VibeBuilders.ai Logo
VibeBuilders.ai

Received

Explore resources related to received to help implement AI solutions for your business.

We received 25k investment offer, need advice [I will not promote]
reddit
LLM Vibe Score0
Human Vibe Score1
Agreeable_Ad6424This week

We received 25k investment offer, need advice [I will not promote]

We received a $25k for 2.5% on a convertible note offer from a US based investor. The note matures in 18 months with an interest rate of 5%, but the investor said they can extend it further. It’s an AI SaaS in graphic design. We have been bootstrapping till now, and we feel that this money could help us hire better engineers and marketeers, we want to grow it to a good revenue, but don't see it becoming a billion dollar startup as such. Our initial plans were to build it like an indie-hacker, grow it a decent revenue and sell it to someone who can take better care of it. We built it as a side project with full time jobs. We already have decent traction with 10k+ signups and $600+ in revenue per month with <100 dollars spent on marketing. But our AI model costs are high, 0.2 USD per user that we onboard and provide free credits. But we as founders are more interested in another idea that we have been thinking about and see a bigger potential + founder market fit in. The current product is good, and we can foresee that with better hiring and marketing, we can grow our revenue to about 10-20k a month, like a regular online business. What should we do? We don't want to simply let go of the product because it's not that it doesn't work, it's just that we as founders are better fit for something else. We can't sell it yet as the revenue isn't too high and we haven't even incorporated. Is it okay if we think of growing it to 10-20k+ a month and then intend to sell it to someone who can take better care of it? Should we take the investment in such a case, given this investment is definitely gonna help us grow? Process of incorporation will also help us in selling this business later I think?

How I made a high tech salary in my first selling month
reddit
LLM Vibe Score0
Human Vibe Score1
Ok_Negotiation_2587This week

How I made a high tech salary in my first selling month

For over 7 years I worked as a full-stack developer, helping other companies bring their ideas to life. But one day, I thought “Why not try making my own dream come true?”. That’s when I decided to quit my job and start my own journey to becoming an entrepreneur. At first, it wasn’t easy. I didn’t make any money for months and had no idea where to start. I felt lost. Then, I decided to focus on something popular and trending. AI was everywhere, and ChatGPT was the most used AI platform. So I looked into it and I found the OpenAI community forum where people had been asking for features that weren’t being added. That gave me an idea. Why not build those features myself? I created a Chrome extension and I worked on some of the most requested features, like: Downloading the advanced voice mode and messages as MP3 Adding folders to organize chats Saving and reusing prompts Pinning important chats Exporting chats to TXT/JSON files Deleting or archiving multiple chats at once Making chat history searches faster and better It took me about a week to build the first version, and when I published it, the response was incredible. People loved it! Some even said things like, “You’re a lifesaver!” That’s when I realized I had something that could not only help people but also turn into a real business. I kept the first version free to see how people would respond. Many users have been downloading my extension, which prompted Chrome to review it to determine if it qualified for the featured badge. I received the badge, and it has significantly boosted traffic to my extension ever since. After all the positive feedback, I launched a paid version one month ago. A few minutes after publishing it, I made my first sale! That moment was so exciting, and it motivated me to keep going. I already have over 4,000 users and have made more than $4,500 in my first selling month. I’ve decided to release 1-2 new features every month to keep improving the extension based on what users ask for. I also created the same extension for Firefox and Edge users because many people have been asking for it! I also started a Reddit community, where I share updates, sales, discount codes, and ideas for new features. It’s been awesome to connect with users directly and get their feedback. Additionally, I’ve started working on another extension for Claude, which I’m hoping will be as successful as this one. My message to you is this: never give up on your dreams. It might feel impossible at first, but with patience, hard work, and some creativity, you can make it happen. I hope this inspires you to go after what you want. Good luck to all of us!

What questions to ask to evaluate an offer from start up?
reddit
LLM Vibe Score0
Human Vibe Score1
xcitechThis week

What questions to ask to evaluate an offer from start up?

Hello! I am presently working working as a Data Scientist with a medium sized company. Last year my boss left the company to start his own. Very recently his non-solicitation clause expired, and he asked me to join his startup. While I know almost everything about the product idea, and the technical aspect of the startup - I have very less information on more critical points like funding, equity sharing, etc. He has made a verbal unofficial offer, and I have asked for a week to prepare my list of questions for him for me to be able to evaluate his offer. Since I have no knowledge of the startup scene, I would like some help regarding the questions I should put forward to him. Mentioned below are what I know so far and the offer: The company was started by two people, both working full time on it. I would be the third person on the team. The startup aims to introduce AI in a field which has lagged behind in the introduction of technology by at least 2 decades. The big players in this field are conservative, but now they are opening up towards embracing new technology. Personally I have confidence in their idea, and feel this will be a sustainable and profitable company. The offered salary is about 60% of what I make right now. The equity offered is 2%. I do not know the details of the funding they have received so far or the equity split. Any pointers in helping me frame my questions for the evaluation of the offer would be very helpful! Thank you

No revenue for 6 months, then signed $10k MRR in 2 weeks with a new strategy. Here’s what I changed.
reddit
LLM Vibe Score0
Human Vibe Score0.6
xoyourwifeThis week

No revenue for 6 months, then signed $10k MRR in 2 weeks with a new strategy. Here’s what I changed.

This is my first company so I made A LOT of mistakes when starting out. I'll explain everything I did that worked so you don't have to waste your time either. For context, I built a SaaS tool that helps companies scale their new client outreach 10x (at human quality with AI) so they can secure more sales meetings. Pricing I started out pricing it way too low (1/10 as much as competitors) so that it'd be easier to get customers in the beginning. This is a HUGE mistake and wasted me a bunch of time. First, this low pricing meant that I was unable to pay for the tools I needed to make sure my product could be great. I was forced to use low-quality databases, AI models, sending infrastructure -- you name it. Second, my customers were less invested in the product, and I received less input from them to make the product better. None ended up converting from my free trial because my product sucked, and I couldn't even get good feedback from them. I decided to price my product much higher, which allowed me to use best-in class tools to make my product actually work well. Outreach Approach The only issue is that it's a lot harder to get people to pay $500/month than $50/month. I watched every single video on the internet about cold email for getting B2B clients and built up an outbound MACHINE for sending thousands of emails a day. I tried all the top recommended sales email formats and tricks (intro, painpoint, testimonial, CTA, etc). Nothing. I could send 1k emails and get a few out of office responses and a handful of 'F off' responses. I felt bad and decided I couldn't just spam the entire world and expect to make any progress. I decided I needed to take a step back and learn from people who'd succeeded before in sales. I started manually emailing CEOs/founders that fit my customer profile with personal messages asking for feedback on my product -- not even trying to sell them anything. Suddenly I was getting 4-6 meetings a day and just trying to learn from them (turns out people love helping others). And without even prompting, many of them said 'hey, I actually could use this for my own sales' and asked how they could start trying it out. That week I signed 5 clients between $500-$4k/month (depending how many contacts they want to reach). I then taught my product to do outreach the same way I did that worked (include company signals, make sure the person is a great match with web research, and DONT TALK SALESY). Now, 6 of my first 10 clients (still figuring out who it works for, lol) have converted from the free trial and successfully used it to book sales meetings. I'm definitely still learning, but this one change in my sales approach changed everything for me, so I wanted to share. If anyone has any other tips/advice that changed their business's sales, would love to hear!

I just had my best month after 18 months as a solopreneur
reddit
LLM Vibe Score0
Human Vibe Score0.778
stepitup9600This week

I just had my best month after 18 months as a solopreneur

Last month I reached important milestones both financially (60+ sales) and in terms of my personal brand (2.500+ new followers) But the most important part is that it has reinforced a belief in myself: it is possible, as long as I keep going, improving, learning and iterating. For the last year and a half, I've been grinding and launching project after project. But there was always something wrong: Product didn't solve a real problem Bad marketing (very often lol) Target market had low purchasing power Super-competitive niche (usually b2c) It's difficult to have failure after failure and keep going on. At times it would feel like everyone was making money, except for me. I was hacking on my projects every single day before and after my 9-5 and had mostly given up all my free time for this. But results were far from being what I wanted. So I would doubt myself all the time. One thing I had going for me is that I really enjoy building things - so that helped me a lot in staying consistent. I always knew this was a long-term thing and that I'd probably have to fail again and again before seeing some success. But even so, it was really hard to keep up the spirits at all time, especially after working so hard for so long. I wasn't going to give up but I also knew that continuing like this would lead nowhere. So I decided that for my next project I would do 2 things: 1) prioritize marketing and 2) build something strategic 1) Prioritize marketing I decided I was going to put in the same amount of effort into marketing as I put into building. Usually my time would be split 90% coding - 10% marketing. Now, for the first time ever it's probably 65% coding - 35% marketing. I organized myself and made an entire gameplan for it. This forced me to learn a lot about: Video editing Cold emails Copywriting Running ads Short-form content There are a lot of items I still need to execute on - but at least I have a good idea of how to approach most things. 2) Build something strategic I had to build something that I would be able to use even if nobody else did. For the last year and a half I had been building AI apps and my plan was to continue doing that. So I decided to leverage that and thought about how I could build something that would give me an unfair advantage + have a compounding effect over the long term: a) Unfair advantage Having AI demo apps that cover all type of AI functionalities would make my life easier & would allow me to ship new apps quickly, regardless of the required model/functionality So even if nobody bought this - I'd have built something really useful for myself & would have a slight edge over other people b) Compound over the long term Building "AnotherWrapper' (my new project) would have a good synergy with my future projects: It would allow me to build new projects faster While building new projects, I'd learn new things, which I would then be able to implement into AnotherWrapper and improve the product that way A win-win. Closing thoughts I did not expect things to go this well - it's been an amazing month and I'm truly grateful to everyone that has been supporting me. But at the end of the day, there is still a lot of work to be done. The initial 'hype' & effects from some viral tweets are starting to wear off. I still don't have a reliable distribution channel that guarantees me traffic. So I need to figure that out. I think the product has a lot of potential - it has been well received and has been a success so far, but my distribution is still lacking. The good thing is that I now have some extra cash to spend on things like ads, influencers, freelancers etc. So it opens some new doors that were previously closed! I also have some other projects down the pipeline which are coming soon. Will keep you guys updated!

Why raise in 2025? - I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
Able_Swimming_4909This week

Why raise in 2025? - I will not promote

I will not promote Lately, I've been thinking about how AI tools are completely reshaping what it means to bootstrap a startup. It honestly feels like we're living through a golden age for entrepreneurs where you don't necessarily need venture capital to build something big or meaningful. At my company, we're a small team of just four people, bootstrapping our AI-focused startup. Thanks to AI-powered tools, we're able to keep our burn rate ridiculously low, quickly test new ideas, and scale our operations way faster than we ever expected. It’s honestly pretty incredible how accessible advanced technology has become, even compared to just a few years ago. Of course, bootstrapping definitely comes with its own share of headaches. For example, we've noticed that funded startups get significantly better access to cloud credits, advertising budgets, and enterprise-level tools. We do have access to some discounts and free resources, but it rarely compares to what funded startups enjoy. This can feel frustrating, especially when you know you're competing directly with businesses that have those extra advantages. Visibility is another major challenge we've noticed. Without big funding announcements or a well-connected investor backing us, getting attention from media or even early adopters can be tough. It's just harder to make a splash without someone else's endorsement. We've had to accept and work around creatively. That said, there's something genuinely empowering about staying bootstrapped, prioritizing profitability, and maintaining control over our vision. After speaking with several investors, we've become aware of how investors can significantly influence or even redirect the trajectory of a business. We've heard stories where investors gained enough leverage to replace the original founders or have killed perfectly profitable businesses that were not growing "fast enough", which certainly gave us pause. They can definitely be helpful but giving the control over the future of my business to someone else would definitely make me feel anxious. At this time, we simply don't feel raising external capital aligns with our current goals, but we're also aware that this could change in the future. For now, maintaining autonomy and staying close to our original vision remains a priority. I'm curious to hear from others here who've been through this. Have you successfully bootstrapped an AI a tech business? What obstacles did you encounter, and how did you overcome them? EDIT: To give you a bit of perspective, my company is a B2B SaaS in the finance industry based in Europe. We have received VC funding in the past but it was an exceptionally good deal and we don't plan to raise in the near future even-thought it may change if we see the need to help us scale. We have also raised a significant amount in soft funding. Right now, we are growing on our revenues, and we plan to continue this trajectory. Recently, one of our developers left, and although we are a small team, we noticed that it had little to no impact on our productivity.

How I made a high tech salary in my first selling month
reddit
LLM Vibe Score0
Human Vibe Score1
Ok_Negotiation_2587This week

How I made a high tech salary in my first selling month

For over 7 years I worked as a full-stack developer, helping other companies bring their ideas to life. But one day, I thought “Why not try making my own dream come true?”. That’s when I decided to quit my job and start my own journey to becoming an entrepreneur. At first, it wasn’t easy. I didn’t make any money for months and had no idea where to start. I felt lost. Then, I decided to focus on something popular and trending. AI was everywhere, and ChatGPT was the most used AI platform. So I looked into it and I found the OpenAI community forum where people had been asking for features that weren’t being added. That gave me an idea. Why not build those features myself? I created a Chrome extension and I worked on some of the most requested features, like: Downloading the advanced voice mode and messages as MP3 Adding folders to organize chats Saving and reusing prompts Pinning important chats Exporting chats to TXT/JSON files Deleting or archiving multiple chats at once Making chat history searches faster and better It took me about a week to build the first version, and when I published it, the response was incredible. People loved it! Some even said things like, “You’re a lifesaver!” That’s when I realized I had something that could not only help people but also turn into a real business. I kept the first version free to see how people would respond. Many users have been downloading my extension, which prompted Chrome to review it to determine if it qualified for the featured badge. I received the badge, and it has significantly boosted traffic to my extension ever since. After all the positive feedback, I launched a paid version one month ago. A few minutes after publishing it, I made my first sale! That moment was so exciting, and it motivated me to keep going. I already have over 4,000 users and have made more than $4,500 in my first selling month. I’ve decided to release 1-2 new features every month to keep improving the extension based on what users ask for. I also created the same extension for Firefox and Edge users because many people have been asking for it! I also started a Reddit community, where I share updates, sales, discount codes, and ideas for new features. It’s been awesome to connect with users directly and get their feedback. Additionally, I’ve started working on another extension for Claude, which I’m hoping will be as successful as this one. My message to you is this: never give up on your dreams. It might feel impossible at first, but with patience, hard work, and some creativity, you can make it happen. I hope this inspires you to go after what you want. Good luck to all of us!

I am selling my tool which converts websites into android and iOS apps within 5 minutes.
reddit
LLM Vibe Score0
Human Vibe Score1
Latter-Row-5719This week

I am selling my tool which converts websites into android and iOS apps within 5 minutes.

Hi, my name is Toshit Garg. I started working on SaaS products around April 2023. The plan was simple: to create tools that help entrepreneurs easily grow their businesses. My first tool was "Convertixo", inspired by my work as a Fiverr seller where I converted websites into apps for clients, earning around $1,000 per month. I thought, why not automate this process? Following Convertixo, I created a few other tools like "Web to PWA". At one point, I developed an AI-based tool called "AppMintAI" , a productized service named "Engage Enhance", and even a WordPress plugin that lets users create pragmatic pages for SEO and a boilerplates. Unfortunately, none of these tools gained significant traction. I would launch them on Product Hunt, get a few users, and then nothing. Other than Convertixo, all my other tools only received a handful of free users. I believe this happened because I’m not very passionate about marketing. So, I decided to pivot and focus on content creation, which is where my true passion lies. Currently, I’m selling all my products one by one. As for Convertixo, it now has 800 users, a $20 MRR, and an email subscriber list of 100+. It was also the third Product of the Day on Product Hunt in January of this year. While the product has gained some traction, I’ve realized my focus is on content creation. However, with the right marketing and drive, I believe Convertixo has great potential to grow. If you’re interested in taking Convertixo to the next level, let’s chat! Here are some key statistics: In the last 20 days, Convertixo has received 4.9K impressions from Google and 338 visitors. More about the product: Convertixo can convert any website into Android and iOS apps using a custom webview. The apps are generated in Android Studio and Xcode. You receive both the APK and the source code for the Android app, along with the source code for the iOS app. The converted apps require no maintenance, and they update exactly like the website. A major benefit is the ability to add push notifications via OneSignal for free, allowing you to re-target your customers at no cost. Feel free to ask if you have any questions!

