VibeBuilders.ai Logo
VibeBuilders.ai
ai-learning-roadmap

ai-learning-roadmap

gopala-kr
November 30, 2024
github

Lists of all AI related learning materials and practical tools to get started with AI apps


Design Thinking – An Introduction


Amazon Web Services Learning Material

  • AWS AI Session– The session provides an overview of all Amazon AI technology offerings (Lex, Polly, Rekognition, ML, and Deep Learning AMI)

Self-Paced Labs

AWS self-paced labs provide hands-on practice in a live AWS environment with AWS services and real-world cloud scenarios. Follow step-by-step instructions to learn a service, practice a use case, or prepare for AWS Certification.

Introductory Lab

Lex

Polly

Rekognition

Machine Learning

Recommended Additional Resources

Take your skills to the next level with fundamental, advanced, and expert level labs.


Google Cloud - Learning Material

Below is the learning material that will help you learn about Google Cloud.

Network

The codelab provides common cloud developer experience as follows:

  • Set up your lab environment and learn how to work with your GCP environment.
  • Use of common open source tools to explore your network around the world.
  • Deploy a common use case: use of HTTP Load Balancing and Managed Instance Groups to host a scalable, multi-region web server.
  • Testing and monitoring your network and instances.
  • Cleanup.

Developing Solutions for Google Cloud Platform – 8 hours

Infrastructure

Data

AI, Big Data & Machine Learning

Additional AI Materials

(Optional) Deep Learning & Tensorflow

Additional Reference Material


IBM Watson Learning Material

(Contributions are welcome in this space)

Visual Studio

UCI datasets


Microsoft Chat Bots Learning Material

Skills Prerequisite

  • Git and Github
  • NodeJS
  • VS Code IDE

Training Paths

If you have the above Prerequisite skills, then take Advanced Training Path else take Novice Training Path.

Prerequisite Tutorials

Novice Training Path

Environment Set Up

Cognitive Services (Defining Intelligence)

Bot Framework (Building Chat Bots)

  • Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras
  • Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) -
  • Setup local environment and run emulator from the installed Bot Education project – \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md
  • Review and test in the emulator the “bot-hello” from \bot-education\Student-Resources\BOTs\Node\bot-hello

Advanced Training Path

Environment Set Up

Cognitive Services (Defining Intelligence)

Bot Framework (Building Chat Bots)

  • Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras
  • Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) -
  • Setup local environment and run emulator from the installed Bot Education project – \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md

Cognitive Services (Defining Intelligence) - Labs

  • Complete the NLP (LUIS) Training Lab from the installed BOT Education project
    • \bot-education\Student-Resources\Labs\CognitiveServices\Lab_SetupLanguageModel.md
  • Review, Deploy and run the LUIS BOT sample

Bot Framework (Building Chat Bots) – Labs

  • Setup local environment and run emulator from the installed Bot Education project
    • \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md
  • Review and test in the emulator the “bot-hello” from
    • \bot-education\Student-Resources\BOTs\Node\bot-hello
  • Review and test in the emulator the “bot-recognizers” from
    • \bot-education\Student-Resources\BOTs\Node\bot-recognizers

Lecture Videos

Source Berkeley

    **Lecture Title****Lecturer**Semester
    
      Lecture 1
      [Introduction](https://www.youtube.com/watch?feature=player_embedded&v=J6PBD-wNEDs)
      Dan Klein
      Fall 2012

      Lecture 2
      [Uninformed Search](https://www.youtube.com/watch?feature=player_embedded&v=afwPe_OqPX0)
      Dan Klein
      Fall 2012

      Lecture 3
      [Informed Search](https://www.youtube.com/watch?feature=player_embedded&v=OGcG4jSKOVA)
      Dan Klein
      Fall 2012

      Lecture 4
      [Constraint Satisfaction Problems I](https://www.youtube.com/watch?feature=player_embedded&v=hegL0V4ckco)
      Dan Klein
      Fall 2012

      Lecture 5
      [Constraint Satisfaction Problems II](https://www.youtube.com/watch?feature=player_embedded&v=LajAWn51HmE)
      Dan Klein
      Fall 2012

      Lecture 6
      [Adversarial Search](https://www.youtube.com/watch?feature=player_embedded&v=cwbjLIahbv8)
      Dan Klein
      Fall 2012

      Lecture 7
      [Expectimax and Utilities](https://www.youtube.com/watch?feature=player_embedded&v=GevK0-9n24g)
      Dan Klein
      Fall 2012

