.theodinproject.com/) The Odin Project empowers aspiring web developers to learn together for free Code Learning Games CheckiO - coding games and programming challenges for beginner and advanced [](https://checkio.org/) CheckiO - coding websites and programming games. Improve your coding skills by solving coding challenges and exercises online with your friends in a fun way. Exchanges experience with other users online through fun coding activities Coding for Kids | Game-Based Programming | CodeMonkey [](https://www.codemonkey.com/) CodeMonkey is a leading coding for kids program. Through its award-winning courses, millions of students learn how to code in real programming languages. Coding Games and Programming Challenges to Code Better [](https://www.codingame.com/) CodinGame is a challenge-based training platform for programmers where you can play with the hottest programming topics. Solve games, code AI bots, learn from your peers, have fun. Learn VIM while playing a game - VIM Adventures [](https://vim-adventures.com/) VIM Adventures is an online game based on VIM's keyboard shortcuts. It's the "Zelda meets text editing" game. So come have some fun and learn some VIM! CodeCombat - Coding games to learn Python and JavaScript [](https://codecombat.com/) Learn typed code through a programming game. Learn Python, JavaScript, and HTML as you solve puzzles and learn to make your own coding games and websites. Design Useberry - Codeless prototype analytics [](https://www.useberry.com/) User testing feedback & rich insights in minutes, not months! Figma: the collaborative interface design tool. [](https://www.figma.com/) Build better products as a team. Design, prototype, and gather feedback all in one place with Figma. Dribbble - Discover the World’s Top Designers & Creative Professionals [](https://dribbble.com/) Find Top Designers & Creative Professionals on Dribbble. We are where designers gain inspiration, feedback, community, and jobs. Your best resource to discover and connect with designers worldwide. Photopea | Online Photo Editor [](https://www.photopea.com/) Photopea Online Photo Editor lets you edit photos, apply effects, filters, add text, crop or resize pictures. Do Online Photo Editing in your browser for free! Toools.design – An archive of 1000+ Design Resources [](https://www.toools.design/) A growing archive of over a thousand design resources, weekly updated for the community. Discover highly useful design tools you never thought existed. All Online Tools in One Box | 10015 Tools [](https://10015.io/) All online tools you need in one box for free. Build anything online with “all-in-one toolbox”. All tools are easy-to-use, blazing fast & free. Phase - Digital Design Reinvented| Phase [](https://phase.com/) Design and prototype websites and apps visually and intuitively, in a new powerful product reworked for the digital age. Animated Backgrounds [](https://animatedbackgrounds.me/) A Collection of 30+ animated backgrounds for websites and blogs.With Animated Backgrounds, set a simple, elegant background animations on your websites and blogs. Trianglify.io · Low Poly Pattern Generator [](https://trianglify.io/) Trianglify.io is a tool for generating low poly triangle patterns that can be used as wallpapers and website assets. Cool Backgrounds [](https://coolbackgrounds.io/) Explore a beautifully curated selection of cool backgrounds that you can add to blogs, websites, or as desktop and phone wallpapers. SVG Repo - Free SVG Vectors and Icons [](https://www.svgrepo.com/) Free Vectors and Icons in SVG format. ✅ Download free mono or multi color vectors for commercial use. Search in 300.000+ Free SVG Vectors and Icons. Microcopy - Short copy text for your website. [](https://www.microcopy.me/) Search micro UX copy text: slogans, headlines, notifications, CTA, error messages, email, account preferences, and much more. 3D icons and icon paks - Free3Dicon [](https://free3dicon.com/) All 3D icons you need in one place. This is a collection of free, beautiful, trending 3D icons, that you can use in any project. Love 3D Icon [](https://free3dicons.com/) Downloads free 3D icons GIMP - GNU Image Manipulation Program [](https://www.gimp.org/) GIMP - The GNU Image Manipulation Program: The Free and Open Source Image Editor blender.org - Home of the Blender project - Free and Open 3D Creation Software [](https://www.blender.org/) The Freedom to Create 3D Design Software | 3D Modeling on the Web | SketchUp [](https://www.sketchup.com/) SketchUp is a premier 3D design software that truly makes 3D modeling for everyone, with a simple to learn yet robust toolset that empowers you to create whatever you can imagine. Free Logo Maker - Create a Logo in Seconds - Shopify [](https://www.shopify.com/tools/logo-maker) Free logo maker tool to generate custom design logos in seconds. This logo creator is built for entrepreneurs on the go with hundreds of templates, free vectors, fonts and icons to design your own logo. The easiest way to create business logos online. All your design tools in one place | Renderforest [](https://www.renderforest.com/) Time to get your brand noticed. Create professional videos, logos, mockups, websites, and graphics — all in one place. Get started now! Prompt Hero [](https://prompthero.com/) Type Scale - A Visual Calculator [](https://type-scale.com/) Preview and choose the right type scale for your project. Experiment with font size, scale and different webfonts. DreamFusion: Text-to-3D using 2D Diffusion [](https://dreamfusion3d.github.io/) DreamFusion: Text-to-3D using 2D Diffusion, 2022. The branding style guidelines documents archive [](https://brandingstyleguides.com/) Welcome to the brand design manual documents directory. Search over our worldwide style assets handpicked collection, access to PDF documents for inspiration. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Readymag—a design tool to create websites without coding [](https://readymag.com/) Meet the most elegant, simple and powerful web-tool for designing websites, presentations, portfolios and all kinds of digital publications. ffflux: Online SVG Fluid Gradient Background Generator | fffuel [](https://fffuel.co/ffflux/) SVG generator to make fluid gradient backgrounds that feel organic and motion-like. Perfect to add a feeling of motion and fluidity to your web designs. Generate unique SVG design assets | Haikei [](https://haikei.app/) A web-based design tool to generate unique SVG design assets for websites, social media, blog posts, desktop and mobile wallpapers, posters, and more! Our generators let you discover, customize, randomize, and export generative SVG design assets ready to use with your favorite design tools. UI/UX - Inspirational Free Website Builder Software | 10,000+ Free Templates [](https://nicepage.com/) Nicepage is your website builder software breaking limitations common for website builders with revolutionary freehand positioning. 7000+ Free Templates. Easy Drag-n-Drop. No coding. Mobile-friendly. Clean HTML. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Pika – Create beautiful mockups from screenshots [](https://pika.style/) Quickly create beautiful website and device mockup from screenshot. Pika lets you capture website screenshots form URL, add device and browser frames, customize background and more LiveTerm [](https://liveterm.vercel.app/) Minimal Gallery – Web design inspiration [](https://minimal.gallery/) For the love of beautiful, clean and functional websites. Awwwards - Website Awards - Best Web Design Trends [](https://www.awwwards.com/) Awwwards are the Website Awards that recognize and promote the talent and effort of the best developers, designers and web agencies in the world. Design Systems For Figma [](https://www.designsystemsforfigma.com/) A collection of Design Systems for Figma from all over the globe. Superside: Design At Scale For Ambitious Brands [](https://www.superside.com/) We are an always-on design company. Get a team of dedicated designers, speedy turnarounds, magical creative collaboration tech and the top 1% of global talent. UXArchive - Made by Waldo [](https://uxarchive.com/) UXArchive the world's largest library of mobile user flows. Be inspired to design the best user experiences. Search by Muzli [](https://search.muz.li/) Search, discover, test and create beautiful color palettes for your projects Siteinspire | Web Design Inspiration [](https://www.siteinspire.com/) SAVEE [](https://savee.it/) The best way to save and share inspiration. A little corner of the internet to find good landing page copywriting examples [](https://greatlandingpagecopy.com/) A little corner of the internet to find great landing page copywriting examples. The Best Landing Page Examples For Design Inspiration - SaaS Landing Page [](https://saaslandingpage.com/) SaaS Landing Page showcases the best landing page examples created by top-class SaaS companies. Get ideas and inspirations for your next design project. Websites Free templates Premium Bootstrap Themes and Templates: Download @ Creative Tim [](https://www.creative-tim.com/) UI Kits, Templates and Dashboards built on top of Bootstrap, Vue.js, React, Angular, Node.js and Laravel. Join over 2,014,387+ creatives to access all our products! Free Bootstrap Themes, Templates, Snippets, and Guides - Start Bootstrap [](https://startbootstrap.com/) Start Bootstrap develops free to download, open source Bootstrap 5 themes, templates, and snippets and creates guides and tutorials to help you learn more about designing and developing with Bootstrap. Free Website Templates [](https://freewebsitetemplates.com/) Get your free website templates here and use them on your website without needing to link back to us. One Page Love - One Page Website Inspiration and Templates [](https://onepagelove.com/) One Page Love is a One Page website design gallery showcasing the best Single Page websites, templates and resources. Free CSS | 3400 Free Website Templates, CSS Templates and Open Source Templates [](https://www.free-css.com/) Free CSS has 3400 free website templates, all templates are free CSS templates, open source templates or creative commons templates. Free Bootstrap Themes and Website Templates | BootstrapMade [](https://bootstrapmade.com/) At BootstrapMade, we create beautiful website templates and bootstrap themes using Bootstrap, the most popular HTML, CSS and JavaScript framework. Free and Premium Bootstrap Themes, Templates by Themesberg [](https://themesberg.com/) Free and Premium Bootstrap themes, templates, admin dashboards and UI kits used by over 38820 web developers and software companies HTML, Vue.js and React templates for startup landing pages - Cruip [](https://cruip.com/) Cruip is a gallery of premium and free HTML, Vue.js and React templates for startups and SaaS. Free Website Templates Download | WordPress Themes - W3Layouts [](https://w3layouts.com/) Want to download free website templates? W3Layouts WordPress themes and website templates are built with responsive web design techniques. Download now! Free HTML Landing Page Templates and UI Kits | UIdeck [](https://uideck.com/) Free HTML Landing Page Templates, Bootstrap Themes, React Templates, HTML Templates, Tailwind Templates, and UI Kits. Create Online Graphics Snappa - Quick & Easy Graphic Design Software [](https://snappa.com/) Snappa makes it easy to create any type of online graphic. Create & publish images for social media, blogs, ads, and more! Canva [](https://www.canva.com/) Polotno Studio - Make graphical designs [](https://studio.polotno.com) Free online design editor. Create images for social media, youtube previews, facebook covers Free Logo Maker: Design Custom Logos | Adobe Express [](https://www.adobe.com/express/create/logo) The Adobe Express logo maker is instant, intuitive, and intelligent. Use it to generate a wide range of possibilities for your own logo. Photo Editor: Fotor – Free Online Photo Editing & Image Editor [](https://www.fotor.com/) Fotor's online photo editor helps you edit photos with free online photo editing tools. Crop photos, resize images, and add effects/filters, text, and graphics in just a few clicks. Photoshop online has never been easier with Fotor's free online photo editor. VistaCreate – Free Graphic Design Software with 70,000+ Free Templates [](https://create.vista.com/) Looking for free graphic design software? Easily create professional designs with VistaCreate, a free design tool with powerful features and 50K+ ready-made templates Draw Freely | Inkscape [](https://inkscape.org/) Inkscape is professional quality vector graphics software which runs on Linux, Mac OS X and Windows desktop computers. Visual & Video Maker Trusted By 11 Million Users - Piktochart [](https://piktochart.com/) With Piktochart, you can create professional-looking infographics, flyers, posters, charts, videos, and more. No design experience needed. Start for free. The Web's Favorite Online Graphic Design Tool | Stencil [](https://getstencil.com/) Stencil is a fantastically easy-to-use online graphic design tool and image editor built for business owners, social media marketers, and bloggers. Pablo by Buffer - Design engaging images for your social media posts in under 30 seconds [](https://pablo.buffer.com/) Buffer makes it super easy to share any page you're reading. Keep your Buffer topped up and we automagically share them for you through the day. Free Online Graphic Design Software | Create stunning designs in seconds. [](https://desygner.com/) Easy drag and drop graphic design tool for anyone to use with 1000's of ready made templates. Create & print professional business cards, flyers, social posts and more. Color Pallet Color Palettes for Designers and Artists - Color Hunt [](https://colorhunt.co/) Discover the newest hand-picked color palettes of Color Hunt. Get color inspiration for your design and art projects. Coolors - The super fast color palettes generator! [](https://coolors.co/) Generate or browse beautiful color combinations for your designs. Get color palette inspiration from nature - colorpalettes.earth [](https://colorpalettes.earth/) Color palettes inspired by beautiful nature photos Color Palette Generator - Create Beautiful Color Schemes [](https://colors.muz.li/) Search, discover, test and create beautiful color palettes for your projects A Most Useful Color Picker | 0to255 [](https://0to255.com/) Find lighter and darker colors based on any color. Discover why over two million people have used 0to255 to choose colors for their website, logo, room interior, and print design projects. Colour Contrast Checker [](https://colourcontrast.cc/) Check the contrast between different colour combinations against WCAG standards Fonts Google Fonts [](https://fonts.google.com/) Making the web more beautiful, fast, and open through great typography Fonts In Use – Type at work in the real world. [](https://fontsinuse.com/) A searchable archive of typographic design, indexed by typeface, format, and topic. Wordmark - Helps you choose fonts! [](https://wordmark.it/) Wordmark helps you choose fonts by quickly displaying your text with your fonts. OH no Type Company [](https://ohnotype.co/) OH no Type Co. Retail and custom typefaces. Life’s a thrill, fonts are chill! Illustrations Illustrations | unDraw [](https://undraw.co/illustrations) The design project with open-source illustrations for any idea you can imagine and create. Create beautiful websites, products and applications with your color, for free. Design Junction [](https://designjunction.xyz/) Design Junction is a one-stop resource library for Designers and Creatives with curated list of best resources handpicked from around the web Humaaans: Mix-&-Match illustration library [](https://www.humaaans.com/) Mix-&-match illustrations of people with a design library for InVIsion Studio and Sketch. Stubborn - Free Illustrations Generator [](https://stubborn.fun/) Free illustrations generator for Figma and Sketch. Get the opportunity to design your characters using symbols and styles. Open Peeps, Hand-Drawn Illustration Library [](https://www.openpeeps.com/) Open Peeps is a hand-drawn illustration library to create scenes of people. You can use them in product illustration, marketing, comics, product states, user flows, personas, storyboarding, quinceañera invitations, or whatever you want! ⠀ Reshot | Free icons & illustrations [](https://www.reshot.com/) Design freely with instant downloads of curated SVG icons and vector illustrations. All free with commercial licensing. No attribution required. Blush: Illustrations for everyone [](https://blush.design/) Blush makes it easy to add free illustrations to your designs. Play with fully customizable graphics made by artists across the globe. Mockups Angle 4 - 5000+ Device Mockups for Figma, Sketch and XD [](https://angle.sh/) Vector mockups for iPhone, iPad, Android and Mac devices, including the new iPhone 13, Pro, Pro Max and Mini. Perfect for presenting your apps. Huge library of components, compositions, wallpapers and plugins made for Figma, Sketch and XD. Make Mockups, Logos, Videos and Designs in Seconds [](https://placeit.net/) Get unlimited downloads on all our 100K templates! You can make a logo, video, mockup, flyer, business card and social media image in seconds right from your browser. Free and premium tools for graphic designers | Lstore Graphics [](https://www.ls.graphics/) Free and premium mockups, UI/UX tools, scene creators for busy designers Logo Design & Brand Identity Platform for Entrepreneurs | Looka [](https://looka.com/) Logojoy is now Looka! Design a Logo, make a website, and create a Brand Identity you’ll love with the power of Artificial Intelligence. 100% free to use. Create stunning product mockups easily and online - Smartmockups [](https://smartmockups.com/) Smartmockups enables you to create stunning high-resolution mockups right inside your browser within one interface across multiple devices. Previewed - Free mockup generator for your app [](https://previewed.app/) Join Previewed to create stunning 3D image shots and animations for your app. Choose from hundreds of ready made mockups, or create your own. Free Design Software - Graphic Online Maker - Glorify [](https://www.glorify.com/) Create professional and high converting social media posts, ads, infographics, presentations, and more with Glorify, a free design software & graphic maker. Other BuiltWith Technology Lookup [](https://builtwith.com/) Web technology information profiler tool. Find out what a website is built with. Compress JPEG Images Online [](https://compressjpeg.com/) Compress JPEG images and photos for displaying on web pages, sharing on social networks or sending by email. PhotoRoom - Remove Background and Create Product Pictures [](https://www.photoroom.com/) Create product and portrait pictures using only your phone. Remove background, change background and showcase products. Magic Eraser - Remove unwanted things from images in seconds [](https://www.magiceraser.io/) Magic Eraser - Use AI to remove unwanted things from images in seconds. Upload an image, mark the bit you need removed, download the fixed up image. Compressor.io - optimize and compress JPEG photos and PNG images [](https://compressor.io/) Optimize and compress JPEG, PNG, SVG, GIF and WEBP images online. Compress, resize and rename your photos for free. Remove Video Background – Unscreen [](https://www.unscreen.com/) Remove the background of any video - 100% automatically, online & free! Goodbye Greenscreen. Hello Unscreen. Noun Project: Free Icons & Stock Photos for Everything [](https://thenounproject.com/) Noun Project features the most diverse collection of icons and stock photos ever. Download SVG and PNG. Browse over 5 million art-quality icons and photos. Design Principles [](https://principles.design/) An Open Source collection of Design Principles and methods Shapefest™ - A massive library of free 3D shapes [](https://www.shapefest.com/) A massive free library of beautifully rendered 3D shapes. 