Just raised and here are the stats (July 2024)
reddit
LLM Vibe Score0
Human Vibe Score0.6
tylersellarsThis week

Just raised and here are the stats (July 2024)

CEO of a startup - bootstrapped for 10 months with a team of 7 - Built a waitlist of $15B AUM (fintech) and here's what it took (with no intended story structure) I didn't want to spam, so I decided to go the old school route and manually write every single email (some copy and paste) In order to feel prepared, I would do my research prior to reaching out, albeit sometimes limited due to time x reward Sent over 350 emails to around 300 funds and we received three yes' (to be honest we received more than three, but they wanted too much equity, or they weren’t a good fit culturally) Pre Seed is different for everyone. Some accept pre revenue others expect 100-300k ARR - this was one of the more frustrating pieces for me, due to the fact that it's extremely subjective to what "Earliest Stage" means to some funds. We're pre-product, we had to remove our CTO in the process due to performance issues, we let go of our front-end, hired a new CTO, hired an AI Engineer, and replaced our front end. It's a numbers game. We received 94% no reply - 5% nos (with meetings) - 1% yes' I used OpenVC as my main resource, highly recommend even their free product. I recommend using discount with a SAFE. Some Angels like it better, some VC’s hate it. You have to be willing to play ball with whoever leads. Mercury for banking, perks (like Carta), and SAFE agreement. All great at Mercury. Raising for a B2B business in an enterprise market is much easier, unless deep tech or science backed. But consumer products right now are not raising pre seed from what I can tell. If it means anything - it's a numbers game. Go get what you deserve, but put in the work because no one will just hand it to you. Love this community, always here to help anyone I can.

How I made a high tech salary in my first selling month
reddit
LLM Vibe Score0
Human Vibe Score1
Ok_Negotiation_2587This week

How I made a high tech salary in my first selling month

For over 7 years I worked as a full-stack developer, helping other companies bring their ideas to life. But one day, I thought “Why not try making my own dream come true?”. That’s when I decided to quit my job and start my own journey to becoming an entrepreneur. At first, it wasn’t easy. I didn’t make any money for months and had no idea where to start. I felt lost. Then, I decided to focus on something popular and trending. AI was everywhere, and ChatGPT was the most used AI platform. So I looked into it and I found the OpenAI community forum where people had been asking for features that weren’t being added. That gave me an idea. Why not build those features myself? I created a Chrome extension and I worked on some of the most requested features, like: Downloading the advanced voice mode and messages as MP3 Adding folders to organize chats Saving and reusing prompts Pinning important chats Exporting chats to TXT/JSON files Deleting or archiving multiple chats at once Making chat history searches faster and better It took me about a week to build the first version, and when I published it, the response was incredible. People loved it! Some even said things like, “You’re a lifesaver!” That’s when I realized I had something that could not only help people but also turn into a real business. I kept the first version free to see how people would respond. Many users have been downloading my extension, which prompted Chrome to review it to determine if it qualified for the featured badge. I received the badge, and it has significantly boosted traffic to my extension ever since. After all the positive feedback, I launched a paid version one month ago. A few minutes after publishing it, I made my first sale! That moment was so exciting, and it motivated me to keep going. I already have over 4,000 users and have made more than $4,500 in my first selling month. I’ve decided to release 1-2 new features every month to keep improving the extension based on what users ask for. I also created the same extension for Firefox and Edge users because many people have been asking for it! I also started a Reddit community, where I share updates, sales, discount codes, and ideas for new features. It’s been awesome to connect with users directly and get their feedback. Additionally, I’ve started working on another extension for Claude, which I’m hoping will be as successful as this one. My message to you is this: never give up on your dreams. It might feel impossible at first, but with patience, hard work, and some creativity, you can make it happen. I hope this inspires you to go after what you want. Good luck to all of us!

Should we give up?
reddit
LLM Vibe Score0
Human Vibe Score1
mind4waveThis week

Should we give up?

I'm currently very demotivated because we're working on our SaaS startup since 1,5 years and we still haven't found active users, let alone a customer. We're building an AI-first tool that automates user research analysis. We've released two MVPs so far and are planning to build a third. People respond well to outreach (5-7% book a demo from those who received a first message) but then they fail to use it. We are talking with users a lot so we are aware of the problems, and we might be able to solve them if we continue building and testing. I find it hard though to solve these problems efficiently, because there are no similar established AI-first products on the market and it feels like we have to create a new UX standard. Some problems might be very hard to be solved, e.g. there are high cost of switching products for many of our potential users. Also, my time is limited, as I recently (5 months ago) became a mother. I can only work 30 hours per week. It's a competitive area we're in and our competitors have gradually developed into the same direction and it's getting harder to position ourselves. Also, GPTs might soon be able to do what we're doing - for free. I feel like AI tools are generally expected by many to be free. The price we're expecting to be able to bill is getting lower and lower and our finance plan is already looking tight. However, there are adjacent audiences which we could target as well, but none of us knows them. Is it normal as a founder to struggle so much at the beginning? I've read that it took established SaaS 2,5 years on average from founding to first revenue. We haven't founded so far so you could say we're not behind \sarcasm\ Shall we keep pushing? My tech co-founder is optimistic and thinks this is where the wheat is separated from the chaff. We're currently supported financially by a government fund so we haven't spent much private money. However, I feel like my career outlook gets worse with each day that I unsuccessfully try to raise this startup.

Good at coding, bad at marketing. Summary
reddit
LLM Vibe Score0
Human Vibe Score0.4
Official-DATSThis week

Good at coding, bad at marketing. Summary

Hello. I posted a question on what to do if you are good at coding but bad at marketing four days ago, and I received so many responses and tips. The original post is here. I was really glad and excited to read comments. To return the favor to the community and add some more value, I’ve summarized all the comments I got on the original post. Here are they, with my personal comments on some of the advice I got. You’ll never believe it, but the most common advice was to learn. Really, the first and only thing you should start with if you’re bad at marketing is learning. Yet learning could be different. I highlighted 5 main areas. Educate yourself on general questions. Learn more about some basics. For example, start by finding out what the 4P’s of marketing are, and afterward, you’ll inevitably run into YouTube videos, seminars, Udemy courses, or any other resource that resonates with you on some ideas/avenues you could pursue. Read books and watch videos. There are tons of books on marketing and sales. People shared in the comments books by Dan Kennedy and “Cashvertising”, written by Drew Eric Whitman. (I’ve never heard of them, but already ordered on Amazon). For sales, the most common idea was to start with YouTube videos. For example, Alex Hormozi videos and Startup school delivered by Ycombinator videos. Check out Indie Hackers and scrutinize it for a piece of good advice from developers in the same situation. Also, there was advice to follow up and read some guy on Twitter. (Don't want to get unfairly banned from here, so won't post it) Educate yourself and hire a professional or find a co-founder to help you: Hire a seasoned marketer in this field to help you out. He will help you achieve cost-efficient scales. But it could be a real problem to find the right person. Marketing agencies are expensive. Try to look on LinkedIn or among your acquaintances. Look for professionals with credentials or extensive experience. Seek marketing referrals from startups of a similar size/industry. If you don't have those, try to bring a trusted/experienced marketer friend into the intro meetings to help assess whether the service provider knows what they are doing. Talented freelancers can often get the job done for less than hiring an entire agency. Look for a co-founder who is savvy in marketing, passionate, and ready to work hard towards mutual success. Educate and DIY Being the face of your business is way better than having faceless communication. The startup checklist is made based on the comments is next: At least have your product defined. Define your target audience. Set up the goals you want to achieve. Make domain expertise and understand the market and the direction of its development. The next stage is answering tricky questions: Have you created a business model? How do you plan to compete? What’s your unique selling point? How much do you plan to budget for marketing? Are you planning to work alone, or will you need other devs? Then you start thinking about clients… You need the exposure to truly understand the customer's pain points and build a product that they love. You need to think about how your clients would think, and you should tailor each step you take for them. Get feedback from your early users if you already have a product. Interview your potential customers to learn how they buy. This will help you narrow your choice of marketing channels. Get your product or service used by several startups and help them achieve their goals. Endorsements are very valuable marketing assets. You need a landing to validate your value proposition and start sending traffic, or you can run meta instant form campaigns... It would depend on the category of your startup. You need a benchmark of the competition's ads both in Meta and Google, blog posts, domain authority, their landing page, and average search volumes. Do affiliate marketing for your product since it's an effective strategy. Educate and use AI tools for dealing with marketing. Build an LLM-based product to automate marketing. (Sounds like an idea for a startup, right?) Learn following ChatGPT advice. In 1–3 months, you will be another updated person. Look at marketowl, an AI marketing department for startups and microbusinesses that have no budget or time to do marketing. It will automate the basic tasks your business needs, but it doesn't require your marketing expertise. Check out AI tools that are delivering very good marketing content (gocharlie, jasper, copyai). Educate yourself and run socials Start a blog or YouTube channel where you can share your expertise in coding or anything else you are good at and how your product simplifies life. Engage with your audience on social media platforms like Instagram and LinkedIn, where you can showcase your industry knowledge. Start a page on Twitter and an account on Reddit. Follow and read subreddits and pages where your potential customers are. Learn the pain from the inside. Do not simply promote, people will lose interest immediately. Start by taking focused time to create informational content, so people will eventually be naturally intrigued by what you do and want to support you when they start to “know” you. Educate your potential users about the value of your product. Create content based on what ideal customers are asking at the various stages of marketing. e.g., if they are at the beginning of the process, they may use basic language; if they are further down the process, maybe they’ll be specific. Try to get on podcasts and build as many social links as you can. In other words, don’t live in a shell! Post regularly, and eventually you’ll find sites or people that are willing to promote for you. I omitted here all personal help offers and newsletters, however you could find them in the original post. Hope that will be helpful!

Learning Resources + Side Project Ideas
reddit
LLM Vibe Score0
Human Vibe Score1
Any-Reserve-4403This week

Learning Resources + Side Project Ideas

I made a post last night about my journey to landing an AI internship and have received a lot of responses asking about side projects and learning resources, so I am making another thread here consolidating this information for all those that are curious! Learning Process Step 1) Learn the basic fundamentals of the Math USE YOUTUBE!!! Literally just type in 'Machine Learning Math" and you will get tons of playlists covering nearly every topic. Personally I would focus on Linear Algebra and Calculus - specifically matrices/vector operations, dot products, eigenvectors/eigenvalues, derivatives and gradients. It might take a few tries until you find someone that meshes well with your learning style, but 3Blue1Brown is my top recommendation. I also read the book "Why Machines Learn" and found that extremely insightful. Work on implementing the math both with pen and paper then in Python. Step 2) Once you have a grip on the math fundamentals, I would pick up Hands-on Machine Learning with Sci-kit Learn, Keras and TensorFlow. This book was a game changer for me. It goes more in depth on the math and covers every topic from Linear Regression to the Transformers architecture. It also introduces you to Kaggle and some beginner level side projects. Step 3) After that book I would begin on side projects and also checking out other similar books, specifically Hands on Large Language Models and Hands on Generative AI. Step 4) If you have read all three of these books, and fully comprehend everything, then I would start looking up papers. I would just ask ChatGPT to feed you papers that are most relevant to your interests. Beginner Side Project Ideas 1) Build a Neural Network from scratch, using just Numpy. It can be super basic - have one input layer with 2 nodes, 1 hidden layer with 2 nodes, and output layer with one node. Learn about the forward feed process and play around with different activation functions and loss functions. Learn how these activation functions and loss functions impact backpropagation (hint: the derivatives of the activation functions and loss functions are all different). Get really good at this and understand the difference between regression models and classification models and which activation/loss functions go with which type of model. If you are really feeling crazy and are more focused on a SWE type of role, try doing it in a language other than python and try building a frontend for it so there is an interface where a user can input data and select their model architecture. 2) Build a CNN Image Classifier for the MNIST - Get familiar with the intricacies of CNN's, image manipulation, and basic computer vision concepts. 3) Build on top of open source LLM's. Go to Hugging Face's models page and start playing around with some. 4) KAGGLE COMPETITIONS - I will not explain further, do Kaggle Competitions. Other Resources I've mentioned YouTube, several books and Hugging Face. I also recommend: DataLemur.com \- Python practice, SQL practices, ML questions - his book Ace the Data Science Interview is also very good. X.com \- follow people that are prominent in the space. I joined an AI and Math Group that is constantly posting resources in there deep-ml.com If you have found any of this helpful - feel free to give me a follow on X and stay in touch @ x.com/hark0nnen\

I retired at 32 from my side project. Here's the path I took.
reddit
LLM Vibe Score0
Human Vibe Score1
inputoriginThis week

I retired at 32 from my side project. Here's the path I took.