      Lecture 8
      [Markov Decision Processes I](https://www.youtube.com/watch?feature=player_embedded&v=wKx4MuLfe0M)
      Dan Klein
      Fall 2012

      Lecture 9
      [Markov Decision Processes II](https://www.youtube.com/watch?feature=player_embedded&v=2M7mv4-BPCg)
      Dan Klein
      Fall 2012

      Lecture 10
      [Reinforcement Learning I](https://www.youtube.com/watch?feature=player_embedded&v=hsz0zq6AXGE)
      Dan Klein
      Fall 2012

      Lecture 11
      [Reinforcement Learning II](https://www.youtube.com/watch?feature=player_embedded&v=R0vTZp0ve4s)
      Dan Klein
      Fall 2012

      Lecture 12
      [Probability](https://www.youtube.com/watch?v=cFtXkaLog5A)
      Pieter Abbeel
      Spring 2014

      Lecture 13
      [Markov Models](https://www.youtube.com/watch?v=Nxkapm7QlNw)
      Pieter Abbeel
      Spring 2014

      Lecture 14
      [Hidden Markov Models](https://www.youtube.com/watch?v=OdQoRGRPmj8)
      Dan Klein
      Fall 2013

      Lecture 15
      [Applications of HMMs / Speech](https://www.youtube.com/watch?v=KBg97801U40)
      Pieter Abbeel
      Spring 2014

      Lecture 16
      [Bayes' Nets: Representation](https://www.youtube.com/watch?v=gMQZq2O8yDA)
      Pieter Abbeel
      Spring 2014

      Lecture 17
      [Bayes' Nets: Independence](https://www.youtube.com/watch?v=9OajWBYRhRU)
      Pieter Abbeel
      Spring 2014

      Lecture 18
      [Bayes' Nets: Inference](https://www.youtube.com/watch?v=y9jdsPNsU_Q)
      Pieter Abbeel
      Spring 2014

      Lecture 19
      [Bayes' Nets: Sampling](https://www.youtube.com/watch?v=ogYaTTRguIw)
      Pieter Abbeel
      Fall 2013

      Lecture 20
      [Decision Diagrams / Value of Perfect Information](https://www.youtube.com/watch?v=VL_IAzfC2uk)
      Pieter Abbeel
      Spring 2014

      Lecture 21
      [Machine Learning: Naive Bayes](https://www.youtube.com/watch?v=_pe60buCnxE)
      Nicholas Hay
      Spring 2014

      Lecture 22
      [Machine Learning: Perceptrons](https://www.youtube.com/watch?v=HEFfs1KCph4)
      Pieter Abbeel
      Spring 2014

      Lecture 23
      [Machine Learning: Kernels and Clustering](https://www.youtube.com/watch?v=H9DUTH9lCfg)
      Pieter Abbeel
      Spring 2014

      Lecture 24
      [Advanced Applications: NLP, Games, and Robotic Cars](https://www.youtube.com/watch?v=sMKptCC-x_o)
      Pieter Abbeel
      Spring 2014

      Lecture 25
      [Advanced Applications: Computer Vision and Robotics](https://www.youtube.com/watch?v=WZqtZ8RDVs8)
      Pieter Abbeel
      Spring 2014

Additionally, there are additional Step-By-Step videos which supplement the lecture's materials. These videos are listed below:

    **Lecture Title****Lecturer**Notes
    
      SBS-1
      [DFS and BFS](https://www.youtube.com/watch?v=cXZKV7K5v3E)
      Pieter Abbeel
      Lec: Uninformed Search

      SBS-2
      [A* Search](https://www.youtube.com/watch?v=g0MJRpquEOk)
      Pieter Abbeel
      Lec: Informed Search

      SBS-3
      [Alpha-Beta Pruning](https://www.youtube.com/watch?v=jvpWtwVSvjA)
      Pieter Abbeel
      Lec: Adversarial Search

      SBS-4
      [D-Separation](https://www.youtube.com/watch?v=_R_RYn5KelA)
      Pieter Abbeel
      Lec: Bayes' Nets: Independence

      SBS-5
      [Elimination of One Variable](https://www.youtube.com/watch?v=-Y-XiO9VeLQ)
      Pieter Abbeel
      Lec: Bayes' Nets: Inference

