
ai-learning-roadmap
Lists of all AI related learning materials and practical tools to get started with AI apps
Design Thinking – An Introduction
Amazon Web Services Learning Material
- AWS AI Session– The session provides an overview of all Amazon AI technology offerings (Lex, Polly, Rekognition, ML, and Deep Learning AMI)
Self-Paced Labs
AWS self-paced labs provide hands-on practice in a live AWS environment with AWS services and real-world cloud scenarios. Follow step-by-step instructions to learn a service, practice a use case, or prepare for AWS Certification.
Introductory Lab
Lex
- Introduction to Amazon Lex
- Amazon Lex Webinar
- Amazon Lex: AWS conversational interface (chat bot)
- Documentation
Polly
- Introduction to Amazon Polly
- Amazon Polly Webinar -
- Amazon Polly – AWS Text To Speech (TTS) service
- Documentation
Rekognition
- Introduction to Amazon Rekognition
- Amazon Rekognition - Deep Learning-Based Image Analysis Webinar
- Amazon Rekognition – AWS image recognition service
- Documentation – What is Amazon Rekognition?
Machine Learning
-
Machine Learning
-
Session 1 – Empowering Developers to Build Smart Applications
-
Session 2 - Predicting Customer Churn with Amazon Machine Learning
-
AWS Machine Learning – End to end, managed service for creating and testing ML models and then deploying those models into production
-
Documentation
-
AWS Deep Learning AMI – Amazon Machine Image (AMI) optimized for deep learning efforts
Recommended Additional Resources
Take your skills to the next level with fundamental, advanced, and expert level labs.
- Creating Amazon EC2 Instances with Microsoft Windows
- Building Your First Amazon Virtual Private Cloud (VPC)
- Working with AWS CodeCommit on Windows
- Working with Amazon DynamoDB
Google Cloud - Learning Material
Below is the learning material that will help you learn about Google Cloud.
Network
- Networking 101 – 43 mins
The codelab provides common cloud developer experience as follows:
- Set up your lab environment and learn how to work with your GCP environment.
- Use of common open source tools to explore your network around the world.
- Deploy a common use case: use of HTTP Load Balancing and Managed Instance Groups to host a scalable, multi-region web server.
- Testing and monitoring your network and instances.
- Cleanup.
Developing Solutions for Google Cloud Platform – 8 hours
Infrastructure
- Build a Slack Bot with Node.js on Kubernotes – 43 mins
- Creating a Virtual Machine – 10 mins
- Getting Started with App Engine (Python) – 13 mins
Data
- Introduction to Google Cloud Data Prep – 7 mins
- Create a Managed MySQL database with Cloud SQL – 19 mins
- Upload Objects to Cloud Storage – 11 mins
AI, Big Data & Machine Learning
- Introduction to Google Cloud Machine Learning – 1 hour
- Machine Learning APIs by Example – 30 min
- Google Cloud Platform Big Data and Machine Learning Fundamentals
Additional AI Materials
- Auto-awesome: Advanced Data Science on Google Cloud Platform – 45 min
- Run a Big Data Text Processing Pipeline in Cloud Dataflow – 21 min
- Image Classification Using Cloud ML Engine & Datalab – 58 min
- Structured Data Regression Using Cloud ML Engine & Datalab – 58 min
(Optional) Deep Learning & Tensorflow
Additional Reference Material
- Big Data & Machine Learning @ Google Cloud Next '17 - A collection of 49 videos
IBM Watson Learning Material
(Contributions are welcome in this space)
Microsoft Chat Bots Learning Material
Skills Prerequisite
- Git and Github
- NodeJS
- VS Code IDE
Training Paths
If you have the above Prerequisite skills, then take Advanced Training Path else take Novice Training Path.