EDIT 2: Thanks for the award kind stranger! I've stopped responding to reddit comments for this post. I'm adding an FAQ to the original post based on the most common high quality questions. If you have a question that you're dying to know the answer to and that only I can help you with (vs. Google, ChatGPT, etc.), DM me. EDIT: I love how controversial this post has become (50% upvote rate), and only in this subreddit (vs. other subreddits that I posted the same content in). I trust that the open-minded half of you will find something useful in this post and my other posts and comments. I retired at 32 years old, in large part thanks to a B2C SaaS app that I developed on my own. Now, I don't have to work in order to cover my living expenses, and wouldn't have to work for quite a while. In other words, I can finally sip mai tais at the beach. I've condensed how I got there into this post. First, a super simplified timeline of events, followed by some critical details. Timeline 2013 Graduated college in the US 2013 Started first corporate job 2013 Started side project (B2C app) that would eventually lead to my retirement 2020 Started charging for use of my B2C app (was free, became freemium) 2021 Quit my last corporate job 2022 Retired: time freedom attained Details First, some summary statistics of my path to retirement: 9 years: time between graduating college and my retirement. 8 years: total length of my career where I worked at some corporate day job. 7 years: time it took my B2C app to make its first revenue dollar 2 years: time between my first dollar of SaaS revenue and my retirement. "Something something overnight success a decade in the making". I got extremely lucky on my path to retirement, both in terms of the business environment I was in and who I am as a person. I'd also like to think that some of the conscious decisions I made along the way contributed to my early retirement. Lucky Breaks Was born in the US middle class. Had a natural affinity for computer programming and entrepreneurial mindset (initiative, resourcefulness, pragmatism, courage, growth mindset). Had opportunities to develop these mindsets throughout life. Got into a good college which gave me the credentials to get high paying corporate jobs. Was early to a platform that saw large adoption (see "barnacle on whale" strategy). Business niche is shareworthy: my SaaS received free media. Business niche is relatively stable, and small enough to not be competitive. "Skillful" Decisions I decided to spend the nights and weekends of my early career working on side projects in the hopes that one would hit. I also worked a day job to support myself and build my savings. My launch funnel over roughly 7 years of working on side projects: Countless side projects prototyped. 5 side projects publically launched. 2 side projects made > $0. 1 side project ended up becoming the SaaS that would help me retire. At my corporate day jobs, I optimized for learning and work-life balance. My learning usually stalled after a year or two at one company, so I’d quit and find another job. I invested (and continute to do so) in physical and mental wellbeing via regular workouts, meditation, journaling, traveling, and good food. My fulfilling non-work-life re-energized me for my work-life, and my work-life supported my non-work-life: a virtuous cycle. I automated the most time-consuming aspects of my business (outside of product development). Nowadays, I take long vacations and work at most 20 hours a week / a three-day work week . I decided to keep my business entirely owned and operated by me. It's the best fit for my work-style (high autonomy, deep focus, fast decision-making) and need to have full creative freedom and control. I dated and married a very supportive and inspiring partner. I try not to succumb to outrageous lifestyle creep, which keeps my living expenses low and drastically extends my burn-rate. Prescription To share some aphorisms I’ve leaned with the wantrepreneurs or those who want to follow a similar path: Maximize your at bats, because you only need one hit. Bias towards action. Launch quickly. Get your ideas out into the real world for feedback. Perfect is the enemy of good. If you keep swinging and improving, you'll hit the ball eventually. Keep the big picture in mind. You don't necessarily need a home-run to be happy: a base hit will often do the job. Think about what matters most to you in life: is it a lot of money or status? Or is it something more satisfying, and often just as if not more attainable, like freedom, loving relationships, or fulfillment? Is what you’re doing now a good way to get what you want? Or is there a better way? At more of a micro-level of "keep the big picture in mind", I often see talented wantrepreneurs get stuck in the weeds of lower-level optimizations, usually around technical design choices. They forget (or maybe subconsciously avoid) the higher-level and more important questions of customer development, user experience, and distribution. For example: “Are you solving a real problem?” or “Did you launch an MVP and what did your users think?” Adopt a growth mindset. Believe that you are capable of learning whatever you need to learn in order to do what you want to do. The pain of regret is worse than the pain of failure. I’ve noticed that fear of failure is the greatest thing holding people back from taking action towards their dreams. Unless failure means death in your case, a debilitating fear of failure is a surmountable mental block. You miss 100% of the shots you don't take. When all is said and done, we often regret the things we didn't do in life than the things we did. There’s more to life than just work. Blasphemous (at least among my social circle)! But the reality is that many of the dying regret having worked too much in their lives. As Miss Frizzle from The Magic Schoolbus says: "Take chances, make mistakes, get messy!" Original post

I’ve built a gaming recommendation and exploration platform called Which Game Next
reddit
LLM Vibe Score0
Human Vibe Score0.714
kasperooThis week

I’ve built a gaming recommendation and exploration platform called Which Game Next

Hello there! Me and a few of my best friends are software engineers, and we’ve been working part-time on developing a side project for the past 12 months. It’s called www.whichgamenext.com, and we’ve recently launched into open beta for everyone to check out. Your feedback would be invaluable to us! Our aim has been to build a gaming recommendation engine, alongside providing market oversight for where you can legally and officially purchase or obtain modern games from multiple stores and/or subscriptions. It’s often difficult to figure out what you have access to if you only have a single specific subscription, like Game Pass PC, or if you’re only interested in games on GOG/Nintendo (what a mix!). We started by identifying the available digital stores and subscriptions and slowly compiling our database using multiple automated services to gather data on these games. Think JustWatch, but for games! One major service we’ve partnered with is IGDB, which has been supplying us with JSON data dumps that served as the initial seed for our game data. A massive thank you to them for their continued support! With the data in place, we’ve been focusing on exploring new features. So far, this has included private and public user-generated lists, personal backlog tracking, and the ability to like or dislike games. We’re now improving our recommendation engine, tackling the complexities that come with it, and having a lot of fun along the way. We’re utilising modern AI strategies and solving fascinating problems related to large-scale data aggregation. We truly can’t wait to share this fantastic work! In addition to this, you can soon expect curated collections, articles about games, and supporting links to help you make informed, unbiased purchasing decisions. Your shared data will drive the recommendations. But it doesn’t stop there—we have plenty of other features on our radar, such as importing games from your favourite stores, syncing your gameplay time, surfacing data like “How Long to Beat,” and creating new and exciting ways to interact with this growing community! This is a passion project created by a group of gamers who want to spend their time and money wisely, without purchasing biases. Since it’s a side project, we mostly work on it at night, but we’re excited to grow the community, share our vision, and, who knows, maybe one day make it our full-time job! Let’s dive into the technical details: • Monorepo architecture: This speeds up development by sharing libraries, living style guides, configs, etc. Nx.js has been brilliant, enabling us to create a dependency graph of changes and only build/deploy what’s modified in a PR. • AWS: We’re using the free tier (with a few exceptions where we pay for smaller services). Achieving self-sufficiency is critical for us. Additionally, we applied to the AWS Startup Foundation programme and received $1,000 in AWS credits, which has been incredibly helpful! • Infrastructure: Fully deployed as code with Terraform. • Backends: Built using Express and Nest.js, split into around 40 projects and counting! Each project plays a unique role in gathering and syncing game data. • Scalability: Designed from the ground up, utilising AWS Lambdas with auto-scaling and load balancing. • Databases: We use Postgres with RDS and DynamoDB for storing various data. • Frontend stack: Built with React, Next.js, Tailwind, Zustand, TanStack Query, Jest, and Storybook. • CI/CD: Managed with GitHub Actions and Amplify hooks for deploying the frontends. • Admin portal: We’ve built a bespoke CMS to control the main website. It synchronises with external services, tracks game data changes, and allows us to selectively apply ‘patches’ from sites like IGDB. The system also includes data override and rollback capabilities, ensuring we maintain control over game data. • Automation: Partially automated, so manual intervention is rarely needed. • Scraping tools: Fully integrated into the admin portal with log trail capabilities. • Cloudflare: Used for on-the-fly image transformations; we’re considering moving to it full-time as our CDN for free WebP conversions. • Authentication: Handled by Cognito, with a custom frontend built from scratch. Key learnings so far: • AWS cold starts: Not ideal! While the platform is still new, we ping endpoints to keep them responsive. This won’t be an issue once traffic increases. • Lambda memory matters: We learned the hard way that low-memory configurations can delay responses by 2-3 seconds. • DynamoDB partition keys: If not designed correctly from the start, you might have to start over (yes, we’ve been there!). • GitHub Actions: Setting up node\_modules cache reuse takes time, but it’s worth it—don’t give up! We don’t know where this project will take us yet, but it’s been a fantastic journey so far. We’ve learned a lot, explored technologies we don’t typically use in our day jobs, and built something we’re genuinely passionate about. Your feedback would mean the world to us. What do you think of what we’ve done so far? What would you like to see added? Is this a service you’d use? Do you see the value in it as we do? Thanks for reading, and we hope to see you in the comments! (or our newly created /r/whichgamenext

I retired at 32 from my side project. Here's the path I took.
reddit
LLM Vibe Score0
Human Vibe Score1
inputoriginThis week

I retired at 32 from my side project. Here's the path I took.

EDIT 2: Thanks for the award kind stranger! I've stopped responding to reddit comments for this post. I'm adding an FAQ to the original post based on the most common high quality questions. If you have a question that you're dying to know the answer to and that only I can help you with (vs. Google, ChatGPT, etc.), DM me. EDIT: I love how controversial this post has become (50% upvote rate), and only in this subreddit (vs. other subreddits that I posted the same content in). I trust that the open-minded half of you will find something useful in this post and my other posts and comments. I retired at 32 years old, in large part thanks to a B2C SaaS app that I developed on my own. Now, I don't have to work in order to cover my living expenses, and wouldn't have to work for quite a while. In other words, I can finally sip mai tais at the beach. I've condensed how I got there into this post. First, a super simplified timeline of events, followed by some critical details. Timeline 2013 Graduated college in the US 2013 Started first corporate job 2013 Started side project (B2C app) that would eventually lead to my retirement 2020 Started charging for use of my B2C app (was free, became freemium) 2021 Quit my last corporate job 2022 Retired: time freedom attained Details First, some summary statistics of my path to retirement: 9 years: time between graduating college and my retirement. 8 years: total length of my career where I worked at some corporate day job. 7 years: time it took my B2C app to make its first revenue dollar 2 years: time between my first dollar of SaaS revenue and my retirement. "Something something overnight success a decade in the making". I got extremely lucky on my path to retirement, both in terms of the business environment I was in and who I am as a person. I'd also like to think that some of the conscious decisions I made along the way contributed to my early retirement. Lucky Breaks Was born in the US middle class. Had a natural affinity for computer programming and entrepreneurial mindset (initiative, resourcefulness, pragmatism, courage, growth mindset). Had opportunities to develop these mindsets throughout life. Got into a good college which gave me the credentials to get high paying corporate jobs. Was early to a platform that saw large adoption (see "barnacle on whale" strategy). Business niche is shareworthy: my SaaS received free media. Business niche is relatively stable, and small enough to not be competitive. "Skillful" Decisions I decided to spend the nights and weekends of my early career working on side projects in the hopes that one would hit. I also worked a day job to support myself and build my savings. My launch funnel over roughly 7 years of working on side projects: Countless side projects prototyped. 5 side projects publically launched. 2 side projects made > $0. 1 side project ended up becoming the SaaS that would help me retire. At my corporate day jobs, I optimized for learning and work-life balance. My learning usually stalled after a year or two at one company, so I’d quit and find another job. I invested (and continute to do so) in physical and mental wellbeing via regular workouts, meditation, journaling, traveling, and good food. My fulfilling non-work-life re-energized me for my work-life, and my work-life supported my non-work-life: a virtuous cycle. I automated the most time-consuming aspects of my business (outside of product development). Nowadays, I take long vacations and work at most 20 hours a week / a three-day work week . I decided to keep my business entirely owned and operated by me. It's the best fit for my work-style (high autonomy, deep focus, fast decision-making) and need to have full creative freedom and control. I dated and married a very supportive and inspiring partner. I try not to succumb to outrageous lifestyle creep, which keeps my living expenses low and drastically extends my burn-rate. Prescription To share some aphorisms I’ve leaned with the wantrepreneurs or those who want to follow a similar path: Maximize your at bats, because you only need one hit. Bias towards action. Launch quickly. Get your ideas out into the real world for feedback. Perfect is the enemy of good. If you keep swinging and improving, you'll hit the ball eventually. Keep the big picture in mind. You don't necessarily need a home-run to be happy: a base hit will often do the job. Think about what matters most to you in life: is it a lot of money or status? Or is it something more satisfying, and often just as if not more attainable, like freedom, loving relationships, or fulfillment? Is what you’re doing now a good way to get what you want? Or is there a better way? At more of a micro-level of "keep the big picture in mind", I often see talented wantrepreneurs get stuck in the weeds of lower-level optimizations, usually around technical design choices. They forget (or maybe subconsciously avoid) the higher-level and more important questions of customer development, user experience, and distribution. For example: “Are you solving a real problem?” or “Did you launch an MVP and what did your users think?” Adopt a growth mindset. Believe that you are capable of learning whatever you need to learn in order to do what you want to do. The pain of regret is worse than the pain of failure. I’ve noticed that fear of failure is the greatest thing holding people back from taking action towards their dreams. Unless failure means death in your case, a debilitating fear of failure is a surmountable mental block. You miss 100% of the shots you don't take. When all is said and done, we often regret the things we didn't do in life than the things we did. There’s more to life than just work. Blasphemous (at least among my social circle)! But the reality is that many of the dying regret having worked too much in their lives. As Miss Frizzle from The Magic Schoolbus says: "Take chances, make mistakes, get messy!" Original post

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days
reddit
LLM Vibe Score0
Human Vibe Score1
Will_feverThis week

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days

AI has always intrigued me, especially when it comes to automating repetitive tasks and streamlining business operations. Recently, I found a compelling case study about a voice agent that significantly enhanced customer service and lead capture for a plumbing company. Motivated by the potential of this technology, I decided to build a similar system to see how it could be adapted for other industries. I’ve added the case study below along with a number to the demo voice agent I created to see if this is something people would really be interested in. AI technology is advancing rapidly, and I’m excited to dive deeper into this space. Case Study A family-owned plumbing business was facing challenges managing a high volume of customer calls. They were missing potential leads, particularly during after-hours and weekends, which meant lost revenue opportunities. Hiring a dedicated call support team was considered but deemed too expensive and hard to scale. Solution To solve these issues, the company deployed an AI-powered voice agent capable of handling calls autonomously. The system collected essential customer information, identified service needs, and sent real-time alerts to service technicians via SMS. It also had the ability to transfer calls to human agents if necessary, ensuring a seamless experience for customers. Impact The AI voice agent quickly proved its worth by streamlining call management and improving response times. With the AI handling routine inquiries and initial call filtering, the plumbing business saw a noticeable improvement in how quickly they could respond to customer needs. Details The AI-powered voice agent included several advanced features designed to optimize customer service: Answer Calls Anytime: Ensured every call received a friendly and professional response, regardless of the time of day. Spot Emergencies Fast: Quickly identified high-priority issues that required urgent attention. Collect Important Info: Accurately recorded critical customer details to facilitate seamless follow-ups and service scheduling. Send Alerts Right Away: Immediately notified service technicians about emergencies, enabling faster response times. Live Transfers: Live call transfer options when human assistance was needed. Results The AI-powered voice agent delivered measurable improvements across key performance metrics: 100% Call Answer Rate: No missed calls ensured that every customer inquiry was addressed promptly. 5-minute Emergency Response Time: The average response time for urgent calls was reduced significantly. 30% Increase in Lead Capture: The business saw more qualified leads, improving their chances of conversion. 25% Improvement in Resource Efficiency: Better allocation of resources allowed the team to focus on high-priority tasks. By implementing the AI-powered voice agent, the plumbing business enhanced its ability to capture more leads and provide better service to its customers. The improved call handling efficiency helped reduce missed opportunities and boosted overall customer satisfaction. Here’s the number to the demo agent I created: +1 (210) 405-0982 I’d love to hear some honest thoughts on it and which industries you think could benefit the most from this technology.

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days
reddit
LLM Vibe Score0
Human Vibe Score1
Will_feverThis week

I recreated an AI phone calling agent that increased booked calls by 30% for a plumbing business in 30 days

AI has always intrigued me, especially when it comes to automating repetitive tasks and streamlining business operations. Recently, I found a compelling case study about a voice agent that significantly enhanced customer service and lead capture for a plumbing company. Motivated by the potential of this technology, I decided to build a similar system to see how it could be adapted for other industries. I’ve added the case study below along with a number to the demo voice agent I created to see if this is something people would really be interested in. AI technology is advancing rapidly, and I’m excited to dive deeper into this space. Case Study A family-owned plumbing business was facing challenges managing a high volume of customer calls. They were missing potential leads, particularly during after-hours and weekends, which meant lost revenue opportunities. Hiring a dedicated call support team was considered but deemed too expensive and hard to scale. Solution To solve these issues, the company deployed an AI-powered voice agent capable of handling calls autonomously. The system collected essential customer information, identified service needs, and sent real-time alerts to service technicians via SMS. It also had the ability to transfer calls to human agents if necessary, ensuring a seamless experience for customers. Impact The AI voice agent quickly proved its worth by streamlining call management and improving response times. With the AI handling routine inquiries and initial call filtering, the plumbing business saw a noticeable improvement in how quickly they could respond to customer needs. Details The AI-powered voice agent included several advanced features designed to optimize customer service: Answer Calls Anytime: Ensured every call received a friendly and professional response, regardless of the time of day. Spot Emergencies Fast: Quickly identified high-priority issues that required urgent attention. Collect Important Info: Accurately recorded critical customer details to facilitate seamless follow-ups and service scheduling. Send Alerts Right Away: Immediately notified service technicians about emergencies, enabling faster response times. Live Transfers: Live call transfer options when human assistance was needed. Results The AI-powered voice agent delivered measurable improvements across key performance metrics: 100% Call Answer Rate: No missed calls ensured that every customer inquiry was addressed promptly. 5-minute Emergency Response Time: The average response time for urgent calls was reduced significantly. 30% Increase in Lead Capture: The business saw more qualified leads, improving their chances of conversion. 25% Improvement in Resource Efficiency: Better allocation of resources allowed the team to focus on high-priority tasks. By implementing the AI-powered voice agent, the plumbing business enhanced its ability to capture more leads and provide better service to its customers. The improved call handling efficiency helped reduce missed opportunities and boosted overall customer satisfaction. Here’s the number to the demo agent I created: +1 (210) 405-0982 I’d love to hear some honest thoughts on it and which industries you think could benefit the most from this technology.