      SBS-6
      [Variable Elimination](https://www.youtube.com/watch?v=4-Cr_Lv9Sr4)
      Pieter Abbeel
      Lec: Bayes' Nets: Inference

      SBS-7
      [Sampling](https://www.youtube.com/watch?v=Q6NzkeUvj2I)
      Pieter Abbeel
      Lec: Bayes' Nets: Sampling

SBS-8 Gibbs' Sampling Michael Liang Lec: Bayes' Nets: Sampling -->

      SBS-8
      [Maximum Likelihood](https://www.youtube.com/watch?v=b2g88r69vPI)
      Pieter Abbeel
      Lec: Machine Learning: Naive Bayes

      SBS-9
      [Laplace Smoothing](https://www.youtube.com/watch?v=VkBytl_Qmt8)
      Pieter Abbeel
      Lec: Machine Learning: Naive Bayes

      SBS-10
      [Perceptrons](https://www.youtube.com/watch?v=mH4QSs5IGao)
      Pieter Abbeel
      Lec: Machine Learning: Perceptrons

******************

Per-Semester Video Archive(Berkeley)

The lecture videos from the most recent offerings are posted below.

  [Spring 2014 Lecture Videos](#Spring2014)

  [Fall 2013 Lecture Videos](#Fall2013)

  [Spring 2013 Lecture Videos](#Spring2013)

  [Fall 2012 Lecture Videos](#Fall2012)

Spring 2014

    **Lecture Title****Lecturer**Notes
    
      Lecture 1
      [Introduction](https://www.youtube.com/watch?v=W1S-HSakPTM)
      Pieter Abbeel

      Lecture 2
      [Uninformed Search](https://www.youtube.com/watch?v=bSv4CWMTeR0)
      Pieter Abbeel

      Lecture 3
      [Informed Search](https://www.youtube.com/watch?v=8pTjoFiICg8)
      Pieter Abbeel

      Lecture 4
      [Constraint Satisfaction Problems I](https://www.youtube.com/watch?v=Hv_JlWld9iQ)
      Pieter Abbeel
      Recording is a bit flaky, see Fall 2013 Lecture 4 for alternative

      Lecture 5
      [Constraint Satisfaction Problems II](https://www.youtube.com/watch?v=kYVSOLX_t84)
      Pieter Abbeel

      Lecture 6
      [Adversarial Search](https://www.youtube.com/watch?v=1KTCoQRWKOE)
      Pieter Abbeel

      Lecture 7
      [Expectimax and Utilities](https://www.youtube.com/watch?v=jaFRyzp7yWw)
      Pieter Abbeel

      Lecture 8
      [Markov Decision Processes I](https://www.youtube.com/watch?v=Oxqwwnm_x0s)
      Pieter Abbeel

      Lecture 9
      [Markov Decision Processes II](https://www.youtube.com/watch?v=6pBvbLyn6fE)
      Pieter Abbeel

      Lecture 10
      [Reinforcement Learning I](https://www.youtube.com/watch?v=IXuHxkpO5E8)
      Pieter Abbeel

      Lecture 11
      [Reinforcement Learning II](https://www.youtube.com/watch?v=yNeSFbE1jdY)
      Pieter Abbeel

      Lecture 12
      [Probability](https://www.youtube.com/watch?v=cFtXkaLog5A)
      Pieter Abbeel

      Lecture 13
      [Markov Models](https://www.youtube.com/watch?v=Nxkapm7QlNw)
      Pieter Abbeel

      Lecture 14
      [Hidden Markov Models](https://www.youtube.com/watch?v=XFgdo4czYs4)
      Pieter Abbeel
      Recording is a bit flaky, see Fall 2013 Lecture 18 for alternative

      Lecture 15
      [Applications of HMMs / Speech](https://www.youtube.com/watch?v=KBg97801U40)
      Pieter Abbeel

      Lecture 16
      [Bayes' Nets: Representation](https://www.youtube.com/watch?v=gMQZq2O8yDA)
      Pieter Abbeel

      Lecture 17
      [Bayes' Nets: Independence](https://www.youtube.com/watch?v=9OajWBYRhRU)
      Pieter Abbeel

      Lecture 18
      [Bayes' Nets: Inference](https://www.youtube.com/watch?v=y9jdsPNsU_Q)
      Pieter Abbeel

      Lecture 19
      Bayes' Nets: Sampling
      Pieter Abbeel
      Unrecorded, see Fall 2013 Lecture 16