160,000+ high resolution PNG images in one cohesive library. Learning UX Degreeless.design - Everything I Learned in Design School [](https://degreeless.design/) This is a list of everything I've found useful in my journey of learning design, and an ongoing list of things I think you should read. For budding UX, UI, Interaction, or whatever other title designers. UX Tools | Practical UX skills and tools [](https://uxtools.co/) Lessons and resources from two full-time product designers. Built For Mars [](https://builtformars.com/) On a mission to help the world build better user experiences by demystifying UX. Thousands of hours of research packed into UX case studies. Case Study Club – Curated UX Case Study Gallery [](https://www.casestudy.club/) Case Study Club is the biggest curated gallery of the best UI/UX design case studies. Get inspired by industry-leading designers, openly sharing their UX process. The Guide to Design [](https://start.uxdesign.cc/) A self-guided class to help you get started in UX and answer key questions about craft, design, and career Uxcel - Where design careers are built [](https://app.uxcel.com/explore) Available on any device anywhere in the world, Uxcel is the best way to improve and learn UX design online in just 5 minutes per day. UI & UX Design Tips by Jim Raptis. [](https://www.uidesign.tips/) Learn UI & UX Design with practical byte-sized tips and in-depth articles from Jim Raptis. Entrepreneur Instant Username Search [](https://instantusername.com/#/) Instant Username Search checks out if your username is available on more than 100 social media sites. Results appear instantly as you type. Flourish | Data Visualization & Storytelling [](https://flourish.studio/) Beautiful, easy data visualization and storytelling PiPiADS - #1 TikTok Ads Spy Tool [](https://www.pipiads.com/) PiPiADS is the best tiktok ads spy tool .We provide tiktok advertising,advertising on tiktok,tiktok ads examples,tiktok ads library,tiktok ads best practices,so you can understand the tiktok ads cost and master the tiktok ads 2021 and tiktok ads manager. Minea - The best adspy for product search in ecommerce and dropshipping [](https://en.minea.com/) Minea is the ultimate e-commerce product search tool. Minea tracks all ads on all networks. Facebook Ads, influencer product placements, Snapspy, all networks are tracked. Stop paying adspy 149€ for one network and discover Minea. AdSpy [](https://adspy.com/) Google Trends [](https://trends.google.com/) ScoreApp: Advanced Quiz Funnel Marketing | Make a Quiz Today [](https://www.scoreapp.com/) ScoreApp makes quiz funnel marketing easy, so you can attract relevant warm leads, insightful data and increase your sales. Try for free today Mailmodo - Send Interactive Emails That Drive Conversions [](https://www.mailmodo.com/) Use Mailmodo to create and send interactive emails your customers love. Drive conversions and get better email ROI. Sign up for a free trial now. 185 Top E-Commerce Sites Ranked by User Experience Performance – Baymard Institute [](https://baymard.com/ux-benchmark) See the ranked UX performance of the 185 largest e-commerce sites in the US and Europe. The chart summarizes 50,000+ UX performance ratings. Metricool - Analyze, manage and measure your digital content [](https://metricool.com/) Social media scheduling, web analytics, link in bio and reporting. Metricool is free per live for one brand. START HERE Visualping: #1 Website change detection, monitoring and alerts [](https://visualping.io/) More than 1.5 millions users monitor changes in websites with Visualping, the No1 website change detection, website checker, webpage change monitoring and webpage change detection tool. Gumroad – Sell what you know and see what sticks [](https://gumroad.com/) Gumroad is a powerful, but simple, e-commerce platform. We make it easy to earn your first dollar online by selling digital products, memberships and more. Product Hunt – The best new products in tech. [](https://www.producthunt.com/) Product Hunt is a curation of the best new products, every day. Discover the latest mobile apps, websites, and technology products that everyone's talking about. 12ft Ladder [](https://12ft.io/) Show me a 10ft paywall, I’ll show you a 12ft ladder. namecheckr | Social and Domain Name Availability Search For Brand Professionals [](https://www.namecheckr.com/) Social and Domain Name Availability Search For Brand Professionals Excel AI Formula Generator - Excelformulabot.com [](https://excelformulabot.com/) Transform your text instructions into Excel formulas in seconds with the help of AI. Z-Library [](https://z-lib.org/) Global Print On Demand Platform | Gelato [](https://www.gelato.com/) Create and sell custom products online. With local production in 33 countries, easy integration, and 24/7 customer support, Gelato is an all-in-one platform. Freecycle: Front Door [](https://freecycle.org/) Free eBooks | Project Gutenberg [](https://www.gutenberg.org/) Project Gutenberg is a library of free eBooks. Convertio — File Converter [](https://convertio.co/) Convertio - Easy tool to convert files online. More than 309 different document, image, spreadsheet, ebook, archive, presentation, audio and video formats supported. Namechk [](https://namechk.com/) Crazy Egg Website — Optimization | Heatmaps, Recordings, Surveys & A/B Testing [](https://www.crazyegg.com/) Use Crazy Egg to see what's hot and what's not, and to know what your web visitors are doing with tools, such as heatmaps, recordings, surveys, A/B testing & more. Ifttt [](https://ifttt.com/) Also Asked [](https://alsoasked.com/) Business Name Generator - Easily create Brandable Business Names - Namelix [](https://namelix.com/) Namelix uses artificial intelligence to create a short, brandable business name. Search for domain availability, and instantly generate a logo for your new business Merch Informer [](https://merchinformer.com/) Headline Generator [](https://www.title-generator.com/) Title Generator: create 700 headlines with ONE CLICK: Content Ideas + Catchy Headlines + Ad Campaign E-mail Subject Lines + Emotional Titles. Simple - Efficient - One Click Make [](https://www.make.com/en) Create and add calculator widgets to your website | CALCONIC_ [](https://www.calconic.com/) Web calculator builder empowers you to choose from a pre-made templates or build your own calculator widgets from a scratch without any need of programming knowledge Boost Your Views And Subscribers On YouTube - vidIQ [](https://vidiq.com/) vidIQ helps you acquire the tools and knowledge needed to grow your audience faster on YouTube and beyond. Learn More Last Pass [](https://www.lastpass.com/) Starter Story: Learn How People Are Starting Successful Businesses [](https://www.starterstory.com/) Starter Story interviews successful entrepreneurs and shares the stories behind their businesses. In each interview, we ask how they got started, how they grew, and how they run their business today. How To Say No [](https://www.starterstory.com/how-to-say-no) Saying no is hard, but it's also essential for your sanity. Here are some templates for how to say no - so you can take back your life. Think with Google - Discover Marketing Research & Digital Trends [](https://www.thinkwithgoogle.com/) Uncover the latest marketing research and digital trends with data reports, guides, infographics, and articles from Think with Google. ClickUp™ | One app to replace them all [](https://clickup.com/) Our mission is to make the world more productive. To do this, we built one app to replace them all - Tasks, Docs, Goals, and Chat. The Manual [](https://manual.withcompound.com/) Wealth-planning resources for founders and startup employees Software for Amazon FBA Sellers & Walmart Sellers | Helium 10 [](https://www.helium10.com/) If you're looking for the best software for Amazon FBA & Walmart sellers on the market, check out Helium 10's capabilities online today! Buffer: All-you-need social media toolkit for small businesses [](https://buffer.com/) Use Buffer to manage your social media so that you have more time for your business. Join 160,000+ small businesses today. CPGD — The Consumer Packaged Goods Directory [](https://www.cpgd.xyz/) The Consumer Packaged Goods Directory is a platform to discover new brands and resources. We share weekly trends in our newsletter and partner with services to provide vetted, recommended platforms for our Directory brands. Jungle Scout [](https://www.junglescout.com/) BuzzSumo | The World's #1 Content Marketing Platform [](https://buzzsumo.com/) BuzzSumo powers the strategies of 500k+ marketers, with content marketing data on 8b articles, 42m websites, 300t engagements, 500k journalists & 492m questions. Login - Capital [](https://app.capital.xyz/) Raise, hold, spend, and send funds — all in one place. Marketing Pictory – Video Marketing Made Easy - Pictory.ai [](https://pictory.ai/) Pictory's powerful AI enables you to create and edit professional quality videos using text, no technical skills required or software to download. Tolstoy | Communicate with interactive videos [](https://www.gotolstoy.com/) Start having face-to-face conversations with your customers. Create Email Marketing Your Audience Will Love - MailerLite [](https://www.mailerlite.com/) Email marketing tools to grow your audience faster and drive revenue smarter. Get free access to premium features with a 30-day trial! Sign up now! Hypefury - Schedule & Automate Social Media Marketing [](https://hypefury.com/) Save time on social media while creating more value, and growing your audience faster. Schedule & automate your social media experience! Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Online Email & Lead Scraper | Klean Leads [](https://www.kleanleads.com/) Klean Leads is an online email scraper & email address finder. Use it to book more appointments, get more replies, and close more sales. PhantomBuster [](https://phantombuster.com/) Call to Action Examples - 300+ CTA Phrases [](https://ctaexamples.com/) See the best CTA example in every situation covered by the library of 300+ CTA goals. Use the examples to create your own CTAs in minutes. Creative Center: one-stop creative solution for TikTok [](https://ads.tiktok.com/business/creativecenter/pc/en?from=001010) Come to get your next great idea for TikTok. Here you can find the best performing ads, viral videos, and trending hashtags across regions and verticals. Groove.cm GrooveFunnels, GrooveMail with CRM and Digital Marketing Automation Platform - Groove.cm with GrooveFunnels, GroovePages, GrooveKart [](https://groove.cm/) Groove is a website creator, page builder, sales funnel maker, membership site platform, email autoresponder, blog tool, shopping cart system, ecommerce store solution, affiliate manager, video marketing software and more apps to help build your online business. SurveyMonkey: The World’s Most Popular Free Online Survey Tool [](https://www.surveymonkey.com/) Use SurveyMonkey to drive your business forward by using our free online survey tool to capture the voices and opinions of the people who matter most to you. Video Maker | Create Videos Online | Promo.com [](https://promo.com/) Free customizable video maker to help boost your business. Video creator for ads, social media, product and explainer videos, and for anything else you need! beehiiv — The newsletter platform built for growth [](https://www.beehiiv.com/) Access the best tools available in email, helping your newsletter scale and monetize like never before. GetResponse | Professional Email Marketing for Everyone [](https://www.getresponse.com/) No matter your level of expertise, we have a solution for you. At GetResponse, it's email marketing done right. Start your free account today! Search Email Newsletter Archives : Email Tuna [](https://emailtuna.com/) Explore newsletters without subscribing. Get email design ideas, discount coupon codes and exclusive newsletters deals. Database of email newsletters archived from all over the internet. Other Tools Simplescraper — Scrape Websites and turn them into APIs [](https://simplescraper.io/) Web scraping made easy — a powerful and free Chrome extension for scraping websites in your browser, automated in the cloud, or via API. No code required. Exploding Topics - Discover the hottest new trends. [](https://explodingtopics.com/) See new market opportunities, trending topics, emerging technology, hot startups and more on Exploding Topics. Scribe | Visual step-by-step guides [](https://scribehow.com/) By capturing your process while you work, Scribe automatically generates a visual guide, ready to share with the click of a button. Get It Free – The internet's BEST place to find free stuff! [](https://getitfree.us/) The internet's BEST place to find free stuff! Inflact by Ingramer – Marketing toolkit for Instagram [](https://inflact.com/) Sell on Instagram, build your audience, curate content with the right set of tools. Free Online Form Builder & Form Creator | Jotform [](https://www.jotform.com/) We believe the right form makes all the difference. Go from busywork to less work with powerful forms that use conditional logic, accept payments, generate reports, and automate workflows. Manage Your Team’s Projects From Anywhere | Trello [](https://trello.com/en) Trello is the ultimate project management tool. Start up a board in seconds, automate tedious tasks, and collaborate anywhere, even on mobile. TikTok hashtag generator - tiktokhashtags.com [](https://tiktokhashtags.com/) Find out which are the best hashtags for your TikTok post. Create Infographics, Reports and Maps - Infogram [](https://infogram.com/) Infogram is an easy to use infographic and chart maker. Create and share beautiful infographics, online reports, and interactive maps. Make your own here. Confetto - Create Instagram content in minutes [](https://www.confet.to/) Confetto is an all-in-one social media marketing tool built for SMBs and Social Media Managers. Confetto helps you create high-quality content for your audience that maximizes your reach and engagement on social media. Design, copy-write, plan and schedule content all in one place. Find email addresses in seconds • Hunter (Email Hunter) [](https://hunter.io/) Hunter is the leading solution to find and verify professional email addresses. Start using Hunter and connect with the people that matter for your business. PlayPhrase.me: Site for cinema archaeologists. [](https://playphrase.me/) Travel and explore the world of cinema. Largest collection of video quotes from movies on the web. #1 Free SEO Tools → SEO Review Tools [](https://www.seoreviewtools.com/) SEO Review Tools: 42+ Free Online SEO Tools build with ❤! → Rank checker → Domain Authority Checker → Keyword Tool → Backlink Checker Podcastle: Seamless Podcast Recording & Editing [](https://podcastle.ai/) Podcastle is the simplest way to create professional-quality podcasts. Record, edit, transcribe, and export your content with the power of AI, in an intuitive web-based platform. Save Ads from TikTok & Facebook Ad Library - Foreplay [](https://www.foreplay.co/) The best way to save ads from TikTok Creative Center and Facebook Ad Library, Organize them into boards and share ad inspiration with your team. Supercharge your creative strategy. SiteRight - Automate Your Business [](https://www.siteright.co/) SiteRight combines the abilities of multiple online resources into a single dashboard allowing you to have full control over how you manage your business. Diffchecker - Compare text online to find the difference between two text files [](https://www.diffchecker.com/) Diffchecker will compare text to find the difference between two text files. Just paste your files and click Find Difference! Yout.com [](https://yout.com/) Yout.com allows you to record videos from YouTube, FaceBook, SoundCloud, VK and others too many formats with clipping. Intuitively easy to use, with Yout the Internet DVR, with a bit of extra. AI Content Generation | Competitor Analysis - Predis.ai [](https://predis.ai/) Predis helps brands and influencers communicate better on social media by providing AI-powered content strategy analysis, content and hashtag recommendations. Castr | #1 Live Video Streaming Solution With Video Hosting [](https://castr.io/) Castr is a live video streaming solution platform that delivers enterprise-grade live videos globally with CDN. Live event streaming, video hosting, pre-recorded live, multi stream – all in one place using Castr. Headliner - Promote your podcast, radio show or blog with video [](https://www.headliner.app/) Easily create videos to promote your podcast, radio show or blog. Share to Instagram, Facebook, Twitter, YouTube, Linkedin and anywhere video lives Create Presentations, Infographics, Design & Video | Visme [](https://www.visme.co/) Create professional presentations, interactive infographics, beautiful design and engaging videos, all in one place. Start using Visme today. Designrr - Create eBooks, Kindle books, Leadmagnets, Flipbooks and Blog posts from your content in 2 minutes [](https://designrr.io/) Upload any web page, MS Word, Video, Podcast or YouTube and it will create a stunning ebook and convert it to pdf, epub, Kindle or Flipbook. Quick and Easy to use. Full Training, 24x7 Support and Facebook Group Included. SwipeWell | Swipe File Software [](https://www.swipewell.app/) The only Chrome extension dedicated to helping you save, organize, and reference marketing examples (so you never feel stumped). Tango | Create how-to guides, in seconds [](https://www.tango.us/) Tango takes the pain out of documenting processes by automatically generating how-to guides while you work. Empower your team to do their best work. Ad Creative Bank [](https://www.theadcreativebank.com/) Get inspired by ads from across industries, learn new best practices, and start thinking creatively about your brand’s digital creative. Signature Hound • Free Email Signature and Template Generator [](https://signaturehound.com/) Our email signature generator is free and easy to use. Our customizable templates work with Gmail, Outlook, Office 365, Apple Mail and more. Organize All Of Your Marketing In One Place - CoSchedule [](https://coschedule.com/) Get more done in less time with the only work management software for marketers. B Ok - Books [](https://b-ok.xyz/categories) OmmWriter [](https://ommwriter.com/) Ommwriter Rebrandly | Custom URL Shortener, Branded Link Management, API [](https://www.rebrandly.com/) URL Shortener with custom domains. Shorten, brand and track URLs with the industry-leading link management platform. Free to try. API, Short URL, Custom Domains. Common Tools [](https://www.commontools.org/) Book Bolt [](https://bookbolt.io/) Zazzle [](https://www.zazzle.com/) InspiroBot [](https://inspirobot.me/) Download Free Cheat Sheets or Create Your Own! - Cheatography.com: Cheat Sheets For Every Occasion [](https://cheatography.com/) Find thousands of incredible, original programming cheat sheets, all free to download. No Code Chatbot Platform | Free Chatbot Platform | WotNot [](https://wotnot.io/) WotNot is the best no code chatbot platform to build AI bot easily without coding. Deploy bots and live chat on the Website, Messenger, WhatsApp, and more. SpyFu - Competitor Keyword Research Tools for Google Ads PPC & SEO [](https://www.spyfu.com/) Systeme.io - The only tool you need to launch your online business [](https://systeme.io/) Systeme.io has all the tools you need to grow your online business. Click here to create your FREE account! Productivity Temp Mail [](https://temp-mail.org/en/) The Visual Collaboration Platform for Every Team | Miro [](https://miro.com/) Scalable, secure, cross-device and enterprise-ready team collaboration whiteboard for distributed teams. Join 35M+ users from around the world. Grammarly: Free Online Writing Assistant [](https://www.grammarly.com/) Millions trust Grammarly’s free writing app to make their online writing clear and effective. Getting started is simple — download Grammarly’s extension today. Rize · Maximize Your Productivity [](https://rize.io/) Rize is a smart time tracker that improves your focus and helps you build better work habits. Motion | Manage calendars, meetings, projects & tasks in one app [](https://www.usemotion.com/) Automatically prioritize tasks, schedule meetings, and resolve calendar conflicts. Used by over 10k CEOs and professionals to improve focus, get more done, and streamline workday. Notion – One workspace. Every team. [](https://www.notion.so/) We’re more than a doc. Or a table. Customize Notion to work the way you do. Loom: Async Video Messaging for Work | Loom [](https://www.loom.com/) Record your screen, share your thoughts, and get things done faster with async video. Zapier | Automation that moves you forward [](https://zapier.com/) Workflow automation for everyone. Zapier automates your work across 5,000+ app integrations, so you can focus on what matters. Rows — The spreadsheet with superpowers [](https://rows.com/) Combine the power of a spreadsheet with built-in integrations from your business apps. Automate workflows and build tools that make work simpler. Free Online Form Builder | Tally [](https://tally.so/) Tally is the simplest way to create free forms & surveys. Create any type of form in seconds, without knowing how to code, and for free. Highbrow | Learn Something New Every Day. Join for Free! [](https://gohighbrow.com/) Highbrow helps you learn something new every day with 5-minute lessons delivered to your inbox every morning. Join over 400,000 lifelong learners today! Slick Write | Check your grammar. Proofread online. [](https://www.slickwrite.com/#!home) Slick Write is a powerful, FREE application that makes it easy to check your writing for grammar errors, potential stylistic mistakes, and other features of interest. Whether you're a blogger, novelist, SEO professional, or student writing an essay for school, Slick Write can help take your writing to the next level. Reverso [](https://www.reverso.net) Hemingway Editor [](https://hemingwayapp.com/) Web Apps by 123apps - Edit, Convert, Create [](https://123apps.com/) Splitbee – Your all-in-one analytics and conversion platform [](https://splitbee.io/) Track and optimize your online business with Splitbee. Analytics, Funnels, Automations, A/B Testing and more. PDF Tools Free PDF, Video, Image & Other Online Tools - TinyWow [](https://tinywow.com/) Smallpdf.com - A Free Solution to all your PDF Problems [](https://smallpdf.com/) Smallpdf - the platform that makes it super easy to convert and edit all your PDF files. Solving all your PDF problems in one place - and yes, free. Sejda helps with your PDF tasks [](https://www.sejda.com/) Sejda helps with your PDF tasks. Quick and simple online service, no installation required! Split, merge or convert PDF to images, alternate mix or split scans and many other. iLovePDF | Online PDF tools for PDF lovers [](https://www.ilovepdf.com/) iLovePDF is an online service to work with PDF files completely free and easy to use. Merge PDF, split PDF, compress PDF, office to PDF, PDF to JPG and more! Text rewrite QuillBot [](https://quillbot.com/) Pre Post SEO : Online SEO Tools [](https://www.prepostseo.com/) Free Online SEO Tools: plagiarism checker, grammar checker, image compressor, website seo checker, article rewriter, back link checker Wordtune | Your personal writing assistant & editor [](https://www.wordtune.com/) Wordtune is the ultimate AI writing tool that rewrites, rephrases, and rewords your writing! Trusted by over 1,000,000 users, Wordtune strengthens articles, academic papers, essays, emails and any other online content. Aliexpress alternatives CJdropshipping - Dropshipping from Worldwide to Worldwide! [](https://cjdropshipping.com/) China's reliable eCommerce dropshipping fulfillment supplier, helps small businesses ship worldwide, dropship and fulfillment services that are friendly to start-ups and small businesses, Shopify dropshipping. SaleHoo [](https://www.salehoo.com/) Alibaba.com: Manufacturers, Suppliers, Exporters & Importers from the world's largest online B2B marketplace [](https://www.alibaba.com/) Find quality Manufacturers, Suppliers, Exporters, Importers, Buyers, Wholesalers, Products and Trade Leads from our award-winning International Trade Site. Import & Export on alibaba.com Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Best dropshipping supplier to the US [](https://www.usadrop.com/) THE ONLY AMERICAN-MADE FULFILLMENT CENTER IN CHINA. Our knowledge of the Worldwide dropshipping market and the Chinese Supply-Chain can't be beat! 阿里1688 [](https://www.1688.com/) 阿里巴巴(1688.com)是全球企业间(B2B)电子商务的著名品牌,为数千万网商提供海量商机信息和便捷安全的在线交易市场,也是商人们以商会友、真实互动的社区平台。目前1688.com已覆盖原材料、工业品、服装服饰、家居百货、小商品等12个行业大类,提供从原料--生产--加工--现货等一系列的供应产品和服务 Dropshipping Tools Oberlo | Where Self Made is Made [](https://www.oberlo.com/) Start selling online now with Shopify. All the videos, podcasts, ebooks, and dropshipping tools you'll need to build your online empire. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. SMSBump | SMS Marketing E-Commerce App for Shopify [](https://smsbump.com/) SMSBump is an SMS marketing & automation app for Shopify. Segment customers, recover orders, send campaign text messages with a 35%+ click through rate. AfterShip: The #1 Shipment Tracking Platform [](https://www.aftership.com/) Order status lookup, branded tracking page, and multi-carrier tracking API for eCommerce. Supports USPS, FedEx, UPS, and 900+ carriers worldwide. #1 Dropshipping App | Zendrop [](https://zendrop.com/) Start and scale your own dropshipping business with Zendrop. Sell and easily fulfill your orders with the fastest shipping in the industry. Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Video Editing Jitter • The simplest motion design tool on the web. [](https://jitter.video/) Animate your designs easily. Export your creations as videos or GIFs. All in your browser. DaVinci Resolve 18 | Blackmagic Design [](https://www.blackmagicdesign.com/products/davinciresolve) Professional video editing, color correction, visual effects and audio post production all in a single application. Free and paid versions for Mac, Windows and Linux. Online Video Editor | Video Creator | InVideo [](https://invideo.io/) InVideo's Online Video Editor Helps You Make Professional Videos From Premium Templates, Images, And Music. All your video needs in one place | Clipchamp [](https://clipchamp.com/) Fast-forward your creations with our video editing platform. Start with a video template or record your webcam or screen. Get the pro look with filters, transitions, text and more. Then, export in minutes and share in an instant. Descript | All-in-one audio/video editing, as easy as a doc. [](https://www.descript.com/) Record, transcribe, edit, mix, collaborate, and master your audio and video with Descript. Download for free →. Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. Panzoid [](https://panzoid.com/) Powerful, free online apps and community for creating beautiful custom content. Google Web Designer - Home [](https://webdesigner.withgoogle.com/) Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. ClipDrop [](https://clipdrop.co/) Create professional visuals without a photo studio CapCut [](https://www.capcut.com/) CapCut is an all-in-one online video editing software which makes creation, upload & share easier, with frame by frame track editor, cloud drive etc. VEED - Online Video Editor - Video Editing Made Simple [](https://www.veed.io/) Make stunning videos with a single click. Cut, trim, crop, add subtitles and more. Online, no account needed. Try it now, free. VEED Free Video Maker | Create & Edit Your Videos Easily - Animoto [](https://animoto.com/k/welcome) Create, edit, and share videos with our online video maker. Combine your photos, video clips, and music to make quality videos in minutes. Get started free! Runway - Online Video Editor | Everything you need to make content, fast. [](https://runwayml.com/) Discover advanced video editing capabilities to take your creations to the next level. CreatorKit - A.I. video creator for marketers [](https://creatorkit.com/) Create videos with just one click, using our A.I. video editor purpose built for marketers. Create scroll stopping videos, Instagram stories, Ads, Reels, and TikTok videos. Pixar in a Box | Computing | Khan Academy [](https://www.khanacademy.org/computing/pixar) 3D Video Motions Plask - AI Motion Capture and 3D Animation Tool [](https://plask.ai/) Plask is an all-in-one browser-based AI motion capture tool and animation editor that anybody can use, from motion designers to every day content creators. Captions Captions [](https://www.getcaptions.app/) Say hello to Captions, the only camera and editing app that automatically transcribes, captions and clips your talking videos for you. Stock videos Pexels [](https://www.pexels.com/) Pixabay [](https://pixabay.com/) Mixkit - Awesome free assets for your next video project [](https://mixkit.co/) Download Free Stock Video Footage, Stock Music & Premiere Pro Templates for your next video editing project. All assets can be downloaded for free! Free Stock Video Footage HD 4K Download Royalty-Free Clips [](https://www.videvo.net/) Download free stock video footage with over 300,000 video clips in 4K and HD. We also offer a wide selection of music and sound effect files with over 180,000 clips available. Click here to download royalty-free licensing videos, motion graphics, music and sound effects from Videvo today. Free Stock Video Footage HD Royalty-Free Videos Download [](https://mazwai.com/) Download free stock video footage with clips available in HD. Click here to download royalty-free licensing videos from Mazwai now. Royalty Free Stock Video Footage Clips | Vidsplay.com [](https://www.vidsplay.com/) Royalty Free Stock Video Footage Clips Free Stock Video Footage, Royalty Free Videos for Download [](https://coverr.co/) Download royalty free (for personal and commercial use), unique and beautiful video footage for your website or any project. No attribution required. Stock Photos Beautiful Free Images & Pictures | Unsplash [](https://unsplash.com/) Beautiful, free images and photos that you can download and use for any project. Better than any royalty free or stock photos. When we share, everyone wins - Creative Commons [](https://creativecommons.org/) Creative Commons licenses are 20! Honoring 20 years of open sharing using CC licenses, join us in 2022 to celebrate Better Sharing — advancing universal access to knowledge and culture, and fostering creativity, innovation, and collaboration. Help us reach our goal of raising $15 million for a future of Better Sharing.  20 Years of Better … Read More "When we share, everyone wins" Food Pictures • Foodiesfeed • Free Food Photos [](https://www.foodiesfeed.com/) Download 2000+ food pictures ⋆ The best free food photos for commercial use ⋆ CC0 license Free Stock Photos and Images for Websites & Commercial Use [](https://burst.shopify.com/) Browse thousands of beautiful copyright-free images. All our pictures are free to download for personal and commercial use, no attribution required. EyeEm | Authentic Stock Photography and Royalty-Free Images [](https://www.eyeem.com/) Explore high-quality, royalty-free stock photos for commercial use. License individual images or save money with our flexible subscription and image pack plans. picjumbo: Free Stock Photos [](https://picjumbo.com/) Free stock photos and images for your projects and websites.️ Beautiful 100% free high-resolution stock images with no watermark. Free Stock Photos, Images, and Vectors [](https://www.stockvault.net/) 139.738 free stock photos, textures, backgrounds and graphics for your next project. No attribution required. Free Stock Photos, PNGs, Templates & Mockups | rawpixel [](https://www.rawpixel.com/) Free images, PNGs, stickers, backgrounds, wallpapers, graphic templates and PSD mockups. All safe to use with commercial licenses. Free Commercial Stock Photos & Royalty Free Images | PikWizard [](https://pikwizard.com/) Free images, videos & free stock photos. Unlimited downloads ✓ Royalty-free Images ✓Copyright-free for commercial use ✓ No Attribution Required Design Bundles [](https://designbundles.net/) Stock music Royalty Free Music for video creators | Epidemic Sound [](https://www.epidemicsound.com/) Download premium Royalty free Music and SFX! Our free trial gives you access to over 35,000 tracks and 90,000 sound effects for video, streaming and more! Royalty-Free Music & SFX for Video Creators | Artlist [](https://artlist.io/) Explore the ultimate royalty-free music & sound effects catalogs for unlimited use in YouTube videos, social media & films created by inspiring indie artists worldwide. The go-to music licensing choice for all creators Royalty Free Audio Tracks - Envato Elements [](https://elements.envato.com/audio) Download Royalty Free Stock Audio Tracks for your next project from Envato Elements. Premium, High Quality handpicked Audio files ideal for any genre. License popular music for videos • Lickd [](https://lickd.co/) The only place you can license popular music for videos. Access 1M+ mainstream tracks, plus high-quality stock music for content creators NCS (NoCopyrightSounds) - free music for content creators [](https://ncs.io/) NCS is a Record Label dedicated to giving a platform to the next generation of Artists in electronic music, representing genres from house to dubstep via trap, drum & bass, electro pop and more. Search Engine Optimization Keyword Tool For Monthly Search Volume, CPC & Competition [](https://keywordseverywhere.com/) Keywords Everywhere is a browser add-on for Chrome & Firefox that shows search volume, CPC & competition on multiple websites. Semrush - Online Marketing Can Be Easy [](https://www.semrush.com/) Turn the algorithm into a friend. Make your business visible online with 55+ tools for SEO, PPC, content, social media, competitive research, and more. DuckDuckGo — Privacy, simplified. [](https://duckduckgo.com/) The Internet privacy company that empowers you to seamlessly take control of your personal information online, without any tradeoffs. SEO Software for 360° Analysis of Your Website [](https://seranking.com/) Leading SEO software for business owners, agencies, and SEO specialists. Track your rankings, monitor competitors, spot technical errors, and more. Skyrocket your organic traffic with Surfer [](https://surferseo.com/) Use Surfer to research, write, optimize, and audit! Everything you need to create a comprehensive content strategy that yields real results is right here. Ahrefs - SEO Tools & Resources To Grow Your Search Traffic [](https://ahrefs.com/) You don't have to be an SEO pro to rank higher and get more traffic. Join Ahrefs – we're a powerful but easy to learn SEO toolset with a passionate community. Neon Tools [](https://neontools.io/) Google Index Search [](https://lumpysoft.com/) Google Index Search SEO Backlink Checker & Link Building Toolset | Majestic.com [](https://majestic.com/) Develop backlink strategies with our Link Intelligence data, build the strongest SEO backlink campaigns to drive organic traffic and boost your rankings today. PageOptimizer Pro [](https://pageoptimizer.pro/) Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page Workshops With Kyle Roof POP Chrome Extension Guide Tutorial Videos Frequently Asked Questions Best Practices Login Cancel Anytime Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page… Keyword Chef - Keywords for Publishers [](https://keywordchef.com/) Rank Insanely Fast for Keywords Your Competition Can’t Find “Every long-tail keyword I find ends up ranking within a day” – Dane Eyerly, Owner at TextGoods.com Keyword Chef automatically finds and filters keywords for you. Real-time SERP analysis lets you find keywords nearly guaranteed to rank. Try for free → Let’s face it, most keyword tools ... Read more Notifier - Social Listening for Social Media and More! [](https://notifier.so/) Track keywords. Market your product for free. Drive the conversation. Easy. Free Trial. No obligation ever. Simple. Fast. Trusted by Top Companies. Free Keyword Research Tool from Wordtracker [](https://www.wordtracker.com/) The best FREE alternative to the Keyword Planner. Use Wordtracker to reveal 1000s of profitable longtail keywords with up to 10,000 results per search Blog Posts The 60 Hottest Front-end Tools of 2021 | CSS-Tricks - CSS-Tricks [](https://css-tricks.com/hottest-front-end-tools-in-2021/) A complete list of the most popular front-end tools in 2021, according to the Web Tools Weekly newsletter. See which resources made the list. Resume ResumeGlow - AI Powered Resume Builder [](https://resumeglow.com/) Get hired fast with a resume that grabs attention. Designed by a team of HR experts and typographers. Customizable templates with more than a million possible Create Your Job-winning Resume - (Free) Resume maker · Resume.io [](https://resume.io/) Free online resume maker, allows you to create a perfect Resume or Cover Letter in 5 minutes. See how easy it is to write a professional resume - apply for jobs today! Rezi - The Leading AI-Powered Free Resume Builder [](https://www.rezi.ai/) Rezi’s award-winning AI-powered resume builder is trusted by hundreds of thousands of job seekers. Create your perfect resume in minutes with Rezi. Create a Perfect Resume | Free Resume Builder | Resumaker.ai [](https://resumaker.ai/) Create your professional resume with this online resume maker. Choose a designer-made template and grab any employer attention in seconds. Trusted AI Resume Maker Helps You Get Hired Fast [](https://skillroads.com/) Reach a 96.4% success rate in the job hunt race with the best resume creator. Our innovative technologies and 24/7 support help you to become a perfect candidate for any job. Do not lose your chance to become the One. Kickresume | Best Online Resume & Cover Letter Builder [](https://www.kickresume.com/) Create your best resume yet. Online resume and cover letter builder used by 1,300,000 job seekers worldwide. Professional templates approved by recruiters. ResumeMaker.Online | Create a Professional Resume for Free [](https://www.resumemaker.online/) Save time with the easiest-to-use Resume Maker Online. Create an effective resume in just minutes and land your dream job. No Sign-up required, start now! Interviews Interview Warmup - Grow with Google [](https://grow.google/certificates/interview-warmup/) A quick way to prepare for your next interview. Practice key questions, get insights about your answers, and get more comfortable interviewing. No code website builder Carrd - Simple, free, fully responsive one-page sites for pretty much anything [](https://carrd.co/) A free platform for building simple, fully responsive one-page sites for pretty much anything. Webflow: Create a custom website | No-code website builder [](https://webflow.com/) Create professional, custom websites in a completely visual canvas with no code. Learn how to create a website by trying Webflow for free! Google Sites: Sign-in [](https://sites.google.com/) FlutterFlow - Build beautiful, modern apps incredibly fast! [](https://flutterflow.io/) FlutterFlow lets you build apps incredibly fast in your browser. Build fully functional apps with Firebase integration, API support, animations, and more. Export your code or even easier deploy directly to the app stores! Free Website Builder: Build a Free Website or Online Store | Weebly [](https://www.weebly.com/) Weebly’s free website builder makes it easy to create a website, blog, or online store. Find customizable templates, domains, and easy-to-use tools for any type of business website. Glide • No Code App Builder • Nocode Application Development [](https://www.glideapps.com/) Create the apps your business needs, without coding, waiting or overpaying. Get started for free and build an app today Adalo - Build Your Own No Code App [](https://www.adalo.com/) Adalo makes creating apps as easy as putting together a slide deck. Turn your idea into a real native app — no code needed! Siter.io - The collaborative web design tool, no-code website builder [](https://siter.io/) Siter.io is a visual website builder for designers. Prototype, design, and create responsive websites in the browser. Work together with your team in one place. Elementor: #1 Free WordPress Website Builder | Elementor.com [](https://elementor.com/) Elementor is the platform web creators choose to build professional WordPress websites, grow their skills, and build their business. Start for free today! No code app builder | Bravo Studio [](https://www.bravostudio.app/) Your no-code mobile app builder for iOS and Android. Create MVP’s, validate ideas and publish on App Store and Google Play Store. Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Free Website Builder | Create a Free Website | Wix.com [](https://www.wix.com/) Create a website with Wix’s robust website builder. With 900+ strategically designed templates and advanced SEO and marketing tools, build your brand online today. Free responsive Emails & Landing Pages drag-and-drop Editor | BEE [](https://beefree.io/) Free responsive emails and landing pages editor. With BEE drag-and-drop builders embedded in many software applications you can start designing now! Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Ownit Connected Checkout [](https://www.ownit.co/) Ownit Connected Checkout Bookmark.com | No-code Website Builder to Start Your Business [](https://www.bookmark.com/) Our AI powered platform ensures your business is future proof. Try Bookmark for free. The best way to build web apps without code | Bubble [](https://bubble.io/) Bubble introduces a new way to build software. It’s a no-code tool that lets you build SaaS platforms, marketplaces and CRMs without code. Bubble hosts all web apps on its cloud platform. Responsive Web Design | Website Creation | Editor X [](https://www.editorx.com/) Experience the future of website design with responsive layouts, CSS precision and smooth drag and drop. Create a Website for Free. Tilda Website Builder [](https://tilda.cc/) Create a website, online store, landing page with Tilda intuitive website builder. Build your site from hundreds of pre-designed templates and publish it today. No code required. No-code headless commerce and websites | Unstack Inc. [](https://www.unstack.com/) Deploy high performance eCommerce storefronts and websites without the engineering overhead using Unstack's no-code CMS Best Drag-and-Drop Website Builder | Jemi [](https://jemi.so/) The modern website builder for creatives, entrepreneurs, and dreamers. Build a beautiful link in bio site, portfolio, or landing page in minutes. No-code website builder that works like Notion [](https://popsy.co/) Create a beautiful no-code website in minutes. Popsy works just like Notion but is built from the ground up for building websites. Choose a free template. Edit content just like in Notion. Customize styles without code. Free Notion icons and illustrations. Unbounce - The Landing Page Builder & Platform [](https://unbounce.com/) Grow your relevance, leads, and sales with Unbounce. Use Unbounce to easily create and optimize landing pages for your small business and boost conversions with AI insights. Low-code Front-end Design & Development Platform | TeleportHQ [](https://teleporthq.io/) Front-end development platform, with a visual builder and headless content modelling capabilities. Static website creation, and UI development tools. Other tools used in no code website MemberSpace - Turn any part of your website into members-only with just a few clicks [](https://www.memberspace.com/) Create memberships on your website for anything you want like courses, video tutorials, member directories, and more while having 100% control over look & feel. Triggre | The number one true no-code platform to run your business [](https://www.triggre.com/) The best no-code platform to create highly advanced business applications in hours, without programming. Try it now for free! No code game builder Welcome to Buildbox [](https://signup.buildbox.com/) Welcome to Buildbox Flowlab Game Creator - Make games online [](https://flowlab.io/) Flowlab is an online game creator. Make your own games to share with friends. Make 2D Games With GameMaker | Free Video Game Maker [](https://gamemaker.io/) Make a game with GameMaker, the best free video game engine. Perfect for beginners and professionals. Learn to build your own 2D games with our simple tutorials. Side Hustle Side Hustle Stack [](https://sidehustlestack.co/) Side Hustle Stack is a resource for finding platform-based work, ranging from gig work and side hustles to platforms that help you start a small business that can grow. Fiverr [](https://www.fiverr.com/) Remotasks: Work From Home, Online Bootcamp Training [](https://www.remotasks.com/en) Make money doing tasks. Start earning today! Free bootcamp training offered online. Sign up for a free Remotasks account and work from home. Earn up to $200/month. Transcribe Speech to Text | Rev [](https://www.rev.com/) Transcribe Speech to Text with Rev. Reach your audience with clear and accurate captions, transcripts, and subtitles. AI Training Data and other Data Management Services [](https://www.clickworker.com/) AI training data, SEO texts, web research, tagging, surveys and more - Use the crowdsourcing principle with the power of >4.5M Clickworkers. Automate your Busy Work - Byron People-Powered Assistants [](https://www.hibyron.com/) Byron is an on demand US based virtual assistant platform that gives individuals and teams the ability to quickly outsource their non-essential tasks. Jobs Websites - Remote Latest Crypto Jobs, Web3 Jobs and Blockchain Jobs in the leading tech companies. [](https://cryptojobslist.com/) New Cryptocurrency Jobs, Web3 Jobs and Blockchain Jobs on CryptoJobsList — the leading site to find and post jobs. Connect with companies hiring in a few clicks and begin your next experience in the industry. Updated daily. Remote Jobs: Design, Marketing, Programming, Writing & More [](https://justremote.co/) Discover Remote Jobs from around the world. Give up the commute, work remotely and do what you love, daily, from anywhere. Find your perfect remote development, design, sales or marketing job today. Remote Ok [](https://remoteok.com/) Hire Freelancers & Remote Workers For Free [](https://talent.hubstaff.com/) Find and hire the highest quality freelancers from around the world - for free. Choose from thousands of developers, digital marketers, creatives and more. We Work Remotely: Remote jobs in design, programming, marketing and more [](https://weworkremotely.com/) Find the most qualified people in the most unexpected places: Hire remote! We Work Remotely is the best place to find and list remote jobs that aren't restricted by commutes or a particular geographic area. Browse thousands of remote work jobs today. Angel [](https://angel.co/) Remote Work: Jobs, Companies & Virtual Teams - Remote.co [](https://remote.co/) Remote.co is the definitive remote work job board for online job seekers and companies hiring. Start your remote job search here! FlexJobs: Best Remote Jobs, Work from Home Jobs, Online Jobs & More [](https://www.flexjobs.com/) The #1 job search site for hand-screened flexible and remote jobs (work from home jobs) since 2007. Plus get resume, coaching and career help. Join today! Remote jobs remotefront.io [](https://remotefront.io/) All remote jobs at remotefront.io Daily Virtual Events Helping You Grow Professionally [](https://powertofly.com/) PowerToFly is where you receive expert career advice, free video training, coaching and exclusive access to jobs and events at top companies. Best Remote and Work from Home Jobs - Virtual Vocations [](https://www.virtualvocations.com/) Best work from home jobs and remote jobs in over 50 categories for professionals, digital nomads, telecommuting workers and entry level jobseekers. Education, healthcare, medical, customer support and tech job openings. Remote Jobs | Working Nomads [](https://www.workingnomads.com/jobs) Remote jobs for digital working nomads. Start your telecommuting career and work remotely from home or places around the world. Job Search, Companies Hiring Near Me, and Advice | The Muse [](https://www.themuse.com/) Find jobs at the best companies hiring near you and get free career advice. Startupers [](https://www.startupers.com/) NoDesk - Where Everyone Works Remote [](https://nodesk.co/) Browse and apply to the best new remote jobs at leading remote companies and startups for free. Join hundreds of companies that use NoDesk to build their remote teams. Browser Extensions Blackbox - Select. Copy. Paste & Search - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/blackbox-select-copy-past/mcgbeeipkmelnpldkobichboakdfaeon) Fastest Way to Copy Text from Videos & Images Octotree - GitHub code tree - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/octotree-github-code-tree/bkhaagjahfmjljalopjnoealnfndnagc) GitHub on steroids WhatFont - Chrome Web Store [](https://chrome.google.com/webstore/detail/whatfont/jabopobgcpjmedljpbcaablpmlmfcogm?hl=en) The easiest way to identify fonts on web pages. Window Resizer - Chrome Web Store [](https://chrome.google.com/webstore/detail/window-resizer/kkelicaakdanhinjdeammmilcgefonfh?hl=en) Resize the browser window to emulate various screen resolutions. Amino: CSS Editor - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/amino-css-editor/pbcpfbcibpcbfbmddogfhcijfpboeaaf) Live CSS Editor. Write custom CSS for any website and see your changes in real time. Checkbot: SEO, Web Speed & Security Tester 🚀 - Chrome Web Store [](https://chrome.google.com/webstore/detail/checkbot-seo-web-speed-se/dagohlmlhagincbfilmkadjgmdnkjinl?hl=en) Test SEO/speed/security of 100s of pages in a click! Check broken links, HTML/JavaScript/CSS, URL redirects, duplicate titles... Honey: Automatic Coupons & Rewards - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/honey-automatic-coupons-r/bmnlcjabgnpnenekpadlanbbkooimhnj) Save money and earn rewards when you shop online. Tango: screenshots, training, & documentation - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/tango-screenshots-trainin/lggdbpblkekjjbobadliahffoaobaknh) Automatically create beautiful step-by-step guides with screenshots, in seconds. No code browser automation | axiom.ai [](https://axiom.ai/) Build browser bots quickly, without code. Automate website actions and repetitive tasks using just your browser, on any website or web app. No Code Browser extensions builder Bildr - Visual Web Development in your Browser [](https://www.bildr.com/) Visually build SaaS products, Chrome extensions, and web3 dApps Other Repurposing content for social media the easy way » Repurpose.io [](https://repurpose.io/) Repurposing content for social media made easy. Automatically repurpose YouTube, TikTok, Lives, Podcasts, and Zoom calls. Try it for FREE. Smart Serials: Your serial numbers database [](https://smartserials.com/) This is your main source of free serial numbers, unlock keys in a clean environment safe to browse by all ages. Old versions of Windows, Mac and Linux Software, Apps & Abandonware Games - Download at OldVersion.com [](http://www.oldversion.com/) Online Room Planner - Design Your Room [](http://www.planyourroom.com/) Planyourroom.com is a wonderful website to redesign each room in your house by picking out perfect furniture options to fit your unique space. BoredHumans.com - Fun AI Programs You Can Use Online [](https://boredhumans.com/) Fun AI programs you can use online. AI games, fake people, computer generated art, machine learning demos, and more. BNProject | Home [](https://buynothingproject.org/) Open Source Alternatives to Proprietary Software [](https://www.opensourcealternative.to/) Discover 400+ popular open source alternatives to proprietary SaaS. URL Shortener - Short URLs & Custom Free Link Shortener | Bitly [](https://bitly.com/) Bitly’s Connections Platform is more than a free URL shortener, with robust link management software, advanced QR Code features, and a Link-in-bio solution. TinEye Reverse Image Search [](https://tineye.com/) Good Books | Books recommended by successful people [](https://www.goodbooks.io/) Looking for the best books to read in 2022? Discover the best book recommendations from the world's most successful, influential and interesting people. Directory - Website Recommendations [](https://tokapps.com/directory/) 0 TRIED & TESTED WEBSITES LISTED Insanely Useful Websites A combination of useful websites for businesses, freelancers, DIYers, and individuals in a centralised area.All websites have been tried and tested. Filter Websites Audio Business Tools Copywriting Design Entertainment Graphics Guides Health Marketing PC Resources Savings SEO Software Travel Video Apply filter Watch Anime Online, Free Anime Streaming Online on Zoro.to Anime Website [](https://zoro.to/) Zoro is a Free anime streaming website which you can watch English Subbed and Dubbed Anime online with No Account and Daily update. WATCH NOW! Animated Drawings [](https://sketch.metademolab.com/) Bring children's drawings to life, by animating characters to move around! Alternativeto [](https://alternativeto.net/) Chatroulette [](https://chatroulette.com/) Random meetings around the world Tiktok Downloader - Download Video tiktok Without Watermark - SnapTik [](https://snaptik.app/en) TikTok Video Downloader - SnapTik.App is one of the best free Download video Tiktok No Watermark tool available online. You can download TikTok video from any device you have. Imgflip - Create and Share Awesome Images [](https://imgflip.com/) Flip through memes, gifs, and other funny images. Make your own images with our Meme Generator or Animated GIF Maker. Fake Text Message | Make Fake Text Conversation [](https://ifaketextmessage.com/) Fake Text Message is a tool to create a Fake Text Conversation and a Fake iMessage. ✂Templatemaker ︎ [](https://www.templatemaker.nl/en/) Omni Calculator [](https://www.omnicalculator.com/) Omni Calculator solves 2960 problems anywhere from finance and business to health. It’s so fast and easy you won’t want to do the math again! Watch Movies Online Free | Watch Series HD Free [](https://hdtoday.tv/) Free Access to the Biggest library of HD Movies and HD Series online - NO ADS - No Account Required - Fast Free Streaming Students Answers - The Most Trusted Place for Answering Life's Questions [](https://www.answers.com/) Answers is the place to go to get the answers you need and to ask the questions you want Wolfram|Alpha: Computational Intelligence [](https://www.wolframalpha.com/) Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, engineering, mathematics, linguistics, sports, finance, music… Online Math Tools - Simple, free and easy to use math utilities [](https://onlinemathtools.com/) World's simplest collection of useful mathematics utilities. Generate number sequences, draw fractals, do quick matrix and numerical calculations and more! edX | Free Online Courses by Harvard, MIT, & more | edX [](https://www.edx.org/) Access 2000 free online courses from 140 leading institutions worldwide. Gain new skills and earn a certificate of completion. Join today. Sci-Hub [](https://sci-hub.hkvisa.net/) Sci-Hub,mg.scihub.ltd,sci-hub.tw,The project is supported by user donations. Imagine the world with free access to knowledge for everyone ‐ a world without any paywalls. DigitalDefynd - Find the Best + Free Courses Online [](https://digitaldefynd.com/) 4 Million+ Learners | 96,000+ Courses | 45,000+ Free Courses | 1200+ Free Certificates Learn Anything [](https://learn-anything.xyz/) Search Interactive Mind Maps to learn anything HubSpot Academy - Homepage [](https://academy.hubspot.com/) HubSpot Academy is the worldwide leader in inbound marketing, sales, and customer service/support training.