[D] Misuse of Deep Learning in Nature Journal’s Earthquake Aftershock Paper
reddit
LLM Vibe Score0
Human Vibe Score0.333
milaworldThis week

[D] Misuse of Deep Learning in Nature Journal’s Earthquake Aftershock Paper

Recently, I saw a post by Rajiv Shah, Chicago-based data-scientist, regarding an article published in Nature last year called Deep learning of aftershock patterns following large earthquakes, written by scientists at Harvard in collaboration with Google. Below is the article: Stand Up for Best Practices: Misuse of Deep Learning in Nature’s Earthquake Aftershock Paper The Dangers of Machine Learning Hype Practitioners of AI, machine learning, predictive modeling, and data science have grown enormously over the last few years. What was once a niche field defined by its blend of knowledge is becoming a rapidly growing profession. As the excitement around AI continues to grow, the new wave of ML augmentation, automation, and GUI tools will lead to even more growth in the number of people trying to build predictive models. But here’s the rub: While it becomes easier to use the tools of predictive modeling, predictive modeling knowledge is not yet a widespread commodity. Errors can be counterintuitive and subtle, and they can easily lead you to the wrong conclusions if you’re not careful. I’m a data scientist who works with dozens of expert data science teams for a living. In my day job, I see these teams striving to build high-quality models. The best teams work together to review their models to detect problems. There are many hard-to-detect-ways that lead to problematic models (say, by allowing target leakage into their training data). Identifying issues is not fun. This requires admitting that exciting results are “too good to be true” or that their methods were not the right approach. In other words, it’s less about the sexy data science hype that gets headlines and more about a rigorous scientific discipline. Bad Methods Create Bad Results Almost a year ago, I read an article in Nature that claimed unprecedented accuracy in predicting earthquake aftershocks by using deep learning. Reading the article, my internal radar became deeply suspicious of their results. Their methods simply didn’t carry many of the hallmarks of careful predicting modeling. I started to dig deeper. In the meantime, this article blew up and became widely recognized! It was even included in the release notes for Tensorflow as an example of what deep learning could do. However, in my digging, I found major flaws in the paper. Namely, data leakage which leads to unrealistic accuracy scores and a lack of attention to model selection (you don’t build a 6 layer neural network when a simpler model provides the same level of accuracy). To my earlier point: these are subtle, but incredibly basic predictive modeling errors that can invalidate the entire results of an experiment. Data scientists are trained to recognize and avoid these issues in their work. I assumed that this was simply overlooked by the author, so I contacted her and let her know so that she could improve her analysis. Although we had previously communicated, she did not respond to my email over concerns with the paper. Falling On Deaf Ears So, what was I to do? My coworkers told me to just tweet it and let it go, but I wanted to stand up for good modeling practices. I thought reason and best practices would prevail, so I started a 6-month process of writing up my results and shared them with Nature. Upon sharing my results, I received a note from Nature in January 2019 that despite serious concerns about data leakage and model selection that invalidate their experiment, they saw no need to correct the errors, because “Devries et al. are concerned primarily with using machine learning as [a] tool to extract insight into the natural world, and not with details of the algorithm design.” The authors provided a much harsher response. You can read the entire exchange on my github. It’s not enough to say that I was disappointed. This was a major paper (it’s Nature!) that bought into AI hype and published a paper despite it using flawed methods. Then, just this week, I ran across articles by Arnaud Mignan and Marco Broccardo on shortcomings that they found in the aftershocks article. Here are two more data scientists with expertise in earthquake analysis who also noticed flaws in the paper. I also have placed my analysis and reproducible code on github. Standing Up For Predictive Modeling Methods I want to make it clear: my goal is not to villainize the authors of the aftershocks paper. I don’t believe that they were malicious, and I think that they would argue their goal was to just show how machine learning could be applied to aftershocks. Devries is an accomplished earthquake scientist who wanted to use the latest methods for her field of study and found exciting results from it. But here’s the problem: their insights and results were based on fundamentally flawed methods. It’s not enough to say, “This isn’t a machine learning paper, it’s an earthquake paper.” If you use predictive modeling, then the quality of your results are determined by the quality of your modeling. Your work becomes data science work, and you are on the hook for your scientific rigor. There is a huge appetite for papers that use the latest technologies and approaches. It becomes very difficult to push back on these papers. But if we allow papers or projects with fundamental issues to advance, it hurts all of us. It undermines the field of predictive modeling. Please push back on bad data science. Report bad findings to papers. And if they don’t take action, go to twitter, post about it, share your results and make noise. This type of collective action worked to raise awareness of p-values and combat the epidemic of p-hacking. We need good machine learning practices if we want our field to continue to grow and maintain credibility. Link to Rajiv's Article Original Nature Publication (note: paywalled) GitHub repo contains an attempt to reproduce Nature's paper Confrontational correspondence with authors

[R] Reinforcement Learning for Sequential Decision and Optimal Control
reddit
LLM Vibe Score0
Human Vibe Score1
isfjzzzThis week

[R] Reinforcement Learning for Sequential Decision and Optimal Control

Since early 21st century, artificial intelligence (AI) has been reshaping almost all areas of human society, which has high potential to spark the fourth industrial revolution. Notable examples can be found in the sector of road transportation, where AI has drastically changed automobile design and traffic management. Many new technologies, such as driver assistance, autonomous driving, and cloud-based cooperation, are emerging at an unbelievable speed. These new technologies have the potential to significantly improve driving ability, reduce traffic accidents, and relieve urban congestion. As one of the most important AI branches, reinforcement learning (RL) has attracted increasing attention in recent years. RL is an interdisciplinary field of trial-and-error learning and optimal control, which promises to provide optimal solutions for decision-making or control in large-scale and complex dynamic processes. One of its most conspicuous successes is AlphaGo from Google DeepMind, which has beaten the highest-level professional human player. The underlying key technology is the so-called deep reinforcement learning, which equips AlphaGo with amazing self-evolution ability and high playing intelligence. Despite a few successes, the application of RL is still in its infancy because most RL algorithms are rather difficult to comprehend and implement. RL connects deeply with statistical learning and convex optimization, and involves a wide range of new concepts and theories. As a beginner, one must undergo a long and tedious learning process to become an RL master. Without fully understanding those underlying principles, it is very difficult for new users to make proper adjustments to achieve the best application performance. &#x200B; https://preview.redd.it/tggt6o3o481c1.jpg?width=248&format=pjpg&auto=webp&s=75e2b58ac8da9273f2511a4fe37ef508d86a6e96 Reference: Shengbo Eben Li, Reinforcement Learning for Sequential Decision and Optimal Control. Springer Verlag, Singapore, 2023 Website of e-book: https://link.springer.com/book/10.1007/978-981-19-7784-8 &#x200B; QR code to Springer Book contents This book aims to provide a systematic introduction to fundamental RL theories, mainstream RL algorithms and typical RL applications for researchers and engineers. The main topics include Markov decision processes, Monte Carlo learning, temporal difference learning, RL with function approximation, policy gradient method, approximate dynamic programming, deep reinforcement learning, etc. Chapter 1 provides an overview of RL, including its history, famous scholars, successful examples and up-to-date challenges. Chapter 2 discusses the basis of RL, including main concepts and terminologies, Bellman’s optimality condition, and general problem formulation. Chapter 3 introduces Monte Carlo learning methods for model-free RL, including on-policy/off-policy methods and importance sampling technique. Chapter 4 introduces temporal difference learning methods for model-free RL, including Sarsa, Q-learning, and expected Sarsa. Chapter 5 introduces stochastic dynamic programming (DP), i.e., model-based RL with tabular representation, including value iteration DP, policy iteration DP and their convergence mechanisms. Chapter 6 introduces how to approximate policy and value functions in indirect RL methods as well as the associated actor-critic architecture. Chapter 7 derives different kinds of direct policy gradients, including likelihood ratio gradient, natural policy gradient and a few advanced variants. Chapter 8 introduces infinite-horizon ADP, finite-horizon ADP and its connection with model predictive control. Chapter 9 discusses how to handle state constraints and its connection with feasibility and safety, as well as the newly proposed actor-critic-scenery learning architecture. Chapter 10 is devoted to deep reinforcement learning, including how to train artificial neural networks and typical deep RL algorithms such as DQN, DDPG, TD3, TRPO, PPO, SAC, and DSAC. Chapter 11 provides various RL topics,including robust RL, POMDP, multi-agent RL, meta-RL, inverse RL, offline RL, major RL libraries and platforms. Author information: Shengbo Eben Li is currently a professor at Tsinghua University in the interdisciplinary field of autonomous driving and artificial intelligence. Before joining Tsinghua University, he has worked at Stanford University, University of Michigan, and UC Berkeley. His active research interests include intelligent vehicles and driver assistance, deep reinforcement learning, optimal control and estimation, etc. He has published more than 130 peer-reviewed papers in top-tier international journals and conferences. He is the recipient of best paper awards (finalists) of IEEE ITSC, ICCAS, IEEE ICUS, IEEE IV, L4DC, etc. He has received a number of important academic honors, including National Award for Technological Invention of China (2013), National Award for Progress in Sci & Tech of China (2018), Distinguished Young Scholar of Beijing NSF (2018), Youth Sci & Tech Innovation Leader from MOST China (2020), etc. He also serves as Board of Governor of IEEE ITS Society, Senior AE of IEEE OJ ITS, and AEs of IEEE ITSM, IEEE Trans ITS, Automotive Innovation, etc.

[D] Here are 17 ways of making PyTorch training faster – what did I miss?
reddit
LLM Vibe Score0
Human Vibe Score1
lorenzkuhnThis week

[D] Here are 17 ways of making PyTorch training faster – what did I miss?