      Lecture 20
      [Decision Diagrams / Value of Perfect Information](https://www.youtube.com/watch?v=VL_IAzfC2uk)
      Pieter Abbeel

      Lecture 21
      [Machine Learning: Naive Bayes](https://www.youtube.com/watch?v=_pe60buCnxE)
      Nicholas Hay

      Lecture 22
      [Machine Learning: Perceptrons](https://www.youtube.com/watch?v=HEFfs1KCph4)
      Pieter Abbeel

      Lecture 23
      [Machine Learning: Kernels and Clustering](https://www.youtube.com/watch?v=H9DUTH9lCfg)
      Pieter Abbeel

      Lecture 24
      [Advanced Applications: NLP, Games, and Robotic Cars](https://www.youtube.com/watch?v=sMKptCC-x_o)
      Pieter Abbeel

      Lecture 25
      [Advanced Applications: Computer Vision and Robotics](https://www.youtube.com/watch?v=WZqtZ8RDVs8)
      Pieter Abbeel

      Lecture 26
      Conclusion
      Pieter Abbeel
      Unrecorded

******************

Fall 2013

    **Lecture Title****Lecturer**Notes
    
      Lecture 1
      [Introduction](https://www.youtube.com/watch?v=tONNlv6osG4)
      Dan Klein

      Lecture 2
      [Uninformed Search](https://www.youtube.com/watch?v=y9YtT49fFlM)
      Dan Klein

      Lecture 3
      [Informed Search](https://www.youtube.com/watch?v=ka5KpaKDGF0)
      Dan Klein

      Lecture 4
      [Constraint Satisfaction Problems I](https://www.youtube.com/watch?v=hJ9WOiueJes)
      Dan Klein

      Lecture 5
      [Constraint Satisfaction Problems II](https://www.youtube.com/watch?v=2TDQ_mesnOQ)
      Dan Klein

      Lecture 6
      [Adversarial Search](https://www.youtube.com/watch?v=-Il2oJoItaI)
      Dan Klein

      Lecture 7
      [Expectimax and Utilities](https://www.youtube.com/watch?v=M98BM_yJPNw)
      Dan Klein

      Lecture 8
      [Markov Decision Processes I](https://www.youtube.com/watch?v=ip4iSMRW5X4)
      Dan Klein

      Lecture 9
      [Markov Decision Processes II](https://www.youtube.com/watch?v=1S-dw6Vt1l4)
      Dan Klein

      Lecture 10
      [Reinforcement Learning I](https://www.youtube.com/watch?v=w33Lplx49_A)
      Dan Klein

      Lecture 11
      [Reinforcement Learning II](https://www.youtube.com/watch?v=jUoZg513cdE)
      Dan Klein

      Lecture 12
      [Probability](https://www.youtube.com/watch?v=8rnIArZS9cI)
      Pieter Abbeel

      Lecture 13
      [Bayes' Nets: Representation](https://www.youtube.com/watch?v=VfyxPtlqZh4)
      Pieter Abbeel

      Lecture 14
      [Bayes' Nets: Independence](https://www.youtube.com/watch?v=iaY3isLZUGs)
      Dan Klein

      Lecture 15
      [Bayes' Nets: Inference](https://www.youtube.com/watch?v=oYKAfYFmsoM)
      Pieter Abbeel

      Lecture 16
      [Bayes' Nets: Sampling](https://www.youtube.com/watch?v=ogYaTTRguIw)
      Pieter Abbeel

      Lecture 17
      [Decision Diagrams / Value of Perfect Information](https://www.youtube.com/watch?v=qQXmaWzmYuA)
      Pieter Abbeel

      Lecture 18
      [Hidden Markov Models](https://www.youtube.com/watch?v=OdQoRGRPmj8)
      Dan Klein

      Lecture 19
      [Applications of HMMs / Speech](https://www.youtube.com/watch?v=e_nQkLZens8)
      Dan Klein

      Lecture 20
      [Machine Learning: Naive Bayes](https://www.youtube.com/watch?v=iA2nEXanP_o)
      Dan Klein

      Lecture 21
      [Machine Learning: Perceptrons](https://www.youtube.com/watch?v=dXuNAkHsos4)
      Dan Klein

      Lecture 22
      [Machine Learning: Kernels and Clustering](https://www.youtube.com/watch?v=eXEi46V12dA)
      Pieter Abbeel

      Lecture 23
      [Machine Learning: Decision Trees and Neural Nets](https://www.youtube.com/watch?v=WC_DhP3vyy8)
      Pieter Abbeel