How I Built A Technical Analyst AI Agent in n8n With No Code
youtube
LLM Vibe Score0.337
Human Vibe Score0.42
Nate Herk | AI AutomationJan 17, 2025

How I Built A Technical Analyst AI Agent in n8n With No Code

In this video, I’ll show you how to build a Technical Analyst AI Agent in n8n without writing a single line of code! 🎉 Whether you’re a beginner or a seasoned automation enthusiast, this guide will teach you how to create an AI agent that automates technical analysis tasks, saving you time and effort. You can download all the workflows shown in this video for free by joining my free Skool community! 🎁 📌 Join my free Skool community for access to a learning community and the workflow shows in my videos! 👇 https://www.skool.com/ai-automation-society/about 🌟 Join my paid Skool community if you want to go deeper with n8n and AI Automations👇 https://www.skool.com/ai-automation-society-plus/about 🚧 Start Building with n8n! (I get kickback if you sign up here - thank you!) https://n8n.partnerlinks.io/22crlu8afq5r 💻 Book A Call If You're Interested in Implementing AI Agents Into Your Business: https://truehorizon.ai/ Business Inquiries: 📧 nate@truehorizon.ai WATCH NEXT: https://youtu.be/u2Tuu02r7QI TIMESTAMPS 00:00 Demo 01:56 How to Download the Workflow (FREE) 02:47 The Agent Workflow 04:52 Get Chart Workflow 08:37 Setting Up POST Request to Chart-Img 13:35 OpenAI Analyze Image Node 14:41 Responding to Agent 15:38 Reviewing Agent Log Gear I Used: Camera: Razer Kiyo Pro Microphone: HyperX SoloCast Background Music: https://www.youtube.com/watch?v=Q7HjxOAU5Kc&t=0s

YT_Emerging_Technologies_Introduction_to_AI
github
LLM Vibe Score0.461
Human Vibe Score0.039054583141409485
zusmaniJan 17, 2025

YT_Emerging_Technologies_Introduction_to_AI

YouTube Channel: Emerging Technologies Playlist: Introduction to AI Instructor: Zeeshan-ul-hassan Usmani Dear Students, I have uploaded all relevant material here for your quick access and learning. I hope you will find it beneficiary Yours Truly, Zeeshan =========================================== Video title: Resources Books to Order: Artificial Intelligence by Zeeshan Usmani - https://gufhtugu.com/artificial-intelligence Artificial Intelligence by Baqir Naqvi - https://gufhtugu.com/masnoi-zahanat/ Recommended Books • Gödel, Escher, Bach : An Eternal Golden Braid by Douglas R. Hofstadter A classic, poetic, philosophical defense of AI. • Machines Who Think by Pamela McCorduck. A good review of early AI history. • Robot: Mere Machine to Transcendent Mind by Hans P. Moravec Somewhat hyped book by a CMU robotics researcher. • Flesh and Machines: How Robots Will Change Us by Rodney Allen Brooks Reasonably decent book by MIT's leading robotics researcher. • Wired for War by Peter Warren Singer Reviews growing use of robots and unmanned vehicles in warfare. • Behind Deep Blue: Building the Computer That Defeated the World Chess Champion by Feng-Hsiung Hsu Autobiographical book on the development of a history making game-playing system. Interesting personal story of the hard engineering work that went into the system, with a few interesting facts on the technical aspects. • The Age of Spiritual Machines : When Computers Exceed Human Intelligence by Ray Kurzweil A recent view by an AI entrepreneur that has content if you ignore all the hype and overly-optimistic trust that Moore's law will magically solve all of the major problems. • Hal's Legacy : 2001's Computer As Dream and Reality An interesting collection of edited articles written to celebrate the fictional birthday of a famous intelligent computer who's true birthday must unfortunately be delayed, pending AI's inevitable progress. • The Sciences of the Artificial by Herbert Simon AI as science by one of its founders. • Models of My Life by Herbert Simon. An autobiography of one of AI's founders who's intellectual contributions also include fundamental contributions to economics (for which he won the Nobel prize), cognitive psychology, and computer science (such as co-inventing the linked list in the 1950's). • Alan Turing: The Enigma by Alan Hodges. A biography of one of the founders of CS and originator of the Turing test. Also a testimony to the tragic implications of homophobia. • The Emperor's New Mind : Concerning Computers, Minds, and the Laws of Physics and Shadows of the Mind : A Search for the Missing Science of Consciousness and The Large, the Small and the Human Mind by Roger Penrose A completely bogus argument against AI by a hopelessly Platonic mathematician. The last book contains an appended article by Stephen Hawking (a colleague of Penrose's) who of course doesn't buy his bogus argument. • The Mind's New Science : A History of the Cognitive Revolution by Howard Gardner A nice history of the development of cognitive science. • How the Mind Works , The Language Instinct , and Words and Rules : The Ingredients of Language by Steven Pinker Fun reading on lots of interesting issues in modern Cognitive Science and Linguistics if you don't take his exaggerated beliefs in nativism and evolutionary psychology too seriously. • Bots : The Origin of New Species by Andrew Leonard A light, somewhat hyped book on on Internet agents, chatterbots, etc. with a few funny stories. • Mathematics: The Loss of Certainty by Morris Kline A very nice book on the failed enterprise of using logic to build a firm foundation for infallible mathematics and the role of Gödel's Incompleteness Theorem in the philosophy of mathematics. • Incompleteness: The Proof and Paradox of Kurt Gödel by Rebecca Goldstein An interesting biography of Kurt Gödel. Too bad he was such a Platonist that, unlike Turing, he did not understand the true implications of his own theorems (interesting author connection: Goldstein is Pinker's wife). Links: • AAAI AI Topics Basic info on AI from the American Association for Artificial Intelligence: http://www.aaai.org/AITopics/html/welcome.html • Loebner Prize for limited Turing test: http://www.loebner.net/Prizef/loebner-prize.html • IBM's Deep Blue Page: http://www.research.ibm.com/deepblue/ • Robocup: Robotic Soccer Competition: http://www.robocup.org/ • NY Times Article on Proof of the Robbins Theorem: http://www.nytimes.com/library/cyber/week/1210math.html • NY Times article on Bayes Nets at Microsoft Research: http://www.nytimes.com/library/tech/00/07/biztech/articles/17lab.html =========================================== Video title: Numbers Infinity Video Link - •https://www.youtube.com/watch?v=hlXHwMgS06c https://www.cbs.com/shows/numb3rs/ http://numb3rs.wolfram.com/ =========================================== Video title: 20 Hours Rule and Assisgnemnt Assignment - https://www.urdufake2020.cicling.org/ =========================================== Video title: Assignments – P1 Mostly Human - https://money.cnn.com/mostly-human =========================================== Video title: Assignments – P2 Assignment – 2 - https://replika.ai/ Assignment – 3 – Teachable Machines https://teachablemachine.withgoogle.com/ Assignment – 4 – Tensor Flow Playground https://playground.tensorflow.org Assignment – 5 – GPT-3 Paper (175B Parameters) https://debuild.co/ Assignment – 6 - Image GPT-3 https://openai.com/blog/image-gpt/ =========================================== Video title: Create your own Deep Fake 1.https://colab.research.google.com/drive/1mGg_fmvhTpvkPkclw2yKkhALVzmawfvT?usp=sharing 2.https://drive.google.com/drive/folders/1wW1bxRV2S7Ce8gc3VDTzMQABE3-WCc_Y?usp=sharing •go into you gdrive > find cloned folder and ensure that this folder must have: vox-adv-cpk.pth.tar & vox-cpk.pth.tar failes •Aliaksandr Siarohin : https://github.com/AliaksandrSiarohin/first-order-model

How I'd Teach a 10 Year Old to Build AI Agents (No Code, n8n)
youtube
LLM Vibe Score0.348
Human Vibe Score0.37
Nate Herk | AI AutomationJan 17, 2025

How I'd Teach a 10 Year Old to Build AI Agents (No Code, n8n)

🌟 Skool community to go deeper with AI and connect with 850+ like minded members👇https://www.skool.com/ai-automation-society-plus/about 📌 Join my free Skool community for access to a learning community and the workflow shows in my videos! 👇 https://www.skool.com/ai-automation-society/about 🚧 Start Building with n8n! (I get kickback if you sign up here - thank you!) https://n8n.partnerlinks.io/22crlu8afq5r In this video, I break down building an AI Agent so simply even a 10-year-old could do it! I’ll walk you through what an AI agent is and how to build a basic email agent in n8n that can automatically send emails for you. No coding experience? No problem! I’ll guide you step-by-step, showing just how quick and easy you can get this set up. By the end of this video, you’ll have your very own email-sending AI agent up and running in no time. 💻 Book A Call If You're Interested in Implementing AI Agents Into Your Business: https://truehorizon.ai/ Business Inquiries: 📧 nate@truehorizon.ai WATCH NEXT: https://youtu.be/u2Tuu02r7QI TIMESTAMPS 00:00 Components of an AI Agent 03:50 Step 1: Chat Input 04:18 Step 2: Adding the Brain 05:49 Step 3: Adding Memory 07:45 Step 4: Adding Send Email Tool 10:21 Step 5: Adding Instructions (System Message) 12:04 Testing the Email Agent 13:43 Reviewing the Agent Log 15:00 Step 6: Adding Contact Database Tool 16:57 Final Test 18:05 Final Thoughts Gear I Used: Camera: Razer Kiyo Pro Microphone: HyperX SoloCast Background Music: https://www.youtube.com/watch?v=Q7HjxOAU5Kc&t=0s

teach-AI-in-business
github
LLM Vibe Score0.443
Human Vibe Score0.018525334165293606
aenyneJan 9, 2025