I've been collecting methods to accelerate training in PyTorch – here's what I've found so far. What did I miss? What did I get wrong? The methods – roughly sorted from largest to smallest expected speed-up – are: Consider using a different learning rate schedule. Use multiple workers and pinned memory in DataLoader. Max out the batch size. Use Automatic Mixed Precision (AMP). Consider using a different optimizer. Turn on cudNN benchmarking. Beware of frequently transferring data between CPUs and GPUs. Use gradient/activation checkpointing. Use gradient accumulation. Use DistributedDataParallel for multi-GPU training. Set gradients to None rather than 0. Use .as\_tensor rather than .tensor() Turn off debugging APIs if not needed. Use gradient clipping. Turn off bias before BatchNorm. Turn off gradient computation during validation. Use input and batch normalization. Consider using another learning rate schedule The learning rate (schedule) you choose has a large impact on the speed of convergence as well as the generalization performance of your model. Cyclical Learning Rates and the 1Cycle learning rate schedule are both methods introduced by Leslie N. Smith (here and here), and then popularised by fast.ai's Jeremy Howard and Sylvain Gugger (here and here). Essentially, the 1Cycle learning rate schedule looks something like this: &#x200B; https://preview.redd.it/sc37u5knmxa61.png?width=476&format=png&auto=webp&s=09b309b4dbd67eedb4ab5f86e03e0e83d7b072d1 Sylvain writes: \[1cycle consists of\]  two steps of equal lengths, one going from a lower learning rate to a higher one than go back to the minimum. The maximum should be the value picked with the Learning Rate Finder, and the lower one can be ten times lower. Then, the length of this cycle should be slightly less than the total number of epochs, and, in the last part of training, we should allow the learning rate to decrease more than the minimum, by several orders of magnitude. In the best case this schedule achieves a massive speed-up – what Smith calls Superconvergence – as compared to conventional learning rate schedules. Using the 1Cycle policy he needs \~10x fewer training iterations of a ResNet-56 on ImageNet to match the performance of the original paper, for instance). The schedule seems to perform robustly well across common architectures and optimizers. PyTorch implements both of these methods torch.optim.lrscheduler.CyclicLR and torch.optim.lrscheduler.OneCycleLR, see the documentation. One drawback of these schedulers is that they introduce a number of additional hyperparameters. This post and this repo, offer a nice overview and implementation of how good hyper-parameters can be found including the Learning Rate Finder mentioned above. Why does this work? It doesn't seem entirely clear but one possible explanation might be that regularly increasing the learning rate helps to traverse saddle points in the loss landscape more quickly. Use multiple workers and pinned memory in DataLoader When using torch.utils.data.DataLoader, set numworkers > 0, rather than the default value of 0, and pinmemory=True, rather than the default value of False. Details of this are explained here. Szymon Micacz achieves a 2x speed-up for a single training epoch by using four workers and pinned memory. A rule of thumb that people are using to choose the number of workers is to set it to four times the number of available GPUs with both a larger and smaller number of workers leading to a slow down. Note that increasing num\_workerswill increase your CPU memory consumption. Max out the batch size This is a somewhat contentious point. Generally, however, it seems like using the largest batch size your GPU memory permits will accelerate your training (see NVIDIA's Szymon Migacz, for instance). Note that you will also have to adjust other hyperparameters, such as the learning rate, if you modify the batch size. A rule of thumb here is to double the learning rate as you double the batch size. OpenAI has a nice empirical paper on the number of convergence steps needed for different batch sizes. Daniel Huynh runs some experiments with different batch sizes (also using the 1Cycle policy discussed above) where he achieves a 4x speed-up by going from batch size 64 to 512. One of the downsides of using large batch sizes, however, is that they might lead to solutions that generalize worse than those trained with smaller batches. Use Automatic Mixed Precision (AMP) The release of PyTorch 1.6 included a native implementation of Automatic Mixed Precision training to PyTorch. The main idea here is that certain operations can be run faster and without a loss of accuracy at semi-precision (FP16) rather than in the single-precision (FP32) used elsewhere. AMP, then, automatically decide which operation should be executed in which format. This allows both for faster training and a smaller memory footprint. In the best case, the usage of AMP would look something like this: import torch Creates once at the beginning of training scaler = torch.cuda.amp.GradScaler() for data, label in data_iter: optimizer.zero_grad() Casts operations to mixed precision with torch.cuda.amp.autocast(): loss = model(data) Scales the loss, and calls backward() to create scaled gradients scaler.scale(loss).backward() Unscales gradients and calls or skips optimizer.step() scaler.step(optimizer) Updates the scale for next iteration scaler.update() Benchmarking a number of common language and vision models on NVIDIA V100 GPUs, Huang and colleagues find that using AMP over regular FP32 training yields roughly 2x – but upto 5.5x – training speed-ups. Currently, only CUDA ops can be autocast in this way. See the documentation here for more details on this and other limitations. u/SVPERBlA points out that you can squeeze out some additional performance (\~ 20%) from AMP on NVIDIA Tensor Core GPUs if you convert your tensors to the Channels Last memory format. Refer to this section in the NVIDIA docs for an explanation of the speedup and more about NCHW versus NHWC tensor formats. Consider using another optimizer AdamW is Adam with weight decay (rather than L2-regularization) which was popularized by fast.ai and is now available natively in PyTorch as torch.optim.AdamW. AdamW seems to consistently outperform Adam in terms of both the error achieved and the training time. See this excellent blog post on why using weight decay instead of L2-regularization makes a difference for Adam. Both Adam and AdamW work well with the 1Cycle policy described above. There are also a few not-yet-native optimizers that have received a lot of attention recently, most notably LARS (pip installable implementation) and LAMB. NVIDA's APEX implements fused versions of a number of common optimizers such as Adam. This implementation avoid a number of passes to and from GPU memory as compared to the PyTorch implementation of Adam, yielding speed-ups in the range of 5%. Turn on cudNN benchmarking If your model architecture remains fixed and your input size stays constant, setting torch.backends.cudnn.benchmark = True might be beneficial (docs). This enables the cudNN autotuner which will benchmark a number of different ways of computing convolutions in cudNN and then use the fastest method from then on. For a rough reference on the type of speed-up you can expect from this, Szymon Migacz achieves a speed-up of 70% on a forward pass for a convolution and a 27% speed-up for a forward + backward pass of the same convolution. One caveat here is that this autotuning might become very slow if you max out the batch size as mentioned above. Beware of frequently transferring data between CPUs and GPUs Beware of frequently transferring tensors from a GPU to a CPU using tensor.cpu() and vice versa using tensor.cuda() as these are relatively expensive. The same applies for .item() and .numpy() – use .detach() instead. If you are creating a new tensor, you can also directly assign it to your GPU using the keyword argument device=torch.device('cuda:0'). If you do need to transfer data, using .to(non_blocking=True), might be useful as long as you don't have any synchronization points after the transfer. If you really have to, you might want to give Santosh Gupta's SpeedTorch a try, although it doesn't seem entirely clear when this actually does/doesn't provide speed-ups. Use gradient/activation checkpointing Quoting directly from the documentation: Checkpointing works by trading compute for memory. Rather than storing all intermediate activations of the entire computation graph for computing backward, the checkpointed part does not save intermediate activations, and instead recomputes them in backward pass. It can be applied on any part of a model. Specifically, in the forward pass, function will run in torch.no\grad() manner, i.e., not storing the intermediate activations. Instead, the forward pass saves the inputs tuple and the functionparameter. In the backwards pass, the saved inputs and function is retrieved, and the forward pass is computed on function again, now tracking the intermediate activations, and then the gradients are calculated using these activation values. So while this will might slightly increase your run time for a given batch size, you'll significantly reduce your memory footprint. This in turn will allow you to further increase the batch size you're using allowing for better GPU utilization. While checkpointing is implemented natively as torch.utils.checkpoint(docs), it does seem to take some thought and effort to implement properly. Priya Goyal has a good tutorial demonstrating some of the key aspects of checkpointing. Use gradient accumulation Another approach to increasing the batch size is to accumulate gradients across multiple .backward() passes before calling optimizer.step(). Following a post by Hugging Face's Thomas Wolf, gradient accumulation can be implemented as follows: model.zero_grad() Reset gradients tensors for i, (inputs, labels) in enumerate(training_set): predictions = model(inputs) Forward pass loss = loss_function(predictions, labels) Compute loss function loss = loss / accumulation_steps Normalize our loss (if averaged) loss.backward() Backward pass if (i+1) % accumulation_steps == 0: Wait for several backward steps optimizer.step() Now we can do an optimizer step model.zero_grad() Reset gradients tensors if (i+1) % evaluation_steps == 0: Evaluate the model when we... evaluate_model() ...have no gradients accumulate This method was developed mainly to circumvent GPU memory limitations and I'm not entirely clear on the trade-off between having additional .backward() loops. This discussion on the fastai forum seems to suggest that it can in fact accelerate training, so it's probably worth a try. Use Distributed Data Parallel for multi-GPU training Methods to accelerate distributed training probably warrant their own post but one simple one is to use torch.nn.DistributedDataParallel rather than torch.nn.DataParallel. By doing so, each GPU will be driven by a dedicated CPU core avoiding the GIL issues of DataParallel. In general, I can strongly recommend reading the documentation on distributed training. Set gradients to None rather than 0 Use .zerograd(settonone=True) rather than .zerograd(). Doing so will let the memory allocator handle the gradients rather than actively setting them to 0. This will lead to yield a modest speed-up as they say in the documentation, so don't expect any miracles. Watch out, doing this is not side-effect free! Check the docs for the details on this. Use .as_tensor() rather than .tensor() torch.tensor() always copies data. If you have a numpy array that you want to convert, use torch.astensor() or torch.fromnumpy() to avoid copying the data. Turn on debugging tools only when actually needed PyTorch offers a number of useful debugging tools like the autograd.profiler, autograd.grad\check, and autograd.anomaly\detection. Make sure to use them to better understand when needed but to also turn them off when you don't need them as they will slow down your training. Use gradient clipping Originally used to avoid exploding gradients in RNNs, there is both some empirical evidence as well as some theoretical support that clipping gradients (roughly speaking: gradient = min(gradient, threshold)) accelerates convergence. Hugging Face's Transformer implementation is a really clean example of how to use gradient clipping as well as some of the other methods such as AMP mentioned in this post. In PyTorch this can be done using torch.nn.utils.clipgradnorm(documentation). It's not entirely clear to me which models benefit how much from gradient clipping but it seems to be robustly useful for RNNs, Transformer-based and ResNets architectures and a range of different optimizers. Turn off bias before BatchNorm This is a very simple one: turn off the bias of layers before BatchNormalization layers. For a 2-D convolutional layer, this can be done by setting the bias keyword to False: torch.nn.Conv2d(..., bias=False, ...).  (Here's a reminder why this makes sense.) You will save some parameters, I would however expect the speed-up of this to be relatively small as compared to some of the other methods mentioned here. Turn off gradient computation during validation This one is straightforward: set torch.no_grad() during validation. Use input and batch normalization You're probably already doing this but you might want to double-check: Are you normalizing your input? Are you using batch-normalization? And here's a reminder of why you probably should. Bonus tip from the comments: Use JIT to fuse point-wise operations. If you have adjacent point-wise operations you can use PyTorch JIT to combine them into one FusionGroup which can then be launched on a single kernel rather than multiple kernels as would have been done per default. You'll also save some memory reads and writes. Szymon Migacz shows how you can use the @torch.jit.script decorator to fuse the operations in a GELU, for instance: @torch.jit.script def fused_gelu(x): return x 0.5 (1.0 + torch.erf(x / 1.41421)) In this case, fusing the operations leads to a 5x speed-up for the execution of fused_gelu as compared to the unfused version. See also this post for an example of how Torchscript can be used to accelerate an RNN. Hat tip to u/Patient_Atmosphere45 for the suggestion. Sources and additional resources Many of the tips listed above come from Szymon Migacz' talk and post in the PyTorch docs. PyTorch Lightning's William Falcon has two interesting posts with tips to speed-up training. PyTorch Lightning does already take care of some of the points above per-default. Thomas Wolf at Hugging Face has a number of interesting articles on accelerating deep learning – with a particular focus on language models. The same goes for Sylvain Gugger and Jeremy Howard: they have many interesting posts in particular on learning rates and AdamW. Thanks to Ben Hahn, Kevin Klein and Robin Vaaler for their feedback on a draft of this post! I've also put all of the above into this blog post.

[D] The current and future state of AI/ML is shockingly demoralizing with little hope of redemption
reddit
LLM Vibe Score0
Human Vibe Score1
Flaky_Suit_8665This week

[D] The current and future state of AI/ML is shockingly demoralizing with little hope of redemption

I recently encountered the PaLM (Scaling Language Modeling with Pathways) paper from Google Research and it opened up a can of worms of ideas I’ve felt I’ve intuitively had for a while, but have been unable to express – and I know I can’t be the only one. Sometimes I wonder what the original pioneers of AI – Turing, Neumann, McCarthy, etc. – would think if they could see the state of AI that we’ve gotten ourselves into. 67 authors, 83 pages, 540B parameters in a model, the internals of which no one can say they comprehend with a straight face, 6144 TPUs in a commercial lab that no one has access to, on a rig that no one can afford, trained on a volume of data that a human couldn’t process in a lifetime, 1 page on ethics with the same ideas that have been rehashed over and over elsewhere with no attempt at a solution – bias, racism, malicious use, etc. – for purposes that who asked for? When I started my career as an AI/ML research engineer 2016, I was most interested in two types of tasks – 1.) those that most humans could do but that would universally be considered tedious and non-scalable. I’m talking image classification, sentiment analysis, even document summarization, etc. 2.) tasks that humans lack the capacity to perform as well as computers for various reasons – forecasting, risk analysis, game playing, and so forth. I still love my career, and I try to only work on projects in these areas, but it’s getting harder and harder. This is because, somewhere along the way, it became popular and unquestionably acceptable to push AI into domains that were originally uniquely human, those areas that sit at the top of Maslows’s hierarchy of needs in terms of self-actualization – art, music, writing, singing, programming, and so forth. These areas of endeavor have negative logarithmic ability curves – the vast majority of people cannot do them well at all, about 10% can do them decently, and 1% or less can do them extraordinarily. The little discussed problem with AI-generation is that, without extreme deterrence, we will sacrifice human achievement at the top percentile in the name of lowering the bar for a larger volume of people, until the AI ability range is the norm. This is because relative to humans, AI is cheap, fast, and infinite, to the extent that investments in human achievement will be watered down at the societal, educational, and individual level with each passing year. And unlike AI gameplay which superseded humans decades ago, we won’t be able to just disqualify the machines and continue to play as if they didn’t exist. Almost everywhere I go, even this forum, I encounter almost universal deference given to current SOTA AI generation systems like GPT-3, CODEX, DALL-E, etc., with almost no one extending their implications to its logical conclusion, which is long-term convergence to the mean, to mediocrity, in the fields they claim to address or even enhance. If you’re an artist or writer and you’re using DALL-E or GPT-3 to “enhance” your work, or if you’re a programmer saying, “GitHub Co-Pilot makes me a better programmer?”, then how could you possibly know? You’ve disrupted and bypassed your own creative process, which is thoughts -> (optionally words) -> actions -> feedback -> repeat, and instead seeded your canvas with ideas from a machine, the provenance of which you can’t understand, nor can the machine reliably explain. And the more you do this, the more you make your creative processes dependent on said machine, until you must question whether or not you could work at the same level without it. When I was a college student, I often dabbled with weed, LSD, and mushrooms, and for a while, I thought the ideas I was having while under the influence were revolutionary and groundbreaking – that is until took it upon myself to actually start writing down those ideas and then reviewing them while sober, when I realized they weren’t that special at all. What I eventually determined is that, under the influence, it was impossible for me to accurately evaluate the drug-induced ideas I was having because the influencing agent the generates the ideas themselves was disrupting the same frame of reference that is responsible evaluating said ideas. This is the same principle of – if you took a pill and it made you stupider, would even know it? I believe that, especially over the long-term timeframe that crosses generations, there’s significant risk that current AI-generation developments produces a similar effect on humanity, and we mostly won’t even realize it has happened, much like a frog in boiling water. If you have children like I do, how can you be aware of the the current SOTA in these areas, project that 20 to 30 years, and then and tell them with a straight face that it is worth them pursuing their talent in art, writing, or music? How can you be honest and still say that widespread implementation of auto-correction hasn’t made you and others worse and worse at spelling over the years (a task that even I believe most would agree is tedious and worth automating). Furthermore, I’ve yet to set anyone discuss the train – generate – train - generate feedback loop that long-term application of AI-generation systems imply. The first generations of these models were trained on wide swaths of web data generated by humans, but if these systems are permitted to continually spit out content without restriction or verification, especially to the extent that it reduces or eliminates development and investment in human talent over the long term, then what happens to the 4th or 5th generation of models? Eventually we encounter this situation where the AI is being trained almost exclusively on AI-generated content, and therefore with each generation, it settles more and more into the mean and mediocrity with no way out using current methods. By the time that happens, what will we have lost in terms of the creative capacity of people, and will we be able to get it back? By relentlessly pursuing this direction so enthusiastically, I’m convinced that we as AI/ML developers, companies, and nations are past the point of no return, and it mostly comes down the investments in time and money that we’ve made, as well as a prisoner’s dilemma with our competitors. As a society though, this direction we’ve chosen for short-term gains will almost certainly make humanity worse off, mostly for those who are powerless to do anything about it – our children, our grandchildren, and generations to come. If you’re an AI researcher or a data scientist like myself, how do you turn things back for yourself when you’ve spent years on years building your career in this direction? You’re likely making near or north of $200k annually TC and have a family to support, and so it’s too late, no matter how you feel about the direction the field has gone. If you’re a company, how do you standby and let your competitors aggressively push their AutoML solutions into more and more markets without putting out your own? Moreover, if you’re a manager or thought leader in this field like Jeff Dean how do you justify to your own boss and your shareholders your team’s billions of dollars in AI investment while simultaneously balancing ethical concerns? You can’t – the only answer is bigger and bigger models, more and more applications, more and more data, and more and more automation, and then automating that even further. If you’re a country like the US, how do responsibly develop AI while your competitors like China single-mindedly push full steam ahead without an iota of ethical concern to replace you in numerous areas in global power dynamics? Once again, failing to compete would be pre-emptively admitting defeat. Even assuming that none of what I’ve described here happens to such an extent, how are so few people not taking this seriously and discounting this possibility? If everything I’m saying is fear-mongering and non-sense, then I’d be interested in hearing what you think human-AI co-existence looks like in 20 to 30 years and why it isn’t as demoralizing as I’ve made it out to be. &#x200B; EDIT: Day after posting this -- this post took off way more than I expected. Even if I received 20 - 25 comments, I would have considered that a success, but this went much further. Thank you to each one of you that has read this post, even more so if you left a comment, and triply so for those who gave awards! I've read almost every comment that has come in (even the troll ones), and am truly grateful for each one, including those in sharp disagreement. I've learned much more from this discussion with the sub than I could have imagined on this topic, from so many perspectives. While I will try to reply as many comments as I can, the sheer comment volume combined with limited free time between work and family unfortunately means that there are many that I likely won't be able to get to. That will invariably include some that I would love respond to under the assumption of infinite time, but I will do my best, even if the latency stretches into days. Thank you all once again!