Prerequisite Tutorials
Novice Training Path
Environment Set Up
- Download and Install Git
- Set up GitHub Account_
- Download and Install NodeJS
- Download and Install IDE - Visual Studio Code
- Download and Install the Bot Framework Emulator
- Git clone the Bot Education project - git clone
- Set Up Azure Free Trial Account
Cognitive Services (Defining Intelligence)
- Read Cognitive Services ADS Education Deck – git clone
- Review the guide for Understanding Natural language with LUIS
- Complete the NLP (LUIS) Training Lab from the installed Bot Education project – \bot-education\Student-Resources\Labs\CognitiveServices\Lab_SetupLanguageModel.md
Bot Framework (Building Chat Bots)
- Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras
- Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) -
- Setup local environment and run emulator from the installed Bot Education project – \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md
- Review and test in the emulator the “bot-hello” from \bot-education\Student-Resources\BOTs\Node\bot-hello
Advanced Training Path
Environment Set Up
- Download and Install Git
- Set up GitHub Account_
- Download and Install NodeJS
- Download and Install IDE - Visual Studio Code
- Download and Install the Bot Framework Emulator
- Git clone the Bot Education project - git clone
- Set Up Azure Free Trial Account
- Git clone the Bot Builder Samples – git clone
Cognitive Services (Defining Intelligence)
- Read Cognitive Services ADS Education Deck – git clone
- Review the guide for Understanding Natural language with LUIS
Bot Framework (Building Chat Bots)
- Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras
- Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) -
- Setup local environment and run emulator from the installed Bot Education project – \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md
Cognitive Services (Defining Intelligence) - Labs
- Complete the NLP (LUIS) Training Lab from the installed BOT Education project
- \bot-education\Student-Resources\Labs\CognitiveServices\Lab_SetupLanguageModel.md
- Review, Deploy and run the LUIS BOT sample
Bot Framework (Building Chat Bots) – Labs
- Setup local environment and run emulator from the installed Bot Education project
- \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md
- Review and test in the emulator the “bot-hello” from
- \bot-education\Student-Resources\BOTs\Node\bot-hello
- Review and test in the emulator the “bot-recognizers” from
- \bot-education\Student-Resources\BOTs\Node\bot-recognizers
Lecture Videos
Source Berkeley
**Lecture Title****Lecturer**Semester
Lecture 1
[Introduction](https://www.youtube.com/watch?feature=player_embedded&v=J6PBD-wNEDs)
Dan Klein
Fall 2012
Lecture 2
[Uninformed Search](https://www.youtube.com/watch?feature=player_embedded&v=afwPe_OqPX0)
Dan Klein
Fall 2012
Lecture 3
[Informed Search](https://www.youtube.com/watch?feature=player_embedded&v=OGcG4jSKOVA)
Dan Klein
Fall 2012
Lecture 4
[Constraint Satisfaction Problems I](https://www.youtube.com/watch?feature=player_embedded&v=hegL0V4ckco)
Dan Klein
Fall 2012
Lecture 5
[Constraint Satisfaction Problems II](https://www.youtube.com/watch?feature=player_embedded&v=LajAWn51HmE)
Dan Klein
Fall 2012
Lecture 6
[Adversarial Search](https://www.youtube.com/watch?feature=player_embedded&v=cwbjLIahbv8)
Dan Klein
Fall 2012
Lecture 7
[Expectimax and Utilities](https://www.youtube.com/watch?feature=player_embedded&v=GevK0-9n24g)
Dan Klein
Fall 2012
Lecture 8
[Markov Decision Processes I](https://www.youtube.com/watch?feature=player_embedded&v=wKx4MuLfe0M)
Dan Klein
Fall 2012
Lecture 9