teach-AI-in-business

Teaching AI in Business ![HitCount] I am collecting material for teaching AI-related issues to non-tech people. The links should provide for a general understanding of AI without going too deep into technical issues. Please contribute! Make this Issue your First Issue I am collecting material for teaching AI-related issues to non-tech people. The links should have provide for a general understanding of AI without going too deep into technical issues. Please contribute! Kindly use only those Resources with NO CODE NEW Check out also the AI Wiki NEW Online Videos & Courses | Link to Issue | Description | |---|---| | Top Trending Technologies | Youtube Channel to master top trending technologyies including artificial intelligence | | AI4All | AI 4 All is a resource for AI facilitators to bring AI to scholars and students | | Elements of AI | Elements of AI is a free open online course to teach AI principles | | Visual Introduction to Machine Learning | Visual introduction to Machine Learning is a beautiful website that gives a comprehensive introduction and easily understood first encounter with machine learning | | CS50's Introduction to Artificial Intelligence with Python | Learn to use machine learning in Python in this introductory course on artificial intelligence.| | Crash course for AI | This is a fun video series that introduces students and educators to Artificial Intelligence and also offers additional more advanced videos. Learn about the basics, neural networks, algorithms, and more. | Youtuber Channel Machine Learning Tutorial | Youtube Channel Turorial Teachable Machine for beginner | | Artificial Intelligence (AI) |Learn the fundamentals of Artificial Intelligence (AI), and apply them. Design intelligent agents to solve real-world problems including, search, games, machine learning, logic, and constraint satisfaction problems | | AI For Everyone by Andrew Ng | AI For Everyone is a course especially for people from a non-technical background to understand AI strategies | | How far is too far? The age of AI| This is a Youtube Orignals series by Robert Downey| | Fundamentals of Artificial Intelligence|This course is for absolute beginners with no technical knowledge.| | Bandit Algorithm (Online Machine Learning)|No requirement of technical knowledge, but a basic understending of Probability Ttheory would help| | An Executive's Guide to AI|This is an interactive guide to teaching business professionals how they might employ artificial intelligence in their business| | AI Business School|Series of videos that teach how AI may be incorporated in various business industries| | Artificial Intelligence Tutorial for Beginners | This video will provide you with a comprehensive and detailed knowledge of Artificial Intelligence concepts with hands-on examples. | | Indonesian Machine Learning Tutorial | Turorial Teachable Machine to train a computer for beginner | | Indonesian Youtube Playlist AI Tutorial | Youtube Playlist AI Tutorial For Beginner | | Artificial Intelligence Search Methods For Problem Solving By Prof. Deepak Khemani|These video lectures are for absolute beginners with no technical knowledge| | AI Basics Tutorial | This video starts from the very basics of AI and ML, and finally has a hands-on demo of the standard MNIST Dataset Number Detection model using Keras and Tensorflow.| | Simple brain.js Tutorial | This video explains a very simple javascript AI library called brain.js so you can easily run AI in the browser.| | Google AI| A complete kit for by google official for non-tech guy to start all over from basics, till advanced | | Microsoft AI for Beginners| A self-driven curriculum by Microsoft, which includes 24 lessons on AI. | Train Your Own AI | Link to Issue | Description | |---|---| | Teachable Machine | Use Teachable Machine to train a computer to recognize your own images, sounds, & poses | | eCraft2Learn | Resource and interactive space (Snap, a visual programming environment like Scratch) to learn how to create AI programs | | Google Quick Draw | Train an AI to guess from drawings| | Deepdream Generator| Merge Pictures to Deep Dreams using the Deepdream Generator| | Create ML|Quickly build and train Core ML models on your Mac with no code.| | What-If Tool|Visually probe the behavior of trained machine learning models, with minimal coding.| | Metaranx|Use and build artificial intelligence tools to analyze and make decisions about your data. Drag-and-drop. No code.| | obviously.ai|The total process of building ML algorithms, explaining results, and predicting outcomes in one single click.| Articles | By & Title | Description | |---|---| | Artificial Intelligence | Wikipedia Page of AI | | The Non-Technical AI Guide | One of the good blog post that could help AI more understandable for people without technical background | | LIAI | A detailed introduction to AI and neural networks | | Layman's Intro | A layman's introduction to AI | | AI and Machine Learning: A Nontechnical Overview | AI and Machine Learning: A Nontechnical Overview from OREILLY themselves is a guide to learn anyone everything they need to know about AI, focussed on non-tech people | | What business leaders need to know about artifical intelligence|Short article that summarizes the essential aspects of AI that business leaders need to understand| | How Will No-Code Impact the Future of Conversational AI | A humble explanation to the current state of converstational AI i.e.Chatbots and how it coul evolve with the current trend of no coding. | | Investopedia | Basic explanation of what AI is in a very basic and comprehensive way | | Packtpub | A non programmer’s guide to learning Machine learning | | Builtin | Artificial Intelligence.What is Artificial Intelligence? How Does AI Work? | | Future Of Life | Benefits & Risks of Artificial Intelligence | | NSDM India -Arpit | 100+ AI Tools For Non-Coders That Will Make Your Marketing Better. | | AI in Marketing for Startups & Non-technical Marketers | A practical guide for non-technical people | | Blog - Machine Learning MAstery | Blogs and Articles by Jason Browniee on ML | | AI Chatbots without programming| Chatbots are increasingly in demand among global businesses. This course will teach you how to build, analyze, deploy and monetize chatbots - with the help of IBM Watson and the power of AI.| Book Resources for Further Reading | Author | Book | Description & Notes | |---|---|---| | Ethem Alpaydin|Machine Learning: The New AI | Graph Theory with Applications to Engineering & Computer Science. A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. | | Charu C. Aggarwal| Neural Networks and Deep Learning | This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. | | Hal Daumé III | A Course in Machine Learning | The purpose of this book is to provide a gentle and pedagogically organized introduction to the field. A second goal of this book is to provide a view of machine learning that focuses on ideas and models, not on math. | | Ian Goodfellow and Yoshua Bengio and Aaron Courville| Deep Learning | The book starts with a discussion on machine learning basics, including the applied mathematics and algorithms needed to effectively study deep learning from an academic perspective. There is no code covered in the book, making it perfect for a non-technical AI enthusiast. | | Peter Harrington|Machine Learning in Action| (Source: https://github.com/kerasking/book-1/blob/master/ML%20Machine%20Learning%20in%20Action.pdf) This book acts as a guide to walk newcomers through the techniques needed for machine learning as well as the concepts behind the practices.| | Jeff Heaton| Artificial Intelligence for Humans |This book helps its readers get an overview and understanding of AI algorithms. It is meant to teach AI for those who don’t have an extensive mathematical background. The readers need to have only a basic knowledge of computer programming and college algebra.| | John D. Kelleher, Brian Mac Namee and Aoife D'Arcy|Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (The MIT Press)|This book covers all the fundamentals of machine learning, diving into the theory of the subject and using practical applications, working examples, and case studies to drive the knowledge home.| | Deepak Khemani| [A First Course in Artificial Intelligence] | It is an introductory course on Artificial Intelligence, a knowledge-based approach using agents all across and detailed, well-structured algorithms with proofs. This book mainly follows a bottom-up approach exploring the basic strategies needed problem-solving on the intelligence part. | | Maxim Lapan | Deep Reinforcement Learning Hands-On - Second Edition | Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. | | Tom M Mitchell | Machine Learning | This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper level undergraduate and introductory level graduate courses in machine learning. | | John Paul Mueller and Luca Massaron|Machine Learning For Dummies|This book aims to get readers familiar with the basic concepts and theories of machine learning and how it applies to the real world. And "Dummies" here refers to absolute beginners with no technical background.The book introduces a little coding in Python and R used to teach machines to find patterns and analyze results. From those small tasks and patterns, we can extrapolate how machine learning is useful in daily lives through web searches, internet ads, email filters, fraud detection, and so on. With this book, you can take a small step into the realm of machine learning and we can learn some basic coding in Pyton and R (if interested)| | Michael Nielsen| Neural Networks and Deep Learning |Introduction to the core principles of Neural Networks and Deep Learning in AI| | Simon Rogers and Mark Girolami| A Course in Machine Learning |A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC.| |Peter Norvig| Paradigm of Artificial Intelligence Programming |Paradigms of AI Programming is the first text to teach advanced Common Lisp techniques in the context of building major AI systems. By reconstructing authentic, complex AI programs using state-of-the-art Common Lisp, the book teaches students and professionals how to build and debug robust practical programs, while demonstrating superior programming style and important AI concepts.| | Stuart Russel & Peter Norvig | Artificial Intelligence: A Modern Approach, 3rd Edition | This is the prescribed text book for my Introduction to AI university course. It starts off explaining all the basics and definitions of what AI is, before launching into agents, algorithms, and how to apply them. Russel is from the University of California at Berkeley. Norvig is from Google.| | Richard S. Sutton and Andrew G. Barto| Reinforcement Learning: An Introduction |Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment.| | Alex Smola and S.V.N. Vishwanathan | Introduction to Machine Learning | Provides the reader with an overview of the vast applications of ML, including some basic tools of statistics and probability theory. Also includes discussions on sophisticated ideas and concepts. | | Shai Shalev-Shwartz and Shai Ben-David | Understanding Machine Learning From Theory to Algorithms |The primary goal of this book is to provide a rigorous, yet easy to follow, introduction to the main concepts underlying machine learning. | | Chandra S.S.V | Artificial Intelligence and Machine Learning | This book is primarily intended for undergraduate and postgraduate students of computer science and engineering. This textbook covers the gap between the difficult contexts of Artificial Intelligence and Machine Learning. It provides the most number of case studies and worked-out examples. In addition to Artificial Intelligence and Machine Learning, it also covers various types of learning like reinforced, supervised, unsupervised and statistical learning. It features well-explained algorithms and pseudo-codes for each topic which makes this book very useful for students. | | Oliver Theobald|Machine Learning For Absolute Beginners: A Plain English Introduction|This is an absolute beginners ML guide.No mathematical background is needed, nor coding experience — this is the most basic introduction to the topic for anyone interested in machine learning.“Plain” language is highly valued here to prevent beginners from being overwhelmed by technical jargon. Clear, accessible explanations and visual examples accompany the various algorithms to make sure things are easy to follow.| | Tom Taulli | Artificial Intelligence Basics: A Non-Technical Introduction | This book equips you with a fundamental grasp of Artificial Intelligence and its impact. It provides a non-technical introduction to important concepts such as Machine Learning, Deep Learning, Natural Language Processing, Robotics and more. Further the author expands on the questions surrounding the future impact of AI on aspects that include societal trends, ethics, governments, company structures and daily life. | |Cornelius Weber, Mark Elshaw, N. Michael Mayer| Reinforcement Learning |Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning.| |John D. Kelleher, Brian Mac Namee, Aoife D'arcy| Algorithms, Worked Examples, and Case Studies | A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. |

ai-learning-roadmap
github
LLM Vibe Score0.442
Human Vibe Score0.035708035270567436
gopala-krNov 30, 2024