[D] The machine learning community has a toxicity problem
reddit
LLM Vibe Score0
Human Vibe Score1
yusuf-bengioThis week

[D] The machine learning community has a toxicity problem

It is omnipresent! First of all, the peer-review process is broken. Every fourth NeurIPS submission is put on arXiv. There are DeepMind researchers publicly going after reviewers who are criticizing their ICLR submission. On top of that, papers by well-known institutes that were put on arXiv are accepted at top conferences, despite the reviewers agreeing on rejection. In contrast, vice versa, some papers with a majority of accepts are overruled by the AC. (I don't want to call any names, just have a look the openreview page of this year's ICRL). Secondly, there is a reproducibility crisis. Tuning hyperparameters on the test set seem to be the standard practice nowadays. Papers that do not beat the current state-of-the-art method have a zero chance of getting accepted at a good conference. As a result, hyperparameters get tuned and subtle tricks implemented to observe a gain in performance where there isn't any. Thirdly, there is a worshiping problem. Every paper with a Stanford or DeepMind affiliation gets praised like a breakthrough. For instance, BERT has seven times more citations than ULMfit. The Google affiliation gives so much credibility and visibility to a paper. At every ICML conference, there is a crowd of people in front of every DeepMind poster, regardless of the content of the work. The same story happened with the Zoom meetings at the virtual ICLR 2020. Moreover, NeurIPS 2020 had twice as many submissions as ICML, even though both are top-tier ML conferences. Why? Why is the name "neural" praised so much? Next, Bengio, Hinton, and LeCun are truly deep learning pioneers but calling them the "godfathers" of AI is insane. It has reached the level of a cult. Fourthly, the way Yann LeCun talked about biases and fairness topics was insensitive. However, the toxicity and backlash that he received are beyond any reasonable quantity. Getting rid of LeCun and silencing people won't solve any issue. Fifthly, machine learning, and computer science in general, have a huge diversity problem. At our CS faculty, only 30% of undergrads and 15% of the professors are women. Going on parental leave during a PhD or post-doc usually means the end of an academic career. However, this lack of diversity is often abused as an excuse to shield certain people from any form of criticism. Reducing every negative comment in a scientific discussion to race and gender creates a toxic environment. People are becoming afraid to engage in fear of being called a racist or sexist, which in turn reinforces the diversity problem. Sixthly, moral and ethics are set arbitrarily. The U.S. domestic politics dominate every discussion. At this very moment, thousands of Uyghurs are put into concentration camps based on computer vision algorithms invented by this community, and nobody seems even remotely to care. Adding a "broader impact" section at the end of every people will not make this stop. There are huge shitstorms because a researcher wasn't mentioned in an article. Meanwhile, the 1-billion+ people continent of Africa is virtually excluded from any meaningful ML discussion (besides a few Indaba workshops). Seventhly, there is a cut-throat publish-or-perish mentality. If you don't publish 5+ NeurIPS/ICML papers per year, you are a looser. Research groups have become so large that the PI does not even know the name of every PhD student anymore. Certain people submit 50+ papers per year to NeurIPS. The sole purpose of writing a paper has become to having one more NeurIPS paper in your CV. Quality is secondary; passing the peer-preview stage has become the primary objective. Finally, discussions have become disrespectful. Schmidhuber calls Hinton a thief, Gebru calls LeCun a white supremacist, Anandkumar calls Marcus a sexist, everybody is under attack, but nothing is improved. Albert Einstein was opposing the theory of quantum mechanics. Can we please stop demonizing those who do not share our exact views. We are allowed to disagree without going for the jugular. The moment we start silencing people because of their opinion is the moment scientific and societal progress dies. Best intentions, Yusuf

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

[N] Montreal-based Element AI sold for $230-million as founders saw value mostly wiped out
reddit
LLM Vibe Score0
Human Vibe Score1
sensetimeThis week

[N] Montreal-based Element AI sold for $230-million as founders saw value mostly wiped out

According to Globe and Mail article: Element AI sold for $230-million as founders saw value mostly wiped out, document reveals Montreal startup Element AI Inc. was running out of money and options when it inked a deal last month to sell itself for US$230-milion to Silicon Valley software company ServiceNow Inc., a confidential document obtained by the Globe and Mail reveals. Materials sent to Element AI shareholders Friday reveal that while many of its institutional shareholders will make most if not all of their money back from backing two venture financings, employees will not fare nearly as well. Many have been terminated and had their stock options cancelled. Also losing out are co-founders Jean-François Gagné, the CEO, his wife Anne Martel, the chief administrative officer, chief science officer Nick Chapados and Yoshua Bengio, the University of Montreal professor known as a godfather of “deep learning,” the foundational science behind today’s AI revolution. Between them, they owned 8.8 million common shares, whose value has been wiped out with the takeover, which goes to a shareholder vote Dec 29 with enough investor support already locked up to pass before the takeover goes to a Canadian court to approve a plan of arrangement with ServiceNow. The quartet also owns preferred shares worth less than US$300,000 combined under the terms of the deal. The shareholder document, a management proxy circular, provides a rare look inside efforts by a highly hyped but deeply troubled startup as it struggled to secure financing at the same time as it was failing to live up to its early promises. The circular states the US$230-million purchase price is subject to some adjustments and expenses which could bring the final price down to US$195-million. The sale is a disappointing outcome for a company that burst onto the Canadian tech scene four years ago like few others, promising to deliver AI-powered operational improvements to a range of industries and anchor a thriving domestic AI sector. Element AI became the self-appointed representative of Canada’s AI sector, lobbying politicians and officials and landing numerous photo ops with them, including Prime Minister Justin Trudeau. It also secured $25-million in federal funding – $20-million of which was committed earlier this year and cancelled by the government with the ServiceNow takeover. Element AI invested heavily in hype and and earned international renown, largely due to its association with Dr. Bengio. It raised US$102-million in venture capital in 2017 just nine months after its founding, an unheard of amount for a new Canadian company, from international backers including Microsoft Corp., Intel Corp., Nvidia Corp., Tencent Holdings Ltd., Fidelity Investments, a Singaporean sovereign wealth fund and venture capital firms. Element AI went on a hiring spree to establish what the founders called “supercredibility,” recruiting top AI talent in Canada and abroad. It opened global offices, including a British operation that did pro bono work to deliver “AI for good,” and its ranks swelled to 500 people. But the swift hiring and attention-seeking were at odds with its success in actually building a software business. Element AI took two years to focus on product development after initially pursuing consulting gigs. It came into 2019 with a plan to bring several AI-based products to market, including a cybersecurity offering for financial institutions and a program to help port operators predict waiting times for truck drivers. It was also quietly shopping itself around. In December 2018, the company asked financial adviser Allen & Co LLC to find a potential buyer, in addition to pursuing a private placement, the circular reveals. But Element AI struggled to advance proofs-of-concept work to marketable products. Several client partnerships faltered in 2019 and 2020. Element did manage to reach terms for a US$151.4-million ($200-million) venture financing in September, 2019 led by the Caisse de dépôt et placement du Québec and backed by the Quebec government and consulting giant McKinsey and Co. However, the circular reveals the company only received the first tranche of the financing – roughly half of the amount – at the time, and that it had to meet unspecified conditions to get the rest. A fairness opinion by Deloitte commissioned as part of the sale process estimated Element AI’s enterprises value at just US$76-million around the time of the 2019 financing, shrinking to US$45-million this year. “However, the conditions precedent the closing of the second tranche … were not going to be met in a timely manner,” the circular reads. It states “new terms were proposed” for a round of financing that would give incoming investors ranking ahead of others and a cumulative dividend of 12 per cent on invested capital and impose “other operating and governance constraints and limitations on the company.” Management instead decided to pursue a sale, and Allen contacted prospective buyers in June. As talks narrowed this past summer to exclusive negotiations with ServiceNow, “the company’s liquidity was diminishing as sources of capital on acceptable terms were scarce,” the circular reads. By late November, it was generating revenue at an annualized rate of just $10-million to $12-million, Deloitte said. As part of the deal – which will see ServiceNow keep Element AI’s research scientists and patents and effectively abandon its business – the buyer has agreed to pay US$10-million to key employees and consultants including Mr. Gagne and Dr. Bengio as part of a retention plan. The Caisse and Quebec government will get US$35.45-million and US$11.8-million, respectively, roughly the amount they invested in the first tranche of the 2019 financing.

[D] Misuse of Deep Learning in Nature Journal’s Earthquake Aftershock Paper
reddit
LLM Vibe Score0
Human Vibe Score0.333
milaworldThis week

[D] Misuse of Deep Learning in Nature Journal’s Earthquake Aftershock Paper

Recently, I saw a post by Rajiv Shah, Chicago-based data-scientist, regarding an article published in Nature last year called Deep learning of aftershock patterns following large earthquakes, written by scientists at Harvard in collaboration with Google. Below is the article: Stand Up for Best Practices: Misuse of Deep Learning in Nature’s Earthquake Aftershock Paper The Dangers of Machine Learning Hype Practitioners of AI, machine learning, predictive modeling, and data science have grown enormously over the last few years. What was once a niche field defined by its blend of knowledge is becoming a rapidly growing profession. As the excitement around AI continues to grow, the new wave of ML augmentation, automation, and GUI tools will lead to even more growth in the number of people trying to build predictive models. But here’s the rub: While it becomes easier to use the tools of predictive modeling, predictive modeling knowledge is not yet a widespread commodity. Errors can be counterintuitive and subtle, and they can easily lead you to the wrong conclusions if you’re not careful. I’m a data scientist who works with dozens of expert data science teams for a living. In my day job, I see these teams striving to build high-quality models. The best teams work together to review their models to detect problems. There are many hard-to-detect-ways that lead to problematic models (say, by allowing target leakage into their training data). Identifying issues is not fun. This requires admitting that exciting results are “too good to be true” or that their methods were not the right approach. In other words, it’s less about the sexy data science hype that gets headlines and more about a rigorous scientific discipline. Bad Methods Create Bad Results Almost a year ago, I read an article in Nature that claimed unprecedented accuracy in predicting earthquake aftershocks by using deep learning. Reading the article, my internal radar became deeply suspicious of their results. Their methods simply didn’t carry many of the hallmarks of careful predicting modeling. I started to dig deeper. In the meantime, this article blew up and became widely recognized! It was even included in the release notes for Tensorflow as an example of what deep learning could do. However, in my digging, I found major flaws in the paper. Namely, data leakage which leads to unrealistic accuracy scores and a lack of attention to model selection (you don’t build a 6 layer neural network when a simpler model provides the same level of accuracy). To my earlier point: these are subtle, but incredibly basic predictive modeling errors that can invalidate the entire results of an experiment. Data scientists are trained to recognize and avoid these issues in their work. I assumed that this was simply overlooked by the author, so I contacted her and let her know so that she could improve her analysis. Although we had previously communicated, she did not respond to my email over concerns with the paper. Falling On Deaf Ears So, what was I to do? My coworkers told me to just tweet it and let it go, but I wanted to stand up for good modeling practices. I thought reason and best practices would prevail, so I started a 6-month process of writing up my results and shared them with Nature. Upon sharing my results, I received a note from Nature in January 2019 that despite serious concerns about data leakage and model selection that invalidate their experiment, they saw no need to correct the errors, because “Devries et al. are concerned primarily with using machine learning as [a] tool to extract insight into the natural world, and not with details of the algorithm design.” The authors provided a much harsher response. You can read the entire exchange on my github. It’s not enough to say that I was disappointed. This was a major paper (it’s Nature!) that bought into AI hype and published a paper despite it using flawed methods. Then, just this week, I ran across articles by Arnaud Mignan and Marco Broccardo on shortcomings that they found in the aftershocks article. Here are two more data scientists with expertise in earthquake analysis who also noticed flaws in the paper. I also have placed my analysis and reproducible code on github. Standing Up For Predictive Modeling Methods I want to make it clear: my goal is not to villainize the authors of the aftershocks paper. I don’t believe that they were malicious, and I think that they would argue their goal was to just show how machine learning could be applied to aftershocks. Devries is an accomplished earthquake scientist who wanted to use the latest methods for her field of study and found exciting results from it. But here’s the problem: their insights and results were based on fundamentally flawed methods. It’s not enough to say, “This isn’t a machine learning paper, it’s an earthquake paper.” If you use predictive modeling, then the quality of your results are determined by the quality of your modeling. Your work becomes data science work, and you are on the hook for your scientific rigor. There is a huge appetite for papers that use the latest technologies and approaches. It becomes very difficult to push back on these papers. But if we allow papers or projects with fundamental issues to advance, it hurts all of us. It undermines the field of predictive modeling. Please push back on bad data science. Report bad findings to papers. And if they don’t take action, go to twitter, post about it, share your results and make noise. This type of collective action worked to raise awareness of p-values and combat the epidemic of p-hacking. We need good machine learning practices if we want our field to continue to grow and maintain credibility. Link to Rajiv's Article Original Nature Publication (note: paywalled) GitHub repo contains an attempt to reproduce Nature's paper Confrontational correspondence with authors

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

Raised $450k for my startup, here are the lessons I've learned along the way
reddit
LLM Vibe Score0
Human Vibe Score1
marin_smiljanicThis week

Raised $450k for my startup, here are the lessons I've learned along the way

2021 has been a pretty amazing year for Omnisearch. Having started initial work on Omnisearch at the end of 2020, we entered the new year with a working MVP yet no revenue, no significant partnerships, and no funding. Fast forward to the end of 2021, and we now have fantastic revenue growth, a partnership with a public company, and a far more powerful, complete and polished product. But one milestone really changed Omnisearch’s trajectory: our $450,000 USD pre-seed round by GoAhead Ventures. In this post I want to share the story of how it came about and offer a couple of takeaways to keep in mind when preparing for fundraising. &#x200B; The story Contrary to most advice, my co-founder Matej and I didn’t allocate a specific time to switch to “fundraising mode” but rather talked to investors on an ongoing basis. It was a bit of a distraction from working on the product, but on the positive side we were able to constantly get feedback on the idea, pitch, go-to-market strategy and hiring, as well as hearing investors’ major concerns sooner rather than later. That being said, our six-month long fundraising efforts weren’t yielding results - we talked to about twenty investors, mostly angels or smaller funds, with no success. The feedback was generally of the “too early for us” variety (since we were still pre-revenue), with additional questions about our go-to-market strategy and ideal customer persona. The introduction to our eventual investors, California-based GoAhead Ventures, came through a friend who had pitched them previously. We wrote a simple blurb and sent our pitch deck. We then went through GoAhead’s hyper-efficient screening process, consisting of a 30-minute call, a recorded three-minute pitch, and filling out a simple Google doc. Throughout the whole process, the GoAhead team left an awesome impression thanks to their knowledge of enterprise software and their responsiveness. They ended up investing and the whole deal was closed within two weeks, which is super fast even by Silicon Valley standards. While our fundraising experience is a single data point and your case might be different, here are the key takeaways from our journey. &#x200B; Perseverance wins: Like I said above, we talked to about twenty investors before we closed our round. Getting a series of “no”s sucks, but we took the feedback seriously and tried to prepare better for questions that caught us off guard. But we persevered, keeping in mind that from a bird’s eye perspective it’s an amazing time to be building startups and raising funds. Focus on traction: Sounds pretty obvious, right? The truth is, though, that even a small amount of revenue is infinitely better than none at all. One of the major differences between our eventual successful investor pitch and the earlier ones was that we had actual paying customers, though our MRR was low. This allows you to talk about customers in the present tense, showing there’s actual demand for your product and making the use cases more tangible. And ideally, highlight a couple of customer testimonials to boost your credibility. Have a demo ready: In Omnisearch’s case, the demo was oftentimes the best received part of the pitch or call. We’d show investors the live demo, and for bonus points even asked them to choose a video from YouTube and then try searching through it. This always had a “wow” effect on prospective investors and made the subsequent conversation more exciting and positive. Accelerators: Accelerators like Y Combinator or Techstars can add enormous value to a startup, especially in the early stages. And while it’s a great idea to apply, don’t rely on them too heavily. Applications happen only a few times a year, and you should have a foolproof fundraising plan in case you don’t get in. In our case, we just constantly looked for investors who were interested in our space (defined as enterprise SaaS more broadly), using LinkedIn, AngelList, and intros from our own network. Practice the pitch ad nauseam: Pitching is tough to get right even for seasoned pros, so it pays to practice as often as possible. We took every opportunity to perfect the pitch: attending meetups and giving the thirty-second elevator pitch to other attendees over beer and pizza, participating in startup competitions, going to conferences and exhibiting at our own booth, attending pre-accelerator programs, and pitching to friends who are in the startup world. Show an understanding of the competition: Frankly, this was one of the strongest parts of our pitch and investor conversations. If you’re in a similar space to ours, Gartner Magic Quadrants and Forrester Waves are an awesome resource, as well as sites like AlternativeTo or Capterra and G2. By thoroughly studying these resources we gained a great understanding of the industry landscape and were able to articulate our differentiation more clearly and succinctly. Presenting this visually in a coordinate system or a feature grid is, from our experience, even more effective. Remember it’s just the beginning! Getting your first round of funding is just the beginning of the journey, so it’s important to avoid euphoria and get back to building and selling the product as soon as possible. While securing funding enables you to scale the team, and is a particular relief if the founders had worked without a salary, the end goal is still to build a big, profitable, and overall awesome startup.