      Lecture 24
      Advanced Applications: NLP and Robotic Cars
      Dan Klein
      Unrecorded, see Spring 2013 Lecture 24

      Lecture 25
      [Advanced Applications: Computer Vision and Robotics](https://www.youtube.com/watch?v=OVgJPRSET30)
      Pieter Abbeel

      Lecture 26
      Conclusion
      Dan Klein,

Pieter Abbeel Unrecorded

******************

Spring 2013

    **Lecture Title****Lecturer**Notes
    
      Lecture 1
      Introduction
      Pieter Abbeel
      Video Down

      Lecture 2
      [Uninformed Search](https://www.youtube.com/watch?v=ST--VJJJqoc)
      Pieter Abbeel

      Lecture 3
      [Informed Search](https://www.youtube.com/watch?v=_oaqK0G_qKk)
      Pieter Abbeel

      Lecture 4
      [Constraint Satisfaction Problems I](https://www.youtube.com/watch?v=IbWL7CB15vw)
      Pieter Abbeel

      Lecture 5
      Constraint Satisfaction Problems II
      Pieter Abbeel
      Unrecorded, see Fall 2012 Lecture 5

      Lecture 6
      [Adversarial Search](https://www.youtube.com/watch?v=Nwl3LuG-fs8)
      Pieter Abbeel

      Lecture 7
      [Expectimax and Utilities](https://www.youtube.com/watch?v=r-RxPnnp__o)
      Pieter Abbeel

      Lecture 8
      [Markov Decision Processes I](https://www.youtube.com/watch?v=i0o-ui1N35U)
      Pieter Abbeel

      Lecture 9
      [Markov Decision Processes II](https://www.youtube.com/watch?v=Csiiv6WGzKM)
      Pieter Abbeel

      Lecture 10
      [Reinforcement Learning I](https://www.youtube.com/watch?v=ifma8G7LegE)
      Pieter Abbeel

      Lecture 11
      [Reinforcement Learning II](https://www.youtube.com/watch?v=Si1_YTw960c)
      Pieter Abbeel

      Lecture 12
      [Probability](https://www.youtube.com/watch?v=yRG6np3yC7c)
      Pieter Abbeel

      Lecture 13
      [Bayes' Nets: Representation](https://www.youtube.com/watch?v=uicA_yXW9LE)
      Pieter Abbeel

      Lecture 14
      [Bayes' Nets: Independence](https://www.youtube.com/watch?v=Mg3nFk3hkDE)
      Pieter Abbeel

      Lecture 15
      [Bayes' Nets: Inference](https://www.youtube.com/watch?v=_haafsCKsmY)
      Pieter Abbeel

      Lecture 16
      [Bayes' Nets: Sampling](https://www.youtube.com/watch?v=IqGbgfkkcsY)
      Pieter Abbeel

      Lecture 17
      [Decision Diagrams / Value of Perfect Information](https://www.youtube.com/watch?v=xia9VhcrMW0)
      Pieter Abbeel

      Lecture 18
      [Hidden Markov Models](https://www.youtube.com/watch?v=9dp4whVQv5s)
      Pieter Abbeel

      Lecture 19
      [Applications of HMMs / Speech](https://www.youtube.com/watch?v=Qh2hFKHOwPU)
      Pieter Abbeel

      Lecture 20
      [Machine Learning: Naive Bayes](https://www.youtube.com/watch?v=DNvwfNEiKvw)
      Pieter Abbeel

      Lecture 21
      [Machine Learning: Perceptrons I](https://www.youtube.com/watch?v=dyDdNtr9Q48)
      Nicholas Hay

      Lecture 22
      [Machine Learning: Perceptrons II](https://www.youtube.com/watch?v=rlAGutu67T0)
      Pieter Abbeel

      Lecture 23
      [Machine Learning: Kernels and Clustering](https://www.youtube.com/watch?v=ZSxvr282gBw)
      Pieter Abbeel

      Lecture 24
      [Advanced Applications: NLP and Robotic Cars](https://www.youtube.com/watch?v=AMcSRTsC15M)
      Pieter Abbeel

      Lecture 25
      [Advanced Applications: Computer Vision and Robotics](https://www.youtube.com/watch?v=MeFpNzqjkQw)
      Pieter Abbeel