[Markov Decision Processes II](https://www.youtube.com/watch?feature=player_embedded&v=2M7mv4-BPCg)
Dan Klein
Fall 2012
Lecture 10
[Reinforcement Learning I](https://www.youtube.com/watch?feature=player_embedded&v=hsz0zq6AXGE)
Dan Klein
Fall 2012
Lecture 11
[Reinforcement Learning II](https://www.youtube.com/watch?feature=player_embedded&v=R0vTZp0ve4s)
Dan Klein
Fall 2012
Lecture 12
[Probability](https://www.youtube.com/watch?v=cFtXkaLog5A)
Pieter Abbeel
Spring 2014
Lecture 13
[Markov Models](https://www.youtube.com/watch?v=Nxkapm7QlNw)
Pieter Abbeel
Spring 2014
Lecture 14
[Hidden Markov Models](https://www.youtube.com/watch?v=OdQoRGRPmj8)
Dan Klein
Fall 2013
Lecture 15
[Applications of HMMs / Speech](https://www.youtube.com/watch?v=KBg97801U40)
Pieter Abbeel
Spring 2014
Lecture 16
[Bayes' Nets: Representation](https://www.youtube.com/watch?v=gMQZq2O8yDA)
Pieter Abbeel
Spring 2014
Lecture 17
[Bayes' Nets: Independence](https://www.youtube.com/watch?v=9OajWBYRhRU)
Pieter Abbeel
Spring 2014
Lecture 18
[Bayes' Nets: Inference](https://www.youtube.com/watch?v=y9jdsPNsU_Q)
Pieter Abbeel
Spring 2014
Lecture 19
[Bayes' Nets: Sampling](https://www.youtube.com/watch?v=ogYaTTRguIw)
Pieter Abbeel
Fall 2013
Lecture 20
[Decision Diagrams / Value of Perfect Information](https://www.youtube.com/watch?v=VL_IAzfC2uk)
Pieter Abbeel
Spring 2014
Lecture 21
[Machine Learning: Naive Bayes](https://www.youtube.com/watch?v=_pe60buCnxE)
Nicholas Hay
Spring 2014
Lecture 22
[Machine Learning: Perceptrons](https://www.youtube.com/watch?v=HEFfs1KCph4)
Pieter Abbeel
Spring 2014
Lecture 23
[Machine Learning: Kernels and Clustering](https://www.youtube.com/watch?v=H9DUTH9lCfg)
Pieter Abbeel
Spring 2014
Lecture 24
[Advanced Applications: NLP, Games, and Robotic Cars](https://www.youtube.com/watch?v=sMKptCC-x_o)
Pieter Abbeel
Spring 2014
Lecture 25
[Advanced Applications: Computer Vision and Robotics](https://www.youtube.com/watch?v=WZqtZ8RDVs8)
Pieter Abbeel
Spring 2014
Additionally, there are additional Step-By-Step videos which supplement the lecture's materials. These videos are listed below:
**Lecture Title****Lecturer**Notes
SBS-1
[DFS and BFS](https://www.youtube.com/watch?v=cXZKV7K5v3E)
Pieter Abbeel
Lec: Uninformed Search
SBS-2
[A* Search](https://www.youtube.com/watch?v=g0MJRpquEOk)
Pieter Abbeel
Lec: Informed Search
SBS-3
[Alpha-Beta Pruning](https://www.youtube.com/watch?v=jvpWtwVSvjA)
Pieter Abbeel
Lec: Adversarial Search
SBS-4
[D-Separation](https://www.youtube.com/watch?v=_R_RYn5KelA)
Pieter Abbeel
Lec: Bayes' Nets: Independence
SBS-5
[Elimination of One Variable](https://www.youtube.com/watch?v=-Y-XiO9VeLQ)
Pieter Abbeel
Lec: Bayes' Nets: Inference
SBS-6
[Variable Elimination](https://www.youtube.com/watch?v=4-Cr_Lv9Sr4)
Pieter Abbeel
Lec: Bayes' Nets: Inference
SBS-7
[Sampling](https://www.youtube.com/watch?v=Q6NzkeUvj2I)
Pieter Abbeel
Lec: Bayes' Nets: Sampling
SBS-8 Gibbs' Sampling Michael Liang Lec: Bayes' Nets: Sampling -->
SBS-8
[Maximum Likelihood](https://www.youtube.com/watch?v=b2g88r69vPI)
Pieter Abbeel
Lec: Machine Learning: Naive Bayes
SBS-9
[Laplace Smoothing](https://www.youtube.com/watch?v=VkBytl_Qmt8)
Pieter Abbeel
Lec: Machine Learning: Naive Bayes
SBS-10
[Perceptrons](https://www.youtube.com/watch?v=mH4QSs5IGao)
Pieter Abbeel
Lec: Machine Learning: Perceptrons
******************
Per-Semester Video Archive(Berkeley)
The lecture videos from the most recent offerings are posted below.
[Spring 2014 Lecture Videos](#Spring2014)
[Fall 2013 Lecture Videos](#Fall2013)
[Spring 2013 Lecture Videos](#Spring2013)
[Fall 2012 Lecture Videos](#Fall2012)
Spring 2014
**Lecture Title****Lecturer**Notes
Lecture 1
[Introduction](https://www.youtube.com/watch?v=W1S-HSakPTM)