ai-learning-roadmap

Lists of all AI related learning materials and practical tools to get started with AI apps Design Thinking – An Introduction Stanford's virtual Crash Course in Design Thinking Amazon Web Services Learning Material AWS AI Session– The session provides an overview of all Amazon AI technology offerings (Lex, Polly, Rekognition, ML, and Deep Learning AMI) Self-Paced Labs AWS self-paced labs provide hands-on practice in a live AWS environment with AWS services and real-world cloud scenarios. Follow step-by-step instructions to learn a service, practice a use case, or prepare for AWS Certification. Introductory Lab Introduction to AWS Lambda Lex Introduction to Amazon Lex Amazon Lex Webinar Amazon Lex: AWS conversational interface (chat bot) Documentation Polly Introduction to Amazon Polly Amazon Polly Webinar - Amazon Polly – AWS Text To Speech (TTS) service Documentation What is Amazon Polly? Developer Resources Rekognition Introduction to Amazon Rekognition Amazon Rekognition - Deep Learning-Based Image Analysis Webinar Amazon Rekognition – AWS image recognition service Documentation – What is Amazon Rekognition? Machine Learning Machine Learning Session 1 – Empowering Developers to Build Smart Applications Session 2 - Predicting Customer Churn with Amazon Machine Learning AWS Machine Learning – End to end, managed service for creating and testing ML models and then deploying those models into production Documentation What is Amazon Machine Learning? Developer Resources AWS Deep Learning AMI – Amazon Machine Image (AMI) optimized for deep learning efforts Recommended Additional Resources Take your skills to the next level with fundamental, advanced, and expert level labs. Creating Amazon EC2 Instances with Microsoft Windows Building Your First Amazon Virtual Private Cloud (VPC) Working with AWS CodeCommit on Windows Working with Amazon DynamoDB Google Cloud - Learning Material Below is the learning material that will help you learn about Google Cloud. Network Networking 101 – 43 mins The codelab provides common cloud developer experience as follows: Set up your lab environment and learn how to work with your GCP environment. Use of common open source tools to explore your network around the world. Deploy a common use case: use of HTTP Load Balancing and Managed Instance Groups to host a scalable, multi-region web server. Testing and monitoring your network and instances. Cleanup. Developing Solutions for Google Cloud Platform – 8 hours Infrastructure Build a Slack Bot with Node.js on Kubernotes – 43 mins Creating a Virtual Machine – 10 mins Getting Started with App Engine (Python) – 13 mins Data Introduction to Google Cloud Data Prep – 7 mins Create a Managed MySQL database with Cloud SQL – 19 mins Upload Objects to Cloud Storage – 11 mins AI, Big Data & Machine Learning Introduction to Google Cloud Machine Learning – 1 hour Machine Learning APIs by Example – 30 min Google Cloud Platform Big Data and Machine Learning Fundamentals Additional AI Materials Auto-awesome: Advanced Data Science on Google Cloud Platform – 45 min Run a Big Data Text Processing Pipeline in Cloud Dataflow – 21 min Image Classification Using Cloud ML Engine & Datalab – 58 min Structured Data Regression Using Cloud ML Engine & Datalab – 58 min (Optional) Deep Learning & Tensorflow Tensorflow and Deep Learning Tutorial – 2:35 hours Deep Learning Course – advanced users only Additional Reference Material Big Data & Machine Learning @ Google Cloud Next '17 - A collection of 49 videos IBM Watson Learning Material (Contributions are welcome in this space) [IBM Watson Overview]() [IBM Watson Cognitive APIs]() [IBM Watson Knowledge Studio]() Visual Studio UCI datasets Microsoft Chat Bots Learning Material Skills Prerequisite Git and Github NodeJS VS Code IDE Training Paths If you have the above Prerequisite skills, then take Advanced Training Path else take Novice Training Path. Prerequisite Tutorials Git and Github Node.js Node.js Tutorials for Beginners Node.js Tutorial in VS Code Introduction To Visual Studio Code Novice Training Path Environment Set Up Download and Install Git Set up GitHub Account_ Download and Install NodeJS Download and Install IDE - Visual Studio Code Download and Install the Bot Framework Emulator Git clone the Bot Education project - git clone Set Up Azure Free Trial Account Cognitive Services (Defining Intelligence) Read Cognitive Services ADS Education Deck – git clone Review the guide for Understanding Natural language with LUIS Complete the NLP (LUIS) Training Lab from the installed Bot Education project – \bot-education\Student-Resources\Labs\CognitiveServices\Lab_SetupLanguageModel.md Bot Framework (Building Chat Bots) Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) - Setup local environment and run emulator from the installed Bot Education project – \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md Review and test in the emulator the “bot-hello” from \bot-education\Student-Resources\BOTs\Node\bot-hello Advanced Training Path Environment Set Up Download and Install Git Set up GitHub Account_ Download and Install NodeJS Download and Install IDE - Visual Studio Code Download and Install the Bot Framework Emulator Git clone the Bot Education project - git clone Set Up Azure Free Trial Account Git clone the Bot Builder Samples – git clone Cognitive Services (Defining Intelligence) Read Cognitive Services ADS Education Deck – git clone Review the guide for Understanding Natural language with LUIS Bot Framework (Building Chat Bots) Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) - Setup local environment and run emulator from the installed Bot Education project – \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md Cognitive Services (Defining Intelligence) - Labs Complete the NLP (LUIS) Training Lab from the installed BOT Education project \bot-education\Student-Resources\Labs\CognitiveServices\Lab_SetupLanguageModel.md Review, Deploy and run the LUIS BOT sample Bot Framework (Building Chat Bots) – Labs Setup local environment and run emulator from the installed Bot Education project \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md Review and test in the emulator the “bot-hello” from \bot-education\Student-Resources\BOTs\Node\bot-hello Review and test in the emulator the “bot-recognizers” from \bot-education\Student-Resources\BOTs\Node\bot-recognizers Lecture Videos Source Berkeley Lecture TitleLecturerSemester Lecture 1 Introduction Dan Klein Fall 2012 Lecture 2 Uninformed Search Dan Klein Fall 2012 Lecture 3 Informed Search Dan Klein Fall 2012 Lecture 4 Constraint Satisfaction Problems I Dan Klein Fall 2012 Lecture 5 Constraint Satisfaction Problems II Dan Klein Fall 2012 Lecture 6 Adversarial Search Dan Klein Fall 2012 Lecture 7 Expectimax and Utilities Dan Klein Fall 2012 Lecture 8 Markov Decision Processes I Dan Klein Fall 2012 Lecture 9 Markov Decision Processes II Dan Klein Fall 2012 Lecture 10 Reinforcement Learning I Dan Klein Fall 2012 Lecture 11 Reinforcement Learning II Dan Klein Fall 2012 Lecture 12 Probability Pieter Abbeel Spring 2014 Lecture 13 Markov Models Pieter Abbeel Spring 2014 Lecture 14 Hidden Markov Models Dan Klein Fall 2013 Lecture 15 Applications of HMMs / Speech Pieter Abbeel Spring 2014 Lecture 16 Bayes' Nets: Representation Pieter Abbeel Spring 2014 Lecture 17 Bayes' Nets: Independence Pieter Abbeel Spring 2014 Lecture 18 Bayes' Nets: Inference Pieter Abbeel Spring 2014 Lecture 19 Bayes' Nets: Sampling Pieter Abbeel Fall 2013 Lecture 20 Decision Diagrams / Value of Perfect Information Pieter Abbeel Spring 2014 Lecture 21 Machine Learning: Naive Bayes Nicholas Hay Spring 2014 Lecture 22 Machine Learning: Perceptrons Pieter Abbeel Spring 2014 Lecture 23 Machine Learning: Kernels and Clustering Pieter Abbeel Spring 2014 Lecture 24 Advanced Applications: NLP, Games, and Robotic Cars Pieter Abbeel Spring 2014 Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Spring 2014 Additionally, there are additional Step-By-Step videos which supplement the lecture's materials. These videos are listed below: Lecture TitleLecturerNotes SBS-1 DFS and BFS Pieter Abbeel Lec: Uninformed Search SBS-2 A* Search Pieter Abbeel Lec: Informed Search SBS-3 Alpha-Beta Pruning Pieter Abbeel Lec: Adversarial Search SBS-4 D-Separation Pieter Abbeel Lec: Bayes' Nets: Independence SBS-5 Elimination of One Variable Pieter Abbeel Lec: Bayes' Nets: Inference SBS-6 Variable Elimination Pieter Abbeel Lec: Bayes' Nets: Inference SBS-7 Sampling Pieter Abbeel Lec: Bayes' Nets: Sampling SBS-8 Gibbs' Sampling Michael Liang Lec: Bayes' Nets: Sampling --> SBS-8 Maximum Likelihood Pieter Abbeel Lec: Machine Learning: Naive Bayes SBS-9 Laplace Smoothing Pieter Abbeel Lec: Machine Learning: Naive Bayes SBS-10 Perceptrons Pieter Abbeel Lec: Machine Learning: Perceptrons Per-Semester Video Archive(Berkeley) The lecture videos from the most recent offerings are posted below. Spring 2014 Lecture Videos Fall 2013 Lecture Videos Spring 2013 Lecture Videos Fall 2012 Lecture Videos Spring 2014 Lecture TitleLecturerNotes Lecture 1 Introduction Pieter Abbeel Lecture 2 Uninformed Search Pieter Abbeel Lecture 3 Informed Search Pieter Abbeel Lecture 4 Constraint Satisfaction Problems I Pieter Abbeel Recording is a bit flaky, see Fall 2013 Lecture 4 for alternative Lecture 5 Constraint Satisfaction Problems II Pieter Abbeel Lecture 6 Adversarial Search Pieter Abbeel Lecture 7 Expectimax and Utilities Pieter Abbeel Lecture 8 Markov Decision Processes I Pieter Abbeel Lecture 9 Markov Decision Processes II Pieter Abbeel Lecture 10 Reinforcement Learning I Pieter Abbeel Lecture 11 Reinforcement Learning II Pieter Abbeel Lecture 12 Probability Pieter Abbeel Lecture 13 Markov Models Pieter Abbeel Lecture 14 Hidden Markov Models Pieter Abbeel Recording is a bit flaky, see Fall 2013 Lecture 18 for alternative Lecture 15 Applications of HMMs / Speech Pieter Abbeel Lecture 16 Bayes' Nets: Representation Pieter Abbeel Lecture 17 Bayes' Nets: Independence Pieter Abbeel Lecture 18 Bayes' Nets: Inference Pieter Abbeel Lecture 19 Bayes' Nets: Sampling Pieter Abbeel Unrecorded, see Fall 2013 Lecture 16 Lecture 20 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 21 Machine Learning: Naive Bayes Nicholas Hay Lecture 22 Machine Learning: Perceptrons Pieter Abbeel Lecture 23 Machine Learning: Kernels and Clustering Pieter Abbeel Lecture 24 Advanced Applications: NLP, Games, and Robotic Cars Pieter Abbeel Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 26 Conclusion Pieter Abbeel Unrecorded Fall 2013 Lecture TitleLecturerNotes Lecture 1 Introduction Dan Klein Lecture 2 Uninformed Search Dan Klein Lecture 3 Informed Search Dan Klein Lecture 4 Constraint Satisfaction Problems I Dan Klein Lecture 5 Constraint Satisfaction Problems II Dan Klein Lecture 6 Adversarial Search Dan Klein Lecture 7 Expectimax and Utilities Dan Klein Lecture 8 Markov Decision Processes I Dan Klein Lecture 9 Markov Decision Processes II Dan Klein Lecture 10 Reinforcement Learning I Dan Klein Lecture 11 Reinforcement Learning II Dan Klein Lecture 12 Probability Pieter Abbeel Lecture 13 Bayes' Nets: Representation Pieter Abbeel Lecture 14 Bayes' Nets: Independence Dan Klein Lecture 15 Bayes' Nets: Inference Pieter Abbeel Lecture 16 Bayes' Nets: Sampling Pieter Abbeel Lecture 17 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 18 Hidden Markov Models Dan Klein Lecture 19 Applications of HMMs / Speech Dan Klein Lecture 20 Machine Learning: Naive Bayes Dan Klein Lecture 21 Machine Learning: Perceptrons Dan Klein Lecture 22 Machine Learning: Kernels and Clustering Pieter Abbeel Lecture 23 Machine Learning: Decision Trees and Neural Nets Pieter Abbeel Lecture 24 Advanced Applications: NLP and Robotic Cars Dan Klein Unrecorded, see Spring 2013 Lecture 24 Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 26 Conclusion Dan Klein,Pieter Abbeel Unrecorded Spring 2013 Lecture TitleLecturerNotes Lecture 1 Introduction Pieter Abbeel Video Down Lecture 2 Uninformed Search Pieter Abbeel Lecture 3 Informed Search Pieter Abbeel Lecture 4 Constraint Satisfaction Problems I Pieter Abbeel Lecture 5 Constraint Satisfaction Problems II Pieter Abbeel Unrecorded, see Fall 2012 Lecture 5 Lecture 6 Adversarial Search Pieter Abbeel Lecture 7 Expectimax and Utilities Pieter Abbeel Lecture 8 Markov Decision Processes I Pieter Abbeel Lecture 9 Markov Decision Processes II Pieter Abbeel Lecture 10 Reinforcement Learning I Pieter Abbeel Lecture 11 Reinforcement Learning II Pieter Abbeel Lecture 12 Probability Pieter Abbeel Lecture 13 Bayes' Nets: Representation Pieter Abbeel Lecture 14 Bayes' Nets: Independence Pieter Abbeel Lecture 15 Bayes' Nets: Inference Pieter Abbeel Lecture 16 Bayes' Nets: Sampling Pieter Abbeel Lecture 17 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 18 Hidden Markov Models Pieter Abbeel Lecture 19 Applications of HMMs / Speech Pieter Abbeel Lecture 20 Machine Learning: Naive Bayes Pieter Abbeel Lecture 21 Machine Learning: Perceptrons I Nicholas Hay Lecture 22 Machine Learning: Perceptrons II Pieter Abbeel Lecture 23 Machine Learning: Kernels and Clustering Pieter Abbeel Lecture 24 Advanced Applications: NLP and Robotic Cars Pieter Abbeel Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 26 Conclusion Pieter Abbeel Unrecorded Fall 2012 Lecture TitleLecturerNotes Lecture 1 Introduction Dan Klein Lecture 2 Uninformed Search Dan Klein Lecture 3 Informed Search Dan Klein Lecture 4 Constraint Satisfaction Problems I Dan Klein Lecture 5 Constraint Satisfaction Problems II Dan Klein Lecture 6 Adversarial Search Dan Klein Lecture 7 Expectimax and Utilities Dan Klein Lecture 8 Markov Decision Processes I Dan Klein Lecture 9 Markov Decision Processes II Dan Klein Lecture 10 Reinforcement Learning I Dan Klein Lecture 11 Reinforcement Learning II Dan Klein Lecture 12 Probability Pieter Abbeel Lecture 13 Bayes' Nets: Representation Pieter Abbeel Lecture 14 Bayes' Nets: Independence Pieter Abbeel Lecture 15 Bayes' Nets: Inference Pieter Abbeel Lecture 16 Bayes' Nets: Sampling Pieter Abbeel Lecture 17 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 18 Hidden Markov Models Pieter Abbeel Lecture 19 Applications of HMMs / Speech Dan Klein Lecture 20 Machine Learning: Naive Bayes Dan Klein Lecture 21 Machine Learning: Perceptrons Dan Klein Lecture 22 Machine Learning: Kernels and Clustering Dan Klein Lecture 23 Machine Learning: Decision Trees and Neural Nets Pieter Abbeel Lecture 24 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 25 Advanced Applications: NLP and Robotic Cars Dan Klein,Pieter Abbeel Unrecorded Lecture 26 Conclusion Dan Klein,Pieter Abbeel Unrecorded Lecture Slides Here is the complete set of lecture slides, including videos, and videos of demos run in lecture: Slides [~3 GB]. The list below contains all the lecture powerpoint slides: Lecture 1: Introduction Lecture 2: Uninformed Search Lecture 3: Informed Search Lecture 4: CSPs I Lecture 5: CSPs II Lecture 6: Adversarial Search Lecture 7: Expectimax Search and Utilities Lecture 8: MDPs I Lecture 9: MDPs II Lecture 10: Reinforcement Learning I Lecture 11: Reinforcement Learning II Lecture 12: Probability Lecture 13: Markov Models Lecture 14: Hidden Markov Models Lecture 15: Particle Filters and Applications of HMMs Lecture 16: Bayes Nets I: Representation Lecture 17: Bayes Nets II: Independence Lecture 18: Bayes Nets III: Inference Lecture 19: Bayes Nets IV: Sampling Lecture 20: Decision Diagrams and VPI Lecture 21: Naive Bayes Lecture 22: Perceptron Lecture 23: Kernels and Clustering Lecture 24: Advanced Applications (NLP, Games, Cars) Lecture 25: Advanced Applications (Computer Vision and Robotics) Lecture 26: Conclusion The source files for all live in-lecture demos are being prepared from Berkeley AI for release Selected Research Papers Latest arxiv paper submissionson AI Peter Norvig-Teach Yourself Programming in Ten Years How to do Research At the MIT AI Lab A Roadmap towards Machine Intelligence Collaborative Filtering with Recurrent Neural Networks (2016) Wide & Deep Learning for Recommender Systems (2016) Deep Collaborative Filtering via Marginalized Denoising Auto-encoder (2015) Nonparametric bayesian multitask collaborative filtering (2013) Tensorflow: Large-scale machine learning on heterogeneous distributed systems https://infoscience.epfl.ch/record/82802/files/rr02-46.pdf Theano: A CPU and GPU math expression compiler. Caffe: Convolutional architecture for fast feature embedding Chainer: A powerful, flexible and intuitive framework of neural networks Large Scale Distributed Deep Networks Large-scale video classification with convolutional neural networks Efficient Estimation of Word Representations in Vector Space Grammar as a Foreign Language Going Deeper with Convolutions ON RECTIFIED LINEAR UNITS FOR SPEECH PROCESSING Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks google turning its lucrative web search over to AI machines Stanford Syllabus CS 20SI: Tensorflow for Deep Learning Research Crowd-Based Personalized Natural Language Explanations for Recommendations Comparative Study of Deep Learning Software Frameworks RedditML- What Are You Reading AI-Powered Social Bots(16 Jun 2017) The Many Tribes of Artificial Intelligence Source:https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53 The Deep Learning Roadmap Source:https://medium.com/intuitionmachine/the-deep-learning-roadmap-f0b4cac7009a Best Practices for Training Deep Learning Networks Source: https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53 ML/DL Cheatsheets Neural Network Architectures Source: http://www.asimovinstitute.org/neural-network-zoo/ Microsoft Azure Algorithm Flowchart Source: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet SAS Algorithm Flowchart Source: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/ Algorithm Summary Source: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ Source: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/ Algorithm Pro/Con Source: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend Python Algorithms Source: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/ Python Basics Source: http://datasciencefree.com/python.pdf Source: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA Numpy Source: https://www.dataquest.io/blog/numpy-cheat-sheet/ Source: http://datasciencefree.com/numpy.pdf Source: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb Pandas Source: http://datasciencefree.com/pandas.pdf Source: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb Matplotlib Source: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb Scikit Learn Source: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk Source: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html Source: https://github.com/rcompton/mlcheatsheet/blob/master/supervised_learning.ipynb Tensorflow Source: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1Introduction/basicoperations.ipynb Pytorch Source: https://github.com/bfortuner/pytorch-cheatsheet Math Probability Source: http://www.wzchen.com/s/probability_cheatsheet.pdf Linear Algebra Source: https://minireference.com/static/tutorials/linearalgebrain4pages.pdf Statistics Source: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf Calculus Source: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N

n8n Masterclass: Build AI Agents & Automate Workflows (Beginner to Pro)
youtube
LLM Vibe Score0.396
Human Vibe Score0.64
Nate Herk | AI AutomationOct 20, 2024

n8n Masterclass: Build AI Agents & Automate Workflows (Beginner to Pro)

JOIN THE FREE SKOOL COMMUNITY👇 https://www.skool.com/ai-automation-society-3440/about 🌟 Join my paid Skool community if you want to go deeper with n8n and AI Automations👇 https://www.skool.com/ai-automation-society-plus/about 🚧 Start Building with n8n! (I get kickback if you sign up here - thank you!) https://n8n.partnerlinks.io/22crlu8afq5r 💻 Book A Call If You're Interested in Implementing AI Agents Into Your Business: https://truehorizon.ai/ Welcome to the ultimate n8n masterclass! Whether you're a complete beginner or have little coding experience, this video will guide you step-by-step through everything you need to know to start automating workflows and building powerful AI agents with n8n. In this video, you'll learn: ⚙️ The basics of n8n, building your first workflow, and connecting with 300+ integrations. 🌐 How to use APIs and HTTP requests in n8n. 🧠 Harnessing the power of RAG (Retrieval-Augmented Generation) and vector databases for AI-powered automation. 🛠️ Creating custom tools and integrating them into workflows to build smarter AI agents. 🔗 Advanced concepts like webhooks, error handling, and scaling workflows for real-world automation. 📈 Best practices to keep your workflows optimized, scalable, and resilient. By the end, you’ll have the confidence to create your own AI agent automations, trigger workflows with webhooks, use APIs, and more! 💡 If you found this video helpful, don’t forget to like, comment, and subscribe for more content on n8n, AI agents, and automation. Let me know in the comments what you plan to automate next! Business Inquiries: 📧 nateherk@uppitai.com WATCH NEXT: https://youtu.be/JUx2ZfNfD64 TIMESTAMPS 00:00 What is n8n? 02:50 Why Should You Learn n8n? 04:53 Part 1: Getting Started 05:09 Self-Hosted vs Cloud 08:25 Workflows, Nodes, Executions 09:45 n8n Interface 16:05 Part 2: Core Concepts 16:28 Types of Nodes 19:00 Building Example Workflow 36:28 Part 3: RAG and Vector Databases 36:55 What is RAG? 38:23 What are Vector Databases? 44:07 Building RAG AI Agent 1:01:56 Part 4: Expanding Agents 1:02:31 n8n Workflows as Tools 1:05:23 Showcasing Agent Examples 1:10:20 Part 5: APIs & HTTP Requests 1:11:33 What is an API? 1:12:49 What is an HTTP Request? 1:13:14 How They Work Together 1:15:04 HTTP Request Examples in n8n 1:21:42 Part 6: The Final Part 1:22:24 Error Workflows 1:26:20 Best Practices 1:28:30 Next Steps Gear I Used: Camera: Razer Kiyo Pro Microphone: HyperX SoloCast Background Music: https://www.youtube.com/watch?v=Q7HjxOAU5Kc&t=0s Don't forget to like, subscribe, and hit the notification bell to stay updated with my latest videos on AI agents and automations!