      Lecture 26
      Conclusion
      Pieter Abbeel
      Unrecorded

******************

Fall 2012

    **Lecture Title****Lecturer**Notes
    
      Lecture 1
      [Introduction](https://www.youtube.com/watch?feature=player_embedded&v=J6PBD-wNEDs)
      Dan Klein

      Lecture 2
      [Uninformed Search](https://www.youtube.com/watch?feature=player_embedded&v=afwPe_OqPX0)
      Dan Klein

      Lecture 3
      [Informed Search](https://www.youtube.com/watch?feature=player_embedded&v=OGcG4jSKOVA)
      Dan Klein

      Lecture 4
      [Constraint Satisfaction Problems I](https://www.youtube.com/watch?feature=player_embedded&v=hegL0V4ckco)
      Dan Klein

      Lecture 5
      [Constraint Satisfaction Problems II](https://www.youtube.com/watch?feature=player_embedded&v=LajAWn51HmE)
      Dan Klein

      Lecture 6
      [Adversarial Search](https://www.youtube.com/watch?feature=player_embedded&v=cwbjLIahbv8)
      Dan Klein

      Lecture 7
      [Expectimax and Utilities](https://www.youtube.com/watch?feature=player_embedded&v=GevK0-9n24g)
      Dan Klein

      Lecture 8
      [Markov Decision Processes I](https://www.youtube.com/watch?feature=player_embedded&v=wKx4MuLfe0M)
      Dan Klein

      Lecture 9
      [Markov Decision Processes II](https://www.youtube.com/watch?feature=player_embedded&v=2M7mv4-BPCg)
      Dan Klein

      Lecture 10
      [Reinforcement Learning I](https://www.youtube.com/watch?feature=player_embedded&v=hsz0zq6AXGE)
      Dan Klein

      Lecture 11
      [Reinforcement Learning II](https://www.youtube.com/watch?feature=player_embedded&v=R0vTZp0ve4s)
      Dan Klein

      Lecture 12
      [Probability](https://www.youtube.com/watch?feature=player_embedded&v=UIhbGihnZ68)
      Pieter Abbeel

      Lecture 13
      [Bayes' Nets: Representation](https://www.youtube.com/watch?feature=player_embedded&v=04CITGEvGMw0)
      Pieter Abbeel

      Lecture 14
      [Bayes' Nets: Independence](https://www.youtube.com/watch?feature=player_embedded&v=GMge4cuYwZ8)
      Pieter Abbeel

      Lecture 15
      [Bayes' Nets: Inference](https://www.youtube.com/watch?feature=player_embedded&v=GgyH6Nbjdcw)
      Pieter Abbeel

      Lecture 16
      [Bayes' Nets: Sampling](https://www.youtube.com/watch?feature=player_embedded&v=y1dpQlvJ5Ys)
      Pieter Abbeel

      Lecture 17
      [Decision Diagrams / Value of Perfect Information](https://www.youtube.com/watch?feature=player_embedded&v=gp6-CH40ao8)
      Pieter Abbeel

      Lecture 18
      [Hidden Markov Models](https://www.youtube.com/watch?feature=player_embedded&v=uSpiQFD67vQ)
      Pieter Abbeel

      Lecture 19
      [Applications of HMMs / Speech](https://www.youtube.com/watch?feature=player_embedded&v=jcBY01U9czE)
      Dan Klein

      Lecture 20
      [Machine Learning: Naive Bayes](https://www.youtube.com/watch?feature=player_embedded&v=HmCxjAeGt6U)
      Dan Klein

      Lecture 21
      [Machine Learning: Perceptrons](https://www.youtube.com/watch?feature=player_embedded&v=XP7TPZPGzuk)
      Dan Klein

      Lecture 22
      [Machine Learning: Kernels and Clustering](https://www.youtube.com/watch?feature=player_embedded&v=qJdgcwzMuB0)
      Dan Klein

      Lecture 23
      [Machine Learning: Decision Trees and Neural Nets](https://www.youtube.com/watch?feature=player_embedded&v=4LGh2HlyQZ4)
      Pieter Abbeel

      Lecture 24
      [Advanced Applications: Computer Vision and Robotics](https://www.youtube.com/watch?feature=player_embedded&v=POMk-X93Bag)
      Pieter Abbeel

      Lecture 25
      Advanced Applications: NLP and Robotic Cars
      Dan Klein,

Pieter Abbeel Unrecorded

      Lecture 26
      Conclusion
      Dan Klein,

Pieter Abbeel Unrecorded


Lecture Slides

Here is the complete set of lecture slides, including videos, and videos of demos run in lecture: Slides [~3 GB].