Innovating marketing strategies: ads crafted with AI show a 2x boost in views and an 4x rise in likes
reddit
LLM Vibe Score0
Human Vibe Score0
Bryan_JostlingThis week

Innovating marketing strategies: ads crafted with AI show a 2x boost in views and an 4x rise in likes

Hey there! Recently, me and my friends conducted a new comprehensive study comparing the effectiveness of standard video ads to AI-generated content on TikTok. Our goal was to gain insights into which type of content garnered more attention in terms of views, both organic and paid, as well as engagement rate. Study background: Imalent, known for its innovation in portable lighting and powerful flashlights, decided to use an AI video generator for creating TikTok ads. For this study, we selected three top-performing ads created by designers and three ads generated with Creatify AI. Here's a breakdown of our findings: Organic Views: The results showed that AI-powered videos outperformed standard ones by 8x in organic views: videos produced by human designers got 24K organic views, while those generated by artificial intelligence got 189K views. Paid Views: AI videos attracted twice as many views as regular ads for the same budget. Traditional ads got 115K views and AI-generated ones got 259K views. Engagement: Perhaps the most astonishing aspect of our study was the engagement metrics. AI-generated content received 7 times more saves, 4 times more likes, and twice as many comments compared to standard videos. Have you considered using AI ads to promote your brand? Share your insights and experiences below! For more data and screenshots, visit the full study here.

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist
reddit
LLM Vibe Score0
Human Vibe Score1
deadcoder0904This week

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist

Silicon Valley wants you to believe that their unicorn startups succeeded doing things legally. But that couldn't be far from truth. For starters, Airbnb used multiple Gmail accounts to spam Craigslist. "They posted unrealistically (fake) cheap rentals of beautiful apartments in places where normal rent should be 10x more. Once people replied, they auto-responded that the unit has been rented, but they should be looking for another unit on AirBnB." The Game of Blackhat is a cat-and-mouse game. You need a lot of guardrails to protect yourself from people using your Social Site by spamming their products. Craigslist is a team of 30 people. There's stuff AI can automate now with such a small team but back then, it wasn't possible. Airbnb used Craigslist as its playground to spam Craigslist visitors to grow their supply-side. In a 2-sided marketplace, growing both supply and demand is very important. And both must grow at the same time for the marketplace to work. A Blackhat Marketer created a new test site to get vacation rental owners to sign-up so that he can test his Airbnb theory. He grabbed their real email-addresses (not Craigslist anonymous addresses) via Craigslist by specifically targeting those who were advertising their vacation rentals on Craigslist. He skipped over the other categories that were directly related to AirBnB's business model because they didn't fit with the test site he built. Once he got 1000+ sign-ups, he then took it upon himself to post it to the advertising section on Craigslist. The email said this: I am emailing you because you have one of the nicest listings on Craigslist in Idaho and I want to recommend you feature it (for free) on one of the largest Idaho housing sites on the web, Airbnb. The site already has 3,000,000 pages views a month. Check it out here to list now: airbnb(dot)com Sarah Surpisingly, all emails were by ladies. He did the same in Week 2 and Week 3 to test if it wasn't a one-time thing. Surely, it wasn't a fluke. After posting 4 ads on Craigslist in 3 weeks, he received 5 identical emails from 2 ladies who were raving fans of AirBnB and spent their days emailing Craigslist advertisers. This is one of the greatest blackhat strategies used in the real world to build a billion-dollar marketplace by growing the supply-side with pure blackhat. These strategies are not mentioned in Press Interviews, Media, or any Founder stories but this is probably the most important piece of the puzzle. Without it, Airbnb probably wouldn't have survived. "Some very famous investors have alluded to the fact that they look for a dangerous streak in the entrepreneurs they invest in…and while those investors will never come out and tell you what they mean, this kind of thing is probably what they mean." It definitely violates CAN-SPAM act. Some comments from Hacker News: "CAN-SPAM, sending from a fake address (illegal headers). CA has a specific law that pre-empts CAN-SPAM that definitely makes this illegal if sent from CA." But I guess it worked in Airbnb's favour lol as they were never caught or fined until after. "It's commercial email 100%. Probably a fake sender name (illegal), against gmail ToS, against CL ToS and no unsubscribe link and no one even subscribed in the first place. 100% against CAN-SPAM." Thanks for reading. If you'd like to learn more blackhat tactics like this, check this site which is a growth hacking newsletter with real-world blackhat examples. PS: Actual emails & screenshots from the Airbnb x Craigslist spam can be found here.

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

 I just sold my startup for $200,000 after 11 months. AMA
reddit
LLM Vibe Score0
Human Vibe Score0
jeannenThis week

I just sold my startup for $200,000 after 11 months. AMA

Last August, I was looking for a startup idea I could grow and made a MVP in a week then launched it. I received the $200,000 wire from the buyer a couple of days ago I found tons of useful info online for free, so I hope this can be my way of giving back :) Here is some background: Idea I got the idea when trying to write a tweet using Google Doc's transcription tool, which was terrible. I was pretty sure I wasn't the only one too lazy to type, I made my own solution using AI to transcribe and reformat voice notes into any kind of content. I called it Talknotes, mainly because it was the only domain available lol Validation: My rule is to only reinvest what the project generates. After listing on startup directories and posting on Twitter, I generated $700 in 10 days. It wasn't much, but enough to show interest and keep me motivated. I added user-requested features, but the launch effect wore off, and daily revenues dropped to $0 after a few weeks. I almost gave up, but friends encouraged me to continue. In October, I launched on ProductHunt and it blew up. It became Product of the Day and reached $1500 MRR thanks to media coverage. I initially built everything using vanilla JS/CSS/HTML + Node for backend. But it's pretty limited for apps with lots of interactivity so, I rebuilt the app using Nuxt.js to make it easier to ship new features. Then, I launched ads on Facebook and I implemented a feedback loop: Get new users Learn about them through onboarding Make more ads based on onboarding data This doubled MRR in about 2 months. Burnout and Sale: In May, I had a bad burnout after emergency bug fixes. This made it hard to work on the app after. At this point MRR was around $7000 and total revenues around $70,0000 I listed it on Acquire.com for $200,000, a very good price for the buyer considering revenues and growth. I could've gotten $300,000 with buyer financing or earn-outs, but I wanted cash, $200,000 today is better than $300,000 in a year. Everything was smooth until we tried using Escrow, which almost fucked up the deal (details here). Long story short, had to threaten them to make a sponsored post on Twitter explaining what they did + legal action. They sent the refund the very next day, and we completed the transfer directly. Now, this isn't an overnight success. It's the result of 7 years of grind. I launched over 40 projects since I started, and most of them failed. I often worked 100 hours per week, and I rarely go out or meet many people. It's not for everyone, but I'm fine with it With the profit from the app + sale, and other projects, I have close to 1/3 of a million dollar. I could retire in Asia if I wanted Just mind blowing to think I wrote funny characters in a code editor and sold it for the price of a house lol Edit 1: A few people got confused. I said it's 7 years of grind and most of my projects failed, not that I was not making money. I also said I OFTEN worked 100h/week, not every week :) Since I learned to code 2 years ago I've made close to $400k from my app's profit + exit (this one + another one for $65k last year). And before that I was making money as a marketing freelancer. Also, I dropped after high-school, so, I had to learn everything from scratch, it takes time! Edit 2: Lots of people asked how/where I learned to code in 2 months. I wrote a blog/journal about it back then with links to resources, you can find it here if you're interested

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist
reddit
LLM Vibe Score0
Human Vibe Score1
deadcoder0904This week

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist

Silicon Valley wants you to believe that their unicorn startups succeeded doing things legally. But that couldn't be far from truth. For starters, Airbnb used multiple Gmail accounts to spam Craigslist. "They posted unrealistically (fake) cheap rentals of beautiful apartments in places where normal rent should be 10x more. Once people replied, they auto-responded that the unit has been rented, but they should be looking for another unit on AirBnB." The Game of Blackhat is a cat-and-mouse game. You need a lot of guardrails to protect yourself from people using your Social Site by spamming their products. Craigslist is a team of 30 people. There's stuff AI can automate now with such a small team but back then, it wasn't possible. Airbnb used Craigslist as its playground to spam Craigslist visitors to grow their supply-side. In a 2-sided marketplace, growing both supply and demand is very important. And both must grow at the same time for the marketplace to work. A Blackhat Marketer created a new test site to get vacation rental owners to sign-up so that he can test his Airbnb theory. He grabbed their real email-addresses (not Craigslist anonymous addresses) via Craigslist by specifically targeting those who were advertising their vacation rentals on Craigslist. He skipped over the other categories that were directly related to AirBnB's business model because they didn't fit with the test site he built. Once he got 1000+ sign-ups, he then took it upon himself to post it to the advertising section on Craigslist. The email said this: I am emailing you because you have one of the nicest listings on Craigslist in Idaho and I want to recommend you feature it (for free) on one of the largest Idaho housing sites on the web, Airbnb. The site already has 3,000,000 pages views a month. Check it out here to list now: airbnb(dot)com Sarah Surpisingly, all emails were by ladies. He did the same in Week 2 and Week 3 to test if it wasn't a one-time thing. Surely, it wasn't a fluke. After posting 4 ads on Craigslist in 3 weeks, he received 5 identical emails from 2 ladies who were raving fans of AirBnB and spent their days emailing Craigslist advertisers. This is one of the greatest blackhat strategies used in the real world to build a billion-dollar marketplace by growing the supply-side with pure blackhat. These strategies are not mentioned in Press Interviews, Media, or any Founder stories but this is probably the most important piece of the puzzle. Without it, Airbnb probably wouldn't have survived. "Some very famous investors have alluded to the fact that they look for a dangerous streak in the entrepreneurs they invest in…and while those investors will never come out and tell you what they mean, this kind of thing is probably what they mean." It definitely violates CAN-SPAM act. Some comments from Hacker News: "CAN-SPAM, sending from a fake address (illegal headers). CA has a specific law that pre-empts CAN-SPAM that definitely makes this illegal if sent from CA." But I guess it worked in Airbnb's favour lol as they were never caught or fined until after. "It's commercial email 100%. Probably a fake sender name (illegal), against gmail ToS, against CL ToS and no unsubscribe link and no one even subscribed in the first place. 100% against CAN-SPAM." Thanks for reading. If you'd like to learn more blackhat tactics like this, check this site which is a growth hacking newsletter with real-world blackhat examples. PS: Actual emails & screenshots from the Airbnb x Craigslist spam can be found here.

I sold my AI tool for $35,000
reddit
LLM Vibe Score0
Human Vibe Score1
marclouvThis week

I sold my AI tool for $35,000

Hey Entrepreneurs, Marc here. Last month I wrote here about how sold a habit tracker for $10,000 in October. Earlier this month, I got $35,000 in my bank account after selling a landing page maker with AI. Here's the story: &#x200B; April 2023: Just like everyone, I get massive FOMO with AI. I played with GPT and decided to build a landing page generator with AI: Input text and the AI prefills a template with copy and AI-generated images. I'm working on it with a good friend of mine named Martin. May: The product is called LandingAI. It's an MVP but we launched and made \~$8,000. Unfortunately, Martin and I had different visions for the project so we forked. &#x200B; June: LandingAI is the name of a big corp (bummer) so I rebranded it to MakeLanding. I ditch 90% of the code because users want a very different product: So here I am, building an entire website builder powered with AI... &#x200B; July: I launched again, but made a BIG mistake: I swapped the one-time payment for a monthly subscription and got $20 MRR for 15k visitors... If you can avoid subscriptions, do it New pricing means new positioning—users compared the app to Framer & Webflow August: I removed the subscription and sales came back: \~$7,000 in 3 months. But I realized this was going nowhere... September: I don't use the product The market is gigantic and crowded As a solopreneur, nothing is more important for me than building cool stuff for people I care about. And I didn't really care about this big market so... October: I called my friend Dan and he said: SELL. He was right. I bought my shares of LandingAI from Martin and listed MakeLanding on Acquire: Asking $38,000 for $14,000 TTM (3x profit) Within hours, I received dozens of NDAs and a buyer started the process 🤯 After a few weeks of NDA, LOI, Escrow, etc. the buyer sent the money but... Only a fraction of the transaction. Then he ghosted me. So I canceled the transition. Back to Acquire... Luckily, in 24 hours I got another buyer! &#x200B; November: Within weeks, the money was in my bank account. The buyer and I never called, just a few messages. It's mind-blowing. &#x200B; My takeaways: Don't build AI products just because Don't go on a massive market you don't care Sell if you don't know how to grow the product It's my 3rd acquisition this year. I love the freedom of build, sell, repeat.

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist
reddit
LLM Vibe Score0
Human Vibe Score1
deadcoder0904This week

Secret behind Airbnb's Billion-Dollar Empire? Spamming Craigslist

Silicon Valley wants you to believe that their unicorn startups succeeded doing things legally. But that couldn't be far from truth. For starters, Airbnb used multiple Gmail accounts to spam Craigslist. "They posted unrealistically (fake) cheap rentals of beautiful apartments in places where normal rent should be 10x more. Once people replied, they auto-responded that the unit has been rented, but they should be looking for another unit on AirBnB." The Game of Blackhat is a cat-and-mouse game. You need a lot of guardrails to protect yourself from people using your Social Site by spamming their products. Craigslist is a team of 30 people. There's stuff AI can automate now with such a small team but back then, it wasn't possible. Airbnb used Craigslist as its playground to spam Craigslist visitors to grow their supply-side. In a 2-sided marketplace, growing both supply and demand is very important. And both must grow at the same time for the marketplace to work. A Blackhat Marketer created a new test site to get vacation rental owners to sign-up so that he can test his Airbnb theory. He grabbed their real email-addresses (not Craigslist anonymous addresses) via Craigslist by specifically targeting those who were advertising their vacation rentals on Craigslist. He skipped over the other categories that were directly related to AirBnB's business model because they didn't fit with the test site he built. Once he got 1000+ sign-ups, he then took it upon himself to post it to the advertising section on Craigslist. The email said this: I am emailing you because you have one of the nicest listings on Craigslist in Idaho and I want to recommend you feature it (for free) on one of the largest Idaho housing sites on the web, Airbnb. The site already has 3,000,000 pages views a month. Check it out here to list now: airbnb(dot)com Sarah Surpisingly, all emails were by ladies. He did the same in Week 2 and Week 3 to test if it wasn't a one-time thing. Surely, it wasn't a fluke. After posting 4 ads on Craigslist in 3 weeks, he received 5 identical emails from 2 ladies who were raving fans of AirBnB and spent their days emailing Craigslist advertisers. This is one of the greatest blackhat strategies used in the real world to build a billion-dollar marketplace by growing the supply-side with pure blackhat. These strategies are not mentioned in Press Interviews, Media, or any Founder stories but this is probably the most important piece of the puzzle. Without it, Airbnb probably wouldn't have survived. "Some very famous investors have alluded to the fact that they look for a dangerous streak in the entrepreneurs they invest in…and while those investors will never come out and tell you what they mean, this kind of thing is probably what they mean." It definitely violates CAN-SPAM act. Some comments from Hacker News: "CAN-SPAM, sending from a fake address (illegal headers). CA has a specific law that pre-empts CAN-SPAM that definitely makes this illegal if sent from CA." But I guess it worked in Airbnb's favour lol as they were never caught or fined until after. "It's commercial email 100%. Probably a fake sender name (illegal), against gmail ToS, against CL ToS and no unsubscribe link and no one even subscribed in the first place. 100% against CAN-SPAM." Thanks for reading. If you'd like to learn more blackhat tactics like this, check this site which is a growth hacking newsletter with real-world blackhat examples. PS: Actual emails & screenshots from the Airbnb x Craigslist spam can be found here.

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

How to increase the sales of my book
reddit
LLM Vibe Score0
Human Vibe Score1
danonino80This week

How to increase the sales of my book

In just 3 months, it generated over $100 in revenue. I wanted to share my journey for two reasons: to potentially assist others in self-publishing their own books and to receive feedback to enhance my marketing strategy. I envision that there are others facing similar challenges. Let's dive into the financials, time spent, Key takeaways and the Challenges to address behind this product. Finances First, let's take a look at the financial overview. 💳 Expenses 🔹 E-book creation: · Book cover: $ 0. I used Adobe Express with 30 days of free trial. · ChatGPT: 20 $ a month. I leveraged AI to generate the chapters of the book, ensuring that no critical topics were overlooked during the content creation process and to refine the English, as it's not my native language. I also used to help me with copywriting of the web. If anyone is interested, I can share my Python code for outlining the chapters calling the API, but you can also directly ask chatgpt. · Kindle KDP (Kindle Direct Publishing): order author copies: 10 $. 🔹 Web creation: Domain: I got a com) / .org /.net domain for just 1 $ the first year. Carrd.co subscription: 19 $ (1 year) 🔹 Marketing: Promoted post on reddit: $30 Paid ads with google ads: $30 💰 Revenue 🔸 Sales: $102 💸 Net Profit: \~- $ 18 I initially thought the sales for this e-book would be quite modest, maybe only 3 or 4 books. However, the fact that I've sold more than that so far is a pleasant surprise. Even though the overall numbers may still be considered "peanuts" in the grand scheme of book sales, it suggests there could be more demand for content on digital asset custody than I had originally anticipated. This is a good learning experience, and I'll look to refine my marketing approach to see if I can reach a wider audience interested in this topic 🔹 Time Spent Next, let's review the time invested. 📖 Writing the e-book: 40 hours 🌍 Website + Stripe integration: 10 hours 📣 Creating promotional content: 10 hours ⏱️ Additional marketing efforts: 5 hours Total time spent: 65 hours As you can see, I dedicated more time to writing the e-book itself than to marketing and distribution. I spent relevant time to marketing because I though that a successful product launch requires a robust marketing effort. Many e-book authors overlook this crucial aspect! I utilized three sales channels: · Amazon: I found that there were no books specifically about digital asset custody, resulting in strong positioning in Amazon searches. Additionally, my book immediately secured the top position in Google searches for "digital asset custody book." However, despite achieving 50% of sales in the UK, I have not received any reviews globally. Sales distribution for this channel: 20% physical book, 80% ebook. · Twitter: Daniel\_ZZ80. With only 46 followers, the performance on this platform has not been optimal. I am beginning to write posts related to digital assets to increase visibility. · Gumroad: Lockeyyy.gumroad.com. I offered a discounted version of the ebook, but have not yet made any sales through this channel. Key takeaways: · The process of creating this e-book was extremely fulfilling, and while it has garnered overwhelmingly positive feedback from friends and colleagues (not considered as sales), it has yet to receive any Amazon reviews ☹. · Kindle KDP proved to be ideal for a rapid go-to-market strategy. · AI is an excellent tool for generating ideas and providing access to global audiences with perfect grammar. Otherwise, I would need to hire a translator, which can be very expensive. · Despite offering a full 30-day money-back guarantee, leading me to believe that the quality of the content is indeed good. · I have gained valuable insights for future technical books. · Although the current financial balance may be negative, I anticipate reaching the break-even point within one month, and this has now become a passive income stream. However, I recognize the need to regularly update the content due to the rapidly changing nature of this field. Challenges to address: · Is the timing for launching this book appropriate? In other words, is the world of digital asset custody a trendy and interesting topic for the audience? · What is causing the lack of sales through Gumroad? · Should I seek assistance as my marketing efforts have not yielded results? · Why are there no reviews on Amazon? · Why are sales primarily concentrated in the EU with only one sale in the US, which is my main target market? Feedback is appreciated. If you're interested in learning more about my approach, feel free to send me a direct message. A bit about my background: After dedicating my entire career to the banking industry, I explored various side projects. As an IT professional, I have now transitioned into the digital asset realm. After three years of intensive study, I recently published my first book on digital asset custody. I hope you found this post informative. Cheers! P.S.: I'm currently in the process of launching two more books using this system. 😊

How to increase the sales of my book
reddit
LLM Vibe Score0
Human Vibe Score1
danonino80This week

How to increase the sales of my book

In just 3 months, it generated over $100 in revenue. I wanted to share my journey for two reasons: to potentially assist others in self-publishing their own books and to receive feedback to enhance my marketing strategy. I envision that there are others facing similar challenges. Let's dive into the financials, time spent, Key takeaways and the Challenges to address behind this product. Finances First, let's take a look at the financial overview. 💳 Expenses 🔹 E-book creation: · Book cover: $ 0. I used Adobe Express with 30 days of free trial. · ChatGPT: 20 $ a month. I leveraged AI to generate the chapters of the book, ensuring that no critical topics were overlooked during the content creation process and to refine the English, as it's not my native language. I also used to help me with copywriting of the web. If anyone is interested, I can share my Python code for outlining the chapters calling the API, but you can also directly ask chatgpt. · Kindle KDP (Kindle Direct Publishing): order author copies: 10 $. 🔹 Web creation: Domain: I got a com) / .org /.net domain for just 1 $ the first year. Carrd.co subscription: 19 $ (1 year) 🔹 Marketing: Promoted post on reddit: $30 Paid ads with google ads: $30 💰 Revenue 🔸 Sales: $102 💸 Net Profit: \~- $ 18 I initially thought the sales for this e-book would be quite modest, maybe only 3 or 4 books. However, the fact that I've sold more than that so far is a pleasant surprise. Even though the overall numbers may still be considered "peanuts" in the grand scheme of book sales, it suggests there could be more demand for content on digital asset custody than I had originally anticipated. This is a good learning experience, and I'll look to refine my marketing approach to see if I can reach a wider audience interested in this topic 🔹 Time Spent Next, let's review the time invested. 📖 Writing the e-book: 40 hours 🌍 Website + Stripe integration: 10 hours 📣 Creating promotional content: 10 hours ⏱️ Additional marketing efforts: 5 hours Total time spent: 65 hours As you can see, I dedicated more time to writing the e-book itself than to marketing and distribution. I spent relevant time to marketing because I though that a successful product launch requires a robust marketing effort. Many e-book authors overlook this crucial aspect! I utilized three sales channels: · Amazon: I found that there were no books specifically about digital asset custody, resulting in strong positioning in Amazon searches. Additionally, my book immediately secured the top position in Google searches for "digital asset custody book." However, despite achieving 50% of sales in the UK, I have not received any reviews globally. Sales distribution for this channel: 20% physical book, 80% ebook. · Twitter: Daniel\_ZZ80. With only 46 followers, the performance on this platform has not been optimal. I am beginning to write posts related to digital assets to increase visibility. · Gumroad: Lockeyyy.gumroad.com. I offered a discounted version of the ebook, but have not yet made any sales through this channel. Key takeaways: · The process of creating this e-book was extremely fulfilling, and while it has garnered overwhelmingly positive feedback from friends and colleagues (not considered as sales), it has yet to receive any Amazon reviews ☹. · Kindle KDP proved to be ideal for a rapid go-to-market strategy. · AI is an excellent tool for generating ideas and providing access to global audiences with perfect grammar. Otherwise, I would need to hire a translator, which can be very expensive. · Despite offering a full 30-day money-back guarantee, leading me to believe that the quality of the content is indeed good. · I have gained valuable insights for future technical books. · Although the current financial balance may be negative, I anticipate reaching the break-even point within one month, and this has now become a passive income stream. However, I recognize the need to regularly update the content due to the rapidly changing nature of this field. Challenges to address: · Is the timing for launching this book appropriate? In other words, is the world of digital asset custody a trendy and interesting topic for the audience? · What is causing the lack of sales through Gumroad? · Should I seek assistance as my marketing efforts have not yielded results? · Why are there no reviews on Amazon? · Why are sales primarily concentrated in the EU with only one sale in the US, which is my main target market? Feedback is appreciated. If you're interested in learning more about my approach, feel free to send me a direct message. A bit about my background: After dedicating my entire career to the banking industry, I explored various side projects. As an IT professional, I have now transitioned into the digital asset realm. After three years of intensive study, I recently published my first book on digital asset custody. I hope you found this post informative. Cheers! P.S.: I'm currently in the process of launching two more books using this system. 😊

Is the idea of simplifying long 10,000+ word research articles into under 100 words of key findings with a case study a good approach?
reddit
LLM Vibe Score0
Human Vibe Score1
PresentationHot3332This week

Is the idea of simplifying long 10,000+ word research articles into under 100 words of key findings with a case study a good approach?

During a visit to a top Indian university few year back, I noticed students creating extensive research papers that ended up in dusty, cobwebbed cupboards. Surprisingly, only 1% of this research was ever implemented. Most students moved on to higher education or high-paying jobs, leaving their work behind. Only a few received grants to continue their research. This experience highlighted how much valuable knowledge was being wasted, hidden away and unused. (To give you a context, there are many products in the world have already comes from research based finding - few examples are - VR headset, Zipper packages and etc) Problem: There are over 200 million research articles online, but many valuable ideas and solutions are overlooked. Finding, uploading, and summarizing these articles is difficult and time-consuming.(Even using AI - we need some kind of human intervention to simplifying in terms of data visualization) Solution: Create a simple platform, like a Twitter page, to share key findings from long research articles. Use AI tools to help summarize the articles, while humans curate and verify the information. This would make it easier for people to find existing solutions to problems without having to read through long papers. Users can still explore the full articles if they want more details. Opportunity - This can be great for people, teams or business that want to work on problem which is yet to executed or referenced in real world.

aion
github
LLM Vibe Score0.494
Human Vibe Score0.011340905117109681
aionnetworkFeb 28, 2025

aion

Aion Mainstream adoption of blockchains has been limited because of scalability, privacy, and interoperability challenges. Aion is a multi-tier blockchain network designed to address these challenges. Core to our hypothesis is the idea that many blockchains will be created to solve unique business challenges within unique industries. As such, the Aion network is designed to support custom blockchain architectures while providing a trustless mechanism for cross-chain interoperability. The Aion White Papers provides more details regarding our design and project roadmap. This repository contains the main (Java) kernel implementation and releases for the Aion Network. System Requirements Ubuntu 16.04 or a later version Getting Started Blockchain node concept To understand what is blockchain kernel: Node overview Developers If you're interested in building Open Applications, powered by Aion: Visit the Developer site of The Open Application Network : developer.theoan.com If you're interested in making improvements to the Java Implementation of Aion: Refer to the Build Aion kernel from source wiki for information on building this source code to a native binary or Docker image Refer to the Installation wiki for a guide on installing and configuring the kernel. The Owner's Manual wiki will include further instructions and details on working with the kernel. Please refer to the wiki pages for further documentation on mining/validating, using the Web3 API, command line options, etc. Miners/Validators If you're interested in being a validator on the Aion networks, refer to our Validator Docs Users If you're interested in interacting with dApps and using Aion, refer to our Aion Desktop Wallet Docs FAQ Where can I store my Aion? We recommend using the web-based Aion Wallet; more information can be found in “Docs”). Where can I stake my Aion? You can use the original staking interface which has support for staking pool operators, or the web-based Aion Wallet. Where can I check on a transaction on The Open Application Network? You can visit either the web-based Aion Wallet or the Aion Dashboard to view a transaction on the network. Where can I see the current network performance of The Open Application Network? You can visit the Aion Dashboard to see how the Open Application Network is performing. What should I do if the desktop wallet or the web based wallet are not functioning properly? First check in with the community on the community subreddit. If the community is not able to assist then you can submit a ticket through Github. The Open Application Network is currently providing support to help maintain the network; where can I see the funds that The Open Application Network has mined or received as a stake reward? All funds mined or rewarded for staking that the foundation receives are burned to this address: 0x0000000000000000000000000000000000000000000000000000000000000000 users can check the totals burned via the Aion Dashboard here. What is the total circulating supply of Aion? To view the current total circulating supply of Aion you can use the Aion Watch tool located here. Which networks are supported? The Mainnet network is supported. To view the dashboards for this networks use these links: Mainnet How can I export a list of my transactions? If you would like to download a copy of your transaction history you can use https://mainnet.theoan.com and search for your public address. In the bottom right of your screen is a “Download this Account” button which will allow you to select a date range and download a .csv file containing your transactions. Where can I access a copy of The OAN and Aion Brand Guidelines? The OAN and Aion Brand Guidelines can be located here they can be used by the community to create brand aligned content. My Ledger doesn’t seem to be recognized with applications in the Chrome Browser (Staking Interface or Wallet) When using your Ledger hardware wallet with Aion installed to access an account VIA the Chrome browser, users will need to enable the Aion contract on their Ledger device. This can be done by selecting: Aion > Setting > enable Contract. What happened to the Aiwa chrome extension wallet? Aiwa was owned and operated by a third-party organization called BlockX Labs, Aiwa was funded by a community grant during its lifespan. However, BlockX Labs is now reorganizing and will no longer support Aiwa. Usage of Aiwa has decreased significantly with other tools such as the web based wallet now available so the decision was made to deprecate it. I am unable to undelegate my staked Aion In order to undelegate your Aion: – You must have a sufficient Aion balance to perform the undelegation transaction (a minimum of 0.02 Aion is required for the transaction fee) – Your balance will be updated after a lock-up period of 8640 blocks (approximately 24 hours) – Ensure the amount follows this format: 999,999,999.999999999 – If you are using a ledger, please ensure that your firmware is up to date. – If you are using the desktop interface, ensure that you are using the latest version – For more information view this guide What happened to the swap process to convert ERC-20 Aion to the mainnet? As of January 31, 2022 swapping from ERC20 to Aion mainnet is no longer supported. The original Aion token swap from Ethereum to Aion was completed on December 10, 2018. However, in order to support the community members who missed the original swap deadline a manual process was available, this process has now been retired. Community Channels Newsfeed: @AionNewsfeed Info Bot: @AionTGbot Wiki: reddit.com/r/AionNetwork/Wiki Help Desk: https://helpdesk.theoan.com/ Contact To keep up to date and stay connected with current progress and development, reach out to us on the following channels: Aion Telegram Dispatch Alerts Aion on Twitter Aion Blog License Aion is released under the MIT license

llc-intro-to-ai-master
github
LLM Vibe Score0.425
Human Vibe Score0.030325886688162138
canadalearningcodeFeb 19, 2025

llc-intro-to-ai-master

Ladies Learning Code Introduction to Artificial Intelligence and Machine Learning Quick Links Preview Slides: https://ladieslearningcode.github.io/llc-intro-to-ai-master/slides.html Special Note for Instructors The dataiku platform will need to be activated ahead of time. If you haven't received a custom bitly link via email already, please let us know at content@canadalearningcode.ca and we'll set one up for you. Attributions Content created by Parinaz Sobhani for Canada Learning Code. Slide presentation created by Christina Truong for Canada Learning Code. Email questions & comments to content@canadalearningcode.ca. If you'd like to contribute to future lesson content development, let us know here. We're really happy to see others leverage our content in their community - we’ve developed it to be used by others with attribution through a Creative Commons (CC BY-NC 4.0) license. Here’s an easy way to attribute content back to us - please include it wherever you use or make reference to our content. “Please note that this is not a Canada Learning Code affiliated event, but we want to acknowledge the organization for the creation of the content [INSERT LINK TO GITHUB LINK] being delivered under Creative Commons license" Contributing Our general Rule of Thumb is that it's okay to add examples if you feel it could provide more context for your community. However, we ask that instructors do not remove anything, as the content is designed with intention, whether that be meeting specific learning objectives, or maintaining our organization’s culture through the design. Any suggestions for revisions or updates can be submitted in Github via issues and pull requests. If submitting an issue, please include the slide number(s) in the title.