FORGET ChatGPT, This AI TOOL is a GAMECHANGER 🔥
youtube
LLM Vibe Score0.299
Human Vibe Score0.32
Ishan SharmaOct 19, 2024

FORGET ChatGPT, This AI TOOL is a GAMECHANGER 🔥

Ishan Sharma: FORGET ChatGPT, This AI TOOL is a GAMECHANGER 🔥 Google just dropped NotebookLM and it is changing everything. I was using ChatGPT so far for research and learning, but NotebookLM has stolen the charm. NotebookLM lets you convert PDFs, YouTube videos, or Websites into Audio Podcasts This is a 2 person conversational podcast about the topic And Trust me, it sounds too good to be AI generated. It's powered by Google's latest Gemini 1.5 model. But that’s not all! You can add multiple sources in a notebook And also get a summary, table of contents, study guide And MORE in seconds! THIS is a game changer for learners, researchers, and creators! Helping you skyrocket your productivity. It's also great for school students and college students to learn anything faster. Try it out on notebooklm.google.com 📸 Instagram: https://bit.ly/ishansharma7390ig Join MarkitUpX Discord Server: https://discord.gg/fwSpTje4rh Timestamps 😁 About Me: https://bit.ly/aboutishansharma 📱 Twitter: https://bit.ly/ishansharma7390twt 📝 LinkedIn: https://bit.ly/ishansharma7390li 🌟 Please leave a LIKE ❤️ and SUBSCRIBE for more AMAZING content! 🌟 3 Books You Should Read 📈Psychology of Money: https://amzn.to/30wx4bW 👀Subtle Art of Not Giving a F: https://amzn.to/30zwWbP 💼Rework: https://amzn.to/3ALsAuz Tech I use every day 💻MacBook Air M1: https://amzn.to/2YWKPjG 📺LG 29' Ultrawide Monitor: https://amzn.to/3aG0p5p 🎥Sony ZV1: https://amzn.to/3ANqgDb 🎙Blue Yeti Mic: https://amzn.to/2YYbiNN ⽴Tripod Stand: https://amzn.to/3mVUiQc 🔅Ring Light: https://amzn.to/2YQlzLJ 🎧Marshall Major II Headphone: https://amzn.to/3lLhTDQ 🖱Logitech mouse: https://amzn.to/3p8edOC 💺Green Soul Chair: https://amzn.to/3mWIxZP ✨ Tags ✨ ishan sharma,FORGET ChatGPT This AI TOOL is a GAMECHANGER,chatgpt,gpt-4o,chatgpt 4o,gpt4o,openai,gpt 4,openai sora,microsoft openai,artificial intelligence,ai,chatbot,gpt-4,chatgpt-4,new gpt ai model,chatgpt vision,chatgpt chatbot,chatgpt4o,new ai,chat gpt,chatgpt 4,gpt update,chat gpt 4o,google notebooklm,google notebook,google notebook app,google notebooklm tool,google keep,google ai,google app ai,google notes app,google notes ai ✨ Hashtags ✨ #google #chatgpt #ai

LearnAI-KnowledgeMiningBootcamp
github
LLM Vibe Score0.438
Human Vibe Score0.05521136990708693
sithukyaw007Jan 29, 2024

LearnAI-KnowledgeMiningBootcamp

LearnAI: Build an Enterprise Knowledge Mining Solution using the Microsoft AI Platform Build an enterprise scale intelligent search solution for searching business documents using Microsoft Azure and Cognitive Search About this Course In this course, you will learn to build an enterprise search solution by applying knowledge mining approach to search an organization’s business documents like Microsoft Office, PDFs and images using Azure search and Cognitive search skillsets and expose the results via a Bot interface. You will learn to perform entity recognition, image analysis, text translation and indexed search on enterprise business documents using Microsoft Cognitive Services and Azure Search. This approach can be used with almost any Azure service to augment a customer’s scenario involving intelligent search. While this course focusses on Azure and Cognitive search capabilities, a depth course on building Bots and integrating various cognitive services is available here - Building Intelligent Agents and Apps. In this course you will learn Fundamentals of Azure Search and its capabilities. Understand Microsoft Cognitive Search and its key scenarios for using them. Build an enriched data pipeline for search using predefined and custom skillsets: a. Text skills like entity recognition, language detection, text manipulation and key phrase extraction. b. Image skills like OCR. c. Language skills like text translation. d. Content moderation skills to block documents with incompliant content. Use the enriched data pipeline for a knowledge mining solution on business documents within an enterprise. Expose the knowledge mining solution using a bot interface for document search and consumption. Architecture !Architecture Technologies Covered !Technology Industry application Intelligent search is relevant to many major industries. Some are listed below. Retail and health care industries employ chatbots with advanced multi-language support capabilities to service their customers. Retail, Housing and Automotive industries for sales/listing. Entertainment industry uses search for relevant/contextual on-demand streaming. Pre-requisites Fundamental working knowledge of Azure Portal, Functions and Azure Search. Familiarity with Visual Studio. Familiarity with Azure Bots and Microsoft Bot Framework v4. If you do not have any familiarity with the above pre-requisites, please find below links To Read (10 minutes): Visual Studio Tutorial To Read (4 minutes): Azure Functions Overview To Read (10 minutes): Azure Search Overview To Read (7 minutes): Postman Tutorial To Do (30 minutes): CQuickstart Pre-Setup before you attend the class Mandatory To Create: You need a Microsoft Azure account to create the services we use in our solution. You can create a free account, use your MSDN account or use any other subscription where you have permission to create services. To Install: Visual Studio 2017 version version 15.5 or later, including the Azure development workload. To Install: Postman. To call the labs APIs. Course Details Primary Audience: Azure AI Developers, Architects. Secondary Audience: Any professional interested in learning AI. Level This content is designed as an intermediate to advanced level course for AI developers and/or architects. Type This course, in its full form, is designed to be taught in-person but you can also use the materials in a self-paced fashion. There are assignments and multiple reference links throughout the materials that support the concepts and skills you will learn. Length Full Course classroom training: 16 hours Related LearnAI Courses Building Intelligent Agents and Apps Course Modules Introduction – Overview of Azure Search, Cognitive Search, Scenarios and industry specific applications. Fundamentals of Azure Search. Architecture – Solution Architecture for building enterprise search solution. Cognitive Search Skillset – Applying text skills. Cognitive Search Skillset – Applying image skills. Cognitive Search Skillset – Applying Language skills. Cognitive Search Skillset – Applying Moderation skills. Build and Integrate a Bot with Cognitive Search API. Group Hands-on Lab to practice skills acquired.

responsible-ai-hub
github
LLM Vibe Score0.328
Human Vibe Score0.04251968503937008
Thebbie-ADec 21, 2023

responsible-ai-hub

Responsible AI Hub Welcome to the Responsible AI Hub for Developers with all levels of expertise in AI and Machine Learning. This is a dedicated space to help the community discover relevant training resources and events to learn about Responsible AI. View Hub Website You can visit the hosted Responsible AI Hub site to learn about upcoming training events, or to explore self-guided workshops to skill up on topics like: The Responsible AI Dashboard Azure Content Safety Azure Prompt Flow Build & Preview Site Want to contribute content? Start by making sure you can build and preview the site in a relevant development environment. The project is instrumented with a dev container, making it easy to launch using either Github Codespaces (in the cloud) or Docker Desktop (in your local device). The project is built using the Docusaurus 3 static site generator. Once the container is running, use these commands to build and preview the site: You should see something like this: You can now open the browser to that URL to see the site in preview mode. As you make changes to the content, the site preview will automatically refresh to show those updates. To learn more about how the website is configured and structured, see the Docusaurus documentation. Provide Feedback Have comments or questions? Post an Issue to let us know how we can improve the content to support you better, on your learning journey. TODO 🚧 Updating SUPPORT.MD as required Review security processes in SECURITY.MD Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com. When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments. Trademarks This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Not a code expert? AI and Copilot can assist you. Check out AI updates to Power Platform.
youtube
LLM Vibe Score0.282
Human Vibe Score0.22
Microsoft MechanicsJun 2, 2023

Not a code expert? AI and Copilot can assist you. Check out AI updates to Power Platform.

Use AI Large Language Models with Microsoft’s Power Platform to create automated workflows, apps, web pages and bots—without knowing how to write code. Watch the full video here: https://youtu.be/WXb_g23GEbg AI and Copilot help build fully functional experiences. Generate workflows using only natural language prompts in Power Automate, create apps in seconds in Power Apps, build professional websites with Power Pages, and use the new Boost Conversations capability with GPT to create FAQ bots with Power Virtual Agents. Stephen Siciliano, Vice President of Microsoft Power Automate, joins Jeremy Chapman to tour the latest Power Platform updates. ► Unfamiliar with Microsoft Mechanics? As Microsoft's official video series for IT, you can watch and share valuable content and demos of current and upcoming tech from the people who build it at Microsoft. • Subscribe to our YouTube: https://www.youtube.com/c/MicrosoftMechanicsSeries • Talk with other IT Pros, join us on the Microsoft Tech Community: https://techcommunity.microsoft.com/t5/microsoft-mechanics-blog/bg-p/MicrosoftMechanicsBlog • Watch or listen from anywhere, subscribe to our podcast: https://microsoftmechanics.libsyn.com/podcast ► Keep getting this insider knowledge, join us on social: • Follow us on Twitter: https://twitter.com/MSFTMechanics • Share knowledge on LinkedIn: https://www.linkedin.com/company/microsoft-mechanics/ • Enjoy us on Instagram: https://www.instagram.com/msftmechanics/ • Loosen up with us on TikTok: https://www.tiktok.com/@msftmechanics #PowerPlatform #ChatGPT #Copilot #OpenAI

OpenAI GPT-4: THE SECRET PROMPT You Need To Know 🤐 #shorts
youtube
LLM Vibe Score0.326
Human Vibe Score0.36
Ishan SharmaApr 2, 2023

OpenAI GPT-4: THE SECRET PROMPT You Need To Know 🤐 #shorts

OpenAI GPT-4: THE SECRET PROMPT You Need To Know 🤐 #shorts 📸 Instagram: https://bit.ly/ishansharma7390ig Join MarkitUpX Discord Server: https://discord.gg/fwSpTje4rh 😁 About Me: https://bit.ly/aboutishansharma 📱 Twitter: https://bit.ly/ishansharma7390twt 📝 LinkedIn: https://bit.ly/ishansharma7390li 🌟 Please leave a LIKE ❤️ and SUBSCRIBE for more AMAZING content! 🌟 3 Books You Should Read 📈Psychology of Money: https://amzn.to/30wx4bW 👀Subtle Art of Not Giving a F: https://amzn.to/30zwWbP 💼Rework: https://amzn.to/3ALsAuz Tech I use every day 💻MacBook Air M1: https://amzn.to/2YWKPjG 📺LG 29' Ultrawide Monitor: https://amzn.to/3aG0p5p 🎥Sony ZV1: https://amzn.to/3ANqgDb 🎙Blue Yeti Mic: https://amzn.to/2YYbiNN ⽴Tripod Stand: https://amzn.to/3mVUiQc 🔅Ring Light: https://amzn.to/2YQlzLJ 🎧Marshall Major II Headphone: https://amzn.to/3lLhTDQ 🖱Logitech mouse: https://amzn.to/3p8edOC 💺Green Soul Chair: https://amzn.to/3mWIxZP ✨ Tags ✨ ishan sharma,OpenAI GPT-4: THE SECRET PROMPT You Need To Know 🤐,ai tools,artificial intelligence,microsoft,microsoft openai,microsoft chatgpt,what is chatgpt,chatgpt tutorial,chatgpt 4,make money with chatgpt,chatgpt,open ai,gpt 4,gpt 4 vs gpt 3,openai,openai chatbot gpt,chatgpt explained,chatgpt examples,chat gpt,open ai gpt 4,chat gpt uses,chatgpt4 tutorial,gpt 4 demo,gpt 4 image input,gpt 4 review,gpt 4 how to use,gpt 4 prompt ✨ Hashtags ✨ #gpt4 #chatgpt #ai

Practical-AI-Bootcamp
github
LLM Vibe Score0.4
Human Vibe Score0.010988541997291353
tinkerhubJan 8, 2023

Practical-AI-Bootcamp

Practical AI Bootcamp Practical AI Bootcamp by TinkerHub Foundation. Here you will learn how to build good AI products. This learning program cover the following. Finding the right machine learning model for a problem Building responsible AI - Bias and other issues How to train a good machine learning model - how to tune hyperparams Transfer Learning - where, when and how to use ? Speed and performance Wraping and hosting machine learning models On device machine learning Some tools and tricks Participants criteria Should know OOP and python Should know git and github Should know basic machine learning (different categories of ML, what is training ? What is testing ? What is dataset..etc) All the resources to get you started with the program is given in the resources folder. You can learn it and finish the task for joining the program! Join the program This bootcamp need you to have the following skills Python Github Machine learning There is a task for you in the tasks folder. Finish the task in a private repo. Give Gopikrishnan Sasikumar access to the private repo. Fill this form We will let you know if you are selected Program schedule This is a 2 week Bootcamp. There will be 1 hour sessions every Monday, Wednesday, Friday and Sunday. There will be tasks to do every other days. Day 1 (Aug 18) Finding the right machine learning model for a problem Should I use machine learning for this problem ? What kind of ML task is this ? Machine learning or deep learning ? Day 2 (Aug 19) Building responsible AI - Bias and other issues Bias Accountability and explainability Reproducability Robustness Privacy Day 3 (Aug 23) Dataset and performance Data prep Data reading Data Augumentation Day 4 (Aug 25) Techniques in training AI models How to find the right learning rate ? Effect of batch size Epochs and early stop Day 5 (Aug 27) Transfer learning where when and how to use Day 6 (Aug 29) Wraping and hosting machine learning models Building a micro service Making the model as an API Hosting and serving Day 7 (Aug 31) On device machine learning Techniques to make models small TensorFlow lite PyTorch quantisation Day 8 (Sep 02) Some tools and tricks Installation Finding models Data Privacy Cloud APIs and frameworks Projects (Sep 03 to Sep 09) You and your fellow teammates will be doing a project based on what you learnt through out the bootcamp