The list below contains all the lecture powerpoint slides:
  
    [Lecture 1: Introduction](http://ai.berkeley.edu/slides/Lecture%201%20--%20Introduction/SP14%20CS188%20Lecture%201%20--%20Introduction.pptx)
    [Lecture 2: Uninformed Search](http://ai.berkeley.edu/slides/Lecture%202%20--%20Uninformed%20Search/SP14%20CS188%20Lecture%202%20--%20Uninformed%20Search.pptx)
    [Lecture 3: Informed Search](http://ai.berkeley.edu/slides/Lecture%203%20--%20Informed%20Search/SP14%20CS188%20Lecture%203%20--%20Informed%20Search.pptx)
    [Lecture 4: CSPs I](http://ai.berkeley.edu/slides/Lecture%204%20--%20CSPs%20I/SP14%20CS188%20Lecture%204%20--%20CSPs%20I.pptx)
    [Lecture 5: CSPs II](http://ai.berkeley.edu/slides/Lecture%205%20--%20CSPs%20II/SP14%20CS188%20Lecture%205%20--%20CSPs%20II.pptx)
    [Lecture 6: Adversarial Search](http://ai.berkeley.edu/slides/Lecture%206%20--%20Adversarial%20Search/SP14%20CS188%20Lecture%206%20--%20Adversarial%20Search.pptx)
    [Lecture 7: Expectimax Search and Utilities](http://ai.berkeley.edu/slides/Lecture%207%20--%20Expectimax%20Search%20and%20Utilities/SP14%20CS188%20Lecture%207%20--%20Expectimax%20Search%20and%20Utilities.pptx)
    [Lecture 8: MDPs I](http://ai.berkeley.edu/slides/Lecture%208%20--%20MDPs%20I/SP14%20CS188%20Lecture%208%20--%20MDPs%20I.pptx)
    [Lecture 9: MDPs II](http://ai.berkeley.edu/slides/Lecture%209%20--%20MDPs%20II/SP14%20CS188%20Lecture%209%20--%20MDPs%20II.pptx)
    [Lecture 10: Reinforcement Learning I](http://ai.berkeley.edu/slides/Lecture%2010%20--%20Reinforcement%20Learning%20I/SP14%20CS188%20Lecture%2010%20--%20Reinforcement%20Learning%20I.pptx)
    [Lecture 11: Reinforcement Learning II](http://ai.berkeley.edu/slides/Lecture%2011%20--%20Reinforcement%20Learning%20II/SP14%20CS188%20Lecture%2011%20--%20Reinforcement%20Learning%20II.pptx)
    [Lecture 12: Probability](http://ai.berkeley.edu/slides/Lecture%2012%20--%20Probability/SP14%20CS188%20Lecture%2012%20--%20Probability.pptx)
    [Lecture 13: Markov Models](http://ai.berkeley.edu/slides/Lecture%2013%20--%20Markov%20Models/SP14%20CS188%20Lecture%2013%20--%20Markov%20Models.pptx)
    [Lecture 14: Hidden Markov Models](http://ai.berkeley.edu/slides/Lecture%2014%20--%20HMMs/SP14%20CS188%20Lecture%2014%20--%20Hidden%20Markov%20Models.pptx)
    [Lecture 15: Particle Filters and Applications of HMMs](http://ai.berkeley.edu/slides/Lecture%2015%20--%20Particle%20Filters%20and%20Applications%20of%20HMMs/SP14%20CS188%20Lecture%2015%20--%20Particle%20Filters%20and%20Applications%20of%20HMMs.pptx)
    [Lecture 16: Bayes Nets I: Representation](http://ai.berkeley.edu/slides/Lecture%2016%20--%20Bayes%20Nets%20I%20Representation/SP14%20CS188%20Lecture%2016%20--%20Bayes%20Nets.pptx)
    [Lecture 17: Bayes Nets II: Independence](http://ai.berkeley.edu/slides/Lecture%2017%20--%20Bayes%20Nets%20II%20Independence/SP14%20CS188%20Lecture%2017%20--%20Bayes%20Nets%20II%20Independence.pptx)
    [Lecture 18: Bayes Nets III: Inference](http://ai.berkeley.edu/slides/Lecture%2018%20--%20Bayes%20Nets%20III%20Inference/SP14%20cs188%20Lecture%2018%20--%20Bayes%20Nets%20III%20Inference.pptx)
    [Lecture 19: Bayes Nets IV: Sampling](http://ai.berkeley.edu/slides/Lecture%2019%20--%20Bayes%20Net%20IV%20Sampling/SP14%20CS188%20Lecture%2019%20--%20Bayes%20Nets%20IV%20Sampling.pptx)
    [Lecture 20: Decision Diagrams and VPI](http://ai.berkeley.edu/slides/Lecture%2020%20--%20Decision%20Diagrams%20and%20Value%20of%20Perfect%20Information/SP14%20CS188%20Lecture%2020%20--%20Decision%20Diagrams%20and%20VPI.pptx)
    [Lecture 21: Naive Bayes](http://ai.berkeley.edu/slides/Lecture%2021%20--%20Naive%20Bayes/SP14%20CS188%20Lecture%2021%20--%20Naive%20Bayes.pptx)
    [Lecture 22: Perceptron](http://ai.berkeley.edu/slides/Lecture%2022%20--%20Perceptron/SP14%20CS188%20Lecture%2022%20--%20Perceptron.pptx)
    [Lecture 23: Kernels and Clustering](http://ai.berkeley.edu/slides/Lecture%2023%20--%20Kernels%20and%20Clustering/SP14%20CS188%20Lecture%2023%20--%20Kernels%20and%20Clustering.pptx)
    [Lecture 24: Advanced Applications (NLP, Games, Cars)](http://ai.berkeley.edu/slides/Lecture%2024%20--%20Advanced%20Applications%20(NLP,%20Games,%20Cars)/SP14%20CS188%20Lecture%2024%20--%20Advanced%20Applications%20(NLP,%20Games,%20Cars).pptx)
    [Lecture 25: Advanced Applications (Computer Vision and Robotics)](http://ai.berkeley.edu/slides/Lecture%2025%20--%20Advanced%20Applications%20(Computer%20Vision,%20Robotics)/SP14%20CS188%20Lecture%2025%20--%20Advanced%20Applications%20(Computer%20Vision%20and%20Robotics).pptx)
    [Lecture 26: Conclusion](http://ai.berkeley.edu/slides/Lecture%2026%20--%20Conclusion/SP14%20CS188%20Lecture%2026%20--%20Conclusion.pptx)