Pieter Abbeel
Lecture 2
[Uninformed Search](https://www.youtube.com/watch?v=bSv4CWMTeR0)
Pieter Abbeel
Lecture 3
[Informed Search](https://www.youtube.com/watch?v=8pTjoFiICg8)
Pieter Abbeel
Lecture 4
[Constraint Satisfaction Problems I](https://www.youtube.com/watch?v=Hv_JlWld9iQ)
Pieter Abbeel
Recording is a bit flaky, see Fall 2013 Lecture 4 for alternative
Lecture 5
[Constraint Satisfaction Problems II](https://www.youtube.com/watch?v=kYVSOLX_t84)
Pieter Abbeel
Lecture 6
[Adversarial Search](https://www.youtube.com/watch?v=1KTCoQRWKOE)
Pieter Abbeel
Lecture 7
[Expectimax and Utilities](https://www.youtube.com/watch?v=jaFRyzp7yWw)
Pieter Abbeel
Lecture 8
[Markov Decision Processes I](https://www.youtube.com/watch?v=Oxqwwnm_x0s)
Pieter Abbeel
Lecture 9
[Markov Decision Processes II](https://www.youtube.com/watch?v=6pBvbLyn6fE)
Pieter Abbeel
Lecture 10
[Reinforcement Learning I](https://www.youtube.com/watch?v=IXuHxkpO5E8)
Pieter Abbeel
Lecture 11
[Reinforcement Learning II](https://www.youtube.com/watch?v=yNeSFbE1jdY)
Pieter Abbeel
Lecture 12
[Probability](https://www.youtube.com/watch?v=cFtXkaLog5A)
Pieter Abbeel
Lecture 13
[Markov Models](https://www.youtube.com/watch?v=Nxkapm7QlNw)
Pieter Abbeel
Lecture 14
[Hidden Markov Models](https://www.youtube.com/watch?v=XFgdo4czYs4)
Pieter Abbeel
Recording is a bit flaky, see Fall 2013 Lecture 18 for alternative
Lecture 15
[Applications of HMMs / Speech](https://www.youtube.com/watch?v=KBg97801U40)
Pieter Abbeel
Lecture 16
[Bayes' Nets: Representation](https://www.youtube.com/watch?v=gMQZq2O8yDA)
Pieter Abbeel
Lecture 17
[Bayes' Nets: Independence](https://www.youtube.com/watch?v=9OajWBYRhRU)
Pieter Abbeel
Lecture 18
[Bayes' Nets: Inference](https://www.youtube.com/watch?v=y9jdsPNsU_Q)
Pieter Abbeel
Lecture 19
Bayes' Nets: Sampling
Pieter Abbeel
Unrecorded, see Fall 2013 Lecture 16
Lecture 20
[Decision Diagrams / Value of Perfect Information](https://www.youtube.com/watch?v=VL_IAzfC2uk)
Pieter Abbeel
Lecture 21
[Machine Learning: Naive Bayes](https://www.youtube.com/watch?v=_pe60buCnxE)
Nicholas Hay
Lecture 22
[Machine Learning: Perceptrons](https://www.youtube.com/watch?v=HEFfs1KCph4)
Pieter Abbeel
Lecture 23
[Machine Learning: Kernels and Clustering](https://www.youtube.com/watch?v=H9DUTH9lCfg)
Pieter Abbeel
Lecture 24
[Advanced Applications: NLP, Games, and Robotic Cars](https://www.youtube.com/watch?v=sMKptCC-x_o)
Pieter Abbeel
Lecture 25
[Advanced Applications: Computer Vision and Robotics](https://www.youtube.com/watch?v=WZqtZ8RDVs8)
Pieter Abbeel
Lecture 26
Conclusion
Pieter Abbeel
Unrecorded
******************
Fall 2013
**Lecture Title****Lecturer**Notes
Lecture 1
[Introduction](https://www.youtube.com/watch?v=tONNlv6osG4)
Dan Klein
Lecture 2
[Uninformed Search](https://www.youtube.com/watch?v=y9YtT49fFlM)
Dan Klein
Lecture 3
[Informed Search](https://www.youtube.com/watch?v=ka5KpaKDGF0)
Dan Klein
Lecture 4
[Constraint Satisfaction Problems I](https://www.youtube.com/watch?v=hJ9WOiueJes)
Dan Klein
Lecture 5
[Constraint Satisfaction Problems II](https://www.youtube.com/watch?v=2TDQ_mesnOQ)
Dan Klein
Lecture 6
[Adversarial Search](https://www.youtube.com/watch?v=-Il2oJoItaI)
Dan Klein
Lecture 7
[Expectimax and Utilities](https://www.youtube.com/watch?v=M98BM_yJPNw)
Dan Klein
Lecture 8
[Markov Decision Processes I](https://www.youtube.com/watch?v=ip4iSMRW5X4)
Dan Klein
Lecture 9
[Markov Decision Processes II](https://www.youtube.com/watch?v=1S-dw6Vt1l4)
Dan Klein
Lecture 10
[Reinforcement Learning I](https://www.youtube.com/watch?v=w33Lplx49_A)
Dan Klein
Lecture 11
[Reinforcement Learning II](https://www.youtube.com/watch?v=jUoZg513cdE)