The source files for all live in-lecture demos are being prepared from Berkeley AI for release


Selected Research Papers

Stanford Syllabus CS 20SI: Tensorflow for Deep Learning Research

Comparative Study of Deep Learning Software Frameworks

** Reddit_ML- What Are You Reading**


The Many Tribes of Artificial Intelligence

Source:https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53


The Deep Learning Roadmap

Source:https://medium.com/intuitionmachine/the-deep-learning-roadmap-f0b4cac7009a


Best Practices for Training Deep Learning Networks

Source: https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53

ML/DL Cheatsheets

Neural Network Architectures

Source: http://www.asimovinstitute.org/neural-network-zoo/


Microsoft Azure Algorithm Flowchart

Source: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet


SAS Algorithm Flowchart

Source: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/


Algorithm Summary

Source: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/


Source: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/


Algorithm Pro/Con

Source: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend


Python


Algorithms

Source: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/


Python Basics

Source: http://datasciencefree.com/python.pdf


Source: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA


Numpy

Source: https://www.dataquest.io/blog/numpy-cheat-sheet/


Source: http://datasciencefree.com/numpy.pdf


Source: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE


Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb


Pandas

Source: http://datasciencefree.com/pandas.pdf


Source: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U


Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb


Matplotlib

Source: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet


Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb


Scikit Learn

Source: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk


Source: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html


Source: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb


Tensorflow

Source: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb


Pytorch

Source: https://github.com/bfortuner/pytorch-cheatsheet


Math

Probability

Source: http://www.wzchen.com/s/probability_cheatsheet.pdf


Linear Algebra

Source: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf


Statistics

Source: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf


Calculus

Source: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N




Vibe Score

LLM Vibe Score

0.442

Sentiment

Human Vibe Score

0.035708035270567436

Rate this Resource

Join the VibeBuilders.ai Newsletter

The newsletter helps digital entrepreneurs how to harness AI to build your own assets for your funnel & ecosystem without bloating your subscription costs.

Start the free 5-day AI Captain's Command Line Bootcamp when you sign up:

By subscribing, you agree to our Privacy Policy and Terms of Service.