Dan Klein
Lecture 12
[Probability](https://www.youtube.com/watch?v=8rnIArZS9cI)
Pieter Abbeel
Lecture 13
[Bayes' Nets: Representation](https://www.youtube.com/watch?v=VfyxPtlqZh4)
Pieter Abbeel
Lecture 14
[Bayes' Nets: Independence](https://www.youtube.com/watch?v=iaY3isLZUGs)
Dan Klein
Lecture 15
[Bayes' Nets: Inference](https://www.youtube.com/watch?v=oYKAfYFmsoM)
Pieter Abbeel
Lecture 16
[Bayes' Nets: Sampling](https://www.youtube.com/watch?v=ogYaTTRguIw)
Pieter Abbeel
Lecture 17
[Decision Diagrams / Value of Perfect Information](https://www.youtube.com/watch?v=qQXmaWzmYuA)
Pieter Abbeel
Lecture 18
[Hidden Markov Models](https://www.youtube.com/watch?v=OdQoRGRPmj8)
Dan Klein
Lecture 19
[Applications of HMMs / Speech](https://www.youtube.com/watch?v=e_nQkLZens8)
Dan Klein
Lecture 20
[Machine Learning: Naive Bayes](https://www.youtube.com/watch?v=iA2nEXanP_o)
Dan Klein
Lecture 21
[Machine Learning: Perceptrons](https://www.youtube.com/watch?v=dXuNAkHsos4)
Dan Klein
Lecture 22
[Machine Learning: Kernels and Clustering](https://www.youtube.com/watch?v=eXEi46V12dA)
Pieter Abbeel
Lecture 23
[Machine Learning: Decision Trees and Neural Nets](https://www.youtube.com/watch?v=WC_DhP3vyy8)
Pieter Abbeel
Lecture 24
Advanced Applications: NLP and Robotic Cars
Dan Klein
Unrecorded, see Spring 2013 Lecture 24
Lecture 25
[Advanced Applications: Computer Vision and Robotics](https://www.youtube.com/watch?v=OVgJPRSET30)
Pieter Abbeel
Lecture 26
Conclusion
Dan Klein,
Pieter Abbeel Unrecorded
******************
Spring 2013
**Lecture Title****Lecturer**Notes
Lecture 1
Introduction
Pieter Abbeel
Video Down
Lecture 2
[Uninformed Search](https://www.youtube.com/watch?v=ST--VJJJqoc)
Pieter Abbeel
Lecture 3
[Informed Search](https://www.youtube.com/watch?v=_oaqK0G_qKk)
Pieter Abbeel
Lecture 4
[Constraint Satisfaction Problems I](https://www.youtube.com/watch?v=IbWL7CB15vw)
Pieter Abbeel
Lecture 5
Constraint Satisfaction Problems II
Pieter Abbeel
Unrecorded, see Fall 2012 Lecture 5
Lecture 6
[Adversarial Search](https://www.youtube.com/watch?v=Nwl3LuG-fs8)
Pieter Abbeel
Lecture 7
[Expectimax and Utilities](https://www.youtube.com/watch?v=r-RxPnnp__o)
Pieter Abbeel
Lecture 8
[Markov Decision Processes I](https://www.youtube.com/watch?v=i0o-ui1N35U)
Pieter Abbeel
Lecture 9
[Markov Decision Processes II](https://www.youtube.com/watch?v=Csiiv6WGzKM)
Pieter Abbeel
Lecture 10
[Reinforcement Learning I](https://www.youtube.com/watch?v=ifma8G7LegE)
Pieter Abbeel
Lecture 11
[Reinforcement Learning II](https://www.youtube.com/watch?v=Si1_YTw960c)
Pieter Abbeel
Lecture 12
[Probability](https://www.youtube.com/watch?v=yRG6np3yC7c)
Pieter Abbeel
Lecture 13
[Bayes' Nets: Representation](https://www.youtube.com/watch?v=uicA_yXW9LE)
Pieter Abbeel
Lecture 14
[Bayes' Nets: Independence](https://www.youtube.com/watch?v=Mg3nFk3hkDE)
Pieter Abbeel
Lecture 15
[Bayes' Nets: Inference](https://www.youtube.com/watch?v=_haafsCKsmY)
Pieter Abbeel
Lecture 16
[Bayes' Nets: Sampling](https://www.youtube.com/watch?v=IqGbgfkkcsY)
Pieter Abbeel
Lecture 17
[Decision Diagrams / Value of Perfect Information](https://www.youtube.com/watch?v=xia9VhcrMW0)
Pieter Abbeel
Lecture 18
[Hidden Markov Models](https://www.youtube.com/watch?v=9dp4whVQv5s)
Pieter Abbeel
Lecture 19
[Applications of HMMs / Speech](https://www.youtube.com/watch?v=Qh2hFKHOwPU)
Pieter Abbeel
Lecture 20
[Machine Learning: Naive Bayes](https://www.youtube.com/watch?v=DNvwfNEiKvw)
Pieter Abbeel
Lecture 21
[Machine Learning: Perceptrons I](https://www.youtube.com/watch?v=dyDdNtr9Q48)
Nicholas Hay
Lecture 22
[Machine Learning: Perceptrons II](https://www.youtube.com/watch?v=rlAGutu67T0)
Pieter Abbeel
Lecture 23
[Machine Learning: Kernels and Clustering](https://www.youtube.com/watch?v=ZSxvr282gBw)
Pieter Abbeel
Lecture 24
[Advanced Applications: NLP and Robotic Cars](https://www.youtube.com/watch?v=AMcSRTsC15M)
Pieter Abbeel
Lecture 25
[Advanced Applications: Computer Vision and Robotics](https://www.youtube.com/watch?v=MeFpNzqjkQw)
Pieter Abbeel
Lecture 26
Conclusion
Pieter Abbeel
Unrecorded
******************
Fall 2012
**Lecture Title****Lecturer**Notes
Lecture 1
[Introduction](https://www.youtube.com/watch?feature=player_embedded&v=J6PBD-wNEDs)
Dan Klein
Lecture 2
[Uninformed Search](https://www.youtube.com/watch?feature=player_embedded&v=afwPe_OqPX0)
Dan Klein
Lecture 3
[Informed Search](https://www.youtube.com/watch?feature=player_embedded&v=OGcG4jSKOVA)
Dan Klein
Lecture 4
[Constraint Satisfaction Problems I](https://www.youtube.com/watch?feature=player_embedded&v=hegL0V4ckco)
Dan Klein
Lecture 5
[Constraint Satisfaction Problems II](https://www.youtube.com/watch?feature=player_embedded&v=LajAWn51HmE)
Dan Klein
Lecture 6
[Adversarial Search](https://www.youtube.com/watch?feature=player_embedded&v=cwbjLIahbv8)
Dan Klein
Lecture 7
[Expectimax and Utilities](https://www.youtube.com/watch?feature=player_embedded&v=GevK0-9n24g)
Dan Klein
Lecture 8
[Markov Decision Processes I](https://www.youtube.com/watch?feature=player_embedded&v=wKx4MuLfe0M)
Dan Klein
Lecture 9
[Markov Decision Processes II](https://www.youtube.com/watch?feature=player_embedded&v=2M7mv4-BPCg)
Dan Klein
Lecture 10
[Reinforcement Learning I](https://www.youtube.com/watch?feature=player_embedded&v=hsz0zq6AXGE)
Dan Klein
Lecture 11
[Reinforcement Learning II](https://www.youtube.com/watch?feature=player_embedded&v=R0vTZp0ve4s)
Dan Klein
Lecture 12
[Probability](https://www.youtube.com/watch?feature=player_embedded&v=UIhbGihnZ68)
Pieter Abbeel
Lecture 13
[Bayes' Nets: Representation](https://www.youtube.com/watch?feature=player_embedded&v=04CITGEvGMw0)
Pieter Abbeel
Lecture 14
[Bayes' Nets: Independence](https://www.youtube.com/watch?feature=player_embedded&v=GMge4cuYwZ8)
Pieter Abbeel
Lecture 15
[Bayes' Nets: Inference](https://www.youtube.com/watch?feature=player_embedded&v=GgyH6Nbjdcw)
Pieter Abbeel
Lecture 16
[Bayes' Nets: Sampling](https://www.youtube.com/watch?feature=player_embedded&v=y1dpQlvJ5Ys)
Pieter Abbeel
Lecture 17
[Decision Diagrams / Value of Perfect Information](https://www.youtube.com/watch?feature=player_embedded&v=gp6-CH40ao8)
Pieter Abbeel
Lecture 18
[Hidden Markov Models](https://www.youtube.com/watch?feature=player_embedded&v=uSpiQFD67vQ)
Pieter Abbeel
Lecture 19
[Applications of HMMs / Speech](https://www.youtube.com/watch?feature=player_embedded&v=jcBY01U9czE)
Dan Klein
Lecture 20
[Machine Learning: Naive Bayes](https://www.youtube.com/watch?feature=player_embedded&v=HmCxjAeGt6U)
Dan Klein
Lecture 21
[Machine Learning: Perceptrons](https://www.youtube.com/watch?feature=player_embedded&v=XP7TPZPGzuk)
Dan Klein
Lecture 22
[Machine Learning: Kernels and Clustering](https://www.youtube.com/watch?feature=player_embedded&v=qJdgcwzMuB0)
Dan Klein
Lecture 23
[Machine Learning: Decision Trees and Neural Nets](https://www.youtube.com/watch?feature=player_embedded&v=4LGh2HlyQZ4)
Pieter Abbeel
Lecture 24
[Advanced Applications: Computer Vision and Robotics](https://www.youtube.com/watch?feature=player_embedded&v=POMk-X93Bag)
Pieter Abbeel
Lecture 25
Advanced Applications: NLP and Robotic Cars
Dan Klein,
Pieter Abbeel Unrecorded
Lecture 26
Conclusion
Dan Klein,
Pieter Abbeel Unrecorded
Lecture Slides
Here is the complete set of lecture slides, including videos, and videos of demos run in lecture: Slides [~3 GB].
The list below contains all the lecture powerpoint slides:
[Lecture 1: Introduction](http://ai.berkeley.edu/slides/Lecture%201%20--%20Introduction/SP14%20CS188%20Lecture%201%20--%20Introduction.pptx)
[Lecture 2: Uninformed Search](http://ai.berkeley.edu/slides/Lecture%202%20--%20Uninformed%20Search/SP14%20CS188%20Lecture%202%20--%20Uninformed%20Search.pptx)
[Lecture 3: Informed Search](http://ai.berkeley.edu/slides/Lecture%203%20--%20Informed%20Search/SP14%20CS188%20Lecture%203%20--%20Informed%20Search.pptx)
[Lecture 4: CSPs I](http://ai.berkeley.edu/slides/Lecture%204%20--%20CSPs%20I/SP14%20CS188%20Lecture%204%20--%20CSPs%20I.pptx)
[Lecture 5: CSPs II](http://ai.berkeley.edu/slides/Lecture%205%20--%20CSPs%20II/SP14%20CS188%20Lecture%205%20--%20CSPs%20II.pptx)
[Lecture 6: Adversarial Search](http://ai.berkeley.edu/slides/Lecture%206%20--%20Adversarial%20Search/SP14%20CS188%20Lecture%206%20--%20Adversarial%20Search.pptx)
[Lecture 7: Expectimax Search and Utilities](http://ai.berkeley.edu/slides/Lecture%207%20--%20Expectimax%20Search%20and%20Utilities/SP14%20CS188%20Lecture%207%20--%20Expectimax%20Search%20and%20Utilities.pptx)
[Lecture 8: MDPs I](http://ai.berkeley.edu/slides/Lecture%208%20--%20MDPs%20I/SP14%20CS188%20Lecture%208%20--%20MDPs%20I.pptx)
[Lecture 9: MDPs II](http://ai.berkeley.edu/slides/Lecture%209%20--%20MDPs%20II/SP14%20CS188%20Lecture%209%20--%20MDPs%20II.pptx)
[Lecture 10: Reinforcement Learning I](http://ai.berkeley.edu/slides/Lecture%2010%20--%20Reinforcement%20Learning%20I/SP14%20CS188%20Lecture%2010%20--%20Reinforcement%20Learning%20I.pptx)
[Lecture 11: Reinforcement Learning II](http://ai.berkeley.edu/slides/Lecture%2011%20--%20Reinforcement%20Learning%20II/SP14%20CS188%20Lecture%2011%20--%20Reinforcement%20Learning%20II.pptx)
[Lecture 12: Probability](http://ai.berkeley.edu/slides/Lecture%2012%20--%20Probability/SP14%20CS188%20Lecture%2012%20--%20Probability.pptx)
[Lecture 13: Markov Models](http://ai.berkeley.edu/slides/Lecture%2013%20--%20Markov%20Models/SP14%20CS188%20Lecture%2013%20--%20Markov%20Models.pptx)
[Lecture 14: Hidden Markov Models](http://ai.berkeley.edu/slides/Lecture%2014%20--%20HMMs/SP14%20CS188%20Lecture%2014%20--%20Hidden%20Markov%20Models.pptx)
[Lecture 15: Particle Filters and Applications of HMMs](http://ai.berkeley.edu/slides/Lecture%2015%20--%20Particle%20Filters%20and%20Applications%20of%20HMMs/SP14%20CS188%20Lecture%2015%20--%20Particle%20Filters%20and%20Applications%20of%20HMMs.pptx)
[Lecture 16: Bayes Nets I: Representation](http://ai.berkeley.edu/slides/Lecture%2016%20--%20Bayes%20Nets%20I%20Representation/SP14%20CS188%20Lecture%2016%20--%20Bayes%20Nets.pptx)
[Lecture 17: Bayes Nets II: Independence](http://ai.berkeley.edu/slides/Lecture%2017%20--%20Bayes%20Nets%20II%20Independence/SP14%20CS188%20Lecture%2017%20--%20Bayes%20Nets%20II%20Independence.pptx)
[Lecture 18: Bayes Nets III: Inference](http://ai.berkeley.edu/slides/Lecture%2018%20--%20Bayes%20Nets%20III%20Inference/SP14%20cs188%20Lecture%2018%20--%20Bayes%20Nets%20III%20Inference.pptx)
[Lecture 19: Bayes Nets IV: Sampling](http://ai.berkeley.edu/slides/Lecture%2019%20--%20Bayes%20Net%20IV%20Sampling/SP14%20CS188%20Lecture%2019%20--%20Bayes%20Nets%20IV%20Sampling.pptx)
[Lecture 20: Decision Diagrams and VPI](http://ai.berkeley.edu/slides/Lecture%2020%20--%20Decision%20Diagrams%20and%20Value%20of%20Perfect%20Information/SP14%20CS188%20Lecture%2020%20--%20Decision%20Diagrams%20and%20VPI.pptx)
[Lecture 21: Naive Bayes](http://ai.berkeley.edu/slides/Lecture%2021%20--%20Naive%20Bayes/SP14%20CS188%20Lecture%2021%20--%20Naive%20Bayes.pptx)
[Lecture 22: Perceptron](http://ai.berkeley.edu/slides/Lecture%2022%20--%20Perceptron/SP14%20CS188%20Lecture%2022%20--%20Perceptron.pptx)
[Lecture 23: Kernels and Clustering](http://ai.berkeley.edu/slides/Lecture%2023%20--%20Kernels%20and%20Clustering/SP14%20CS188%20Lecture%2023%20--%20Kernels%20and%20Clustering.pptx)
[Lecture 24: Advanced Applications (NLP, Games, Cars)](http://ai.berkeley.edu/slides/Lecture%2024%20--%20Advanced%20Applications%20(NLP,%20Games,%20Cars)/SP14%20CS188%20Lecture%2024%20--%20Advanced%20Applications%20(NLP,%20Games,%20Cars).pptx)
[Lecture 25: Advanced Applications (Computer Vision and Robotics)](http://ai.berkeley.edu/slides/Lecture%2025%20--%20Advanced%20Applications%20(Computer%20Vision,%20Robotics)/SP14%20CS188%20Lecture%2025%20--%20Advanced%20Applications%20(Computer%20Vision%20and%20Robotics).pptx)
[Lecture 26: Conclusion](http://ai.berkeley.edu/slides/Lecture%2026%20--%20Conclusion/SP14%20CS188%20Lecture%2026%20--%20Conclusion.pptx)
The source files for all live in-lecture demos are being prepared from Berkeley AI for release
Selected Research Papers
-
Collaborative Filtering with Recurrent Neural Networks (2016)
-
Deep Collaborative Filtering via Marginalized Denoising Auto-encoder (2015)
-
Nonparametric bayesian multitask collaborative filtering (2013)
-
Tensorflow: Large-scale machine learning on heterogeneous distributed systems
-
Caffe: Convolutional architecture for fast feature embedding
-
Chainer: A powerful, flexible and intuitive framework of neural networks
-
Large-scale video classification with convolutional neural networks
-
Efficient Estimation of Word Representations in Vector Space
-
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
Stanford Syllabus CS 20SI: Tensorflow for Deep Learning Research
Comparative Study of Deep Learning Software Frameworks
** Reddit_ML- What Are You Reading**
- AI-Powered Social Bots(16 Jun 2017)
The Many Tribes of Artificial Intelligence
Source:https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53
The Deep Learning Roadmap
Source:https://medium.com/intuitionmachine/the-deep-learning-roadmap-f0b4cac7009a
Best Practices for Training Deep Learning Networks
Source: https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53
ML/DL Cheatsheets
Neural Network Architectures
Source: http://www.asimovinstitute.org/neural-network-zoo/
Microsoft Azure Algorithm Flowchart
Source: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet
SAS Algorithm Flowchart
Source: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
Algorithm Summary
Source: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
Source: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/
Algorithm Pro/Con
Source: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend
Python
Algorithms
Source: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/
Python Basics
Source: http://datasciencefree.com/python.pdf
Source: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA
Numpy
Source: https://www.dataquest.io/blog/numpy-cheat-sheet/
Source: http://datasciencefree.com/numpy.pdf
Source: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE
Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb
Pandas
Source: http://datasciencefree.com/pandas.pdf
Source: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U
Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb
Matplotlib
Source: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet
Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb
Scikit Learn
Source: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk
Source: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html
Source: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb
Tensorflow
Source: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb
Pytorch
Source: https://github.com/bfortuner/pytorch-cheatsheet
Math
Probability
Source: http://www.wzchen.com/s/probability_cheatsheet.pdf
Linear Algebra
Source: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf
Statistics
Source: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf
Calculus
Source: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N
Vibe Score

0.442
Sentiment

0.035708035270567436
Rate this Resource
Join the VibeBuilders.ai Newsletter
The newsletter helps digital entrepreneurs how to harness AI to build your own assets for your funnel & ecosystem without bloating your subscription costs.
Start the free 5-day AI Captain's Command Line Bootcamp when you sign up: